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Lecture 21:
Rubik’s Cube: Subgroups of the Cube Group
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In this lecture, we consider various collections of moves on Rubik’s cube and determine the subgroups they
generate. We also see what the Fundamental Theorem of Cubology tells us about the structure of the group
operation on RC3 and we show the only move sequence that commutes with ever other move sequence is the

superflip.

21.1 Building Big Groups from Smaller Ones

Starting with a collection of groups we can stick them together to form a new, larger group.
Given a finite collection of groups G1, Gs, ... G, the direct product of G1,Gs,...G, is
G1@Gr @G ={(91,92,---,9n) | i € Gi}
which is a group under the operation:
(91,92, -, 9n)(h1, ha, ..., hy) = (g1h1, g2ha, . .., gnhy).
It is understood that each product g;h; is performed with the operation of group G;.
To see why G1 ® G5 - -- ® G, is a group under this operation we observe:
1) It is closed since each G; is closed under its operation.
2) The operation is associative since the operations on each of the G,’s is associative.
3) The identity is (e, €9, . .., e,) Where each e; is the identity of G;.
4) The inverse of an element (g1, g2, ..., 9,)1s (97,95 5., 9. 1)
Example 21.1 The direct product of S and C5 consists of 3! - 5 = 30 elements. For example ((1,3,2),4), and
((1,2),3) are two elements in Ss © Cs. The product of these elements is
((1,3,2),4) ((1,2),3) = ((1,3,2)(1,2),4 + 3) = ((1,3),2).
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For simplicity let’s just limit our attention to the direct product of two groups: G ® H. The subset
Golen}:={(g.en)lg G}

is a subgroup of G @ H which essentially a copy of G. Similarly,
{eg}® H :={(eg,h) | h € H}

is a subgroup of G & H which essentially a copy of H, In other words, we have used G and H to build a bigger
group G @ H in which G and H are subgroups.

Example 21.2 The group C3 := Cy ® Cy ® Cs is a group of order 8, and every non-identity elements have order
2.
The group Cy ® Cs is a cyclic group of order 6, since the element (1,1) has order 6 (check this).

Cy® C3 ={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)}.

For a group G, we denote the direct product with itself n-times, G® G --- & G, by G™.

21.2 Some Subgroups of RCj

In this section we investigate some of the types of groups that appear as subgroups of the Rubik’s cube. In
Chemistry, one my be interested in what elements make up a compound. As an analogy, think of the Rubik’s
cube group as the “compound”, and the “elements” that make it up are the subgroups. We’d like to see what
kinds of groups live inside RCj.

It is particularly interesting to “realize” a finite group A as a subgroup of the cube. This can be done for all
groups of order < 13; the smallest abelian group which is not a subgroup of RCj5 is C3 (since 13 } |RC3|, and
the smallest non-abelian group is D;3. In the next few sections, we’ll see a few examples of some groups that
live inside RC5.

21.2.1 Cyeclic subgroups and orders of elements in RC;

The easiest type of subgroup to look for are the cyclic subgroups. Since the order of an element is precisely
the size of the cyclic group it generates then we are really just interested in what are the possible orders of
elements in RC.

An element of order 4 is R. So RC3 contains a cyclic group of order 4 as a subgroup: Cy = (R).
The move sequence R?U? has order 6, so RC3 contains as cyclic subgroup of order 6: Cs = (R?U?).

The move sequence RU has order 105 and the move sequence RU ! has order 63. Therefore, RC5 contains
copies of Cg3 and and Cjg5 as subroups.

SAGE

sage: S48=SymmetricGroup (48)

sage: R=S48 (" (25,27,32,30) (26,29,31,28) (3,38,43,19) (5,36,45,21) (8,33,48,24)")
sage: L=S48("(9,11,16,14) (10,13,15,12) (1,17,41,40) (4,20,44,37) (6,22,46,35)")
sage: U=S48("(1,3,8,6) (2,5,7,4)(9,33,25,17) (10,34,26,18) (11,35,27,19)")

sage: D=S48 (" (41,43,48,46) (42,45,47,44) (14,22,30,38) (15,23,31,39) (16,24,32,40)")
sage: F=S48("(17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13) (8,30,41,11)")
sage: B=S48 (" (33,35,40,38) (34,37,39,36) (3,9,46,32) (2,12,47,29) (1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])

sage: (RxU) .order ()

n

"

n

105
sage: (R+xU" (-1)) .order ()
63
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There exist precisely 73 different orders of elements in RC3 and the maximum order is 1260. The move sequence
RU?D~'BD~! has order 1260.

