
Peer-to-Peer Membership Management
for Gossip-Based Protocols

Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié

Abstract—Gossip-based protocols for group communication have attractive scalability and reliability properties. The probabilistic

gossip schemes studied so far typically assume that each group member has full knowledge of the global membership and chooses

gossip targets uniformly at random. The requirement of global knowledge impairs their applicability to very large-scale groups. In this

paper, we present SCAMP (Scalable Membership protocol), a novel peer-to-peer membership protocol which operates in a fully

decentralized manner and provides each member with a partial view of the group membership. Our protocol is self-organizing in the

sense that the size of partial views naturally converges to the value required to support a gossip algorithm reliably. This value is a

function of the group size, but is achieved without any node knowing the group size. We propose additional mechanisms to achieve

balanced view sizes even with highly unbalanced subscription patterns. We present the design, theoretical analysis, and a detailed

evaluation of the basic protocol and its refinements. Simulation results show that the reliability guarantees provided by SCAMP are

comparable to previous schemes based on global knowledge. The scale of the experiments attests to the scalability of the protocol.

Index Terms—Scalability, reliability, peer-to-peer, gossip-based probabilistic multicast, membership, group communication, random

graphs.

�

1 INTRODUCTION

THE expansion of Internet-wide distributed applications
is driving the need for scalable mechanisms for reliable

group communication [3], [22]. Network-level reliable

multicast protocols such as SRM [13] or RMTP [18] rely

on IP multicast [8], [9], which is not currently widely

deployed. This motivates the need for application-level

multicast protocols, which are at present an active research

topic [5], [27], [6].

Probabilistic gossip-based dissemination protocols have

recently emerged as an attractive alternative and provide

good scalability and reliability properties [4], [19], [24]. In

these protocols, each member is in charge of forwarding

each message to a set of other, randomly chosen, group

members. This proactive use of redundant messages

provides a mechanism for ensuring reliability in the face

of node crashes and high packet loss rates in the network. It

can also be shown that the load on each node increases only

logarithmically with the size of the group, so these

algorithms are scalable. Gossip-based protocols are parti-

cularly well adapted to scenarios in which the group

membership is fairly static, but the availability of group

members is intermittent. Since these protocols tolerate high

failure rates, no reconfiguration mechanism is required in

such scenarios.
Though these approaches have proven scalable for

message dissemination, they rely on a nonscalable

membership protocol:1 They assume that the subset of
nodes that a node gossips to is chosen uniformly among all
participating nodes, requiring that each node should know
every other node. This imposes high requirements on
memory and synchronization, which adversely affects their
scalability. This has motivated work on distributing
membership management [19], [12] in order to provide
each node with a partial random view of the system
without any node having global knowledge of the member-
ship. However, the size of the partial membership required
at each node in order for gossip-based message propagation
to succeed is related to the size of the system. Therefore,
when the group grows, the size of the partial membership
at each node needs to increase accordingly. In earlier work
[17], we derived the fanout (number of gossip targets)
required to achieve high reliability as a function of system
size. When the membership management is centralized or
distributed among a few servers, the number of participants
is easily determined and the fanout can be adjusted to
match reliability requirements. However, in a fully decen-
tralized model, where each node operates with an incom-
plete view of the system, this is no longer straightforward.
None of the previously proposed partial membership
schemes, to our knowledge, was able to avoid the need to
know the system size.

We propose a scalable probabilistic membership protocol
aimed at addressing this problem. The protocol is simple,
fully decentralized, and self-configuring. As the number of
participating nodes changes, we show both analytically and
through simulation that the size of partial views auto-
matically adapts to the desired value. These results are

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 2, FEBRUARY 2003 1

. The authors are with Microsoft Research, 7JJ Thomson Avenue, Cambridge
CB3 0FB, UK. E-mail: {ajg, annemk, lmassoul}@microsoft.com.

Manuscript received DD Mmmm, YYYY; revised DD Mmmm, YYYY;
accepted DD Mmmm, YYYY.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 117442.

1. Our understanding of scalable membership protocol should not be
confused with that of [1], [16], where the aim is to provide each member of
the group with an accurate and timely global view of the membership. The
problem we consider is instead to achieve reliable multicast without
requiring global knowledge of membership at each node.

0018-9340/03/$17.00 � 2003 IEEE

achieved for arbitrary subscription patterns, including the
worst-case scenario of all subscriptions targeting the same
member. Evaluation results show that gossip based on the
partial views provided by our protocol is as resilient to
failures as gossip based on random choice from a global
membership known at each node. The proposed protocol
can potentially be incorporated in existing gossip-based
schemes to reduce memory and synchronization overhead
due to membership management.

The remainder of the paper is organized as follows: We
describe the membership protocol in Section 2, including a
sketch of the theory behind it. Section 3 presents two
complementary refinements to achieve balanced view sizes
even with highly unbalanced subscription patterns. De-
tailed evaluations are presented in Section 4. Related work
is described in Section 5 and we conclude in Section 6.

2 DECENTRALIZED MEMBERSHIP PROTOCOL

2.1 Requirements for Supporting Gossip-Based
Multicast

Gossip-based protocols use randomization to reliably
broadcast messages in a group. They have been used in
various contexts such as publish-subscribe systems [12],
distributed databases [10], distributed failure detection [26],
distributed resource location [25], and virtual synchrony
[15]. They provide probabilistic guarantees of delivery
which degrade gracefully in the presence of lossy links or
failed nodes. When complemented with suitable higher
level recovery mechanisms they can provide the basis for
offering deterministic guarantees.

There are several implementations of these protocols that
differ in the length of gossip rounds and the number and
selection of gossip targets. For the sake of clarity, we test
SCAMP on a simple gossip-based approach where each
node gossips each multicast message once to a random
subset of other nodes. However, the mechanisms and
results presented in this paper are applicable to other
implementations of a gossip-based multicast protocol.

In gossip-based protocols, messages are propagated as
follows: When a node generates a message, it sends it to a
random subset of other nodes. When any node receives a
message for the first time, it does the same. The random
choice of gossip targets provides resilience to random
failures and enables decentralized operation. Reliability is
achieved by introducing sufficient redundancy by making
the number of gossip targets chosen by each member large
enough, as a function of the group size.

