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Abstract—We consider the problem of scheduling packets over
a number of channels with time varying connectivity. Policies
proposed for this problem either stabilize the system when the
arrival rates are within the stability region, or optimize an
objective function under the assumption that all channel queues
are saturated. We address the realistic situation where it is not
known apriori whether the channel queues are saturated or not,
and provide a scheduling policy that maximizes the weighted
sum of channel throughputs. We employ a burstiness-constrained
channel model that allows us to dispense of statistical assumptions
and simplifies the proofs.
Index Terms—Scheduling, Deterministic network calculus,

QoS in wireless networks.

I. INTRODUCTION
The primary motivation of this work is the problem of

scheduling the transmissions of multiple data flows sharing
the same wireless channel. The relative delay tolerance of data
applications, together with the bursty traffic characteristics,
opens up the potential for scheduling transmissions so as
to optimize throughput. Given the above considerations, we
examine a time-slotted parallel queue system with a single
server. The condition of the associated channel of every queue
varies with time between “on” and “off” states. In every time
slot only one packet can be transmitted from a given queue,
if the associated channel is in the “on” state and the queue
is non empty. The main result of this paper is the design of
a scheduling policy that allocates the server to the queues in
such a way that the weighted sum of channel throughputs is
maximal.
A related approach along these lines is proposed in [4],

where the authors identify optimality properties for scheduling
downlink transmissions to data users, in CDMA networks.
For arbitrary-topology networks, the problem of admission
control and rate allocation to the users so that certain quality-
of-service requirements are met, is investigated. A mathe-
matical programming formulation is obtained for determining
the optimal transmission schedule. The effect of wireless
channels on the performance of transmission protocols such
as TCP is examined through simulations in [5]. The authors
conclude that channel-state scheduling can lead to significant
improvement in channel utilization.
The problem of scheduling wireless channels with time

varying connectivity has been addressed in the past in several
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different contexts. In [12], optimal scheduling for a wireless
system consisting of multiple queues and a single server is
studied. The arrival processes to the queues are assumed i.i.d
Bernoulli. The wireless channels can be in the “on” or in
the “off” state according to i.i.d Bernoulli processes. The
authors derived the system stability region; moreover, they
showed that the policy that among the queues whose channel
is “on” serves the one with the longest queue, stabilizes
the system whenever the arrival rates are within the stability
region. In [13], Tassiulas considered a system that generalizes
the one in [12] in the following aspects. First, a network
with arbitrary topology is considered. Second, the topology
is represented by a hidden Markov model instead of an
independent and identically distributed (i.i.d) process. Third,
anticipative scheduling policies are taken into consideration.
Fourth, multiple link transmission rates are considered. In that
context, after the characterization of the region of achievable
throughputs, a transmission scheduling policy is proposed, that
achieves all throughput vectors achievable by any anticipative
policy.
The problem of scheduling transmissions over a wireless

channel with time-varying transmission rates is considered in
[11], [6], [9] and [8]. The problem of providing a scheduling
policy that stabilizes the system whenever the arrival-rate
vector lies within the stability region is dealt in [11] and
in [8]. In [11], a finite set of channel states is assumed and
every channel can be in one of these states. With each state
there is an associated data rate, representing the rate at which
the queue is served if selected for transmission. The arrival
processes to the queues are assumed mutually independent,
ergodic, Markov chains with countable state space. Under
these assumptions it was shown that the scheduling policy,
called the exponential rule, makes the queues stable if there
exists any policy that can do so. In [8], the authors consider
the problem of power and server allocation in a multi-beam
satellite downlink which transmits data to different ground
locations over time varying channels. The authors establish the
stability region of the system and develop a power allocation
policy, which stabilizes the system whenever the system is
stabilizable and when the arrival and channel state processes
are i.i.d.
In [9] and [6] the problem of developing a scheduling

policy for efficient channel utilization is considered for the
case that all the queues are unstable. In [9] the state of a
channel is modeled by a stochastic process, which represents
the level of performance of the given channel. A scheduling
policy is provided which maximizes the average system per-
formance given that a predetermined time-fraction assignment
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is achieved when all the queues are unstable. In [6], the authors
consider a base station serving data-users. The feasible rates of
the users vary over time according to some stationary discrete-
time stochastic process. A scheduling policy that exploits
the variations in the channel conditions and maximizes the
minimum throughput is developed.
The main contribution of this paper is that it studies a system

with time-varying connectivity when the arrival rates do not
belong necessarily in the stability region of the system. This is
an important situation that arise in practice, since the channel
parameters and the arrival rates may not be known apriori,
or may vary over time. In such a case, scheduling policies
proposed before for maximizing the throughput may fail, and
the system may have a rather erratic behavior. In the current
work we consider the scheduling problem of maximizing the
weighted sum of user throughputs. We provide a scheduling
policy that is optimal under any arrival rates. In the most
general case, under the optimal policy we propose, some
queues will be stable while others will operate in saturation.
Such a dynamic behavior makes the analysis of the system
rather difficult. Instrumental in the analysis of our policy
was the adoption of a “bounded burstiness” model for the
variability of the channel inspired by “burstiness constrained”
traffic models that have been used over the last several years
in the analysis of rate-controlled communication networks [2].
The paper is organized as follows. In Section II, the traffic

and channel model is introduced. Specifically, the constraints
on the arrival and slot availability processes are given. In
Section III we provide the problem formulation and define the
scheduling policy. In Section IV we provide the optimality
proof of the proposed policy. Conclusions and suggestions for
further work are discussed in Section V.

A. Notations and Conventions
Before we proceed, we discuss some of the notations and

conventions that we use throughout the paper. Sets of numbers
are denoted by calligraphic capital letters. In particular we
define N = {1, ...,N} . A subset S of a set D is denoted by
S ⊆ D and a strict subset by S ⊂ D. In several places we
will use sets as subscripts or arguments, say F (S). To simplify
notation and if there is no possibility for confusion, instead of
F ({i1, ..., ik}) we write F (i1, ..., ik). Also, we write

P
S yi

to denote
P
i∈S yi. If S = ∅, then we define

P
S xi = 0.

