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Abstract—We study the downlink scheduling problem in

the first sign of the projected demand for rapid and reli-

a cellular wireless network. The base stations are equipped gble wireless data access.

with antenna arrays such that a base station can transmit
to more than one mobile user at each time instant because

of the spatial filtering capability of antenna array. A num-

New network structures and protocols are proposed to
support data applications in wireless networks. In such

ber of users can receive packets correctly provided they are systems, the networks arein acellular structure where the

spatially separable. In previous work, an infinite traffic

final interface between the mobile user and the network

demand model is used to study the physical layer beam- js wireless through access points (APs) or base stations

forming and power control algorithms that maximize the
throughput. In this paper, we consider finite user traffic

demands. A scheduling policy depends on both the queue
lengths and the spatial separability of the users. The ob-

jective of the scheduling algorithm is to maintain the stabil-

(BSs) that are wired to the backbone network. For in-
stance, 3G protocols have been standardized and are being

implemented to provide mobile users with wireless data
access. The most challenging goal in the design of these

ity of the system. We derive optimal scheduling policy that Communication systems is to guarantee the quality of ser-
achieves the stability of the system if it is achievable by any vice (QoS) regquirement to various data applications on
scheduling policy. However, this optimal scheduling pol- wireless channels with limited bandwidth and time vary-
icy is exponentially complex in the number of users which jng characteristics. Different notions of QoS are available
renders it impractical. We propose four heuristic schedul- in different communication layers. QoSin physical layer
ing algorithms that have polynomial complexity. The first is expressed as an acceptable signal to interference and

two algorithms are for the special case of single cell systems ™ . ) . .
while the other two algorithms deal with multiple cell sys- noiseratio (SINR) or corresponding bit error rate (BER) at

tems. Using realistic multi-path wireless channel model, we the receiver. In the MAC layer, QoS is usually expressed
evaluate the performance of these algorithms through com- in terms of achievable bit rate or packet error rate (PER),
puter simulations. The results show the benefits of consider- while at higher layers QoS can be perceived asaminimum

ation of queue length and dynamic base station assignment. throughput or maximum delay requirement. The ability

I. INTRODUCTION

Wireless communication has been experiencing rapid
development during the last decade. The increasing need
for providing fast wireless access and high-speed wire-
less links to users has become the driving force for ac-
tive research in the telecommunications area. At present,
wireless communication is undergoing the transition from
conventional circuit switched voice services to packet
switched data services. A variety of data applications are
implemented or proposed to provide mobile users with
ubiquitous access to information of any kind. The advent
of applications such as wireless multimedia transmission,
wireless Internet access and video conferencing is only

of the network infrastructure to fulfill QoS requirements
and ultimately enhance system capacity depends on pro-
ceduresin severa layers.

A wide spectrum of approaches are proposed to reuse
the communication resources in time, frequency or space
domain, to provide QoS guarantee to mobile users and im-
prove the capacity of the wireless networks. Among these
approaches, the application of antenna arrays, which ex-
plores the spatial diversity of mobile users, is considered
the most promising one and the last frontier for future ca-
pacity improvement of wireless networks. Thisis because
of the beamforming capability of the antenna arrays that
can form the beam pattern directed to the desired user
while nulling the others. In this way, co-channel inter-
ference can be greatly compressed and spatial separable



users can share the same channel with their QoS require-
ments satisfied.

Previous research on the application of antenna arrays
in cellular networks can be categorized into two classes.

Thefirst class of research ison the physical layer, given
aset of users, the problem is to design optimal algorithms
to calculate the beamforming weights for each user. The
problem is modeled as an optimization problem, minimiz-
ing the total transmission power subject to the constraints
that each user’s SINR requirement satisfied. Note that this
problem may be infeasible, that is, there does not exist a
set of beamforming weights such that each user’'s SINR
value is above threshold. In [1], iterative algorithms are
proposed to minimize total transmitted power subject to
the constraint that SINR of each user is satisfied for down-
link transmissions in a single cell network. In [3], the
problem of joint beamforming and base station assign-
ment is considered, where each user can be served by any
base station in the network. Algorithm that assigns each
user to the optimal base station and computes the corre-
sponding transmit beam pattern for each user is designed.