The question is how large these random subsets should
be in order for the message to be reliably propagated to all
group members with high probability. Results from the
mathematical theory of epidemics were used in [10] to
relate the number of gossip targets to the fraction of group
members who eventually receive the gossip message (this is
equal to the probability that an arbitrary group member will
receive the message). In earlier work [17], we showed the
following, sharper result: If there are n nodes and each node
gossips to logðnÞ þ k other nodes on average, then the
probability that everyone gets the message converges to
e�e

�k
. Note that this refers, not to the probability that a given

node receives the message, but to the probability that every

node receives it. We call this property strong atomicity to
distinguish it from the traditional atomicity property2

which requires that either no node receives the message
or every node does. In [17], we also derived expressions for
how the success probability depends on the failure rate of
nodes and links.

Traditional gossip-based protocols rely on gossip targets
being chosen uniformly at random from among all group
members. In the rest of the paper, we will refer to this
approach as the full membership protocol. This requires
each node to maintain membership information about the
whole group and is undesirable in large groups or those
where the membership changes frequently. In [17], we
proposed a scheme whereby a set of servers maintains the
global membership list and provides individual nodes with
a randomized partial view, which is updated periodically.
Our goal in the present work is to eliminate the need for
servers and develop a fully decentralized protocol which
provides each node with a partial view of the membership.
The design requirements for this protocol include:

. Scalability: The size of the partial viewmaintained at
each node should grow slowly with the group size.

. Reliability: The partial views at each node should be
large enough to support gossip with reliability
comparable to that of traditional schemes relying
on full knowledge of group membership.

. Decentralized operation: The partial views should
be updated as members subscribe or unsubscribe
while maintaining the above properties. The updates
should take place using only local information. The
partial view sizes should scale automatically to the
correct value as a function of the system size, even
though no node knows the system size.

. Isolation Recovery: An important property of
traditional gossip schemes is that, each time a node
gossips a multicast message, it selects new gossip
targets at random. Hence, while a node may
occasionally miss a message, it is very unlikely that
it will be left out repeatedly. In contrast, if nodes
select their gossip targets from a partial view that
remains unchanged for long periods, then a mechan-
ism for recovering from isolation is needed.

In the next section, we present the basic membership
algorithm, then point out some of its drawbacks and
propose refinements to address these drawbacks.

2.2 Basic Membership Management Protocol

The protocol consists of mechanisms for nodes to subscribe
(join) and unsubscribe (leave) from the group and for nodes
to detect and recover from isolation. The partial views at
nodes evolve in response to changing group membership in
a fully decentralized way.

2.2.1 Subscription

The subscription algorithm proceeds as follows:

1. Contact: New nodes join the group by sending a
subscription request to an arbitrary member, called a

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 2, FEBRUARY 2003

2. Traditionally, atomic multicast verifies the “all or nothing” property,
our notion of atomicity in this paper refers to the “all” property.

contact. They start with a partial view consisting of
just their contact.

2. New subscription: When a node receives a new
subscription request, it forwards the new node-id to
all members of its own local view. It also creates
c additional copies of the new subscription (c is a
design parameter that determines the proportion of
failures tolerated) and forwards them to randomly
chosen nodes in its local view.

3. Forwarded subscription: When a node receives a
forwarded subscription, provided the subscription is
not already present in its list, it integrates the new
subscriber in its partial view with a probability p
which depends on the size of its view. If it doesn’t
keep the new subscriber, it forwards the subscrip-
tion to a node randomly chosen from its local view.
These forwarded subscriptions may be kept by the
neighbors or forwarded, but are not destroyed until
some node keeps them.

4. Keeping a subscription: Each node maintains two
lists, a PartialView of nodes it sends gossip messages
to and an InView of nodes that it receives gossip
messages from, namely nodes that contain its node-
id in their partial views. If a node i decides to keep
the subscription of node j, it places the id of node j
in its partial view. It also sends a message to node j
telling it to keep the node-id of i in its InView.

Algorithm 1 depicts the pseudocode for a node receiving
a new subscription. Algorithm 2 depicts the pseudocode for
a node receiving a forwarded subscription.

Algorithm 1 Subscription management

Upon subscription of a new subscriber s on a contact

node contact

{The subscription of s is forwarded to all the nodes of view}

for all nodes n 2 PartialViewcontact do

Send(n,s,forwardedSubscription);

end for

{c additional copies of the subscription s are forwarded to

random nodes of view}

for (j=0; j < c; j++) do

Choose randomly n 2 PartialViewcontact

Send(n, s,forwardedSubscription);
end for

Algorithm 2 Handling a forwarded subscription

{n receiving s adds it with the probability

p ¼ 1=ð1þ size of PartialViewnÞ}
with probability p ¼ 1=ð1þ size of PartialViewnÞ
if s 62 PartialViewn then

PartialViewn ¼ PartialViewn þ fsg;
else

Choose randomly n 2 PartialViewn

send(ni, s, forwardedSusbcription);

end if

Observe that this protocol only requires local informa-
tion available at the node treating the subscription request.
We show below that it has the following desirable proper-
ties: If new nodes join by sending a subscription request to a

member chosen uniformly at random from existing mem-
bers, then the system configures itself toward partial views
of size ðcþ 1Þ logðnÞ on average. Here, n is the number of
nodes in the system and c is a design parameter. We noted
above that the probability that a notification which reaches
everyone exhibits a sharp threshold at logðnÞ: It is close to
zero for partial views smaller than logðnÞ on average and
close to 1 for partial views larger than logðnÞ. This result
applies to a system without failures and can easily be
extended to account for link and node failures [17]. For
example, if links fail with probability " independently of
each other, then the threshold is at ðlogðnÞÞ=ð1� "Þ. Another
reason for maintaining partial views of size ðcþ 1Þ logðnÞ for
some c > 0 is that it enables us to choose different subsets of
size logðnÞ þ k as gossip targets for different notifications.
This ensures that link and node failures are unlikely to
cause a persistent partitioning of the network and enables
us to use recovery mechanisms designed for traditional
gossip protocols. We can thus get many of the benefits of
these protocols while maintaining fairly small partial views.

