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Lecture 9:
Mastering the 15-Puzzle
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We now have enough theory developed to give a full analysis of the 15-puzzle. We will present a
solvability criteria which will allow us to easily see whether a given scrambling of the puzzle is
solvable. We will also sketch a strategy for solving the puzzle.

This lecture corresponds to Section 7.4 in Joyner’s text.

9.1 Solvability Criteria

Determining the solvability of a scrambling of the tiles on the 15-puzzle is a simple task as we will
see. Let’s first consider the case where a scrambling places the empty space back into its original box
(box 16). This means the corresponding permutation « fixes 16: «(16) = 16. We can think of such a
permutation as an element of Si5. (Just think about the disjoint cycle form, 16 doesn’t appear since
it is mapped back to itself.)

Figure (1| shows three different configurations of the 15-puzzle corresponding to permutations in Sis.
The permutations are written below each puzzle. We'd like to be able to quickly determine which
configurations are solvable.

The next theorem says any rearrangement of tiles in the 15-puzzle starting from the solved-state
configuration which brings the empty space back to its original position must be an even permutation
of the other 15 pieces. Moreover, it says that every even permutation of the 15 tiles can be obtained
as a position on the 15-puzzle.

Theorem 9.1 (Solvability Criteria for 15-Puzzle - Part 1) A permutation o of the 15-puzzle which
fixes 16, is solvable if and only if it is even: i.e. a € Ays.

It follows that the number of solvable positions of the 15-Puzzle, where the empty space is in its home

position, is
15!
|A1s] = -~ = 653,837,184, 000.
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Figure 1: Which of the positions are solvable?

We immediately conclude from this theorem that the puzzles in Figures [1la| and [1c| are not solvable
since the permutations are odd, whereas the puzzle in Figure [1b|is solvable since the permutation is
even.

We will provide a proof of this theorem in Section 9.2

What about the case when the scrambling does not place the empty space back in box 16?7 We’ll see
that simply knowing the parity of the permutation and the position of the empty space is enough to
determine solvability. But first it will be handy to talk about the parity of a box.

Colour the 15-puzzle like a checker board as in Figure 2l We will call the shaded boxes even and the
white boxes odd. Under this definition boxes 1,3,6,8,9,11,14, 16 are even, whereas the other boxes
are odd.

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Figure 2: Parity of box: Define the shaded boxes to be even and the white boxes to be odd.

With this concept of odd and even boxes now defined, we can state the general solvability criteria for
the 15-puzzle.

Theorem 9.2 (Solvability Criteria for 15-Puzzle - Part 2) A permutation of the 15-puzzle is solv-

able if and only if the parity of the permutation is the same as the parity of the location of the empty
space.

When the empty space is in one particular box, there are

15!
| Aws| = - = 653,837,184, 000
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possible positions of the tiles. Since there are 16 different places to put the empty space, there is a
total of

151\ 16!
16 (5’) ::451 = 10,461, 394, 944, 000

possible ways to rearrange the tiles on the board so that the puzzle is solvable. This means, of all 16!
ways to arrange the tiles in the boxes, exactly half are solvable!

When the puzzle craze hit the world in the early 1880’s people noticed that when they randomly
placed the tiles in the box, the puzzle was solvable roughly half the time. This now explains why!

As an example, the permutation corresponding to the scrambling in Figure(3|is
(1,10,11,7,6)(2,3,4,8,12,16,5)(13, 15)

which is odd (check this yourself), and the parity of the location of the empty space is odd, therefore
the puzzle is solvable by the solvability criteria: Theorem

‘6 |’5 '2 |'3

5 [ T )
7111 4

Q9 10 11 12

91110

13 14 15 16

151141312

Figure 3: Is this position solvable?

9.2 Proof of Solvability Criteria

We will prove Theorem [9.1]and then show that Theorem [9.2]is a direct consequence of it.

