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The puzzles we have encountered so far all have a common theme: the pieces can be mixed up, and
the goal is to restore the pieces back to some proper order. In this lecture we will introduce some
terminology and notation for talking about rearrangements of objects. In particular, we give the
definition of a permutation, which is the main object we will use to study puzzles. We’ll also discuss
permutation multiplication, inverses, and order.

This lecture corresponds to Sections 2.1, 3.1, 3.2 or Joyner’s text.

3.1 Permutation: Preliminary Definition

In mathematics, the notion of permutation is used with several slightly different meanings, all re-
lated to the act of permuting (rearranging in an ordered fashion) objects or values. Informally, a
permutation of a set of objects is an arrangement of those objects into a particular order.

Example 3.1 There are six permutations of the objects in the set {1, 2, 3}, namely [1, 2, 3], [1, 3, 2],
[2, 1, 3], [2, 3, 1], [3, 1, 2], and [3, 2, 1].
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Notation: Curly braces {, } denote sets, i.e. the order that elements are listed doesn’t matter. Square
braces [, ] denote lists, i.e. the order that elements appear does matter. So as sets {1, 2, 3} = {2, 1, 3}
but as lists [1, 2, 3] 6= [2, 1, 3].

SAGE
sage: Set([1,2,3])==Set([2,1,3])
True
sage: [1,2,3]==[2,1,3]
False

Example 3.2 There are 5040 ways to arrange the seven books in the Harry Potter series on your
bookshelf. If we let 1 denote Volume 1: Philosopher’s Stone, 2 denote Volume 2: Chamber of Secrets, etc.
then, for example, two possible permutaions are [1, 3, 5, 7, 2, 4, 6] and [5, 2, 1, 3, 7, 4, 6]. Of course, out of
all these possible permutations one is likely to place them in order on their bookshelf: [1, 2, 3, 4, 5, 6, 7].

To determine the number of permutations we imagine 7 empty slots on the bookshelf which we are
about to fill. There are 7 ways to pick a book and place it in slot 1. For each of these choices, there are
now 6 possible ways to fill slot 2, then 5 possible ways to fill slot 3, etc. So the total number of ways to
fill the 7 slots is: 7 · 6 · 5 · 4 · 3 · 2 · 1 = 7! = 5040.

SAGE
sage: factorial(7)
5040

Example 3.3 In the game of Swap on 5 objects the empty puzzle board is shown in Figure 1a.

(a) The empty Swap board (b) A random arrangement of
Swap.

Figure 1: Game of Swap

The puzzle board is filled by laying out the tiles numbered 1 through 5 in the boxes. For example, one
such puzzle position is shown in Figure 1b. Each puzzle position corresponds to a permutation of the
set Z5 = {1, 2, 3, 4, 5}. There are 5! = 120 permutations of Z5, and so there are 120 different possible
positions in the game of Swap. Only one of which is the solved state.

Example 3.4 The fifteen puzzle with no tiles in the boxes is shown in Figure 2a.

The puzzle is started by placing the 15 tiles anywhere on the board. For example, one such puzzle
position is shown in Figure 2b. This corresponds to a permutation of the set Z16, where we imagine
the blank space as being the 16th tile. There are 16! = 20, 922, 789, 888, 000 permutations of Z16, and so
there are 16! different ways to lay the tiles on the board. As for which positions are actually solvable,
well this is a question we will investigate later.

We can use SAGE to generate permutations of a list, for example [1, 2, 3].
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(a) The empty 15-Puzzle
board

(b) A random arrangement
of the 15-Puzzle.

Figure 2: The 15 Puzzle

SAGE
sage: terms=[1,2,3];
sage: Permutations(terms)
Permutations of the set [1, 2, 3]
sage: Permutations(terms).list();
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: number_of_permutations(terms)
6
sage: factorial(3)
6

Sometimes when listing permutations of a set we will omit the square braces. For example the 6
permutations of [1, 2, 3] can be listed as: 123, 132, 213, 231, 312, 321.

We can also list permutations of a multi-set, that is a set with more than one element repeated.
Though, to define a multi-set we would actually need to use a list.

Example 3.5 Two permutations of the multi-set [a, a, b, b, b] are [b, a, b, a, b] and [b, b, a, a, b]. There are
5!

