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Abstract—A routing problem in static wireless ad-hoc net-
works is considered as it arises in a rapidly deployed, sensor
based, monitoring system known as the wireless sensor net-
work. Information obtained by the monitoring nodes needs
to be routed to a set of designated gateway nodes. In these
networks, every node is capable of sensing, data processing,
and communication, and operates on its limited amount of
battery energy consumed mostly in transmission and recep-
tion at its radio transceiver. If we assume that the transmit-
ter power level can be adjusted to use the minimum energy
required to reach the intended next hop receiver then the
energy consumption rate per unit information transmission
depends on the choice of the next hop node, i.e., the rout-
ing decision. We formulate the routing problem as a linear
programming problem, where the objective is to maximize
the network lifetime, which is equivalent to the time until
the network partition due to battery outage. Two different
models are considered for the information generation pro-
cesses. One assumes constant rates and the other assumes
an arbitrary process. A shortest cost path routing algorithm
is proposed which uses link costs that reflect both the com-
munication energy consumption rates and the residual en-
ergy levels at the two end nodes. The algorithm is amenable
to distributed implementation. Simulation results with both
information generation process models show that the pro-
posed algorithm can achieve network lifetime that is very
close to the optimal network lifetime obtained by solving
the linear programming problem.

Keywords—energy-sensitive routing, power aware routing,
wireless sensor networks, wireless ad-hoc networks

1 Introduction

Consider a wireless network of static nodes randomly dis-
tributed as depicted in Figure 1, where each node operates
on limited battery energy consumed mostly in transmis-
sion and reception of data at its radio transceiver. Assume
that at each node some type of information is generated
and the information needs to be delivered to a set of des-
ignated gateway nodes possibly using multiple hops. The
transmitter power level is assumed to be adjusted to the
minimum level appropriate for the intended receiver within
the transmission range. Note that the routing decision and
the transmission energy level selection are intrinsically con-
nected in these power-controlled wireless ad-hoc networks
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gateways
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Figure 1: A wireless sensor network is depicted where the
nodes are randomly distributed and the information gen-
erated at the monitoring nodes are to be delivered to the
gateway nodes.

since the power level will be adjusted depending on the
choice of the next hop node.

An example scenario for this type of wireless ad-hoc net-
work may include a wireless sensor network where the sen-
sors gather acoustic, magnetic, or seismic information and
send the information to its gateway node which has more
processing power for further processing of the information
or has larger transmission range for the delivery of the in-
formation to a possibly larger network for retrieval by a
remote user.

Most of the previous works on routing in wireless ad-hoc
networks deal with the problem of finding and maintain-
ing correct routes to the destination during mobility and
changing topology [1, 7, 22]. In [1, 7], the authors pre-
sented a simply implementable algorithm which guaran-
tees strong connectivity and assumes limited node range.
Shortest path algorithm is used in this strongly connected
backbone network. In [22], the authors developed a dy-
namic routing algorithm for establishing and maintaining
connection-oriented sessions which uses the idea of predic-
tive re-routing to cope with the unpredictable topology
changes. Some other routing algorithms in mobile wire-
less networks can be found in [26, 23, 14, 25], which, as the
majority of routing protocols in mobile ad-hoc networks
do, use shortest path or minimum hop (MH) routing.

Power consumption in the wireless ad-hoc networks can
be largely categorized into two parts. One is communica-
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tion related and the other is non-communication related
such as processing or sensing (in case of a sensor network).
A model for evaluating the communication related energy
consumption behavior of a mobile ad-hoc network was pre-
sented in [9], where the power consumption was further
categorized into three modes: transmission, reception, and
idle mode. Power saving in idle mode was studied in [36],
which we believe is complementary to our work. However,
we, as well as the others mentioned in the following, have
been focusing in power savings during transmission and re-
ception. In [11], the sum of multiples of the transmission
power and the power price was proposed as the path length
to be minimized. The power price was a function of the cur-
rent battery level, total storage capacity, type of battery,
etc., but they didn’t specify the metric. In [32], the condi-
tional max-min battery capacity routing (CMMBCR) was
proposed, which is a combination of minimum total energy
(MTE) routing and max-min residual energy routing. The
minimum total transmission and reception energy path is
chosen in the set of all paths whose minimum residual en-
ergy is above a given threshold. If the set if empty then
max-min residual energy route is used. In [18], routing
for the maximum network lifetime was studied, where the
message sequence is not known a priori. An approxima-
tion algorithm called max-min zPmin was proposed which
tries to strike a balance between the minimum transmission
energy routing and the max-min residual energy routing.
Scalability of the algorithm was provided by zone-based
hierarchical routing approach. Reception energy consump-
tion is assumed to be included in the transmission energy
consumption since all intermediate nodes except the source
and the destination are engaged in both transmission and
reception. The performance of their algorithm was shown
to be close to the optimal solution obtained by linear pro-
gramming. The max-min zPmin algorithm first finds the
minimum transmission energy path (let the total trans-
mission energy on this path be Pmin) and then removes
all edges whose residual energy fraction after use is smaller
than or equal to the minimum residual energy fraction on
the minimum transmission energy path. It then repeats the
same procedure on the subgraph until just before the to-
tal transmission energy of the chosen path exceeds z times
Pmin, where z ≥ 1. The resulting path is assigned to the
incoming traffic. In [31], a routing metric similar to ours
have been used. However, instead of requiring the global
network information they only require localized routing in-
formation and assume that non-local routing information
can be treated equally in all paths. Refer to [20] for a good
survey on the power optimization in routing protocols.

