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Abstract It is known that 802.11 is not resilient to selfish behavior and denial of
service (DoS) attacks targeting the MAC layer. In this study, we assess the per-
formance of the CSMA/CA scheme and investigate its efficiency with regard to
security and information assurance in mobile ad hoc wireless networks. We inves-
tigate several variants of selfish node behaviors that abuse the random choice of
Contention Window in the 802.11 DCF MAC protocol. We show that selfish be-
havior in the MAC layer can have devastating side effects on the performance of
wireless networks, similar to the effect of DoS attacks. Our main contributions are
the prevention and detection of backoff manipulation in an ad hoc network. First,
we propose an algorithm to prevent backoff manipulation in a communication link
between a sender and a receiver when at least one of the nodes behaves honestly.
Secondly we introduce algorithms for detection of backoff manipulation by a pair
of colluding nodes.

1 Introduction

The communication protocols of different layers of an ad hoc network such as the medium ac-
cess control (MAC) protocol, the routing protocol and the transport protocol, were designed under
the assumption that all nodes will obey the specification. However when this protocols are imple-
mented in an untrusted environment, nodes can misbehave to obtain a given goal. A selfish user for
example can change the congestion avoidance parameters of TCP, mainly increase the slope of the
congestion window linear growth and decrease the congestion threshold multiplicative reduction,
in order to obtain unfair advantage over the rest of the nodes in the network [1]. A selfish user can
also disobey the rules to access the wireless channel in order to obtain a higher throughput than the
other nodes. In limited power devices, certain nodes might refuse to forward packets in behalf of
other sources. Misbehaving in the network protocols will degrade the performance of the network
as experienced by the honest participants. To fully address this problem a layered security mecha-
nism should be deployed in order to penalize or force to cooperate misbehaving nodes that degrade
the performance seen by honest participants. In this paper our goal is to protect the IEEE 802.11
MAC layer from unfairness and collisions of packets caused by selfish users in ad hoc networks.

The MAC layer in a communications network manages a multiaccess link (e.g. a wireless
link) so that frames can be sent by each node without constant interference from other nodes.
MAC layer misbehavior is possible in network access cards that run the MAC protocol in software
rather than hardware or firmware allowing a selfish user or attacker to easily change MAC layer
parameters. Even network interface cards implementing most MAC layer functions in hardware
and firmware usually provide expanded set of functionalities which can be exploited to circumvent



the limitations imposed by the firmware [2]. In the worst case scenario a vendor might create NIC
cards violating the MAC protocol to create an improve performance of its products.

The IEEE 802.11 Medium Access Control (MAC) protocol uses a distributed contention res-
olution mechanism for sharing the wireless channel and its design tries to ensure a relatively fair
access to the medium for all participants of the protocol. The MAC layer has mechanisms to pro-
tect itself from congestions, but these mechanisms can be abused by attackers and used to disrupt
communication in the MAC layer. In 802.11 the nodes follow binary exponential backoff scheme
that favors the last winner amongst the competing nodes. Even when all contending nodes are well
behaved this mechanism can lead to the capture effect where nodes that are heavily loaded tend
to capture the channel by continuously transmitting data which makes lightly loaded neighbors
to back off continuously. Very similar effects are obtained when one of the contending nodes is
selfish.

A selfish user keeps the channel busy in order to maximize its own throughput. As a side
effect of this behavior, regular nodes cannot use the channel for transmissions, which leads to a
denial of service (DoS) attack [15]. Due to the randomness introduced in the choice of the backoff,
it is difficult to detect when a selfish user has chosen small values of the backoff by chance or
not. Selecting small backoff values gives him an advantage over the other contending nodes that
uniformly choose the backoff time.

A selfish node can cause congestion in the network as a side effect of maximizing its through-
put. It can generate an excessive amount of traffic [6, 15] or specific traffic patterns that prevent
certain nodes from accessing the medium and, therefore, maximizing its throughput.

