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The cubies of Rubik’s cube come in three types: corner cubies, edge cubies, and center cubies. In some sense
we can think of any two edge cubies as equivalent since, using cube moves, we can take any edge cubie to the
location of any other edge cubie (at the cost of possibly moving other pieces around). Similarly any two corner
cubies are equivalent. Grouping similar elements together when trying to understand a large complicated set
is a very powerful idea.

In this lecture we recall the concept of a partition of a set, and discuss its connection with the concept of an
equivalence relation on a set.

17.1 Partitions of a Set

Consider the set of integers Z. There are two well known subsets: the set of odd integers and the set of even
integers. Every integer is a member of one of these subsets, and no integer is a member of both, so this gives
a partition of Z:

Z = {. . .− 5,−3,−1, 1, 3, 5, . . .} ∪ {. . .− 4,−2, 0, 2, 4, . . .}.

Definition 17.1 A partition of a set A is a finite collection of non-empty subsets A1, A2, . . . , An satisfying the
following properties.

(a) A is the union of all the Ai’s: A = A1 ∪A2 ∪ · · · ∪An,

(b) the Ai’s are disjoint: Ai ∩Aj = ∅ for all i 6= j, 1 ≤ i, j ≤ n.

Example 17.1 Let E be the set of edge cubies of Rubik’s cube, let V be the set of corner cubies, and let C be the
set of centre cubies. E, V and C are disjoint sets, and their union is the set of all cubies. Therefore E ∪ V ∪ C is
a partition of the set of all cubies.

Example 17.2 (a) The three sets

A0 = {. . .− 9,−6,−3, 0, 3, 6, 9, . . .} = {3k | k ∈ Z},
A1 = {. . .− 8,−5,−2, 1, 4, 7, 10 . . .} = {3k + 1 | k ∈ Z},
A2 = {. . .− 7,−4,−1, 2, 5, 8, 11 . . .} = {3k + 2 | k ∈ Z},
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form a partition of the integers Z. A0 is all the integers which are divisible by 3, A1 are those integers
whose remainder is 1 when divided by 3, and A2 are those whose remainder is 2 when divided by 3. These
exhaust all the possibilities of the remainder, and so A0∪A1∪A3 = Z. Moreover, for any particular integer,
the remainder (upon division by 3) is unique so these sets are disjoint.

SAGE
sage: A0=[x for x in range(-10,10) if x%3==0]; print A0
[-9, -6, -3, 0, 3, 6, 9]
sage: A1=[x for x in range(-10,10) if x%3==1]; print A1
[-8, -5, -2, 1, 4, 7]
sage: A2=[x for x in range(-10,10) if x%3==2]; print A2
[-10, -7, -4, -1, 2, 5, 8]
sage: Set(A0).union(Set(A1).union(Set(A2)))==Set(range(-10,10))
True

(b) A partition of the positive integers Z+ into two sets is P ∪ P where P is the set of prime numbers, and
P = Z+ − P is the set of non-prime positive integers.

(c) The sets {1, 2, 3} and {3, 4, 5} do not form a partition of Z5 = {1, 2, 3, 4, 5} since they are not disjoint. They
have the element 3 in common.

We partitioned Z in three different ways: (i) into odd and even sets, (ii) into sets where the remainder upon
division by 3 were the same, and (iii) into the set of primes, and non-primes. This illustrates there is more
than one way to partition a set. As for which one to use, this really depends on the problem you are trying to
solve.

Partitioning a set gives us a nice way to group elements with similarities. This allows us to focus our attention
on subsets rather than the whole set, and this comes in handy when dealing with permutation puzzles. Parti-
tions are closely related to another concept known as an equivalence relation. We now introduce this concept
and show its connection with partitions.

17.2 Relations

We are familiar with many types of relations: “parent”, “brother”, “sister”, “sibling”, “spouse”, < , =, >, ⊂, and
other types of comparisons. In essence what we are doing is comparing two objects from the same set.

Definition 17.2 Let A be a set. A subset R ⊂ A× A is called a relation on A. If (x, y) ∈ R then we say x and
y are related (and we sometimes write xRy for simplicity).

Notice this definition is quite basic. It just says that by a “relation” we just mean a subset of A× A. Any such
subset will be a relation.

