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fanwugq: Just solve one corner at a time like LBL until you get to last layer. Then, you can just use
commutators to solve the rest of the corners.

JBogwith: I'm sorry, I don’t understand. I can get to the last layer, it is then where I get stuck.
What are commutators?

www.speedsolving.com forum discussion. Dec. 2007

In this lecture we look at a product known as a commutator. These types of move sequences are useful for
creating moves on permutation puzzles.

Commutators are discussed in Section 5.8 of Joyner’s text.

13.1 Commutators

When playing with permutation puzzles, certain move sequences can occur more often than others. For in-
stance, a move sequence of the form “move 1, then move 2, then inverse of move 1, then inverse of move 2”
turns out to be quite useful. This type of move is called a “commutator”. As you read through this lecture, you
will find it useful to have a puzzle on hand to try things out for yourself.

Definition 13.1 If g, h are two elements of a group G, then we call the element
[9,h] = ghg™'h™"

the commutator of g and h.

Note that if ¢ and h commute then [g, h]| = e. To see this observe,
[9,h] = ghg™'h™" = (gh)(g~*h™") = (hg) (g~ 'h™") = h(gg~")h™! = heh " = hh™' =e.
Conversely, if [g,h] = e then g and h commute. See Exercise Commutators are useful in mathematics

wherever non-commutative operations occur.
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The commutator [g, h| provides a measure of how much g and % fail to commute with each other. In particular.
if g and h are permutations and they fail to commute with each other by “just a little bit” then [g, h] will be
close to the identity, i.e. it will only permute a few numbers. This is why commutators will be of interest to us
in solving permutation puzzles, they will help us to “create” good moves. You may have just realized that you
frequently use “commutator moves” when solving puzzles, if this is the case then you already have a working
understanding of commutators.

Example 13.1 Consider the symmetric group Ss and the elements s; = (1,2), s2 = (1, 3,2). Then the commuta-
tor [s1,s2] is
[s1,82] = 51828;1351 =(1,2)(1,3,2)(1,2)(1,2,3) = (1,3,2),

and the commutator [sq, s1] is
[827 51] = 525152_131_1 = (17 3, 2)(1v 2)(15 2, 3)(17 2) = (17 2, 3)

It is not a coincidence that [ss,s1] = [s1, s2] !, see Exercise

13.2 Creating Puzzle moves with Commutators

We will explore some properties of commutators of permutations and then see how we can apply what we learn
to our standard collection of puzzles.

For a permutation a € S,, define the fixed set of « to be the set of all numbers in Z,, = {1,2,3,...,n} that «
doesn’t move:
fix(a) = {m € Z,, | a(m) = m}.

The set of numbers that are not fixed by «, the ones that are moved, is the compliment of this set, which we
denote by M,:

M, =fix(a) = {m € Z,, | a(m) # m}.
By way of contrast we will refer to this as the moved set of «. fix(«a) is precisely the set of numbers that would
appear as 1-cycles in the disjoint cycle form of «, and M, are those numbers that appear in cycles of length
> 2. Since a and o~ ! fix precisely the same objects It follows that fix(a) = fix(a~!) and M, = M, 1.

In terms of permutation puzzles, M, is the list of all positions where the pieces are moved when « is applied,
and fix(«) are those positions where the pieces are left alone.

We'll need one more bit of notation to simplify things to come. For a subset A C Z,, and a permutation a € S,,,
we denote the set of all images of the elements of A under a as aA: [[]

aA = {a(m)|me A}.

Since « is injective then |aA| = |A|.

Example 13.2 For o = (1,7,3,4,12)(5,9) € Si3, the set of objects that are moved is M, = {1,3,4,5,7,9,12}
and the set of objects that are fixed is fix(a) = {2,6,8,10,11,13}. For A = {2,4,6,8,10,12} and B = {3,7,11},
ad = {a(2),a(4), a(6), a(8),a(10),a(12)} = {2,12,6,8,10,1}, and aB = {a(3),a(7),a(11)} = {4,3,11}. This can
be done in SAGE by using the map function: map (£, L) applies function f to each element of a list/set 1.

