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Abstract

We specify the capacity region for a power controlled, fading code division multiple access

(CDMA) channel. We investigate the properties of the optimum power allocation policy that

maximizes the information theoretic ergodic sum capacity of a CDMA system where the

users are assigned arbitrary signature sequences in a frequency flat fading environment. We

provide an iterative waterfilling algorithm to obtain the powers of all users at all channel fade

levels, and prove its convergence. Under certain mild conditions on the signature sequences,

the optimum power allocation dictates that more than one user transmit simultaneously

in some non-zero probability region of the space of all channel states. We identify these

conditions, and provide an upper bound on the maximum number of users that can transmit

simultaneously at any given time. Using these properties of the sum capacity maximizing

power control policy, we also show that the capacity region of the fading CDMA channel is

not in general strictly convex.

Index terms: Power control, CDMA, capacity region, sum capacity, fading channels, iterative

waterfilling.
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1 Introduction

Fading may be an important limiting factor in wireless communication networks unless

appropriate resource allocation is applied to exploit the variations in the channel gains to

the advantage of the network capacity. The resources that we concentrate on allocating

optimally in this paper are the transmit powers of the users. The quality-of-service based

power control approaches assign transmit powers to the users so that all users satisfy their

signal-to-interference-ratio (SIR) requirements while transmitting with the least amount of

power. The SIR-based power control assigns powers to the users with the aim of compensating

for the variations in the channel; it assigns more power to the users with bad channel states,

and less power to the users with good channel states [3–6].

For a single-user fading channel, [7] shows that the optimum power allocation policy, in

the sense of maximizing the ergodic channel capacity, is a waterfilling of power in time. This

policy allocates more power to the stronger channel states, and less power to the weaker

channel states; it allocates zero power to the channel states below a threshold level which is

determined by the fading statistics.

The capacity of a multiple access channel (MAC) is expressed as a region of achievable

rates [8,9], and sum capacity, the maximum achievable sum of rates, is often used as a measure

of the overall network capacity. For a multiuser scalar channel, [10] finds the optimum power

allocation policy which maximizes the ergodic sum capacity of the network. For this system,

it was shown that the optimum power allocation policy is one where each user compares its

channel state (normalized by a factor depending on the statistical characterization of the

fading) to those of the other users, and transmits with non-zero power only if its normalized

channel state is better than or equal to the normalized channel states of all other users. More

than one user transmits simultaneously only if the normalized channel states of multiple users

are the same. Since the channel gains are continuous random variables, this occurs only with

zero probability. Therefore, this power control policy implies that at most one user transmits

(if at all) at any given time with probability one.

While [10] focuses on the sum-rate point on the capacity region of the scalar MAC subject

to fading, [11] finds the entire capacity region of such a channel, and specifies the optimal

power allocation policies corresponding to each rate tuple on the capacity region.

There has also been some recent work on power control for vector multiple access channels

and their associated capacities. For a multiple access channel with multiple antennas, [12]

solves for the sum capacity maximizing power allocation at all transmit antennas and gives

a relationship between the maximum number of active transmit and receive antennas. The

problem of maximizing the sum capacity as a function of the transmit powers in a vector

multiple access channel, such as a CDMA or multiple transmit antenna system, in fading

channels, is studied for the case of large systems and random transmit vectors (signature

sequences) in [13] where a simple single-user waterfilling strategy is proposed and shown to
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be asymptotically optimal.

In this paper, we focus on a CDMA channel where the number of users and the processing

gain are finite and arbitrary, and the users are assigned arbitrary deterministic signature

sequences. We first provide the capacity region of a fading CDMA channel where users have

perfect channel state information, and are able to choose their transmit powers as a function

of these channel states, subject to average power constraints. The capacity region is obtained

by a simple extension of [11], which deals with an equivalent problem in the case of scalar

MAC.

Like for the scalar fading MAC [11], the capacity region of the fading CDMA is a union

of capacity regions obtained for each valid power allocation policy. One of those power allo-

cation policies, namely the one that maximizes the sum capacity, is worth special attention,

both because sum capacity is a commonly used performance metric for multi-access chan-

nels [10, 12, 13], and because it will aid us in investigating the strict convexity of the entire

capacity region. Thus, we next focus on the sum capacity maximizing power control policy

for a fading CDMA system. Our problem reduces to K independent Goldsmith-Varaiya

problems [7] when the signature sequences are chosen to be orthogonal, and to a Knopp-

Humblet problem [10] when the signature sequences are chosen to be identical. The optimum

power allocation policy is a simultaneous waterfilling policy [12] that requires the solution

of a set of highly nonlinear equations. By a simple extension of the iterative algorithm for

the non-fading vector MAC of [14] to the fading CDMA channel, we develop an iterative

power allocation policy, where, at each step, only one user allocates its power optimally over

all channel states of all users when the power allocations of all other users are fixed. The

power allocation of each user in this iterative process is a waterfilling where the base level of

the water tank is determined by the inverse of the SIR the user would obtain at the output

of a minimum mean squared error (MMSE) receiver if it transmitted with unit power. We

prove the convergence of our algorithm to an optimum solution, and provide conditions for

the uniqueness of the solution.