Example 17.3 Let A = {1, 2, 3, 4, 5}, then each of the following is a relation on A.

(a) R1 = {(1, 4), (3, 2)}

(b) R2 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} = {(a, b) ∈ A×A | a = b}

(c) R3 = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} = {(x, y) ∈ A×A | x < y}

In relation R1 we say: 1 is related to 4 and 3 is related to 2. But 1 is not related to 2. Also, 4 is not related to 1
in this case since (4, 1) 6∈ R1. Read this carefully, 1 IS related to 4, but 4 IS NOT related to 1. Order matters
in a relation. For example, John is the father of Jack, but Jack is not the father of John. This subtlety won’t
bother us too much (we are more interested in equivalence relations, which are symmetric, as discussed in the
next section).
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Since, by definition, a relation is a subset of A × A, and |A × A| = 52 = 25 then there are 225 possible relations
on A (each element of |A× A| can either be included in the relation, or not, hence there are two choices for each
element). Some relations, of course, are more interesting than others.

Example 17.4 Let A = {∅, {1}, {2}, {1, 2}} (that is, A is the set of all subset of {1, 2}). Consider the relation

R = {(∅, ∅), (∅, {1}), (∅, {2}), (∅, {1, 2}), ({1}, {1}), ({1}, {1, 2}), ({2}, {2}), ({2}, {1, 2}), ({1, 2}, {1, 2})}.

This is an example of the “subset” relation, since (X, Y ) ∈ R precisely when X ⊂ Y .

Example 17.5 Let C be the set of all the different configurations of Rubik’s cube (that is, all the ways to mess
up a cube). Let’s say two configurations X and Y are related if there is a quarter turn of one of the 6 faces which
takes configuration X to configuration Y :

(X, Y ) ∈ R if Y can be obtained from X by a quarter turn of one face.

This defines a relation on C. In Figure 1 the cube in 1a and 1b are related (by a quarter turn of the r face), and
the cubes in 1b and 1c are related (by a quarter turn of the u face). However, the cubes in 1a and 1c are not
related, since it takes two face turns to get from one cube to the other.

Note that if (X, Y ) ∈ R then (Y,X) ∈ R, since each quarter turn has an inverse. In this case we would say R is
a symmetric relation.

(a) (b) (c)

Figure 1: Three different configurations of Rubik’s cube.

17.3 Equivalence Relation

For a given set, some relations are more useful than others. We saw in Example 17.3 that there are 225

different possible ways to define a relation on A = {1, 2, 3, 4, 5}, but relations (b) and (c) seem much more
useful (or should we say meaningful) than relation (a). Perhaps this is because we are so familiar with the
relations “=’” and “<”. In this section we focus our attention on a special type of relation that is very useful in
mathematics.

First a digression into relationships amongst people. For this let’s just consider the set of all people who are
currently alive, call this set P. There are a number of relations we can consider on P, for example if we are
interested in who is whose child then the relation we would consider is: xRy if x is a child of y. Or maybe we
want to consider the relationship of being a brother: xRy if x is a brother of y. Perhaps maybe we just want
to know who is married, and to whom: xRy if x is a spouse of y. If your interest is in relationships on a more
global scale then you can consider a proximity relation: xRy if x lives in the same city as y.

There are some differences in the behaviour of these relations. Consider the “brother of” relation. Tim could be
a brother of Alice, but (assuming Alice is female) Alice is not a brother of Tim. We say that R is not symmetric
in this case. However, the “spouse of” relation is symmetric: if X is the spouse of Y then Y is the spouse of X.
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For the “proximity” relation, if X lives in the same city as Y and Y lives in the same city as Z, then it should
follow that X lives in the same city as Z. We refer to this property as transitivity. Notice the “child relation” is
not necessarily transitive, since if Emma is a child of Karen, and Karen is a child of Henry, then Emma is not
a child of Henry (at least we hope not).

Another property that some relations may possess is the ability for an element to be related to itself. For
example, X lives in the same city as X is certainly true. But, X is a child of X is impossible (though this would
make a disturbing plot for some science fiction movie). A relation where all elements are related to themselves
is known as reflexive.

An important, and very useful, class of relations are the relations that are reflexive, symmetric and transitive.

