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Abstract—Beamforming problem is studied in wireless net- works, because of practical implementations, it was assumed
works where both transmitters and receivers have linear adaptive that the antenna arrays are used only at the base stations and

antenna arrays. Algorithms are proposed that find antenna array o nigirectional antennas are used at the mobiles. In the uplink,
weight vectors at both transmitters and receivers as well as the

transmitter powers with one of the following two objectives: 1) the receiver beamforming vectors at the base stations and
to maximize the minimum signal-to-interference-and-noise ratio Mobile transmitted power are jointly optimized to minimize
(SINR) over all receivers and 2) to minimize the sum of the total the mobile transmitted power such that the signal-to-interfer-
transmitted power satisfying the SINR requirements at all links.  ance-and-noise ratio (SINR) at each receiver is above a target
Numerical study is performed to compare the network capacity SINR [8], [10]. It has been shown that there is a unique set of

and the power consumption among systems having different _ . -
number of antenna array elements in a code division multiple Power allocation and receiver beamforming vectors such that

access network. the transmitted power is minimized for each mobile. Note that
Index Terms—Adaptive antenna arrays, adaptive beamforming, the minimization is achieved n_ot qnly for the_ sum of transmlt
joint transmit and receive beamforming, power control. powers, but also for each mobile, i.e., there is a Pareto Optlmal

solution to the joint receiver beamforming and power control
problem. In the downlink, the base station transmitted power
and transmit beamforming vectors are determined such that
HE ANTENNA diversity combining has been studied athe SINR at the mobiles are set to a threshold [9], [11]. It has
a means to increase the capacity of wireless commubieen shown that in the transmitter diversity problem, there is
cation networks [4]. A receiver antenna array with properlgo solution that minimizes the transmitted power for each link.
assigned weights is known to form an antenna beam pattétawever, the virtual uplink concept is used to calculate the
that suppresses the antenna gain toward the directions of tf@msmitter beamforming vectors, which minimizes the sum
interferers while keeping a constant gain toward its desirefl the transmitted powers [11]. Downlink transmitter beam-
signal. The minimum variance distortionless response (MVDR)rming is also found in [6], where the spatial covariance of the
beamformer is known to be able to minimize the sum of noigseceived reverse link signal vector is used for calculating the
and interference by adjusting array weights properly. Receivteansmitter beamforming weights. In [7], transmit and receive
beamforming can be implemented independently at eadiversity problem is investigated, where only base stations are
receiver without affecting the performance of the other linkequipped with antenna arrays. In that work, the mobile transmit
Transmitter antenna array can also help reduce the cocharpm@bers and the receiver beamforming vectors for uplink and
interference. However, transmit beamforming affects the intdhe base station transmit powers and the transmit beamforming
ference at all other receivers at different locations. Thereforegctors for downlink are optimized to minimize the transmit
the beamformer calculation cannot be done independentlypatver for a target SINR. It also extended the previous works
each link [9], [11]. by introducing multitap equalization for multipath fading
The systems considered so far assumed to have anteanannels.
arrays only at one end of the communication links, i.e., eitherIn this paper, we consider a more general case of a system
at the receivers [8], [10] or at the transmitters [9], [11]. In thosehere both mobiles and base stations have transmitter and re-
ceiver antenna arrays. The uplink case will be considered for
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The paper is organized as follows. In Section Il, power coff-his equation shows that the power update can be done by
trol with omnidirectional antennas only and previous works ascaling the current power level by the ratio between the target
receive-only diversity and transmit-only diversity problems arf@INR and the current SINR.
presented as a background. In Section 11, the system model wittNow we assume antenna arrays wihelements are used
both transmitter and receiver diversity is described and the jonly at base stations. First, we consider the receive diversity
beamforming and power control problems are formulated. pioblem jointly with power control in the uplink. Define
Section 1V, algorithms are proposed that try to solve the above o
problems. In Section V, simulation results are presented. v(f) = [01(9)7 oyl ()]