One of the questions of interest, for an arbitrary set of signature sequences, is whether

there exists a set of channel states having a non-zero probability where either all or some of

the users transmit simultaneously. In the case of orthogonal signature sequences, for instance,

all users transmit simultaneously in an orthant of the space of all channel states where the

channel states of all users exceed their corresponding thresholds; and, clearly, this region has

a non-zero probability. In the case of identical signature sequences however, users transmit

simultaneously only on a half-line in the space of all channel states; and, this region has a zero

probability [10]. In the most general case, the existence of a region of channel states having

non-zero probability where all (or more than one) users transmit simultaneously depends on

the number of users, the dimensionality of the signal space (processing gain), and the set

of signature sequences being used. We identify the conditions under which such a non-zero
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probability region of channel states exists. These conditions turn out to be very mild; for

instance, if the number of users is less than the processing gain and the sequences are linearly

independent, a simultaneous transmit region for all users is guaranteed to exist. This region

also exists even when the number of users is larger than the processing gain so long as the

signature sequences satisfy certain properties. Also, even if these conditions are not satisfied

for all users, there may be a subset of users that are guaranteed to transmit simultaneously.

This is a result of the fact that the CDMA scheme with non-identical signature sequences

provides users with multiple degrees of freedom; therefore, the users do not have to avoid

each other completely in the space of all channel states (as in the case of scalar channels),

that is, multiple users can share some of the channel states that are favorable to all of them.

The existence of simultaneous transmit regions is of interest to us for two reasons. Firstly,

it serves in proving that the capacity region, unlike its scalar counterpart, is not strictly

convex, provided all of the signature sequences are not orthogonal or identical. Secondly, it

provides a sense of fairness, in that while maximizing the overall average rate achieved by

the system, it allows users to access the medium more frequently. This is in contrast to the

scalar channels where each user has to wait until its channel is the best in order to transmit.

Throughout this paper, we will employ the following notation: vectors are represented

in bold (x), matrices are represented in bold and are capitalized (X), and | · | denotes the

determinant.

2 System Model

We consider a symbol synchronous CDMA system with processing gain N where all K users

transmit to a single receiver site. In the presence of fading and AWGN, the received signal

is given by [15],

r =
K∑

i=1

√
pihibisi + n (1)

where, for user i, bi denotes the information symbol with E[b2
i ] = 1, si = [si1, · · · , siN ]>

denotes the unit energy signature sequence,
√

hi denotes the random and continuously dis-

tributed channel gain, and pi denotes the transmit power; n is a zero-mean Gaussian random

vector with covariance σ2IN . We assume that the receiver and all of the transmitters have

perfect knowledge of the channel states of all users represented as a vector h = [h1, · · · , hK ]>,

and the components of h are independent. We further assume that although the fading is

slow enough to ensure constant channel gain in a symbol interval, it is fast enough so that

within the transmission time of a block of symbols the long term ergodic properties of the

fading process can be observed [16].
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Figure 1: Sample two user capacity region.

3 Power Control for Fading CDMA

3.1 Capacity Region with Fixed Sequences and Adaptive Powers

For the CDMA system given by (1), let the transmitters be able to choose their powers as a

function of the channel state, subject to the average power constraints Eh[pi(h)] ≤ p̄i. We

first characterize the set of long term achievable rates, i.e., the capacity region, for fading

CDMA. Hanly and Tse [11, Thm. 2.1] have characterized the capacity region for a power

controlled scalar multi-access channel. Both forward and converse parts of the proof of

this theorem can be directly generalized to the CDMA channel, also by incorporating the

methods and results from [9, Prop. 1] and [17, Thm. 1]. Therefore, we state the capacity

region of the fading CDMA channel in the following theorem, without providing a proof.

Theorem 1 The capacity region of a fading CDMA channel under additive white Gaussian

noise, where users have perfect channel state information (CSI) and allocate their powers as

a function of the CSI subject to average power constraints Eh[pi(h)] ≤ p̄i is given by,

⋃

{p(h): Eh[pi(h)]≤p̄i, ∀i}

{
R :

∑
i∈Γ

Ri ≤ Eh

[
1

2
log

∣∣∣∣∣IN + σ−2
∑
i∈Γ

hipi(h)sis
>
i

∣∣∣∣∣

]}
, ∀Γ ⊂ {1, · · · , K}

(2)

Figure 1 illustrates a typical capacity region for some fixed signature sequences s1 and s2

in a two user setting. Each of the pentagons correspond to a valid power allocation policy.
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Note the flat portion on the capacity region, which in fact is the dominant face of one of the

pentagons. Unlike scalar multi-access channel capacity region [11], the capacity region for

fading CDMA may contain such a flat region, and in general is not strictly convex. That is,

the rate pairs on the line segment |AB| in the figure are in general achieved by time-sharing

between the points A and B. This can be shown by noting that the pentagon containing

|AB| corresponds to the power control policy that maximizes the sum capacity, and then

proving that for correlated signature sequences, there are infinitely many rate tuples that

give the same sum rate. This is stated more precisely in the following theorem.

Theorem 2 The capacity region of a power controlled fading CDMA channel is not strictly

convex, provided ∃ i, j ∈ {1, · · · , K} such that i 6= j and 0 < s>i sj < 1.

