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In this lecture we look at an electronic puzzle called Lights Out and see how we can solve it using linear
algebra.

24.1 Lights Out

The game consists of a 5-by-5 grid of lights; when the game starts, a set of these lights (random, or one of a set
of stored puzzle patterns) are switched on. Pressing one of the lights will toggle it, and the four lights adjacent
to it, on and off. (Diagonal neighbours are not affected.) The game provides a puzzle: given some initial
configuration where some lights are on and some are off, the goal is to switch all the lights off, preferably in
as few button presses as possible. See Figure 1 for sample game play.

Figure 1: A demonstration of Lights Out play.

Two physical versions of the game are shown in Figure 2. The first one is the original game, each button has
two states: on or off. The second one, called Lights Out 2000, has a further option of allowing 3 states for each
button: red, green and off.

Jamie Mulholland, Spring 2011

Math 302

24-1



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  Schedule

LECTURE 24 LIGHTS OUT PUZZLE

(a) Lights Out (b) Lights Out 2000

Figure 2: Lights Out electronic games released by Tiger Toys

Variations of Lights Out: Lights Out is another puzzle that has been updated for the digital era. Many
variations of this puzzle exist now in software form. Variations include: more states for the lights (i.e. more
colours for the lights to cycle through), changing size of game boards, modifying how a button press changes
the state of the lights. For example, we could make it so pressing a button changes the state of all lights in the
same row and column as the button that was pressed.

Software: This puzzle is available for play on the web. There are also some versions available for the ipod.
More information about where to find your own digital copy can be found in the software section of our course
webpage.

24.2 Lights Out: A Matrix Model

A complete strategy for the game can be obtained using linear algebra, requiring only knowlege of Gauss-
Jordan elimination and some facts about column and null space of a matrix.

We make some initial observations:

(a) Pushing button twice is is equivalent to not pushing it at all.

(b) The state of a button depends only on how often (whether even or odd) it and its neighbours have been
pushed. Hence, the order in which the buttons are pressed does not matter. Together with (a), for any
configuration, a solution exists in which each button is pushed no more than once.

We will represent the state of each light by an element of F2 = {0, 1}; 1 for on, 0 for off. We can represent a
lit button configuration by a 5 × 5 matrix A with entries from F2, i.e. A ∈ M5×5(F2) where the (i, j)th entry is
1 if the button is on, or 0 if the button is off. See Figure 3. We call this matrix the lit button configuration
matrix. Here,

M5×5(F2) = {[bi,j ] | 1 ≤ i, j ≤ 5, bi,j ∈ F2 = {0, 1}}.

(a) sample lit but-
ton configuration

(b) corresponding con-
figuration matrix

Figure 3: Matrix corresponding to a lit button configuration

Jamie Mulholland, Spring 2011

Math 302

24-2



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  Schedule

LECTURE 24 LIGHTS OUT PUZZLE

If a button is pressed the states of the lights around the button are toggled. For the standard lights out puzzle
it is the button itself, and its vertical and horizontal neighbours that are toggled. For each button (i, j) we
define a toggle matrix Ti,j where the entry is 1 if the button in that location changes state, or 0 if it doesn’t.
For example, see Figure 4.

(a) pressing button (1, 1) (b) corresponding toggle matrix T1,1

(c) pressing button (3, 4) (d) corresponding toggle matrix T3,4

(e) pressing button (5, 3) (f) corresponding toggle matrix T5,3

Figure 4: Some examples of the toggle matrix corresponding to pressing a button.

The sample game play shown in Figure 1 can be translated into a matrix equation using configuration and
toggle matrices as follows.

Let B be the initial configuration matrix:

B =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1

 .

Then the game play corresponds to
B + T4,4 + T5,5 = 0,

where 0 is the zero matrix, and addition of matrices is done in the usual way – componentwise – but here
entries are added modulo 2. Recall, modulo 2 arithmetic means 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0. Since a
matrix in M5×5(F2) added to itself is 0 then adding B to both sides of the previous equation gives:

T4,4 + T5,5 = B.