Proof of Theorem There are two directions we need to prove: (i) a solvable configuration is
an even permutation, and (ii) every even permutation is a solvable configuration. The proof of (i) is
very straightforward, but the proof of (ii) requires us to use the fact that even permutations can be
expressed using 3-cycles.

(i) Suppose we have a solvable rearrangement of the 15 tiles, where the empty space is in its home
position (box 16). Let o € Si5 be the corresponding permutation. Since puzzle moves consist of
transpositions - the empty space is swapped with an adjacent tile - then let 71, 7, ..., 7, be the moves
(i.e. transpositions) which solve the puzzle (i.e. takes « to the identity permutation ¢). As usual, this
means o = 73 ...7o71. Since the empty space moves around the puzzle and then eventually returns
home, the number of moves must be even. To see why this is true, refer to Figure [2| the empty space
must start in shaded box 16, and after each move it alternates the colour of the box it is in, and so if
it returns to a shaded box it must have moved an even number of times. This means k is even, and
S0 « is expressible as a product of an even number of transpositions. Therefore « is even.

(i1) We wish to show every even permutation of the 15 tiles is obtainable through puzzle moves,
starting from the solved-state. We will do this by showing we can obtain any 3-cycle of the tiles. This
is enough to prove the theorem since any even permutation is expressible as a product of 3-cycles, and

Jamie Mulholland, Spring 2011 9-3
Math 302



faculty of science
SFU department of mathematics

LECTURE 9

MASTERING THE 15-PUZZLE

if we can produce any 3-cycle then we can produce any product of them, through sequential moves,
and therefore we can produce any even permutation.

We begin by observing we can produce the 3-cycle o = (11,12, 15), by focussing on the bottom right

corner of the puzzle:

11712

11 12

11

12
11

12
11

16
12

16
12

12

The sequence of moves is: (12,16)(11,12)(11,15)(15, 16)

Now that we have one 3-cycle o, we will show that we can use o construct any other 3-cycle we want.
From a solved puzzle, pick any tile, say i € Z;5. Move tiles 12 and 11 to boxes 16 and 12, respectively,

by the move sequence o = (12,16)(11, 12):.

L312

12

11

16

16
12

16
12

Then using one of the two tours in Figure |4 we can move tile ¢ to box 15, without disturbing the

contents of boxes 12 and 16. Call this move sequence /3.

~

Y.

(a)

A

(b)

Figure 4: Tours for producing 3-cycles.

Applying o~ ! then moves 11 and 12 back into their home positions. This puts the puzzle in the middle
position in the following diagram, where the z’s indicate these numbers may have moved around.
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Applying the 3-cycle o then moves tiles i, 11, and 12 around as indicated in the diagram. Now, we
apply the inverse move sequence (afa~!)"! = a3 1a~! and this takes everything back to where it
was, except 7 stays in box 11, 11 stays in box 12, and 12 goes to box i. Therefore, we have created the
3-cycle (11,12,1i), where i is any other tile we wish.

Let’s summarize what we did:

(1) we chose some tile i,

(2) temporarily hide tiles 11 and 12 in boxes 12 and 16,

(3) used one of the tours in Figure 4| to bring tile i to box 15, and this didn’t disturb tiles 11 and 12
hidden in boxes 12 and 16

(4) moved 11 and 12 back out to their original positions

(5) applied the 3-cycle o = (11,12, 15)

(6) then reversed all the steps (4) to (2), thus taking everything home except 11,12, and ¢ have been
cycled.