SAGE

sage: S13=SymmetricGroup (13)

sage: a=S13("(1,7,3,4,12)(5,9)™")

sage: map(a,Set([2,4,6,8,10,12]))

[2,12,6,8,10,1]

sage: map(a,Set ([3,7,11]))

[4,3,11]

IThis type of set is sometimes denoted by a/(A).
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Now we are ready to investigate why the commutator [«, ] is likely to be “close” to the identity.

Let o, € S,,, and m a number in Z,. Then m is moved by the commutator [, 5], i.e. m € M, g if both:

(a) m € M, or 3(m) € M,, and
(b) m € Mg or a(m) € Mg .

In set notation, we can write this as:

M5 C (Mg Ua™' (Mg)) N (Mg U B~(M,)). 1)

To see why (b) is true assume that m, a(m) ¢ Mg, then [a, 5] must leave m fixed:

[, B](m) = (aBa'B71)(m) = B~ (a ' (Bla(m))) = 67 (a"H(a(m))) = 67 (m) =m,
so m & M, g. This proves (b). The proof of (a) is analogous.

We can describe the set of pieces that are moved in a more verbal way. First we need an alternate expression
for . An equivalent way to write the set on the right in (1) is (M, N Mz) U~ (M, N Mg) U B~ (M, N Mpg).
This follows from the facts that v(M; N M,) = yMsN~yM, and v~ M, = M., (See Exercises|[7|and . Therefore,

Mo C (Mo N Mg)Ua™ (Mo N Mg)U B~ (Mg N Mpg). 2)

Notice M, N Mg is the set of pieces affected by both a and 3, and a~'(M, N Mp) is the set of pieces that are
moved to M, N Mg by «, and 3~ (M, N Mp) is the set of pieces moved to M, N Mz by 3. In words says the
following:

Remark 13.1 If a and (3 are puzzle moves, the permutation produced by [«, 5] only affects pieces that are in, or
moved to, locations that are moved by both o and (3.

This remark will guide our choices for o and 5. We want very little overlap in these two moves, and we want
very few new pieces moved into this overlap. It can be challenging to find two moves with this property, but
we can state some weaker conditions as to when [«, 3] may still be a good move.

Since |a~'(Mp)| = |Mg| and |3~!(M,)| = |M,| then (1) tells us that |M], g is at most twice the size of the
smaller of the sets M, and Mj:

| M 5| < 2min{| M|, |Mgl}. (3)

So if one of | M, | and |Mp| is small, then so is [M|, g|. Which means [a, 3] may be a good puzzle move. We can
actually say something more here.

Remark 13.2 If the commutator [«, 3] is to move the fewest possible pieces then o should bring as few new
pieces into the locations where they will be moved by 3. In other words, a~'(Mpg) N M, should be small.

This remark is weaker than Remark but its conditions are sometimes easier to check in practice. With
that little bit of theory behind us, let’s put it into practice on a number of our favourite puzzles.

13.2.1 Rubik’s Cube
Here we consider the Rubik’s cube group RC3 generated by permutations R, L, U, D, F, B. It is best if you have
your Rubik’s cube handy as your read this part of the lecture.

Consider the move sequence URU ' R~'. Although it is not the identity (apply it to your cube to see this), it is
a lot less complex than U R alone.