In other words, to solve the puzzle we just have to determine how to write B as a linear combination of the
toggle matrices.

Moreover, since for any matrices A, C ∈M5×5(F2) we have A+C = C +A and A+A = 0 then we can now easily
see why (i) order in which buttons are presses doesn’t matter, and (ii) no button needs to be pressed more than
once.
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In general, given any lit button configuration B = [bi,j ], solving the puzzle is equivalent to solving the matrix
equation: ∑

1 ≤ i ≤ 5
1 ≤ j ≤ 5

xi,jTi,j = B (1)

for the 25 coefficients xi,j ∈ {0, 1}. The coefficients xi,j tell use exactly what buttons we need to press. We call
X = [xi,j ] the strategy matrix. We will sometimes write it as a vector x = (x1,1, x1,2, x1,3, . . . , x4,5, x5,5) and
call it the strategy vector. In general, we can turn any matrix into a vector by listing the entries in order
from left-to-right, then top to bottom.

Matrix equation (1) corresponds to a system of 5 ·5 = 25 linear equations (one for each component of the matrix
equation).

For example, the linear equation corresponding to entry (1, 1) in matrix equation (1) is

x1,1 + x1,2 + x2,1 = b1,1,

since the only toggle matrices with 1 in position (1, 1) are T1,1, T1,2, and T2,1. Similarly, the linear equation
corresponding to entry (3, 4) in matrix equation (1) is

x2,4 + x3,3 + x3,4 + x3,5 + x4,4 = b3,4.

Writing b = (b1,1, b1,2, b1,3, . . . , b4,5, b5,5) for the vector corresponding to the configuration matrix B, it is straight-
forward to check that this big system (Equation (1)) can be written as a matrix product

Ax = b (2)

where A is the 25 × 25 matrix whose columns are the toggle vectors (which we also denote by Ti,j): A =
[T1,1 | T1,2 | · · · | T5,5]. We can write A as

A =


C I5 0 0 0
I5 C I5 0 0
0 I5 C I5 0
0 0 I5 C I5

0 0 0 I5 C

 (lights out matrix) (3)

where C represents the 5× 5 matrix

C =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 ,

and I5 denotes the 5× 5 identity matrix. The matrix A is referred to as the lights out matrix.

Therefore, solving the puzzle for a general configuration b is equivalent to solving the 25 × 25 linear system 2
for a strategy vector x (where all arithmetic is done modulo 2).

We would like to know the answers to the following questions.

(a) Will the standard algorithm using Gauss-Jordan elimination work to solve this system? Recall, this
method works if entries are real numbers under regular addition/multiplication. But here we are working
over a different number system: F2 = {0, 1} under addition/multiplication modulo 2.

(b) Must there be a solution for every configuration b?

(c) If not, what is the probability a random configuration is solvable?

(d) When there is a solution for b, is it unique? If not, can we find the smallest solution (i.e. giving the least
number of button presses)?
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24.2.1 Imagine you are in a field...

The algorithm learned in linear algebra for solving linear systems of the form Ax = b is known as Gauss-
Jordan elimination (or simply as Gaussian elimination). The steps of the algorithm are as follows:

(a) Form the augmented matrix [A|b].

(b) Reduce the augmented matrix to reduced row echelon form by using elementary row operations:

• (swap) Swap any two rows.
• (scalar multiply) Multiply any row by a non-zero number.
• (replacement) Replace any row with a multiple of another row added to the row itself.

(c) Read off the solution (or conclude there isn’t a solution) directly from the reduced row echelon form.

In linear algebra we strictly used the real numbers R under addition/multiplication. If you were lucky you saw
that the same thing could be done with complex numbers C. We’d like to know, does all the theory developed in
linear algebra carry over to more abstract sets of “numbers” under some sort of “addition” and “multiplication”?
In particular what about the situation we are in with the lights out puzzle. Here our number system is

F2 = {0, 1}

and the addition and multiplication tables are defined as follows. 1

+ 0 1
0 0 1
1 1 0

* 1
1 1

Does Gauss-Jordan elimination still work?