Here is an example (near the end we think of i as being 5 for concreteness).

| 2 3 4 1 2 3 4 1 2 3 4
1 {23 4 1L {234 X |'X | x| X

5 [ 7 8 5 5 [ 6 7 7 8 8 5 [ 7 8
5167 8 a B X | x| x| x

9 10 11 12 step (2) N K 10 11 12 step (3) i B 10 11 12
1011112 Sep i 9 110 11 step X X 11

13 14 ] 16 13 14 5 16 13 14 15 16
1211415 131141171512 X X i 2

1 2 3 4 1 2 3 4
X | X X | x X X | x X

5 6 T 8 5 6 T 8
a1 X | X | X | X o X | X | X [ X

> 9 10 11 12 > 9 10 11 12
step (4) X | x [11[12] se® x | x| 7 [11

13 14 15 16 13 14 15 16

X | x| i x | x |12

1 2 3 4 | 2 3 4 | 2 3 4
X | X[ x| x 1 1213 ] 4 1 [ 23| 4

5 [ T 8 i 6 T 8 i [ T 8
o X | x| x| X gt 1216 |78 o« |12]6] 78

> 9 10 11 12 > 9 10 11 12, > 9 10 11 12
undo step (4) X X 1 undo step (3) 9 10 1 undo step (2) 9 10 1 ll

13 14 15 16 13 14 15 16 13 14 15 16

x | x | 12]11 1311415 11 13114115

So we now can construct any 3-cycle of the form (11,12, 4), for any ¢ # 11, 12.

Since (11,12, k)(11,12,5) = (11,7)(12, k) we are able to put any tiles (j and k) in boxes 11 and 12, while
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leaving everything else in place. Moreover,
(11,5)(12, k)(11,12,2)(11, ) (12, k) = (i, 4, k),

where i # j # k and i, j, k ¢ {11, 12}. Therefore, we can produce any possible 3-cycle.
This completes the proof. [
The proof of the general solvability condition is a simple consequence of this specific case.

Proof of Theorem Let « be the current permutation of the 15-puzzle. Move the empty space
to box 16, then the new arrangement corresponds to the permutation

of =anTy-- T

where 71, 72, ..., 7 were the transpositions used to move the empty space to box 16. Since the empty
space is now in box 16 then, by Theorem a* is solvable if and only if it is an even permutation.

Let’s think about when «o* is even. This really follows from the way we defined the parities of the
boxes.

If the empty space was in an odd box, then it would have taken an odd number of transpositions to
move it to box 16. That is, £ would be odd. On the other hand, if the empty space was in an even box
then & would be even, since it would have taken an even number of transpositions to move it to box
16. In either case, k is equal to the parity of the box the empty space was in. This is precisely the
reason we defined the parity of a box as we did.

Now, putting it all together, « is solvable if and only if o* = a7 - - - 7 is even, which is equivalent to
a and k having the same parity, which is equivalent to o and the location of the empty space having
the same parity. This completes the proof. [J

9.3 Strategy for Solution

Of course, in proving Theorem we’ve essentially presented a strategy for solution. First move
the empty space into box 16, then the resulting permutation is even, so we may express it as a
product of 3-cycles. In practice, our typical method for doing this is first to express it as a product
of transpositions, then group pairs of transpositions and express them as 3-cycle or pairs of 3-cycles.
We can now use the technique outlined in Section [9.2)to produce each 3-cycle, one-by-one, by moving
the desired tiles into the 11,12, 15 boxes, performing the 3-cycle (11,12, 15), then moving everything
back again.

Though theoretically possible, and a perfectly sound way to prove the theorem, this makes for a
completely inelegant way to solve the puzzle. Not to mention you would need to remember, or write
down, the move sequence a3a~! since you would need to apply the inverse. This move sequence
could be very long. Instead we’ll look for a more efficient solution, and one that doesn’t require
remembering any previously made moves.

Some hints to get you started:

Hint 1: Solve the puzzle by setting the tiles in their proper places, one-by-one, in numerical order.
At some stages, it may be necessary to temporarily disturb placed pieces, but they shouldn’t have too
move to far out of place.

If you haven’t tried this already, do so now.
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Hint 2: There are some tricky parts. For instance if 1,2,3 are all in place, but 4 is not, it will be
necessary to disturb the previously placed pieces in order to get 4 in its proper place. Instead, before
placing 3, join it with 4 to form a chain and bring the two of them into place together. Forming chains
of tiles is a useful strategy.

If you haven’t tried this already, do so now.

