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A Rubik’s cube is made up a number of different pieces. There are corner cubies, edge cubies, and
center cubies (see Lecture 1 for definitions of these terms). Each collection of these pieces forms a
set. Part of understanding how these pieces move around will be to understand how the cube moves
(F, B, R, L, U, D) act on these sets. In this lecture we recall some basic terminology and notation from
set theory which will form the foundation for our mathematical investigations into Rubik’s cube and
other puzzles.

This lecture corresponds to material in Section 1.2 of Joyner’s text.

2.1 Sets and Subsets

A set is a well-defined collection of objects. The objects of the set are called elements, and are said
to be members of, or belonging to, the set.

By well-defined we mean that for any element we wish to consider, we are able to determine, under
some scrutiny, whether or not it is a member of the set.

Typically we will use capital letters, such as A, B, C, ... to represent sets and lower case letters to
represent elements. For a set A we write z € A if z is an element of A, and y ¢ A if y is not an
element in A.

Sets are usually defined in one of two ways:

(a) Listing all of its elements in braces: A = {a,b,c,...}. For example A = {1,2,3,4,5} is the set of
integers from 1 to 5. Therefore, 3 € A, but 6 ¢ A.

(b) Using set-builder notation: A = {x | x has property P}. For example we could define the previ-
ous set A as {z | z is an integer and 1 < z < 5}. The vertical bar “ | ” is read “such that”. The
symbols {z | ...} are read “the set of all z such that...”.

Some basic sets of numbers we should be familiar with are:
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e 7 = the set of integers ={...,—2,—-1,0,1,2,3,...},
e N = the set of nonnegative integers or natural numbers ={0,1,2,3,...} ={z € Z |z > 0},

e 7T = the set of positive integers = {1,2,3,...} ={x € Z | x > 0},
e Q = the set of rational numbers = { % ) a,be€Z,b+# 0},

e QT = the set of positive rational numbers = {z € Q |z > 0},
e R is the set of real numbers.

e 7, =1{1,2,...,n} = the set of integers from 1 to n, where n € Z*.

Let A and B be sets. If all the elements of A also belong to B then we say A is a subset of B and we
write A C B. For example, Z" C Z since every positive integer is itself an integer, but Q ¢ Z, since
there are rational numbers that are not integers, consider %

Two sets A and B are said to be equal, and we write A = B,if A C B and B C A.

If a set has a finite number of elements then we say it is an finite set. Otherwise it is an infinite
set. For any finite set A, |A| denotes the number of elements in A and is called the cardinality, or
size, of A. For example, |Z,| = n, whereas Z in an infinite set.

The empty set, or null set, is the set that contains no elements. The empty set is denoted by 0, or
{}, and has that property that |()| = 0.

Let A and B be two sets. The set of all elements belonging to either A or B is denoted A U B and is
called the union of A and B. The set of all elements belonging to both A and B is denoted A N B
and is called the intersection of A and B. The set of all elements not belonging to A is denoted A°
or sometimes by A, and is called the complement of A. E] The set of all elements in A that are not
in B is denoted A — B and is called the difference of A with B. We sometimes refer to this as A
take away B.

The Cartesian product of A and B is the set of all ordered pairs (z,y) where z € A and y € B and
is denoted by A X B.

The following summarizes the different operations we have on sets:

AUB={z |z € Aor z € B},
ANB={z |z € Aand zx € B},

A°=A={z|z ¢ A},
A-B={z|zcAandx ¢ B} = AN B°
Ax B=A{(z,y)|r € Aand y € B}.

We call two sets disjoint if they have not element in common: A and B are disjoint if AN B = ().

! Sometimes Z, is defined to be the set {0,1,2,...n — 1}. When reading the literature you should be aware of which
definition the author is using.

2In defining the complement we need to specify the elements we are considering, that is we need to consider A4 as a
subset of some larger set. To see why, just think about what could be meant by Z“? Does this mean all elements in Q not in
Z, or all elements in R not in Z, or something else entirely. The larger set to which we consider A as a subset will be called
the universe or universe of discourse denoted by U. It will be clear, given the context, as to what universe we are working
in. What this means though is that we should really write A° = {z | x € U/ and & A}.
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2.2 Laws of Set Theory

Some of the major laws that govern set theory are the following.

For any sets A, B, and C taken from a universe U/

1) (A9)°=4 Law of Double Negation
2) (AUB)¢=A°NnB°

(AUB)¢ = A°N B¢
3) AUB=BUA

DeMorgan’s Laws

Commutative Laws

ANB=BnNA
4) AUu(BuC)=(AuB)UuC o
AN(BNnC)=(ANnB)NC Associative Laws
5 AU(BNC)=(AUB)N(AUC) o
AN(BUC)=(ANB)U(ANC) Distributive Laws
6) AuA=A
ANA=A Idempotent Laws
7 AUb=A .
ANU=A Identity Laws
K G Y Inverse Laws
ANAc =10
9) AuU=A o
AN =0 Domination Laws

100 AU(ANDB)

—A ‘
AN(AuB)=A Absorbtion Laws

These set theoretic laws are similar to the arithmetic properties of the real numbers, where “U” plays
the role of “+”, and “N” plays the role of “x”. However, there are several differences.