2! · 3!
= 10 permutations in total. (Since there are 5! ways to arrange 5 objects, but 2 of the objects are

identical, and so are the other 3.)

SAGE
sage: var(’a,a,b,b,b’);
sage: terms=[a,a,b,b,b];
sage: Permutations(terms)
Permutations of the multi-set [a, a, b, b, b]
sage: Permutations(terms).list();
[[a, a, b, b, b], [a, b, a, b, b], [a, b, b, a, b], [a, b, b, b, a], [b,
a, a, b, b], [b, a, b, a, b], [b, a, b, b, a], [b, b, a, a, b], [b, b,
a, b, a], [b, b, b, a, a]]
sage: number_of_permutations(terms)
10
sage: factorial(3)/(factorial(2)*factorial(3))
10
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3.2 Permutation: Mathematical Definition

It will be convenient for us to have a slightly more mathematical definition of a permutation. Before
we give this formal definition of a permutation we start by recalling the notion of a function, and the
properties: one-to-one, and onto.

3.2.1 Functions

Definition 3.1 A function, or mapping, f from a (nonempty) set A to a (nonempty) set B is a rule
that associates each element a ∈ A to exactly one element b ∈ B.

Notation & Terminology: We write f : A → B to denote a function named f from set A to set
B. A is called the domain of f and B the codomain. If f sends a to b then we write f(a) = b, or
f : a 7→ b. We also say b is the image of a under f . The subset of B consisting of all images f(a), for
a ∈ A, is called the range of f , and is written:

f(A) = {f(a) | a ∈ A} ⊂ B.

See Figure 3 for a pictorial representation of these ideas.

Figure 3: The way to visualize a function, domain, codomain and range.

Definition 3.2 A function f : A→ B is called one-to-one, or injective, if each element of B appears
at most once as the image of an element of A.

A function f : A → B is called onto, or surjective, if f(A) = B. That is, if each element of B is the
image of at least one element of A.

A function that is both injective and surjective is called bijective.

3.2.2 Permutations

Now for the definition of a permutation.

Definition 3.3 A permutation of a set A is a function α : A→ A that is bijective (i.e. both one-to-one
and onto).
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Our goal is to understand how the pieces of a puzzle move around, so we typically represent each
piece by a number, that is by an element of Zn = {1, 2, 3, . . . , n}. A rearrangement of the pieces then
corresponds to a bijection from Zn → Zn, a permutation as defined above.

Unlike in calculus, where most function are defined on infinite sets and given by formulas, permuta-
tions of finite sets are usually given by simply listing where each value goes.

For example, we can define a permutation α of the set {1, 2, 3} by stating:

α(1) = 2, α(2) = 1, α(3) = 3.

In SAGE we can use the Permutation() command to construct a permutation. Here we define the
permutation by the list of images [α(1), α(2), . . .].

SAGE
sage: a=Permutation([2,1,3]); a
[2,1,3]
sage: a(1)
2
sage: a(2)
1

A slightly more convenient way to represent this permutation is by:

α↔
(

1 2 3
2 1 3

)
where the top row are the element of Z3 and the bottom row are the corresponding images under α.
This is known as array notation for a permutation.

Here is an example of how to use matrices in SAGE to display a permutation in array form. One way
is to use the matrix() command, where the syntax is
matrix( [ <list for row 1> , <list for row 2> ] ).

SAGE
sage: a=Permutation([2,1,3])
sage: matrix([[1,2,3],[a(i) for i in [1,2,3]]]);
[1 2 3]
[2 1 3]

A more visual representation is by mean of an arrow diagram. The arrows point from x to α(x).

α

s s s

s s s

1 2 3

2 1 3

@
@
@
@
@
@R

�
�

�
�
�
�	 ?

Array Notation: We may define a permutation α : Zn → Zn by a 2× n array:

α↔
(

1 2 ... n
α(1) α(2) ... α(n)

)
.

Since α is bijective the second row would just be a rearrangement of the numbers in the top row.
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Example 3.6

(a) The identity permutation, denoted by ε, or I, is the permutation that does nothing:

ε↔
(

1 2 ... n
1 2 ... n

)
.

