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Lecture 21:
Rubik’s Cube: Subgroups of the Cube Group
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In this lecture, we consider various collections of moves on Rubik’s cube and determine the subgroups they
generate. We also see what the Fundamental Theorem of Cubology tells us about the structure of the group
operation on RC3 and we show the only move sequence that commutes with ever other move sequence is the
superflip.

21.1 Building Big Groups from Smaller Ones

Starting with a collection of groups we can stick them together to form a new, larger group.

Given a finite collection of groups G1, G2, . . . Gn, the direct product of G1, G2, . . . Gn is

G1 ⊕G2 · · · ⊕Gn = {(g1, g2, . . . , gn) | gi ∈ Gi}

which is a group under the operation:

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).

It is understood that each product gihi is performed with the operation of group Gi.

To see why G1 ⊕G2 · · · ⊕Gn is a group under this operation we observe:

1) It is closed since each Gi is closed under its operation.

2) The operation is associative since the operations on each of the Gi’s is associative.

3) The identity is (e1, e2, . . . , en) where each ei is the identity of Gi.

4) The inverse of an element (g1, g2, . . . , gn) is (g−1
1 , g−1

2 , . . . , g−1
n ).

Example 21.1 The direct product of S3 and C5 consists of 3! · 5 = 30 elements. For example ((1, 3, 2), 4), and
((1, 2), 3) are two elements in S3 ⊕ C5. The product of these elements is

((1, 3, 2), 4) ((1, 2), 3) = ((1, 3, 2)(1, 2), 4 + 3) = ((1, 3), 2).
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For simplicity let’s just limit our attention to the direct product of two groups: G⊕H. The subset

G⊕ {eH} := {(g, eH) | g ∈ G}

is a subgroup of G⊕H which essentially a copy of G. Similarly,

{eG} ⊕H := {(eG, h) | h ∈ H}

is a subgroup of G⊕H which essentially a copy of H, In other words, we have used G and H to build a bigger
group G⊕H in which G and H are subgroups.

Example 21.2 The group C3
2 := C2 ⊕C2 ⊕C2 is a group of order 8, and every non-identity elements have order

2.

The group C2 ⊕ C3 is a cyclic group of order 6, since the element (1, 1) has order 6 (check this).

C2 ⊕ C3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

For a group G, we denote the direct product with itself n-times, G⊕G · · · ⊕G, by Gn.

21.2 Some Subgroups of RC3

In this section we investigate some of the types of groups that appear as subgroups of the Rubik’s cube. In
Chemistry, one my be interested in what elements make up a compound. As an analogy, think of the Rubik’s
cube group as the “compound”, and the “elements” that make it up are the subgroups. We’d like to see what
kinds of groups live inside RC3.

It is particularly interesting to “realize” a finite group A as a subgroup of the cube. This can be done for all
groups of order < 13; the smallest abelian group which is not a subgroup of RC3 is C13 (since 13 6 | |RC3|, and
the smallest non-abelian group is D13. In the next few sections, we’ll see a few examples of some groups that
live inside RC3.

21.2.1 Cyclic subgroups and orders of elements in RC3

The easiest type of subgroup to look for are the cyclic subgroups. Since the order of an element is precisely
the size of the cyclic group it generates then we are really just interested in what are the possible orders of
elements in RC3.

An element of order 4 is R. So RC3 contains a cyclic group of order 4 as a subgroup: C4 = 〈R〉.

The move sequence R2U2 has order 6, so RC3 contains as cyclic subgroup of order 6: C6 = 〈R2U2〉.

The move sequence RU has order 105 and the move sequence RU−1 has order 63. Therefore, RC3 contains
copies of C63 and and C105 as subroups.

SAGE
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])
sage: (R*U).order()
105
sage: (R*Uˆ(-1)).order()
63
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There exist precisely 73 different orders of elements inRC3 and the maximum order is 1260. The move sequence
RU2D−1BD−1 has order 1260.

21.2.2 Two Squares Group: 〈R2, U2〉

Let H = 〈R2, U2〉 denote the group generated by the square moves R2 and U2. The group contains the useful
2-pair edge swap: (R2U2)3.

Figure 1: The two pair edge swap (R2U2)3 in H = 〈R2, U2〉.

