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Last lecture we introduced the concept of a group. This is a set equipped with an (associative) operation that
allows us to combine two elements to produce another element in the same set. We require the set, under this
operation, to have an identity, and for every element to have an inverse. We saw a number of familiar sets and
operations which satisfy the property of being a group. In this lecture we look at subsets of groups.

11.1 Subgroups

Not all subsets of groups are created equal. For example, consider the two subset of the set of all Rubik’s cube
moves: H = {ε,R,R2,R3} and K = {ε,R,U}. The set H is a group itself as we saw last lecture. On the other
hand, the set K is not a group since, for one thing the product of R and U is not in K.

If G is a group, and H is a subset of G which is also a group (using the same operation), then we say H is a
subgroup of G, and we write H < G.

Example 11.1 (a) H = {ε, (1, 2)} is a subgroup of S3.

(b) The subset G = {ε, (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(3, 4), (2, 4), (1, 3)} of S4 is a subgroup.
We could check that every product of elements in G is again in G, and that each element has an inverse in
G. However, we could just observe that G is precisely D4, the dihedral group of order 8 that we investigated
last lecture, so we already know it is a group.

(c) The subset {0, 2, 4} is a subgroup of the cyclic group of order 6, C6 = {0, 1, 2, 3, 4, 5}.

To verify whether a subset of a group is itself a group we don’t need to start from scratch. For instance, since
the operation on G is associative, then restricting the operation to just elements of a subset H it would still
have to be associative. This means we don’t need to check associativity, we get this for free. So we really only
need to check (i) H is closed, (ii) the identity is in H, and (iii) each element of H has an inverse in H. Notice
that if we have (i) and (iii) then we get (ii) for free, since aa−1 = e. This means we have the following test for a
subgroup.
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Theorem 11.1 (Two-Step Subgroup Test) Let G be a group and H a nonempty subset of G. If

(a) for every a, b ∈ H, ab ∈ H (closed under multiplication), and

(b) for every a ∈ H, a−1 ∈ H (closed under inverses),

then H is a subgroup of G.

11.2 Examples of Subgroups

Imagine playing with Rubik’s cube but only allowing yourself to use moves U and R. Some examples of move
sequences that you could perform are: RU R−1 U2 R2 U−1, RURURURUR, and (R2U2)3. Observe that every
move sequence has an inverse involving only R and U, and the product of any two move sequences is another
move sequence involving only R and U. That is, the set of all such move sequences is a group! We denote this
group by 〈R,U〉.

For any group G, let g1, g2, . . . , gk be elements in G. Let 〈g1, g2, . . . , gk〉 be the set of all elements of G which can
be expressed as products of g1, g2, . . . , gk and their inverses g−1

1 , g−1
2 , . . . , g−1

k :

〈g1, g2, . . . , gk〉 = {x ∈ G | x = gmi
ji
gm2

j2
· · · gm`

j`
for some indices ji’s and exponents mi ∈ Z},

then 〈g1, g2, . . . , gk〉 is the subgroup generated by g1, g2, . . . , gk.

When k = 1, the group 〈g〉 = {gn | n ∈ Z} is called a cyclic subgroup of G.

Many of our examples of subgroups will be of these types, and this is how we will construct groups in SAGE.

(1) Recall S3 = {ε, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.
One subgroup of S3 is 〈(1, 2, 3)〉 = {ε, (1, 2, 3), (1, 3, 2)}. Check this is indeed a subgroup.
We can list all subgroups of S3 as follows:
〈ε〉 = {ε}
〈(1, 2)〉 = {ε, (1, 2)}
〈(1, 3)〉 = {ε, (1, 3)}
〈(2, 3)〉 = {ε, (2, 3)}
〈(1, 2, 3)〉 = {ε, (1, 2, 3), (1, 3, 2)} = 〈(1, 3, 2)〉
We can check that 〈(1, 2), (1, 3)〉 = S3. What this means is that any element of S3 can be written as a
product involving (1, 2) and (1, 3). In fact, the subgroup generated by any two elements will be all of S3

again.
SAGE

sage: S3=SymmetricGroup(3)
sage: a=S3("(1,2)")
sage: b=S3("(1,3)")
sage: H=PermutationGroup([a,b]) # forms the group generated by a and b
sage: H==S3 # check if H is equal to the whole group
true

(2) Recall C10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the operation is additional modulo 10. The subgroups of C10

are:
〈0〉 = {0}
〈2〉 = {0, 2, 4, 6, 8}
〈5〉 = {0, 5}.
There are no other (proper) subgroups of C10.
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(3) Recall U(10) = {1, 3, 7, 9} and the operation is multiplication modulo 10. Since 32 = 9 and 33 = 7 then
U(10) = 〈3〉. A proper subgroup of U(10) is 〈9〉 = {1, 9}. Verify this is the only other proper subgroup of
U(10), besides the trivial subgroup {1}.