It may not seem obvious why we would want to consider the “do nothing” permutation, but we
will consider this permutation quite a bit. As an analogy, think about 0, this is a symbol which
represents “nothing” but yet appears almost everywhere in mathematics.

(b) An n- cycle is a permutation which cyclically permutes the values. For example,(
1 2 3 ... n
n 1 2 ... n− 1

)
.

We could also visualize this with an arrow diagram:

Every number moves to the right and the last one, n, cycles around back to to 1.

3.3 Composing Permutations

Now that we have some basic notations for permutations we can now look at how to combine two
permutations in order to produce a third one. The method we use is called composition. This will be
precisely the tool we will need in order to understand how two puzzle moves combine together to give
a third.

Let α and β be two permutations of Zn. We wish to define a new function α ◦ β : Zn → Zn, called the
permutation composition. In order to define a function on Zn we just need to specify how it maps the
elements. For k ∈ Zn we’ll define (α ◦ β)(k) to be the result of first applying α, then applying β to the
result. In other words,

(α ◦ β)(k) = β(α(k)), for k ∈ Zn.

This new function is again a permutation. To see why we just need to observe that it is a bijection.

Injective: Suppose (α◦β)(k) = (α◦β)(`) for some k, ` ∈ Zn, then β(α(k)) = β(α(`)) implies α(k) = α(`),
since β is one-to-one. It follows that k = ` since α is one-to-one. Therefore, α ◦ β is one-to-one.

Surjective: Consider any m ∈ Zn. Let ` ∈ Zn such that β(`) = m, and let k ∈ Zn such that α(k) = `.
Both ` and k exist since α and β are onto. It follows that (α ◦ β)(k) = β(α(k)) = m. Therefore, α ◦ β is
onto. This verifies that α ◦ β is a permutation.

This way of combing permutations will essentially underline everything we do in this course so we
should make this a formal definition. We will also drop the symbol ◦ to simplify writing.
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Definition 3.4 Let α, β : Zn → Zn be two permutations. The permutation composition, or prod-
uct, of α and β is denoted by αβ : Zn → Zn is the permutation defined by:

αβ : Zn → Zn → Zn

k 7−→ α(k) 7−→ β(α(k))

Important: Notice that the composition is opposite to the way functions were combined in calculus.
In calculus, and in most branches of mathematics, there is a long standing tradition that variables
are to appear to the right of the function: f(x). The composition, (f ◦ g)(x) is then read from right-
to-left: f(g(x)). So why are we defining the composition of permutations as left-to-right, and going
against long standing mathematical tradition? Well, there is a good reason for this. Imagine you
were asked to apply the move sequence R F−1to a Rubik’s cube. What move would you do first, R or
F−1? Well, the popular convention is to read from left-to-right and apply R first, then F−1. This is
popular since, for example, this is how you are reading the words on the page right now, from left-
to-right. This is precisely the convention we are taking to combine permutations, we combine them
from left-to-right.

Example 3.7 (a) Let α =
(

1 2 3 4 5
5 3 1 4 2

)
and β =

(
1 2 3 4 5
5 3 2 1 4

)
. Then

αβ =
(

1 2 3 4 5
5 3 1 4 2

) (
1 2 3 4 5
5 3 2 1 4

)
=

(
1 2 3 4 5
4 2 5 1 3

)
.

? ?

?

On the right we have 4 under 1, since αβ(1) = β(α(1)) = β(5) = 4, so αβ sends 1 to 4. This is
illustrated by following the arrows above. Notice the movement is from left-to-right, which is our
chosen convention for composing two permutation. The other values are determined in a similar
fashion.
We can use SAGE to multiply permutations.

SAGE
sage: a=Permutation([5,3,1,4,2]); a
[5, 3, 1, 4, 2]
sage: b=Permutation([5,3,2,1,4]); b
[5,3,2,1,4]
sage: a*b
[4, 2, 5, 1, 3]

We can also use the arrow diagram representation for permutations to give us more visual insight
into how permutations are composed:
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If we compose α and β in the other order, we find

βα =
(

1 2 3 4 5
5 3 2 1 4

) (
1 2 3 4 5
5 3 1 4 2

)
=

(
1 2 3 4 5
2 1 3 5 4

)
.