It is possible in the basic algorithm that a subscription is
forwarded an infinite number of times. This happens when
the number of copies of a subscription request forwarded
by a node (c plus the outdegree of the contact node) is larger
than the group size. This can happen when the group is
small (typically less than 10 for c = 0). To avoid this, we
limit the number of times a node forwards the same
subscription request. When a node has received the same
request more than 10 times, it simply discards the thread.

Our choice of p ¼ 1=ð1þ size of PartialViewnÞ for the
probability of keeping a forwarded subscription has two
motivations. First, by making this probability a decreasing
function of the current partial view size, we aim to achieve
more balanced view sizes at different nodes and, conse-
quently, a distribution of view sizes that is concentrated
around the mean view size. Second, assuming that the
partial view sizes are all roughly of size ðcþ 1Þ logðnÞ, the
number of forwarding steps before a subscription is kept is
roughly ðcþ 1Þ logðnÞ on average, with the above choice of
p. It is known from the results in [21] that the random graph
under consideration has a diameter proportional to logðnÞ.
We thus expect this value of p to be sufficient for a
forwarded subscription to traverse a sizable part of the
graph before it is kept by some node.

We now give a mean value analysis of the subscription
protocol. A sharper analysis taking the impact of fluctua-
tions around mean values into account can be found in [14].

We model the system as a random directed graph: Nodes
correspond to group members and there is a directed
arc ðx; yÞwhenever y is in the partial view of x. When a new
node subscribes, the action of our algorithm is to create a
random number of additional arcs as follows: Suppose
there are n members already in the group. If the new node
subscribes to a node with out-degree d, then dþ cþ 1 arcs
are added. The new node has out-degree 1, with list
consisting of just the node it subscribed to. The node
receiving the subscription forwards one copy of the node-id
of the subscribing node to each of its neighbors and an
additional c copies to randomly chosen neighbors. All
forwarded subscriptions are eventually kept by some node.

GANESH ET AL.: PEER-TO-PEER MEMBERSHIP MANAGEMENT FOR GOSSIP-BASED PROTOCOLS 3

Let E½Mn� denote the expected number of arcs when the
number of nodes has grown to n so that the average out-
degree of each node is E½Mn�=n. Assuming that new nodes
subscribe to randomly chosen members, we have

E½Mn� ¼ E½Mn�1� þ
E½Mn�1�
n� 1

þ cþ 1;

from which we find that E½Mn� � ðcþ 1Þn logn.

2.2.2 Unsubscriptions

We want an unsubscription mechanism that preserves the
above scaling of list sizes with system size. Recall that, in
addition to its partial view, which is used to send out gossip
messages, each node maintains an InView list consisting of
nodes which contain its node-id in their partial views.
Assume the unsubscribing node, say node n0, has ordered
the ids in its partial view as ið1Þ; . . . ; ið‘Þ and the ids in its
InView as jð1Þ; . . . ; jð‘0Þ. The unsubscribing node will then
inform nodes jð1Þ; jð2Þ; . . . ; jð‘0 � c� 1Þ to replace its id with
ið1Þ; ið2Þ; . . . ið‘0 � c� 1Þ, respectively (wrapping around if
‘0 � c� 1 > ‘). It will simply inform nodes jð‘0 � cÞ; . . . ; jð‘0Þ
to remove it from their list, but without replacing it by any
node id. In the unlikely event that this mechanism requires
a node to maintain multiple copies of a node-id or to
maintain its own id in its partial view, we simply delete the
corresponding id. Note that this protocol remains local and
only the unsubscribing node and its direct neighbors in the
graph are involved in the unsubscription process.

This mechanism is motivated by the following heuristic
reasoning: When a node unsubscribes from a system with n
nodes andMn arcs, the number of arcs decreases by the size
of its partial view, which is Mn=n on average. In addition,
all but cþ 1 of the nodes that contained the unsubscribing
node in their partial view replace it with an element of its
partial view. Thus, the number of arcs decreases by a
further cþ 1. Thus, assuming that E½Mn� � ðcþ 1Þn logðnÞ,
unsubscriptions yield the recursion

E½Mn�1� ¼ E½Mn� �
E½Mn�

n
� ðcþ 1Þ

� ðcþ 1Þðn� 1Þ logðnÞ � 1

n� 1

� �

� ðcþ 1Þðn� 1Þ logðn� 1Þ:

In other words, unsubscriptions preserve the desired mean
degree.

2.2.3 Recovery from Isolation

The subscription mechanism described above creates a
connected graph. However, either node failures or unsub-
scriptions can cause the network to become disconnected.
The analysis in [17] shows that the primary mechanism by
which the network may become disconnected is the
isolation of individual nodes.3 A node become isolated
from the graph when all nodes containing its identifier in
their partial views have failed. In order to reconnect such
nodes, we propose a heartbeat mechanism. Each node
periodically sends heartbeat messages to the nodes in its

partial view (these are not notifications and are not
propagated any further). A node that hasn’t received a
heartbeat message in a long time knows that it is isolated
and resubscribes through an arbitrary node in its partial
view. In addition, the lease mechanism presented in
Section 3 for graph rebalancing also helps reduce the
likelihood of prolonged isolation.

3 MECHANISMS FOR REBALANCING THE GRAPH

We remarked above that the basic protocol creates partial
views of the required size provided new subscriptions are
targeted uniformly at existing members and unsubscrip-
tions are independent of the current view size. The latter is
a reasonable assumption, but the former is not; one would
instead expect newcomers to contact one node among a few
whose identities are publicly advertised. We would like to
ensure that the protocol continues to perform well in such a
scenario. We describe two mechanisms below to achieve
this. These operate on different time scales and are
complementary.

3.1 Indirection

The correct scaling of list lengths with system size depends
critically on the fact that the node treating the subscription
of new members is chosen at random uniformly among
existing members. If we let a few specially designated
contact nodes treat all new subscriptions, the desired
scaling no longer holds; instead, the average list lengths
grow faster than expected and the lists of the contact nodes
grow particularly quickly. We therefore propose indirection

mechanisms whereby the initial contact forwards the
newcomer’s subscription request to a node which is chosen
approximately at random among all existing nodes.