Also, ∪li=kDi = ∅ if k > l. The cardinality of a set S is
denoted by |S| . If X = [xij ] and Y = [yij ] are matrices, then
X ≤ Y (X < Y) means that xij ≤ yij (xij < yij) for all i
and j. Finally, by XT we denote the transpose of X.
Some of the rather technical proofs in Sections III and IV

that are not essential for understanding the main ideas of the
arguments, are omitted due to lack of space. These proofs can
be found at the site http://genesis.ee.auth.gr
/SITE_AUTH_UNIVERSITY/SITE_TDIVISION
/users/georgiadis/english/PersonalPages
/ConferencePapers/TimeVarInfoc03.pdf.

II. TRAFFIC AND CHANNEL MODEL
We consider a system consisting of N channels. With each

channel there is an associated queue holding packets that are

to be transmitted over the given channel. Packets are of fixed
size and time is divided in slots of unit length, equal to the
transmission time of a packet. Slot t ≥ 1 refers to the interval
(t− 1, t]. In the interval (t − 1, t] (slot t), ai(t) new packets
join queue i to be transmitted over the corresponding channel.
At the beginning of slot t, i.e., at time t − 1, one packet
among those already in one of the N queues may be chosen
for transmission at slot t. The number of packets from queue
i transmitted in slot t is bi(t) (therefore, bi(t) is either 0 or 1)
and the number of packets in queue i at time t ≥ 0 is qi(t).
Therefore the number of packets at queue i, i ∈ N , evolves
with time according to the equation

qi (t) = (qi (t− 1)− bi (t))+ + ai (t) ,

where (x)+ = max {0, x} .
Define aS(t) =

P
S ai(t) and bS(t) =

P
S bi(t).

At slot t, channel i may or may not be available for
transmission of queue i packets. If the channel is available
for transmission, we say that the channel is in the “on” state.
We define for S ⊆ N , S 6= ∅,

cS(t) =

 1
if at least one channel in S is

on in slot t
0 otherwise

and c∅ (t) ≡ 0. For example, Figure 1 shows the channel
availability for 3 channels during 15 time slots. According to
the figure
• c{1}(t) = 1 for 1 ≤ t ≤ 12 and zero elsewhere.
• c{3}(t) = 1 for 2 ≤ t ≤ 7, 9 ≤ t ≤ 14 and zero
elsewhere.

• c{1,2}(t) = 1 for 1 ≤ t ≤ 15 and zero elsewhere.
• c{1,3}(t) = 1 for 1 ≤ t ≤ 14 and zero elsewhere.
• c{1,2,3}(t) = 1 for 1 ≤ t ≤ 15 and zero elsewhere.
Since only one packet may be transmitted in one slot, we

have

bS(t) =

 1
if bi(t) = 1 for one of the

channels in S
0 otherwise

.

Transmission over channel i make take place (bi(t) = 1) only
if the channel is in the “on” state and hence,

bS(t) ≤ cS(t). (1)

If x(t) is any of the quantities defined above, we denote

X(s, t) =
tX

τ=s+1

x(τ).

We make the following assumptions regarding the traffic and
slot availability processes.
Traffic Model:

Ai(s, t) is (σUi ,σLi ,αi)-constrained, i.e., it holds
for any t ≥ s ≥ 0,

αi(t− s)− σLi ≤ Ai(s, t) ≤ αi(t− s) + σUi ,
(2)

where

σLi ≥ 0, σUi ≥ 0, ∞ ≥ αi ≥ 0.
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Fig. 1. Channel availability (“on” state) for 3 channels

Parameter αi is the packet arrival rate to queue i
( i.e., αi = limt→∞

Ai(0,t)
t ) for transmission over

the corresponding channel. We allow the possibility
that αi = ∞, in order to include the case that
some of the queues are infinite for t ≥ 1. Note
that it follows from the definition that if Ai(s, t)
is (σUi ,σLi ,αi)-constrained for i ∈ S, then AS (s, t)
is
¡P

S σ
U
i ,
P
S σ

L
i ,
P

S αi
¢
-constrained.

Channel Availability Model:
CS(s, t), is (θUS , θ

L
S , F (S))-constrained, i.e., it

holds for any t ≥ s ≥ 0,

F (S)(t− s)− θLS ≤ CS(s, t) ≤ F (S)(t− s) + θUS ,
(3)

where

θLS ≥ 0, θUS ≥ 0.

We also use the convention F (∅) = θL∅ = θU∅ = 0.

We refer to the inequalities in (2) and (3) as “burstiness
constraints”. With the exception of αi, i ∈ N , the parameters
used in the previous models are assumed finite.
The definitions for the traffic model are standard, see e.g.,

[2], [3], [1]. We elaborate on the Slot Availability Model. From
(3) it follows that

lim
t→∞

CS(0, t)

t
= F (S), (4)

that is, F (S) is equal to the long-term fraction of time that at
least one of the channels in S is in the “on” state. Also, from
the definition of cS(t) we have that for any subsets S, T , of
N , and for every t, it holds,

cT (t) ≤ cS(t), if T ⊆ S
cS(t) + cT (t) ≥ cS∪T (t) + cS∩T (t),

and hence

CT (s, t) ≤ CS(s, t), if T ⊆ S (5)
CS(s, t) + CT (s, t) ≥ CS∪T (s, t) + CS∩T (s, t). (6)

From (4), (5), (6) we conclude that F (S) satisfies the
following relations for any subsets T and S of N .