The second class of research is on the MAC layer
with consideration of physical layer user separability con-
straints. We have a set of users and we would like to
put as many as possible users into one channel and com-
pute the beamforming weights for each selected user un-
der the constraints that the SINR value of each selected
user is above a threshold. In this way, the throughput of
the network is maximized. The channel can be a time
dot in a TDMA system, a subcarrier in an OFDM sys-
tem or a code in a CDMA system. Algorithms aiming
at maximizing total throughput are proposed in the liter-
ature [4]. These algorithms are based on the same idea
of insertion of users into a channel sequentialy, and vary
in the criteria that determine the order in which users are
inserted. This problem is extended to be combined with
other multiplexing schemes such as TDMA, OFDM and
CDMA in [5]. A common assumption in these works is
infinite packet backlog for any user. The major drawbacks
of these works are the limitation of the focus on instant
total throughput maximization and lack of consideration
of upper layer QoS requirement of each individual user.
Thus, the assignment of users in each channel only re-
flects the feasibility in the physical layer, not the current
buffer occupancy or traffic demand of each user. This sep-
aration of physical layer agorithms and upper layer QoS
requirements leads to the degradation of long term system
performance. Therefore higher layer QoS requirement has
to be taken into consideration for design of efficient MAC
and physical layer algorithms. Moreover, the MAC layer
scheduling policy and physical layer beamforming algo-

rithms need to be considered jointly for QoS provisioning
to users.

In this paper, we study the scheduling problem at a
number of BS's controlled by one central controller and
each BSis equipped with antenna array. Packets arrive at
the central controller for transmission to different mobile
users. Buffer occupancy and thus traffic demand of each
user are considered explicitly. In addition to feasibility
of users sharing the same channel, the scheduling poli-
cies depend on current buffer occupancy and thus reflect
the QoS requirement of each user in terms of throughput.
We model this problem as a queueing system with mul-
tiple parallel servers. SINR requirement constraints are
imposed on the selection of users that can be served in
each time slot. Instead of maximizing instant throughput,
we seek for optimal scheduling policy that stabilizes the
system if it is stabilizable. Specifically, under this opti-
mal scheduling policy the user throughput requirements
are satisfied and thus the long term total system through-
put is maximized.

Similar queueing system is used to model other scenar-
iosin [6][7][8] and is first considered in [6] for a multi-
hop radio network where the SINR requirement demands
that two links can be active ssimultaneously only if they
are separate for at least aminimum required distance. The
throughput region is defined as the set of arrival rate vec-
tors for which the system is stable. The optimal schedul-
ing policy which stabilizes a system whenever it is stabi-
lizable isidentified. In this paper, we follow the same di-
rection asin [8]. However, the optimal scheduling policy
is exponentially complex in the number of users and no
practical sub-optimal scheduling policy is proposed in [6]
[7] [8]. For our problem, wewill propose scheduling poli-
cies of polynomia complexity that achieve sub-optimal
performance.

This paper isorganized asfollows. In Section |1, we de-
rive the optimal scheduling policy based on feasible rate
vectors. In Section |11, we propose heuristic algorithmsto
approximate the optimal scheduling policy with polyno-
mial complexity. Performance evaluation of these algo-
rithms are presented in Section V. Section V concludes
the paper with discussions.

I1. OPTIMAL DOWNLINK SCHEDULING PROBLEM
WITH BASE STATION ANTENNA ARRAYSIN CELLULAR
NETWORKS

A. System model
We consider awireless network which consists of sev-
eral base stations. Each base station is equipped with an

antenna array such that several users can be served simul-
taneously. These base stations are coordinated by a sin-
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Fig. 1. Themultiple cellular communication system

gle central controller. Mobile users in the network are
able to receive data packets from any of these base sta-
tions. However, at each instant, one mobile user can re-
ceive data packet from only one base station. The central
controller maintains a separate queue for incoming data
packets destined to each mobile user. We assume atime
dotted system where the transmission time of each packet
equals to one time dlot if lowest transmission rate is ap-
plied. In each time dot, the central controller collects the
information of the wireless links of each user to different
base stations. Based on this information and the packet
backlog condition, the central controller assigns base sta-
tions to the users with respective transmission rates and
calculate the beamforming weights which will be used by
each assigned base station. The scheduling decision made
by the central controller includes assignment of base sta-
tions to the users and the transmission rate of each user.
The beamforming weights are calculated to support the
scheduling decision.