The problem of minimum energy routing has been ad-
dressed before in [1, 7, 28, 21, 10, 30, 29], and [8]. The
approach in these papers, called the minimum total energy
(MTE) routing here, was to minimize the total consumed
energy to reach the destination, which minimizes the en-
ergy consumed per unit flow or packet. However, if all the
traffic is routed through the minimum energy path to the
destination, the nodes in that path will run out of batter-
ies quickly rendering other nodes useless due to a network

partition even if they do have available energy resource.
In our work, instead of trying to minimize the total con-
sumed energy on the path, the performance objective of
maximizing the lifetime of the system[4], which is equiva-
lent to maximizing the time to network partition[30] has
been considered. In [4] we identified the maximum lifetime
problem as a linear programming problem and in [5] the
problem was extended to the multicommodity case. Since
it is a linear programming problem, it is solvable in poly-
nomial time. While in [5] constant information generation
rate case was considered, in [6] some arbitrary information
generation process model was studied.

In this paper, the maximum lifetime routing problem
is extended to include the energy consumption at the re-
ceivers during reception. Note, however, that the energy
consumption at the unintended receiver nodes that over-
hear the transmission is not included. This extension was
applied to the algorithm as well. In the simulation, com-
parison is made with the optimal network lifetime obtained
by solving the linear programming problem as well as with
two other algorithms proposed in [32] and [18]. Note that
due to the inherent non-scalability of table-driven routing
approach, the proposed solution in its current form is not
scalable and hence may not be suitable for direct applica-
tion to large networks. Note also that the energy consump-
tion due to routing control packets are not included in the
model or the simulation since we assume a situation where
the energy consumption is dominated by the data packets.
However, in the simulation we show that there is a trade-
off between the routing information update rate and the
performance so that the number of routing control packets
can be reduced with some sacrifice in the performance.

Brown et al.[3] have extended the objective of power-
aware routing in the multicommodity case to sequentially
maximizing the lifetime of each commodity, while we only
maximize the time until the first commodity network par-
tition.

Information from other sources were utilized for the rout-
ing decision in the following works. Geographical informa-
tion of the communication nodes is used in [16, 15, 31, 34],
and [36]. Upper layer information is utilized in [13, 17],
and [12].

Distributed topology control was studied in [27] and [33]
where transmitter power levels are selected to guarantee
the network connectivity while saving transmission energy,
which can be complementary to our work. A good sur-
vey on the topology control, clustering, broadcasting, and
multicasting can be found in [19].

In our study the nodes are not mobile and the topology
of the network is static. Hence the results are applicable to
networks which are either static, like the sensor networks
we mentioned earlier, or whose topology changes slowly
enough such that there is enough time for optimally balanc-
ing the traffic in the periods between successive topology
changes.

This paper is organized as follows. In Section 2, the
maximum system lifetime routing problem is formulated
for fixed information generation rates as well as for some

2



arbitrary information generation process. In Section 3, we
propose the flow augmentation (FA) algorithm which iter-
atively augments traffic flow along the shortest cost path.
The proposed link cost reflects both the residual energy at
the transmitting node and the receiving node and the en-
ergy consumption in unit data transmission over the link.
In Section 4, simulation on randomly generated graphs is
performed to evaluate the performance of the proposed al-
gorithm both for the fixed information generation rates and
for a certain scenario where information is generated at
monitoring nodes that detect moving targets. Finally in
Section 5, some concluding remarks are made.

2 Routing for the Maximum Sys-

tem Lifetime

In this section, we first formulate the maximum system life-
time routing problem for the case where information gener-
ation rates are fixed. And then, we consider a more general
case where we are given some arbitrary information gen-
eration processes instead of fixed information generation
rates.