(4) In S10, the permutations α = (1, 2) and β = (1, 5, 3)(2, 4) generate a subgroup H of size 120. The permu-
tation (1, 4, 3, 2) is in H since αβαβ2 = (1, 4, 3, 2). On the other hand, (8, 9, 10) 6∈ H, since any product of α
and β would have to fix 10.

SAGE
sage: S10=SymmetricGroup(10)
sage: a=S10("(1,2)")
sage: b=S10("(1,5,3)(2,4)")
sage: H=PermutationGroup([a,b]) # could have used H=S10.subgroup([a,b]) instead
sage: H.order()
120
sage: a*b*a*bˆ2
(1,4,3,2)
sage: S10("(1,4,3,2)") in H
true
sage: S10("(8,9,10)") in H
false

(5) Some subgroups of the dihedral group D4 = {R0, R90, R180, R270, H, V,D,D
′} are

〈R90〉 = {R0, R90, R180, R270}
〈R180〉 = {R0, R180}
〈V 〉 = {R0, V }
〈H,V 〉 = {R0, R180, H, V }
If we construct only the portion of the multiplication table that involves {R0, R180, H, V } then we can
immediately see that it is a subgroup since it is closed under the operation, and inverses.

SAGE
sage: D4=DihedralGroup(4)
sage: D4sublist=["()","(1,3)(2,4)", "(1,4)(2,3)", "(1,2)(3,4)"]
sage: D4subnames=["R0","R180","H","V"]
sage: D4.cayley_table(names=D4names,elements=D4list)

* R0 R180 H V
+--------------------

R0| R0 R180 H V
R180| R180 R0 V H

H| H V R0 R180
V| V H R180 R0

11.3 The Center of a Group

The center of a group G is the subset Z(G) of all elements that commute with every element of G:

Z(G) = {a ∈ G | ag = ga for all g ∈ G}.

Theorem 11.2 For a group G the center Z(G) is a subgroup of G.

Proof: The identity is in Z(G). If a and b are in Z(G) then for any g ∈ G, (ab)g = a(bg) = a(gb) = (ag)b =
(ga)b = g(ab) so ab ∈ G. Also, ag = ga implies ga−1 = a−1g so a−1 ∈ G. Therefore, by the Two-Step subgroup
test Z(G) < G.

�

Note that Z(G) = G if and only if G is abelian. We’ve shown in a previous exercise that for every non-trivial
permutation in S − n, where n ≥ 3, there exists one that does not commute with it. This means Z(Sn) = {ε}.
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However, for subgroups of of Sn this is not necessarily the case. For example A3 is abelian and so Z(A3) = A3.
Here we verify this in SAGE.

SAGE
sage: A3=AlternatingGroup(3)
sage: A3.center()
Permutation Group with generators [(1,2,3)]
sage: A3.center().list()
[(), (1,2,3), (1,3,2)]

We’ll use the center subgroup later on when investigating Rubik’s cube.

11.4 Lagrange’s Theorem

Looking back at our examples in last section we make the following observation: the order of a subgroup
divides the order of the group. For example, in S3, which is a group of order 6, all the subgroups we listed has
either order 1, 2 or 3, which are precisely the divisors of 6. Verify this observation for the other examples.

The raises the question: Is this always the case? Must the order of a subgroup always be a divisor of the order
of the group? If this is true, then it puts a pretty strict condition on the possible subsets that can be subgroups.
For instance, we would be able to conclude pretty quickly that {R0, H,D} is not a subgroup of D4 since 3 does
not divide 8.

It turns out that our observation is true in general. This is known as Lagrange’s Theorem.

Theorem 11.3 (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G, then |H| divides |G|.

We will not prove this theorem here.

If we consider the subgroup 〈g〉 generated by an element g ∈ G, then the order of this subgroup is precisely the
order of g. In other words, our two definitions of the word “order” (both as the size of a group, and the smallest
number n for which gn = e) agree.

Corollary 11.1 (ord(a) divides |G|) In a finite group, the order of each element divides the order of the group.

Here is some experimental evidence in support of the corollary.

SAGE
sage: n=20
sage: Cn = CyclicPermutationGroup(n)
sage: element_orders=Set([g.order() for g in Cn])
sage: element_orders
{1, 2, 4, 5, 10, 20}

The orders of the elements in C20 are all divisors of 20. We could vary n, try dihedral groups or unit integer
groups, etc. In every case, we would find that the order of an element must divide the order of the group.