Jamie Mulholland, Spring 2011 13-3
Math 302



faculty of science
SFU department of mathematics LECTURE 13 COMMUTATORS

SAGE

sage: S48=SymmetricGroup (48)

sage: R=S48("(25,27,32,30) (26,29,31,28) (3,38,43,19) (5,36,45,21) (8,33,48,24)")
sage: L=S48("(9,11,16,14) (10,13,15,12) (1,17,41,40) (4,20,44,37) (6,22,46,35)")
sage: U=S48("(1,3,8,6) (2,5,7,4)(9,33,25,17) (10,34,26,18) (11,35,27,19)")

sage: D=S48 (" (41,43,48,46) (42,45,47,44) (14,22,30,38) (15,23,31,39) (16,24,32,40)")
sage: F=S48("(17,19,24,22) (18,21,23,20) (6,25,43,16) (7,28,42,13) (8,30,41,11)")
sage: B=S48 (" (33,35,40,38) (34,37,39,36) (3,9,46,32) (2,12,47,29) (1,14,48,27)")

n

"

n

sage: RC3=3548.subgroup([R,L,U,D,F,B]) # define Rubik’s cube group to be RC3
SAGE
sage: commutator = lambda x,y: x*xyxx" (=1)*y~ (-1) # define a function called commutator

sage: commutator (U,R)

(1,3,9,33,35,27) (2,5,21) (8,24,19,43,25,30) (26,28,34)

sage: commutator (U,R) .order ()

6

sage: UxR

(1,38,43,19,11,35,32,30,25,17,9,48,24,8,6) (2,36,45,21,5,7,4) (3,33,27) (10\
,34,29,31,28,26,18)

sage: (UxR) .order ()

105

In the above code we defined a function called commutator which takes two arguments x and y and returns
the product zyz—'y~!'. We use a Python lambda function to do this, which is just a quick way to define a
function in one line where no complicated decision making has to be done. Of course, we really didn’t need to
define the function, we could have just typed in UxR+«U"-1+R"—1, but with this function now defined we can

quickly work out other commutators with less typing (just cut-and-paste).

Why should we have expected URU 'R~ to be less complicated than UR? Many of the pieces that are moved
by UR are returned to where they started by U~'R~'. For instance, consider the cubie in the uf! cubicle. The
move U sends it to the ubl cubicle which is untouched by the move R, then it is moved back to the u fI cubicle
by move U~!, and finally move R~! leave it where it is. This means the move sequence URU ~'R~! leaves the
ufl cubicle untouched.

In general, if a piece is moved by U to a place that is not moved by R, then it will be moved back by U~ to
where it started. If the place where it started is not moved by R~! — or equivalently, is not moved by R — then
URU~'R~! ends up leaving the piece where it started. Only where there is an overlap of the moves U and R
are the pieces affected. The permutation produced by URU 'R~ only affects pieces that are in, or moved to,
locations common to both the up and right faces. This is precisely what (2) (and thus Remark [13.1) says. See

Figure 12

ulb _ub urb
- ur
ufr
fr
frd
(a) Possible cubies moved by (b) Z-commutator: Shading indicates (¢) Y-commutator: Shading indicates
URU-1R™ 1 locations changed by FRF—1R~1 locations changed by FR~'F~1R

Figure 1: Y- and Z- commutators

In terms of the notation introduced, since the 3 pieces moved by both U and R are My N Mr = {urf, ur, urb},
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and the pieces moved to these positions by U and R are:

UY(My 0 Mg) = {ubr,ub,ubl} and R~ '(My N Mg) = {ird, fr, frb},
then URU'R~! moves at most the 7 pieces shaded in Figure

Commutators of two faces which share an edge occur so frequently that they have been given special names:
the Z-commutator is [F,R] = FRF'R™!, and the Y-commutator is [F, R~!] = FR™'F~'R . The names,
Z-commutator and Y-commutator are used regardless of which two adjacent faces are used, all that matters is
both faces are turned in the same direction (Z-commutator), or turned in opposite directions (Y-commutator).
See Figure

The cycle structure of a commutator may be such that taking powers of it will kill-off some cycles, and therefore
reduce the number of pieces moved even further. This is illustrated in the next exercise.

Exercise 13.1 If x and y are basic moves of Rubik’s cube associated with faces that share an edge, verify that

(a) [v,y)? permutes exactly 3 edges and does not permute any corners;

(b) [z,y]® permutes exactly 2 pairs of corners and does not permute any edges.