2.1 Constant Information Generation Rates

A wireless sensor network is modeled as a directed graph
G(N, A) where N is the set of all nodes and A is the set
of all directed links (i, j) where i, j ∈ N . Link (i, j) exists
if and only if j ∈ Si, where Si is the set of all nodes that
can be directly reached by node i with a certain transmit
power level in its dynamic range. Each node i has the initial
battery energy of Ei. The transmission energy consumed
at node i to transmit a data unit to its neighboring node j

is denoted by et
ij and the energy consumed by the receiver

j is denoted by er
ij . Let there be multiple commodities

where a commodity is defined by a set of source nodes
and destination nodes. We are given, for each commodity
c ∈ C, a set of origin nodes O(c) where information is

generated at node i with rate Q
(c)
i , i.e.,

O(c) = { i | Q
(c)
i > 0, i ∈ N}, (1)

and a set of destination nodes D(c) among which any node
can be reached in order for the information transfer of com-
modity c to be considered done. Let q

(c)
ij be the trans-

mission rate of commodity c from node i to node j to be
assigned by the routing algorithm.

The lifetime of node i under a given flow q = {q
(c)
ij } is

given by

Ti(q) =
Ei

∑

j∈Si

et
ij

∑

c∈C

q
(c)
ij +

∑

j:i∈Sj

er
ji

∑

c∈C

q
(c)
ji

. (2)

Now, let us define the system lifetime or the network life-
time under flow q as the minimum lifetime over all nodes,
i.e.,

Tsys(q) = min
i∈N

Ti(q) (3)

j
i

k i

ikq

S

Q i
(c) (c)

(c)
jiq

Figure 2: Conservation of flow condition at node i for each
commodity c requires that the sum of information genera-
tion rate and the total incoming flow must equal the total
outgoing flow.

Note that in our flow model with fixed information gener-
ation rates the system lifetime is equivalent to the earliest
network partition time of a commodity and is by definition
the time of the first node death.

Our goal is to find the flow that maximizes the system
lifetime under the flow conservation condition. Note that
maximizing the system lifetime is equivalent to maximiz-
ing the amount of total information transfer given a fixed
information generation rates. The problem can be written
as follows:

Maximize Tsys(q)

s.t. q
(c)
ij ≥ 0, ∀i ∈ N, ∀j ∈ Si, ∀c ∈ C,

∑

j: i∈Sj

q
(c)
ji + Q

(c)
i =

∑

j∈Si

q
(c)
ij , ∀i ∈ N − D(c), ∀c ∈ C.

(4)
Figure 2 illustrates the flow conservation condition for

commodity c at node i, and it should be noted that the
condition applies to each commodity separately.

In the following we show that the problem is a linear
programming problem[24]. The problem of maximizing the

system lifetime, given the information generation rates Q
(c)
i

at the set of origin nodes O(c) and the set of destination
nodes D(c) for each commodity c, is equivalent to the fol-
lowing linear programming problem:

Maximize T

s.t. q̂
(c)
ij ≥ 0, ∀i ∈ N, ∀j ∈ Si, ∀c ∈ C,

∑

j∈Si

et
ij

∑

c∈C

q̂
(c)
ij +

∑

j: i∈Sj

er
ji

∑

c∈C

q̂
(c)
ji ≤ Ei, ∀i ∈ N,

∑

j: i∈Sj

q̂
(c)
ji + TQ

(c)
i =

∑

j∈Si

q̂
(c)
ij , ∀i ∈ N − D(c), ∀c ∈ C,

(5)

where q̂
(c)
ij = Tq

(c)
ij is the amount of information of com-

modity c transmitted from node i to node j until time T .
Note that the variable T in (5) should be considered as
an independent variable in order to see the equation as a
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linear programming problem.

2.2 Arbitrary Information Generation Pro-

cesses

In this section, a more practical scenario than the one in-
troduced in the previous section will be considered for wire-
less sensor networks. Instead of having a fixed set of origin
nodes with fixed information generation rates, a packet is
generated periodically1 at each sensor node if the sensor is
detecting a moving target. For simplicity, we assume that
there is only one commodity in this case, which means that
all information has the same set of destination nodes.

Notice the difference between the problem discussed here
with the previous one. In the previous problem, we were
given fixed information generation rates, which implied
that the amount of information generated in some time
interval T is known a priori. On the contrary, here we as-
sume that the amount of total information generated in
some time interval T is not known a priori but we try
to make routing decision on the fly as new information
is generated. In this scenario, a number of sensors are ran-
domly distributed, and target objects move about in or
pass through the region. Each sensor generates a packet
periodically if and only if there is any target object in its
sensor range. The generated packets are to be delivered to
one of the designated gateway nodes. Our goal is to select
the route of each generated packet such that the time until
the first failure of the packet delivery due to battery outage
is maximized.

In the following paragraph, we will describe an integer
programming problem the solution of which will be used as
a performance bound for the problem that we are trying to
solve. As mentioned earlier, the problem we are interested
in assumes no knowledge about the future information gen-
eration processes. However, for the following performance
bound we will assume the perfect knowledge of the future
information generation processes.