Let’s consider a set F of objects which is closed under two operations + and ∗. What properties would (F,+, ∗)
need to satisfy in order for Gauss-Jordan elimination to still possibly work?

First note the key to having this algorithm work is that the elementary row operations must be reversible.
Clearly a row swap is reversible, just swap the rows back. Multiplying a row by a nonzero element is only
reversible if the element has a multiplicative inverse in F . Therefore, the set F ∗ = F − {0} should be a group
under ∗. Also, another key part to the algorithm was that we could use additive inverses to make entries of
the matrix 0. This means F should be a group under +.

We call a set F with two operations + and ∗ a field if the following properties are satisfied:

(a) F is an abelian group under +.

(b) F ∗ = F − {0} is an abelian group under ∗

(c) a(b + c) = ab + ac and (b + c)a = ba + ca. (distributive law)

It turns out these were the only properties of (R, +, ∗) we used in linear algebra. Therefore, everything done in
linear algebra holds true for matrices whose entries come from any field F .

Since F2 is a field with two elements then Gauss-Jordan elimination will work to solve the linear system.
Moreover, any result we want to use from linear algebra will carry over to this new setting where our “numbers”
come from F2.

1We left 0 out of the multiplication table since 0(a) = 0 for any a.
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24.2.2 Solving linear systems with SAGE.

In a first course in linear algebra you were typically asked to solve linear systems by-hand. This was to allow
you to understand the details of the Gauss-Jordan elimination algorithm. In practice, people don’t generally
solve systems of equations by hand, these are generally done by computer. We’ll now see how to use SAGE to
solve linear systems.

To solve a linear system Ax = b in SAGE, we must first define the matrix A, for example

matrix(ZZ,[[1,2],[3,4],[5,6]) defines the matrix

 1 2
3 4
5 6

, over the integers Z. Here we defined each

row. We can give SAGE a list and tell it how many rows, then have it split the list into a matrix as follows:

matrix(QQ,2,[1,2,3,4,5,6]) defines the matrix
(

1 2 3
4 5 6

)
, over the rationals Q,

Here is an example using SAGE to solve the system(
1 0 2
3 2 5

)
x =

(
3
0

)
.

SAGE
sage: M=matrix(QQ,2,[[1,0,2],[3,2,5]])
sage: b=vector(QQ,[2,0])
sage: M.solve_right(b) #command for solving Mx = b (i.e. x is right of M)
(2, -3, 0)

The command for solving a linear system Ax = b is A.solve_right(b). 2

Coming back to lights out, we first need to construct the lights out matrix A defined in (3). We could do it one
entry at a time, which would involve entering 25 · 25 = 625 numbers. This wouldn’t be fun, and if we want to
consider larger game boards than 5 × 5 we would have a lot more typing to do. Instead, we use two loops to
define A, and we do this for a general n × n board. Keep in mind, we have to tell SAGE we are working over
the field of integers modulo 2, F2. SAGE knows this field by the name GF (2), which stands for Galois Field of
size 2.

SAGE
sage: # Definition of the matrix for Lights Out
sage: # input = integer n (where lights out board is nxn)
sage: # output = lights out matrix A which is nxn
sage: def lights_out(n):
sage: M = MatrixSpace(GF(2),n*n,n*n) # tells SAGE to work with matrices in M_n(F_2)
sage: A = M.matrix() # initializes A to a matrix in M, we then define entries below
sage: for i in range(n):
sage: for j in range(n):
sage: m = n*i+j
sage: A[(m,m)] = 1
sage: if i > 0 : A[(m,m-n)] = 1
sage: if i < n-1 : A[(m,m+n)] = 1
sage: if j > 0 : A[(m,m-1)] = 1
sage: if j < n-1 : A[(m,m+1)] = 1
sage: return A

For example the lights out matrix for the 3× 3 game board is
2 Using the word “left” would be the command to solve xA = b, but in this case x and b would be row vectors, not column vectors.
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SAGE
sage: lights_out(3)