Proof: Let P(h) = {p∗1(h), · · · , p∗K(h), ∀h} be the power control policy that maximizes

the sum of rates of all users, i.e., the sum capacity. The capacity region corresponding

to this particular power control policy is a polymatroid GP(h), with corners in the positive

“quadrant” given by

RΓ(k+1) = Eh


1

2
log

∣∣∣IN + σ−2SΓk+1
DΓk+1

(h)S>Γk+1

∣∣∣
∣∣IN + σ−2SΓk

DΓk
(h)S>Γk

∣∣


 , k = 0, · · · , K − 1 (3)

where S = [s1 · · · sK ], D(h) = diag[p∗1(h)h1, · · · , p∗K(h)hK ], Γ , [Γ(1), · · · , Γ(K)] is any

permutation of {1, · · · , K}, Γk , [Γ(1), · · · , Γ(k)] for k = 1, · · · , K, and Γ0 , ∅. DΓk
and

SΓk
refer to sub-matrices containing only the received powers and signature sequences of the

users in the subset Γk. Each one of the K! possible permutations correspond to a corner

point of the polymatroid GP(h) in the positive orthant, and these points are also the corners

of the K − 1 dimensional dominant face [18] of GP(h). Note that, since any point on the

dominant face of GP(h) achieves the maximum sum capacity, it should also lie on the surface

of the overall capacity region C. That is, the dominant face of GP(h) constitutes a portion of

the surface of C. Therefore, for the surface of C to be strictly convex, we need all the corners

(3) of the dominant face to collapse to a single point. It is easy to see that this condition

can be summarized by

Eh

[
log

∣∣IN + σ−2SEDE(h)S>E
∣∣] =

∑
i∈E

Eh

[
log

(
1 + σ−2p∗i (h)hi

)]
, ∀E ⊂ {1, · · · , K} (4)
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Define QE(h) , SEDE(h)1/2. Then for all h, we have

log
∣∣IN + σ−2SEDE(h)S>E

∣∣ = log
∣∣IN + σ−2QE(h)QE(h)>

∣∣ (5)

= log
∣∣I|E| + σ−2QE(h)>QE(h)

∣∣ (6)

≤
∑
i∈E

log
(
1 + σ−2p∗i (h)hi

)
(7)

where the last step follows from Hadamard’s inequality [8], and the equality is achieved if

and only if WE(h) , QE(h)>QE(h) is diagonal. Since (7) holds for all h, (4) holds when

and only when WE(h) is diagonal for almost all h (i.e., with probability 1). For equality in

(7), we need [
QE(h)>QE(h)

]
i,j

=
√

p∗i (h)p∗j(h)hihjsisj = 0, ∀ i 6= j (8)

or equivalently,

p∗i (h)p∗j(h) = 0 ∨ s>i sj = 0, ∀ i 6= j, ∀ h (9)

Note that, this condition is readily satisfied if K ≤ N and the signature sequences of all

users are orthogonal, in which case the sum rate is achieved at a single point rather than on a

hyperplane (i.e., on the dominant face of the corresponding polymatroid). Therefore, let us

focus on non-orthogonal sequences. Let s>i sj 6= 0 for i 6= j. Then, for strict convexity of C,

we need p∗i (h)p∗j(h) = 0 for almost all h, i.e., except over a zero probability subset of channel

states. In other words, the optimal power allocation policy which achieves the sum capacity

should dictate no more than one user transmit simultaneously with non-zero probability. In

Section 4, it will be shown that, this is true if and only if the signature sequences of all users

are identical, which establishes that C is not strictly convex unless all signature sequences

are identical or orthogonal. 2

In proving Theorem 2, we made use of the properties of sum capacity achieving power

allocation policy. Sum capacity is often considered as a figure of merit for multiuser systems,

because of the ease with which it can be handled as an objective function, as opposed to the

more difficult to handle arbitrary rate tuples on the boundary of the capacity region. In the

next section, we give the optimal power allocation policy that maximizes the sum capacity,

and propose an algorithm that updates the powers of the users iteratively and converges to

this policy. In Section 4, we investigate some properties of this optimal power allocation

policy.
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3.2 Sum Capacity, and Optimal Power Allocation via Iterative

Waterfilling

For the CDMA system given by (1), we would like to characterize the optimum power

allocation policy which maximizes the ergodic sum capacity, i.e., which is the solution to

max
{pi(h)}

1

2

∫
log

∣∣∣∣∣IN + σ−2

K∑
i=1

hipi(h)sis
>
i

∣∣∣∣∣ f(h)dh

s.t.

∫
pi(h)f(h)dh = p̄i, pi(h) ≥ 0, i = 1, · · · , K (10)

where f(h) is the joint pdf of the channel states. For arbitrary signature sequences, no

closed form solution for this problem is known. It is interesting to note that, (10) reduces

to the Knopp-Humblet problem [10] if the signature sequences are identical, i.e., si = s

for all i, and it reduces to K separable Goldsmith-Varaiya [7] problems, if the signature

sequences are orthogonal, i.e., s>i sj = 0 for i 6= j, in which case each problem can be solved

independently of the others. Our aim is to characterize the optimal power allocation policy

for the most general case where the signature sequences are arbitrarily correlated, i.e., s>i sj

is not restricted to be zero or one, and investigate the properties of this policy.