The indirection mechanism consists of two parts, a
forwarding rule and a stopping rule. The stopping rule
determines whether a node receiving a forwarded sub-
scription request is going to treat it (and act as the contact).
If the node decides not to treat it, the forwarding rule
specifies to which of its neighbors it should forward the
subscription request.

The forwarding step requires node i to forward the
request to a node j in its partial view with probability wij,
specified as follows: Let predðiÞ denote the set of nodes in i’s
InView and succðiÞ the set of nodes in i’s partial view. The
first requirement we want to impose is that all weights are
nonnegative and that, for all i,

X
j2succðiÞ

wij ¼ 1 ð1Þ

so that the probabilistic forwarding rule is indeed well
defined. A second requirement is that the steady state
distribution corresponding to the random walk associated
with the forwarding rule is the uniform distribution on all
nodes. This is the case if the weights wij satisfy the
additional constraint that, for all j,

X
i2predðjÞ

wij ¼ 1: ð2Þ

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 2, FEBRUARY 2003

3. Conditional on disconnection, the disconnection of larger subsets has
vanishingly small probability as the system size, n, grows large.

A matrix of nonnegative weights wij satisfying (1) is called
stochastic; if it satisfies (2) as well, it is called doubly
stochastic. If a matrix is irreducible (the associated graph is
connected) and doubly stochastic, then a Markov chain with
this transition matrix has the uniform distribution as its
unique steady state distribution.

The weights of links incident at a node i are periodically
updated by node i as follows:

woutðiÞ
X

j2succðiÞ
wij; 8j 2 succðiÞ : wij

wij

woutðiÞ
;

winðiÞ
X

j2predðiÞ
wji; 8j 2 predðiÞ : wji

wji

winðiÞ
:

After an update of the first (respectively, second) type,
node i communicates the new weights wij (respectively, wjiÞ
to the nodes j in succðiÞ (respectively, predðiÞ). Weight
updates are carried out asynchronously by different nodes,
relying only on local information.

This update algorithm is a special case of iterative scaling
[7]. Convergence results for iterative scaling can be stated in
terms of the Kullback-Leibler divergence, DðP jjQÞ; for
nonnegative matrices P and Q, this is defined as

DðP jjQÞ :¼
X
i;j

pij log
pij
qij

� �
:

Suppose the initial matrix of weights W 0 ¼ ðW 0
ijÞ is such

that there is a matrix W which meets the desired constraints
(1), (2) and for whichDðW jjW 0Þ is finite. Then, the sequence
of weight matrices generated by the above update rule will
converge to the matrix W �, which minimizes the Kullback-
Leibler divergence DðW jjW 0Þ subject to the constraints (1)
and (2); see [7] for details.

The stopping rule is as follows: When a new subscription
is received by a node i, it associates a counter with the
subscription, initialized to a value ni proportional to the
size of node i’s partial view. We took the proportionality
constant equal to two in the experiments. It then forwards
the subscription, along with the counter, to a member j of
its partial view with probability pij ¼ wij=

P
k2succðiÞ wik.

Each node receiving a forwarded subscription decrements
the counter and continues forwarding it with probabilities
computed as above. When the counter is zero, the node
receiving the subscription is treated as its contact in the
manner described by the subscription protocol above. Our
choice of initial value for the counter is motivated by [21],
where it is shown that a similar random graph has a
diameter proportional to logðnÞ. The choice of the constant
of proportionality is ad hoc.

The implementation of the algorithm is as follows:
Periodically, each node updates its arc weights according
to Algorithm 3 and communicates the new weights to the
appropriate members of its partial view or InView. Upon
receipt of a WeightUpdate message, each node updates the
weight of the corresponding arc only. The weights are used
afterward to forward a new subscription request according
to the pseudocode of Algorithm 4. Finally, when a new
node is integrated either in the partial view or in the InView
of a node, its weight is initialized to the mean weight of the
nodes already present in the view.

Even if all nodes send their subscription requests to the

same node, the indirection mechanism described above

ensures that the contact node is effectively randomized.

Algorithm 3 Updating arc weights

Wij on node ni contains the weight associated with the

arcði; jÞ
Wji on node ni contains the weight associated with the

arcðj; iÞ
Win ¼

P
j2InV iewni

Wij;

Wout ¼
P

j2PartialV iewni
Wji;

{Update weight associated with incoming arcs}

for all nj 2 InView do

Wji ¼ Wji

Win

Send(nj, Wji, WeightUpdate);
end for

{Update weight associated with outgoing arcs}

for all nj 2 PartialView do

Wij ¼ Wij

Wout

Send(nj, Wij, WeightUpdate);

end for

Algorithm 4 Indirection mechanism for finding a contact

node

Upon subscription(s, Counters, newSubscription) of a

new subscriber s on a node ni

if ni is the initial contact then

Counters ¼ 2 � CardðPartialViewni
Þ

{Initialize the length of the walk to reach a random node}

else

if Counters 6¼ 0 then

{Normalize weight Wij of nj 2 PartialViewg
for all nj 2 PartialView do

Wij ¼ Wij

WoutðniÞ
end for

Choose nj 2 PartialView with probability Wij

Decrement Counters;

Send(nj, s, Counters, newSubscription);

else

ni acts as the contact node and applies the basic

SCAMP algorithm described in Algorithm 1

end if

end if

3.2 Lease Mechanism

Each subscription has a finite lifetime, called its lease. This

could be set either by individual nodes at the time they

subscribe or could be a property of the group which is

imposed on all members.When a subscription expires, every

node holding it in its partial view simply removes it from the

partial view. It is the responsibility of each node to

resubscribe at the time that its subscription expires. Nodes

resubscribe to a member chosen randomly from their partial

view. Resubscriptions differ from ordinary subscriptions in

that the partial view of a resubscribing node is not modified.
The lease mechanism serves two functions. Even if initial

subscriptions are concentrated at a few nodes, resubscrip-

tions will be less concentrated because they are sent to

GANESH ET AL.: PEER-TO-PEER MEMBERSHIP MANAGEMENT FOR GOSSIP-BASED PROTOCOLS 5

random members of the partial view of the resubscribing

node. This helps to rebalance the size of partial views across

group members. Second, it provides a mechanism for

coping with nodes which either suffer crash failures or

leave the group without unsubscribing using the protocol

described above. Since nodes are removed from partial

views after some time unless they resubscribe, such nodes

will not be present in any views after some time.
Denoting again by Mn the sum of the lengths of all

partial views in a system with n nodes, the impact of the

lease mechanism on Mn is as follows, assuming that Mn is

initially of order ðcþ 1Þ logðnÞ: When a subscription expires,

the corresponding node’s id is removed from all lists, which

amounts to reducing Mn by ðcþ 1Þ logðnÞ on average. The

resubscription mechanism compensates this decrease in Mn

by an increase of ðcþ 1Þ logðnÞ þ c on average. We thus see

that this does not preserve the scaling relationship between

Mn and n, but leads to an inflation in the list lengths.