Let’s try to create a move-sequence, using commutators, that moves only a few pieces of the cube around.
Looking back at (2) (and Remark [13.1) we keep in mind that for any move sequences z and y, the commutator
only affects pieces that are in, or moved to, locations that are moved by both 2 and y. For example, consider
the move

r=LD?*L™ .
Amongst other things, this move sequence takes rbd to ufl, and leaves all other cubies in the up face in their
original positions. If we then consider the move

y="U,

there is only one cubie that both 2 and y move: the ufl cubie. Since y only moves ufr to ulf, and x only
moves rbd to luf, then the only cubies that are possibly affected by [z,y] are: ufl, ufr, and rbd. Trying this
new move sequence out we see it moves all 3 of these cubies: the ones shaded in the Figure [2|The order of
[z,y] = [LD?*L~',U] is 3.

N

N

[~

Figure 2: cubies moved by [LD*L™*,U].

SAGE
sage: commutator (LxD"2«L" (-1),0U)
(6,8,38) (11,19,32) (17,25,48)
sage: commutator (LxD"2%L" (-1),U) .order ()
3

As another example, let’s construct a move to untwist two corner pieces. Consider the two moves

r=L"'D?LBD?B™!, and y=U.
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The first move may look a little complicated, but try it out for yourself. It is actually quite simple: it moves ulb
to the bottom layer, then brings it back into its home location, but twisted into position blu. The only location
that is affected by both = and y is ulb, but x does not move it to another location, it only twists it in place.
Once r is applied, then applying y followed by ! restores the down and middle layers of the cube, and will
untwist the piece that moved from ulf to ubl by y. Finally y~! moves the piece that started in uf! back home,
but now twisted. The result is that [z, y| twists the corner piece in ulf clockwise, and the corner piece in ulb
counter-clockwise as shown in Figure |3, When we write the move sequence for [z,y] = [L"'D?LBD?*B~!,U] it
is an impressive 14 moves long:

[z,y] = L 'D?*LBD*B~'UBD*B~'LD*L~'U~".

Figure 3: cubies moved by [L~'D?*LBD?*B~,U].

The move notation that we are using doesn’t take into account that we can twist the whole cube around in
our hands. This may make it difficult to see that a move sequence is a commutator. For example, the move
sequence

r=U?LR'F’L™'R

doesn’t look like it has the form of a commutator. However, if we let R denote a clockwise rotation of the whole
cube around an axis through the right face, then F2 can be written as RU>R ' and so z can be seen to be the
move sequence:

x=U’LR'RU?*R'RL!
= [U%,LR™'R],

which is a commutator. This move sequence is order 3 and permutes 3 edge cubies as shown in Figure

Figure 4: cubies moved by [U?, LR™'R| = U’LR™'F?L™'R.

13.2.2 Hungarian Rings

We now consider the Hungarian Rings group H R generated by permutations R and L. It is best if you have
your puzzle handy (virtual or physical) as your read through this part.
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Figure 5: Hungarian rings puzzle.

Since each move affects over half the pieces of the puzzle then isn’t very helpful. It says a commutator
moves at most 40 pieces, but this is more than the number of pieces on the puzzle. However, using Remark
13.2|as a guide will help us create moves that affect only a few pieces.

This puzzle has the feature that the two rings intersect at only two locations (1 and 6), so the two moves L
and R have very little overlap. Specifically, M = {1,2,3,...,20} and My = {1,6} U {21,22,...,38}, and the
intersection is My N Mr = {1,6}. Consequently, from (2) a commutator [R?, L7], 1 < i,j < 19, moves at most 6
disks:

Mpi 1) ={1,6} UR{1,6} UL/{1,6} 4)
={1,6,R7"(1), R7%(6), L79(1), L77(6)}. (5)

Remark 13.3 On the Hungarian Rings puzzle, any commutator of the form [L¢, RY] moves at most 6 disks.