We can find all the elements of this group fairly easily:

H ={1, R2, R2U2, R2U2R2, (R2U2)2, (R2U2)2R2, (R2U2)3,

(R2U2)3R2, (R2U2)4, (R2U2)4R2, (R2U2)5, (R2U2)5R2},

Therefore, |H| = 12. Note that 1 = (R2U2)6, U2 = (R2U2)5R2, and U2R2 = (R2U2)5.

We can compute the order of each element one by one and see that the maximum order is 6. This can also be
done quickly in SAGE.

SAGE
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])
sage: H=S48.subgroup([Rˆ2,Uˆ2])
sage: [g.order() for g in H]
[1, 2, 2, 2, 2, 3, 2, 6, 2, 3, 2, 6]

We’ve just discovered that H is a group of order 12, with two elements of order 6, two elements of order 3, and
seven elements of order 2. This seems eerily reminiscent of the dihedral group D6. Let check to see H is really
D6 in disguise.

SAGE
sage: H.is_isomorphic(DihedralGroup(6))
True
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It is! We’ve just discovered that the dihedral group D6 lives inside the Rubik’s cube group. 1

21.2.3 The Slice Squared Group: 〈S`2R, S`2U , S`2F 〉

Let H = 〈S`2R, S`2U , S`2F 〉 denote the group generated by the square slice moves.

Each of the generators S`2R, S`2U , S`2F has order 2, and each of the products

S`2RS`
2
F , S`2RS`

2
U , S`2FS`

2
U

has order 2 also (play with your cube to see this). This means that H is an abelian group where every element
has order 2.

For simplicity of notation let a = S`2R, b = S`2F and c = S`2U then it is straightforward to see that:

H ={1, a, b, c, ab, ac, bc, abc},

is a group of order 8. In fact, H ≈ C2 ⊕ C2 ⊕ C2 under the correspondence

1↔ (0, 0, 0)
a↔ (1, 0, 0)
b↔ (0, 1, 0)
c↔ (0, 0, 1)
ab↔ (1, 1, 0)
ac↔ (1, 0, 1)
bc↔ (0, 1, 1)
abc↔ (1, 1, 1)

21.3 Structure of the Cube Group RC3

Let X and Y be two elements of RC3 with corresponding position vectors (ρ, σ,v,w) and (ρ∗, σ∗,v∗,w∗), respec-
tively.

Recall, this notation means that corner cubie i moved to cubicle ρ(i) and vi is the label on the sticker beneath
the primary faced labeled “+”, and edge cubie i moved to edge cubicle σ(i) with label wi on the sticker in the
primary facet labeled “+”. If we compose the moves X and Y then the position vector of XY can be obtained as
follows:

• corner cubie i moves to (ρρ∗)(i) = ρ∗(ρ(i)),

• edge cubie i moves to (σσ∗)(i) = σ∗(σ(i)),

• the label on the ith corner cubie, which is in the primary facet of the cubicle to which it was moved, is
vi + v∗ρ(i) (mod 3).

• the label on the ith edge cubie, which is in the primary facet of the cubicle to which it was moved, is
wi + w∗σ(i) (mod 2).

1We say two groups G1 and G2 are isomorphic if they have the same group structure (i.e. same Cayley table), but the names of
the elements could be different. More precisely, we mean there is a map φ : G1 → G2 which is a bijection, and for any g, h ∈ G2,
φ(gh) = φ(g)φ(h). SAGE has built in functionality for checking whether two groups are really the same (i.e. isomorphic).
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Figure 2: Cayley graph of H: The elements in the sliced squared group and their representations in terms of the genera-
tors.

If we define addition of 8-tuple (and 12-tuple) orientation vectors componentwise: i.e. a + b = (a1, a2, . . . , ak) +
(b1, b2, . . . , bk) = (a1 + b1, a2 + b2, . . . , ak + bk) (i.e. think C8

3 = C3 ⊕ C3 ⊕ · · · ⊕ C3 and C12
2 = C2 ⊕ C2 ⊕ · · · ⊕ C2)

then the group operation on RC3 = S8 × S12 × C8
3 × C12

2 is:

(ρ, σ,v,w)(ρ∗, σ∗,v∗,w∗) = (ρρ∗, σσ∗,v + ρ(v∗),w + σ(w∗)) (1)

where ρ(v∗) represents the orientation vector obtained from v∗ by replacing the ith component vi with vρ(i):

ρ(v∗) = ρ((v∗1 , v
∗
2 , . . . , v

∗
8)) = (v∗ρ(1), v

∗
ρ(2), . . . , v

∗
ρ(8)).

and σ(w∗) represents:
σ(w∗) = σ((w∗1 , w

∗
2 , . . . , w

∗
12)) = (w∗σ(1), w

∗
σ(2), . . . , w

∗
σ(12)).

