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Group Theory is typically referred to as the mathematical study of symmetry. The puzzles we are
studying have exhibited a remarkable amount of symmetry. In this lecture we begin our introduction
into group theory by introducing the concept of a group. Though, from our experience in exploring
puzzle and permutations we already have experience in working with groups. In later lectures, we
will see that group theory is the tool required to understand permutation puzzles, in particular their
end-game.

10.1 Group: Definition

Playing with permutation puzzles has already given us a working definition of a group. We have
a set of move-sequences, call this set M . We are able to compose two move-sequences together to
form a new move-sequence (m1,m2 ∈ M =⇒ m1m2 ∈ M ), there is a “do-nothing” move, and we can
“undo” a move sequence (for m1 ∈M there is an m−1

1 ∈M ). This is very similar to how permutations
behave under composition. Each consist of a set, an operation to combine objects in the set, and a
few properties this operation must possess. This is precisely what we will call a group.
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Definition 10.1 (Group) A group is a nonempty set G, together with an operation, which can be
thought of as a function ∗ : G × G → G, that assigns to each ordered pair (a, b) of elements in G and
element a ∗ b ∈ G, that satisfies the following properties:

1. Associativity: The operation is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. Identity: There is an element e (called the identity) in G, such that a ∗ e = e ∗ a = a for all a ∈ G.

3. Inverses: For each element a ∈ G, there is an element b in G (called the inverse of a) such that
a ∗ b = b ∗ a = e.

Typically we drop the notation * for the operation and just write the operation by juxtaposition, that
is, we simply write a ∗ b as ab. We’ve already been doing this with permutation composition, and the
composition of puzzle moves. In the case were the group operation is addition, then we will use the
symbol ”+”.

Definition 10.2 (Order of a Group) The number of elements of a group (finite of infinite) is called
the order of the group. We will use |G| to denote the order of the group, since this is really just the
cardinality of the set.

The power of mathematics resides in abstraction. Mathematicians look for the similarities between
objects, then articulate and abstract these similarities. They generally work with these abstract
conceptualizations, since as a result, their discoveries hold for all objects satisfying the properties of
the abstraction.

Consider an analogy from biology. Biologists consider the similarities between spiders, scorpions,
harvestmen, ticks, and mites, to be significant enough that they talk about them as being from the
same “family”: the Arachnid family. Arachnids are a class of joint-legged invertebrate animals, all
of which have eight legs. There are over 100,000 named species, five of which we named above. In
this sense, a biologist who studies the (abstract) family Arachnida is in effect studying over 100,000
named species, simultaneously.

Looking back at the definition of a group, in particular at the property “inverses”, we see that nowhere
did it say the inverse has to be unique. However, in our examples of puzzle movements, and permu-
tations, inverses were unique. Should we have added this as a property? Well, it turns out that we
don’t need to since it is a direct consequence of the properties in the definition. We’ll state this as a
theorem.

Theorem 10.1 (Uniqueness of Inverses) For each element a in a group G, there is a unique ele-
ment b ∈ G such that ab = ba = e.

Proof: Suppose b and c are both inverses of a. Then, on one hand, we have

b(ab) = be since ab = e (property 3)
= b since be = b (property 2)
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However, on the other hand, since ab = e = ac, we have

b(ab) = b(ac)
= (ba)c by associativity (property 1)
= ec since ba = e (property 3)
= c. since ec = c (property 2)

Therefore b = c, so inverses are unique. �

Since inverses are unique we can unambiguously denote the inverse of a ∈ G by a−1.

Previously we observed that permutations under composition satisfied the cancellation property.
This is true of any group.

Theorem 10.2 (Cancellation Property) In a group G, the right- and left- cancellation properties
hold: ba = ca implies b = c, and ab = ac implies b = c.

Proof: If ba = ca then (ba)a−1 = (ca)a−1 and by associativity, b(aa−1) = c(aa−1). Since aa−1 = e, then
be = ce from which it follows that b = c. Left cancellation can be proved in a similar manner. �

10.1.1 Multiplication (Cayley) Table

Since a group is merely a set with a way to combine elements (a sort-of multiplication), we can give
the operation in terms of a table, provided the set is finite.

The multiplication table1 of a (finite) group G is a tabulation of the values of the operation ∗. Let
G = {g1, ..., gn}. The multiplication table of G is:

* g1 g2 ... gj ... gn

g1
g2
...
gi gi ∗ gj
...
gn

This says the entry of the table on row gi and column gj is the element gi ∗ gj .

This table must satisfy some basic properties, which are immediate consequences of the definition of
a group:

Lemma 10.1 (a) Each element gk ∈ G occurs exactly once in each row of the table.

(b) Each element gk ∈ G occurs exactly once in each column of the table.

(c) If the (i, j)th entry of the table is equal to the (j, i)th entry then gi ∗ gj = gj ∗ gi.

(d) If the table is symmetric about the diagonal then g ∗ h = h ∗ g for all g, h ∈ G. (In this case, we call
G abelian.)

1Also known as a Cayley table, after noted English mathematician Arthur Cayley (1821-1895)
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The proof is left to the reader as Exercise 29.

In the next section we give a number of examples of groups, most of which should already be familiar
to the reader. It is interesting to note that we have just proven, for those examples, and any other
example we encounter during the rest of our lives, if the set satisfies the properties of a group then
(i) inverses are unique, and (ii) the cancellation property holds. This is the power of abstraction!

10.2 Some Everyday Examples of Groups

Now that we have a formal description of a group, our first job is to notice we already know many
examples.

(1) The set of integers Z, the set of rational numbers Q, and the set of real numbers R, are all groups
under ordinary addition. The identity is 0 in each case, and the inverse of a is its negative, −a.