Definition 17.3 Let R be a relation on a set A. We call R an equivalence relation on A if it satisfies the
following properties:

(a) Each element is related to itself: (a, a) ∈ R for all a ∈ A (reflexive property)

(b) If a is related to b then b is related to a: (a, b) ∈ R implies (b, a) ∈ R (symmetric property)

(c) If a is related to b, and b is related to c then a is related to c: (a, b) ∈ R and (b, c) ∈ R implies (a, c) ∈ R
(transitive property).

Notation: If R is an equivalence relation on A then we often write x ≡ y, or x ∼ y in place of (x, y) ∈ R for
simplicity.

The “child of”, “brother of”, and “spouse of” relations are not equivalence relations. To see why we just need to
observe that one of the three properties doesn’t hold. In each case the reflexive property fails to hold. However,
the “proximity” relation is an equivalence relation.

In Example 17.3 the relationsR1 andR3 are not equivalence relations. For instance, neither one is symmetric.
However, R2 is an equivalence relation.

The “proximity” relation ∼ on P is an equivalence relation. Pick some person, say person X from Vancouver.
What does the set of all people related to X represent: {Y ∈ P | Y ∼ X}? Well, this would consist of all the
people who live in Vancouver. Think about why? Sets of this type will be important for us, so we give them a
special name.

Definition 17.4 Let ∼ be an equivalence relation on a set A. For each a ∈ A the set

[a] = {x ∈ A | x ∼ a}

is called the equivalence class of A containing a. We call a a representative of the equivalence class [a]. 1

Lemma 17.1 If ∼ is an equivalence relation on a set A and x, y ∈ A, then

(a) x ∈ [x] (an equivalence class contains its representative)

(b) x ∼ y if and only if [x] = [y] (if two elements are related then their equivalence classes are equal)

(c) [x] = [y] or [x] ∩ [y] = ∅ (equivalence classes are either equal or disjoint).

Proof: (a) Since ∼ is reflexive x ∼ x, therefore x ∈ [x].

(b) Suppose x ∼ y. We want to show that this implies [x] = [y]. To do this, let z ∈ [x], then z ∼ x and since
x ∼ y it follows that x ∼ y, by the transitive property, and so z ∈ [y]. Therefore [x] ⊂ [y]. Moreover, y ∼ x by
symmetry and a similar argument show [y] ⊂ [x]. Therefore [x] = [y].

1The equivalence class of a is sometimes denoted by [a]R or [a]∼.
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Conversely, suppose [x] = [y]. By part (a), x ∈ [x] = [y], and so x ∼ y.

(c) If [x]∩ [y] 6= ∅ then let z ∈ [x]∩ [y]. It follows that z ∼ x and z ∼ y, and so x ∼ y by transitivity. Now applying
part (b) we have [x] = [y].

�

Partitions and equivalence relations are related as the next result suggests.

Theorem 17.1 (a) If A is a set and R is an equivalence relation on A then the set of equivalence classes form
a partition of A.

(b) If A1, . . . , An is a partition of a set A (see Definition 17.1) then the relation R defined by

aRb if a, b ∈ Ai for some i,

is an equivalence relation on A. This relation can written as

R =
n⋃

i=1

Ai ×Ai.

The sets Ai are the equivalence classes of relation R.

Proof: (a) This is a direct consequence of Lemma 17.1.

(b) By definition of R =
⋃n

i=1 Ai × Ai symmetric. Reflexivity follows from the fact that A is the union of the
Ai’s, and transitivity follows from the fact that the Ai’s are disjoint.

�

Definition 17.5 If ∼ is an equivalence relation on a set A, then a set of class representatives is a subset of
A which contains exactly one element from each equivalence class. We denote the set of class representative by
A/ ∼.

If ∼ is an equivalence relation on a set A , and x ∼ y then we say x and y are equivalent, rather than saying
they are simply related.

Let’s look at some examples to get a little more comfortable with these ideas.

Example 17.6 (Congruence relation on Z) Let n be a positive integer. Define an equivalence relation ≡ on
Z by

a ≡ b if a− b is divisible by n.

We say a is congruent to b modulo n and write a ≡ b (mod n).