F (∅) = 0, (7a)
F (T ) ≤ F (S), T ⊆ S, (7b)

F (T ) + F (S) ≥ F (T ∪ S) + F (S ∩ T ). (7c)

The last property is known as the submodularity property.
As an example, suppose that the channel availability pattern

in Fig. 1, is repeated indefinitely, i.e., we have a periodic
channel availability process. Consider the first channel, i.e.,
S = {1} . It holds

c{1}(t) =

½
1, for 1 ≤ t ≤ 12
0, for 13 ≤ t ≤ 15

and c{1}(t + 15) = c{1}(t), for every time-slot t ≥ 1.
Therefore we have¹

t− s
15

º
12 ≤ C{1}(s, t) ≤

»
t− s
15

¼
12, or

12

15
(t− s)− 12 ≤ C{1}(s, t) ≤

12

15
(t− s) + 12.

In conjunction with definition (3), the above inequality states
that C{1}(s, t) is (θU{1}, θ

L
{1}, F (1))-constrained, with θU{1} =

θL{1} = 12 and F (1) = 12/15, i.e., F (1) is equal to
the long-term fraction of time that the first channel is on.
Similarly we have that CS(s, t) is (θUS , θ

L
S , F (S))-constrained

and according to the figure
• For S = {3}, θU{3} = θL{3} = 12 and F (3) = 12/15.
• For S = {1, 2}, θU{1,2} = θL{1,2} = 0 and F (1, 2) = 1.
• For S = {1, 3}, θU{1,3} = θL{1,3} = 14 and F (1, 3) =
14/15.

• For S = {1, 2, 3}, θU{1,2,3} = θL{1,2,3} = 0 and
F (1, 2, 3) = 1.

We close this section with a few comments on the adopted
traffic and channel models. The assumption that channels can
be in two states only is made for technical reasons and we
make no claims to practicality. This assumption is adopted in
order to simplify the situation and get a better insight into the
problem at hand. The adopted burstiness constrained models
provide a clear description of system dynamics and make
possible the analysis of the system using basically elemen-
tary (although not straightforward) techniques. Compared to
introducing statistical assumptions for these models, there are
both advantages and disadvantages. Note that the stationarity
assumption is not needed in our model, although the existence
of averages is implied. On the other hand deterministic rather
than stochastic bounds on process fluctuations are imposed.

III. PROBLEM FORMULATION

Consider a scheduling policy π that at the beginning of slot
t, i.e., at time t− 1, decides which packet (if any) to transmit
to one of the channels that are “on” in slot t. Let

rπi = lim inf
t→∞

Bπ
i (0, t)

t
,

be the “throughput” of channel i under policy π.
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Given costs ci, i ∈ N , c1 ≥ c2 ≥ .... ≥ cN ≥ 0, our
objective is to determine a policy such that the weighted sum
of throughputs X

N
cir

π
i ,

is maximal.
Assume that the channel state at a given slot is known to

the scheduler at the beginning of that slot and consider the
following policy.
Scheduling Policy π∗

With queue i associate an index Ii(q) of the form

Ii(q) =

½
q if q ≤ (N + 1− i)T

(N + 1− i)T if q > (N + 1− i)T

where T > 0. At time t, consider the nonempty
queues whose channel is on. Among these queues,
let i be the one with largest index Ii(qi(t)) (if
there are multiple such queues select one randomly).
Transmit a packet from queue i at slot t+ 1.

Our objective is to show that for T large enough, policy π∗
maximizes the weighted sum of throughputs, irrespective of
whether the overall system is stable or not. Before we proceed,
it is worth observing the following.
• Only the order of the costs ci, i ∈ N , not the actual
values determine policy π∗. This situation is similar to
the well-known µc-rule in queueing theory.

• The traffic and channel model parameters determine how
large T should be chosen. In other words, the policy
depends on these parameters only through T. Although
estimates of T can be obtained through the analysis that
follows, in practice the traffic and channel parameters
may not be known beforehand. Of course, one can pick
very large values of T but this implies larger delays
and slower convergence. Hence, development of adaptive
methods for determining T seems a more appropriate
plausible way of choosing T.

A. Achievable Throughput Space and Related Linear Opti-
mization Problem

Consider that the system operates under an arbitrary
scheduling policy. From (1), the definitions of BS(s, t),
CS(s, t) and (4) we have for any S ⊆ N ,

F (S) = lim
t→∞

CS(0, t)

t

≥ lim inf
t→∞

Bπ
S(0, t)

t

= lim inf
t→∞

P
S B

π
i (0, t)

t

≥
X
S
lim inf

t→∞

Bπ
i (0, t)

t

=
X
S
rπi . (8)

In addition, the fact that Ai(0, t) ≥ Bπ
i (0, t) and (2) imply

that for any i ∈ N , it holds
0 ≤ rπi ≤ αi. (9)

From (8) and (9) we see that the maximum weighted
sum of throughputs that can be achieved by any scheduling
policy, cannot exceed the value of the following optimization
problem:
Linear Optimization Problem.

max
x

NX
i=1

cixi,

where for N = {1, 2, ..., N}X
S
xi ≤ F (S), S ⊆ N (10a)

xi ≤ αi, i = 1, ..., N (10b)
xi ≥ 0, i = 1, ..., N (10c)

and F (S) satisfies (7a), (7b), (7c).
Let Nk = {1, ..., k} , and N0 = ∅. It can be shown that

the solution to the previous optimization problem is given
recursively by

x∗k = min

(
αk, min

D⊆Nk−1

(
F (k ∪D)−

X
D
x∗i

))
, (11)

for k = 1, ...,N. The proof is omitted.
Our objective in the next section is to show that the

scheduling policy π∗ achieves the throughputs defined by (11)
and therefore is optimal.

IV. OPTIMALITY PROOF
Since we deal only with policy π∗ in this section, in order

to simplify the notation we eliminate π∗ from all related
notations, e.g., we use ri in place of rπ

∗
i .