(2) The set of non-zero rational numbers Q∗ = {r ∈ Q | r 6= 0} is a group under ordinary multipli-
cation. The identity is 1, and the inverse of r is 1/r.

Similarly, the set of non-zero real numbers R∗ = {r ∈ R | r 6= 0} is a group under ordinary
multiplication. The identity is 1, and the inverse of r is 1/r.

Note, that we had to leave out 0, since it doesn’t have a multiplicative inverse, i.e. there is no
rational number r such that r · 0 = 1. In other words, Q is not a group under multiplication.

The set of non-zero integers Z∗ = {n ∈ Z | n 6= 0} is not a group under ordinary multiplication,
since it is not closed under taking inverses. For example, the inverse of 2 is 1

2 , but 1
2 is not in Z∗.

(3) The set R3 = {(a1, a2, a3) | a1, a2, a3 ∈ R} is a group under componentwise addition:

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3).

The identity is (0, 0, 0) and the inverse of (a1, a2, a3) is (−a1,−a2,−a3).

In general, the set of all n-tuples of real numbers Rn = {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ R} is a
group under componentwise addition:

(a1, a2, a3, . . . , an) + (b1, b2, b3, . . . , bn) = (a1 + b1, a2 + b2, a3 + b3, . . . , an + bn).

The identity is (0, 0, 0, . . . , 0).

(4) A rectangular array of the form
[
a b
c d

]
, where a, b, c, d ∈ R, is called a 2× 2 (real) matrix. The

set of all 2× 2 matrices is denoted by M2,2(R):

M2,2(R) =
{[

a b
c d

]
| a, b, c, d ∈ R

}
.

If we define the addition of two matrices to be componentwise:[
a b
c d

]
+
[
w x
y z

]
=
[
a+ w b+ x
c+ y d+ z

]
,

Jamie Mulholland, Spring 2011

Math 302

10-4



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 10 GROUPS

then M2,2(R) is a group under this addition. The identity is
[

0 0
0 0

]
and the inverse of

[
a b
c d

]
is
[
−a −b
−c −d

]
.

In general, for positive integers n and m, the set of all matrices with n rows and m columns, the
so-called n×m matrices, Mn×m(R) is a group under componentwise addition.

Mn,m(R) =


 a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a2,m

an,1 an,2 · · · an,m

 | ai,j ∈ R

 .

(5) General Linear Group. The determinant of a 2 × 2 matrix A =
[
a b
c d

]
is the number

det(A) = ad− bc. The set of all 2× 2 matrices with non-zero determinant,

GL(2,R) = {A ∈M2,2(R) | det(A) 6= 0} .

under matrix multiplication:[
a b
c d

] [
w x
y z

]
=
[
aw + by ax+ bz
cw + dy cx+ dz

]

is a group. The identity is I =
[

1 0
0 1

]
, and the inverse of

[
a b
c d

]
is
[ d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]
.

In general, the set of invertible n×n matrices GL(n,R), under matrix multiplication, is a group.
It is called the general linear group of n × n matrices over R. This follows from the properties
that det(AB) = det(A) det(B) and A is invertible if and only if det(A) 6= 0. These statements are
proved in any elementary course in linear algebra.

(6) Special Linear Group. The set of n× n matrices with determinant 1 is a group under matrix
multiplication. This group is denoted by SL(n,R) and is called the special linear group of n× n
matrices over R.

SL(n,R) = {A ∈ GL(n,R) | det(A) = 1} .

To see why it is closed under multiplication, suppose A,B ∈ SL(n,R). Then det(A) = 1 and
det(B) = 1, but then det(AB) = det(A) det(B) = 1 · 1 = 1, by the property of determinants.
Therefore, AB ∈ SL(n,R). Moreover, since det(A−1) = 1

det(A) = 1
1 = 1 then A−1 ∈ SL(n.R).

(7) Differentiable functions. The set of all differentiable functions R → R is a group under the
operation of addition: (f + g)(x) = f(x) + g(x). The reason that the sum of two differentiable
functions is differentiable follows from the fact that d

dx(f + g) = d
dxf + d

dxg. The reason the
(additive) inverse of f is differentiable follows from the fact that d

dx(−f) = − d
dxf .
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(8) Translations. For each (a, b) ∈ R2, define Ta,b : R2 → R2 by

(x, y) 7→ (x+ a, y + b).

The set of all such functions Ta,b:

T (R2) = {Ta,b | a, b ∈ R}

is a group under function composition. To see this, notice that

(Ta,b ◦ Tc,d)(x, y) = Ta,b(Tc,d(x, y)) = Ta,b(x+ c, y + d) = (x+ a+ c, y + b+ d) = Ta+c,b+d(x+ y)

for all (a, y) ∈ R2. Therefore, Ta,b ◦ Tc,d = Ta+c,b+d, so T (R2) is closed under composition. More-
over, T0,0 is the identity, and the inverse of Ta,b is T−a,−b. Function composition is always asso-
ciative. The elements in T (R2) are called translations of R2.

Similarly we could define the group of translations of Rn, for any positive integer n, as

T (Rn) = {Ta1,...,an : Rn → Rn | ai ∈ R}

where Ta1,...,an(x1, . . . , xn) = (x1 + a1, . . . , xn + an).

(9) Linear Transformations. A linear transformation of Rn is a function T : Rn → Rn such that
T (a~v+ ~w) = aT (~v)+T (~w) for all ~v, ~w ∈ Rn and a ∈ R. The set of all linear transformations L(Rn)
of Rn, for a positive integer n:

L(Rn) = {T : Rn → Rn | T is a linear transformation}

is a group under function addition: for T,U ∈ L(Rn) define T + U by

(T + U)(~v) = T (~v) + U(~v).