Let’s consider the feasibility problem first. We would
like to determine if the information generated until time
T can be delivered to one of the set of destination nodes
D. Let Q̂i(T ) be the number of packets generated at origin
node i ∈ O during the time interval [0, T ), and let q̂ij(T ) be
the total number of packets routed through link (i, j) ∈ A.
It is feasible if there exists a set of non-negative integers
q̂ij(T ) for each link (i, j) ∈ A which satisfies the following
two conditions. The conservation of flow condition is given
by

∑

j: i∈Sj

q̂ji(T ) + Q̂i(T ) =
∑

j∈Si

q̂ij(T ), ∀i ∈ N − D, (6)

and the total energy constraint is given by
∑

j∈Si

et
ij q̂ij(T ) +

∑

j: i∈Sj

er
jiq̂ji(T ) ≤ Ei, ∀i ∈ N, (7)

1Although it doesn’t have to be periodic, it is assumed so for simplicity.
In case it’s not periodic, the lifetime will not be readily given in absolute
time units such as in seconds but in number of possibly unequal discrete
time units.

where et
ij and er

ij are the energy consumption in transmit-
ting and receiving one packet over the link (i, j) at nodes
i and j respectively. Our goal in terms of this feasibility
problem can be stated as finding the maximum feasible
time T .

Note that the problem with constant information gener-
ation rates in the previous section is a special case of this
more general formulation.

In the following, we discuss conditions for the feasibility.
For a set of nodes V , assume that each node i ∈ V has
the amount of information generated during [0, T ), Q̂i(T ),
which needs to be delivered out of V . For a node i ∈ V

let eV
i be the least energy expenditure for transporting an

information unit out of V . If there is no outgoing link of
i through which information can be forwarded out of V ,
eV

i = ∞. Assume here that no energy is consumed in re-
ception for the simplicity of the discussion. The necessary
feasibility condition is given by

∑

i∈V

Q̂i(T ) ≤
∑

i∈V

Ei

eV
i

, (8)

which states that the total information generated should
not be greater than the capacity of all outgoing flow paths.
Note that Ei

eV
i

is the maximum amount of information that

can flow out of V via node i.
The following counterexample in Figure 3 shows that the

necessary condition above is not sufficient. One can verify
that the necessary feasibility condition is met. However,
the flow is not feasible since the total energy constraint at
node a corresponding to (7),

0.5q̂ab(T ) + (4 − q̂ab(T )) ≤ 2.5, (9)

requires q̂ab(T ) ≥ 3, and the total energy constraint at node
b requires q̂bd(T ) ≤ 2, but at the same time q̂ab(T ) = q̂bd(T )
should hold according to the flow conservation condition,
which is impossible.

It can be verified that if the energy expenditure through
all the outgoing links of a node were the same then the
necessary condition would be sufficient as well. In other
words, if the transmit power levels are fixed, then the con-
dition becomes both necessary and sufficient for feasibility.

3 Flow Augmentation Algorithm

In this section, we propose a heuristic called the flow aug-
mentation (FA) algorithm which is an extension to what
has bene presented in [5]. We will describe the algorithm
for fixed information generation rates.

A high level description of the algorithm is given in the
following for fixed information generation rates. At each
iteration, each origin node o ∈ O(c) of commodity c cal-
culates the shortest cost path to its destination nodes in
D(c), where the cost will be defined later. Then the flow

is augmented by an amount of λQ
(c)
i on the shortest cost

path, where λ is the augmentation step size which is equiv-
alent to the amount of information routed between routing
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Figure 3: Counterexample showing that the necessary fea-
sibility condition is not sufficient. The numbers next to the
links are the energy expenditure per data unit transmitted
across the link.

information updates. For example, if the routing informa-
tion is updated after every packet is routed then this value
represents the packet size. Residual energy at each node
is updated just before each routing information update,
which will change link costs. With the updated link costs,
the shortest cost paths are recalculated and the procedures
are repeated until any node i ∈ N runs out of its initial
total energy Ei.

Our objective is to find the best link cost function which
will lead to the maximization of the system lifetime. There
are some parameters to consider in calculating the link cost
costij for link (i, j). They are the energy expenditure for
unit data transmission over the link, et

ij and er
ij , the initial

energy Ei and Ej , and the residual energy, Ei and Ej . A
good candidate for the flow augmenting path should con-
sume less energy and should avoid nodes with small resid-
ual energy since we would like to maximize the minimum
lifetime over all nodes. In [30], each of these parameters
were separately considered, but the combinations of them
were not. We propose a new link metric which combines
these parameters in one. In the beginning when all the
nodes have plenty of energy, the minimum total consumed
energy path is desired, while as residual energy decreases
it is more important to avoid the nodes with small residual
energy. Therefore, the link cost function should be such
that when the nodes have plenty of residual energy, the en-
ergy expenditure term is emphasized, while as the residual
energy of a node becomes smaller the residual energy term
should be given more weight.