Hint 3: Getting the final few pieces in the proper places is of course tricky. But at this stage, making
use of 3-cycles, as in the proof above, may be useful. After all, if you can use mathematics to shed
some light on what to do, then do it!

Most of all, just have some fun. Try some strategies of your own, if they are useful, then write them
down so you won't forget them.

SPOILER ALERT: We now present a complete method for solving the 15-Puzzle, read only if you
want to spoil the fun of discovering a solution yourself.

The following solution is due to Jaap Scherphuis (http:/www.jaapsch.net/puzzles/). It is not an opti-
mal solution, that is, it won’t allow you to solve the puzzle in the minimum number of moves, but it
does give a method that works on any solvable configuration, and it extends to puzzles of sizes other
than 4-by-4. Using this method, with a smooth puzzle, or better yet a virtual version, solutions can
take between 1 to 2 minutes, possibly faster.

Phase 1: Solve the top row from left to right.

1. Find the next tile you want to place in position in the top row.

2. If it is not the last tile of the row, it is fairly easy to place correctly, simply keep the following
points in mind:

(a) Never disturb any previously placed pieces.

(b) To move the tile in a certain direction, move the other tiles around until the space is next
to your tile on the side you want to move it to. Then you can move the tile.

3. If the last tile is not already in position, bring it to the position directly below its correct spot,
with the space directly below that. Then move tiles in the following directions: down, down,
right, up, left, up, right, down, down, left, up. This should place the piece in position. Note it
does temporarily disturb the previously placed tile. See figure below.

3 4 3 4 3 4 3 4 3 4 3 :
31X 3 y |3 y |3 3 3[4

7 8 ddr |7 8 ul |7 8 u 7 ] rdd |7 3 Lu 0 3
y |4 Y| x|=| X —>|(x|4|[—=|Y|4]|—]|Y

11 12 11 12 1 12 m 3 T = o =

‘ z |4 z |4 z X |z X | z

Phase 2: Solve the rest of the puzzle

1. Use the technique in phase 1 to solve each row in turn, until there are only two rows left.
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2. Rotate the puzzle a quarter turn to the right. The left column of the two rows becomes the top
rOW Now.

3. Use the technique in phase 1 to solve each row in turn, until there are only two rows left. This
means there is only a 2x2 square left to solve. For example, the next figure show how to get tile
12 in the correct place in the bottom left corner of the 4-by-4 version.

9 10 11 9 10 11 9 10 11 9 10 11
9 y Z r,r,d Yy Z Lu,l Yy X z d.,r,ru,l 9 y X
13 14 15 13 14 15 13 14 15 13 14 15

x |12 91 x |12 9 112 12 z

4. Move the pieces in the remaining 2x2 square around until one piece is positioned correctly, and
the space is in the correct spot. The other two tiles should automatically be correctly positioned
as well.

5. If there are two tiles that need to be swapped, then this cannot be done unless two other tiles
are swapped as well. If there are two identical tiles somewhere in the puzzle, then you will
have to swap them and solve the rest again. (This may happen if there are letters or pictures
on the tiles instead of numbers.)

9.4 Exercises

1. In the early 1880’s the world went crazy over trying to solve configuration of the 15-puzzle
where the 14 and 15 were swapped. See the Figure below. Explain why no one was able to find

a solution.
1 l 2 2 3 3 4 4
5 [ T 8
516|718
9 10 1 2
10[11]12

|1 25 39 413 |12 313 314 415 |4 23 32 41 |2 34 36 48

5 6 7 8 5 6 7 8 5 6 7 8 5 6 7
216110]| 14 81 9110 11 8716135 10 | 12| 14 |k

9 10 11 12 9 10 11 12 9 10 1 12 9 10 11 12
317 |11|15 4 6|7 12(11 |10 9 13|57

| K] 14 15 13 14 15 14 15 16 13 14 15 16
4 | 8 |12 (B 1123 el 1314 (15 9 | 111315

(a) (b) (c) (d)
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3. Show that each of the following scramblings of the 15-puzzle are unsolvable.