This shows that permutation composition is not commutative in general. That is, we typically
have αβ 6= βα.

SAGE
sage: b*a
[2, 1, 3, 5, 4]

(b) Let α =
(

1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
and β =

(
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
. Then

αβ =
(

1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

) (
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
= ε.

Therefore αβ is the identity permutation. Permutations with the property that their product is
ε are called inverse permutations, since one permutation is undoing the rearrangement the
other one performed.

(c) For any permutation α we can take the product of α with itself: αα, we write this as α2. In
general we write the product of α with itself n-times, αα · · ·α, as αn.

Suppose α =
(

1 2 3 4 5
3 4 1 5 2

)
then the powers of α are:

α2 = αα =
(

1 2 3 4 5
1 5 3 2 4

)
, α3 = αα2 =

(
1 2 3 4 5
3 2 1 4 5

)
α4 = αα3 =

(
1 2 3 4 5
1 4 3 5 2

)
, α5 = αα4 =

(
1 2 3 4 5
3 5 1 2 4

)
α6 = αα5 =

(
1 2 3 4 5
1 2 3 4 5

)
.

Check these products yourself. We see that α6 is the identity permutation. This raises the ques-
tion: Can we always multiply a permutation to itself a finite number of times and end up with
the identity permutation?

From the previous example two questions are raised:

(i) For any permutation α, must there exist a permutation β such that αβ = ε?

(ii) For any permutation α, must there exist a positive integer n such that αn = ε?

If we think about a permutation as a move on one of our puzzles, say Rubik’s cube, then these
questions are equivalent to asking: (i) When a move is applied, can it then be undone by another
move? (ii) Applying the same move over and over again, will you eventually get back to where you
started?
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Phrased in this way, it may seem obvious that the answer is yes in both cases. For example, if
the move F was applied (clockwise quarter turn of the front face), then the move F−1undoes it
(counterclockwise turn of the front face). Try this on your Rubik’s cube. Moreover, for the move F,
applying it 4 times in a row takes you back to where you started. This means F 4 is the identity,
or do-nothing move. If the answer to the questions above is now obvious then you already have a
working understanding of inverses and orders.

We’ll discuss these topics in a little more detail over the next few sections. But first let’s play with
the cube a little more.

Exercise 3.1 Consider Rubik’s cube and the legal moves F, B, R, L, U, D, F−1, B−1, R−1, L−1, U−1,
D−1, and all successive combinations of these moves.

Recall a move sequence is read as follows: F U−2means first twist the front face a quarter turn in the
clockwise direction, then turn the up face a half turn in the counterclockwise direction.

(a) What is the inverse of the move sequence F U−2? That is, if you apply move sequence F U−2, then
what is the sequence of moves which will undo this?

(b) How many times does the move sequence U2 R2 need to be applied in order to get you back to
where you started? (Play with your cube to figure this out, and try not to lose count as you’re
twisting faces.)

3.4 Associativity of Permutation Composition

When adding and multiplying real numbers we don’t need to worry about what to do first. For
example, in the expression 2 · 3 · 4 we get the same result if we multiply 2 and 3 first, then multiply
the result by 4: (2 · 3) · 4 = 6 · 4 = 24, as we get if we multiply 3 and 4 first, then multiply by
2: 2 · (3 · 4) = 2 · 12 = 24. This property of multiplication is called associativity, and it is written:
(ab)c = a(bc) for all a, b, c ∈ R.

What associativity means is that we can write the product of three (or more) numbers without having
to use grouping brackets: abc. Since no matter which product you take first it will not affect the
result.

The same is true for addition of real numbers: (a + b) + c = a + (b + c). This means we can write
a+ b+ c without any confusion about which sum to perform first.

We have shown that we have a way to combine permutations. A fundamental question to ask is: Is
permutation composition associative? That is, must we have (αβ)γ = α(βγ)?

Well, permutation composition is associative. Lucky for us, this means we don’t have to use group
brackets when writing long chains of products. The reason that it is associative is simply because per-
mutations are functions, and function composition is associative. To see this, consider permutations
α, β, γ : Zn → Zn. For any k ∈ Zn,

((αβ)γ)(k) = γ((αβ(k)) = γ(β(α(k))

and
(α(βγ))(k) = (βγ)(α(k)) = γ(β(α(k)),
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which are the same. 1 So (αβ)γ = α(βγ).