In this work we investigate selfish behavior achieved by manipulating the backoff mechanism
of IEEE 802.11 MAC protocol. However, a selfish user can implement a whole range of strategies
to maximize its access to the medium. The most likely strategy that an intelligent selfish user will
employ is to use different schemes of manipulating the rules of the MAC layer. The attacker can
manipulate the size of the Network Allocation Vector (NAV) and assign large idle time periods to
its neighbors, it can decrease the size of Interframe Spaces (both SIFS and DIFS) etc. A successful
detection scheme should take into account all possible cheating schemes in the MAC layer and
detect both users that employ only one scheme and users that employ a combination of several
schemes (i.e. first choosing small backoff values, then assigning large NAV values to its neighbors
etc.)

In Section 4 we attempt to solve the problem of misbehavior by preventing cheating in the
backoff stage of IEEE 802.11 for non-colluding nodes. In Section 5 we solve the problem of de-
tecting misbehavior of colluding nodes. Both of the protocols can be extended for any probabilistic
distributed protocol to access the channel.

2 Related Work

Selfish misbehavior at the MAC layer has been addressed mostly from a game theoretic perspec-
tive. The goal in a game theoretic setting is to design distributed protocols that guarantee the
existence, uniqueness and convergence to a Nash equilibrium. As we have previously pointed out,
if users try to maximize their throughput, every node will attempt to transmit continuously in such
way that users will deny access to any other node and the network would collapse. This network
collapse due to aggressive selfish behavior is a Nash equilibrium. In order to obtain a different
Nash equilibrium, a cost for every node for each time it access the channel has to be included. For
example in [11, 8], the selfish users in Aloha attempt to maximize their throughput minus a cost for



accessing the channel (e.g. energy consumption). Another game theoretic scheme for CSMA/CA
schemes is presented in [12]. It shows how a Nash equilibrium is achieved against selfish users
when the cost for accessing the channel repeatedly is being jammed by another node. A node
jams anonymously any other node that achieves higher output than the average of everyone else
(assuming nodes always have data to transmit, the throughput of every node should be fair). They
assume all nodes are within wireless range to avoid the hidden terminal problem, so this scheme
is mostly intended for wireless LANs. Game theoretic protocols assume all nodes are selfish (the
worst case scenario) and therefore the throughput achieved by honest nodes in these protocols is
substantially less than in protocols where the honest majority cooperates.

Detection of misbehavior at the MAC layer has received little attention in the literature. Several
possible schemes of node misbehavior in 802.11 for achieving a higher throughput are presented in
[13]. The detection of such misbehavior is achieved through a system called DOMINO. However,
their detection scheme for backoff manipulation, based on comparing average values of the backoff
to given thresholds is suboptimal for every strategy of the greedy user. In this paper we propose a
new detection schemes for the backoff manipulation that we believe will improve the performance
of systems such as DOMINO.

Kyasanur and Vaidya [10] propose a modification to 802.11 for facilitating the detection of
misbehaving nodes. The receiver (a trusted host -e.g. base station-) assigns the backoff value to
be used by the sender, so the former can detect any misbehavior of the latter and penalize it by
increasing the backoff values for the next transmission.

The protocol consists of three parts:

• Detection: The sender deviates from the protocol if the observed number of idle slotBact

is smaller than a specified fractionα of the assigned backoffBexp. To alleviate for false
positives in the presence of a hidden terminal, the sender will count only as busy time slots
those slots not reserved by other nodes with a RTS/CTS.

• Penalty: Assign a penalty with a measure of deviationD = max(αBexp−Bact,0).

• Diagnosis Scheme: If the sender deviates repeatedly, i.e. if the sum of misbehavior in a
sliding window is bigger than some threshold, then the sender is labeled as misbehaving and
the receiver takes drastic measures, e.g. drop all packets by the sender.

The problem of applying this protocol for ad hoc networks is that the receiver might not be trusted.
In this paper we extend the idea of [10] by presenting an algorithm that ensures a honest backoff
selection among the sender and a receiver as long as one of the participants is honest.