The block diagram of the system under study is de-
picted in fig.1. User packets enter the scheduling module
at the central controller, which determines the all ocations
of base stations and transmission rates. Beamforming and
power adaptation are subsequently calculated for each BS
for scheduled users. The transmitter of a BS can form
at most M beams for scheduled users at the same time,
where M is the number of antenna elements. A beam is
formed by a dedicated transceiver and a power isassigned
to a user. Scheduling and beamforming are interdepen-
dent operations and they also depend on queueing state
and channel state information, which are assumed to be
available at the central controller.

B. Problem statement

A central controller coordinates the operation of I base
stations. Each base station isequipped with an M -element
antenna array. J users receive data packets from these
base stations. We denote Z and J as the sets of base sta-
tions and users respectively.

Several rates can be applied for the transmission to a
user. We denote V asthe set of available rates. We assume
each rate is a positive integer number. If ratev € V is
applied, v packets can be transmitted in one time slot. We
denote |V| = V.

Packets arrive at the central controller for transmission
to different users. The central controller maintains a sep-
arate queue for each user. Let a;(t) denote the number of
packets that arrive at queue j in time slot ¢. a;(t) is an
i.i.d. random variable with finite second moment distribu-
tion, E[a;(t)?] < oo, forj =1,2,---,.J. We denote the
number of backlog packets for user j at the start of time
dot t as z;(t).

We assume the arrival process is ergodic and time in-
variant, such that

1 t

Aj = Blaj(0)] = Jim 5> aj(7), €
Andwecal A= (A, As,---,Az)" anarrival vector.

We assume the central controller has perfect channel
information for each user with regard to every base sta-
tion. At each time dot, the central controller assigns the
base stations to the users with respective rates. The cal-
culations of beamforming weights for each base station
are also performed at the central controller. A scheduling
decision can be expressed asan I x J matrix R where ele-
ment r;; isthe transmission rate of base station 7 to user j.
A rate matrix is feasible if and only if SINR requirement
is satisfied for each user and each user receives packets
from at most one base station.

The channel conditions change with time. Therefore,
the feasibility of a rate matrix is also time varying. We
model the channel evolution process as a Markov chain
with stationary distribution 7. Each channel state is rep-
resented by the set of al the feasible rate matrices in this
state. Let S be the channel state space. Our problem isto
find the optimal scheduling policy which selects the feasi-
ble rate matrix in each time slot given the queue lengths,
such that the system achieves maximum throughput. We
define and characterize the throughput region in the fol-
lowing subsection.

C. Throughput region

Definition: an arrival vector A iswithin throughput re-
gion A if there exists a scheduling policy such that
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where z;(7) is the number of backlog packets in queue j
a the start of time slot 7. We say A is stable under this
scheduling policy.

The following proposition characterizes the throughput
region A.

Proposition 1. for an arrival vector A, the necessary
and sufficient condition for A € A is. there exists a
scheduling policy that achieves

A<D= Z TS Z CSRRT1[><1
Ses ReS

©)

where cgr, S € S, R € S are nonnegative numbers such
that ZRES CSR — ]., S € S.
proof: [8].

D. Optimal scheduling policy

We are interested in the optimal scheduling policy that
achieves stability for each A € A. Specificaly, we con-
sider thefollowing scheduling policy given backlog vector
X(t) and system channel state S(t).

R(t) = arg mamReS(t)X(t)T(RTllxl) 4)

where tieis broken arbitrarily.

The backlog process X (t) isan J-dimensional Markov
process with infinite and countable state space given that
the scheduling policy is stationary. Define Lyapunov
function

©®)
=1
Through the negative drift of Lyapunov function when
backlog is large, we can prove the existence of the steady
distribution of X (t) and hence the stability of the system.
Formally, we rely on the following theorem to establish
stability property.