As a partial converse to Corollary 11.1 we have the following.

Theorem 11.4 (Cauchy’s Theorem) Let p be a prime dividing |G|. Then there is a g ∈ G of order p.

Note that for non-prime divisors d of |G| it is not true in general that G contains an element of order d. For
example, H = {ε, (1, 2), (3, 4), (5, 6), (1, 2)(3, 4), (1, 2)(5, 6), (3, 4)(5, 6)} is a subgroup of S6 of order 8, but it does
not contain an element of order 4 or 8.

A proof of Cauchy’s Theorem will be deferred to a later lecture (if we have time).
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11.5 Cyclic Groups Revisited

In a cyclic group G = 〈g〉 every element is of the form gk for some k. If G is infinite then every distinct power
of g is a distinct element of G. Think about Z = 〈1〉 under addition as an example (of course, here we have to
reinterpret “power” to mean “multiple” since the group operation is addition),

If G = 〈g〉 is finite of order n then G = {e, g, g2, . . . , gn−1} and gi = gj if and only if n | j − i.

This means it is fairly easy to work with cyclic groups, since taking products and determining when two
elements are really the same, is a fairly simple task.

The following theorems list some nice properties that cyclic groups have, including how to find all subgroups
and all elements of a particular order.

Theorem 11.5 (Fundamental Theorem of Cyclic Groups) Every subgroup of a cyclic group is cyclic. More-
over, if |〈g〉| = n then for each divisor of k of n there is exactly one subgroup of 〈g〉 of order k.

The proof of this is well within our reach, but I will not prove it here.

Theorem 11.6 (Generators of Cycle Groups) Let G = 〈g〉 be a cyclic group of order n. Then G = 〈gk〉 if and
only if gcd(k, n) = 1.

Theorem 11.7 (Number of elements of each order in a cyclic group.) If d is a divisor of n, the number
of elements of order d in a cyclic group of order n is φ(d).

In the specific case when the group is Cn, and the operation is addition, these theorems can be restated as
follows.

Theorem 11.8 (Generators, Subgroups, and Orders in Cn) Consider the group of integers modulo n, Cn.

(a) An integer k is a generator of Cn if and only if gcd(k, n) = 1.

(b) For each divisor k of n, the set 〈n/k〉 is the unique subgroup of Cn of order k, moreover, these are the only
subgroups of Cn.

(c) For each k | n the elements of order k are ` · (n/k) where gcd(`, k) = 1. The number of such element is φ(k),
and each of these is a generator of the unique subgroup of order k.

Example 11.2 Let’s determine all the subgroups of C24. By Theorem 11.8 the generators of C24 are precisely
the elements which are relatively prime to 24 = 233. These are 1, 5, 7, 11, 13, 17, 19, 23.

〈1〉 = C24

2 is an element of order 12, so it generates a cyclic subgroup of order 12:

〈2〉 = {0, 2, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22}.

The other generators are k · 2 where k is relatively prime to 12. Since there are φ(12) = 4 numbers relatively
prime to 12, namely {1, 5, 7, 11} then the other generators of this subgroup are 5 · 2 = 10, 7 · 2 = 14, 11 · 2 = 22.

3 is an element of order 8, so it generates a cycle subgroup of order 8:

〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21}.

Other generators of this subgroup are m · 3 where m is relatively prime to 8. There are φ(8) = 4 such generators:
3, 9, 15, 21.
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subgroup order other generators

〈1〉 = C24 24 5, 7, 11, 13, 17, 19, 23
〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} 12 10, 14, 22
〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21} 8 9, 15, 21
〈4〉 = {0, 4, 8, 12, 16, 20} 6 20
〈6〉 = {0, 6, 12, 18} 4 18
〈8〉 = {0, 8, 16} 3 16
〈12〉 = {0, 12} 2
〈0〉 = {0} 1

Table 1: Subgroups of C24

We can continue looking for subgroups (and generators) in this way. We just keep in mind that to find a subgroup
of size k we look for an element of order k, since it will generate the only subgroup of size k. This is what Theorem
11.8 (and more generally Theorem 11.5) states.

Table 1 lists all subgroups, orders and generators of C24.

11.6 Cayley’s Theorem

We’ve mostly been focussing our attention on permutation groups. One may wonder whether we are limiting
ourselves, and missing out on some pretty important groups that we wouldn’t otherwise see. Well, it turns out
that every group is really just a permutation group, the difference is only in the names. To see this, let G be a
finite group of order n. List the elements of G:

g1, g2, g3, . . . , gn−1 , gn.