To see why, first we note that T + U is a linear transformation since

(T + U)(a~v + ~w) = T (a~v + ~w) + U(a~v + ~w) = aT (~v) + T (~w) + aU(~v) + U(~w)
= a(T (~v) + U(~v)) + (T (~w + U(~w))
= a(T + U)(~v) + (T + U)(~w).

So L(Rn) is closed under addition. Moreover, the linear transformation ~v 7→ ~0 is the identity,
and for any T the inverse is −T . Since addition in R is associative, so is addition in L(Rn).

Some of the previous examples have the property that the group operation is commutative, that is
ab = ba for all a, b ∈ G. Groups with this property are called abelian. Named after Niel Abel, a
noted Norwegian mathematician who studied such groups in the 1820’s. Groups where there exist
elements that do not commute are called non-abelian.

10.3 Further Examples of Groups

Now we’ll present a few more examples of groups. These are the examples that will be important to
us in this course, since we will use them quite frequently.
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10.3.1 Symmetric and Alternating Groups

A permutation of a set X is a bijection X → X. The set of all permutations of a set X, is a group
under composition. This set is denoted by SX and called it the symmetric group of X.

SX = {α : X → X | α is a bijection}.

In the case where X is the set Zn = {1, 2, 3, . . . , n} then we denoted SZn simply by Sn, and called it
the symmetric group of degree n.

The set of even permutations An in Sn is a also a group. Since it is a subset of Sn we call it a subgroup
of Sn.

For example, consider A4: the set of even permutations of degree 4. We know |A4| = 4!
2 = 12 and we

can list all the permutations in A4 as follows:

ε = (1), σ1 = (1, 2)(3, 4), σ2 = (1, 3)(2, 4), σ3 = (1, 4)(2, 3), σ4 = (1, 2, 3), σ5 = (1, 3, 2), σ6 = (1, 2, 4),
σ7 = (1, 4, 2), σ8 = (1, 3, 4), σ9 = (1, 4, 3), σ10 = (2, 3, 4), σ11 = (2, 4, 3).

We can compute all possible products of two elements of the group and tabulate them in a multipli-
cation table. This table contains all the information of the group A4. For example, the inverse of σ6 is
σ7 since ε appears as table entry σ6σ7. Also, A4 is not abelian, since the table is not symmetric about
the diagonal line.

ε σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

ε ε σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

(1, 2)(3, 4) = σ1 σ1 ε σ3 σ2 σ8 σ10 σ9 σ11 σ4 σ6 σ5 σ7

(1, 3)(2, 4) = σ2 σ2 σ3 ε σ1 σ11 σ6 σ5 σ8 σ7 σ10 σ9 σ4

(1, 4)(2, 3) = σ3 σ3 σ2 σ1 ε σ7 σ9 σ10 σ4 σ11 σ5 σ6 σ8

(1, 2, 3) = σ4 σ4 σ11 σ7 σ8 σ5 ε σ3 σ10 σ6 σ1 σ2 σ9

(1, 3, 2) = σ5 σ5 σ9 σ10 σ6 ε σ4 σ8 σ2 σ3 σ11 σ7 σ1

(1, 2, 4) = σ6 σ6 σ10 σ9 σ5 σ2 σ11 σ7 ε σ1 σ4 σ8 σ3

(1, 4, 2) = σ7 σ7 σ8 σ4 σ11 σ9 σ3 ε σ6 σ10 σ2 σ1 σ5

(1, 3, 4) = σ8 σ8 σ7 σ11 σ4 σ10 σ1 σ2 σ5 σ9 ε σ3 σ6

(1, 4, 3) = σ9 σ9 σ5 σ6 σ10 σ3 σ7 σ11 σ1 ε σ8 σ4 σ2

(2, 3, 4) = σ10 σ10 σ6 σ5 σ9 σ1 σ8 σ4 σ3 σ2 σ7 σ11 ε
(2, 4, 3) = σ11 σ11 σ4 σ8 σ7 σ6 σ2 σ1 σ9 σ5 σ3 ε σ10

We can use SAGE to construct multiplication tables. The command to use is cayley_table().
SAGE

sage: A4=AlternatingGroup(4)
sage: A4.cayley_table()

* a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b c a f d e h i g l j k
c| c a b e f d i g h k l j
d| d g j a h k b e l c f i
e| e i k c g l a f j b d h
f| f h l b i j c d k a e g
g| g j d k a h e l b i c f
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h| h l f j b i d k c g a e
i| i k e l c g f j a h b d
j| j d g h k a l b e f i c
k| k e i g l c j a f d h b
l| l f h i j b k c d e g a

Notice that we have no idea which element of A4 each letter represents. We can use the command
column_keys() to find out.

SAGE
sage: A4.cayley_table().column_keys()
((), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4),
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3))

This tells us the order the elements appear in the column and row headings. In other words, a = (),
b = (2, 3, 4), etc. We can change the order of the elements in the table by creating a list with the order
we want, then passing the list to cayley_table() using the optional argument elements=.

SAGE
sage: A4list=["()", "(1,2)(3,4)", "(1,3)(2,4)", "(1,4)(2,3)", "(1,2,3)", "(1,3,2)",
"(1,2,4)", "(1,4,2)", "(1,3,4)", "(1,4,3)", "(2,3,4)", "(2,4,3)"]
sage: A4.cayley_table(elements=A4list)

* a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b a d c i k j l e g f h
c| c d a b l g f i h k j e
d| d c b a h j k e l f g i
e| e l h i f a d k g b c j
f| f j k g a e i c d l h b
g| g k j f c l h a b e i d
h| h i e l j d a g k c b f
i| i h l e k b c f j a d g
j| j f g k d h l b a i e c
k| k g f j b i e d c h l a
l| l e i h g c b j f d a k

We can also change the names it uses to represent the elements. We first create a list of “names”, in
precisely the same order as our elements are listed in A4list, then pass this to cayley_table()
using the optional argument names=.