Theorem 1 ([9],[10]): For a given Lyapunov function
L(X(t)), if there exists a compact region ¥ of ®/ and a
number e > 0 such that:

1. E[L(X(t +1))|X(t)] < oo for dl X(t) € ®/.

2 EIL(X(t + 1)) - LX) X(t)] <
—a whenever X (t) € X¢.
then a steady state distribution on the vector X (t) exists
and hence the system is stable.

4

Now we prove the following proposition which estab-
lishes the optimality of scheduling policy (4).

Proposition 2: scheduling policy (4) stabilizes the sys-
tem if the arrival vector A is interior to the throughput
region.

Proof: the one step drift of the backlog vector X (t) is

—D(t),0) (6

It is clear that property 1 in Theorem 1 holds. Now we
prove property 2 of the theorem.

i () + a;(t)

< x(1)* — 22;(t)d; (t) + 22;(t)a
E[L(X(t+1)) — L(X

> Ela;(t)*1X (1))

=2 xj()Eld;(t) — a;(t)| X (1)) <

B—23 x;(t)(Bld; (1) X (1)] — 4;())

where B = ZE[aj(t) |X(t)] + Jv?2, since
max Y E[d; ()% X (t)] < Jv3,, Where vy, = max,ey v.
Since A lies within the throughput region, we have

X(t+1) X (t) + A(t)

= maz(

23 (t+1) < (z — d;(t))?

i(1) + d;(1)*
()X ()] <
+ > E[d;(t)?|

+a;j(t)?

) > ms Y esrR 11

Ses ReS

J J
> zi(t)A; <Y w(t
Pt j=1

J

= Z TS Z CSRij(t)rj

Ses ReS j=1

< Zwsmaxz x]

Ses

J

=D () Ed;(£)| X (¢)]

J=1

where r; isthe j's element of vector RT1;y,.
We are able to find a vector e=(e, ¢, - - -, €) such that
A + ¢ isalso within the throughput region and satisfies:

Zl"]

Therefore

(A5 +¢€) <>z () E[d;(£)| X (1)]

J
> zi(6)(Eld; (1) X ()] — Aj)
7=1



J
> e Z z(t)
7=1

and

J

L(X(t))|X(t)] < B —2¢ ) x(t)

J=1

E[L(X(t+1)) —

For any positive «, we define the compact region
B + «

e RIS wi(h) < (F-%)

such that condition 2 in Theorem 1 is satisfied.

2 = {X(t)

I1l. HEURISTIC DOWNLINK SCHEDULING
ALGORITHMS WITH BASE STATION ANTENNAS

We have derived the optimal scheduling policy. The
next question is how to find the optimal rate allocation
and base station assignment given the queue length of ev-
ery user in each time dlot. If the user channels are con-
stant, the central controller can exhaustively search for all
possible combinations offline, and select the one that max-
imizes (4) in each slot. However if the channels vary with
time, this exhaustive search is not implementable even for
a single cell system because the number of possible rate

J
Cc1 — Z ( t]]

vectorsis
Jj=1

which is exponential in the number of users. Therefore,
we want to design online scheduling policies which give
sub-optimal performance with lower complexity.

In the previous sections, we abstract the spatial sepa-
rability of users as feasible rate vectors. This abstraction
hides the physical channel characteristics. In the follow-
ing, we will present the physical channel model we adopt.
Based on this model, we will propose joint scheduling and
beamforming, power control agorithms with polynomial
complexity in the number of users and study their perfor-
mances in terms of average packet delay. We start with
single cell system followed by multiple cell system.

()

A. Single cell system

1) Physical channel model and downlink beamforming
algorithm: Thefirst step is to test whether a set of users
with their respective rates can be served at the same time.

We will describe the adopted physical channel model [11]
followed by the introduction of the downlink beamform-
ing algorithm.