All the schemes presented above as well as the ones we propose, require the proper use of
MAC layer authentication schemes providing uniquely verifiable identities in order to prevent im-
personation and Sybil attacks [7].

We also assume that there is a reputation management system similar to CONFIDANT [5, 4],
where nodes can monitor and distribute reputation values about other nodes behavior at the MAC
layer (CONFIDANT however focuses in reputation at the routing layer).

3 IEEE 802.11 DCF

The distributed coordinating function (DCF) of 802.11 specifies the use of CSMA/CA to reduce
packet collisions in the network. A node with a packet to transmit picks a random backoff valueb
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Figure 1: Nodes A and C contend for accessing node B. The first time A reserves the channel, and
in the second time C accesses the channel.

chosen uniformly from the set{0,1, . . . ,CW−1} (CW is the contention window size), and trans-
mits after waiting forb idle slots. Nodes exchange RTS and CTS packets to reserve the channel
before transmission. Both the RTS and the CTS contain the proposed duration of data transmis-
sion: the duration field indicates the amount of time (in microseconds) after the end of the present
frame that the channel will be utilized to complete the successful transmission of the data or man-
agement frame. Other hosts which overhear either the RTS or the CTS are required to adjust their
network allocation vector (NAV), which indicates for how long should the node defer transmis-
sions on the channel, which includes the SIFS interval and the acknowledgment frame following
the transmitted data frame. If a transmission is unsuccessful (by the lack of CTS or the ACK for
the data sent), theCW value is doubled. If the transmission is successful the host resets itsCW to
a minimum valueCWmin.

The following diagram depicts the handshake mechanism used in 802.11 DCF

S R
RTS−−−−−−−−−−−−−−−→
CTS←−−−−−−−−−−−−−−−

DATA−−−−−−−−−−−−−−−→
ACK←−−−−−−−−−−−−−−−

Figure 1 shows an example of contending nodes using the protocol.
The timers are selected based on which physical layer 802.11 is using. For example table

1 shows the parameters used when the physical layer is using direct sequence spread spectrum
(DSSS) (timeouts are not defined in the IEEE 802.11 standard, but are usually set to the values
given in the table).

The exchange ofRTS/CTScontrol frames is an optional feature of 802.11. The primary reason
for enabling this functionality is if you expect frequent collisions or retransmissions due to hidden
nodes. IfRTS/CTSis not enabled then for any data packet transmitted only two frames are needed:
DATA/ACK. Since hidden nodes are common in ad hoc networks, we assume the exchange of
RTS/CTSis active.

Cheating in the 802.11 protocol can be done in many places, for example by setting large



DIFS 50µs
SIFS 10µs

SlotTime 20µs
ACK 112bits+PHYheader=203µs
RTS 160bits+PHYheader=207µs
CTS 112bits+PHYheader=203µs

DATA MAC header (30b)+DATA(0-2312b)+FCS(4b)
Timeouts 300-350µs
CWmin 32 time slots
CWmax 1024 time slots

Table 1: Parameters for DSSS

NAV values for other contending nodes, by deauthenticating neighboring nodes, or by violating
the backoff mechanism. However most of the cheating is fairly easy to detect or defend except for
backoff manipulation [13, 2]. In this paper we propose in section 4 a technique for ensuring honest
backoffs when there is at most one cheating node and in section 5 we consider detection tests when
there are colluding nodes in the network.

4 ERA: Ensuring Randomness for 802.11

One of the main assumptions used in the scheme proposed in [10] is that the receiver has to be
trusted. This assumption is well suited for infrastructure-based wireless networks, where the base
station can be trusted. However, in the case of ad hoc networks the receiver can misbehave by
selectively assigning the backoff values to different senders. For example, the receiver can be
expecting data from a particular sender and thus assign small backoff values to it, degrading the
performance of the other neighboring senders. The receiver can also assign large backoff values
to some neighbors and deny them access to the network. Furthermore, if there are two pairs
of receivers and senders in the same range, a malicious receiver can overhear the backoff value
assigned by the other receiver to the first sender, and then unilaterally select a random backoff for
the second sender such that it will cause a collision between the two senders. This scenario can be
seen in figure 2.