Although we evaluated the above lease mechanism, this

problem can easily be circumvented by modifying the

resubscription process to not add the c extra copies of the

resubscribing node’s id.

4 SIMULATION RESULTS

4.1 Experimental Setting

In this section, we present detailed simulation results for

SCAMP using a discrete event simulator. Our simulator

implements the pseudocodepresented in this paper. For each

experiment, we report the mean values of results obtained

through 10 runs. To evaluate the consistency of the SCAMP

protocol over groups of different sizes, we ran experiments

for groups with size varying from 100 to 100,000.
The goal of the simulations is to confirm the theoretical

analysis regarding the size of partial membership provided

to each node and to evaluate the reliability properties of

gossip based on SCAMP. For the latter, we compare a gossip

protocol relying on SCAMP with one relying on random

choice using full membership knowledge at each node. The

comparisons are made after a subscription phase and again

after an unsubscription phase involving the unsubscription

of half of all group members. Finally, we study the impact

of the lease and indirection mechanims on the size and

distribution of partial views as well as on the reliability

properties.

4.2 Partial Views

In this first set of experiments, c is set to 0. Therefore, the
objective of SCAMP is to achieve an average view size of
logðnÞ, where n is the size of the group. Recall that a fanout
of this order is required to ensure that gossip is successful
with high probability. The results show that the mean value
for the partial view size is very close to logðnÞ.

Fig. 1 depicts the distribution of the partial view size in
five runs of SCAMP in a 50,000 node group. Each of the
10 runs (for clarity, only five are displayed) exhibits the
same shape for the distribution, with a maximum list size of
39 and a mean value close to log(50,000). Fig. 2 displays the
distribution of the partial view size in a 100,000 node group.

The figures show that the mean size of partial views
achieved by SCAMP matches the target value very closely,
supporting our claim that SCAMP is self-organizing. While
analytical results on the success probability of gossip were
derived in [17] for two specific list size distributions,
namely the deterministic and binomial distributions, the
success probability is in fact largely insensitive to the actual
degree distribution and depends primarily on the mean
degree [2]. This is corroborated by simulations.

In order to confirm that the results are also applicable to
small groups, we conducted 100 simulations on a 100 node
group. The mean value of partial view size obtained was 3.9
(log(100) = 4.6), which is consistent with the analysis. We
don’t show the distribution of view size for lack of space,
but it was concentrated around the mean as in the results
shown for larger groups.

4.3 Resilience to Node Failures

One of the most attractive features of gossip-based multi-
cast is its robustness to node and link failures. It can meet
stringent probabilistic reliability guarantees in the presence
of failures, without any explicit recovery mechanism. This
makes it particularly attractive in highly dynamic environ-
ments where members can disconnect for nonnegligible
periods and then reconnect.

The goal of this set of experiments is to attest to the
quality of the partial view generated by SCAMP. A key issue
is that the partial views be close enough to random in an
operational sense, namely, that they provide reliability
comparable to using random choice based on full member-
ship information at each node. We estimate the resilience to
failure achieved by a gossip-based protocol relying on
SCAMP as compared to one relying on global knowledge of
membership.

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 2, FEBRUARY 2003

Fig. 1. SCAMP: Distribution of the partial view size in five runs of a

50,000 node group.

Fig. 2. SCAMP: Distribution of the partial view size in a 100,000 node

group.

The results in this subsection are based on 10 runs,
setting c to 0. The group is created by nodes subscribing
successively, choosing a contact node uniformly at random
from preexisting group members. Following the subscrip-
tion phase, a message is multicast in the group. In the
gossip-based protocol relying on SCAMP, each node gossips
the multicast message once (when it receives it for the first
time) to all nodes present in its partial view. In the protocol
relying on full membership knowledge, each node gossips
the multicast message, the first time it hears it, to logn other
members chosen uniformly at random among all members.
We use the proportion of nodes reached by a multicast in
the presence of node failures as a measure of the reliability
of the protocol.

Fig. 3 depicts the simulation results for a 100,000 node
system as 0-70 percent of nodes fail. We plot the fraction of
surviving nodes reached by a gossip message as a function
of the number of failed nodes. Two observations are
notable. First, the fraction of nodes reached remains very
high even when close to half the nodes have failed, which
confirms the remarkable fault-tolerance of gossip-based
schemes. Second, this fraction is almost as high using
SCAMP as using a scheme requiring global knowledge of
membership. This attests to the quality of the partial views
provided by SCAMP and demonstrates its viability as a
membership scheme for supporting gossip.

In the experiments depicted in Fig. 3, the source node of
the multicast was taken to be the first node that joined the
group. This node is likely to have a larger than average
partial view. Fig. 4 displays the results obtained in
10 successive runs in a 100,000 node group where the
source of the multicast message was randomized. For each
simulation, we show the proportion of surviving nodes
reached by the multicast in the presence of 10 percent and
50 percent node failures.

The key result here is that we observe a bimodal
behavior: Either the reliability is as good as in a gossip-
based protocol using full membership knowledge or the
multicast reaches no node at all. The latter situation arises
when the multicast source is disconnected from the rest
of the group because the nodes present in its partial view
have all failed (as in simulations 1 and 6 for 50 percent
node failures, simulation 3 for all configurations or
simulation 4 for 10 percent node failures). This situation
can be easily detected by the source of the multicast and
used to trigger a resubscription.

4.3.1 Impact of the Parameter c

As stated before, there are two different measures of
reliability for a gossip-based protocol: the probability that
a node receives a multicast message, which we measured in
the previous set of experiments, and the probability of a
strongly atomic multicast.