We can express the ergodic sum capacity, the objective function of (10), as

Csum = Ck + Ck (11)

where

Ck =
1

2

∫
log

(
1 + hkpk(h)s>k A−1

k sk

)
f(h)dh (12)

represents the contribution of the kth user to the sum capacity when the transmit powers

of all other users at all channel states are fixed, and Ck represents the sum capacity of the

remaining users when the kth user is removed from the system. In (12), Ak is defined as

Ak = σ2IN +
∑

i6=k

hipi(h)sis
>
i (13)

It is worth noting that Csum, the objective function in (10), is a concave function of the

powers, and moreover, provided that the matrices {sis
>
i }K

i=1 are linearly independent, it

is a strictly concave function of the powers [13, Prop. 4.2]. Also, the constraint set in

(10) is convex. Therefore, the optimization problem in (10) has a unique global optimum

when {sis
>
i }K

i=1 are linearly independent; and all local optimums yield the same objective

function value, otherwise. A more general version of this optimization problem with multiple

antennas is solved in [12], where the solution is left in terms of the Karush-Kuhn-Tucker

(KKT) conditions. Here, we derive the solution of the power control problem specifically for
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the CDMA system, as we shall use it in our future discussions in Section 4. The extended

KKT conditions with mixed constraints [19, Chap. 13] reduce to

hks
>
k A−1

k sk

1 + pk(h)hks>k A−1
k sk

≤ λk, k = 1, · · · , K, ∀ h ∈ RK (14)

which is satisfied with equality if pk > 0. Using the fact that pk ≥ 0 for all k, (14) implies

that the capacity maximizing power allocation policy satisfies

pk(h) =

(
1

λk

− 1

hks>k A−1
k sk

)+

, k = 1, · · · , K (15)

for any realization of the channel h. Here the Lagrange multipliers λk are determined by

inserting (15) into the average power constraints in (10). The values of λk’s depend on the

statistical characterization of the channel and the choice of signature sequences. This solution

is similar in structure to the solution in [13], however it is more general in that it is valid

for any continuous joint fading distribution, any power constraints and any finite number of

deterministic signature sequences, as opposed to the symmetric and asymptotical situation

in [13]. Note that, even though the continuity and independence assumptions on fading will

be needed in order to prove the simultaneous transmission conditions for the optimal power

allocation policy in Section 4, the characterization of optimal power allocation policy in (15)

does not require these assumptions.

For arbitrary signature sequences, the set of equations (15) is highly nonlinear, and their

solution is intractable for systems with large numbers of users. Note that, (15) implies that

all users should simultaneously waterfill on the “base levels” constituted by the inverse of

the SIRs they would obtain if they transmitted with unit powers, i.e., hks
>
k A−1

k sk for user k.

Since solving for the simultaneous waterfilling (where each user’s power allocation is given

by a single user waterfilling, but depends on the other users’ powers) solution for all users

seems intractable, we devise an iterative algorithm. Consider optimizing for the power of

only user k over all channel states, given the powers of all other users at all channel states,

pn+1
k = arg max

pk

Csum
(
pn+1

1 , · · · , pn+1
k−1 , pk, p

n
k+1 · · · , pn

K

)

= arg max
pk

Ck (pk) (16)

where Ck(pk) denotes the contribution of user k to Csum, as defined in (12). Ck(pk) depends

on the power distributions and signature sequences of all other users through Ak’s which

change as a function of the channel state. The solution of (16) can be found as a single-user

9



waterfilling over all channel states of the system,

pk(h) =

(
1

λ̃k

− 1

hks>k A−1
k sk

)+

(17)

where λ̃k is the Lagrange multiplier corresponding to the single user optimization problem

in (16). If we let only one user allocate its power over all channel states using (17), and

iterate over all users sequentially, this iterative one-user-at-a-time algorithm is guaranteed

to converge to the global optimum solution of (10), since the objective function Csum is a

concave function of powers, Ck(pk) given by (12) is a strictly concave function of pk, the

constraint set for powers over which the maximization is to be performed is convex, and has

a Cartesian product structure among the users, see [20, Prop. 3.9].

4 Properties of the Optimal Power Allocation

Let us now consider the inverse problem of finding the channel state of the system for a given

transmit power vector with non-zero components. Since all components of the power vector

are non-zero, this means that all users transmit simultaneously at this particular channel

state, and (14) should be satisfied with equality for all k. Therefore, given any arbitrary

power vector p with 0 < pi < 1/λi, the channel state where this power vector is used can be

found by solving

h = f(h) (18)

where the vector function f(h) is defined as

fk(h) =
λk

(1− λkpk)

1

s>k A−1
k sk

, k = 1, · · · , K (19)

Our first goal is to show that there exists a unique vector h of channel states corresponding

to any given non-zero solution p to the power control problem. To this end, we first need to

prove some properties of the function f(h).

Definition 1 ([5]) f(h) is standard, if for all h ≥ 0, the following properties are satisfied.

• Positivity: f(h) > 0

• Monotonicity: If h ≥ h′ then f(h) ≥ f(h′)

• Scalability: For all α > 1, αf(h) > f(αh)

Lemma 1 Let 0 < pk < 1/λk, for all k. Then, f(h) is standard.
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Proof: For notational convenience, let us define

gk(h, ck) =
λk

(1− λkpk)

∑
i6=k pihi

(
c>k si

)2
+ σ2

(
c>k ck

)
(
c>k sk

)2 (20)

=
λk

(1− λkpk)

c>k Akck(
c>k sk

)2 (21)

Then, interpreting ck as a linear receiver filter, we can relate fk(h) to gk(h, ck) by

fk(h) = min
ck

gk(h, ck) (22)

where the filter that minimizes gk(h, ck) is c∗k = A−1
k sk, i.e., a scaled version of the well-known

MMSE filter.

For 0 < pk < 1/λk, gk(h, ck) > 0 for any ck, due to non-zero noise variance. Then,

fk(h) = minck
gk(h, ck) > 0, proving the positivity.

For monotonicity, let h ≥ h′,

fk(h) = min
ck

gk(h, ck) (23)

= gk(h, c∗k) (24)

≥ gk(h
′, c∗k) (25)

≥ min
ck

gk(h
′, ck) = fk(h

′) (26)

Inequality (25) follows from (20) noting that h ≥ h′ and ck is fixed.