SAGE
sage: A4names=["1", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9",
"s10", "s11"]
sage: A4.cayley_table(names=A4names,elements=A4list)

* 1 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
+------------------------------------------------
1| 1 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

s1| s1 1 s3 s2 s8 s10 s9 s11 s4 s6 s5 s7
s2| s2 s3 1 s1 s11 s6 s5 s8 s7 s10 s9 s4
s3| s3 s2 s1 1 s7 s9 s10 s4 s11 s5 s6 s8
s4| s4 s11 s7 s8 s5 1 s3 s10 s6 s1 s2 s9
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s5| s5 s9 s10 s6 1 s4 s8 s2 s3 s11 s7 s1
s6| s6 s10 s9 s5 s2 s11 s7 1 s1 s4 s8 s3
s7| s7 s8 s4 s11 s9 s3 1 s6 s10 s2 s1 s5
s8| s8 s7 s11 s4 s10 s1 s2 s5 s9 1 s3 s6
s9| s9 s5 s6 s10 s3 s7 s11 s1 1 s8 s4 s2
s10| s10 s6 s5 s9 s1 s8 s4 s3 s2 s7 s11 1
s11| s11 s4 s8 s7 s6 s2 s1 s9 s5 s3 1 s10

And there is our multiplication table, labeled exactly how we wanted!

Exercise 10.1 Construct a multiplication table for S3. First list the elements of S3 then work out the
table. Check your resulting table by using SAGE.

10.3.2 Finite Cyclic Groups

Consider the set of Rubik’s cube moves G = {ε,R, R2,R3}. Notice that the composition of any moves
in this set is still in this set. For example, move R followed by move R2 is move R3, similarly move
R3 followed by move R2 is move R. In other words,

RR2 = R3, and R3R2 = R.

Each element has an inverse, R−1 = R3 and (R2)−1 = R2.

It follows that this set G is a group. It has the particular property that every element in G is some
power of R (even the identity is a power of R: ε = R0 = R4). A group with this property is called a
cyclic group.

Definition 10.3 (Cyclic Group) A group G is called cyclic if there is one element in G, say g, so
that every other element of G is a power2 of g:

G = {gk | k ∈ Z}.

In this case we write G = 〈g〉, and say g is a generator for G.

If g has order n then G = {e, g, g2, g3, . . . , gn−1} and we say G is a cyclic group of order n.

In our example, G is a cyclic group of order 4, since it has four elements, and it is generated by R.

The multiplication table for G is

G ε R R2 R3

ε ε R R2 R3

R R R2 R3 ε

R2 R2 R3 ε R
R3 R3 ε R R2

2In the case when the group operation is addition then G = {kg | k ∈ Z}.

Jamie Mulholland, Spring 2011

Math 302

10-9



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 10 GROUPS

As another example consider the move sequence α = R2U2 of the Rubik’s cube. This move has order
6, and if we consider the set of all powers of this move, we get a cyclic group of order 6:

H = 〈α〉 = {ε, α, α2, α3, α4, α5}.

The multiplication table for H is

H ε α α2 α3 α4 α5

ε ε α α2 α3 α4 α5

α α α2 α3 α4 α5 ε
α2 α2 α3 α4 α5 ε α
α3 α3 α4 α5 ε α α2

α4 α4 α5 ε α α2 α3

α5 α5 ε α α2 α3 α4

You may have noticed that in each of our examples all elements commute under the operation. In
other words, the group is abelian. This is true for any cyclic group.

Definition 10.4 (Cyclic Groups are Abelian) Let G be a cycle group. For any a, b ∈ G, ab = ba.

Proof: Let G = 〈g〉. For a, b ∈ G there exist r and s such that a = gr and b = gs, and so ab = grgs =
gr+s = gs+r = gsgr = ba.

�

In the examples above each element is determined precisely by the power of R (or α), so let’s write
out the multiplication table where we just write i, in place of Ri (or αi).

G 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

H 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

These tables represent the way we ”multiply” in G and H. If we look closely we see that to multiply
α2 and α4 we just add the exponents, and if the sum is larger than 5 then we take the remainder
when divided by 6. So in this case 2 + 4 = 6 which has remainder 0 when divided by 6.

In the next section, we investigate this ”remainder” operation on the set of integers.

10.3.3 Group of Integers Modulo n: Cn

Consider the set C12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. We define the operation +12 to be addition
modulo 12. By this we mean a+12 b is the remainder of a+b when divided by 12. This type of addition
is familiar to anyone who adds time on a clock. For example, if it is 8-o’clock, then 6 hours later is
8 +12 6 = 2, or 2-o’clock.
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Some examples are: 2+12 3 = 5, 7+12 5 = 0, since 7+5 = 12 which is divisible by 12, and 11+12 10 = 9,
since 11 + 10 = 21 which has remainder 9 when divided by 12..

SAGE
sage: (2+3)%12
5
sage: (7+5)%12
0
sage: (11+10)%12
9

Is C12 a group under this ”new” addition +12?

