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Lecture 18:
Cosets & Lagrange’s Theorem
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In this lecture we introduce a powerful tool for analyzing a group - a coset. We’ll then use cosets to prove
Lagrange’s Theorem (discussed in Lecture 11) which states the size of a subgroup divides the size of the group.

18.1 Cosets

Let H be a subgroup of a group G. Define a relation ~g on G as follows:

a~pgb < a'beH. 6))

Equivalently, a ~5 b if and only if a='b = h for some h € H. Or another way to say this is a ~y b if and only if
b = ah for some h € H.

Lemma 18.1 If H < G, then ~y is an equivalence relation on G. Moreover, if [a] denotes the equivalence class
of a € G, then
[a] = {ah | h € H}.

Proof: We need to show ~y is reflexive, symmetric and transitive. For all a, b, c € G:

1

Reflexive: Since H is a subgroup it contains the identity, so a—'a = ¢ € H, Therefore, a ~g a.

Symmetric: If a ~g b then a='b € H. Since H is a subgroup it is closed under taking inverses, so (a~'b)~! =
b~'a € H. Therefore b ~y a.

Transitive: If a ~y band b ~y ¢ then a='b,b7'c € H. Since H is a subgroup it is closed under products, so
(a='b)(b~'c) = a~'c € H. Therefore a ~y c.

It follows that ~ g is an equivalence relation on G.

Since a ~g b if and only if b = ah for some h € H, then

la] ={b|a~p b}
= {ah | h € H}

O

The following definition gives a name to the particular type of equivalence class that appeared in the lemma.
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Definition 18.1 (Coset of H in G) Let G be a group and H a subgroup of G. For any a € G, the set
aH ={ah |he H}

is called the left coset of H in G containing a. Analogously,
Ha ={ha|h € H}

is called the right coset of H in G containing a. The element a is called the coset representative of a H or Ha.

The right coset is the equivalence class that comes from the equivalence relation a ~ b if and only if ab~! € H.

Since left cosets of H are the equivalence classes under the relation ~y they form a partition of the group G.
In particular, for any two left cosets aH and bH we either have

aH=bH or aHNbLH=.
Let’s see what these cosets look like in a few specific examples.
Example 18.1 Let S5 = {¢,(1,2),(1,3),(2,3),(1,2,3),(1,3,2)}, and consider the subgroup H = {(1,2)) = {e, (1,2)}.
The left cosets of H are:

eH =H =1{¢(1,2)}

2
(173)H = {(173)5 (173)(172)} = {(173)5 (17372)}
(273)H = {<2’3)’ (273)<172)} = (1

The left coset representatives of H in G are therefore ¢, (1,3), and (2, 3).

Notice that
(1,2 H=H, (1,3,2)H=(1,3)H, (1,2,3)H = (2,3)H.

In other words, it doesn’t matter which element of the coset you use to describe it. Forinstance, (1,2), (1,3,2), (1,2, 3)
is another set of left coset representatives of H in G.

The right cosets of H are:

Notice that the left and right cosets are not necessarily the same. For example (1,3)H # H(1,3).
For the subgroup K = ((1,2,3)) = {e,(1,2,3),(1,3,2)} there are only two distinct left cosets:
K =1{¢(1,2,3),(1,3,2)}
(1,2)K ={(1,2),(1,2)(1,2,3),(1,2)(1,3,2)} = {(1,2),(1, 3),(2,3)}.
Notice that K = (1,2,3)K = (1,3,2)K and (1,2)K = (1,3)K = (2,3)K.

Example 18.2 Consider Cio, the group of integers modulo 12, and the subgroup H = (3) = {0,3,6,9}. The
cosets of H are:

0412 H=H = {0,3,6,9}
1+ H={1,4,7,10}
241, H ={2,5,8,11}
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Note that the left and right cosets are the same in this case since C15 is abelian. Also,

141990 H=44+12sH=T4+12oH=10412 H.

In each of the examples above notice that the only coset of H which is a subgroup of G is H itself. Here are
some basic properties of cosets.

Lemma 18.2 (Properties of Cosets) Let H be a subgroup of G and a € G.