In this section we propose an extension to the 802.11 CSMA/CA protocol that will ensure a
uniformly distributed random backoff, in the case that at least one of the parties is honest. The
basic idea follows the protocol for flipping coins over the telephone by Blum [3].

The protocol can be embedded in 802.11 to be used every time a new reservation of the chan-
nel takes place. The messages are appended (denoted by a double bar||) to the normal message
exchange of 802.11:
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Figure 2: Node C transmits to A and node B wants to transmit to D. After hearing the backoff
assigned by A to C, node D will assign a backoff to node B such that it will collide with C.

S R

n←{0,1}knonce
RTS||n

−−−−−−−−−−−−−−−→ r ←{0,1, . . . ,CWmin−1}
CTS||σ

←−−−−−−−−−−−−−−− σ = Commit(r||n)

r ′←{0,1, . . . ,CWmin−1}
DATA||r ′

−−−−−−−−−−−−−−−→ σ′ = Open(σ)
ACK||σ′

←−−−−−−−−−−−−−−−
Commit(r||n) ?= σ
bi = r i⊕ r ′i for i ∈ {1, . . . ,m} bi = r i⊕ r ′i for i ∈ {1, . . . ,m}

We now explain the protocol step by step.

1. In the first step the senderSselects a nonce: a numbern selected uniformly randomly from
the set{0,1, . . . ,2knonce}, denoted asn← {0,1}knonce. knonce is a security parameter selected
so that it is difficult forR to guess the nonce, for exampleknonce= 64. This step is optional
and is done in order to prevent an offline attack to the commitment scheme.

2. In the second step the receiverRselects a random backoffr from the set{0,1, . . . ,CWmin−1}
and commits to it. In binary notationr is a random bit string of lengthm (r = r1r2 · · · rm),
wherem= log2CWmin (note that the minimum contention window sizeCWmin is always a
power of two). The commitment schemeCommit is such that the following two properties
are satisfied: (in a reasonable amount of time- time outs in 802.11 for reserving the channel
are between300µsto 350µs):

Binding: After sendingCommit(r||n), the receiver cannot open the commitment to a differ-
ent valuer̃ 6= r (except with negligible probability). This protects against a dishonestR
that might try to change the committed value depending on ther ′ received byS.



Hiding: GivenCommit(r||n), Scannot extract any information aboutr that will enable it to
distinguishr from any other bit string of lengthm (except with negligible probability).
This protects against a dishonestS that will try to tailor r ′ based on its guess ofr.

3. After receiving the Commitmentσ, Sselects a random valuer ′= r ′1r ′2 · · · r ′m from{0,1, . . . ,CWmin−
1}.

4. Finally R opens its commitment toS. Opening a commitment is an operation that reveals
to S the committed valuer, plus some information so that the other party can confirm that
the value revealed is indeed the value that was committed. If the value opened by theR is
correct, then the sender and the receiver, compute the backoffb = b1b2 · · ·bm as the xor of
the bits:bi = r i ⊕ r ′i . If it is not, then the sender can report a misbehavior to the reputation
management system we assumed.

Several commitment schemes are known under very different computational assumptions. Very
efficient commitment schemes in terms of computation and communication, can be implemented
under the random oracle model. In this setting it is a standard practice to assume that hash func-
tionsH such as SHA-1 or MD5 are random oracles. Under this assumption it is easy to see that
the following commitment scheme satisfies the binding (by assumingH to be collision resistant)
and hiding properties (by assumingH is a random oracle) required:

Commit(r||n)
i ←{0,1}k

Output = H(i||r||n)

Open(H(i||r||n))
Output = (i, r)

wherek is a security parameter (e.g.k = 64, it is not considered feasible to search for264messages
given the current state of art). To open the commitmentR has to sendr as well asi, so thatScan
check if the commitment was valid.