As shown in [17], a fanout of logðnÞ is not sufficient to
ensure strong atomicity. To increase the mean fanout, we
increase the value of the parameter c in SCAMP. Fig. 5
depicts the distribution of the partial view sizes in a 50,000
node group for different values of c.

In Fig. 6, the black bars depict the proportion of strongly
atomic multicasts (in 10 runs) for different rates of node
failure in a 10,000 node group. The gray bars show the
proportion of nodes reached by a multicast in nonatomic
runs. Results are shown for both c = 0 and c = 1. While the
proportion of atomic multicasts is very low when c = 0 and
more than 10 percent of the nodes have failed, it remains
high for c = 1 with up to 30 percent node failures.4 Finally,
even when the multicast is not atomic, the proportion of
nodes reached by the multicast message is very close to 1.

4.4 Impact of Unsubscriptions

SCAMP is targeted at dynamic environments where nodes
subscribe and unsubscribe from the group. To evaluate the
impact of massive unsubscriptions, we run a set of
experiments where a subscription phase involving n nodes
is followed by a phase where a random n=2 of these nodes
unsubscribe. We set c = 0. Table 1 reports the impact on
mean list size list as well as on the reliability guarantees.
The mean list size decreases by logð2Þ, as expected, when

GANESH ET AL.: PEER-TO-PEER MEMBERSHIP MANAGEMENT FOR GOSSIP-BASED PROTOCOLS 7

4. The observation of a 0.9 probability of atomic multicast with 10 percent
node failures as opposed to a probability of 1 with 20 percent node failures
is an artifact caused by our running only 10 simulations.

Fig. 3. Reliability of a gossip-based protocol relying on SCAMP versus

one relying on a full membership knowledge in a 100,000 node group.

Fig. 4. Reliability in 10 successive simulations.

Fig. 5. Impact of c on the partial view size distribution in a 50,000 node

group.

the group size halves. Fig. 7 confirms that unsubscriptions
don’t significantly degrade reliability. The reason for the
slight decrease in reliability is that some nodes become
disconnected as a result of massive unsubscriptions. This
can be detected and repaired using the proposed heartbeat
mechanism. The lease mechanism also repairs disconnec-
tions as nodes resubscribe. The reliability estimates shown
here thus correspond to a “worst-case” scenario immedi-
ately after massive unsubscriptions.

4.5 Impact of the Lease Mechanism

The nodes subscribing first to the group are likely to have
larger partial views than the nodes subscribing last. In
particular, the last node to subscribe will have only its
contact node in its partial view. To balance the graph and
avoid this artifact, we proposed a lease mechanism. In the
experiments reported here, we use a group of 50,000 nodes,
c is set to 0, and the results are averaged over 10 runs. The
experiment is as follows: During the first phase, all the
nodes subscribe. During the second phase, all node
subscriptions expire in random order and nodes subscribe
again to a random node in their partial view. Fig. 8 shows
the impact of the lease mechanism on the distribution of
partial view sizes. Observe that the distribution becomes
more sharply concentrated around its mean value.

Fig. 9 shows the impact of the lease mechanism on
reliability. The figure displays the proportion of nodes
reached by a multicast as the percentage of node failures
varies from 0 to 70: 1) The black bars report the results when
using a gossip-based protocol relying on SCAMP without
the lease mechanism and the source of the multicast is the
first member of the group (Node 0); 2) the gray bars
correspond to gossip using SCAMP with the lease mechan-

ism when the source of the multicast is the first member of
the group; 3) the light gray bars refer to gossip using SCAMP

with the lease mechanism when the source of the multicast
is a random member of the group. The results show, first,
that the lease mechanim increases the probability of
delivery (0.998 for 50 percent node failures) over SCAMP

without lease. Second, the lease mechanism overcomes the
performance penalty in multicasting from a random source
illustrated in Fig. 4. The reason is that, by rebalancing
views, the lease mechanism ensures that even the last nodes
to join the group don’t end up with very small partial
views. The risk of disconnection due to failures is thus
reduced.

4.6 Impact of Indirection

SCAMP relies on the assumption that a new member
chooses its contact at random. In practice, new subscrip-
tions are likely to contact one of a few well-advertised
nodes. We proposed a mechanism to redirect new sub-
scriptions to a node chosen approximately at random from
the group. To test its efficacy, our experiments were carried
out in an extreme scenario where all subscriptions choose
the same contact, namely the first member of the group.
Without a redirection mechanism, this subscription pattern
has a huge impact on list sizes. For example, in a 50,000
node group, the mean size of partial views is 789.83,
whereas the target value is 10.8. Moreover, nodes located
close to the contact node in the graph have very large partial
views. This is reflected in a large standard deviation
(208.23) for the list size.

The results described below are for a 50,000 node group.
Fig. 10 shows the efficiency of the indirection mechanismwe
propose. The black curve presents the distribution of list sizes

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 2, FEBRUARY 2003

Fig. 6. Proportion of atomic multicast in a 10,000 node system with c = 0

and c = 1.

TABLE 1
Mean Size of Partial Views with c = 0

Before and After the Unsubscription of n/2 Nodes

Fig. 7. Impact on reliability of n/2 unsubscriptions in a 50,000 node

group.

Fig. 8. Distribution of the partial views by size in a 50,000 node group

with and without the lease mechanism.

when all nodes choose the same node as their contact and the

indirection mechanism is used to forward the subscription.

The mean value of size list is 8.68. To implement this

mechanism, each node periodically refreshes its weights

(every 10 subscriptions in these experiments). The figure

shows that the distribution of list sizes is comparable to what

is obtained when nodes choose a contact uniformly at

random, though the mean is slightly smaller.
Fig. 11 displays the impact of the indirection mechanism

on reliability. We believe that the discrepancy between

SCAMP using a random contact and SCAMP using a single

contact and indirection is mainly due to the difference in the

mean partial view size rather than to the contents (potential

nonrandomness) of the partial views.

