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ABSTRACT
We consider the free-rider problem that arises in peer-to-
peer file sharing networks such as Napster: the problem that
individual users are provided with no incentive for adding
value to the network. We examine the design implications of
the assumption that users will selfishly act to maximize their
own rewards, by constructing a formal game theoretic model
of the system and analyzing equilibria of user strategies un-
der several novel payment mechanisms. We support and
extend upon our theoretical predictions with experimental
results from a multi-agent reinforcement learning model.

1. INTRODUCTION
Peer-to-peer (P2P) file-sharing systems combine sophisti-

cated searching techniques with decentralized file storage to
allow users to download files directly from one another. The
first mainstream P2P system, Napster, attracted a great
deal of public attention for the P2P paradigm as well as
tens of millions of users for itself. Napster specialized in
helping its users to trade music; P2P networks also allow
users to exchange other kinds of digital content.
The work of serving files in virtually all current P2P sys-

tems is performed for free by its users. Since users do not
benefit from serving files to others, many users decline to
perform this altruistic act. In fact, two recent studies of
the Gnutella network have found that an overwhelming pro-
portion of its users contribute nothing to the system [1, 8].
The phenomenon of selfish individuals who opt out of a vol-
untary contribution to a group’s common welfare has been
widely studied, and is known as the free-rider problem [5,
9]. The communal sharing of information goods in “discre-
tionary databases” and the resulting free-rider problem has
also been studied before the advent of P2P systems [10].
This problem is not simply theoretical. Some P2P systems
plan to charge users for access in the near future. However,
a system run for profit may not receive the level of altruistic
‘donations’ that power a free community. There is therefore
both a need and an opportunity to improve such P2P file-
sharing systems by using an improved incentive scheme to
increase the proportion of users that share files, making a
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greater variety of files available. This would increase the sys-
tem’s value to its users, and hence make it more competitive
with other commercial P2P systems.
In the following section, we introduce our formal game

theoretic model. Section 3 presents the Napster system,
which we use as a motivating example throughout this pa-
per. In sections 4 and 5, we propose two classes of novel
payment mechanisms, analyzing user strategies and the re-
sulting equilibria. Finally in section 6, we use a multi-agent
reinforcement learning model to validate our analytical re-
sults and to explore further properties of our mechanisms.

2. PROBLEM DEFINITION
We now turn to a more formal, game theoretic charac-

terization of the problem. (Readers unfamiliar with game
theoretic analysis may consult [3, 7].) First, we describe
the game that we use to model the file sharing scenario. In
our model, usage of the system is divided into time periods
of equal duration. For example, time periods might repre-
sent one month. There are n agents who participate in this
system; we denote them as a1, . . . , an. Each agent has two
independent actions available in each time period:

1. Sharing: Agents select what proportion of files to
share. In our model, sharing takes three levels: σ0 (no
sharing), σ1 (moderate sharing) or σ2 (heavy sharing).

2. Downloading: Each agent must also determine how
much to download from the network in each period.
We model downloads with agents choosing between
three levels: δ0 (no downloads), δ1 (moderate down-
loads) or δ2 (heavy downloads).

An agent ai’s strategy in time period t is denoted S(i, t) =
(σ, δ), or S(i) when the time period is unambiguous.

2.1 Agent Utility
Agents’ utility functions describe their preferences for dif-

ferent outcomes. The following factors concern agents:

• Amount to Download (AD): Agents get happier
the more they download.

• Network Variety (NV): Agents prefer to have more
options from which to select their downloads.

• Disk Space Used (DS): There is a cost to agents as-
sociated with allocating disk space to files to be shared.

• Bandwidth Used (BW): Similarly, there is a cost to
agents associated with uploading files to the network.

• Altruism (AL): Some agents derive utility from the
satisfaction of contributing to the network.
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• Financial Transfer (FT): Agents may end up pay-
ing money for their usage of the network, or conversely
they may end up getting paid.