For a practical case, consider when the physical layer of 802.11 is set to direct sequence spread
spectrum (DSSS). In DSSS mode the minimum contention window size is 32 time slots, therefore
m= log2CWmin = 5, that is,r ′ andr are only 5 bits long which is an insignificant quantity to be
appended to aDATA frame. The acknowledgement frame would incur with a reasonable extra
k+ m = 69 bits. If we use SHA-1 to implement the hash function of the commitment then we
obtain a message digest of 160 bits. TheRTSframe would be doubled in size if we use the full
message digest, however 320 bits would still be insignificant to a normalDATA frame which can
be up to 2312 bytes, therefore the use reservation by exchangingRTS/CTSwould still be more
effective than the basic access mode of 802.11 DCF (noRTS/CTSexchange). If doubling the size
of a RTSframe is a concern, the output of SHA-1 can always be truncated for example to 80 bits.
The security reduction of the message digest has to be evaluated under the birthday paradox: if the
message digest has h bits, then it would take only about2h/2 messages (out of2k+m+knonce), chosen
at random, before one would find two (inputs) with the same value (message digest). Considering
the normal timeout between frames to be300µs, we can safely assume240 computations cannot be
done in this time.



Finally the nonce parameter should discourage offline attacks. Ifknonce= 0, an attacker could
attempt to find collisions offline and then open a false commitment. There is a tradeoff then
between the length of the message digest used for the commitment and the security parameter
knonce. The longer the message digest, the less likely there is an offline attack.

If we remove the nonce from the protocol we can make the sender use more transmission power
than the receiver with the following protocol:

S R
r ←{0,1, . . . ,CWmin−1}
σ = Commit(r)

RTS||σ
−−−−−−−−−−−−−−−→

CTS||r ′
←−−−−−−−−−−−−−−− r ′←{0,1, . . . ,CWmin−1}

DATA||Open(σ)
−−−−−−−−−−−−−−−→ Commit(r) ?= σ

bi = r i⊕ r ′i
ACK←−−−−−−−−−−−−−−− bi = r i⊕ r ′i

in this case, the receiver will only be required to append an extra five bits to theCTS frame.
A data frame would be appendedb andr which sum up to only 69 bits, which is still very small
compared to the payload. So our only major modification to 802.11 in terms of communication
bandwith used is the payload of the message digestσ.

To finalize this section we just point out that once a sender and a receiver have agreed on a given
random backoff the receiver can monitor the behavior of the sender and report a misbehaving node
to the reputation management system. To detect if the sender deviated from the agreed backoff,
we can use the detection algorithm given in [10], in particular we note that if the sender sensed
the channel to be idle it would count down its backoff timer, however the receiver can sense the
channel to be busy (channel reserved by a hidden node to the sender) and under normal operation
it would not count down its timer. In order to avoid false positives created by the hidden terminal
unit, the receiver will always decrement the counter that monitors the sender. It is also mentioned
in [10] how to handle the detection during packet retransmissions, i.e. when the sender collides and
has to choose by itself another backoff value from the set{0,1, . . . ,(CWmin+ 1)2i−1−1} (where
i is the number of retransmissions and it keeps increasing until the size of the contention window
reachesCWmax).

5 Detection System

The previous algorithm is not resistant to colluding nodes selecting small backoff values with the
intention of maximizing their throughput, at the expense of throughput degradation for neighboring
nodes. Similarly, colluding nodes can agree on sharing large backoff times, causing large delays
in their transmissions so that they are rejected from inclusion in routing layer paths. In the rest of
this section we will focus only on detecting colluding nodes with the intention of selecting small
backoff values. Detecting large backoff times can be done in the similarly.