For example, 26 ≡ 4 (mod 11) since 26− 4 = 22 is divisible by 11. We say 26 is equivalent to 4 modulo 11. On the
other hand, 7 6≡ 3 (mod 5) since 5 does not divide 7− 3 = 4.

The equivalence class of x modulo n is often called the congruence class of x (mod n).

The equivalence relation ≡ (mod 2) on Z has two equivalence (congruence) classes:

[0] = {0,±2,±4, . . .} and [1] = {±1,±3,±5, . . .}

A set of equivalence class representatives is {0, 1}.

The equivalence relation ≡ (mod 3) on Z has three equivalence (congruence) classes:

[0] = {0,±3,±6, . . .} , [1] = {±1,±4,±7, . . .} and [2] = {±2,±5,±8, . . .}
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A set of equivalence class representatives is {0, 1, 2}.

In general, for n ∈ Z+ and a ∈ Z, the class of a is

[a] = {a + kn | k ∈ Z}.

The set of equivalence class representatives (also called congruence class representatives modulo n) is

(Z/ ≡) = {0, 1, 2, . . . , n− 1}.

Example 17.7 Let C be the set of all the different configurations of Rubik’s cube. The relation on C given in
Example 17.5 is not transitive as we saw in that example.

Instead, let’s consider another relation on C defined by X ≡ Y if there is a sequence of moves involving only U
and R that takes configuration X to configuration Y . This is an equivalence relation. Check for yourself that
the three properties hold.

The 3 configurations shown in Figure 1 are equivalent, and therefore are elements of the same equivalence
class. A representative for this class is the solved cube 1a. How many other configurations are equivalent to
the solved cube? It turns out that there are a whopping 73, 483, 200 configurations all equivalent to the solved
cube. This means that by only twisting the R and U faces of the cube, you can generate over 73 million different
configurations of the cube.

SAGE
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: H=S48.subgroup([R,U])
sage: H.order()
73483200

Example 17.8 Let A denote the set of all possible ways to reassemble Rubik’s cube. That is, first you take it
apart, then put it back together in the shape of a cube again. Define a relation ∼ on A as follows:

X ∼ Y if through a sequence of legal cube moves (i.e. twists of the 6 faces), X can be taken to Y .

All this means is we consider two cubes equivalent if one can be twisted into the other.

What is the equivalence class of the solved cube?

This is really asking, what configurations are equivalent to the solved state configuration? In other words, what
are all the possible configurations one can achieve from the solved cube by twisting faces. In this context, where
we are considering all assembled cubes A, this is an interesting question, since if the equivalence class is not all
of A it means there are ways to reassemble the cube which are not solvable. In other words, you can mess with
your friends cube by taking it apart and reassembling it into an unsolvable cube.

Using the notation introduced in this section, and letting X0 denote the cube in the solved state, then what we
want to know is [X0]. Moreover, if there is more than one equivalence class then it would be interesting to know
how many there are and a set of equivalence class representative, i.e. A/ ∼.

We will investigate this question later. But for now we’ll note that |A/ ∼ | ≥ 5 since Figure 2 shows five
assemblies of Rubik’s cube which are not equivalent under legal cube moves.

We also know that a corner swap, see Figure 3, is not equivalent to X0.

However, it is equivalent to the “edge swap” in Figure 2b. We’ll see this when we study the Fundamental Theorem
of Cubology.
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(a) solved (b) edge flip (c) edge swap (d) clockwise cor-
ner twist

(e) counterclock-
wise corner twist

Figure 2: Five different equivalence class representatives of A. How many more are there?

Figure 3: A corner swap is equivalent to an edge swap, but not equivalent to the solved state.

17.4 Exercises

1. Consider the ”cousin of” relation:
xRy if x is a cousin of y.

Is R symmetric? Is it transitive?

2. In Example 17.6 it was stated that ≡ (mod n) is an equivalence relation on Z. Prove this statement.
That is, show it is reflexive, symmetric and transitive.

3. For each the following relations defined on the set X determine whether or not the relation is reflexive,
symmetric, or transitive.