This maximum number can be reached, for example the commutator [L, R~!] moves 6 disks: 1,2, 6,7, 34, 38.

SAGE

sage: S38=SymmetricGroup (38)

sage: L=S38("(1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)")

sage: R=S38("(1,38,37,36,35,6,34,33,32,31,30,29,28,27,26,25,24,23,22,21)")

sage: commutator (L,R" (-1)) # this is our user defined function - see a previous code block
(1,38,2) (6,34,7)

For [L*, R7] to move fewer than 6 disks we would need some elements in @) to be the same. Remark tells
us we should look for a move L7 which moves as few new disks into spots 1 and 6 as possible. The values of
j that do this are 5 and 15 (or equivalently —5). If we take i,j € {5,15} then one of L=%(1) = 6 or L=¢(6) = 1
is true, and one of R7(1) = 6 or R77(6) = 1 is true, which means Mz ;;) has 4 elements. This gives the
following.

Remark 13.4 On the Hungarian Rings puzzle, any commutator of the form [L', R’]| where i,j € {5,15} moves
exactly 4 disks.

As an example,
[L°,R7°] = (1,6)(11,30), and [L™° R°] = (1,6)(16,25).

Knowing these commutators is enough to solve the colour version of this puzzle. We’ll pick this up in a later
lecture.

We could have SAGE determine all the powers i and j for which |M[.: )| = 4. The first line of code below
defines a function M whose input is a permutation a and whose output is the set of all numbers between 1 and
n which a moves. The command len (a.tuple ()) just gets the value of n from the permutation in cycle form
by first converting the permutation to a list, then computing its length.
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(a) LR™5L73R5 (b) L=3R5L5R™5

Figure 6: Basic commutators on the Hungarian Rings puzzle

SAGE
sage: M= lambda a: Set ([ m for m in (l..len(a.tuple())) 1if a(m)'!=m])
sage: for i in range(1l,20):
sage: for j in range(1l,20):
sage: if M(commutator (L~ (i),R"(J))) .cardinality()==4:
sage: print i, Jj
55
5 15
15 5
15 15

13.2.3 Oval Track Puzzle

The Oval Track group OT generated by permutations R and 7. As with the other sections, it is best if you have
your puzzle handy (virtual or physical) as you read through this part.

3

©2.00000

IK ';r
(7 OF

Vooee00

15 14 13 12 11

Figure 7: Oval Track puzzle.

A natural type of commutator to consider for this puzzle is [R?, T] where R’ is a rotation of the disks around the
track by i positions, and T is a rotation of the turntable. In this case Mz = {1,2,3,...,20} and Mr = {1,2, 3,4},
and so by (3) a commutator of this type will move at most 2 min{20,4} = 8 disks.

This maximum can sometimes be reached, for example the commutator [R=4,T] = (1,4)(2, 3)(5,8)(6,7) moves
8 disks: 1,2,3,4,5,6,7,8.

For the commutator [R~!, T] the numbers of disks moved is less. This is because R~! moves only one new disk
into the turntable, namely disk number 5. As a result [R~!,T] = (1,4,2,5, 3) only moves 5 disks: 1,2, 3,4, 5.

SAGE

sage: S20=SymmetricGroup (20)
sage: R=520("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
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sage: T=S20("(1,4)(2,3)™")

sage: 0T=S20.subgroup([R,T])

sage: commutator (R" (-4),T) # this is our user defined function - see a previous code block
(1,4)(2,3) (5,8) (6,7)

sage: commutator (R”(-1),T)

(1,4,2,5,3)

We will look for a commutator of the form [R~%, 7] with a useful cycle structure. We can run a simple loop in
SAGE to see this quite quickly.