Lets check the properties one-by-one.

closed: Since the remainder will always be a number between 0 and 11 then C12 is certainly closed
under +12.

associative: This addition is associative, since it is built from regular addition of integers which is
associative.

identity: The identity is 0, since 0 +12 b = b for all b ∈ C12.

inverses: What is the inverse of an element? For example, what is the inverse of 3? This would be a
number b such that 12 divides 3 + b. The number 12 − 3 = 9 has this property. So the inverse of 3 is
9. In general, the inverse of a is 12− a.

It follows that C12 is a group.

There was nothing special about 12 in this example, other than it being familiar to us from our
experience dealing with clocks. We can really do this for any positive integer n.

Definition 10.5 Let n > 1 be and integer. Define an operation on the set Cn = {0, 1, 2, 3, . . . , n − 1},
called addition modulo n, as follows. For a, b ∈ Cn, let a +n b be the remainder of a + b when divided
by n. Cn is a group under addition modulo n, and is called the (additive) group of integers modulo
n. Since this group is cyclic it is often called the (additive) cyclic group of order n. 3

Why is Cn cyclic? Each element of Cn can be obtained from 1 by repeatedly adding 1 to itself. Note,
our group operation is addition so the analogy of a “power” is a multiple. Since every element of Cn

is a suitable multiple of 1 then Cn = 〈1〉.

Notation & Terminology:

If a, b, and n are integers we say a is congruent to b modulo n if n | b−a and we write a ≡ b mod n.
For example, 15 ≡ 3 mod 12, and 8 ≡ 2 mod 4, but 7 6≡ 3 mod 5 since 5 6 | 7− 3.

Addition of two integers, a and b, modulo n, which we denoted as a+n b is often denoted by

a+ b (mod n).

For example, 11 +12 10 = 9 could also be written as 11 + 10 ≡ 9 mod 12.
3This group is also usually denoted by Z/nZ.
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In section 10.3.2 we saw the multiplication tables for G and H, written only using the exponents, are
precisely the groups C4 and C6. This observation, is true in general, in the sense that every finite
cycle group is essentially Cn for some integer n. The only difference it just how the elements were
named, which is superficial.

Finite cyclic groups are built into SAGE with the command CyclicPermutationGroup(). As the
name suggests, cyclic groups are constructed using permutations. Lets look at an example.

SAGE
sage: C5=CyclicPermutationGroup(5)
sage: C5.list()
[(), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2)]

Here, C5 is represented by using the 5-cycle (1, 2, 3, 4, 5) as a generator. We can compute the multipli-
cation table by first telling SAGE how to name the elements.

SAGE
sage: C5list=["()", "(1,2,3,4,5)", "(1,3,5,2,4)", "(1,4,2,5,3)", "(1,5,4,3,2)"]
sage: C5names=["0","1","2","3","4"]
sage: C5.cayley_table(names=C5names,elements=C5list])

* 0 1 2 3 4
+----------
0| 0 1 2 3 4
1| 1 2 3 4 0
2| 2 3 4 0 1
3| 3 4 0 1 2
4| 4 0 1 2 3

If one wants to work with Cn where the elements are {0, 1, . . . , n−1}, rather than permutations, then
this can be done using IntegerModRing(). Though, for just doing calculations we would use the
modulo operator %, as in the clock example above.

SAGE
sage: C5=IntegerModRing(5)
sage: C5.list()
[0, 1, 2, 3, 4]
sage: C5(3)+C5(4)
2

Exercise 10.2 Construct a Cayley table for C7 = {0, 1, 2, 3, 4, 5, 6}, under addition modulo 7. Check
your results using SAGE.

Example 10.1 We determine the order of each element in C12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. 1 has
order 12. Since 6 · 2 = 2 +12 2 +12 2 +12 2 +12 2 +12 2 = 0 then 2 has order 6. Similarly 4 · 3 = 0 so 3 has
order 4. Continuing in this way we find:
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k elements of order k

1 0
2 6
3 4, 8
4 3, 9
6 2, 10
12 1, 5, 7, 11

It follows that 1, 5, 7, and 11 are all generators of C12. That is,

C12 = 〈1〉 = 〈5〉 = 〈7〉 = 〈11〉.

A few curious things to note: (i) the only orders that show up are divisors of 12, and (ii) the generators
of C12 are the elements relatively prime to 12. Are these coincidences?

10.3.4 Group of Units Modulo n: U(n)

You may wonder if we can do the same thing with multiplication, instead of addition, on Cn. That is,
does Cn form a group under multiplication modulo n, ·n?

First we notice that the identity would be 1, but of course, 0 doesn’t have a (multiplicative) inverse.
So lets take 0 out of consideration, and just focus on the set C∗n = {1, 2, 3, . . . , n− 1}.

As an example consider C∗6 = {1, 2, 3, 4, 5}. Lets check to see if this set is closed under multiplication
modulo 6. Well, 3 ·6 5 = 3 ∈ C∗6 , so far so good. But 2 ·6 3 = 0 6∈ C∗6 . Therefore, C∗6 is definitely not
closed under multiplication, so it is not a group.

But all is not lost. It just seems that some elements in C∗6 are just trouble-makers. Their presence
prevents it from being closed under multiplication. Who are these trouble makers? Lets find out.

1 ·6 2 = 2 1 ·6 3 = 3 1 ·6 4 = 4 1 ·6 5 = 5
2 ·6 2 = 4 2 ·6 3 = 0 6∈ C∗6 2 ·6 4 = 2 2 ·6 5 = 4
3 ·6 3 = 3 3 ·6 4 = 0 6∈ C∗6 3 ·6 5 = 3 4 ·6 4 = 4
4 ·6 5 = 2 5 ·6 5 = 1

The elements 2, 3 and 4 seem to be causing the problems. These are precisely the elements that
have a factor in common with 6. Is this a coincidence? Not at all, the remainder of division by 6 will
always be between 0 and 5, and since C∗6 does not contain 0, the trouble makers are the numbers
whose products are divisible by 6. For two numbers a, b ∈ C∗6 to have a product divisible by 6, they
each must have a factor in common with 6.