When the sender and the receiver collude by selecting their random numbers for the contention
window a priori, they can deny access to the network. For example, consider figure 3 and assumeC
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Figure 3: Nodes M and D collude to and interfere in the communication path of nodes B and C

is within wireless range of nodesD andM (it is a reasonable assumption that in wireless networks
there will always be nodes that are neighbors of both colluding nodes:D andM). Without loss
of generality, assumeC monitors the access times of nodeM. Note thatC can compute exactly
the backoff time by listening to the exchanged valuesn,σ, r ′,σ′ (betweenM andD) and then com-
puting the backoffbi = r i ⊕ r ′i . If the sender deviates from this backoff then nodeC can detect a
misbehaving sender in the same way a honestD would detect a misbehavior ofM. However if
nodesD andM collude, they can select a priori their numbers. For example they can collude to
present to nodeC a valid message agreement on the backoff zero by selecting the following values:

M D

n←{0,1}knonce
RTS||n

−−−−−−−−−−−−−−−→
CTS||σ

←−−−−−−−−−−−−−−− σ = Commit(00000||n)
DATA||00000

−−−−−−−−−−−−−−−→ σ′ = Open(σ)
ACK||σ′

←−−−−−−−−−−−−−−−
b = 00000 b = 00000

At the end, the sender will not wait for any time slot in the backoff period and will send
immediately its lastDIFSends. In Figure 4 we show how the sequence of small backoffs0,1,2, . . .
from nodeM will cause the timer for theCTSframe of nodeA to time out. NodeA will therefore
backoff exponentially repeatedly, making it less likely to access the network. We implemented
this setting in the network simulator Opnet, and allowed the colluding nodes to transmit with the
smallest backoff in a period of time. In figure 5 it is shown how the colluding nodes denied access
to the network to nodeA during that period.

Having motivated the need to detect colluding MAC layer misbehavior in ad hoc networks, in
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Figure 5: Simulation of traffic sent by node M (top figure) versus traffic sent by node B (top figure).
When D and M collude A is denied access to the network.



the rest of this section we focus on designing algorithms such that neighboring nodes can detect
when other nodes do not follow a uniformly random backoff time. Although our emphasis is on
ad hoc networks, the same algorithms can be applied to other settings, for example to monitor
greedy behavior at access points in WLANs using the original 802.11 protocol (802.11 without the
modifications introduced in the previous section).

5.1 Test for backoff manipulation

A misbehaving host that knows there are neighboring nodes monitoring its backoff period will
try to avoid detection while maintaining a high throughput. It is difficult however to come up
with a strategy that the misbehaving nodes will use to access the channel more frequently. If we
assume for example that the misbehaving nodes will select their backoff uniformly random from
the set{0,1, . . . ,CWmin/4} and monitor the access times for no occurrences aboveCWmin/4, then
an adaptive misbehaving node will override our detection mechanism by selecting a value above
CWmin/4 before our test makes a decision. Selecting the time at which to wait for a backoff larger
thanCWmin/4 assumes the colluding nodes know perfectly well our assumptions about the attack
and the parameters used for its detection. Giving the misbehaving nodes the capability to know
our assumptions on the attack allow us to consider detection schemes which do not assume that
misbehaving nodes will be systematically fooled. In general, we assume that the colluding nodes
are intelligent (they know everything each monitoring node knows about the detection scheme),
and that they can make inferences about the situation in the same way as the monitoring nodes can.

In general, the more inaccurate assumptions we make about the attack, the less effective our
detection algorithm is. In particular we do not know a priori the probability distribution that the
colluding nodes will use in order to access the channel.

The first intuitive assumption to make about the strategy of the colluding nodes is that it will
let one of them access the channel in a way that the mean access should decrease from the minimal
mean backoffBmin := (CWmin−1)/2, i.e. on average the selfish node will attempt to access the
channel more frequently than any other contending node. In order to penalize also nodes that do
not double their contention window every time they collide, we could test for a decrease from a
nominal backoffBnom (whereBnom≥ Bmin) representing our long term average backoff. Note that
each monitoring node has to estimateBnom online. The selection of testing either a decrease in
Bmin or Bnom will depend on the risk assessment of the threat provided by the misbehaving nodes.
Without loss of generality and in order to be conservative with our detection mechanism we select
to test for deviations fromBmin.