[1 1 0 1 0 0 0 0 0]
[1 1 1 0 1 0 0 0 0]
[0 1 1 0 0 1 0 0 0]
[1 0 0 1 1 0 1 0 0]
[0 1 0 1 1 1 0 1 0]
[0 0 1 0 1 1 0 0 1]
[0 0 0 1 0 0 1 1 0]
[0 0 0 0 1 0 1 1 1]
[0 0 0 0 0 1 0 1 1]

Asking for the lights out matrix for the 5×5 game returns confirmation it is stored in memory, but SAGE saves
us from having to look at it.

SAGE
sage: lights_out(5)
25 x 25 dense matrix over Finite Field of size 2

Now that A is loaded into SAGE let’s solve some configurations.

Example 24.1 Solve the following configuration:

The configuration matrix is B =


1 1 0 0 1
1 1 1 0 0
1 0 0 0 1
0 0 1 1 1
1 0 0 1 1

 which we can express as a vector

b = (1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1).

(Spaces are inserted after each group of 5 entries in b just so it is easier for us to read. ) Now we have SAGE solve
Ax = b.

SAGE
sage: #current game configuration (i.e. buttons that are lit)
sage: b=vector(GF(2),[1,1,0,0,1, 1,1,1,0,0, 1,0,0,0,1, 0,0,1,1,1, 1,0,0,1,1]);

sage: #solving the game
sage: x=lights_out(5).solve_right(b);

sage: #now lets put the solution x in a nice matrix form so we can see what buttons to press
sage: button_press_matrix = matrix(GF(2),5,5,x.list()) # convert vector to a matrix
sage: button_press_matrix # show matrix in output

[0 0 1 0 0]
[1 0 1 1 1]
[0 1 0 1 0]
[1 1 1 0 1]
[0 0 1 0 0]
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Therefore, to solve the puzzle we just need to press the 12 buttons shown in the diagram below.

Rather than have to type out the previous lines of code every time we want to solve a configuration we could
build a solve function as follows:

Lights-Out Solve function: (basic version)
SAGE

sage: # Definition of the solution function for Lights Out
sage: # input = integer n (where lights out board is nxn), and b the configuration vector
sage: # output = a matrix X indicating which buttons to press for solution
sage: def lights_out_solver(n,b):
sage: x=lights_out(n).solve_right(b);
sage: button_press_matrix = matrix(GF(2),n,n,x.list())
sage: return button_press_matrix

For our previous example we could just type:

SAGE
sage: b=vector(GF(2),[1,1,0,0,1, 1,1,1,0,0, 1,0,0,0,1, 0,0,1,1,1, 1,0,0,1,1]);
sage: lights_out_solver(5,b)
[0 0 1 0 0]
[1 0 1 1 1]
[0 1 0 1 0]
[1 1 1 0 1]
[0 0 1 0 0]

24.2.3 Solvable Configurations

A lit button configuration b is solvable if the corresponding linear system Ax = b has a solution. From linear
algebra we know

Ax = b is solvable for every b ⇐⇒ A is invertible ⇐⇒ det(A) 6= 0.

The lights out matrix (for 5× 5 game) has determinant 0. Therefore, there exist unsolvable configurations b.

SAGE
sage: lights_out(5).determinant()
0

For example, the configuration in Figure 5 is unsolvable.

SAGE
sage: b=vector(GF(2),[1,0,1,0,1, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0]);
sage: lights_out_solver(5,b)

Traceback (click to the left of this block for traceback)
...
ValueError: matrix equation has no solutions
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Figure 5: An unsolvable configuration of lights.

Recall that Ax = b has a solution only when b is in the column space of A, denoted col(A). This is just a fancy
way of saying ∑

1≤i,j≤5

xi,jTi,j = b

for some xi,j , where Ti,j are the toggle vectors, as we already know. However, phrased in this way we see that
the set of solvable configurations is col(A) = span(T1,1, T1,2, . . . , T5,5), and the dimension of col(A) is called the
rank of A, denoted rank(A).