For scalability, we pick α > 1,

αfk(h) = α min
ck

gk(h, ck) (27)

= αgk(h, c∗k) (28)

> gk(αh, c∗k) (29)

≥ min
ck

gk(αh, ck) = fk(αh) (30)

Inequality (29) follows from (20) noting that α > 1 and ck is fixed. 2

Note that, since f(h) is standard, if there is a solution for (18), it is unique [5]. In fact,

one can devise an iterative algorithm to find this solution,

h(n + 1) = f(h(n)) (31)

It is interesting to note that the problem in (18) with the definition of f(h) in (19) is very

similar to the joint power control and linear receiver filter design problem studied in [21].
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In [21], the problem is to solve for the componentwise smallest power vector p and the

receiver filters {ci}K
i=1 such that all users satisfy their SIR based quality of service require-

ments. For a single receiver site (e.g., single-cell) system, the problem becomes that of finding

componentwise smallest power vector and receiver filters that satisfy

SIRk =
pkhk

(
c>k sk

)2

∑
i 6=k pihi

(
c>k si

)2
+ σ2

(
c>k ck

) ≥ βk (32)

where βk, k = 1, · · · , K are the SIR targets.

When there are no maximum power constraints, solving for optimum transmit powers p,

and received powers q where qk = pkhk, are equivalent. The optimum transmit powers can

be found using the optimum received powers via p∗k = q∗k/hk. Then, from (32) and (13),

SIRk =
qk

(
c>k sk

)2

c>k Akck

≥ βk (33)

For any given powers, ck should be chosen to be the MMSE filter as it maximizes the SIR [21].

Using the MMSE filters ck = αkA
−1
k sk, the problem becomes that of solving for q in

qks
>
k A−1

k sk = βk (34)

While [21] developed a distributed iterative algorithm that converges to the optimum pow-

ers (and receivers) assuming that the problem is feasible, [22] found the conditions on the

SIR targets {βi}K
i=1 and the signature sequences {si}K

i=1 that guarantee that the problem is

feasible, i.e., positive qk’s that satisfy (34) exist. The SIR targets β1, · · · , βk are feasible if

and only if [22, Thm. 10],

∑

k∈U

βk

1 + βk

< rank(S(U)), ∀ U ⊂ {1, · · · , K} (35)

where S(U) is the matrix containing the signature sequences of the users in the subset U .

In our problem, the channel gains are found for any given power vector by solving (18),

hkpks
>
k A−1

k sk =
λkpk

(1− λkpk)
(36)

Since there are no maximum constraints on the channel gains, solving for hk and qk = hkpk

are equivalent, as we can obtain the solution for hk using the solution for qk via h∗k = q∗k/pk.

Thus, our problem is equivalent to (34) where βk are given by

βk =
λkpk

(1− λkpk)
, k = 1, · · · , K (37)
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and are determined by the given power vector. The set of feasible powers can then be found

by inserting (37) into (35)

∑

k∈U

λkpk < rank(S(U)), ∀ U ⊂ {1, · · · , K} (38)

Therefore, once we fix a power vector satisfying (38), (18) has a unique solution, since f(h) is

standard. That is, the power vector we chose is a possible candidate for the optimum power

allocation at the channel state obtained by solving (18). This means that, corresponding to

a set of feasible power vectors, there always exists a set of channel states where all of the

users in the system transmit simultaneously. This set however can have zero probability as

in [10], which is the result of the fact that, although we can find a unique channel state for

a feasible power vector, multiple feasible power vectors may correspond to the same channel

state, i.e., there may be multiple optimum power vectors with the same Csum. That is, the

mapping between the powers and the channel states is not one-to-one, in general.

The significance of (38) for our purposes is that the set of feasible power vectors con-

stitutes a volume in K dimensional space. For the set of feasible power vectors satisfying

(38), and having strictly positive components, if the set of corresponding channel states

found by solving (18) have a non-zero measure, then we can conclude that all users transmit

simultaneously with a positive probability.

Theorem 3 There exists a non-zero probability region of fading states h where all K users

transmit simultaneously, if and only if {sis
>
i }K

i=1 are linearly independent.

Proof: It is clear that the set of feasible powers as given by (38) constitutes a volume V in

RK . Let us then pick any point p0 > 0 in this set, and compute the channel state which

corresponds to this particular solution of powers. By feasibility of p0, the resulting channel

state h0 is unique, and the original vector p0 satisfies the KKT conditions at h0. Given

{sis
>
i }K

i=1 are linearly independent, we know that there exists a unique global maximum for

Csum since it is strictly concave. Therefore, the waterfilling solution we get at the fading

state h0 should be equal to p0, as it is a possible solution to the problem, and the problem

has a unique global optimum. Hence, we obtain a unique fading state for a power level, and

a unique power for a fading state, for a set of powers satisfying (38). This implies that there

exists a one-to-one mapping from the space of feasible strictly positive powers to the space

of fading states. This one-to-one mapping maps the volume V ⊂ RK of feasible powers to

a volume of fading states Ṽ ⊂ RK implying that the resulting set of fading states where K

users transmit simultaneously has non-zero probability. This completes the proof of the if

part.