Before going into the details of the proof, we give the
general idea of the approach. In the general case, it can be
shown that under π∗, a subset U of the queues will grow to
infinity, while the rest of the queues will receive the maximum
possible throughput, i.e., we have ri = αi, i ∈ N − U . The
queues in N −U are called “stable” queues, while those in U
“unstable”. It can be proved that for any stable queue i, we
have ri = x∗i . To determine the throughputs of the unstable
queues we first show that for T large enough, each of the stable
queues fluctuates in a certain range around kT, 0 ≤ k ≤ N.
This fact and the manner the indices are used to determine
the scheduling decisions, implies that rk = x∗k for all unstable
queues. We mention that in the course of the proof, the fact that
ri = x∗i , is established by starting from the smallest indices
and moving to the largest, rather than by first proving the result
for the stable and then for the unstable queues.
The following lemma will be useful in the sequel.
Lemma 1: For any subsets S1, S2 of N and any t it holdsX

S1

qi (t)−
X
S2

qi (t) ≤X
S1

qi (t− 1)−
X
S2

qi (t− 1) +
X
S1

αi +
X
S1

σUi

+F (S2) + θUS2 .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Proof: This is immediate from the burstiness constraints
on the arrival and slot availability processes.
Following the definition in [12], we call a scheduling policy

“Longest Connected Queue (LCQ) First”, the scheduling pol-
icy which among the queues whose channels are “on”, selects
the one with the largest number of packets (if there are at least
two such queues, pick one arbitrarily).
In the next lemmas we use the following notation. For D ⊆

N , denote by q(l)D (t) the lth maximum of {qi(t)}i∈D and by
πDl (t) a permutation of the indices in D such that qπDl (t)(t) =
q
(l)
D (t), l ∈ {1, ..., |D|} . Hence q

(1)
D (t) = maxi∈D {qi(t)} and

q
(|D|)
D (t) = mini∈D {qi(t)}. Also, let S(l)D (t) = ∪lj=1πDj (t)
(i.e., the set containing the l largest queues among the queues
in D) and S(l)D (t) = D − S(l)D (t).
We use the term “a set G has priority at time t” when at

time t, policy π∗ chooses one of the packets of the queues in G
(if any) for transmission, provided that the associated channel
is on.
In order to avoid cluttering the notation in the proofs, in

the following we will use the symbol O, to denote a finite
nonnegative quantity that depends only on the parameters of
the arrival and slot availability processes, and |N | . As will
be clear from the proofs, in principle O can be explicitly
computed - e.g., in Lemma 1, O =

P
S1 αi +

P
S1 σ

U
i +

F (S2) + θUS2 .
Lemmas 2 and 4 are used to determine the range around

kT in which each of the stable queues fluctuates.
Lemma 2: Suppose that there are numbers H ≥ 0, Φ > 0,

and queue sets L ⊂ N , D ⊆ N − L, such that the following
hold.
a) The set G(t) = {i ∈ D : qi(t) > H} , has highest priority

at time t among the queues in N − L.
b) If maxi∈D {qi(t)} ≤ H + Φ, the queues in the set G(t)

are served according to the LCQ policy.
c) For any S ⊆ D it holdsX

S
αi ≤ F (L ∪ S)− F (L). (12)

d) qi(0) ≤ H for all i ∈ D,
then, there is a number O such that, if Φ > O, it holds

max
i∈D

{qi(t)} ≤ H +O, for all t ≥ 0.
Proof: Let D = |D| . Also define

yl(t) =
X
S(l)D (t)

(qi(t)−H)+ .

We observe that for 2 ≤ l ≤ D − 1, it holds
yl−1(t) + yl+1(t) =

2yl(t) +
³
q
(l+1)
D (t)−H

´+
−
³
q
(l)
D (t)−H

´+
, (13)

and

y2(t) = 2y1(t)

+
³
q
(2)
D (t)−H

´+
−
³
q
(1)
D (t)−H

´+
, (14)

yD−1(t) = yD (t)−
³
q
(D)
D (t)−H

´+
. (15)

Consider a time t where q(l)D (t) > H and let t0 − 1 be
the largest time before t, such that S(l)D (t) 6= S

(l)
D (t0 − 1) or

q
(l)
D (t0 − 1) ≤ H (for l = D only the second situation makes
sense). Time t0 is well defined because of assumption d) of
the lemma. In the time interval [t0, t] , the set S(l)D (t) remains
the same and all the queues in this set are bigger than H , i.e.,
nonempty. Provided that Φ is large enough (as will be seen
it suffices to be O), this set of queues has priority over the
queues in N − L and uses all the available slots in [t0, t] .
Since these slots are at least CL∪S(l)D (t0)

(t0, t)−CL(t0, t), we
have BS(l)D (t0)

(t0, t) ≥ CL∪S(l)D (t0)
(t0, t) − CL(t0, t). Setting

F (S) = F (L ∪ S)− F (L), we concludeX
S(l)D (t0)

qi(t) =
X

S(l)D (t0)

qi(t0) +AS(l)D (t0)
(t0, t)

−BS(l)D (t0)
(t0, t)

≤
X

S(l)D (t0)

qi(t0)

+

 X
S(l)D (t0)

αi − F
³
S(l)D (t0)

´ (t− t0) +O
≤

X
S(l)D (t0)

qi(t0) +O. (16)

In the first inequality above we used the burstiness constraints
on the arrival and channel availability processes. In the second
inequality we used assumption c) of the lemma. Because of
the way t0 is defined, we have that for i ∈ S(l)D (t0) it holds
qi(t) > H and qi(t0) > H. Therefore by subtracting H, l
times from both sides of inequality (16) we obtainX

S(l)D (t0)

(qi(t)−H)+

≤
X

S(l)D (t0)

(qi(t0)−H)+ +O. (17)

Hence,

yl(t) ≤ yl(t0) +O. (18)

Let 2 ≤ l ≤ D − 1. We will show now that

yl(t0) ≤
1

2
yl−1(t0) +

1

2
yl+1(t0) +O. (19)

Note that by definition q(l)D (t0) > H and therefore from
equation (13) it holds

yl(t0) =
1

2
yl−1(t0) +

1

2
yl+1(t0) +

1

2

³
q
(l)
D (t0)−H

´
− 1
2

³
q
(l+1)
D (t0)−H

´+
. (20)

We consider two cases.
Case 1. q(l)D (t0 − 1) ≤ H. Then, there must be an index

i0 ∈ S(l)D (t0) such that qi0(t0−1) ≤ H and q
(l)
D (t0) ≤ qi0(t0).