With the above throughts in mind, the link cost costij

is proposed to be

costij =
(

et
ij

)x1

E−x2

i Ex3

i +
(

er
ij

)x1

E−x2

j Ex3

j , (10)

where x1, x2, and x3 are nonnegative weighting factors for
each item. The value of x1 is chosen to be either one or
zero. Note that if x1 = x2 = x3 = 0 then the shortest
cost path is the minimum hop path, and if x1 = 1 and
x2 = x3 = 0 then the shortest cost path is the minimum
total energy path. If x2 = x3 6= 0 then it means the nor-
malized residual energy is used, while if x3 = 0 then it
means the absolute residual energy is used. Let’s refer to
the algorithm as FA(x1, x2, x3) in the rest of the paper in-
dicating the parameters. The meanings of the parameters

Table 1: Meanings of the parameters in the algorithm FA.

FA(x1, x2, x3) Meaning

FA(0, 0, 0) Minimum hop (MH) routing

FA(1, 0, 0) Minimum total

energy (MTE) routing

FA(·, x, x) Normalized residual

energy is used

FA(·, ·, 0) Absolute residual

energy is used

are summarized in Table 1 for reference.
The path cost is computed by the summation of the link

costs on the path, and the algorithm can be implemented
with any existing shortest path algorithms including the
distributed Bellman-Ford algorithm[2].

Algorithm FA(x1, x2, x3)

1. Calculate the shortest cost path for each commodity
c with cost of link (i, j) given by

costij =
(

et
ij

)x1

E−x2

i Ex3

i +
(

er
ij

)x1

E−x2

j Ex3

j ,

if there is enough residual energy for a packet, i.e., if
Ei − et

ijλ > 0. The path cost is given by the sum of
the link costs.

2. If any of the commodities cannot find a path to its
destination then stop. Otherwise continue.

3. Augment λQ(c) on each shortest cost path of its com-
modity and update the residual energy accordingly.

4. Goto 1.

The only change necessary from the above description
of the algorithm from the constant information generation
rates case to the case of arbitrary information generation
processes is that, instead of λQ(c) of flow, all packets gen-
erated in between the routing information updates are as-
signed the available shortest cost path.

4 Performance Comparison through

Simulation

4.1 Constant Information Generation Rates

In this section, we evaluate the proposed algorithm for con-
stant information generation rates by comparing the net-
work lifetime achieved with the optimal network lifetime
obtained by the linear programming problem solution. Let
RX denote the ratio between the network lifetime of algo-
rithm X and the optimal solution and be called the nor-
malized network lifetime.

Comparison is made with other existing algorithms as
well. Other algorithms used in comparison are the min-
imum total energy (MTE), minimum hop (MH) routing,
max-min residual energy (MMRE) routing, CMMBCR, and
max-min zPmin. It has been shown in [4] that MTE can
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perform arbitrarily bad, and in [5] that the minimum hop
(MH) routing can perform arbitrarily bad in the worst case.
It should be noted that the network lifetime obtained by
MTE is not just the time of first node death. In our sim-
ulation, we used FA(1, 0, 0) for MTE and this means the
minimum total energy path is used only if there is enough
residual energy to support the traffic until the next rout-
ing information update. The opposite would be to route
the traffic to the minimum total energy path regardless
of the residual energy levels. The MMRE routing selects
the path whose minimum residual energy fraction after the
flow augmentation is the maximum, and is in fact a simpler
version of the maximum residual energy path (MREP)[4]
where not only the minimum but also all the other nodes’
residual energy fraction is compared. The performance of
MMRE is slightly worse than that of MMRE [6], and we
will not compare with MREP here.

Let there be 20 nodes randomly distributed in a square of
50 m by 50 m. Assume that the transmission range of each
node is limited by 25 m, i.e., j ∈ Si if and only if dij ≤ 25,
where dij is the distance between node i and node j. The
energy expenditure per unit information transmission from
node i to j is assumed to be

et
ij = eT + εamp d4

ij , (11)

and
er

ij = eR, (12)

where eT = 50 nJ/bit and eR = 150 nJ/bit are the energy
consumed in the transceiver circuitry at the transmitter
and the receiver respectively, and εamp = 100 pJ/bit/m4

is the energy consumed at the output transmitter antenna
for transmitting one meter. We have slightly modified the
communication energy consumption model used in [12].
The receiver circuitry is in general more complex and con-
sumes more energy than the transmitter circuitry within
the same order of magnitude. The path loss exponent of
four is chosen to account for the multipath reflection in-
stead of using a free space model which uses two. How-
ever, it should be emphasized that the specific energy con-
sumption model is used for the simulation and does not
invalidate our problem formulation nor the proposed al-
gorithm. Note that there may be cases where no path is
available between an origin and the destination, although
it was very rare. We simply discarded these cases to ensure
the connectivity.

For the shortest cost path computation, we used cen-
tralized Bellman-Ford algorithm in the simulation and as-
sumed that the residual energy levels are updated and the
shortest cost path computation is completed within the
routing information update interval. The energy consumed
in the communication of routing control packets and in the
shortest cost path computation is ignored in the simula-
tion.