SAGE
sage: for i in (1..19):
sage: print i, commutator (R” (-1),T)
1 (1,4,2,5,3)
2 (1,4,5)(2,3,6)
3 (1,4,7)(2,3) (5,06)
4 (1,4)(2,3)(5,8)(6,7)
5 (1,4)(2,3)(6,9) (7,8)
6 (1,4)(2,3)(7 10) (8,9)
7 (1,4)(2,3)(8,11) (9,10)
8 (1,4)(2,3)(9,12) (10,11)
9 (1,4)(2,3)(10,13) (11,12)
10 (1,4)(2,3)(11,14) (12,13)
11 (1,4)(2,3)(12,15) (13,14)
12 (1,4)(2,3)(13,16) (14,15)
13 (1,4)(2,3)(14,17) (15,16)
14 (1,4)(2,3)(15,18) (16,17)
15 (1,4)(2,3)(16,19) (17,18)
16 (1,4)(2,3)(17,20) (18,19
17 (1,18,4) (2,3) (19,20)
18 (1,20,4)(2,19,3)
19 (1,3,20,2,4)

For 4 < i < 16 it is no surprise the cycle structure is a product of four disjoint 2-cycles. The commutator [R~¢, T
brings four new disks: disks ¢ + 1,7 + 2,7 + 3,4 + 4, into the turntable, permutes them, then sends them back,
and finally it permutes the original four disks: 1,2, 3, 4. The resulting permutation is:

[R,T) = (1,4)(2,3)(i+1,i +4)(i +2,i+3) for4 <i<16.

Consider the case when i = 1,2,3. The cases when i = 17,18, 19 are similar, only the rotation move R~ is
clockwise 20 —i spots. Perhaps at this point we should mention why we are considering a negative exponent on
R. This is really just because for i = 1,2,3, [R~%, T] only brings other small numbered disks into the turntable.
If we were to rotate clockwise first, then some high numbered disks (i.e. 20, 19, etc) would enter the turntable.
Eventually we would like to consider variations of the puzzle where the number of disks is changed, so it would
be nice to have our results expressed in such a way that does not depend on the total number of disks.

The commutator [R~3,T| has a particularly advantageous cycle structure, it consists of one 3-cycle and two
2-cycles. We can kill-off the 2-cycles by applying the commutator twice:
[R72,T]? = ((1,4,7)(2,3)(5,6))* = (1,4,7)*(2,3)*(5,6)*
=(1,7,4).

This should be a useful move to know in solving end-game problems on this puzzle. Also, since commutators
are even (see Exercise [1)) this is the smallest permutation we could get using products of commutators.
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(@) R™3TR3T = (1,4,7)(2,3)(5,6) () (R™3TR3T)2 = (1,7,4)

Figure 8: Basic commutators on the Oval Track puzzle

13.3 Exercises
Let a, 8 € S,,. Show that the commutator [«, 5] is an even permutation.

Show that if [g, h] = e then g and h commute.
Let G be a group and g, h € G, show that [g,h] ™! = [h, g].

L

Prove each of the following.

a, (] if and only if [a, 3] = [3,a"1].
(b) A permutation commutes with the commutator [, 3] if and only if [3,a] = [a~ 1, 3].
(c) Both o and 3 commute with [, ] if and only if [a, 3] = [3,a"!] = [371, .

(a) A permutation commutes with the commutator

5. We have already seen that if & and 5 commute then (a3)™ = o™(". But this can fail if & and 5 do not
commute. Show that if o and 3 satisfy the weaker hypothesis that both commute with [«, 5], then for
every positive integer n, (a3)" = a™3"[3, a]*(*~1/2,

6. Let a, 3 € Sh,.

(a) If M, and Mgz have no locations (elements) in common (i.e. M, N Mz = (), what is the permutation
of [a, f]?

(b) If M, and Mg have two locations (elements) in common (i.e. |M, N Mg| = 2), what is the largest
number of locations which can be in M, g.

(c) If M, and Mp have two locations (elements) in common, what are the possibilities for M, g|.
7. Let v,0,0 € S,. Prove the following.