5 RELATED WORK

In this section, we review different approaches to decen-

tralized membership protocols for application-level multi-

cast. Recently, a class of decentralized application-level

protocols relying on peer-to-peer generic object location and

routing substrates have emerged ([6], [27], [23]). They use

the routing functionality of the peer-to-peer overlay either

to build a multicast tree in a decentralized fashion (Scribe

[6] and Bayeux [27]) or to build a mini-overlay [23] in which

multicast messages are flooded. These approaches are more

complex than the method we presented. They require the

existence of a peer-to-peer overlay and they achieve

reliability reactively: When failures are detected, the tree

or the mini-overlay is repaired and lost messages are

retransmitted. In contrast, gossip-based algorithms are easy

to deploy due to their simplicity and implement a pro-

active reliability mechanism [15]. However, this simplicity

is achieved at the expense of more traffic on the network.
While gossip protocols are scalable in terms of the

communication load imposed on each process, they usually

rely on a nonscalable membership algorithm. This has

motivated work on distributing membership management

[19], [12] in order to provide each node with a random

partial view of the system, without any node having global

knowledge of the membership. Another approach to this

issue is presented in [20], where a connection graph called a

Harary graph is constructed and messages are flooded over

that graph. Optimality properties of Harary graphs ensure a

good tradeoff between the number of messages propagated

and the reliability guarantees. However, building such a

graph requires global knowledge of membership and

maintaining such a graph structure in the presence of

subscriptions and unsubscriptions might prove difficult.
Directional Gossip [19] is primarily aimed at reducing

the communication overhead of traditional gossip proto-

cols. A gossip server is associated to each LAN which

knows only its immediate neighbors in the wide-area

network. As the gossip server gains information on the

routes taken by multicast messages, it prunes links from the

connection graph defined by the neighbor relation. The

pruning reduces communication overhead without signifi-

cantly degrading the connectivity of the graph. In our work,

the emphasis is primarily on reliability under failures rather

than on efficiency.
Finally, Lpbcast [12] is a fully decentralized membership

protocol. Nodes periodically gossip a set of subscriptions

they heard about during the last period to a random subset

of other nodes, chosen from their partial view. A node

receiving such a gossip message updates its partial view by

replacing a randomly chosen node-id with a newly received

one and gossips the nodeId removed from its partial view.

While this mechanism achieves a good randomization of

the partial views, the size of the partial view and the

number of gossip targets are fixed a priori, which precludes

decentralized adaptation to changes in system size.
In contrast to these approaches, SCAMP is self-organiz-

ing. It provides fully decentralized membership manage-

ment with the properties to achieve gossip-based multicast

with high reliability.

GANESH ET AL.: PEER-TO-PEER MEMBERSHIP MANAGEMENT FOR GOSSIP-BASED PROTOCOLS 9

Fig. 9. Impact of the lease mechanism on the reliability guarantee in a

50,000 node group.

Fig. 10. Distribution of partial view sizes generated by SCAMP in a

50,000 node system with a random contact, compared with a single

contact and the indirection mechanism.

Fig. 11. Impact on reliability of the indirection mechanism in a 50,000

node group.

6 CONCLUSION

In this paper, we have presented the design, theoretical
analysis and evaluation of SCAMP, a membership protocol
for gossip-based event dissemination. SCAMP provides each
member of the group with a partial view, that is, a list of
identities of other group members. This forms the basis for
broadcasting messages across the group by enabling each
member to propagate messages to all or to a subset of those
members whose identities are in its own list.

The mechanisms implemented in SCAMP require no
centralized operation and no global knowledge needs to be
maintained anywhere in the system. As nodes join and
leave the group, the partial view sizes scale automatically in
proportion to the logarithm of the number of members in
the group, even though no group member knows the size of
the group. This scaling relationship has been verified both
by analysis and simulation, the latter for systems comprised
of up to 100,000 members. As former analyses of standard
epidemic-style gossip-based event dissemination [17], [11],
[2] suggest, taking list sizes of the order of the logarithm of
the system size is necessary in order for members to receive
disseminated events with a high probability.

We have also verified that message multicasting done on
top of SCAMP exhibits the same degree of reliability as
traditional gossip-based schemes which require each
member to maintain the list of all group members.

The above properties of the basic subscription and
unsubscription algorithms of SCAMP depend critically on a
symmetry assumption, namely that newmembers joining the
group initially contact amember chosenuniformlyat random
among all existing members. This led us to complement the
basic algorithmwith additional mechanisms that allow us to
relax this symmetry assumption. The first is an indirection
mechanism for forwarding new subscription requests from
an arbitrary member to one that is chosen approximately
uniformly at random among all groupmembers. The second
is a leasemechanism,which helps rebalance the partial views
of nodes in the system. These mechanisms enable us to
maintain the good properties of SCAMP even in the extreme
situation where new members always contact the same
member in order to join the group.

We believe that SCAMP is a potentially useful alternative
to other membership management schemes implemented in
conjunction with gossip-style event dissemination as it
offers the same reliability properties while relying only on
decentralized operations and putting very low memory
requirements on group members. Future work on SCAMP

will focus on incorporating criteria such as locality, network
load, and message propagation delay into the construction
of the partial views maintained by users.

ACKNOWLEDGMENTS

The authors would like to thank Miguel Castro and Antony
Rowstron for their participation in the development of the
simulator.

REFERENCES

[1] T. Anker, G.V. Chockler, D. Dolev, and I. Keidar, “Scalable Group
Membership Services for Novel Applications,” Networks in
Distributing Computing (DIMACS Workshop), M. Mavronicolas,
M. Merrit, and N. Shavit, eds., pp. 23-42, Am. Math. Soc., 1998.

[2] F. Ball and A. Barbour, “Poisson Approximation for Some
Epidemic Models,” J. Applied Probability, vol. 27, pp. 479-490, 1990.

[3] K.P. Birman, “The Process Group Approach to Reliable Distrib-
uted Computing,” Comm. ACM, vol. 36, no. 12, pp. 37-52, Dec.
1993.

[4] K.P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y.
Minsky, “Bimodal Multicast,” ACM Trans. Computer Systems,
vol. 17, no. 2, pp. 41-88, May 1999.

[5] L.F. Cabrera, M.B. Jones, and M. Theimer, “Herald: Achieving a
Global Event Notification Service,” Proc. HotOS VIII, May 2001.

[6] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron,
“SCRIBE: A Large-Scale and Decentralized Application-Level
Multicast Infrastructure,” IEEE J. Selected Areas in Comm., to
appear, 2002.