Two different cases are simulated: i) single commodity
case where information generated at a randomly selected
origin node needs to reach a destination node located at
(45, 45); ii) multicommodity case where each of the five
origin nodes has its own single designated destination node.
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Figure 4: Performance of FA(1, x, x) is compared with
FA(1, x, 0).

First of all, algorithm FA(x1, x2, x3) is simulated to find
the best parameters x1, x2, and x3 in the single commodity
case. Multicommodity case results are not shown here since
they were similar to the single commodity case. Let node
i have initial energy of Ei = 10 J if i is even and Ei = 20 J
if i is odd. Note that this unequal initial energy levels are
used only in this experiment in order to determine whether
normalized residual energy or the absolute residual energy
should be used, and in the other experiments all nodes have
the same initial energy levels. The information generation
rate at the origin node o is Qo = 1, and the augmentation
step size of λ = 5000 bits was used. We have experimented
with one hundred randomly generated networks.

In Figure 4, comparison is made between FA(1, x, x) and
FA(1, x, 0) in order to determine whether the normalized
residual energy or the absolute residual energy should be
used. From the figure it is obvious that the normalized
residual energy should be used.

In Figure 5, comparison is made between FA(1, x, x) and
FA(0, x, x) in order to determine whether the communica-
tion energy consumption should be included in the link
cost. From the figure one can observe that whether the
communication energy consumption term is included or
not makes a significant difference in the network lifetime.
Recall that MTE and MH corresponds to FA(1, 0, 0) and
FA(0, 0, 0) respectively and note their performance.

From this experiment we could observe that in all cases,
FA(1, x, x) was the best in both the average and the worst
case performance. Therefore, in the rest of the paper only
FA(1, x, x) will be treated.

Figures 6 and 7 plot the average and the worst case per-
formance of algorithm FA(1, x, x) for various values of λ.
Note that λ = 5000 bits in our model can be interpreted as
having the routing information update every ten packets of
size 500 bits. We could observe that as the augmentation
step size λ became larger, the performance deteriorated.
This phenomenon is natural and was expected because the
larger λ means less frequent updates on the routing in-
formation, i.e., the normalized residual energy level. The
curves corresponding to λ = 5000 showed monotonic in-
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Figure 6: The average performance of FA(1, x, x) for vari-
ous values of λ.

crease as x was increased. This means that it is better to
have a steeper curve for the residual energy term. Note,
however, that for larger λ the curves are monotonically in-
creasing only up to a certain point. We could observe that
there is an optimal parameter x for a given λ. The opti-
mal parameter x also depends on the initial energy level,
communication energy consumption model, network size
or density. At this point, unfortunately, we don’t know ex-
actly how to calculate in advance the optimal value of x.

Before comparing all the algorithms, let’s compare the
algorithm FA with MTE by an example graph, where the
origin node is given by O = {1} and the destination node
is given by D = {20}. Figures 8 and 9 show the solutions
of MTE and FA(1, 30, 30), respectively. The true optimum
is T opt

sys = 10256.4. One can observe that the routes of FA
is more spread out than that of MTE. The system lifetime
obtained by FA(1, 30, 30) was 10070, which is more than
five times as long as 1900 of MTE in this example and
was very close to the optimal. This is a typical example
of why the new problem formulation and the new routing
algorithms were needed instead of using the existing MTE
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Figure 7: The worst case performance of FA(1, x, x) for
various values of λ.
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Figure 8: An example showing the solution by MTE for
single commodity case where node 1 is the origin node and
node 20 is the destination node.

routing.
Now, let’s compare the performance of FA with other

algorithms. Let each node i have initial energy of Ei = 10
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Figure 9: An example showing the solution by FA(1, 30, 30)
for single commodity case where node 1 is the origin node
and node 20 is the destination node.
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Figure 10: Normalized network lifetime of CMMBCR ver-
sus its parameter γ is shown.
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Figure 11: Normalized network lifetime of max-min zPmin

versus its parameter z is shown.

J. The information generation rate at the origin node o

is Qo = 1, and the augmentation step size of λ = 5000
bits was used. We have experimented with one hundred
randomly generated networks.

The normalized network lifetime obtained by CMMBCR
is depicted in Figure 10 versus its parameter γ, and max-
min zPmin’s result is depicted in Figure 11 versus its pa-
rameter z. Finally, Figure 12 shows the performance of
FA(1, x, x) versus x. It is interesting to note that algo-
rithms CMMBCR and max-min zPmin have one design
philosophy in common, which is to combine the benefits
of MTE and MMRE by varying its parameter value. In
CMMBCR, when γ = 0 it corresponds to MTE and when
γ = 1 it corresponds to MMRE. In max-min zPmin, when
z = 1 it corresponds to MTE and when z = ∞ it is almost
like MMRE but not exactly.