We say two numbers are relatively prime if they do not have a common prime factor. If two numbers
have a common factor then we say they are not relatively prime. Note that if two numbers are
relatively prime, then they have no common prime factor, and so their greatest common divisor is 1.
This means a and b are relatively prime if and only if gcd(a, b) = 1.

We have just determined that the trouble makers are the numbers which are not relatively prime to
6. Namely, 2, 3, and 4.
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Therefore, consider just the set of numbers in C∗6 that are relatively prime to 6: This set is denoted
by U(6):

U(6) = {1, 5}.

This set is a group! The inverse of 5 is itself. The multiplication table is:

U(6) 1 5
1 1 5
5 5 1

SAGE
sage: U6=[m for m in range(0,6) if gcd(m,6)==1]
{1, 5}

The previous construction can be done for any integer n in place of 6. This is the next definition.

Definition 10.6 (Group of Units Modulo n) Let n > 1 be and integer, and let

U(n) = {m | 1 ≤ m ≤ n− 1 and gcd(m,n) = 1}.

U(n) is a group under multiplication modulo n, and is called the group of units modulo n.

In the case when p is prime, U(p) = C∗p = {1, 2, 3, . . . , p− 1}.

The number of elements in U(n) is precisely the integers between 1 and n which are relatively prime
to n. There is an important number-theoretic function, called Euler’s phi function, denoted by φ,
which calculates this number.

Definition 10.7 (Euler Phi Function) For any positive integer n, φ(n) is the number of integers in
{1, 2, . . . , n} which are relatively prime to n. In other words, φ(n) = |U(n)|.

This function has been implemented in SAGE, under the command euler_phi(). For example, here
we see φ(6) = 2.

SAGE
sage: euler_phi(6)
2

Exercise 10.3 Determine the elements of the set U(8), and construct the multiplication table.

Example 10.2 In this example we will investigate the group U(18), which has 6 elements.

SAGE
sage: euler_phi(18)
6
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Of course, we could have done this by hand (or use SAGE code similar to the example we did for U(6)).
We would just go through the numbers from 1 to 18 and omit any that have a factor of 2 or 3.

U(18) = {1, 5, 7, 11, 13, 17}.

What is the inverse of 11? One way is to compute the product of 11 with each element of U(18) and
check when we get 1:

SAGE
sage: for m in [1, 5, 7, 11, 13, 17]:
sage: if 11*m%18==1:
sage: print m
5

Therefore 11−1 = 5 in U(18).

A more efficient way to find the inverse is to use the Extended Euclidean Algorithm. If a and b are
integers and gcd(a, b) = d then there must be integers u and v so that ua + vb = d. The standard
algorithm for finding the gcd is called the Euclidean Algorithm, and the algorithm for producing
numbers u and v is called the Extended Euclidean Algorithm. We won’t go into the details of these al-
gorithms, such topics are covered in a course in elementary number theory. However, these algorithms
are implemented in SAGE, so we can use them.

SAGE
sage: d,u,v = xgcd(11,18)
sage: print u,v
5, -3

How does this help us find 11−1? Well, the Extended Euclidean Algorithm has returned three numbers:
the first is 1 which is the gcd, the other two, 5 and −3, have the property that 5(11) + (−3)(18) = 1.
This means 5(11) has remainder 1 when divided by 18. Which is exactly what it means for 5 to be an
inverse of 11.

To find the inverse of 13 we can do the same thing, and get 13−1 = 7.
SAGE

sage: d,u,v = xgcd(13,18)
sage: print u,v
7, -5

We can write a function called inverse that will return the inverse of a in U(m).
SAGE

sage: def inverse(a,m):
sage: d,u,v=xgcd(a,m)
sage: if d==1:
sage: return u%m # return inverse as a number between 1 and m-1
sage: else:
sage: return a, "is not in U group" # just in case a is not in U(m)

sage: inverse(11,18)
5
sage: inverse(13,18)
13
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To compute the order of an element, we can take successive powers until we hit the identity. As an
example, we determine the order of 11 is 6.

SAGE
sage: for n in (1..6):
sage: print n, 11ˆn%18
1 11
2 13
3 17
4 7
5 5
6 1

We can also create a function to do this. We’ll see next lecture that the order of an element must divide
the order of the group so we can limit the exponents we need to check. The function divisors(m)
returns a list of the divisors of m, arranged from smallest to largest. Recall |U(m)| = φ(m), the Euler
phi function.

SAGE
sage: def order(a,m):
sage: if gcd(a,m)==1:
sage: for k in divisors(euler_phi(m)):
sage: if aˆk%m==1:
sage: return k
sage: else:
sage: return a, "is not in U group"

sage: order(5,18)
6
sage: order(13,18)
3

It follows that U(18) is a cyclic group generated by 5:

U(18) = 〈5〉.

The element 11 also generates the group.

U(18) has subgroups {1}, {1, 17}, and {1, 7, 13}.