SAGE
sage: lights_out(5).rank()
23

Therefore only 23 buttons are required to solve any configuration, and if each one can either be pressed or
not, then there are 223 solvable configurations, out of a possible 225 configurations. This proves the following
theorem.

Theorem 24.1 For the 5× 5 lights out puzzle, the probability that a random configuration is solvable is 1/4.

Quiet Patterns:
There exist sequences of button presses that will leave the lights unchanged. These are known as quiet
patterns. Such a sequence x is a solution to the homogeneous equation Ax = 0. That is, x is in the null space
of A, denoted by nul(A). The dimension of this space is nullity(A) = 25 − rank(A) = 25 − 23 = 2. If we let d1

and d2 be a basis for nul(A) then

nul(A) = span(d1, d2) = {r1d1 + r2d2 | r1, r2 ∈ F2}
= {0, d1, d2, d1 + d2}.

Therefore, there are only 4 such button sequences (vectors).

We can use SAGE to find these vectors. The command for computing the null space is .right_kernel().

SAGE
sage: lights_out(5).right_kernel()
Vector space of degree 25 and dimension 2 over Finite Field of size 2
Basis matrix:
[1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1]
[0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0]

SAGE returns a basis for the nullspace. The span of these vectors (using coefficients from F2 = {0, 1}) gives us
the complete null space. These correspond to the button presses shown in Figure 6.
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(a) 0 (b) d1 (c) d2 (d) d1 + d2

Figure 6: The 4 Quiet Patterns: These are the button press sequences in the nullspace of A.

24.2.4 Optimal solution to Lights Out

Let b be a (solvable) configuration of the lights. If x is a strategy vector (i.e. a solution to Ax = b) then the set
of all solution strategies is:

b + null(A) = {b, b + d1, b + d2, b + d1 + d2}.

The optimal solution will be the one with the fewest number of 1’s as entries.

Let’s go back to Example 24.1 and see if we can find an optimal solution. The one we found requires 12 button
presses, perhaps we can do better.

It will be convenient to have SAGE count the number of occurrences of 1 in a strategy vector. We will define a
function called number_of_presses to do this.

SAGE
sage: def number_of_presses(x):
sage: counter=0; # initialize counter, which is our variable to count 1’s
sage: for i in range(0,25): # recall Python indexes lists from 0, not 1
sage: if x[i]==1: counter=counter+1 # check if ith entry is 1
sage: return counter

Now let’s find all 4 solutions to Example 24.1.

SAGE
sage: b = vector(GF(2),[1,1,0,0,1, 1,1,1,0,0, 1,0,0,0,1, 0,0,1,1,1, 1,0,0,1,1]);
sage: x = lights_out(5).solve_right(b) # one solution
sage: nulsp = lights_out(5).right_kernel()
sage: for d in nulsp:
sage: print b+d, number_of_presses(b+d)
(0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0) 12
(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1) 8
(0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0) 8
(1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 20

There are two optimal solutions, each requiring 8 button presses. Therefore, an optimal solution to the config-
uration in Figure 7a is the strategy matrix in Figure 7b.

24.3 Summary of 5× 5 lights out puzzle

Solving a configuration b of the lights out puzzle is equivalent to solving the linear system Ax = b for strategy
vector x where A is a 25× 25 lights out matrix. All arithmetic is done in the finite field of size 2: F2 = {0, 1}.
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(a) Configuration of
lights

(b) optimal strategy matrix (c) optimal solution

Figure 7: An optimal solution requiring 8 button presses.

• rank(A) = 23, nullity(A) = 52 − rank(A) = 2

• number of solvable configurations is 2rank(A) = 223

• probability that a random configuration is solvable is 223/225 = 1/4.

• number of quiet patterns (elements in the nullspace of A) is |nul(A)| = |F2|nullity(A) = 22 = 4.

• for a given strategy vector x the 4 equivalent vectors are the elements of x + nul(A).