as the array response for the signal coming from direcfion
wherev®(6) is thekth array response at directiénWe assume
In this section, first we present the distributed power comke slow fading channel. The received signal vector atithe
trol algorithm for networks with omnidirectional antennashase station is given by
Then, we describe algorithms for receiver-only diversity and
transmit-only diversity for a network where adaptive arrays are o
used only aty the basg stations. P Y Z Pon G Z i Vi (1) 51 (= "”)
In a network of cochannel links consisting&f mobiles and
their base stations, we denote the link gain betweernttheo-

bile and;jth base station by#;;. Consider the uplink scenario\herer! . anda! . are thelth path delay and fading, respec-

mi mi

where both the base station and the mobile are using omnidirggely. s, (¢) is a message signal transmitted by theh mobile
tional antennas. Denote thih mobile transmitted power b, at time¢ andn; is the thermal noise vector at the input of an-

Il. BACKGROUND

m=1

—l—ni(t)

The SINR at theth receiver (base station) is given by tenna. If the delay spread from different paths is negligible, we
PG can rewrite the received signal as
Fi _ Ak 1
Ej;éi PG+ N; @ M
. . . t) = V Prn,Grn,i miom t— mi 7 t
where NN; is the thermal noise at th#h base station. A con- ) r; i (£ = i) + 1)

nection is acceptable if the SINR is no less than the minimum

protection ratioyo. In an optimal power allocation, the transWherea,,; is defined as the spatial signature of théh user at
mitted powers are set to the minimum required level such tH&g ith base station

the SINR is equal to the link protection ratio. That is,

. a’n” a’nn ma*
Fi:’YOv (L:]-va) (2) Z
Combining (1) and (2), we express the link constraintin a matrighe output of beamformer is a weighted combination of its in-
form [14], which is actually the optimal power allocation putsy; = w!x;, wherew; is the receiver beamforming vector.
. The signal to noise ratio at the output of thile beamformer is
P = (I-DF) 'u G given gy ’

whereD is a diagonal matrix withiD];; = 1/G;; and[F|;; = PGiwhHaallw;

Gji, if ¢ 75 ] and[F]ii =0, and[u]i = ’}/()NZ/G” Distributed I, = ”H ”H : (7)
algorithms have been proposed to achieve the above solution 2imti Lo Goni Wi i, Wi + Ny wilwi

with only local measurements [1], [13]. In these algorithms, thehe following algorithm has been proposed in [8], which
transmitted power is updated iteratively. The power update &hieves the jointly optimal power allocations and beam-
thenth iteration is given by forming Weight vectors.

Pt = 4y DFP™ + u.

@) A Receiver-Only Beamforming

Theith mobile power is updated by Thenth iteration of the algorithm is as follows.
1) wE"*l) is computed at each receiviesuch that the sum
P(n+1) ZP(")GN TN (5) of the noise anq Fhe cochannel |nt§rference |s.m|n'|m|zed
G Z under the condition of constant gain for the direction of
interest, i.e.,
The right-hand side of the above equation is a function of the in-
terference at théth base station (the quantity inside the paren- (n+1) . )
thesis), the link gairG;;, and the target SINRy. That is, the wi =arginn Z Pt GrniGmi (Wi 8mi)
mobile power can be updated by using only local interference m
measurements at thith base station. The power update (5) can +N;wl Wi} )
also be written as subjecttow/ a; =1, (i=1,...,M)
(n+1) _ 70 p(n)
F)i o F_ZPZ ) (6) Wheregrni(wivarni) = HwﬁanliHQ-
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2) The updated power vect®¥"+1) is then obtained by

B(n+l) :2;—0 Z Pr(rzl)Grnigrni (Wz(n-i—l)v arni)
w m#£i

H
+N; (wﬁ"“)) w§"+1>} C(i=1,...,M)

i.e., by performing one power control iteration with the

receiver weight vectow ("%,

Mobile 2

to the optimal power allocation and beamforming vectors if

It has been shown in [10] that the above algorithm converges @

there exists any.

In the transmit diversity problem, the weight vectors are ap-
plied before the transmission. Consider the downlink scenasig. 1.