(a) M, =M,

(b) v 'M, =M,

(c) y(Ms N M,) =~vMs N\ yM,
8. Prove that for permutations « and 3,

(Mg Ua™t(Mg)) N (M, UB (M) = (My N Mg)Ua™ (M, N Mg)U B~ (M, N Mpg).

(Hint: Use the Distributive Law: AN (BUC) = (AN B)U (AN C), and the results of Exercise[7})

Rubik’s Cube:
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9. Find the order of the Y-commutator [F, R~!] = FR™!F~!R and of the Z-commutator [F, R] = FRF~ 'R~

10. Find the order of [R, [F, U]].
11. What is the permutation produced by [F, R~!|[R,U~1|[U, F~1]?
12. Show that

(a) [F,R~'° = R~[F,R|R
(b) [F~1,R~!] = R-'F~1[F,R|FR.

13. What is the permutation produced by [(R*U?F?)3, U?]?

14. 3-cycle of corners. In this exercise you will build as a commutator a move which cycles 3 corner cubies

as shown in the diagram.

(a) To begin with, consider the move sequence o = F~'D 'FR™'D?RF~'DF. Verify that this move
swaps the two corner cubes in the up layer, keeping their orientation (i.e. the up colour remains in
the up face, which in the diagram is indicated by black). The lightly shaded cubies in the middle
and down layer in the diagram move around, but the unshaded cubies remain fixed.

|

- >
* >

You may wonder how this move was constructed. The idea is to basically take one or two cubies from
the up layer, move them to the bottom layer, do some various moves, then bring them back to the up
layer. Since we don’t require pieces in the middle and down layers to be returned home, coming up
with these moves isn’t so difficult.

(b) Since « only affects two cubies in the up layer, let 3 = U and consider the commutator [a, §]. Can
you predict the effect of this move on the cubies? Hint: Remark tells us which cubies can be
affected. And with a little more thought you should be able to see how they are affected.

(c) Perform the move [o, 8] = F~!D 'FR'D?RF'DFU(F'D-'FR'D?RF~'DF)~1U~! and verify
your prediction from the previous part.

15. Flip 2 adjacent edges. Let S/ denote the “slice move” which consists of rotating the middle slice,
parallel to the R face, in the clockwise direction, from the perspective of the R face. Consider the move
sequence

a = SLRUSLR' U SLrUZSI, .

(a) Verify « flips the edge in the fd position, and fixes everything else in the down layer.
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(b) Since « only affects one cubies in the down layer, let 5 = D and consider the commutator [, 5]. Can
you predict the effect of this move on the cubies?

(¢) Perform the move [«, 5] and verify your prediction from the previous part.

16. Another, flip 2 adjacent edges. If we instead would like to flip 2-edges in the up layer. We could
consider the move sequence
a=Sl'DStrD™ St D*Stp.

(a) Verify « flips the edge in the uf position, and fixes everything else in the up layer.

(b) Since « only affects one cubies in the up layer, let 5 = U and consider the commutator [a, 5]. Can
you predict the effect of this move on the cubies?

(¢) Perform the move [a, 8] and verify your prediction from the previous part. The move sequence should
produce the double edge flip as shown in the figure below.

17. Flip 2 opposite edges. Find moves « and ( so that the commutator [«, 5] flips two opposite edges
(as shown in the diagram below), and fixes everything else. (Hint: Modify the moves in the previous
exercise.)

18. Investigate the commutators [«, 3] for each of the following choices of @ and 3.

(a) a=RUR 'and f=D"!
() a =F 'D'FR'D?RF~'DF and 8 = U?
(¢) a=RUR'W'RUR 'and 8= D!
d) a= Sél_%l and 8 = 5651. (S¢x denotes a slice move of the middle slice parallel to face X.)
19. Create some of your own moves using commutators. Start by creating a move o which affects very few

cubies in the up layer. Then take the commutator with 5 = U. Try to predict what your move with do
before you even apply it.