10.3.5 Dihedral Groups: Dn

Consider a square as drawn below. We want to determine all the ways we can pick up the square,
move it in some way, then put it back in the original space it occupied. If an observer didn’t see us
pick it up, but only saw it before and after, they shouldn’t notice any change. For example, we could
rotate it 90 degrees, or we could flip it over a horizontal line. We’d like to determine all possible ways
we could have moved the square. In some sense, the number of ways we can do this is related to how
”symmetric” a square is.
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Let G denote the set of ways in which we can move the square. To keep track of the motions, we
can label the vertices of the squares as 1, 2, 3, 4, and each motion corresponds to a permutation of the
labels on the vertices. In Table 1 we list the elements of G: G = {R0, R90, R180, R270, H, V,D,D

′}.

notation description permutation

R0 rotation of 0◦ (i.e. do nothing) ε
R90 rotation of 90◦ (clockwise) (1, 2, 3, 4)
R180 rotation of 180◦ (clockwise) (1, 3)(2, 4)
R270 rotation of 270◦ (clockwise) (1, 4, 3, 2)
H reflection of 180◦ about horizontal axis (1, 4)(2, 3)
V reflection of 180◦ about vertical axis (1, 2)(3, 4)
D reflection of 180◦ about diagonal axis (see diagram below) (2, 4)
D′ reflection of 180◦ about other diagonal axis (see diagram below) (1, 3)

Table 1: Symmetries of the square

We can combine elements of G by doing consecutive motions. For example, R90H means first rotate
by 90◦, then reflect about the horizontal axis. The resulting motion is equivalent to D′. We can see
this by actually doing both motions R90H and D′ and observing they do exactly the same thing. Or
we could compose their corresponding permutations: (1, 2, 3, 4)(1, 4)(2, 3) = (1, 3).

G is a group under this way of composing moves. It is the group of symmetries of the square, or more
commonly called the dihedral group of order 8, and denoted by D4. The multiplication table for
D4 is
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D4 R0 R90 R180 R270 H V D D′

R0 R0 R90 R180 R270 H V D D′

R90 R90 R180 R270 R0 D′ D H V
R180 R180 R270 R0 R90 V H D′ D
R270 R270 R0 R90 R180 D D′ V H
H H D V D′ R0 R180 R90 R270

V V D′ H D R180 R0 R270 R90

D D V D′ H R270 R90 R0 R180

D′ D′ H D V R90 R270 R180 R0

The analysis carried out for a square can similarly be done for any regular n-gon, Rn (where n ≥ 3).
See Figure 1 for some familiar n-gons. If n = 3 then R3 is an equilateral triangle. If n = 4 then R4 is
a square as we just considered. If n = 5 then R5 is a regular pentagon, and so on. The corresponding
group is denoted by Dn and is called the dihedral group of order 2n.

Figure 1: Some regular n-gons.

Dihedral groups are frequently found in art and nature, and they are a very important type of group
used by mineralogists to study crystals.

You may wonder where the “2n” comes from in the name. Looking back at the square we see that
there are 8 motions preserving the square (we call these the symmetries of the square). Four were
rotations, and four were reflections. This is true for any regular n-gon. There will be n rotational
symmetries and n reflective symmetries, for a total of 2n.

Dihedral groups are built into SAGE. Each element is represented as permutations of the vertices of
the n-gon. Here is an example with D4.

SAGE
sage: D4=DihedralGroup(4)
sage: D4.list() #lists the elements of D4 as represented in SAGE
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),
(1,4)(2,3)]

Jamie Mulholland, Spring 2011

Math 302

10-18



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  ScheduleLECTURE 10 GROUPS

We can assign each element to a name. For example, (1, 2, 3, 4) corresponds to the 90◦ rotation R90.

SAGE
sage: R90=D4("(1,2,3,4)")
sage: R180=D4("(1,3)(2,4)")
sage: R270=D4("(1,4,3,2)")
sage: H=D4("(1,4)(2,3)")
sage: V=D4("(1,2)(3,4)")
sage: D=D4("(2,4)")
sage: Dp=D4("(1,3)") # we use Dp for D’

We can now compute products. For example, we see R90D = H.

SAGE
sage: R90*D
(1,4)(2,3)

The full multiplication table for D4 can be computed in SAGE as follows.

SAGE
sage: D4list=["()", "(1,2,3,4)", "(1,3)(2,4)", "(1,4,3,2)", "(1,4)(2,3)",
"(1,2)(3,4)", "(2,4)", "(1,3)"]
sage: D4names=["R0","R90","R180","R270","H","V","D","D’"]
sage: D4.cayley_table(names=D4names,elements=D4list)

* R0 R90 R180 R270 H V D D’
+----------------------------------------

R0| R0 R90 R180 R270 H V D D’
R90| R90 R180 R270 R0 D’ D H V
R180| R180 R270 R0 R90 V H D’ D
R270| R270 R0 R90 R180 D D’ V H

H| H D V D’ R0 R180 R90 R270
V| V D’ H D R180 R0 R270 R90
D| D V D’ H R270 R90 R0 R180
D’| D’ H D V R90 R270 R180 R0

10.3.6 Notation for Dn

For a regular n-gon we typically use r to denote a clockwise rotation through 360
n degrees, and more

generally, rk to denote a clockwise rotation through k 360
n degrees. A reflection through a line of

symmetry is denoted by fi, for 1 ≤ i ≤ n.

For example, the lines of symmetry for a regular 7-gon are labelled below. Some of the elements are
described in Table 2. There are 14 elements in D7:

D7 = {1, r, r2, r3, r4, r5, r6, r7, f1, f2, f3, f4, f5, f6, f7}.
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notation description permutation

1 rotation of 0◦ (i.e. do nothing) ε
r rotation of 360

7 degrees (clockwise) (1, 2, 3, 4, 5, 6, 7)
rk rotation of k 360

n degrees (clockwise) for 1 ≤ k ≤ 7
f1 reflection of 180◦ about f1 line (2, 7)(3, 6)(4, 5)
fi reflection of 180◦ about fi axis for 1 ≤ i ≤ 7

Table 2: Symmetries of a regular 7-gon

One can check that every element of D7 can be expressed as a product of the form rkf `
1 for some

0 ≤ k ≤ 6, and 0 ≤ ` ≤ 1. For example, f5 = r3f1. We say D7 is generated by r, f1 and write

D7 = 〈r, f1〉.
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10.4 Exercises

1. Give two reasons why the set of odd integers under addition is not a group.

2. Show that
[

1 1
2 2

]
does not have a multiplicative inverse in GL(2,R).