Base 2

Two pairs of mobile transmitters and base station receivers with linear

for this problem. Denote the transmit diversity weight vector fgidaptive antenna arrays having four elements each.
theith base station by; and the signal power before the beam-

former by P;. The received signal at théh mobile is given by

~ H s - -
T = E W, ap\/ Py Gipsy + 1

b

wheres, is the transmitted message signal by stiebase sta-
tion andn; is the thermal noise at thith mobile. It has been

shown that the SINR at thigh mobile is given by

» - H H

PGuw! a,a;w;

= s T — .
Zb#i PbGibWb A, Wy, + .ZVZ

i =

©)

It has been shown in [11] that the above algorithm converges to
a feasible power allocation and beamforming vectors and mini-
mizes the total transmit power in the network.

Ill. DUAL TRANSMITTER RECEIVER DIVERSITY

Assume that each receiver has a linear adaptive antenna array
with K elements and each transmitter antenna arrayihas
elements. The spacing between the elements is assumed to be
half the wavelength.

Fig. 1 depicts two pairs of mobile transmitters and base sta-
tion receivers with four antenna array elements éache up-
link case will be considered for the clarity of the presentation.

The following algorithm has been proposed in [11], which caRote that the idea and the algorithms are directly applicable to

achieve an optimal solution for the downlink problem.

B. Transmitter-Only Beamforming

The algorithm steps at theth iteration are as follows:
1) beamforming

Wi =argmin § S PV Glrrigni (Wi, ami)
wi m#i

+wiw; }

subjecttowfa; =1, (i=1,...,M);

2) virtual uplink power vector update

R(n+1) Z P n) Grnigrni (V~V§,n+1)7 arni)

” m7i
H
+(€v§"+1)) wg"’“)}, (i=1,..., M)

3) downlink power update

pnt 0

@

ZP(n)szgzb( (nt1) aib) +N; g,
b#i
(G =1,...,M).

the downlink case, also. In fact, the framework is general enough
to cover even the peer-to-peer network, where wireless nodes
can communicate with one another directly without having to
go through a base station.

Fig. 2 shows thgth transmitter antenna array and tiie re-
ceiver antenna array, where the transmitter beamforming vector
is denoted byw; and the receiver beamforming vectorvs.

The channel response of thth mobile at theith base station
can be represented as a matiy; of dimensionk'g x Kr. The
(k,Dth element of channel response mat#x; is denoted by

A ;[k][1]. Note that we do not assume rank one for the channel
response matrix.

The received signal at thith base station receiver is obtained
as a weighted sum of the received signals at each array element

Kgr

v = 3wl [krilA] ©

wherew™* denotes the complex conjugatewfandr;[k] is the
received signal at theth element ofith receiver antenna array
from M transmitters given by

M Kr
=Y Ayl 0P Gis; + nilk] - (10)
j=11=1

IThe figure should be interpreted as a notational reference. The physical lo-
cations of the base stations may actually be the same in CDMA systems and
multiple mobiles can be assigned to the same base station.
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Fig. 2. Antenna arrays of thah transmitter and théh receiver and the spatial signatuie; .

wheres; is the message signal transmitted by mop#dn; [£] Problem 2: Minimize the sum of the total transmitter powers
is the thermal noise at the input of th¢h array element of Zf\il vaffﬁvi, subject to the SINR constraififs > ~o, for all
receiver:. Inserting (10) into (9) gives 1, where~, is an achievable system protection ratio.