21.2.2 Two Squares Group: (R? U?)

Let H = (R?,U?) denote the group generated by the square moves R? and U2. The group contains the useful
2-pair edge swap: (R2U?)3.

Figure 1: The two pair edge swap (R*U?)® in H = (R* U?).

We can find all the elements of this group fairly easily:
H :{1’ ‘RQ7 R2U2,R2U2R2, (R2U2)2, (R2U2)2R2, (R2U2)3,
(R2U2)3R2, (R2U2)47 (R2U2)4R2, (R2U2)57 (R2U2)5R2},

Therefore, |H| = 12. Note that 1 = (R?U?)%, U? = (R?U?)°R?, and U?R? = (R?*U?).

We can compute the order of each element one by one and see that the maximum order is 6. This can also be
done quickly in SAGE.

SAGE

sage: S48=SymmetricGroup (48)

sage: R=S48 (" (25,27,32,30) (26,29,31,28) (3,38,43,19) (5,36,45,21) (8,33,48,24)")
sage: L=S48("(9,11,16,14) (10,13,15,12) (1,17,41,40) (4,20,44,37) (6,22,46,35)")
sage: U=S5S48("(1,3,8,06) (2,5,7,4) (9,33,25,17) (10,34,26,18) (11,35,27,19)")

sage: D=S48 (" (41,43,48,46) (42,45,47,44) (14,22,30,38) (15,23,31,39) (16,24,32,40)™)
sage: F=S48("(17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13) (8,30,41,11)")
sage: B=S48 (" (33,35,40,38) (34,37,39,36) (3,9,46,32) (2,12,47,29) (1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])

sage: H=S48.subgroup([R"2,U"2])

sage: [g.order() for g in H]

(1, 2, 2, 2, 2, 3, 2, 6, 2, 3, 2, 6]

(
(
(
(

We've just discovered that H is a group of order 12, with two elements of order 6, two elements of order 3, and
seven elements of order 2. This seems eerily reminiscent of the dihedral group Dg. Let check to see H is really
Dg in disguise.

SAGE
sage: H.is_isomorphic (DihedralGroup (6))
True
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It is! We've just discovered that the dihedral group Dg lives inside the Rubik’s cube group. E]

21.2.3 The Slice Squared Group: (S(%, S(?,, S(%.)

Let H = (S¢%, S¢3,, S¢%) denote the group generated by the square slice moves.
Each of the generators S¢%, S/?,, S¢2 has order 2, and each of the products

S%S0%,  S%S(%,  S2.50%

has order 2 also (play with your cube to see this). This means that H is an abelian group where every element
has order 2.

For simplicity of notation let a = S¢%, b = S/% and ¢ = S¢% then it is straightforward to see that:
H ={1,a,b,c,ab, ac, bc, abc},
is a group of order 8. In fact, H ~ Cy ® C5 @ C5 under the correspondence

1 —

21.3 Structure of the Cube Group RC;

Let X and Y be two elements of RC5 with corresponding position vectors (p, o, v, w) and (p*, o*, v*, w*), respec-
tively.

Recall, this notation means that corner cubie i moved to cubicle p(i) and v; is the label on the sticker beneath
the primary faced labeled “+”, and edge cubie i moved to edge cubicle (i) with label w; on the sticker in the
primary facet labeled “+”. If we compose the moves X and Y then the position vector of XY can be obtained as
follows:

e corner cubie ¢ moves to (pp*) (i) = p*(p(4)),

e edge cubie i moves to (c0*)(i) = o*(0(4)),

e the label on the " corner cubie, which is in the primary facet of the cubicle to which it was moved, is
v; + v,y (mod 3).

e the label on the i*" edge cubie, which is in the primary facet of the cubicle to which it was moved, is
w; +wy ;) (mod 2).

1We say two groups G1 and Gs are isomorphic if they have the same group structure (i.e. same Cayley table), but the names of
the elements could be different. More precisely, we mean there is a map ¢ : G; — G2 which is a bijection, and for any g,h € Go,
¢(gh) = ¢(g)@(h). SAGE has built in functionality for checking whether two groups are really the same (i.e. isomorphic).
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Figure 2: Cayley graph of H: The elements in the sliced squared group and their representations in terms of the genera-
tors.