Using Lemma 1 with S1 = {i0} , S2 = ∅, we conclude that
qi0(t0) ≤ qi0(t0 − 1) +O

≤ H +O.
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Hence,

q
(l)
D (t0)−H ≤ O. (21)

From (21) and (20) (taking also into account that³
q
(l+1)
D (t0)−H

´+
≥ 0) follows (19).

Case 2. S(l)D (t0) 6= S
(l)
D (t0−1) and q

(l)
D (t0−1) > H. Then,

there must be indices i0 ∈ S(l)D (t0), j0 ∈ S(l)D (t0), such
that qi0 (t0 − 1) ≤ qj0 (t0 − 1) and q

(l)
D (t0)− q

(l+1)
D (t0) ≤

qi0 (t0)− qj0 (t0) . By using Lemma 1 with S1 = {i0} , S2 =
{j0} , we conclude that

qi0 (t0)− qj0 (t0) ≤ qi0 (t0 − 1)− qj0 (t0 − 1) +O ≤ O.

Hence,

q
(l)
D (t0)− q

(l+1)
D (t0) ≤ O. (22)

Since
³
q
(l+1)
D (t0)−H

´+
≥ q

(l+1)
D (t0) − H, from (20) we

have

yl(t0) ≤
1

2
yl−1(t0) +

1

2
yl+1(t0)

+
1

2

³
q
(l)
D (t0)− q

(l+1)
D (t0)

´
.

which in conjunction with (22) shows (19).
Similarly, we have with an analogous definition of t0,

y1(t) ≤
1

2
y2 (t0) +O, (23)

yD (t) ≤ yD−1(t0) +O. (24)

If q(l)D (t) ≤ H, then we have from (13), (14) and (15) that
(19) as well as (23) and (24) still hold with t0 = t.
Fix now a time t and define

yl
¡
t
¢
= max

t≤t
yl (t) <∞. (25)

From (18), (19), (24) and (23) it holds for 2 ≤ l ≤ D − 1,
that for any t, 0 ≤ t ≤ t,

yl(t) ≤
1

2
yl−1

¡
t
¢
+
1

2
yl+1

¡
t
¢
+O, (26)

and

y1(t) ≤
1

2
y2
¡
t
¢
+O (27)

yD (t) ≤ yD−1
¡
t
¢
+O (28)

Therefore we have for 2 ≤ l ≤ D − 1,

yl
¡
t
¢
≤ 1
2
yl−1

¡
t
¢
+
1

2
yl+1

¡
t
¢
+O, (29)

and

y1
¡
t
¢
≤ 1
2
y2
¡
t
¢
+O, (30)

yD
¡
t
¢
≤ yD−1

¡
t
¢
+O. (31)

The above inequalities can be written in matrix form as:

(I−B)Y ≤ O, (32)

where Y =
£
y1(t)...yD

¡
t
¢¤T , and I is the unity matrix, O is

a matrix whose elements are of type O and

B =


0 1/2 0 0 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
... ... ... ... ...
0 0 1/2 0 1/2
0 0 0 1 0

 .

Since the row sums of B are all less than or equal to 1 and
the sum of the first raw is 1/2, i.e., less than 1, it follows from
the Perron-Frobenius Theorem [10], that the eigenvalues of B
are all smaller than 1 in absolute value. Therefore, the matrix
(I−B)−1 has nonnegative elements. Hence, we can multiply
(32) with (I−B)−1 to get Y ≤ (I−B)−1O, or

yl(t) ≤ O, l = 1, ...,D. (33)

Therefore,

lim
t→∞

yl(t) = sup
t
yl(t) = yl ≤ O, l = 1, ...,D. (34)

Hence

max
i∈D

{qi (t)}−H = q
(1)
D (t)−H

≤
³
q
(1)
D (t)−H

´+
= y1 (t) ≤ y1 ≤ O

and the lemma follows.
The next lemma shows that when the inequalities in (12)

are strengthened to strict inequalities, then the queues sizes
are bounded by H +O after some time slot, under any finite
initial condition on the queue sizes.
Lemma 3: Suppose that conditions a) and b) of Lemma 2

hold and in addition, for any S ⊆ D, it holdsX
S

αi < F (L ∪ S)− F (L) .

Then under any initial queue sizes qi(0) <∞, i ∈ D, there is
a finite time τ0 such that

max
i∈D

{qi(t)} ≤ H +O, for all t ≥ τ0.
Proof: The proof is omitted.

The next lemma provides conditions under which it is
known that the queue sizes of certain set of queues do not
fall below certain threshold after some time slot. Its proof is
analogous to the proof of Lemma 3.
Lemma 4: If there is a positive number H and queue sets

L ⊂ N , D ⊆ N − L, such that the following hold.
a) The queues in L always have packets to trans-

mit and have higher priority than the queues in G(t) =
{i ∈ D : qi(t) ≤ H} .
b) The queues in the set G(t), are served according to LCQ

policy.
c)For any subset S ⊆ D, with S = D − S it holdsX

S
αi > F (L ∪D)− F (L ∪ S),

then there it a time τ0 such that mini∈D {qi(t)} ≥ H−O, for
all t ≥ τ0.
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Fig. 2. Partitioning of the index set.

Next we need to examine in more detail the structure of
the optimal linear programming solution (11). According to
(11), x∗k may take values less than or equal to αk. An index
such that x∗k = αk is called “stable”, while an index such that
x∗k < αk, “unstable”. We therefore have that for a stable index
k, for any D ⊆ Nk−1

αk ≤ F (k ∪D)−
X
D
x∗i . (35)

Similarly, for an unstable index k, for any set Dk ⊆ Nk−1
such that

x∗k = F (k ∪Dk)−
X
Dk

x∗i ,

it holds

F (k ∪Dk)−
X
Dk

x∗i < αk. (36)

The general structure of the vector {x∗k}k∈N is as follows.
The set of indices is partitioned into index sets Isi , i =
1, ..., ls, Iui , i = 1, ..., lu such that
• Indices in the set ∪lsi=1 Isi are stable. Indices in the set
∪lui=1 Iui are unstable.