This means we can write αβγ for the product of these three permutations and there is no confusion
about what product we should do first. The result won’t change.

Example 3.8 Let α =
(

1 2 3 4 5
5 3 1 4 2

)
, β =

(
1 2 3 4 5
5 3 2 1 4

)
, and γ =

(
1 2 3 4 5
2 1 4 3 5

)
. Then

(αβ)γ =
[(

1 2 3 4 5
5 3 1 4 2

) (
1 2 3 4 5
5 3 2 1 4

)] (
1 2 3 4 5
2 1 4 3 5

)
=

[(
1 2 3 4 5
4 2 5 1 3

)] (
1 2 3 4 5
2 1 4 3 5

)
=

(
1 2 3 4 5
3 1 5 2 4

)
and

α(βγ) =
(

1 2 3 4 5
5 3 1 4 2

) [(
1 2 3 4 5
5 3 2 1 4

) (
1 2 3 4 5
2 1 4 3 5

)]
=

(
1 2 3 4 5
5 3 1 4 2

) [(
1 2 3 4 5
5 4 1 2 3

)]
=

(
1 2 3 4 5
3 1 5 2 4

)
It shouldn’t come as a surprise that we get the same result for (αβ)γ and α(βγ). This is what associa-
tivity means. We write this product as αβγ.

3.5 Inverses of Permutations

We saw in Example 3.7(b) permutations α and β such that the product was the identity: αβ = ε. We
will call permutations with the property that their product is the identity, inverses. Let’s look at this
example a little more closely.

The permutations under consideration are:

α =
(

1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
and β =

(
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
.

We can represent α by an arrow diagram. Each blue arrow represents the mapping defined by the
permutation α. If we replace each blue arrow with a red arrow pointing in the opposite direction then
we get an arrow diagram representing β (follow arrows from bottom row to top row). In this sense,
the inverse permutation is obtained by “reversing the arrows”.

1Our convention is to compose permutations from left to right, see Definition 3.4.
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We can do the same experiment with the array form of β. Let’s flip β over, that is, we’ll switch the
top and bottom rows: (

5 2 1 6 7 8 3 4
1 2 3 4 5 6 7 8

)
,

then let’s put the top row in increasing order, while keeping all the columns in tact:(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
.

This precisely α! Should we be surprised this happened? What is really going on here?

To see what is going on, let’s recall that the notation means the number in the top row maps to the
number directly beneath it in the bottom row. For instance, α maps 1 to 3. If β is to be the inverse of
α then it must undo what α does. In particular, it must map 3 back to 1. This means 3 must appear
above 1 in the array from of β. Let’s say this again: if 1 is above 3 in α, then 3 is above 1 in β.

The same is true for every number. In general, we have if k is above m in α (i.e. α(k) = m) then m is
above k in β (i.e. β(m) = k). This explains exactly what we observed when we flipped β.

Now suppose, we start with a permutation, say σ =
(

1 2 3 4
3 2 4 1

)
and we flip the rows, and reorder

the first row so it is increasing order, while keeping the columns in tact: γ =
(

1 2 3 4
4 2 1 3

)
. Is this

a permutation? Well, each number from 1 to 4 appears in the second row, so it is surjective, and no
number appears more than once, so it is injective. Therefore, yes, it is a permutation. And by the
observation above, it is the inverse of σ, that is, σγ = ε.

We can also use the arrow diagram to see this visually. γ was constructed by “reversing the arrows”
of σ, so clearly γ is a bijection, and it is the inverse of σ, since it just undoes what σ is doing.

These observations tell us two things: every permutation has an inverse, and it is unique. Moreover,
we have a straighforward way to construct inverses given a permutation in array or arrow form.

This result is so important that we state it as a theorem. We’ll also give a formal proof of the theorem,
which captures the essence of our discussion above in just a few lines.

Theorem 3.1 For any permutation α : Zn → Zn, there exists a unique permutation β : Zn → Zn such
that αβ = βα = ε.