(a) a € aH

b) adH=H <+= acH

(c) For a,b € G, either aH = bH or aH NbH = (.
(d aH=bH <= a'beH <= blacH
(e) If G is finite then |H| = |aH|

(f) aH =Ha <= o 'Ha=H.

(Note that by a='Ha we mean the set {a~‘ha | h € H}.)

Proof: First observe that since aH is the equivalence class [a] then (a), (c), and (d) are just the results of
Lemma 17.1 which we have already proven.

(b) If aH = H then a € aH = H. Conversely, suppose a € H. Then aH C H, while on the other hand, if b € H
thena='b € H sob € aH. Therefore aH = H.

Another way to prove this is to just observe that it is a special case of (d) where b = e. Therefore it follows as a
direct consequence of Lemma 17.1.

(e) The map ¢ : H — aH defined by
¥(h) = ah,
is a bijection.
Injective: ¥ (hi) = ¥(he) implies ahy = ahs, and by cancellation, h; = hs.
Surjective: For b € aH, there is an h € H such that b = ah. Therefore, a='b € H and v)(a~1b) = b.

Since 1) is a bijection then H and « H must have the same size: |H| = |aH]|.

(D (=) If aH = Ha then for any h € H there is an « € H such that ax = ha, so a 'ha € H. Therefore
a 'Ha C H. On the other hand, for any h € H there is a y € H such that ah = ya, so h = a"'ya € a"'Ha.
Therefore H C a~'Ha. It follows that H = o~ ' Ha.

(<) If a'Ha = H then for any h € H there is an z € H such that a~'za = h, so ah = za € Ha. Therefore
aH C Ha. A similar argument shows Ha C Ha. Therefore aH = Ha. [

18.2 Lagrange’s Theorem
We stated Lagrange’s Theorem back in Lecture 11. Now we have the tools to prove it.
Theorem 18.1 (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then |H| divides |G/|.

Proof: Let ~y be the equivalence relation on G defined in (I). Then the equivalence classes are the left cosets
[a] = aH. Let
(11H, agH, ce ,akH
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denote the distinct left cosets of H in G. By Lemma e) all equivalence classes have the same size: |[a;]| =
|a; H| = |H|. Since these classes partition G then

G=a1HUayHU---UapH, (disjoint union)
and so
|G| = a1 H| + |agH| + - - + |ar H| = k|H| (2)
Therefore |H| divides |G|. O

From Equation (2) we have a formula for the number of left cosets of H in G:

161

number of left cosets = number of ~5 equivalence classes = ik

Similarly, working with right cosets rather than left cosets in our previous arguments, we have that the
number of right cosets is also |G|/|H]|.

In particular, the number of left and right cosets of a given subgroup are the same. This is an important
number in calculations involving groups and is called the index of H in G, which is denoted by [G/H]|:

[G/H]:= theindexof Hin G = —. 3)

However, even though the number of left and right cosets of a subgroup H in G is the same, the actual left and
right cosets themselves can be different. See Example [18.1]

In Lecture 11 we noted a few consequences of Lagrange’s Theorem. We'll list them here again for convenience.
Corollary 18.1 (ord(a) divides |G|) Let G be a finite group and a € G. Then

(a) ord(a) divides |G|.

() al€l =e.

Example 18.3 (Number of different cubes up to U, R moves) In Example 17.1 we considered the set C of
all the different configurations of Rubik’s cube and the equivalence relation = on C defined by

X =Y <= ifthereisa sequence of moves involving only U and R
that takes configuration X to configuration Y.

If we identify each configuration in C with its corresponding permutation in RCs, the the equivalence relation
= can be described as

X=Y < X 'YecH=(UR)

In other words, it is just the relation ~p, and so the equivalence classes are the cosets of H = (U, R).

If X denotes the cube in the solved state, then [Xo] = H, and as we found in Example 17.1, has size 73,483, 200.
The number of distinct equivalence classes is given by (B), and we can use SAGE to compute it.