We assume that agents have quasilinear utility functions.
Furthermore, we assume that agents are risk neutral. We
can thus write the equation for agent ai’s utility function
as Ui =

[
fAD

i (AD) + fNV
i (NV ) + fAL

i (AL)
]− [fDS

i (DS)+

fBW
i (BW )] − FT . Each f function is concerned with a
particular variable (e.g., bandwidth used) and an agent; it
describes that agent’s preference for different values of the
variable, in money. There is no f function for the variable
FT because this variable represents an amount of money
that is transferred to or from the agent. Without restricting
ourselves to particular f functions, we can make several ob-
servations that justify the signs of the terms above. First,
fAD, fNV and fAL must be monotonically increasing, with
minimum value 0, as these variables only ever contribute
positive utility. DS and BW only contribute negative
utility, explaining the subtraction of fDS and fBW above.
Finally, we assume that neither fDS nor fBW is superlinear.
We say that two agents ai and aj have the same type if

they have the same utility function; i.e., if fi = fj for all five
f functions. To simplify our game theoretic analysis in the
first part of this paper we often make the assumption that
all agents have the same type. In section 6 we approach the
file sharing problem experimentally; this approach allows us
to discuss the convergence of agent strategies under a wide
variety of different agent types.

2.2 Equilibria
As is central to any game theoretic model, we assume

that agents are economically rational, and that they act to
maximize their expected utility, given their beliefs about
the actions that other agents will take and their knowledge
about the way that their payoffs are calculated. We denote
the joint strategies of all agents in time period t as Σ(t) =
{S(1, t) . . . S(n, t)}, or simply as Σ when the time period is
unambiguous. Following the usual definition, we say that
Σ is a weak Nash equilibrium when no agent can gain by
changing his strategy, given that all other agents’ strategies
are fixed. Similarly, Σ is a pure Nash equilibrium when every
agent would be strictly worse off if he were to change his
strategy, given that all other agents’ strategies are fixed.
Finally, an agent has a dominant strategy if his best action
does not depend on the action of any other agent.

2.3 Assumptions and Observations
In our analysis, we restrict ourselves to file sharing sys-

tems that make use of centralized servers. These servers
maintain a database of the files currently available on the
network and connect download requests with available clients.
We assume that the servers are able to determine the iden-

tity of files provided by users, which may be needed both to
pay royalties to the appropriate copyright holder and to de-
tect users who make false claims about the files they share.
File identification may be achieved by a cryptographic wa-
termarking scheme (see, e.g., www.sdmi.com); alternately,
users who spoof files could be penalized.
One likely payment model for peer to peer systems is some

kind of flat rate membership fee per time period. We do not
explicitly consider this option anywhere in the discussion
that follows, as it has no impact on the equilibria that arise

from any mechanism (although it can affect agents’ decisions
about participation). All the mechanisms discussed here are
compatible with the addition of flat rate pricing. The fact
that flat fees are unrelated to agents’ behavior implies that
they still give rise to a free rider problem.

3. THE NAPSTER SYSTEM
In this section we analyze the Napster system that oper-

ated from May 1999 through July 2001, since it is probably
the best-known peer-to-peer application. Napster is one of
the simplest mechanisms that can be represented by our
model: regardless of the actions of agents, Napster imposes
no financial transfers. Using the model described in section
2, we start with an equilibrium analysis that disregards the
‘altruism’ component of agents’ utility functions; we then go
on to consider altruism.
Unsurprisingly, Σ = {(σ0, δ2), . . . , (σ0, δ2)} is an equilib-