If the transmitter weights are fixed, then we have the special
case of joint power control and receiver beamforming. If the re-
Sx M K ceiver weights are fixed, then we have the special case of trans-
zi =) wilk] Z > AnlMU; 0/ P Giiss + nilk] mitter beamforming and power control. When both transmitter
k=1 j=ti=t and receiver beamforming can be performed simultaneously, we
have the general case that is addressed in this paper.
Both problems can be thought of as multivariable joint opti-
mization problems. There are three sets of variables: the trans-
where n; is the thermal noise vector at théh receiver. If mitter power vectol, the receiver beamforming vectosg’s,

we assume that the noise and the signals are uncorrel Q& the transmitter beamforming vecterss. One approach to

and zero-mean and that the signals are orthonormal, then optimization is to optimize with respect to one set of vari-
average power of the received signal at receiisr ables in turn while having the other two fixed. Note that the ac-

tions taken at each step exactly coincide with the ones in the
previous works, i.e., the joint receiver beamforming and power

M
= E w, AW/ PiGiis; +w
J=1

M " control [8], [10] and the joint transmit beamforming and power
Elziaf'] =) wiAuw {wl AW} PGy control [9], [11]. Another possibility is to optimize with respect
j=1 to two sets of variables in turn while having the remaining set
+wiE [nnf ] w; fixed. In the following, we will develop algorithms that solve
M the two problems with the first method.
:ZPjGﬁ waIAjivV’;HQ + NywHw,; The optimal receiver beamforming vector for fixed trans-
j=1 mitter powers and fixed transmitter beamforming vectors can be

obtained from the MVDR beamformer and is what minimizes

wherelV; is the noise power at the input of each array elemenke sum of noise and cochannel interference at recéjver.,
Therefore, the SINR at thgh base station receiver is given by
M

w, = arg lni.ll Z .PJG'JZWZHOQZOéﬁWZ + .ZVZWZHWZ (12)
(11) O\
subject to the constraint that the gain at the direction of interest
is equal to unity, i.e.w «;; = 1. The solution to this problem

Hoo O H
PGuwi ayson) w;

T M H, _H H
Ej;éz‘PJGﬂWz OéﬂOéJW7 -|-.Z\77WZ w;

wherec;; is defined asy;; = Ajﬁvj. Nt b
The above SINR expression can also be used for a spré%g'ven y [3]

spectrum system if we assume that the spreading sequences of O Lo

the interfering users appear as mutually uncorrelated noise [10]. w, = aHZI)—_la (13)
The only difference will be the addition of the processing gain e e T

term, which can be absorbed into the target SINR. where®; is the correlation matrix given by [12]

The following two problems will be considered for the
joint power control and beamforming, where three sets of
variables—the transmitter powers, transmitter beamforming
vectors, and receiver beamforming vectors—are to be found as
well. In order to find the optimal transmitter beamforming vector

Problem 1: Maximize the minimum SINR over all receivers,for fixed receiver weights and transmitter powers, Hreual
for all combinations of power vectd?, receiver beamforming downlinkconcept [9], [11] is used, where the transmitters and
vectorsw;’s, and transmitter beamforming vectoks’s. receivers interchange locations. It should be noted that there is

M

i=L
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1. Optimal P found

2. Optimal w;’s founc

Fix w’s and w;’s

3. Optimal P found

no assumption about the reciprocity of the network here. Usil
the transmit beaforming vectors, we can rewrite (11) as follo

e H~ ~H.~
r PGiuw; auidg; wi (15)
T M s H o o H o H
Zj;éi PjGjin Qi O W + .ZVZWZ Ww;

wherec;; is defined asy;; = A;-»Fiw;*. From (15), in order to
provide the required link quality, the SINR at linlshould be at

leastro, i.e., Fig. 3. Block diagram of the maxmin SINR algorithms.
BGiiwf{diidf{Wi can be obtained using the same method as in the receiver beam-
M forming vector calculation, i.e.,
~H o~ H . H
> v Z PJGNWJ i 03 Wi + Niw w; $~la.
-~ ; (X3
i#i W= (20)

ald
Noting that the minimum total power is achieved when the SINR .
is equal to the target value, this constraint can be written in myDhere®; is given by
trix form as M

=1

P = %DFP +u (16)

whereD is defined as
IV. PROPOSEDALGORITHMS

_ [ (GuwHaualw,) ™" ifi=j
[D];; = {(() iy Qi i) if i #j In this section, we propose some algorithms along the lines

_ _ of the optimization principles mentioned earlier. It is assumed
andF is defined as that the channel and array responses from all transmitters to all

T receivers is fully known.