• Index set Ixi , x ∈ {s, u} consists of successive integers.
• If i > j then all indices in Ixi , x ∈ {s, u} are larger
than the indices in Ixj . Figure 2 shows an example of
the partition of the index set for N = 10 channels. For
convenience in the discussion we assume that for a given
i, the indices in Isi are smaller than the indices in Iui .
Hence, for consistency, if index 1 is unstable, we define
Is1 = ∅.

If k ∈ Iuj then define bIk = ∪ji=1 Isi .
Denote by u1 < u2 < ... < uL, L =

¯̄̄
∪lui=1Iui

¯̄̄
the unstable

indices.
In the following, we assume that strict submodularity holds,

i.e., whenever S −D 6= ∅ and D − S 6= ∅, it holds,
F (S) + F (D) > F (S ∪D) + F (S ∩D), (37)

therefore, whenever F (S)+F (D) = F (S ∪D)+F (S ∩D),
then either S ⊆ D or D ⊆ S. This assumption is not essential
but simplifies the proofs.

Lemma 5: Consider the vector {x∗k}k∈ N defined for k =
1, ..., N, by the recursion

x∗k = min

(
αk, min

D⊆ Nk−1

(
F (k ∪ D)−

X
D
x∗i

))
.

a) For any set S ⊆ Is1 it holdsX
S
αi ≤ F ( S) .

b) With index k ∈ Iuj , j = 1, ..., lu, there is an associated
index set cDk such that cDk ⊆ N k−1,X

k∪cDk

x∗i = F
³
k ∪cDk´ ,

for all D ⊆ Nk−1

F
³
k ∪ bDk´−XbDk

x∗i ≤ F (k ∪D)−
X
D
x∗i ,

and for all D ⊂ bDk,
x∗k = F

³
k ∪ bDk´−XbDk

x∗i < F (k ∪D)−
X
D
x∗i .

c) ui−1 ∪ bDui−1 ⊆ bDui , 2 ≤ i ≤ L.
d) cDui = ∪i−1j=1uj ∪fDui , where fDui ⊆ bIui , 1 ≤ i ≤ L.
e) If k is an unstable index, then for any set S ⊆ Hk ≡ bIk− eDk
it holds X

S
αi ≤ F

³
k ∪ bDk ∪ S´− F ³k ∪ bDk´ .

f) If k is the largest index in Iuj then for any set S ⊆³ bIk ∪ Isj+1
´
−fDk it holdsX

S
αi ≤ F

³
k ∪cDk ∪ S

´
− F

³
k ∪cDk´ .

Proof: a)Let S ⊆ Is1 and let k be the largest index in S.
Then, since S − {k} ∈ Nk−1, according to the definition of
x∗k and Is1 we have

αk ≤ F (k ∪ (S − k))−
X
S−k

αi

or, X
S

αi ≤ F (S) . (38)

b) According to the definition of x∗k, there is a set Dk ⊆ Nk−1
such that for all D ⊆ Nk−1,

x∗k = F (k ∪Dk)−
X
Dk

x∗i

≤ F (k ∪D)−
X
D
x∗i . (39)

Let D1k ⊆ Nk−1 be another set such that

x∗k = F
¡
k ∪D1k

¢
−
X
D1
k

x∗i .
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Since by definition

F
¡
k ∪D1k

¢
−
X
D1
k

x∗i ≤ F (k ∪D1k ∪Dk)−
X

D1
k∪Dk

x∗i ,

F (k ∪Dk)−
X
Dk

x∗i ≤ F (k ∪
¡
D1k ∩Dk

¢
)−

X
D1
k∩Dk

x∗i ,

we have by adding and cancelling summation terms,

F (k ∪Dk) + F (k ∪D1k) ≤
F (k ∪D1k ∪Dk) + F (k ∪

¡
D1k ∩Dk

¢
) =

F (k ∪D1k ∪Dk) + F ((k ∪D1k) ∩ (k ∪Dk)).

By submodularity,

F (k ∪Dk) + F
¡
k ∪D1k

¢
= F (k ∪D1k ∪Dk) + F ((k ∪D1k) ∩ (k ∪Dk)).

This equality and the strict submodularity property imply that
either Dk ⊆ D1k or D1k ⊆ Dk. Let now bDk be the set
with smallest cardinality among those that satisfy (39). By
definition, this set satisfies part b) of the lemma.
Assume for the moment that part c) holds up to value i.

Part d) for i = 1 follows from the definitions, and for i ≥ 2 it
is immediate from c). We will also show that e) and f) hold.
To prove e), let S ⊆ bIui − eDui = bIui − bDui ⊆ Nui−1.

Then,

F (ui ∪ bDui)−XbDui

x∗j ≤ F (ui ∪ bDui ∪ S)− X
bDui
∪S

x∗j ,

hence, taking into account that S ∩ bDui = ∅,X
S
x∗j ≤ F (ui ∪ bDui ∪ S)− F (ui ∪ bDui). (40)

To prove f) assume that ui is the largest index in Iuj and
Isj+1 6= ∅. Let S ⊆

³bIui ∪ Isj+1´− (ui ∪ bDui) and let ik be
the largest index in S. If ik ∈ Isj then S ⊆ bIui− bDui and (40)
holds. If ik ∈ Isj+1, then since ui ∪ bDui ∪ (S − ik) ⊆ Nik−1,
and

³
ui ∪ bDui´ ∩ (S − ik) = ∅, we have from (35),

αik ≤ F (ik ∪ ui ∪ bDui ∪ (S − ik))− X
ui∪ bDui

x∗j −
X
S−ik

αj

= F (ui ∪ bDui ∪ S)− F (ui ∪ bDui)−X
S−ik

αj ,

where we used the fact that by part b) of the lemma,X
ui∪ bDui

x∗j = F (ui ∪ bDui).
That is, X

S
αj ≤ F (ui ∪ bDui ∪ S)− F (ui ∪ bDui).