If we define addition of 8-tuple (and 12-tuple) orientation vectors componentwise: i.e. a + b = (a1, as,...,a;) +
(bl,bz,...,bk) = (a1+b17a2+b2,.. ak+bk) (.e. think C8 =C30C3D---dCs B.IldC’Ql2 =C0Cy - - Cy)
then the group operation on RC3 = Sg x S1a x C§ x C3? is:

(pso,v,w)(p", 0%, v, w") = (pp*, 00", v+ p(v™), w + o(w")) D
where p(v*) represents the orientation vector obtained from v* by replacing the i component v; with Vp(i):

p(v*) = p((vi,v3,...,v8)) = (U;(U’U;(g)a .- -71’:(8))-

and o(w*) represents:
o(w”) = o((wj,w3,...,wiy)) = (w§(1)7w§(2)7~-~7“’3(12))

Let

Gl :-{g:(p.O’,'U,’LU) GRC3|’U:07w:0}
Gy ={g9=(p.o,v,w) € RC5 | p=c,0 =¢}.

Then G and G5 are subgroups of RC5. G is the subgroup of all move sequences which preserves the orienta-
tion of all the pieces. G, is the subgroup of all move sequences which leaves every cubie in its own cubicle, but
may flip/twist the cubies.

The following theorem describes how the subgroups G; and G, are interlinked in order to form RC3. Some of
the terms are not explained as it is a more advanced theorem. I include it here only for the benefit of those
who know about: normal subgroups, isomorphisms, and semidirect products.
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Theorem 21.1

(a) G1is a subgroup, G4 is a normal subgroup of RCs. E|
(b) G1 ~{(p,0) € Sg x S12 | sign(p) = sign(o)}, Go ~ Cg x Ci.
(¢c) RCjis the semidirect product of G with Gb.

21.3.1 The Centre of the Cube group, Z(RC;), and the Superflip

Recall that for any group G, the centre of G, denoted by Z(G) is the set of all elements that commute with
every element of G:
Z(G)={a € G|ag=gaforall g e G}.

The centre is a subgroup of G. (See Section 11.3)

Theorem 21.2 The centre of RC3 consists of two elements: the identity ¢ and the superflip Xsr. The superflip,
is the configuration in which every cubie is in its home location but all the edge cubies are flipped (see Figure3).

Z(RCg) = {E.XSF}.

Figure 3: The superflip configuration of Rubik’s cube: Xsr.

Proof: Let g = (p,0,v,w) € Z(RCj3). Since the centre of the symmetric group S, for n > 3, is trivial and since
every p* € Sg appears as a first coordinate of the position vector, it immediately follows from Equation (1| that
p = ¢, and similarly 0 = ¢. That is, g = (¢,¢,v,w) € G2. Thus, gg* = ¢g*g simply becomes v + v* = v* + p*(v),
i.e. v = p*(v) for all p* € S, and w + w* = w* 4+ oc*(w), i.e. w = o*(w) for all * € S;5. This means the v and
w are constant (i.e. v; = v; forall 1 <4, j <8 and w; = w; for all 1 <4, ;5 < 12). So we have

v=1(0,0,0,0,0,0,0,00=0 or wv=(1,1,1,1,1,1,1,1)=1 or wv=(22,2,2,22272)=2

and
w = (0,0,0,0,0,0,0,0,0,0,0,0) =0 or w=(1,1,1,1,1,1,1,1,1,1,1,1) = 1.

The first fundamental theorem of cubology excludes the cases v = 1, 2, therefore v = 0. Both choices for w are
possible. This means g is either (¢,¢,0,0) or (,¢,0,1). Therefore,

Z(RC3) ={(e,£,0,0), (g,£,0,1)}.

2 A normal subgroup is a subgroup H of a group G with the property that all its left and right cosets are equal: aH = Ha for all
a € G. Such subgroups are extremely important in advanced group theory.
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The configuration (¢, ¢, 0, 1) is the superflip. O

21.4 Exercises

1. Consider the direct product S3 & D, of the symmetric group and the dihedral group.
(a) How many elements does S3 @ D, have. That is, what is |S5 ® Dy|.
(b) Find the product of ((1,3), H) and ((1, 2, 3), Rgo)-
(c) What is the order of the element ((1, 3), H)?
(d) What is the order of the element ((1,2,3), Rgp)?

2. Show that C3 ® C5 is a cyclic group of order 15.
(Hint: What is the order of the element (1,1)?)

3. Is Cy ¢ Cy a cyclic group? Explain.
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