rium. As all agents have the same type, it is enough to ana-
lyze the choice made by a single agent. Assume that agents
other that ai follow the strategy S = (σ0, δ2), and consider
agent ai’s best response. Since ai is not altruistic, his util-
ity is strictly decreased by sharing files; he will thus choose
the action σ0 which leaves his utility unchanged. Download-
ing will usually increase ai’s utility; however, since no other
agent is sharing we have NV = 0 and so his utility is zero re-
gardless of how much he intends to download. The action δ2
is therefore a best response, and Σ as given above is an equi-
librium. Indeed, we can see that the strategy S = (σ0, δ2)
is dominant. If all other agents choose σ0 then S yields the
same (maximal) payoff as (σ0, δ0) and (σ0, δ1); if any other
agent does share then S yields strictly higher revenue than
any other strategy. Because Σ is an equilibrium in dominant
strategies, it is the only equilibrium.
We have identified a unique equilibrium in which nothing

gets shared and there is nothing to download. Yet songs
were plentiful and actively traded on Napster. We identify
two incentives that could account for users’ willingness to
contribute. First, Napster offered its service free of charge
and went to great lengths to foster a sense of community
among its users. This may have been sufficient to encourage
users to altruistically contribute resources that cost them
very little. Second, Napster offered a (modest) disincentive
for non-contribution: by default, the Napster client shared
all songs that an agent downloaded. We represent both of
these incentives through the variable (AL).
In the analysis of this situation, we consider two types

of agents. First, altruistic agents are those whose reward
for altruistic behavior (AL) exceeds its cost in terms of disk
space (DS) and expected bandwidth usage (BW ). We as-
sume that f functions for these agents are such that they
would prefer the action σ2 to either the action σ1 or σ0 re-
gardless of the value of BW . These agents still gain utility
from downloads: following an argument similar to the one
given above, (σ2, δ2) is a dominant strategy for altruistic
agents. The second type of agents are those for whom the
cost of altruistic behavior exceeds its benefit. These agents
are essentially the same as those described in the previous
section: although they may receive some payment for altru-
istic behavior, it will be insufficient to alter their behavior.
They thus have the dominant strategy given above: (σ0, δ2).
This analysis is arguably a description of the state of af-

fairs on the Napster system. Some proportion of agents
were sufficiently altruistic to share files and did so; other
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agents were not altruistic and shared nothing. Regardless
of their level of altruism, agents were unrestrained in their
downloads. We can now see that Napster did experience a
free rider problem: regardless of the contributions of others,
selfish agents had no incentive to share.
We now turn to an examination of several alternative

mechanisms that overcome the free rider problem through
the imposition of financial transfers. In order to avoid re-
lying on altruism we assume that agents have no altruistic
motivation, and so drop the fAL(AL) term from agents’
utility functions for the remainder of the paper.

4. MICRO-PAYMENT MECHANISMS
We wish to encourage users to balance what they take

from the system with what they contribute. A natural ap-
proach is to charge users for every download and to reward
users for every upload. In this section, we propose and ana-
lyze a micro-payment mechanism designed according to this
principle, as well as a variant of the basic mechanism.
Let us start with a detailed description of our micro-

payment mechanism. For each user the server tracks the
number δ of files downloaded, and the number υ of files
uploaded during the time period. At the end of each pe-
riod, each user is charged an amount C = f(δ − υ). We
assume that f is linear with a coefficient α representing the
cost/reward per file (e.g., $0.05), so that the global sum of all
micro-payments is 0. Individual users, however, may reduce
their monthly charges or even make a profit by uploading
more than they download.
Before considering the equilibria that arise under this mech-

anism, we must make some assumptions so that the mecha-
nism can be represented in our model. Let σ−i be the total
number of units shared by agents other than ai, and δ−i be
the total number of units downloaded by agents other than
ai. If agent ai chooses the action1 (σs, δd) then we express
the expected value of FT (ai’s expected payment to the

system) as E[FT ] = α

(
d− δ−i s

n−2
n−1 σ−i+s

)
. This reflects

the assumption that the central server matches downloaders
uniformly at random with shared units, with the constraint
that no agent will download from himself. Finally, we make
two assumptions about agents’ relative preferences for dif-
ferent outcomes. First, we assume that fAD(1) > α: the
utility agents gain from downloading one file exceeds the
micro-payment charged for downloading one file. Second,
we assume that fDS