(], = { Giwl qijerfjwy i g
0 if ¢ =y A. Maxmin SINR Algorithm

andu is An algorithm is presented that finds the maximum of the min-
imum SINR over all receivers. Fig. 3 is a block diagram illus-

trating the approach that is taken to jointly optimize the three
sets of variables by optimizing one set of variables in turn while
having the other two fixed.

Wi =%~ =0~80~ = °
GiuW;™ & aig W

Let P, denote the virtual downlink power of base statioffhe

virtual downlink SINR at mobile is given by Algorithm A: ) o ]
1) Calculate the maximum of the minimum SINR for fixed
P EG”WZH aaw; 17) transmitter and receiver weights and com@tiat max-
= ZM P.GowH i alve, + wh, imizes the minimum SINR over all receivers, i.e.,
e LG Fag Wy iy, W i Wi
1
The optimal virtual downlink power vector is obtained when Ymax = m

I'; = =9, which in matrix form is given by
and the normalized eigenvectBr, which satisfies

P = vDF’P +q, (18)
P = Y. DFP.
whereu is ) i o .
2) Calculate receiver weights to maximize SINR for fixed
L wiw; uplink powers and transmitter weights
[a]; = WGl ala
W, O Qg Wy Iy
The optimal transmitter beamforming vector for fixed virtual w, =argmin ZPjGﬁwZH aﬂaf{wz ,
downlink powers and fixed receiver beamforming vectors is that to\ i
which minimizes the sum of virtual noise and interference atsubject tow oy =1, (i=1,...,M).
mobile ¢, i.e., ’
3) Calculate the maximum of the minimum SINR for fixed
R ] Mo o~ M- e transmitter and receiver weights and compiitethat
W; = atgrn Z PyGigwi agidgiwi +witwi | (19) maximizes the minimum SINR over all virtual downlink
g7 transmitters, i.e.,
subject to the constraint that the gain at the direction of interest 1

is equal to unity, i.e.w! &;; = 1. The solution to this problem Ymax = p(DFT)
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1. Optimal w;’s found 2) Update the uplink powers

H
2. P updated Pty IS—O > Gii (W(NH)) ajialw P

.. ®
2

4.P updated

JF
— 20 () ]
3. Optimal w,’s found
(i=1,...,M).

Fig. 4. Block diagram of the minimum transmitter power algorithm.

3) Calculate transmitter weights to maximize SINR for fixed
and the normalized eigenvectBr which satisfies virtual downlink powers and receiver weights

P= ’VmaxDFTf)-

M
~ (nt1 - 2 : 3 wr &
W§n+ ) =arg Hv}vln PJ(")G“WfIaﬂaﬁWz

4) Calculate transmitter weights to maximize SINR for fixed b\
virtual downlink powers and receiver weights +whw,)
u subjecttow &, =1, (i=1,...,M).
= — are mi P.G.owHa.alvw, , .
Wi Targign ; W Qg Wi f 4) Update the virtual downlink powers
17
subject towa;; =1, (i=1,...,M).

T

_ _ pt+n _ 70 Z Gy (V~V(n+1))H djidgvv(nﬂ)p(n)

5) Go to step 1 and repeat the iteration. ¢ Gii o e J
Algorithms A produces the maximum of the minimum SINR H

~Ymax OVer all receivers, which can be used directly as a means + (VVE"H) VVE"H)} , (i=1,...,M).

to compare the performances of the systems having different

number of array elements. This valyg.x can also be used 5) Go to step 1 and repeat the iteration.

to compare the capacity of the network; the larggg is, the

. As a result of this algorithm, a power vector and a set of re-
more mobiles can be supported.

ceiver weights and transmitter weights are found. The sum of
. i ) the total transmitted powers
B. Minimum Transmitter Power Algorithms

In this section, iterative algorithms for problem 2 are pro- M
posed. Note that the following two methods differ only in de- Z Pwlw; (22)
termining the transmit beamformer weights. i=1