The multi-path channel between antenna m and user j
is

L
m() =Y Bed (¢ ®
=1
where L is the number of paths, j3; , is the complex gain
of the /-th path of user 5 and 7; , isthe delay for that path
with respect to areference antenna element. Thegain ;¢
is a complex random variable with variance A;,. The
term 77, = (d/c)(m — 1) cos 0, captures the delay to
the m- th antenna, where d is the distance between two ad-
jacent antenna elements, ¢; , is the angle of the /-th path
of user 5 and c is the electromagnetic wave propagation
speed. In the sequel, we assume that the major limitation
is cochannel interference rather than noise, so that SINR
is approximated by SIR.
Thereceived signa at the receiver of user j is,

m
—Tje + Tj,g) s

Z\/szuk Zﬁ], (wo) e sy, (t — 7j.4),
m=1

keu

©)
where U/ is the cochannel set of users. Define the m-th
element of the M x 1 antenna steering vector vo(6;,¢) at
direction 6;, and frequency wy as v (0x¢) = IS
Then, the vector ag; = 37, B} 4(wo)vi(6;,) is called
spatial signature of user j at wy and captures spatial and
multi-path properties of the user. If we omit subscript “0”
from v, the average received power in channel of user j
duetokis

{I\/Pk > up Zﬁy, (wo)e’™ TﬂSk(t—Tj,Z)P}
m=1

(10)

= Pkuk Z Z ]fl ]fz)E{BJ’,Zl (WO)B;,ZQ (wo)}
l1=1/0>=1
Efsi(t — 7j,0,) s (t — Tj0,) )k (11)
— Py(w ) (12)
Observe that
if ¢ /
LS L W ay B
(13)

assuming that all paths are independent and signal power
isnormalized. Then we have,

L
Hi=> Ajev(0; v (0;0). (14)

/=1



The matrix H; is called spatial covariance matrix of user
j and in general it hasrank(#;) > 1. The average SIR at
the receiver of user j, Wj is,

o F)] (ufl?-[juj)
’ Z Pk; (u,??—[juk) ‘

keUd
k3

(15

Consider the system of N users. Define as U the en-
semble of computed beamforming vectors for all users,
i.e, U={u;:j €U }. Then, wedefinethe (|/]) x |U])
matrix A (U) where a;; specifies the cochannel interfer-
ence caused by the j-th to the i-th user, normalized by the
useful signal power of 4. That is,

1, ifi=j
b = { —;T(vi)uyﬂf"j . otherwise. (16)
where T'(v;) is the required SIR threshold that is a func-
tion of rate v;.

Matrix A (U) is non-negative definite and irreducible.
From the Perron-Frobenius theorem, the only eigen-
vector with dtrictly positive components is the one
that corresponds to the maximum eigenvalue of A (U),
Amaz (A (U)).

We introduce matrix B(U), whose elements are related
to those of A (U) asfollows,

bij:{

Hence, B(U) isthe interference matrix between users. A
system in which all users achieve acommon SIR ~. in the
downlink is described by the set of linear equations

ifi £ j
ifi =,

Ajj,
a; — 1,

(17)

1
B(U)-p=—-p
Ve

(18)

where p is the power vector. Thus, ~. is a reciprocal
eigenvalue of B(U) and isactually relative SIR that isthe
ratio of real SIR to the required SIR threshold. If v, > 1
is satisfied, the given rate vector can be supported. Matrix
B(U) has the same properties as A(U) with respect to
existence of an eigenvector p with positive components.

Therefore, we have 1/7, = Apaz(B(U)). If 47 isthe
maximum possible common SIR then
= 1 (19
7T Win A naa (B(U))

Holger and coworkers proposed adownlink beamform-
ing algorithm [2] where the power level and beamforming

weights are computed iteratively. This algorithm is op-
timal in the sense that convergence to the optima beam-
forming weights and power levels are guaranteed if the
problem is feasible. However the iterative porcess could
be time consuming. In this paper, we apply asimple algo-
rithm that calculates the beamforming weights and power
levels only once. The pseudo-code of this agorithm is as
follows.

ALGORITHM |

« STEP 1 Solve a set of NV decoupled generalized
eigenproblems.

u, H‘U.‘
¥l 7
max

ST e u.

u; =arg (20)

where

Rj=>_Hx

keud
k3

« STEP 2 Solve the following eigenproblem

(21)

BT(U) ‘b= >‘ma$ P (22)

o STEP 3 If A0z (t) < 1, therate vector isfeasible.