i (1)+ fBW
i (1) < α: the disutility agents

incur from sharing one file and uploading it once is less than
the micro-payment that they are credited for uploading it.
We can now consider the equilibria that result from the

micro-payment mechanism. A unique, strict equilibrium is
Σ = (S1 = (σ2, δ2), . . . , Sn = (σ2, δ2)). Since we have as-
sumed fAD(1) > α agents have an incentive to download
as much as possible—their marginal profit per file is re-
duced, as compared to the case discussed in section 3, but
it remains positive. Thus δ2 dominates δ1 and δ0. If all
agents other than ai follow the strategy S = (σ2, δ2), and
ai follows the strategy Si = (σj , δ2), ai can calculate his
expected utility for the different values of j. He will have
FT = α(2− 2(n− 1) s

2n−4+s
). Given our assumption about

1To simplify the exposition we assume that σs denotes shar-
ing exactly s units, and likewise δd denotes downloading d
units. This assumption is not needed for our results.

the cost of uploading a file, ai will strictly prefer the strategy
Si = (σ2, δ2); thus we have shown that Σ is a strict equi-
librium. Now we show uniqueness of the equilibrium. Note
that it is dominant for all agents to choose δ2, as described
above. Thus δ−i is 2n − 2 in all equilibria for all i. Since
fDS

i (1) + fBW
i (1) < α, sharing is worthwhile for an agent

if every unit shared yields at least one unit of expected up-
loads. Substituting s = 2 into the expression for expected
number of uploads from the equation above, we find that
it is thus worthwhile for an agent to choose the action σ2

when 2(n− 1) 2
n−2
n−1 σ−i+2

≥ 2. Rearranging, we find that σ2

is the most profitable strategy as long as σ−i ≤ 2(n − 1).
This condition must always hold since there are only n − 1
agents other than i and each agent can only share up to 2
units; hence Σ is a unique equilibrium.
Users strongly dislike micro-payments: having to decide

before each download if a file is worth a few cents imposes
mental decision costs [6]. To address this problem we in-
troduce a quantized micro-payment mechanism where users
pay for downloads in blocks of b files. At the end of a time
period, the number of files downloaded by a user is rounded
up to the next multiple of b, and the user is charged for
the number of blocks used. The pricing mechanism for serv-
ing files is unchanged. Note that when b = 1 we return to
the original micro-payment mechanism, while we approach
a purely flat-rate pricing plan as b grows. We omit discus-
sion of this class of mechanisms for space reasons; in short,
the same equilibrium holds as discussed above, except that
users will download a number of files evenly divisible by b.

5. REWARDS FOR SHARING
In the full version of our paper (to appear at WELCOM’01)

we consider mechanisms that make use of an internal cur-
rency called “points.” (Similar ideas have been used by a
variety of web services, e.g. www.mojonation.net.) Agents
are allowed to buy points either with money or with contri-
butions to the network, but they are not allowed to convert
points back into money. Above, we focused on influencing
users’ consumption by penalizing downloads and rewarding
uploads. Here we consider rewarding agents in proportion
to their level of sharing rather than the number of actual up-
loads they provide, while still penalizing downloads. Specif-
ically, agents who share are paid an amount proportional to∫
M(t)dt, where M(t) is the amount of data in megabytes

available for download at time t, and the integral is taken
over one time period. We provide an equilibrium analysis of
several point-based mechanisms and discuss various imple-
mentation considerations.

6. EXPERIMENTS
The previous sections analyzed the existence of equilibria

for all our mechanisms under simplifying assumptions. Here
we test our mechanisms in simulations that more accurately
reflect the real world. We enrich our theoretical model by
introducing different types of files and agents, and by con-
sidering risk-averse agents.
We consider files of several kinds and agents of several

types. Recall that the type of an agent is determined by
the agent’s utility function; in our experiments agents dif-
fer according to their preferences for different kinds of files.
More specifically, agent utility functions differ as follows:
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• Altruism: f(AL) = αAL where α is drawn uniformly
from [αmin, αmax].