[7] I. Csiszár, “Information Theoretic Methods in Probability and
Statistics,” Information Theory Soc. Rev. articles, http://www.itsoc.
org/review/frrev.html, year?

[8] S. Deering and D. Cheriton, “Multicast Routing in Datagram
Internetworks and Extended LANs,” ACM Trans. Computer
Systems, vol. 8, no. 2, May 1990.

[9] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, and L. Wei,
“The PIM Architecture for Wide-Area Multicast Routing,” IEEE/
ACM Trans. Networking, vol. 4, no. 2, Apr. 1996.

[10] A.J. Demers, D.H. Greene, C. Hauser, W. Irish, and J. Larson,
“Epidemic Algorithms for ReplicatedDatabase Maintenance,”
Proc. Sixth Ann. ACM Symp. Principles of Distributed Computing
(PODC), pp. 1-12, Aug. 1987.

[11] P. Erdös and A. Renyi, “On the Evolution of Random Graphs,”
Mat Kutato Int. Közl, vol. 5, no. 17, pp. 17-60, 1960.

[12] P.T. Eugster, R. Guerraoui, S.B. Handurukande, A.-M. Kermarrec,
and P. Kouznetsov, “Lightweight Probabilistic Broadcast,” Proc.
IEEE Int’l Conf. Dependable Systems and Networks (DSN2001), 2001.

[13] S. Floyd, V. Jacobson, C.G. Liu, S. McCanne, and L. Zhang, “A
Reliable Multicast Framework for Light-Weight Sessions and
Application Level Framing,” IEEE/ACM Trans. Networking,
pp. 784-803, Dec. 1997.

[14] A. Ganesh, A.-M. Kermarrec, and L. Massoulié, “Scamp: Peer-to-
Peer Lightweight Membership Service for Large-Scale Group
Communication,” Proc. Third Int’l Workshop Networked Group
Comm., Nov. 2001.

[15] I. Gupta, K.P. Birman, and R. van Renesse, “Fighting Fire with
Fire: Using Randomized Gossip to Combat Stochastic Scalability
Limits,” Quality and Reliability Eng. Int’l, vol. 18, pp. 165-184, Mar.
2002.

[16] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev, “A Client-Server
Oriented Algorithm for Virtually Synchronous Group Member-
ship in WAN’s,” Proc. 20th Int’l Conf. Distributed Computing
Systems (ICDCS), pp. 356-365, Apr. 2000.

[17] A.-M. Kermarrec, L. Massoulié, and A.J. Ganesh, “Probabilistic
Reliable Dissemination in Large-Scale Systems,” IEEE Trans.
Parallel and Distributed Systems, to appear.

[18] J.C. Lin and S. Paul, “A Reliable Multicast Transport Protocol,”
Proc. IEEE INFOCOM ’96, pp. 1414-1424, 1996.

[19] M.-J. Lin and K. Marzullo, “Directional Gossip: Gossip in a Wide-
Area Network,” Technical Report CS1999-0622, Univ. of Califor-
nia, San Diego, Computer Science and Eng., June 1999.

[20] M.-J. Lin, K. Marzullo, and S. Masini, “Gossip versus Determi-
nistic Flooding: Low Message Overhead and High-Reliability for
Broadcasting on Small Networks,” Proc. 14th Int’l Symp. Dis-
tributed Computing (DISC 2000), pp. 253-267, Oct. 2000.

[21] B. Pittel, “On Spreading a Rumour,” SIAM J. Applied Math., vol. 47,
pp. 213-223, 1987.

[22] D. Powell, “Group Communication,” Comm. ACM, vol. 39, no. 4,
Apr. 1996.

[23] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
Level Multicast Using Content-Addressable Networks,” Proc.
Third Int’l Workshop Networked Group Comm., Nov. 2001.

[24] Q. Sun and D.C. Sturman, “A Gossip-Based Reliable Multicast for
Large-Scale High-Throughput Applications,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN2000), July 2000.

[25] R. van Renesse, “Scalable and Secure Resource Location,” Proc.
IEEE Hawaii Int’l Conf. System Science, 2000.

[26] R. van Renesse, Y. Minsky, and M. Hayden, “A Gossip-Style
Failure Detection Service,” Proc. IFIP Int’l Conf. Distributed Systems
and Platforms and Open Distributed Processing (Middleware ’98),
1998.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 2, FEBRUARY 2003

[27] S.Q. Zhuang, B.Y. Zhao, A.D. Joseph, R.H. Katz, and J.
Kubiatowicz, “Bayeux: An Architecture for Scalable and Fault-
tolerant Wide-Area Data Dissemination,” Proc. 11th Int’l Workshop
Network and Operating System Support for Digital Audio and Video
(NOSSDAV 2001), June 2001.

Ayalvadi J. Ganesh graduated from the Indian
Institute of Technology, Madras in 1988 and
received the MS and PhD degrees in electrical
engineering from Cornell University in 1991 and
1995, respectively. His research interests in-
clude queuing theory, congestion control and
pricing in the Internet, and distributed systems.

Anne-Marie Kermarrec received the PhD de-
gree in computer science from the University of
Rennes, France, in 1996. She has worked as a
postdoctoral researcher in the Computer Sys-
tems Group of Vrije Universiteit in Amsterdam,
The Netherlands, in 1996-1997 and as an
assistant professor at the University of Rennes
from 1997 to 2000. Since March 2000, she has
worked as a researcher at Microsoft Research,
Cambridge, United Kingdom. Her research

interests are in distributed systems, fault tolerance, application-level
multicast, and peer-to-peer computing.

Laurent Massoulié graduated from the Ecole
Polytechnique and received the PhD degree
from the Université Paris Sud, Paris, France. He
is currently a researcher with Microsoft Re-
search, Cambridge, United Kingdom, where he
works on modeling and performance analysis of
networks. His recent research interests are in
quality of service and congestion control for the
Internet, and in epidemic-style information dis-
semination. He is currently associate editor of

Queueing Systems: Theory and Applications.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

GANESH ET AL.: PEER-TO-PEER MEMBERSHIP MANAGEMENT FOR GOSSIP-BASED PROTOCOLS 11