Let

G1 = {g = (ρ.σ,v,w) ∈ RC3 | v = 0,w = 0}
G2 = {g = (ρ.σ,v,w) ∈ RC3 | ρ = ε, σ = ε}.

Then G1 and G2 are subgroups of RC3. G1 is the subgroup of all move sequences which preserves the orienta-
tion of all the pieces. G2 is the subgroup of all move sequences which leaves every cubie in its own cubicle, but
may flip/twist the cubies.

The following theorem describes how the subgroups G1 and G2 are interlinked in order to form RC3. Some of
the terms are not explained as it is a more advanced theorem. I include it here only for the benefit of those
who know about: normal subgroups, isomorphisms, and semidirect products.
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Theorem 21.1

(a) G1 is a subgroup, G2 is a normal subgroup of RC3. 2

(b) G1 ≈ {(ρ, σ) ∈ S8 × S12 | sign(ρ) = sign(σ)}, G2 ≈ C7
8 × C11

2 .

(c) RC3 is the semidirect product of G1 with G2.

21.3.1 The Centre of the Cube group, Z(RC3), and the Superflip

Recall that for any group G, the centre of G, denoted by Z(G) is the set of all elements that commute with
every element of G:

Z(G) = {a ∈ G | ag = ga for all g ∈ G}.
The centre is a subgroup of G. (See Section 11.3)

Theorem 21.2 The centre of RC3 consists of two elements: the identity ε and the superflip XSF . The superflip,
is the configuration in which every cubie is in its home location but all the edge cubies are flipped (see Figure 3).

Z(RC3) = {ε.XSF }.

Figure 3: The superflip configuration of Rubik’s cube: XSF .

Proof: Let g = (ρ, σ,v,w) ∈ Z(RC3). Since the centre of the symmetric group Sn, for n ≥ 3, is trivial and since
every ρ∗ ∈ S8 appears as a first coordinate of the position vector, it immediately follows from Equation 1 that
ρ = ε, and similarly σ = ε. That is, g = (ε, ε,v,w) ∈ G2. Thus, gg∗ = g∗g simply becomes v + v∗ = v∗ + ρ∗(v),
i.e. v = ρ∗(v) for all ρ∗ ∈ S8, and w + w∗ = w∗ + σ∗(w), i.e. w = σ∗(w) for all σ∗ ∈ S12. This means the v and
w are constant (i.e. vi = vj for all 1 ≤ i, j ≤ 8 and wi = wj for all 1 ≤ i, j ≤ 12). So we have

v = (0, 0, 0, 0, 0, 0, 0, 0) = 0 or v = (1, 1, 1, 1, 1, 1, 1, 1) = 1 or v = (2, 2, 2, 2, 2, 2, 2, 2) = 2

and
w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0 or w = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) = 1.

The first fundamental theorem of cubology excludes the cases v = 1,2, therefore v = 0. Both choices for w are
possible. This means g is either (ε, ε,0,0) or (ε, ε,0,1). Therefore,

Z(RC3) = {(ε, ε,0,0), (ε, ε,0,1)}.
2 A normal subgroup is a subgroup H of a group G with the property that all its left and right cosets are equal: aH = Ha for all

a ∈ G. Such subgroups are extremely important in advanced group theory.
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Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  Schedule

LECTURE 21 RUBIK’S CUBE: SUBGROUPS

The configuration (ε, ε,0,1) is the superflip. �

21.4 Exercises

1. Consider the direct product S3 ⊕D4 of the symmetric group and the dihedral group.

(a) How many elements does S3 ⊕D4 have. That is, what is |S3 ⊕D4|.
(b) Find the product of ((1, 3), H) and ((1, 2, 3), R90).
(c) What is the order of the element ((1, 3), H)?
(d) What is the order of the element ((1, 2, 3), R90)?

2. Show that C3 ⊕ C5 is a cyclic group of order 15.
(Hint: What is the order of the element (1, 1)?)

3. Is C2 ⊕ C6 a cyclic group? Explain.
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