We will prove the first part of the Distributive Law, and leave the proof of all others to the reader.
See Exercise [7|and |8|for the second part of the Distributive Law and DeMorgan’s Law,

Proof: Let z ¢ U. Then

re AU(BNC) & x€A or zeBNC
& rxr€A or xisinboth Band C
& x€AUB and ze€ AuC
& e (AUB)N(AUCQ)
This completes the proof. O

We also state a result about the cardinality of a disjoint union of sets.

Theorem 2.1 Let Ay, Ao, ..., A, be disjoint finite sets. Then

[AjU---UA,| =|A1] + -+ A,
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2.3 Examples Using SAGE

LECTURE 2 A BIT OF SET THEORY

Example 2.1 In this example we show how to define a set, and compute cardinalities, unions, inter-
sections, differences and cartesian products. SAGE.

SAGE
sage: Sl=Set([1,2,3,4,51);
sage: S2=Set ([3,4,5,6,71);
sage: S1;S2;
{1, 2, 3, 4, 5}
{3, 4, 5, 6, 7}
sage: Sl.cardinality ()
5
sage: Sl.union (S2)
{1, 2, 3, 4, 5, 6, 7}
sage: Sl.intersection(S2)
{3, 4, 5}
sage: Sl.difference(S2)
{1,2}
sage: S2.difference(S1)
{6,7}
sage: CartesianProduct (S1, S2)
Cartesian product of {1, 2, 3, 4, 5}, {3, 4, 5, 6, 7}
sage: CartesianProduct (S1,S52).1list ()
(r, 31, r11, 41, i, 51, 11, ei1, (1, 71, (2, 31, (2, 41, (2, 51, [2, 6],
(2, 71, (3, 31, (3, 41, I[3, 51, [3, 6], [3, 71, [4, 31, [4, 41, [4, 51,
(4, o1, (4, 71, [5, 31, [5, 41, [5, 5], [5, 6], [5, 711
sage: CartesianProduct (S1,S2) .cardinality ()
25
sage: 2 in Sl
True
sage: 1 in S2
False

Example 2.2 SAGE has a number of commonly used sets already built in: Z, N, Q, R. The commands
are ZZ, NN, QQ, and RR, respectively.

SAGE
sage: ZZ
Integer Ring
sage: 1 in ZZ
True
sage: 1/2 in 77z
False
sage: 0 in NN
True
sage: -1 in NN
False

Example 2.3 We can build a set by using properties in SAGE. Here we use Python’s modulo operator
%: a%b returns the remainder of a when divided by b.
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SAGE
sage: Set(x for x in range(0,10) if x%2==0)
{0, 2, 4, 6, 8}

sage: Set(x for x in range(0,10) if x%2==1)
{1, 3, 9, 5, 7}

Example 2.4 The is_prime () function returns True if the input is a prime integer, and False if not.
Such functions are called boolean valued functions. We can use boolean valued function to create
subsets as this example shows.

SAGE

sage: is_prime (29)

True

sage: is_prime (4)

False

sage: Set(x for x in range(0,10) if is_prime(x))

{2, 3, 5, 7}

sage: Set(x for x in range(0,1000) if is_prime(x)).cardinality ()
168

Alternatively, we could use the filter () command in Python. You can get more information on
filter () by typing filter? at the SAGE prompt.

SAGE
sage: S=Set (1l..20) #fconstructs a set of all integers from 1 to 20
sage: filter(is_prime, S)

(2, 3, 5, 7, 11, 13, 17, 19]

2.4 Exercises
1. Which of the following sets are equal?
(a) {1,2,3} (b) {2,3,1,3} (o) {3,2,1,1,2} (d {1,3,3,2,1,3}
2. Let A = {1,{1},{2}}. Which of the following statements are true?

(a) 1e A (o {1} cA (e) {2} €A (g {{2}}cA
(b) {1} € A (@ {{1}}c A O {2y cA (h) {1,2} Cc A

3. Determine all the elements of the following sets.

(@) {1+ (-1)" | neN}

(b) {n € N|n <20 and n is divisible by 3}

(¢) {n € N|n <20, nisprime, and 2n + 1 is divisible by 3}
4. Determine the cardinality of the following sets.

(a) The set of all cubies of the Rubik’s cube which have a blue facet.
(b) The set of all corner cubies of the Rubik’s cube which have a blue facet.
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5. Consider the set A ={1,2,3,4,5}.

(a) How many subsets of cardinality 1 does A have?
(b) How many subsets of cardinality 2 does A have?
(c) How many subsets does A have in total?
(Hint: don’t forget the empty subset, and the set A itself, when counting subsets.)

6. For U = Zj0, let A = {1,2,3,4,5}, B = {1,2,4,8} and C = {1,2,3,5,7}. Determine each of the

following.
(a) (AuB)NC (c) A°N B¢
() (AUB)-C (d) |[AU B|

7. Prove the second Distributive Law stated in Section [2.2

8. Prove DeMorgan’s laws stated in Section [2.2].
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