sl 2] PrlslofE |'124]'7] Val'3]2/1
5 [ 7 3 5 6 7 5 6 7 3 5 6 7 8
11110 9 | 8 21 7110]15 315|811 511411312
9 10 11 12 9 10 11 12 9 10 11 12 9 10 12
7 514 3016|1114 61911214 6 |15 11
| K] 14 15 13 14 15 16 | K] 4 15 | LK} 14 15 16
3 2 [ 4 "5 1213 ol 315 [l 7 s 10
(a) (b) (c) (d)
4. Determine which of the following arrangements of the 15-puzzle are solvable and which are
unsolvable.
3 4 4 3 |10 2 9 3 8 4 7 2 1 3 2 4 3 1 1 2 2 3 3 4 4
7 8 5 7 8 5 6 7 8 5 6 7 8
11| 6 11 I5| 6 415167 121311415
11 12 9 10 11 12 G 10 11 12 9 11 2
I5] 8 12113 (14| 5 819 110(11 11 15| 6
| K] 14 15 16 | 1K 14 15 16 | K] 14 15 16 | 1K 14 15 16
5112110 7 123 ]| 4 121131415 10 9|1 8| 7
(a) (b) (c) (d)

5. This exercise is to help us understand the details of the proof in Section and to get some
practice with creating 3-cycles. Starting with the puzzle in the solved state write down a se-
quence of moves which will produce each of the 3-cycles:

(a) (11,12,13) (b) (11,12,8) (c) (11,8,13).

Either write the moves using transpositions, or use the words “up”, “down”, “left”, “right”, to
indicate the direction the tile adjacent to the empty space is moved. It may help to use a physical
or virtual version of the puzzle. See the “software” section of the course webpage for links to
virtual versions of the puzzle.

6. A 15-puzzle manufacturer wants to sell the puzzle with the tiles already mixed-up, and they
want the pattern to be “pretty” so it catches the eye of the customer when sitting on a store
shelf. This manufactured version of the puzzle does not allow the pieces to be removed, so the
pattern needs to be solvable. They propose to use a pattern where all then even numbered tiles
are in the first two rows, and the odd numbered tiles in the last two rows (see the Figure below).
They also colour all the even tiles red, so that in the solved state the puzzle will have a pattern
of vertical lines. If they manufacture the puzzle in this way, will it be solvable? Or will this
result in angry customers wanting to return their puzzles?
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9 10 11 12

113|517

113 14 15

16
9 1111315

7. In 1959, the Plas-Trix Company in the USA produced a letter version of the 15-puzzle. The
problem is to rearrange the blocks so they correctly spell RATE YOUR MIND PAL. They man-
ufactured and sold the puzzle with the last two tiles switched. See the figure below. Explain
why it is possible to solve this puzzle.

(Hint: At first glance it seems this is analogous to the 15-14 problem in Exercise |1, in which
case it is not solvable. But this is not entirely equivalent, and the subtle differences are what
allows this puzzle to be solved. Can you spot the reason this puzzle is solvable?)

RIA|T|E
Y| O|U|R
M|IT|N|D
P|L A

8. The Panama Canal Puzzle dates back to 1915. The staring position has the red letter “P” and

the black letter “C” swapped. The problem is to swap the two blocks back. Explain why it is
possible to solve this puzzle.

9. The Get My Goat Puzzle was patented in 1914. The problem is to get the goat inside the fenced-
in area, after removing the marked block. This basically requires a swap of the block with the
picture of the goat’s head and the block adjacent to it. Explain why this puzzle is solvable.

You can play an online version of this puzzle at “Nick Baxter’s sliding puzzle page”. See the link
on our course website.
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Conjugation:
Exercises [10| through [12]introduce the idea of conjugation.
First a definition:

If a, 3 € S,,, we call the permutation 5~ 'a3 the conjugate of o by £.