It remains to prove part c). Assume that part c) holds up to
index i− 1. Assume also that for index um−1, 1 < m < i it
holds um−1 ∪ bDum−1 ⊆ bDui . We will show then that it also

holds, um ∪ bDum ⊆ bDui , which will prove part c), provided
that we also show that

u1 ∪ bDu1 ⊆ bDui . (41)

The proof of (41) will be outlined at the end, since it is
basically a rewording of the argument for general m.
Since bDui ∪ um ∪ bDum ⊆ Nui−1,
F
³
ui ∪ bDui´−XbDui

x∗j

≤ F
³
ui ∪ bDui ∪ um ∪ bDum´− X

bDui
∪um∪ bDum

x∗j

= F
³
ui ∪ bDui ∪ um ∪ bDum´− X

um∪ bDum

x∗j

−
X

bDui
−(um∪ bDum )

x∗j

= F
³
ui ∪ bDui ∪ um ∪ bDum´− F (um ∪ bDum)

−
X

bDui
−(um∪ bDum )

x∗j .

That is X
bDui
∩(um∪ bDum)

x∗j

≥ F (ui ∪ bDui) + F (um ∪ bDum)
− F (ui ∪ bDui ∪ um ∪ bDum)
≥ F

³³
ui ∪ bDui´ ∩ ³um ∪ bDum´´ (42)

= F
³ bDui ∩ ³um ∪ bDum´´ , (43)

where in (42) the inequality is strict if
³
ui ∪ bDui´ −³

um ∪ bDum´ 6= ∅ and
³
um ∪ bDum´ − ³ui ∪ bDui´ 6= ∅.

Equality (43) follows from the fact that since i > m,

ui ∩
³
um ∪ bDum´ = ∅.

We also have since bDui ∩ bDum ⊆ Num−1,
F
³
um ∪ bDum´−XbDum

x∗j

≤ F
³
um ∪

³ bDui ∩ bDum´´− X
bDui
∩ bDum

x∗j

= F
³
um ∪

³ bDui ∩ bDum´´− X
um∪( bDui

∩ bDum)

x∗j + x
∗
um ,

where in the last equality we used the fact that um /∈ bDui ∩bDum . Since by part b), x∗um = F ³um ∪ bDum´−PbDum
x∗j ,

we conclude thatX
um∪( bDui

∩ bDum)

x∗j ≤ F
³
um ∪

³ bDui ∩ bDum´´ , (44)

where in (44), by part b) of the lemma, the inequality is strict
if bDui ∩ bDum ⊂ bDum .

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



Assume now that um /∈ bDui . Then bDui ∩ ³um ∪ bDum´ =bDui∩ bDum . Define bEm = ³ bDui ∩ bDum´−³um−1 ∪ bDum−1´ .
Since by the inductive assumption we have um−1 ∪ bDum−1 ⊆bDui ∩ bDum , we can writeX

bDui
∩(um∪ bDum )

x∗j =
X

bDui
∩ bDum

x∗j

=
X
bEm
x∗j +

X
um−1∪ bDum−1

x∗j

=
X
bEm
x∗j + F

³
um−1 ∪ bDum−1´ .

Since um /∈ bDui and ui /∈ bDum , from the strict submodularity
and (43) it follows thatX

bEm
x∗j > F

³ bDui ∩ bDum´
− F

³
um−1 ∪ bDum−1´ . (45)

Observe that by the inductive hypothesis we have that bEm ⊆bIum−1− eDum−1 or bEm ⊆ ³bIum−1 ∪ Isj+1´− eDum−1 depending
on whether um−1 is not, or is, the largest element in Iuj . In
either case have by e) and f)X

bEm
x∗j =

X
bEm

αj ≤ F
³
um−1 ∪ bDum−1 ∪ bEm´

−F
³
um−1 ∪ bDum−1´

= F
³ bDui ∩ bDum´− F ³um−1 ∪ bDum−1´ . (46)

Inequality (45) contradicts (46) and therefore we conclude
that um ∈ bDui . This implies thatbDui ∩ (um ∪ bDum) = um ∪ ³ bDui ∩ bDum´
From (43) and (44) it follows that

F
³
um ∪

³ bDui ∩ bDum´´ ≥ X
um∪( bDui

∩ bDum)

x∗j

≥ F
³
um ∪

³ bDui ∩ bDum´´ ,
with equalities holding only if bDum ⊆ bDui .
To complete the proof we need to prove (41). For this we

follow essentially the same arguments as above, by replacing
m with 1 and um−1 ∪cDum−1 with the empty set.
According to parts b) and c) of Lemma 5, bDui can be written

as bDui = ∪i−1j=1uj ∪ eDui , where eDui ∈ bIui . Let D ⊂ eDui ,
hence

¡
∪i−1j=1uj ∪D

¢
⊂ bDui . Applying part b) of Lemma 5

and taking into account that x∗i = αi when i ∈ eDui , we have
F
³
∪ij=1uj ∪ eDui´− X

∪i−1l=1ul

x∗j −
X
eDui

αj

< F
¡
∪ij=1uj ∪D

¢
−

X
∪i−1l=1ul

x∗j −
X
D

αj ,

or

F
³
∪ij=1uj ∪ eDui´− F ¡∪ij=1uj ∪D¢ < X

eDui
−D

αi.

Setting S = eDui −D in the previous inequality we have the
following corollary.
Corollary 6: If we set Ui = ∪ij=1uj , then for any S ⊆ eDui ,

S 6= ∅, it holds

F
³
Ui ∪ eDui´− F ³Ui ∪ ³ eDui − S´´ <X

S
αi.