Proof: Let α be a permutation, define a new function β : Zn → Zn as follows:

β(m) = k ⇐⇒ α(k) = m

for k,m ∈ Zn. Since α is bijective, for any m such a k exists and is unique. It follows that (αβ)(m) =
α(β(m)) = α(k) = m and (βα)(k) = β(α(k)) = β(m) = k. This proves the theorem. �
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Definition 3.5 For any permutation α the unique permutation β such that αβ = βα = ε is called the
inverse of α and is denoted by α−1.

Example 3.9 Find the inverse of each of the following permutations. Verify it is the inverse by com-
puting the product and showing it is the identity permutation.

(a) α =
(

1 2 3 4 5
3 1 2 5 4

)
(b) β =

(
1 2 3 4
3 4 1 2

)

(a) The inverse of α can be obtained by reading the array form from the bottom row to the top row. For
example, 1 in the bottom row must map to the number above it, which is 2. Similarly for the other

numbers, so α−1 =
(

1 2 3 4 5
2 3 1 5 4

)
.

SAGE has a built-in inverese() command.
SAGE

sage: a=Permutation([3,1,2,5,4])
sage: a.inverse()
[2, 3, 1, 5, 4]

(b) Similar to (a), we read the array form of β from bottom-to-top to get the array from of β−1: β−1 =(
1 2 3 4
3 4 1 2

)
. Notice this is just β itself. So β is its own inverse.

SAGE
sage: b=Permutation([3,4,1,2])
sage: b.inverse()
[3, 4, 1, 2]

3.5.1 Inverse of a Product

Apply the move sequence RU to your Rubik’s cube. Now undo this move sequence. That is, return the
cube to the state it was in before you apply RU. It is very likely you just applied the move sequence
U−1 R−1. If you did, then you have a working understanding of how to find the inverse of a product.

As another example, in the morning you get dressed you put on your socks then your shoes, but when
you come home at night and get undressed you takes off your shoes then your socks. The order in
which things are undone is opposite to which they were done.

If these two example seem obvious, it is because they in fact are. But even obvious things can be
stated as theorems, which are just convenient summaries of observations for later use.

Theorem 3.2 For two permutations α and β,

(αβ)−1 = β−1α−1.

In general, the inverse of a product permutations is the product of the inverses in the reverse order:

(α1α2 · · ·αk)−1 = α−1
k · · ·α

−1
2 α−1

1 .
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Proof: Taking the product, and using associativity of permutation multiplication,

(αβ)(β−1α−1) = αββ−1α−1

= αεα−1

= αα−1

= ε

Therefore, β−1α−1 is the inverse of αβ. A similar argument proves the general statement. �

3.5.2 Cancellation Property

An important property of the real numbers that we use all the time is the ability to cancel the same
(non-zero) factor on both sides of an equation. For example if 2x = 6 then 2x = 2 · 3 and we cancel
the 2’s to get x = 3. The reason we could “cancel” the 2′s is simply because we could multiply both
sides of the equation by the inverse of 2, namely 1/2. That is (1/2)(2x) = (1/2)(2 · 3), which means
[(1/2)2]x = [(1/2)2]3 (note the use of associativity of multiplication here), and so x = 3.

Luckily, this familiar property also holds for permutations.

Lemma 3.1 (Cancellation Property) If α, β, γ ∈ Sn where αβ = αγ then β = γ.

Similarly, if βα = γα then β = γ.

Proof: Multiplying both sides of αβ = αγ on the left by α−1 we get

α−1(αβ) = α−1(αγ).

By associativity
(α−1α)β = (α−1α)γ.

and so
εβ = εγ,

which means β = γ.

A similar argument shows the right cancellation property as well. �

As a consequence of the cancellation property the identity permutation is the only permutation that
when multiplied to another permutation it leaves it unchanged. That is, it has the property that
αε = α for any α ∈ Sn. To see this, suppose β is a permutation with this property too, that is αβ = α
for some α. Then αβ = αε, and by cancellation of α we have β = ε.

3.6 The Symmetric Group Sn

The set of all permutations of the set Zn is called the symmetric group of degree n, and is denoted by
Sn. in other words,

Sn = {α : α is a permutation of Zn}.

Some authors denote the symmetric group by Sym(n). In these notes however, we will use Sn.
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We’ve already seen that elements of Sn can be written in the form(
1 2 3 . . . n

α(1) α(2) α(3) . . . α(n)

)
.