Before presenting the statistical tests, let us introduce some notation. LetXi denote theith

backoff time for a given monitored node. After measuringn backoff times for nodeM, we end up
with the sequenceX1, · · · ,Xn. We assume we make a decision aftern observations.

5.1.1 Tests for change in the mean

Using this sequence of data, in DOMINO [13] a detection mechanism is proposed for testing a
deviation from the reference backoff. The algorithm first computes an averageXac = ∑n

i=1Xi/n, of
the observations taken over a given unit of time (e.g. 10s) and then, the averaged value is compared
to the reference backoff :

Xac < γBmin

the parameterγ (0 < γ < 1) controls the rate for false alarms. An optional parameterK will
only flag a false alarm after the statisticXac has exceededγBmin K times. They tested the detection



scheme against a misbehaving node whose strategy was to select backoff values uniformly random
from the set{0,1, . . . ,bCWmin×δc}, whereδ (0≤ δ ≤ 1) represents the amount of misbehavior,
with δ = 0 meaning that the station transmits without backoff and withδ = 1 meaning no mis-
behavior. The results show that when the misbehaving node increases its throughput three times
more the normal value, then the detection mechanism will always catch him while maintaining a
false alarm rate below 0.1.

This algorithm in DOMINO however is not optimal for more intelligent strategies of the mis-
behaving nodes. A misbehaving node in 802.11 (or a pair of colluding nodes in ERA-802.11) will
avoid detection and still achieve access to the channel more than half of the contending trials by
selecting the following backoff scheme:

For the first(K−1)n backoffs, select a backoff of zero (this exploits the fact that an alarm is
never raised until the mean statistic has exceededγBmin K times.) Then alternate between a backoff
of zero and the backoff2γBmin.

This strategy will ensure that an alarm is never raised for the misbehaving nodes, while still
providing access to the channel more than half of the times no matter how many other contending
neighbors there are. Since in an ad hoc network there might be several nodes monitoring the
misbehaving backoff strategy, each with different values ofK (different times of arrivals to the
neighborhood), a safe strategy is just to alternate between0 and2γBmin, a strategy which still gives
access to the channel to the misbehaving nodes more than half of the times.

This same fate is shared with several nonparametric tests measuring how “shifted” in theX
axis is the alternative distribution from the null distribution (which is assumed to be symmetric at
zero). If we define the independent and identically distributed (i.i.d.) random process:Y1, ...,Yn

by: Yi = Bmin−Xi we can use a Sign Test or a Wilcoxon Test [9].

5.1.2 Entropy Estimation

Clearly if we could test how random the backoff mechanism of the misbehaving node is, we would
make the evasion of detection more difficult. However applying empirical statistical tests to ran-
dom number generators is a highly heuristic affair. Furthermore an adversary can still cheat several
of the tests, such as cumulative sums, frequency counts and tests based on random walks, while still
accessing the channel much more often than honest participants. We therefore turn our attention to
the entropy of the backoff process, as one of the more used measures of randomness. Note however
that we do not need to measure the entropy of the backoff values observed versus the entropy of
a uniform random variable with range{0,1, . . . ,CWmin−1}. Doing this would cause much more
false alarms due to the large parameter space for estimation (estimating more parameters means
our observations before making a decision would increase dramatically). Therefore we partition
the backoff range intoM bins, where2 < M < CWmin so that the estimation of the probabilities
in each bin is more efficient for small sample sizes, while limiting the attacker strategies. As a
statistical test, we measure the empirical entropy of theM bins (which ideally should be close to
− log2