All the algorithms are compared in Table 2 and in Fig-
ure 13, where the average and the worst case normalized
network lifetime are shown. For each algorithm a total of
a hundred randomly generated graphs were simulated, and
λ = 5000 bits was used. The results of CMMBCR and
max-min zPmin depend on its parameter values γ and z
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Figure 12: Normalized network lifetime of FA(1, x, x) ver-
sus its parameter x is shown.

Table 2: Performance comparison of the algorithms in the
single commodity case.

Algorithm X avg RX min RX Pr{RX > 0.9}

MTE 0.7576 0.1853 37%
MMRE 0.9569 0.7626 86%

CMMBCR 0.9721 0.8093 97%
max-min zPmin 0.9774 0.8465 96%

FA(1, 1, 1) 0.9613 0.7716 87%
FA(1, 30, 30) 0.9943 0.9816 100%

respectively, but results shown here are obtained by choos-
ing the best parameter value for each instance. While the
average of RMTE was about 0.7576, the average system
lifetime of all other algorithms were above 0.95 of the opti-
mum. The worst case of RMTE was 0.1853. While RMTE

was over 0.9 in only 37 % of the case, the other algorithms
were so in 85 % or more of the case. The average gain
in the system lifetime obtained by FA(1, 30, 30) was about
50 % compared with MTE. Although both CMMBCR and
max-min zPmin were much better than MTE, they weren’t
quite as good as FA. Note that RFA(1,30,30) was always over
0.98, i.e., including the worst case. Furthermore, these two
algorithms require some type of centralized cooordination
while FA does not. In CMMBCR, at the beginning MTE
path is used until there is no more available path when
all nodes have to convert to calculating MMRE path. In
max-min zPmin, shortest cost path calculation has to be
done several times on a number of reduced subgraphs for
routing one packet, which is too complex.

In the multicommodity case, commodity i ∈ C where
C = {1, 2, 3, 4, 5} is generated at node i and its destination
node is node i + 15 among 20 randomly distributed nodes.
Let each node i have initial energy of Ei = 10 J. The infor-
mation generation rate at each origin node o ∈ {1, 2, 3, 4, 5}
is Qo = 1, and the augmentation step size of λ = 5000 bits
was used. We have experimented with one hundred ran-
domly generated networks.

Figures 14 and 15 show examples of multicommodity
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Figure 13: Comparison of average and the worst case per-
formances of algorithms are made in the single commodity
case.
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Figure 14: An example showing the solution by MTE for
multicommodity case where nodes 1 through 5 are the ori-
gin nodes and nodes 16 through 20 are the corresponding
destination nodes, respectively.

case solutions by MTE and FA(1, 10, 10) with λ = 5000 bits
respectively, where only the aggregate flows are depicted.
In this example, the optimal system lifetime is T opt

sys =
6248.9, and the system lifetime obtained by FA(1, 10, 10)
was 6100, which is more than four times as long as 1270 of
MTE and was very close to the optimum.

The performances of the algorithms given in Table 3 and
Figure 16 showed similar behavior to the single commodity
case. Note that RFA(1,10,10) was the best and RFA(1,10,10)

was always over 0.95 of the optimal, i.e., including the
worst case. The average gain in the system lifetime ob-
tained by FA(1, 10, 10) was about 78 % longer than that of
MTE.

4.2 Arbitrary Information Generation Pro-

cesses

In this typical scenario, we assume that 100 sensors are
uniformly distributed in a square region of 100 m by 100

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

T
1
 = 6432

T
2
 = 8270

T
3
 = 6370

T
4
 = 6504

T
5
 = 8687

T
6
 = 7122

T
7
 = 6950

T
8
 = 7439

T
9
 = 6401

T
10

 = 6413

T
11

 = 6544

T
12

 = 6100

T
13

 = 6403

T
14

 = 6906

T
15

 = 6498

T
16

 = 6822

T
17

 = 2094438

T
18

 = 8023

T
19

 = 6370

T
20

 = 6823

    : Origin

    : Destination

T
sys
FA  = 6100

R
FA

 = 0.976

Figure 15: An example showing the solution by
FA(1, 10, 10) when λ = 5000 for multicommodity case
where nodes 1 through 5 are the origin nodes and nodes
16 through 20 are the corresponding destination nodes, re-
spectively.

Table 3: Performance comparison of the algorithms in the
multicommodity case.