Looking back at the proof of Theorem|[9.1]we transformed the 3-cycle o = (11,12, 15) into another
3-cycle (11,12,4) by:
yoy~! = (11,12,1),

where v = afa~! was a sequence of moves that moved tile i to box 15, and left tiles 11 and
12 alone. We used conjugation twice in the proof: a3a~! and yo+y~!. These types of products
are used extensively when solving permutation puzzles. If you have some experience with
permutation puzzles you will notice you frequently make moves of the form:

e do a move my,
e then do another move mo,
e then undo the first move m; .
If you notice you do this, then you already have a working feel for conjugation. In the next few

exercises we investigate conjugation, and show that 3~ 'a3 and o have the same cycle structure.
This general result is the reason why vo+ is a 3-cycle.

10. For each of the following pairs of permutations «, 3 € S, calculate the conjugate of o by 5. In
other words, compute the product 5~ 'as.
(@) a=(1,2,3,4,5), B =(1,5,8)(2,6)(3,7,4)
(b) = (1,5,8)(2,6)(3,7,4), 8 =1(1,2,3,4,5)
(¢) a=(57,3,6)(10,11,8,12), 3= (1,2)(4,10,5,11,7,9,12)

In each case notice, the cycle structure of 3 'a/3 is the same as «. For instance in (b), « is a
product of two 2-cycles and one 3-cycle, and so is 3~ 'af3.

11. For oo = (1,2,3,4) and 5 = (1,4)(3,5,2) do the following.

(a) Calculate 3~ 'ag.
(b) Calculate the values of 3(1), 5(2), 5(3), 5(4), then write down the 4-cycle, (5(1), 5(2), 5(3), 3(4)).

(c) Observe that the 4-cycle in part (b) is the same as the answer to part (a). Coincidence? The
next exercise says, this is no coincidence.
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12. Show that for any «, 5 € S,, the conjugate 5~ 'a has the same cycle structure as c.

Hint: express « in disjoint cycle form o0 - - - 0, where o; is a m;-cycle, for 1 < i < k. Then
show

i) B lrap = (B7'o1B)(B toaB) - (B owp).

Then it suffices to only consider the case when « is a cycle. Which means, you just need to
prove:

Gi) a1, az,...,am)0 = (B(ar), Blaz), ..., B(am)).

Other Board Sizes and Obstacles:
In Exercises|13|to[15/ we investigate board sizes other than 4 x 4.

13. Consider 5 tiles and an empty space on a board consisting of 3 rows and 2 columns. Show, by
using a similar argument to the one used for the 15 puzzle that a permutation « € S5, where
the empty space is in its home location, corresponds to a solvable configuration if and only if «
is an even permutation.

Hint: By using a two-by-two square of four boxes, show that a single 3-cycle can be obtained.
Then show every 3-cycle can be obtained by conjugation, similar to the argument we used for
the 15 puzzle..

14. The following board shows a variation of the 15 puzzle where boxes 6,7, and 11 are obstacles.
That is, these boxes are “out-of-play” and cannot be used. We can still ask the question as
to which permutations of the tiles are solvable. Show that, just like the original 15 puzzle,
Theorems|[9.1] and 9.2l remain true.

Hint: For simplicity just focus on permutations leaving the empty space in its home location.
Use the two-by-two square of four boxes to generate all 3-cycles: first show you can obtain one
3-cycle, then use conjugation to obtain all others.

1 1 2 2 3 3 4 4
3 8
5 8
9 10 12
9110 12
113 14 15
3114116

15. [Challenging] The following is a general characterization of the solvability condition for rect-
angular boards, with obstacles. Verify it is true.

Let o denote an arbitrary permutation of tiles on a rectangular m x n board such that the board

(a) has one empty space,
(b) has at least one two-by-two array of boxes all of which are in use, and

(c) may have some obstacles (boxes that are out-of-play and cannot be used), but these obstacle
do not trap tiles (in other words, any tile can be moved to any other location).
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Then the permutation « is solvable if and only if the parity of « is the same as the parity of the
location of the empty space.
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