1) Virtual Downlink Method: This method can be viewed as . . _
a combination of the algorithms in [10] and [11]. The powe‘ﬁan be ol_atalned. Note that- is not achievable, then Algo-
update iteration is motivated by the fact that if there existsrghm B. dlverges.. L . .
feasible power vector for a fixed set of transmitter and receiverz) _Slmple Gain Maximization Meth"d?‘ this secthn, we
weights then the algorithm converges. If there is no feasib"f@ns'de.r another approach to the transmit beamforming.
power vector for a fixed set of weights, then the algorithm di- Algorithm C: ) _ o ]
verges. Fig. 4 is a block diagram illustrating the algorithm steps. 1) Calculate receiver weights to maximize SINR for fixed
One can observe that the steps 1 and 2 are taken with transmitter UPlink powers and transmitter weights
beamforming vectorsy;’s fixed, which are exactly the same

two steps of the joint receiver beamforming and power control (1) . M ) . .
algorithm [8], [10]. On the other hand, if we omit step 1, then the w,; " =argmin > PMGwl ajialiwi
remaining three steps are exactly the same as the joint transmit i
beamforming and power control algorithm [9], [11]. +NiWZ‘HWi)
Algorithm B: _ _ o ~ subjecttow/ a;; =1, (i=1,...,M).
1) Calculate receiver weights to maximize SINR for fixed
Up“nk pOWerS and transmitter WEIghtS 2) Update the up“nk powers
(n+1) - (n)
L) e mi M wH ool w, H
wi =argmin ZPJ Gjiw;’ i Wi prty) :% Z Gji (WE"H)) ajiaﬁwZ("H)Pj(")
J#i N e

H
n+1 n+1 .
subjecttow” o, =1, (i=1,...,M). +Ni (WE )) W, )}’(’:17“"]‘4)'
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3) Beamforming using simple maximization of the antenna V. SIMULATION STUDIES
?Sag;vtngz;d the first element of the receiver antenna arrQy berformance Comparison
In this section, using the algorithms proposed, the maximum
L (ndl) H < H H2 of the minimum SINR over all receivers and the sum of the
Wi T ArgIAX ||Wi &y total transmitted powers will be presented for systems with dif-
. s 1 ferent number of antenna array elements for the uplink sce-
wH s = — 7 = . . .
subject tow" w; Ky’ (i=1,....M) nario. Let us refer to the system haviig- transmitter antenna
array elements anH i receiver array elements Beamforming
wherea,; is defined as the first column at. (K7, Kr). Note thatif the number of array elements is one, then
4) Update the virtual downlink powers the antenna is omnidirectional. The directions of antenna arrays

are randomly assigned.
" A CDMA network covering the area @i.5, 3.5 x [0.5, 3.5] is
I:’i("“) :g—o Z Gij (VVE"H)) dﬁdﬁvvgnﬂ)ﬁ’;n) considered, where nine base stations vith element receiver
K T antenna arrays are located on the integer gridsidnahobiles

i\ T () . with K7 element transmitter antenna arrays are uniformly dis-
+ (Wz‘ ) Wi } » @=1....M).  yibuted. We assume that a mobile is assigned to its nearest base
station. The link gain is modeled &5; = d;j‘*, whered,; is the
5) Go to step 1 and repeat the iteration. distance between mobileand base statiofy which ignores the

Note that this approach differs from Algorithm B in step 3hadow fading. Note that the algorithms would not be changed
only and the optimal transmit beamforming vectoy is given at all even if we take the effect of fading into account. If there is

by only one line-of-sight path between transmitieand receivei
and the distance between them is large enough compared with
o = 1 the antenna separation, then the rank of the marixis one
W, iie (23) f
T Kro and can be given by