(a) X = Z, aRb if a | b (i.e. a divides b)
(b) X = Z, aRb if a + b = 10
(c) X = Z, aRb if a− b > 0
(d) X = Z, aRb if a + b is even
(e) X = Z, aRb if a− b is even
(f) X = Z, aRb if 3 | a + b

(g) X = Z, aRb if gcd(a, b) = 1
(h) X = Z× (Z− {0}), (a, b)R(c, d) if ad = bc

(i) X = R× R, (a, b)R(c, d) if
√

(a− c)2 + (b− d)2 ≤ 1
(j) X = R× R, (a, b)R(c, d) if ac + bd = 0

4. Define the relation R on R× R by

(a, b)R(c, d) if b− a = d− c.

Show that R is an equivalence relation and describe the set R geometrically.

5. Define the relation R on R× R by

(a, b)R(c, d) if a2 + b2 = c2 + d2.

Show that R is an equivalence relation and describe the set R geometrically.
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6. Define the relation R on X = {1, 2, 3, . . . , 20} by

aRb if 3 | a− b.

Show that R is an equivalence relation. Describe the equivalence classes of the corresponding partition
of X.

7. Define the relation R on X = {1, 2, 3, . . . , 20} by

aRb if a and b have the same prime divisors.

Show that R is an equivalence relation. Describe the equivalence classes of the corresponding partition
of X.

8. For each of the following statements about relations on a set A, where |A| = n, determine whether the
statement is true or false. If it is false, give a counterexample.

(a) If R is a reflexive relation on A, then |R| ≥ n.
(b) If R is a relation on A and |R| ≥ n, then R is reflexive.
(c) If R1, R2 are relations on A and R1 ⊂ R2, then R1 reflexive (symmetric, transitive) ⇒ R2 reflexive

(symmetric, transitive).
(d) If R1,R2 are relations on A and R1 ⊂ R2, then R2 reflexive (symmetric, transitive) ⇒ R1 reflexive

(symmetric, transitive).
(e) If R is and equivalence relation on A, then n ≤ |R| ≤ n2.

9. If A = {a, b, c, d}, determine the number of relations on A that are (i) reflexive, (ii) symmetric, (iii) reflexive
and symmetric, (iv) reflexive and contains (a, b), (v) symmetric and contains (a, b).

10. If A = {1, 2, 3, 4}, give and example of a relation R on A that is

(a) reflexive and symmetric, but not transitive.
(b) reflexive and transitive, but not symmetric.
(c) symmetric and transitive, but not reflexive

11. Describe a partition of the set of all prime numbers into four classes.

12. What is wrong with the following argument?
Let A be a set and R a relation on A. If R is symmetric and transitive, then R is reflexive.
Proof: Let (x, y) ∈ R. By the symmetric property (y, x) ∈ R. Then with (x, y), (y, x) ∈ R, it follows by the
transitive property that (x, x) ∈ R. Consequently R is reflexive. �

13. Let A be a set with |A| = n, and let R be an equivalence relation on A with |R| = r. Why is r − n always
even?

14. Conjugation is an equivalence relation. Let G be a group, show that the relation

gRh ⇐⇒ g is a conjugate of h,

is and equivalence relation.

15. Let G be a group and H a subgroup of G. Define a relation R on G by

aRb if b−1a ∈ H.

(a) Show R is an equivalence relation.
(b) Show that each equivalence class [a] has the form aH = {ah | h ∈ H} for some a. The is called the

left coset of H in G containing a.
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(c) Show that each equivalence class has the same cardinality. That is, show |aH| = |bH|, for any
a, b ∈ H.

(d) Conclude from Theorem 17.1 that |H| divides |G|. This proves Lagrange’s Theorem: the order of a
subgroup divides the order of a group.

16. Consider the set of all 2× 2 matrices with real entries:

M2,2(R) =
{[

a b
c d

]
| a, b, c, d ∈ R

}
.

Define a relation R on M2,2(R) by

ARB if A is row equivalent to B.

(By row equivalent we mean A can be converted to B through elementary row operations: (i) multiply a
row by a scalar, (ii) swap two rows, (iii) add a multiple of another row to an existing row.)
Show R is an equivalence relation. How many equivalence classes are there? Determine a set of class
representatives.

17. Define a relation R on M2,2(R) by

ARB if there exists and invertible matrix C such that B = CA.

Show R is an equivalence relation. How does this relation compare to the one in Exercise 16.
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