For the only if part, consider the case where {sis
>
i }K

i=1 are linearly dependent. For all K

users to transmit simultaneously with non-zero powers, (14) must be satisfied with equality
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for all k. By applying the matrix inversion lemma, and defining A = σ2IN + SPS>, which

contains all users’ powers and signatures, (14) can be written in the alternative form

hks
>
k A−1sk = λk, k = 1, · · · , K (39)

Each of these equations can also be rewritten as,

hktr
(
A−1sks

>
k

)
= λk, k = 1, · · · , K (40)

If {sis
>
i }K

i=1 are linearly dependent, then any one of the elements of this set, say sks
>
k , can

be written as a linear combination of the others, say, with coefficients αi, not all equal to

zero. Thus,

hktr(A
−1

∑

i6=k

αisis
>
i ) = hk

∑

i6=k

αis
>
i A−1si = λk (41)

and using (39) in (41), we get ∑

i6=k

αi
λi

hi

=
λk

hk

(42)

This means that, if {sis
>
i }K

i=1 are linearly dependent, then regardless of the power levels,

for all users to transmit simultaneously, the channel states should satisfy (42). Since the

channel states are continuous random variables, this event has zero probability. Therefore,

given that {sis
>
i }K

i=1 are linearly dependent, all K users transmit simultaneously only with

zero probability. 2

Therefore, the necessary and sufficient condition for all K users to transmit simultane-

ously with non-zero probability is that the signature sequences are such that the matrices

{sis
>
i }K

i=1 are linearly independent. Our first corollary below states that if the signature

sequences {si}K
i=1 are linearly independent, then {sis

>
i }K

i=1 are linearly independent and all

users transmit simultaneously with non-zero probability.

Corollary 1 When K ≤ N , for a set of K linearly independent signature sequences, there

always exists a non-zero probability region of channel states where all K users transmit

simultaneously.

Proof: Assume that {si}K
i=1 are linearly independent. For {sis

>
i }K

i=1 to be linearly dependent,

we should be able to write

sks
>
k =

∑

i 6=k

αisis
>
i (43)

with at least two non-zero αi’s; if only one αi is non-zero, this implies that two signature

sequences are the same violating the fact that {si}K
i=1 are linearly independent. The ranks of

both sides of (43) have to be equal. As {si}K
i=1 are linearly independent, the rank of the right
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hand side is equal to at least two, whereas that of the left hand side is always one. Therefore,

the set {sis
>
i }K

i=1 are linearly independent for linearly independent signature sequences, and

the result follows from Theorem 3. 2

It is hard to find closed form expressions for the region of the channel gains where all

users transmit simultaneously. For a simple two-user system, it can be shown that both

users transmit with non-zero powers when h belongs to a region expressed by

h1 >
λ1σ

2h2

h2 (1− ρ2) + ρ2σ2λ2

, h2 >
λ2σ

2h1

h1 (1− ρ2) + ρ2σ2λ1

(44)

where ρ = s>1 s2 denotes the cross correlation between the signature sequences of the users.

This region is depicted in Figure 2.

It is interesting to note that when h2 goes to infinity, the lower bound on h1 approaches

the limit λ1σ
2/(1− ρ2), and as h1 goes to infinity, the lower bound on h2 goes to λ2σ

2/(1−
ρ2). These are the two (horizontal and vertical) asymptotes shown in Figure 2. For more

than two users, even though the exact expressions for the boundaries of the simultaneous

transmission region are nonlinear and complex, we can describe an “orthant” of the space

of all channel states where all users transmit simultaneously. This orthant is a subset of the

actual simultaneous transmission region.

Theorem 4 For a set of K linearly independent signature sequences, the region of channel

states where all users transmit simultaneously includes an “orthant” in RK described by,

hk > λkσ
2(R−1)kk, k = 1, · · · , K (45)

where R = S>S is the correlation matrix of the signature sequences.

Proof: From (14), user k transmits when its channel state hk satisfies

hk =
λk

(1− λkpk)

1

s>k A−1
k sk

(46)

The transmit power of the user satisfies 0 < pk < 1/λk. Therefore, user k transmits with

non-zero power if and only if

hk >
λk

s>k A−1
k sk

(47)

Comparing the right hand side of (47) with (19), it is easy to see that it is a standard function

and is increasing in pihi, i 6= k. Thus, from the monotonicity of λk/s
>
k A−1

k sk we have,

λkσ
2 ≤ λk

s>k A−1
k sk

≤ λkσ
2(R−1)kk (48)
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Figure 2: Transmit region boundaries for two users with correlated signature sequences.

where the first inequality is satisfied with equality when the received powers pihi of all other

users are zero, and the second inequality follows from the fact that the SIR of the linear

MMSE detector is always larger than or equal to the SIR of the decorrelating detector. In

fact, the upper bound becomes tight as pihi, i 6= k go to infinity for a fixed noise variance

σ2, as the MMSE detector converges to the decorrelator [15]. Now, if the channel gains are

such that

hk > λkσ
2(R−1)kk, k = 1, · · · , K (49)

using (48) we get

hk > λkσ
2(R−1)kk ≥ λk

s>k A−1
k sk

, k = 1, · · · , K (50)

and conclude that all users transmit in the region of channel states where hk > λkσ
2(R−1)kk,

k = 1, · · · , K. 2

It is worth mentioning that Theorem 4 could also have been used to prove Corollary 1,

by noting

P [all users transmit] ≥ P
[
h : hk > λkσ

2(R−1)kk

]
> 0 (51)

Figure 2 illustrates the statement of Theorem 4, for two users with correlated signature

sequences. The orthant described in the theorem in this case is the infinite rectangle

(λ1σ
2(R−1)11,∞)× (λ2σ

2(R−1)22,∞).
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Since, as stated by Theorem 3, for all K users to transmit simultaneously {sis
>
i }K

i=1

should be linearly independent, the number of users transmitting simultaneously with non-

zero powers cannot be arbitrarily large. The following corollary to Theorem 3 gives a bound

on the maximum number of users that can transmit simultaneously.