The motivation for this approach is explained in the fol-
lowing. In step 3 of Algorithm B, we minimize the sum of
interference and the thermal noise while having the receivedherea;; is the spatial signature of mobijeat base anda;;
signal fixed. The sum of interference term consists of the the spatial signature of basat mobile;j. Note that this as-
interference from the same cell base station talking to the otlg/mption is only used for the simulation and is not necessary
mobiles in the cell and the other cell base stations talkirgr our formulation and proposed algorithms.
to the mobiles in their cells. Of the two interferences the An observation from the simulations is that all the algorithms
former is more significant because of the shorter distance, yglays converged to a unique solution as well as the corre-
it is uncontrollable by transmit beamforming at the mobilgponding three sets of variables regardless of the initial condi-
since the direction of the interference is exactly the same f@$ns. This implies that the algorithms are very likely to find the
the desired signal direction. Therefore, in Algorithm B, w@ptimal solutions.
actually minimize only the latter interference and the thermal Fig. 5 shows the maximum of the minimum SINR over all
noise. Now, the thermal noise term is more significant than thgceivers versus the number of mobiles in the network. For a
interference from the other cell base stations. Therefore, Wgen SINR thresholdBeamforming(4,4) can support more
can simply minimize the thermal noise term only while havingyghjiles than any other system considered. For example, when
a little performance degradation. Interesting fact is that the — 0304, Beamforming(1,4) can support up to 800 mo-
simple gain maximization is similar to the minimization of th%iles, whileBeamforming4,4) can support more than 1000 mo-
thermal noise term only. Note, however, that the constraints gjifas. Now, if we compare the cases with comparable amount of
different; while the constraint for the simple maximization OﬁardwareBeamforminqlA) showed better performance than
the signal is the constant magnitude of the weight vector, t@%amformingz,Z) andBeamforming4,1). This is so because
constraint for the minimization of the thermal noise term only, 4,0 uplink of CDMA systems the significant portion of the
|s.the .cor?stant antenna gain 'toward the S'_gna_l direction. T@@channel interference comes from the same cell users, which
minimization of the thermal noise term only is given by can only be combatted by the receiver beamforming at the base

stations and not by transmit beamforming at the mobiles since

Aji = ajaj; (25)

w; = argmin w;'w; subjecttow’a; =1 (24) the transmitter antenna gains of the in-cell interferers are locked
' at unity by the transmit beamforming.
which has the same optimal solution as (23). Fig. 6 shows the average transmitted power per mobile

The performance of this simple gain maximization is a littlé1/AM) 312, PiwHw; versus the number of mobiles in the

worse than that of Algorithm B, but the convergence to a uniqsgstem wheny, = 0.0304 used in [2]. This SINR threshold
suboptimal point can be shown. Another advantage of the simpésults in acceptable bit error rate only in CDMA systems
gain maximization is that it is simpler to implement than Algowhere there is a processing gain of the order of 128 or more.
rithm B. The transmitted powers can be reduced by a factor equal to the
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Fig. 6. Average transmitted power per mobile versus number of mobiles when0.0304.
number of array elements or more as the number of mobiles the transmitted power increases abruptly. For the same reason

creases. Note that these results are consistent with the previgiven in the previous paragrapBeamforming1,4) performed
results from Fig. 5, i.e., as the network capacity is approachbkeétter tharBeamforming(2,2) andBeamforming(4,1), which
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suggests that increasing the number of elements at the basEhe simple gain maximization method (Algorithm C) is com-
stations increases the uplink capacity more than increasing fieged with the virtual downlink method (Algorithm B) in Fig. 7.
number of elements at the mobiles. Beamforming (4,4) is the virtual downlink method. SimpleRT
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(4,4) is using simple gain maximization at both transmittei®ne can observe that SimpleT (4,4) performs almost as well
and receivers, while SimpleR (SimpleT) is using simple gais Beamforming (4,4), which supports the motivation for Algo-
maximization of the signal at the receivers (transmitters) onlgthm C for the uplink of a CDMA system.
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B. Multiple Local Optimum Solutions of CDMA system is concerned in which case a simple gain

. . . ) i maximization method is not a bad alternative.
In this section, an instance where multiple local optimum so-

lutions of the virtual downlink method (Algorithms A and B)
were observed is introduced. Note that this phenomenon has ACKNOWLEDGMENT
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