• Disk space: the function f(DS) is set to emulate an
agent with maximal storage space d, where d is chosen
uniformly from [dmin, dmax].

• File type preferences: the term f(AD) is decom-
posed into

∑
i βfi(ADi), where each i represents a dif-

ferent kind of file. Agents’ preferences for each kind of
file are reflected by different fi functions. The factor
β is chosen uniformly at random for each agent.

We model agents’ utility for money as U(x) = A ln(1+ x
A
).

As A tends to infinity, U becomes linear; this allows us to
observe changes as agents go from risk-averse to risk-neutral.
This model is supported by experimental evidence [4].

6.1 Learning Algorithm
We take an approach similar to that of fictitious play [2]

to model the behavior of agents. Agents behave as if other
agents’ strategies were fixed (i.e., as though other agents do
not act strategically), and make a best response based on
their observations of other agents’ actions. Although agent
behavior is not strategic in this model, strategy convergence
corresponds to a Nash equilibrium. An agent can acquire
knowledge either of the joint distribution of other agents’
strategies, as in a fictitious play model, or of the expected
payoffs associated with its own strategies. In a sufficiently
symmetric and regular world populated by sufficiently many
agents, the joint distribution can safely be neglected. As
P2P systems typically involve very large numbers of agents,
agents in our model attempt to learn the payoffs associated
with their own strategy, without modeling other agents.
Agents use the temporal difference (TD) Q-learning algo-

rithm to learn these best responses. This algorithm learns
the expected utilities of (state,action)-pairs (called Q-values).
We use the standard update equation for TD Q-learning,
Q(a, s) ← (1 − α)Q(a, s) + α(P (a, s) + c · maxa′ Q(a′, s′)),
where a is the action that the agent took, s is the current
state, s′ is the new state and P (a, s) is the payoff of the cur-
rent round (both are chosen probabilistically by the model as
a function of other agents’ behavior). The decay 0 < α < 1
and the future income discount 0 < c < 1 are fixed.

6.2 Experimental Results
First, our simulations confirm the existence of equilibria

for the micro-payment and point-based mechanisms, as our
analysis predicted. Figure 1 shows that strategies converge
to an equilibrium. Second, we demonstrate that our model

Figure 1: Strategy convergence
(logarithmic scale).
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is complex enough to exhibit non-trivial effects. Fig. 2 shows
the behavior of non-altruistic agents in the presence of al-
truistic agents under the point-based mechanism. As the
proportion of altruistic agents increases from 0 to 1, non-
altruistic agents discover that they can download more and

therefore have to share more to compensate for the point
cost of their downloads. Third, we tested the robustness of
our simulations. Overall, we found that our simulation was
very robust, producing qualitatively similar results under
very different sets of parameters for the number and types
of files and the size of the action space for agents. As an
example, two runs of the experiment described above, with
agents given respectively 9 and 35 actions in their strategy
spaces, produced essentially the same result (Fig. 2). Fi-
nally, we studied the influence of risk-aversion on agent’s
behavior in the micro-payment scheme (Fig. 3). We plot
the number of files shared in the system as a function of
A, agents’ value for money. As A decreases, agents become
more risk averse. Risk averse agents tend to cut their spend-
ing and scale down their contributions to the system because
of their uncertainty about how many other agents will down-
load their shared files.

Figure 3: Risk-aversion in micro-
payment mechanism.
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Figure 2: Files shared as a function of
the proportion of altruistic agents.
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7. CONCLUSION
The free-rider problem is a real issue for P2P systems, and

is likely to become even more important in commercial sys-
tems. We have given a simple game theoretic model to an-
alyze agent behavior in centralized P2P systems and shown
that our model predicts free riding in the original Napster
mechanism. We have proposed and analyzed several differ-
ent payment mechanisms designed to encourage file sharing
in P2P systems. Finally, we presented experimental results
supporting our theoretical analysis.
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