2) Heuristic downlink scheduling algorithms.  Ac-
cording to (4), to maintain the stability of the system, the
users with large queue length should be given high service
priority. However, these users may not be spatially separa-
ble such that they can not be served together. On the other
hand, we may choose a set of compatible users such that
the total throughput is maximized. Actualy, this kind of
algorithms have aready been proposed in [4], [5]. Based
on the relative priority of queue length or throughput, we
propose the following algorithms. We can start with the
user with longest queue, and try to schedul e users sequen-
tialy in the decreasing order of their queue lengths. Each
new user is allocated the highest possible rate such that
SIR requirement is satisfied for the new rate vector.

When we insert users into the channel sequentially ac-
cording to their queue lengths, it is possible that one in-
serted user prevents a number of other users from access-
ing the channel. To further improve performance and keep
the complexity linear, we will consider severa rate vec-
tors and select the one that optimizes (4). Specificaly, we
will consider P out of al possible rate vectors. These P
rate vectors form a subset of the set of al rate vectors.
We expect this subset to consist of the most important rate
vectors in terms of maximizing (4).



Therefore, we start to form the p-th activation set with
the user of the pth longest queue. Then we are able to
select the rate vector that maximizes (4) out of these P
rate vectors. Denote by 7 the set of users. Let J = |J]|.
Let z;(t) be the queue length of user j at time ¢. The
pseudo-code of the algorithm is as follows.

ALGORITHM [1

e« STEPL Forp=1toPdo
— STEP 1.1 Initialize J as the set containing all
users. Assume j* is the user with pth longest
queue, schedule user j* with the highest rate . ,
K=J\{i"}
— STEP 1.2 Select user

L "
j a?"grjne%%( )

— STEP 1.3 Schedule user 7* with the highest
rate r;’* that can be accommodated, remove user
g* from KC.
— STEP 1.4 If the number of scheduled users
with positive rates is less than M and || > 0,
goto STEP 1.2
« STEP 2 Among all the obtained rate vectors, select

ro as
ro, = arg maxresrz:jzlrjwj (t) (23)
where S’ isthe set of all rate vectors obtained.
The complexity of Algorithm Il is
¢y = PIMV (24)

Intuitively, Algorithms 111 tries to serve the users with
larger queue lengths which is consistent with (4). How-
ever, these users may not be compatible with other users
and could prevent a large number of other users with
smaller queue lengths from accessing the channel. On
the other hand, if a large number of compatible users
with smaller queue lengths are assigned to the channel
with their SIR requirements satisfied, a larger value of
(4) can be obtained. Therefore, there exists the tradeoff
between serving-long-queues-first policy (Algorithms11)
and maximizing-total-throughput policy. In[5], algorithm
that implements the maximizing-total-throughput policy
is presented. The basic idea is to search through al the
users and the user that is most compatible with aready
scheduled users is selected. In that paper, only single

transmission rate is allowed. We extend the algorithm to
the multiple transmission rate case and the pseudo-code
of this algorithm is presented as follows. This algorithm
has complexity c; = (JV)™ due to the search process.

ALGORITHM |11
e STEP 1 Select user

i = argmax z;(t
j g max i (t)

Schedule user j* with the highest rate v;- (t) that can
be accommodated, remove user j* from 7.

o STEP 2 Let v* bethe highest rate with which auser
j € J can be accommodated in the channel with the
rates of the already assigned users unchanged.

If v* =0, STOP.
Else, let 7' be the set of users that can be assigned to
the channel with rate v*.

« STEP 3 Schedule user j* € J' that results in maxi-
mal minimum SIR for the set of already scheduled
users plus the user under test with corresponding
rates. Schedule user;* with rate v*. Remove j* from
J.

o STEP 4 If the number of scheduled users with pos-
itive rates is less than M and || > 0, goto STEP
2

For the above Algorithms Il and 111, Algorithm | is
called for testing whether arate vector is acceptable.