3. Show that the group GL(2,R) is non-abelian by finding two matrices A and B in GL(2,R) where
AB 6= BA.

4. Find the inverse of
[

1 2
1 3

]
in SL(2,R).

5. The group operation ∗ is frequently omitted, for example a ∗ b would just be written as ab. This
is due to the fact that we often refer to the operation as “multiplication”. However, when the
operation is addition we keep the + symbol, and we also use 0 for the identity instead of e.
Translate each of the following multiplicative expression into its additive counterpart.

(a) a2b

(b) b4a−3b

(c) (ab3)−2c3 = e

6. Let G = {a, b, c, d} have an operation ∗ with corresponding multiplication table

∗ a b c d

a a b c d
b b a d c
c c d a b
d d d b c

Is G a group under this operation? Explain.

Dihedral Groups:
Exercises 7 through 13 are on the dihedral groups.

7. (a) With pictures and words, describe each symmetry in D3 (the set of symmetries of an equi-
lateral triangle).

(b) Write out a complete multiplication (Cayley) table for D3.
(c) Is D3 abelian (that is, does every element commute with every other element)?

8. With pictures and words, describe each symmetry in D5 (the set of symmetries of a regular
pentagon).

9. For n ≥ 3 describe the elements of Dn. (You will need to consider two cases, depending on
whether n is even or odd.)

10. In Dn, explain geometrically why

(a) a reflection followed by a reflection must be a rotation.
(b) a reflection and a rotation taken together in either order must be a reflection.
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11. Is Dn a cyclic group? That is, does Dn = 〈g〉 for some g ∈ Dn?

12. Is Dn abelian?

13. If r1, r2, and r3 represent rotations and f1, f2, and f3 represent reflections from Dn, determine
whether f1r3r2f2r1f1 is a rotation or reflection.

Group of Integers under addition modulo n:
Exercises 14 through 18 are on the group of integers modulo n: Cn.

14. List the element of C2, and write out a multiplication table for this group.

15. Determine the following in C15

(a) 7 +15 6
(b) 13 +15 8

(c) 12 · 7
(d) the inverse of 11

(e) the inverse of 3
(f) ord(10)

(g) ord(7)

16. Determine the order of each element in C10.

17. Determine which elements of C10 are generators for C10. That is, find all g ∈ C10 such that
C10 = 〈g〉.

18. Find all the elements of g ∈ C12 for which C12 = 〈g〉.

Unit Group modulo n:
Exercises 19 through 22 are on the Unit Groups U(n).

19. Determine the elements of the set U(5), and construct the multiplication table.

20. Determine the elements of the set U(12), and construct the multiplication table.

21. (a) How many elements does U(37) have?
(b) Find the inverse of 25 in U(37).
(c) What is the order of 25.
(d) Is U(37) cyclic? If so, find a generator.

(Hint: use SAGE to help with calculations.)

22. Is U(20) cyclic?

Groups in General:
Exercises 23 through 30 are on groups in general. Solutions to these exercises should be based
on the four properties listed in the definition of a group, and any theorems which were conse-
quences of these properties.

23. For any elements a and b from a group G, and any integer n, prove that (b−1ab)n = b−1anb.
(We’ve already shown this for permutations, so this question is asking you to verity this is
really just a consequence of group properties.)

24. Let a and b be elements of an abelian group G, and let n be any integer. Show that (ab)n = anbn.
Is this true for non-abelian groups? Explain.
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25. If a, b ∈ G such that ord(a2) = ord(b2), is it necessarily true that ord(a) = ord(b)?

26. In a group G show that the number of nonidentity elements that satisfy the equation x5 = e is
a multiple of 4.

27. Show that if G is a group and a ∈ G such that a2 = a then a must be the identity.

28. Suppose G = {e, a, b, c, d} is a group with multiplication table

e a b c d

e e
a b e
b c d e
c d a b
d

Fill in the blank entries.

29. Prove Lemma 10.1.
(Hint: The first two parts are really just consequences of the left- and right- cancellation prop-
erties.)

30. Prove that if G is a group with the property that the square of every element is the identity (i.e.
every element has order 2), then G is abelian.

31. Let G be a group with operation ·. For which operation ∗ is the set G a group under ∗?

(a) a ∗ b = b · a
(b) a ∗ b = b−1 · a · b
(c) a ∗ b = b−1 · a
(d) a ∗ b = (a · b)2

A few more examples of groups:

32. The integers 5 and 15 are among a collection of 12 integers that form a group under multiplica-
tion modulo 56. List all 12.

33. Nim Group Consider the set G = {0, 1, 2, 3, 4, 5, 6, 7}. Suppose there is a group operation ∗ on
G that satisfies the following two conditions:

(a) a ∗ b ≥ a+ b for all a, b in G,
(b) a ∗ a = 0 for all a in G.

Construct the multiplication table for G. This groups is sometimes called the Nim Group due
to its relationship to the game of Nim.

34. Prove that the set of all 3 matrices with real entries of the form 1 a b
0 1 c
0 0 1


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is a group under matrix multiplication. (This group, sometimes called the Heisenberg group
after the Nobel Prize winning physicist Werner Heisenberg, is intimately related to the Heisen-
berg Uncertainty Principle of Quantum Physics.)
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