Putting all the previous ideas into one code block, we can write a lights out solver which returns the optimal
solution.

Lights-Out Solve function: (optimal version)
SAGE

sage: # Function: number_of_presses
sage: # input = a vector x of dimension 25 with 0,1 entries
sage: # output = the number of times 1 appears as an entry
sage: def number_of_presses(x):
sage: counter=0;
sage: for i in range(0,25):
sage: if x[i]==1: counter=counter+1
sage: return counter

sage: # Function: optimal_solution
sage: # input = a strategy vector x
sage: # output = an equivalent strategy vector which uses the least number of button presses
sage: def optimal_solution(x):
sage: op_button_presses=x # initialize variable to store optimal solution
sage: n=number_of_presses(x) # initial variable to store optimal presses
sage: nul=lights_out(5).right_kernel()
sage: for d in nul:
sage: if number_of_presses(x+d)<n:
sage: op_button_presses=x+d # update variable
sage: n=number_of_presses(x+d) # update variable
sage: return op_button_presses

sage: # Function: lights_out_solver
sage: # input = b the configuration vector of lights on 5-by-5 game
sage: # output = an optimal strategy matrix which solves the puzzle
sage: def lights_out_solver(b):
sage: x=lights_out(5).solve_right(b); # one solution
sage: x=optimal_solution(x) # exchanges x for an optimal solution
sage: button_press_matrix = matrix(GF(2),5,5,x.list()) #make output vector into a matrix
sage: return button_press_matrix
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As an example, to solve the configuration in Figure 8a we proceed as follows.

SAGE
sage: b=vector(GF(2),[0,1,0,0,0, 1,1,0,1,1, 1,1,1,1,0, 1,1,1,1,1, 1,0,1,0,1]);
sage: lights_out_solver(b)

[0 0 0 0 1]
[0 1 0 1 1]
[0 0 0 1 0]
[1 0 0 1 0]
[0 0 0 1 0]

(a) Configuration of
lights

(b) optimal solution

Figure 8: An optimal solution requiring 8 button presses.

24.4 Other sized game goards

Lights Out has be modified and generalized in many ways: bigger games boards, different toggle conditions,
more states (colours) for the lights to cycle through.

Here we mention briefly some results about larger games boards. We assume the toggling condition is the same
as for the 5×5 game board. Let An be the lights out matrix for the n×n game board. The key to understanding
solvability lies in knowing the whether the n2 − rank(An) is 0 or not. If it is 0 then An has full rank, and so
it’s columns are linearly independent, therefore An is invertible. This means every configuration is solvable.
If it is non-zero then rank(An) < n2 so An is not invertible, therefore there exist configuration which are not
solvable. Moreover, the number of different solutions for a given configuration (if the configuration is solvable)
is 2nullity(An) = 2n2−rank(An).

Table 1 lists the values of n2 − rank(An) for 3 ≤ n ≤ 10.

n rank(An) nullity(An) = n2 − rank(An)

3 9 0
4 12 4
5 23 2
6 36 0
7 49 0
8 64 0
9 73 8
10 100 0

Table 1: nullity(An) and rank(An) for various boards sizes of lights out.
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24.5 Light-Chasing Strategy

There is a strategy for solving the 5 × 5 lights out puzzle which, though not optimal, will allow you to solve
the puzzle without having to solve a linear system. The technique is known as light-chasing. Begin with the
top row and press the button beneath any lit button in the top row. This will turn out all lights in the top row.
Apply this strategy row by row until you reach the bottom row.

The lights in the bottom row will be one of the 7 configurations shown in Table 2, press the corresponding
buttons in the top row as indicated in the table. Then apply the light-chasing strategy again, beginning from
the top row. This will solve the puzzle.

Lights on bottom rown Press these on top row

Table 2: Light-chasing strategy

24.6 Exercises

1. Solve each of the following configurations.
(You can use the Lights-out puzzle on Jaap’s puzzle page to edit the lights, then try out your solution.)

(a) (b) (c) (d)

2. Show the following configuration is not solvable.
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