For any element a ∈ G multiply the elements of the list by a:

ag1 , ag2, ag3, . . . , agn−1, agn.

This is just a permutation of the list of elements in G. In other words, we can associate to the element a the
permutation that it induces on the elements of G. It turns out that the set of all such permutations contains
all the information about G. In other words, we can just think of G as a set of permutations. This is known as
Cayley’s theorem.

Theorem 11.9 (Cayley’s Theorem) Let G be a group. For each a ∈ G, define a mapping

ρa : G→ G

x 7→ ax.

Then

(a) ρa is a permutation of the set G,

(b) H = {ρa | a ∈ G} is a subgroup of SG, the group of all permutations of the set G.

(c) H and G are essentially the same groups, all that is different is the names of the elements. More precisely,
if ab = c in G then ρaρb = ρc as permutations.
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We only note the theorem here since it tells us that we aren’t, in a sense, limiting ourselves by studying only
permutation groups. Also, this theorem indicates why SAGE uses permutation groups to represent other
groups.

11.7 Exercises

1. Is {ε, (1, 2), (1, 2, 3)} a subgroup of S4?

2. We name the elements in S3 as follows:

s1 = (1, 2), s2 = (1, 3), s3 = (2, 3), s4 = (1, 2, 3), s5 = (1, 3, 2).

(a) Let G be the subgroup generated by s1, G = 〈s1〉. Verify there are only two elements in G.
(b) What is the order of s4?
(c) Let H be the permutation group with generator s5, G = 〈s5〉. Verify that there are only three

elements in H.
(d) Show that S3 = 〈(1, 2), (1, 3, 2)〉.

3. Let G = 〈(1, 2), (3, 4, 5)〉. Show that G is a subgroup of S5 of order 6.

4. Find a subgroup of order 4 in S4.

5. Find a subgroup of order 8 in S4.

Dihedral Groups:

6. Determine all the subgroup of D3.

7. Find the center Z(D4) of D4.

8. Determine all the subgroup of D5.

9. (a) Determine the number of elements of order 2 in Dn.
(Hint: You will need to consider the cases n is even and n is odd separately.)

(b) How many subgroups of order 2 does Dn have?

10. Determine the orders of the elements in D33 and how many there are of each.

11. How many elements of order 4 does D12 have? How many elements of order 4 does D4n have.

Group of Integers under addition modulo n:

12. Find all the subgroups, and determine generators for each subgroup, for each of the following.

(a) C8 (b) C12 (c) C17

13. Find all the elements of order 6 in C18.

14. Find all the elements of order 15 in C30.

15. Find all the elements of order 10 in C40.
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16. List all the elements of order 8 in C8000000.

Unit Group modulo n:

17. Determine all the subgroups of U(12).

18. For each value of n listed below, determine whether or not U(n) is a cyclic group. When it is cyclic, list
all of the generators of U(n), n = 5, 9, 10, 14, 15, 18, 20, 22, 25. Make a conjecture about the prime power
decomposition of integers n for which U(n) is cyclic. Are n = 9 and n = 16 counterexamples of your
conjecture? (Try them.) If so, modify your conjecture.

19. Given the fact that U(49) has 42 elements, determine the number of generators that U(49) has without
actually finding any of the generators.

20. Prove that U(2n) (n ≥ 3) is not cyclic.
(Hint: Look for a property that U(2n) has that cyclic groups do not have.)

Subgroups in General:

21. Prove that a group of order 3 must be cyclic.

22. Suppose that G is a cyclic group and the 6 divides |G|. How many elements of order 6 does G have? If
8 divides |G|, how many elements of order 8 does G have? If a is one element of order 8, list the other
elements of order 8.

23. Let |G| = 33. What are the possible orders for the elements of G? Show that G must have an element of
order 3.

24. Let |G| = 8. Show that G must have an element of order 2. Show by counterexample that G need not
have an element of order 4.

25. If G is an abelian group and contains cyclic subgroups of orders 4 and 5, what other sizes of cyclic sub-
groups must G contain.

26. If G is an abelian group and contains a pair of subgroups of order 2, show that G must contain a subgroup
of order 4. Must this subgroup be cyclic?

27. Show that every group of order at most 4 is abelian. This says that groups of order ≤ 4 don’t have enough
room to have elements that don’t commute.

28. Show that if G is a group where |G| = p is prime then G is cyclic.

29. One-Step Subgroup Test. Let G be a group and H a nonempty subset of G. Show that H is a subgroup
of G if ab−1 ∈ H for every a, b ∈ H.

30. Finte Subgroup Test Let G be a finite group and H a nonempty subset of G. Show that H is a subgroup
of G if H is closed under multiplication.
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