The next theorem provides the range within which each of
the queues in N fluctuates.
Theorem 7: Under policy π∗, if qi(0) = 0, i ∈ N , then

for T large enough, the queues in ∪Li=1Iui tend to infinity.
Moreover, setting eDu0 = ∅, we have for a number M = O,

maxeDuj
− eDuj−1

{qi(t)} ≤ (N + 1− uj)T +M for all t ≥ 0,

mineDuj
− eDuj−1

{qi(t)} ≥ (N + 1− uj)T −M for all t ≥ τ0,

and if i /∈ eDuL , max∪lsj=1Isj− eDuL
qi(t) ≤ M for all t. It

suffices to take T > 2M.
In the course of the proof of Theorem 7 we also prove the

main result of this paper, that is,
Theorem 8: The throughputs achieved by policy π∗ for T

large enough, satisfy the resurcive equations

x∗k = min

(
αk, min

D⊆Nk−1

(
F (k ∪D)−

X
D
x∗i

))
,

for k = 1, ...,N.
Proof: In Lemma 2 set D = Is

1
, H = (N + 1− u1)T,

Φ = T, and L = ∅. Conditions a), b) of the lemma hold
because of the definition of policy π∗. From Lemma 5 we
have that condition c) holds as well. Since condition d) of the
lemma also holds by the assumption that qi(0) = 0, i ∈ N ,
we conclude that for all t ≥ 0,

max
i∈Is

1

{qi(t)} ≤ (N + 1− u1)T +O (47)

provided that T ≥ O.
Since Bi(0, t) = Ai(0, t) − qi(t), from (47) we conclude

that for i ∈ Is1 ,

ri = lim
t→∞

Bi(0, t)

t
= lim
t→∞

Ai(0, t)

t
= αi = x

∗
i . (48)

Since bDu1 = eDu1 ⊆ Is1 we have from (36) and the
definition of Is

1
that

F (u1 ∪ eDu1)−XeDu1

αi < αu1 . (49)

Observe thatX
u1∪ eDu1

qj(t) = Au1∪ eDu1
(0, t)−Bu1∪ eDu1

(0, t)

≥ Au1∪ eDu1
(0, t)− Cu1∪ eDu1

(0, t)

≥

 X
u1∪ eDu1

αi − F (u1 ∪ eDu1)
 t−O,
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and taking into account (49) we conclude that

lim
t→∞

X
u1∪ eDu1

qj(t) =∞.

Since by (47) qi(t) is finite for i ∈ eDu1 ⊆ Is1 , we conclude
that limt→∞ qu1 (t) =∞.
According to Corollary 6, for any subset S ⊆ eDu1 it holdsX
S

αi > F
³
u1 ∪ eDu1´− F ³u1 ∪ ³ eDu1 − S´´ .

Notice that since eDu1 ⊆ Is1 , by the definition of the queue
indices Ii(q) the queues in eDu1 are served according to the
LCQ policy when they are smaller than H = (N + 1 −
u1)T. Moreover, since limt→∞ qu1 (t) = ∞, it holds that
Iu1 (qu1 (t)) = H, for t larger than or equal to some time
t0. Hence, for t ≥ t0 queue u1 has priority over the queues
in S ⊆ eDu1 whenever maxi∈S {qi (t)} ≤ H . Therefore,
we can apply Lemma 4 with L = u1, D = eDu1 and
H = (N + 1 − u1)T to conclude that there is some time
τ10 ≥ t0 such that for i ∈ eDu1 , and for all t ≥ τ10, it holds

min
i∈ eDu1

{qi(t)} ≥ (N + 1− u1)T −O. (50)

From Lemma 5, e) it follows that for any subset S ⊆ E1 =
Is1 − eDu1 (E1 = Is1 ∪ Is2 − eDu1 if u1 is the only element in
Iu1 ) it holdsX

S
αi ≤ F

³
u1 ∪ eDu1 ∪ S´− F ³u1 ∪ eDu1´ .

Applying now Lemma 2 with D = E1, H = (N + 1− u2)T ,
Φ = T and L = u1 ∪ eDu1 , we conclude that for all t ≥ 0,

max
i∈E1

{qi(t)} ≤ (N + 1− u2)T +O (51)

provided that T ≥ O. Pick now T large enough so that
T −O > O. (52)

Then since u2 > u1, it holds

(N + 1− u1)T −O > (N + 1− u2)T +O. (53)

Inequalities (50), (51) and (53) and the fact that qu1(t)→∞,
( i.e., Iu1 (qu1 (t)) = (N + 1− u1)T, for t ≥ τ10) imply that
the queues in u1∪ eDu1 have higher priority over the rest of the
queues for t ≥ τ10 and that they are nonempty. Therefore, the
queues in u1 ∪ eDu1 use all the available channel slots. Since

Bu1∪ eDu1
(τ10, t) = Cu1∪ eDu1

(τ10, t),

we conclude that

lim
t→∞

Bu1∪ eDu1
(0, t)

t
= lim
t→∞

Cu1∪ eDu1
(0, t)

t
.

Taking into account (48) and the fact that

lim
t→∞

Cu1∪ eDu1
(0, t)

t
= F

³
u1 ∪ eDu1´ ,

we conclude that limt→∞(Bu1(0, t)/t) exists and

ru1 = lim
t→∞

Bu1(0, t)

t
= F

³
u1 ∪ bDu1´−XbDu1

αi,

that is, ru1 = x∗u1 .
Using similar arguments we can show the claims for the

rest of the queue indices.

V. CONCLUSIONS
We presented a policy for scheduling packets for trans-

mission over channels with time varying connectivity. We
showed that the proposed policy maximizes the weighted
sum of channel throughputs under any packet arrival rates.
We adopted a burstiness-constrained channel model for the
analysis. This model facilitates the analysis, while at the same
time allows us to dispose of statistical assumptions.
In this paper, we restricted ourselves to the case where the

channels are in one of two states, “on” and “off”. A subject of
further work is to generalize our approach to include the case
of multi-rate channels. Another subject of ongoing work is to
generalize our approach to include more general optimization
functions. Furthermore, the consideration of packet delays, in
addition to throughput, is a practical matter that needs to be
addressed.
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