Corollary 2 For a set of K signature sequences and processing gain N, let the rank of the

signature sequence matrix S be M ≤ min{K,N}. Then the number of users that can transmit

simultaneously cannot be larger than min{K,M(M + 1)/2}.

Proof: If K ≤ M(M +1)/2, the bound is trivial. Let’s focus on the case K > M(M +1)/2.

If rank(S) = M , the signature sequences can be written as,

sk =
M∑
i=1

akivi (52)

where the N × 1 vectors {vi}M
i=1 constitute an orthonormal basis spanning the signature

sequences. Then,

K∑

k=1

αksks
>
k =

K∑

k=1

M∑
i=1

M∑
j=1

αkakiakjviv
>
j (53)

=
M∑
i=1

M∑
j=1

viv
>
j

K∑

k=1

αkakiakj (54)

=
M∑
i=1

M∑
j=1

βijviv
>
j = VBV> (55)

where V is a matrix with columns vi and Bij = βij, with βij defined by (55). Therefore,

{sis
>
i }K

i=1 are linearly independent if and only if the equality VBV> = 0N×N implies αk =

0, k = 1, · · · , K. Note that V is an orthonormal matrix by construction, and if VBV> =

0N×N then multiplying this by V> and V from left and right we obtain B = 0M×M . This

dictates,

K∑

k=1

αkakiakj = 0 i, j ∈ {1, · · · ,M} (56)

K∑

k=1

αkaka
>
k = 0M×M (57)

where ak = [ak1, · · · , akM ]>. The dimensionality of the space of M ×M symmetric matrices

is M(M + 1)/2, therefore if K > M(M + 1)/2, we can find αk not all zero, such that (57) is

satisfied, and {sis
>
i }K

i=1 are guaranteed to be linearly dependent, and the result follows from
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Theorem 3. 2

So far, we have established results that relate to the simultaneous transmission of all

users in the system. In order to complete the proof of Theorem 2 of Section 3.1, we need a

simultaneous transmission result similar to the one in Theorem 3, for any pair of users rather

than all K users. The following is an extension of the simultaneous transmission result given

for all users by Theorem 3 to an arbitrary subset of {1, · · ·K}.
Theorem 5 The sum capacity maximizing power control policy dictates that there exists

a non-zero probability region of fading states h where a subset E ⊂ {1, · · · , K} of users

transmit simultaneously, if and only if {sis
>
i }i∈E are linearly independent.

Proof: The only if part follows immediately from the proof of Theorem 3, by letting {sis
>
i }i∈E

be linearly dependent, and writing any sks
>
k , k ∈ E as a linear combination of the remaining

matrices {sis
>
i }i∈E, i 6=k. This, together with the KKT conditions for optimality, gives the

following relation between the channel gains,

∑

i∈E, i6=k

αi
λi

hi

=
λk

hk

(58)

which is a zero probability event by virtue of the channel states being continuous random

variables. This proves the only if part.

We show the if part by proving that the probability P{pi(h) > 0, i ∈ E} is bounded away

from zero for linearly independent {sis
>
i }i∈E.

P {pi(h) > 0, i ∈ E}
≥ P {pi(h) > 0, i ∈ E, pj(h) = 0, j /∈ E} (59)

≥ P
{
pi(h) > 0, i ∈ E, hj ≤ σ2λj, j /∈ E

}
(60)

= P

{
hi >

λi

s>i A−1
i si

, i ∈ E, hj ≤ σ2λj, j /∈ E

}
(61)

= P





hi >
λi

s>i
{
IN + σ−2

∑
k∈E,k 6=i hkpk(h)sks>k

}−1

si

, i ∈ E, hj ≤ σ2λj, j /∈ E





(62)

= P





hi >
λi

s>i
{
IN + σ−2

∑
k∈E,k 6=i hkpk(hE)sks>k

}−1

si

, i ∈ E





P
{

hj ≤ σ2λj, j /∈ E
}

(63)

> 0 (64)

Here, (59) follows from the fact that the set on the right hand side is a subset of that on

the left hand side, (60) follows because user j does not transmit regardless of the powers of
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other users if hj ≤ σ2λj, (61) follows from (47), and (62) follows because users j /∈ E have

zero powers, within the set in (61). Note that in (62), the powers pk(h), which are given by

(15), actually depend only on the channel states of users in E. Thus, we define

pk(hE) = pk(h)|pj(h)=0, k ∈ E, j /∈ E (65)

Then, (63) follows from independence of the channel states for different users, where the

vector hE is defined as the vector of channel states for users in E. Clearly, the second term

on the right hand side of (63) is positive. In order to prove (64), we will interpret the first

term in (63) as the probability that all users transmit simultaneously in an equivalent |E|
user problem. To accomplish this, consider a fictitious problem, where we have only the

users k ∈ E in another CDMA system, and users k ∈ E still employ the signature sequences

sk. The noise variance σ2 is also the same as in our original problem (1). Say we would like

to maximize the sum capacity for the new system with |E| users, and let each user i ∈ E

have a power constraint given by

p̄′i =

∫
pi(hE)f(hE)dhE (66)

Then power allocation {pi(hE)}i∈E is optimal in the sense of maximizing the sum capacity

for the fictitious sub-problem. Consequently, the first term in (63) is simply the probability

that all users transmit with non-zero powers for this new problem, and by Theorem 3,

this probability is greater than zero as long as {sis
>
i }i∈E are linearly independent, which

establishes the if part. 2

Finally, let us now return to the proof of Theorem 2, where we established that for strict

convexity of the boundary of the capacity region, no two users with non-orthogonal sequences

should be transmitting simultaneously with positive probability. In the following corollary

to Theorem 5, we show that two users transmit simultaneously with non-zero probability,

unless they have identical signature sequences, which completes the proof of Theorem 2,

Corollary 3 Let there exist two users {i,j} such that 0 ≤ s>i sj < 1. Then, there exists a

region of channel states with non-zero probability where users i and j transmit simultaneously.