Hungarian Rings:

20. Exploring the following commutators on the Hungarian Rings puzzle. Express the resulting permutation
in disjoint cycle form.
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(a) [L, R] (d) [R,L71] (® [L°, R G [R°, L]
() [L,R™] (e) (L, R] (h) [L, R (&) [L~5, R~
© [R,I] ) [R, L% @) [L°, R?) W) [L°, R~

21. Getting a 3-cycle with compound commutators. In this exercise we investigate the compound com-
mutator: [[L°, R%], R"'LR]. It may look pretty complicated at first glance, but its construction has been
well controlled. Let o = [L?,R] and 3 = R™!LR, so the compound commutator is [«, 3]. The overlap
of pieces moved by both a and 3 consists of a single disk as we'll see below. This indicates that the
commutator [«, 8] will likely be a good move to know.

(a) Show that the permutation corresponding to the commutator o = [L5, R%] is (1,25)(6,11). Conclude
that M, = {1,6,11,25}.

(b) Show that the only pieces of the right ring that 5 affects are the pieces in positions 34 and 38. Note
that 8 affects all pieces in the left ring, except for 1 and 6. Conclude that

Mgy = (My —{1,6}) U {34,38} = {38} U{20,19,18,...,8,7} U {34} U {5,4,3,2}.

(¢) If you didn’t already do so in the previous part, determine the cycle form of 3.

(d) Show that M, N Mg = {11}.

(e) Show that a=1(M, N Mp) = {6} and 3~(M, N Mg) = {12}.

(f) Conclude from formula (2) that [«, 5] moves only 6,11, and 12, and verify that [«, 5] = (6,11, 12).
Note: One could just use SAGE to compute [, 8] = [[L®, R%], R"1LR], however this wouldn’t help to
understand how to “build” this useful commutator in the first place. The exercises above are to get

you to investigate how the commutator was constructed, so you may discover how to build your own
commutators in the future.

Oval Track:
22. Determine the permutation corresponding to the commutator [R~'TR,T] on the Oval Track puzzle.

23. Consider the variation of the Oval Track puzzle where the turntable move T corresponds to the permu-
tation 7' = (4,3,2,1). See Figure[9]

(a) Show that [R™1,T] = (1,2,5).
(b) Show that [T—1, R=1] = (1,5, 4).
(c) Show the product [R~1, T[T, R71] is (1,2,4).

(d) Since commutators are even, so is any product of commutators. This means that 3-cycles are the
best we can do. However, the turntable move T is odd, so combining this move with a commutator
may allow us to produce a 2-cycle. See what the product [R~!, T][T~!, R~!|T gives you.

24. Varying the turntable move 7T of the Oval Track puzzle. In this exercise you will investigate, with
the help of SAGE , some variations of the Oval Track puzzle. In all variations?, we assume there are
20 disks, and the usual move consisting of rotating the pieces along the track is R. We will vary the
turntable move 7. We have already investigated commutators on OT 1, the original Oval Track puzzle.
In the previous exercise we investigated commutators on OT 2 where the turntable moveis 7' = (4, 3,2, 1).
In each case below, write out the permutation resulting from the commutator in cycle form.

2Variation names are due to John O. Kiltinen who studies these in his book: Oval Track and other Permutation Puzzles.
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Figure 9: Oval Track puzzle variation for Exercise

(@) [R7,T)on OT 2 where T = (4,3,2,1) () [R71,T? on OT 4 where T = (5,4,3,2,1)

(b) [R~2,T) on OT 2 where T = (4,3,2,1) (g [R7,T)on OT 5 where T = (1,2)(3,4)

(¢) [T?,R7%] on OT 2 where T = (4,3,2,1) (h) [R72,T) on OT 5 where T = (1,2)(3,4)

(d) [R71,7?] on OT 2 where T = (4,3,2,1) () [R73,T) on OT 5 where T = (1,2)(3,4)

(e) [R~1,T) on OT 4 where T' = (5,4,3,2,1) () [R75,T) on OT 17 where T = (1,6)(2,5)(3,4)
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