1
M ) with a threshold given by a fixed false alarm rate.

In order to evaluated the performance of the entropy statistic, we compare it to the detection ac-
curacy of DOMINO, and a Wilcoxon nonparametric rank test. The strategy of the selfish user is to
fool the detection scheme by alternating backoff values between 0 andα, for α = 0, . . . ,CWmin−1.
α therefore is a measure of evasion by the misbehaving node whereα = 0 means the node transmits
without any backoff, andα = CWmin−1 means the node alternates between transmitting without
any backoff and backing off forCWmin. The parameters of the simulation were104 samples,n= 20,
CWmin = 32 and the number of bins to evaluate the entropy wasM = 8. Figure 5 shows how the
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entropy test can easily detect the selfishness while the Wilcoxon test misses the strategy when
α > Bmin/2 and DOMINO whenα > γBmin. This result should not be a surprise, as the entropy of
the selfish behavior in this case is just 2. Note that in the case of 8 bins, the optimal strategy for
the misbehaving node is to select the smallest backoff within each interval: 0,3,7,11,15,19,23,27.
Furthermore if the selfish node knows the false alarm rate, then it can do better by selecting just
the first values: 0,3,7,11,15,19 (when we are only tolerating up to an entropy oflog26).

5.2 Test for Unfair Use

If we want to be conservative in the detection of misbehavior, after we obtain an alarm from the
backoff manipulation algorithm, we can correlate the identity of the accused node, with the actual
throughput difference among contending nodes. However, the actual throughput depend on many
variables that are beyond the reach of the monitoring node. It depends on the traffic pattern of
the network (other nodes might not have anything to send), and the network topology: figure 7.



Since 802.11’s MAC layer has been shown to be unfair at short and long term use, for arbitrary
topologies in ad hoc networks [14], we do not attempt to test for fairness but rather we test for the
amount of unfairness that we will be able to accept. This test is just to ensure that if the backoff
manipulation test detects a misbehaving node, it is indeed making an unfair use of the network
by diminishing the throughput experienced by neighboring nodes. In this setting we assume the
monitoring nodes are contending to access the same receiver.\

In this model we assume the selfish user will only permit access to the medium to its N neigh-
bors with onlyε probability. Alternatively it can be seen as the amount of unfairness we allow.

On the other hand, a fair protocol would allow access to the medium proportional to the other
nodes (when the nodes are in saturation condition). Therefore if we letLR be the number of times
we observe any node other than nodeA accessing the medium andLA the number of timesA
accesses the medium, a simple likelihood ratio test to inform ifA is being overly unfair or closer
to a complete fair protocol is the following:

H1 :
(1− ε)LAεLR

( 1
N)LA(N−1

N )LR
> 1

We stress out again that this test should not be used alone given the characteristic unfairness of
802.11, but rather as a way to complement backoff manipulation detection algorithms.

6 Conclusions and Future Work

Misbehavior at the MAC layer by changing the backoff mechanism can lead to performance degra-
dation and even denial of service attacks in ad hoc networks. In this paper we have presented
ERA-802.11 in order to help in the detection of non-colluding selfish nodes. However, even when
neighboring nodes know the backoff time agreed by a misbehaving node, the network topology
and hidden nodes can severely degrade the correct detection of the node. We plan to investigate
in the future how an implementation of ERA-802.11 performs with respect to the number of hid-
den nodes in the neighborhood. We also plan to investigate if the small overhead included in the
reservation packets influences the throughput.

When we have colluding nodes the problem of detecting backoff manipulation at the MAC
layer becomes very difficult. Not only are we required to take several samples in order to come up
with an accurate decision, but the hidden node problem, the exponential backoff due to the capture
effect, and the different topologies influence our decision. In future work we will focus on a more
rigorous treatment of the detection problem and show under the consideration of parameters such
as network topology, the difficulty or feasibility of the problem.

Finally, we assumed in this paper that there was a reputation algorithm receiving our detection
results.There is still the open question of how to react when we detect a misbehaving node. How
bad is the performance degradation for the rest of the network? What is the best punishment
strategy? It is our view that the reputation mechanism should have a layered security mechanism
in order to provide an educated decision on how to react to MAC layer misbehavior.
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