Algorithm X avg RX min RX Pr{RX > 0.9}

MTE 0.6324 0.2032 17%
MMRE 0.9071 0.7069 49%

FA(1, 1, 1) 0.9549 0.7758 88%
FA(1, 10, 10) 0.9828 0.9517 100%
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Figure 16: Comparison of average and the worst case per-
formances of the algorithms are made in the multicommod-
ity case.
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Figure 17: An instance of an example scenario is depicted
where ’+’ is a target, ’x’ is a gateway, and ’·’ is a sensor.

m. A target object passes through the region with the
constant speed of 4 m/sec in a randomly chosen direction.
Each sensor generates a packet per second while the target
is within its sensor range. The generated packets are to
be routed to any one of four gateway nodes located on
the four corners of the square region. An instance of the
scenario is depicted in Figure 17. The sensors in the circle
detect the target, where the sensor range is assumed to
be limited by 20 m. We also assume that the maximum
transmission range is 20 m. Each sensor has the initial
energy of 20 J, and the energy consumption model in (11)
and (12) was used again. The packet size was 500 bits and
the augmentation step size was λ = 5000 bits.

We generated a new target on any randomly chosen edge
of the region as soon as a target moves out of the region.
We assume that the energy consumed while there is no tar-
get is negligible. We measure the time until the first failure
of target detection report to the gateways due to battery
outage, and this system lifetime is used as the performance
measure. One hundred instances were simulated.

For the optimal solution, we could solve the feasibility
version of the integer program iteratively but it is much
time-consuming. Therefore, instead of the integer pro-
gramming problem we use the corresponding linear pro-
gramming problem, which will yield a slightly looser upper
bound. It is known that i) the solution obtained by the
linear program is better than or equal to that obtained by
the integer program; ii) if the linear program is infeasible
then so is the integer program[35].

Table 4 and Figure 18 show the average and the worst
case normalized network lifetime obtained by the algo-
rithms. The network lifetime obtained by FA was very
close to the optimal network lifetime and was more than
three times longer than that of MTE on average.

From the above simulation results, we found out that
for some information generation scenarios it is possible
to make routing decision on-the-fly and obtain close-to-
optimal system lifetime. However, this may not always
be the case. Actually, considering the fact that we assume

Table 4: Performance comparison of the algorithms in some
arbitrary information generation scenario is shown.

Algorithm X avg RX min RX Pr{RX > 0.9}

MTE 0.3263 0.1151 0%
MMRE 0.8881 0.7707 40%

FA(1, 1, 1) 0.9583 0.8645 99%
FA(1, 5, 5) 0.9669 0.9358 100%
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Figure 18: Performance comparison of the algorithms in
some arbitrary information generation scenario is shown.

no a priori knowledge about the future information genera-
tion process, the simulation results are too good to believe.
In the following, we give an example that shows that the
performance of the algorithm depends on the information
generation sample paths of the process. Consider a net-
work in Figure 19 where each node has 4 units of energy.
It requires one unit of energy per packet to cross each link
except for two links, et

ac = et
ad = 0.5. The reception energy

consumption is assumed to be zero. If 8 packets are gener-
ated at node a before the 4 packets are generated at node
b, the algorithm finds the routes as shown in Figure 19 (a)
which achieves the optimal system lifetime of 12 time units.
However, if 4 packets at node b are generated before the 8
packets at node a, the algorithm will split the traffic gen-
erated at node b equally to node d and node e and hence
use the energy at node d which should have been dedicated
solely to the information generated at node a in order to
achieve the optimal system lifetime.

5 Conclusion

In wireless sensor networks where nodes operate on limited
battery energy, the efficient utilization of the energy is very
important. One of the main characteristics of these net-
works is that the transmission power consumption is closely
coupled with the route selection. The energy efficiency has
been considered in wireless ad-hoc network routing, but the
conventional routing objective was to minimize the total
consumed energy in reaching the destination. In this pa-
per, we have formulated the routing problem as maximizing
the network lifetime. The new problem formulation has re-
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Figure 19: An example network showing that the perfor-
mance of the algorithm depends on the information gen-
eration sample paths. Numbers on the links indicate the
number of packets routed through the links. (a) When 8
packets at node a are generated before the 4 packets at
node b, the algorithm achieves the optimal system lifetime
of 12 time units as shown. (b) When 4 packets at node b

are generated before the 8 packets at node a, the system
lifetime is 10 time units leaving 2 undeliverable packets at
node a.

vealed that the minimum total energy (MTE) routing is not
suitable for network-wise optimum utilization of transmis-
sion energy. We showed that significant improvement can
be made by the newly proposed routing algorithm in terms
of maximizing the system lifetime, which can also be inter-
preted as maximizing the amount of information transfer
between the origin and destination nodes given the limited
energy. The proposed algorithm is a shortest cost path
routing whose link cost is a combination of transmission
and reception energy consumption and the residual energy
levels at the two end nodes. The simulation results showed
close-to-optimal performance most of the time with both
the fixed information generation rates and some arbitrary
information generation process of a moving target detect-
ing scenario in wireless sensor networks. Future research
directions will be to study the effect of network density
and quantized residual energy levels on the performance
and overhead of the algorithm, to apply the new link met-
ric on the on-demand routing protocols, and to consider
medium access layer issues.
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