SAGE

sage: S48=SymmetricGroup (48)

sage: R=S48("(25,27,32,30) (26,29,31,28) (3,38,43,19) (5,36,45,21) (8,33,48,24)")
sage: L=S48("(9,11,16,14) (10,13,15,12) (1,17,41,40) (4,20,44,37) (6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17) (10,34,26,18) (11,35,27,19)")
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sage: D=S48 (" (41,43,48,46) (42,45,47,44) (14,22,30,38) (15,23,31,39) (16,24,32,40)")
sage: F=S48("(17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13) (8,30,41,11)")
sage: B=S48 (" (33,35,40,38) (34,37,39,36) (3,9,46,32) (2,12,47,29) (1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])

sage: H=S48.subgroup([R,U])

sage: RC3.order () /H.order ()

588597166080

What does this mean? It means that if we think of any two configurations, in which one can be obtained from
the other by only twisting the R and U faces, as equivalent, then we’ve partitioned C into 588,597,166, 080 sets,
each of size 73,483,200, where within each set of the partition any two configurations are equivalent under U,
R moves. But for any two configurations coming from different sets in the partition, there is now way to obtain
one from the other using U, R moves. In this sense there are 588,597,166, 080 different cubes up to R, U moves.

An Application to Number Theory:
We briefly look at how our previous results can be used to establish two very famous theorems of number
theory.
Corollary 18.2 (Fermat’s Little Theorem) For every integer a and every prime p,

a’ =a (mod p).
That is, p divides a? — a.
Proof: Let r be the remainder of a upon division by p. Since a = r (mod p) and a? = r? (mod p) then it suffices
to prove the corollary for 0 < a < p — 1. The result for ¢ = 0 is trivial. So assume 1 < a < p — 1. Then we
can assume a € U(p), the groups of integers {1,2,...,p — 1} under multiplication modulo p. (See Lecture 10

for further discussion of U(n).) Since |U(p)| = p — 1 then by Corollary a?~! =1 (mod p), therefore a? = a
(mod p). O

For example, without doing any calculation we know that 2011'3 — 2011 is divisible by 13.

Corollary 18.3 (Euler’s Theorem) Let a € Z, n € Z and ged(a,n) = 1. Then

a®™ =1 (mod n).

Proof: It suffices to prove the result for 0 < a < n, since a* = r* (mod n) for any k¥ € N, where r is the

remainder of ¢« when divided by r. Since gcd(a,n) = 1thena € U 61), the multiplicative group of units modulo
n. Since |U(n)| = ¢(n) (Euler’s phi-function) then by Corollary b) it follows that

a®™ = al"™l =1 (mod n).

18.3 Exercises

1. Consider the group C15 and the subgroup H = (4) = {1,4,8}.

(a) Are the following pairs of elements related under ~g?
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(i) 3,7 (ii) 5,11 (iii) 6,9

(b) Find all (left) cosets of H in G.
2. In S7, are the following pairs of elements related under ~g where H = A;?

(a) (1,2)(3,4)(5,6), (1,7)(2,6)(3,5)(4,7). (¢ (1,3,7,2), (2,4,3,6,5).

() (2,3)(4,6), (1,3,5,7,4).
3. Let H = {¢,(1,3)} in S5.

(a) Find all the left cosets of H.

(b) Find all the right cosets of H.
4. Let H and K be subgroups of a group G such that ged(|H|,|K|) = 1. Show that |H N K| = 1.
5. Let G be a group such that |G| = 35.

(a) Show that G has at most 8 subgroups of order 5.

(b) Show that G has at most 5 subgroups of order 7.

(c) Deduce that G has at least one element of order 5 and at least one element of order 7.
6. Let H be a subgroup of a group G with |H| = 3|G|.

(a) Show that a ¢ H implies G = H UaH.

(b) Show that a ¢ H implies a"H # o™ H.

(c) Deduce that H contains every element in G of odd order.
7. (a) How many 3-cycles are there in A5?

(b) How many 5-cycles are there in A5?

(c) Use Exercise[6|to show that A; has no subgroup of order 30.

8. Repeat the argument of Exercisd7| (modifying it where appropriate) to show that A, has no subgroup of
order 6.
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