B. Multiple cell case

When we have I base stations to serve J users. It is
beneficial to dynamically assign users to base stations in
comparison with the fixed assignment of users. In the fol-
lowing, we study the performance enhancement achieved
by dynamical assignment.

We first extend Algorithm | for the multiple base sta-
tion case. We are given the set of base stations Z, the set
of users J, spatial covariance matrices H; forvVi € 7
andVj € J and user j is assigned to base station i;, we
try to calculate the beamforming weights and transmis-
sion power for each user such that the common SIR for all
users is maximized.

ALGORITHM IV

« STEP 1 Solve a set of J decoupled generalized
eigenproblems.

7;.
uHu;
J "ty I
max

X TRl (25)
=1 W Ry

u; =arg

, Vi€ J.



where

Ri =Y Hy
keJ
k)

o STEP 2 Solve the following eigenproblem
BT(U) p= Amam p

(26)

(27)

where

0, ifi—=j

T(vi)uf H:j u;
qu”H:i u;

o STEP 3 If A0z (t) < 1, therate vector isfeasible.

i —
" , otherwise.

We propose two agorithms for downlink scheduling
problem with multiple base stations. In agorithm V, users
are assigned to their respective closest base station, while
user assignment is dynamic in algorithm VI.

ALGORITHM V

o STEP 1 Toeachuser j € J, assign base station i;
that is the closest one to user j.
o« STEP 2 Select user

i = argmaxz;(t
j g max i (t)

o STEP 3 Schedule user j* with the highest rate r;-
that can be accommodated, remove user 5* from 7.
o« STEP4 If |J| > 0,g0to STEP 2 else STOP.

Algorithm VI presented in the following is different
with Algorithm V in the way base stations are assigned
to users. When a user is considered for scheduling, the
best station is assigned to this user in Algorithm V1.

ALGORITHM VI

o STEP 1 Select user
G _ (t
J* = arg max x;(t)
Assign j to the closest base station and schedul e user
7% with the highest rate r;«(t) that can be accommo-
dated, remove user 5* from 7.
o STEP 2 Select user

i = argmaxz;(t
j g max i (t)

Assign j to base station that schedules user 7* with
the highest rate ;- (¢) that can be accommodated, re-
move user j* from 7.

o« STEP3 If |J| > 0,g0to STEP 2 else STOP.

IV. SIMULATION RESULTS

In this section, we evauate the performance of the
heuristic algorithms we proposed using computer simula-
tions. Typical results are presented to illustrate the per-
formance enhancement achieved by jointly considering
MAC layer queueing state and physical layer spatial com-
patibility of users when scheduling users.

A. Sngle cdl case

1) Smulation setup: We first consider a single-cell
system where a base station transmits packetsto J = 10
users. The users are angularly uniformly distributed in the
cell and the distances of the users to the base station are
uniformly distributed between 0 and the radius of the cell.
The BS is equipped with an antenna array with M = 4
elements and d = \/2. The received power decays with
distance ! fromthe BSasi—*. For each link corresponding
to an antenna and auser receiver, multi-path fading issim-
ulated with a 2-ray model. The angle of the first path, 6,
is uniformly distributed in [0, 27], while the angle of the
second path 6, deviates from 6, by arandom amount, uni-
formly distributed in [0, 0.17]. The complex gain of each
path is an independent log-normal random variable with
standard deviation o = 6dB, which accounts for shadow
fading.

An underlying time-slotted system is assumed. The
numbers of packets that arrive at the BSin each time slot
areidentically and independently distributed random vari-
ables with Bernoulli distribution of average rate vector
A =a-L,whereL isaJ x 1 vector and ¢ is the co-
efficient that is the control knob to the system load.

2) Comparative results: Infig.2, we show the average
packet delay as afunction of the system throughput in the
single transmission rate scenario in single cell system. We
observe that for algorithm 11, the delay is amost identical
for P =1 and P = 3 cases. That means the performance
in terms of packet delay is not sensitive with the number
of obtained rate vectors for this scenario. On the other
hand, the delay is larger for algorithm 11, and the delay
becomes large for a smaller throughput than algorithm 11.
Thisindicates that algorithm 1l is able to maintain the sys-
tem stability for alarger system throughput than algorithm
.