Proof: This result follows straightforwardly from Theorem 5 by noting that s>i sj < 1 is

equivalent to two signature sequences being non-identical, which is in turn equivalent to

sis
>
i and sjs

>
j being linearly independent. 2

5 Numerical Examples

In this section, we give some simple numerical examples to support our analysis. Figures 3

and 4 give an example for the two user case where the signature sequences are correlated with
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s>1 s2 = 0.966. In this example, the processing gain is N = 2, the channel is an i.i.d. Rayleigh

channel with parameter 1, that is hk, k = 1, · · · , K are exponential random variables (squares

of Rayleigh random variables) with mean 1. Figure 3 shows the power of user 1 for each

fading level. In this figure, the transmit power of user 1 is represented by gray levels, lighter

colors corresponding to more power. Note that, user 1 performs a single user waterfilling

wherever user 2 does not transmit. In this region, the transmit power of user 1 for a fixed h1

is constant (independent of h2). However, once user 2 starts transmitting, the “base level of

the water tank” is increased, decreasing the power level of user 1 with increasing h2. Figure 4

shows the transmit regions in the space of channel states of the two users. The small dark

region near the origin corresponds to the channel states where both users have zero power.

Gray regions marked by “user 1” and “user 2” show the channel states where only one of

the users transmits, whereas the white region shows the simultaneous transmit region. The

simulated system corresponds to the setting in Corollary 1, and Theorem 4.

We have noted earlier that the optimal power allocation depends on the fading distri-

bution only through the thresholds λk. Therefore, the choice of channel fading distribution

should not affect the structure of the transmit regions, except for possible shifts and scalings.

To show this, we repeat our simulations for a channel where hk are uniform i.i.d. random

variables in (0,2], all other parameters being the same. Figures 5 and 6 show the correspond-

ing power levels and transmit regions, for this narrower span of possible channel states to

emphasize better all four of the transmit regions. We see that the λk value is slightly changed

by the change in channel distribution, but the transmit regions and power distribution are

very similar to the previous case.

Figure 7 illustrates the convergence of the iterative waterfilling algorithm to the maximum

sum capacity of the system under uniform fading U(0,2], with average transmit powers equal

to p̄k = 1 and noise variance equal to σ2 = 0.1; the convergence is quite fast as suggested by

the plot.

A consequence of Theorem 3 is that we can have multiple users transmit simultaneously

with non-zero probability, even when the signature sequences are linearly dependent, as long

as we can have the linear independence of {sis
>
i }K

i=1. Figure 8 shows the region where all

users transmit for K = 3 and N = 2, the portions marked in gray correspond to the states

where all three users transmit simultaneously, in the 3-D channel state space.

In general, the probability that all users transmit simultaneously, i.e., the probability of

the colored region, depends on the cross-correlations between the signature sequences, fading

statistics and power constraints. As an example, for a system with K = 3, N = 2, p̄ = 1,

σ2 = 0.1, uniform U(0,1) fading, and the correlations between the sequences ρ12 = 0.898,

ρ13 = 0.645, ρ23 = 0.916; the probability that all users transmit simultaneously is 0.245.
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Figure 3: Power distribution of user 1 in Rayleigh fading.
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6 Conclusions

We provided the capacity region for a power controlled fading CDMA system, and proved

that unless all users have orthogonal or identical sequences, it has a flat portion on which

the sum capacity is maximized; i.e., it is not strictly convex. This yields the important

result that, sum capacity may be achieved by infinitely many rate tuples, so one might

have flexibility in choosing the individual rates of the users while keeping the sum capacity

constant at its maximum.

We devised an algorithm to compute the optimum transmit powers of the users that

maximize the sum capacity of a CDMA system with arbitrary signature sequences in a

fading channel. The algorithm is an iterative waterfilling of powers of all users over all

fading states treating at each step all other users’ signals as additional colored noise. We

showed that this iterative strategy converges to a globally optimum solution, and that the

global optimum is unique if the signature sequence set is such that the matrices {sis
>
i }K

i=1

are linearly independent.

We also showed that, the optimum power allocation scheme in the vector multiple access

channel of interest dictates more than one user to transmit simultaneously at some channel

states, and the set of such channel states has a non-zero probability under certain mild con-

ditions on the signature sequences. In fact, all K users in the system are shown to transmit

simultaneously with non-zero probability, if and only if {sis
>
i }K

i=1 are linearly independent.

An immediate implication of this is that, if the signature sequences {si}K
i=1 are linearly in-

dependent, then all users transmit simultaneously in a non-zero probability region of the

channel states. We extended this simultaneous transmit condition for all users to one for an

arbitrary subset of users, and used it to prove the non-strict convexity of the capacity region.

We further showed that if the signature sequence matrix S of the users in the system has

rank M , the number of users transmitting simultaneously with nonzero probability cannot

be larger than min{K, M(M + 1)/2}.
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