It is straightforward to compute the cardinality of the set Sn. There are n choices for α(1). Once α(1)
has been chosen, there are n− 1 possibilities for α(2) (since α is injective we must have α(1) 6= α(2)).
Once α(2) has been chosen there are n− 2 choices for α(3). Continuing in this way we see that there
are n · (n − 1) · (n − 2) · · · 3 · 3 · 1 = n! possible choices for α(1) to α(n). Each choice gives a different
permutation. Therefore |Sn| = n!.

Let’s summarize what we know so far about Sn.

• Sn, the symmetric group of degree n, is the set of all permutation of Zn = {1, 2, . . . , n}.

• |Sn| = n!

• Two elements α, β ∈ Sn can be composed (multiplied) to give another element αβ ∈ Sn.2

• The identity permutation is ε =
(

1 2 ... n
1 2 ... n

)
. It has the property that εα = εα = α for all

α ∈ Sn.

• Every α ∈ Sn has an inverse denoted by α−1. The defining property of an inverse is αα−1 =
α−1α = ε.

• (α1α2 · · ·αk)−1 = α−1
k · · ·α

−1
2 α−1

1 .

• Permutation composition (multiplication) is associative.

• Permutation composition (multiplication) is not necessarily commutative.

• Cancelation Property: αβ = αγ implies β = γ, and βα = γα implies β = γ.

3.7 Rules for Exponents

When we describe moves on Rubik’s cube we write things such as: R B2 R−1. Exponents are serving
two purposes here: (i) they represent inverse moves, such as R−1 is the inverse of R, (ii) they
represent repetition of moves, such as B2 is the move B repeated twice.

If we follow the move sequence R U−2 B2 R−1D U−2 with the move U then the complete move
sequence would be

R U−2 B2 R−1D U−2U.

But certainly, U−2U simplifies to U−1, since a counterclockwise half turn ( U−2) followed by a
clockwise quarter turn (U) is equivalent to a counterclockwise quarter turn. This means the complete
move sequence is equivalent to

R U−2 B2 R−1D U−1.
2the convention of these notes is to compose permutations from left-to-right,
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We write this as (R U−2 B2 R−1D U−2) U = R U−2 B2 R−1D U−1.

This notation translates nicely to composition of permutations.

If α ∈ Sn and m is a positive integer then αm denotes the product of α with itself m-times. That is,
αm = αα · · ·α.

We define negative exponents by the rule α−m = (α−1)m, where m is any positive integer.

We define the zero exponent by α0 = ε, where ε is the identity permutation.

An important observation is that some of the familiar “rules of exponents” apply to the composition
of permutations. Specifically, for any two integers m and k and for any α ∈ Sn, we have

(a) αmαk = αm+k

(b) (αm)k = αmk

This follows precisely from the fact that we are defining an exponent to represent repeated multipli-
cation.

One property that you may be familiar with from multiplication of real numbers is: (ab)m = ambn.
This is not true for permutations: if α, β ∈ Sn and m ∈ Z then in general (αβ)m is not equal to αmβm.

For real numbers this property relies on the fact that multiplication of real numbers is commutative.
We’ve already seen this is not the case for permutations under composition.

However, we do have the following result.

Lemma 3.2 If α, β ∈ Sn commute with each other, that is αβ = βα, then for all integers m, (αβ)m =
αmβm.

Exercise 3.2 Prove Lemma 3.2.

3.8 Order of a Permutation

The order of a permutation α ∈ Zn is the smallest positive integer m such that αm = ε.

In Example 3.7 we saw that for α =
(

1 2 3 4 5
3 4 1 5 2

)
the smallest m for which αm = ε is 6. We say

α has order 6, and we write ord(α) = 6.

As another example, β =
(

1 2 3
2 1 3

)
is an element in S3 of order 2, since β 6= ε, but β2 = ε.

Must every permutation have a finite order? The next theorem answers this question.

Theorem 3.3 For any α ∈ Sn there exists a positive number m for which αm = ε. (The smallest such
m is the order of α, denoted ord(α).)