For the same network scenario as for fig.2, we present
the performance of algorithm Il and algorithm [1I for a
multiple-rate case in fig.3, where the average packet delay
isshown as afunction of system throughput. Either one or
two packets are transmitted in one time slot when low or
high transmission rate is applied respectively. We observe
that algorithm 111 performs better than algorithm Il with
different values of P when the system throughput is low,
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Fig. 2. Delay vs. throughput for single rate communication in single
cell system

and performs dightly worse than algorithm Il with P = 3
when the throughput is high. Algorithm I tries to balance
the queue lengths of different users. On the contrary, a-
gorithm 11 tries to assign a user that is most compatible
to the users aready assigned, thus algorithm Il can as-
sign more users with higher sum transmission rate in each
time slot and the queue lengths tend to be more unbal-
anced. When the throughput is low, the queue lengths are
small on the average, algorithm 11l can achieve smaller
packet delay than algorithm I, because the uneven queue
lengths could be beneficial since multiple rates are pos-
sible and more users can be served with higher transmis-
sion rates compared to agorithm 11 where the even queue
lengths make the users lack packets to receive high trans-
mission rate. However, when the system throughput is
high, algorithm I11 performs slightly worse than algorithm
Il with P = 3, because users have enough packets to re-
ceive high transmission rate when the throughput is high
and algorithm I11 balances the queues. However, multiple
transmission rates make algorithm [11 perform better than
agorithm Il with P = 1, because the instant sum trans-
mission rates can be much higher than algorithm Il with
P=1.

Moreover, comparing fig.2 and fig.3, we can ob-
serve that multiple transmission rates enlarge the system
throughput region by about 70%. Thisis due to the better
use of the transmission bandwidth achieved by multiple
transmission rates.

B. Multiple cell case

1) Smulation setup: We consider a square areawhich
is divided into four equal square cells. One BSis located
in the center of each cell. J = 20 users are uniformly
distributed in the square area. Thelinks between each user
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Fig. 3. Delay vs. throughput for multiple rate communication in
single cell system

and each BSismodeled asin the single cell system in the
previous subsection, except that the angle of the first path
with respect to a BSis determined by the relative location
of the user and the BS. We assume that the four BSs are
controlled by a single central controller. Packets arrive
at the central controller according to an i.i.d. Bernoulli
process with the average rate being presented by A = a-L
asinthesingle cell case.

2) Comparative results: In fig.4, we show the aver-
age packet delay for algorithm V and agorithm V1 for the
multiple cell system where only single transmission rate
is allowed. We observe that algorithm VI achieves lower
delay than agorithm V for different system throughput
because dynamic base station assignment is able to assign
more usersin each time dot by balancing the transmission
load across different base stations. Similarly, we show the
average packet delay for algorithm V and algorithm V1 for
multiple transmission rate case in the multiple cell system
in fig.5. Agan we observe that agorithm VI performs
better than agorithm V for different system throughput.
Moreover, by comparing fig.4 and fig.5, we observe that
multiple transmission rates improve the maximum system
throughput by about 80%.

V. DISCUSSION

Weinvestigated the impact of antenna array on schedul -
ing algorithmsin order to increase system rate and provide
QoS to users in the form of guaranteed throughput. We
derived the optimal scheduling policy that results in max-
imum throughput region determined by the spatial separa-
bility of users. Due to the inherent difficulty in finding the
optimal solution, heuristic algorithms must by adopted,
which capture desired properties of a good solution. In
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Fig. 5. Delay vs. throughput for multiple rate communication in
multiple cell system

this paper, we presented four algorithms for joint schedul -
ing, beamforming and power control. The first two algo-
rithms are proposed for single cell systems while the last
two are for multiple cell systems. The intuition behind
these heuristic algorithms is to approximate the optimal
scheduling agorithm with lower computational complex-
ity. Performance results indicate that this joint consid-
eration of MAC layer scheduling algorithm and physical
layer beamforming and power control yields significant
system improvement as opposed to algorithms that maxi-
mize instant system throughput as proposed in the litera-
ture.
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