Proof: Consider the set of all powers of α, {αk : k ∈ Z+}. Since this is a subset of the finite set Sn it
must also be finite. This means all the powers of α cannot be distinct, so there must be k, ` such that
αk = α` where k > ` > 0. Now multiplying α−` to the left of both sides (i.e. cancelling α`) we get:

α−`αk = α−`α`
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and so
αk−` = ε.

This proves the theorem. �

We can now describe precisely which integers m have the property that αm = ε.

Theorem 3.4 Let α be a permutation. If αm = ε then ord(α) divides m.

Proof: Let n = ord(α), and suppose αm = ε. By the division algorithm there exist integers q and
0 ≤ r < m such that m = qn+ r. In other words, n goes into m q-times, with r left over. Therefore

ε = αm = αqn+r = (αn)qαr = εqαr = αr.

Since r is smaller than the order of α this is only possible if r = 0. Hence n divides m. �

Exercise 3.3 Let

α =
(

1 2 3 4 5
5 2 1 4 3

)
, β =

(
1 2 3 4 5
5 4 1 2 3

)
, γ =

(
1 2 3 4 5
2 4 1 3 5

)
.

Determine the order of (a) α (b) β (c) β−1 (d) γ (e) α−1γα.

Exercise 3.4 Consider Rubik’s cube. Determine the orders of each of the following moves by physi-
cally doing the move successively on the cube. It is best to start with your cube in the solved state so
you can easily recognize when you’ve returned to that state.

(a) R

(b) R2 L2 U2

(c) U2R

(d) U R

If you stuck with it long enough, and didn’t lose count, you would find that U R has order 105. That
means you would have to apply U R a total of 105 times (or a total of 210 quarter face turns) before
you get back to where you started.

One of our goals will be to thoroughly understand orders of move sequences: specifically how to
compute the order of a move sequence without having to physically manipulate the cube.

For example, the move sequence R U2 D−1B D−1has order 1260. We’ll soon see how to compute this
rather quickly by using a computer.
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3.9 Exercises

1. Show that a function from a finite set A to itself is one-to-one if and only if it is onto. Is this
true when A is infinite?

2. Suppose A and B are finite sets and |A| > |B|. Is there an injective function f : A→ B? Explain.

3. For α =
(

1 2 3 4
3 1 2 4

)
, β =

(
1 2 3 4
3 1 2 4

)
, and γ =

(
1 2 3 4
2 1 4 3

)
verify that α(βγ) =

(αβ)γ. This provides some experimental evidence for the associative law.

4. Consider the following permutations

α =
(

1 2 3 4 5 6 7 8
3 4 6 7 1 5 8 2

)
, β =

(
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)
,

γ =
(

1 2 3 4 5 6 7 8
5 4 6 7 1 3 2 8

)
.

Determine each of the following.

(a) αβ

(b) αγβ

(c) β−1

(d) (γβ)−1

(e) β−1γ−1

(f) α−1γα

(g) ord(α)

(h) ord(β)

(i) ord(α−1γα)

5. Find the inverse of each of the following permutations. Verify it is the inverse by computing the
product and showing it is the identity permutation.

(a) α =
(

1 2 3 4
3 4 2 1

)
(b) β =

(
1 2 3 4 5 6 7 8
4 1 5 7 3 8 2 6

)

6. For α =
(

1 2 3 4 5
5 1 2 3 4

)
explain how you know α2011 6= ε, without actually computing all

2011 powers of α.

7. Show that an n-cycle
(

1 2 3 ... n
n 1 2 ... n− 1

)
has order n.

8. Show that for any α ∈ Sn, ord(α) = ord(α−1).

9. There is always something that doesn’t commute. Show that if n ≥ 3, then for every
element α in Sn, if α is not the identity permutation ε, then there is some other permutation β
in Sn with which α does not commute: αβ 6= βα.

10. For any permutations α and β and any integer n show that (α−1βα)n = α−1βnα.

11. For α, β ∈ Sn show that if (αβ)2 = α2β2 then α commutes with β: that is, αβ = βα.

12. Show that if αβγβ−1α = αβσβ−1α then γ = σ.
Hint: Use the cancellation property.

13. Show that the number of elements α in Sn such that α3 = ε is odd. In other words, show the set
{α ∈ Sn | α3 = ε} has odd cardinality.
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