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In this lecture we discuss how to use group theory to count like a professional: we look at an application of
cosets to determine the size of a permutation group. In particular, we discover a straightforward way to count
the number of symmetries of various geometric objects.

22.1 Orbits & Stablizers

In this section we will take a look at how permutation groups act on various structures.

It will be helpful to extend the definition of a permutation from finite sets of numbers Zn, to arbitrary sets.
Let X be a nonempty set. A permutation α of X is a bijection α : X → X. The set of all permutations of X is
called the symmetric group of X and is denoted by SX :

SX = {α | α : X → X is a bijection}.

If X = Zn = {1, 2, . . . , n} then we simply denoted SZn by Sn.

Definition 22.1 (Stabilizer of a Point) Let G be a subgroup of SX . For each i ∈ X, let

stabG(i) = {α ∈ G | α(i) = i}.

We call stabG(i) the stabilizer of i in G.

We can check that stabG(i) is a subgroup of G. Since ε fixes every element in X it is definitely in stabG(i). Let
α, β ∈ G, then α(i) = i and β(i) = i. It then follows that α−1(i) = i and (αβ)(i) = β(α(i)) = β(i) = i, hence
α−1, αβ ∈ stabG(i). Therefore stabG(i) < G.
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Definition 22.2 (Orbit of a Point) Let G be a subgroup of SX . For each i ∈ X, let

orbG(i) = {α(i) | α ∈ G}.

We call orbG(i) the orbit of i under G.

Example 22.1 If G = S4, then stabS4(3) is the set of all permutation in S4 which fixes 3. There are 4! = 24
permutations in S4 but only the ones that don’t have 3 in their disjoint cycle form fix 3. Therefore,

stabS4(3) = {ε, (1, 2), (1, 4), (2, 4), (1, 2, 4), (1, 4, 2)}
= S{1,2,4}.

Notice we used the notation S{1,2,4} to denote the set of all permutations of the set {1, 2, 4}.

Example 22.2 Let

G = 〈(1, 2, 3)(4, 5, 6)(7, 8)〉
= {ε, (1, 2, 3)(4, 5, 6)(7, 8), (1, 3, 2)(4, 6, 5), (7, 8), (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)(7, 8)}.

be a group of permutation on X = {1, 2, 3, 4, 5, 6, 7, 8}. Then

orbG(1) = {1, 2, 3} stabG(1) = {ε, (7, 8)}
orbG(2) = {2, 3, 1} stabG(2) = {ε, (7, 8)}
orbG(3) = {3, 1, 2} stabG(3) = {ε, (7, 8)}
orbG(4) = {4, 5, 6} stabG(4) = {ε, (7, 8)}
orbG(5) = {5, 6, 4} stabG(5) = {ε, (7, 8)}
orbG(6) = {6, 4, 5} stabG(6) = {ε, (7, 8)}
orbG(7) = {7, 8} stabG(7) = {ε, (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)}
orbG(8) = {8, 7} stabG(8) = {ε, (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)}

In each case notice that stabG(i) is a subgroup of G. Also notice that orbits are either disjoint or equal. Moreover,
the distinct orbits:

{1, 2, 3}, {4, 5, 6}, {7, 8}
form a partition of X.

Let G be a group of permutations on X, and define a relation on X by:

x ∼G y ⇐⇒ y = α(x) for some α ∈ G. (1)

Then ∼G is an equivalence relation (see Exercise 1), and the equivalence class of an element x ∈ X is its orbit:

[x] = orbG(x).

Since equivalence classes partition the set, this indicates that our observation in Example 22.2 were not coin-
cidence. Orbits will always be the same or disjoint, and distinct orbit classes will partition X.

Example 22.3 Recall that D4, the dihedral group of the square, is the group of all symmetries of the square
(see Figure 1a). The elements are the rotations R0, R90, R180, R270, and the reflections H,V,D,D′. We can view
D4 as a group of permutations on the vertices of the square. Here we identify the vertices of the square with the
set X = {1, 2, 3, 4}. See Figure 1b. Since vertex 1 can be taken to any other vertex by a rotation then the orbit of
1 is all of X: orbD4(1) = {1, 2, 3, 4}.

The stabilizer of 1 is:
stabD4(1) = {R0, D}.

Similarly, we have stabD4(2) = stabD4(3) = {R0, D
′}.
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(a) Reflection elements in D4 (b) Orbit of vertex 1

Figure 1: The group D4 acting as a permutation group on the set of vertices.

(a) Orbit of point P under ac-
tion of D4

(b) Orbit of point Q under ac-
tion of D4

Figure 2: The group D4 acting as a permutation group on the set of points enclosed by the square.

Example 22.4 Building on the previous example, we may view D4 as a group of permutations of the points X
enclosed by the square. Figure 2a illustrates the orbit of the point P and Figure 2b illustrates the orbit of the
point Q under D4. Notice stabD4(P ) = {R0, D}, and stabD4(Q) = {R0}.

We can also view D as a group of permutations on the set of 4 line segments h, v, d, d′ shown in Figure 3. Then

orbD4(h) = {h, v} stabD4(h) = {R0, R180, H, V }
orbD4(v) = {h, v} stabD4(v) = {R0, R180, H, V }
orbD4(d) = {d, d′} stabD4(d) = {R0, R180, D,D

′}
orbD4(d

′) = {d, d′} stabD4(d
′) = {R0, R180, D,D

′}

Figure 3: Orbit classes of the group D4 acting as a permutation group on the set of line segments h, v, d, d′.

Example 22.5 Let RC3 be the Rubik’s cube group, and let X be the set of all cubies of Rubik’s cube. X can be
partitioned into edge cubies E, corner cubies V , and centre cubies C. If x denotes the uf edge cubie, then since it
is possible to move it to the location of any other edge cubie, then orbRC3(x) = E. Also, since centre cubies don’t
move under cube moves, the orbit of each centre cubie is just a set of size 1.
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Example 22.6 Again, let RC3 be the Rubik’s cube group, but now let X be the set of all facets of Rubik’s cube.
Recall |X| = 48. The Rubik’s cube group can be viewed as a group of permutations of the set X (we have made
use of this fact frequently already). Let x be the facet on the up layer of the uf cubie. In our numbering system
we denoted this facet by x = 7. Since an edge cubie can be moved to the location of any other edge cubie, and
with either orientation, then the orbit of x is every edge-facet. Therefore, |orbRC3(7)| = 24. The next theorem will
tell us that |stabRC3(7)| = |RC3|

24 .

Looking back at the examples we can observe an obvious relationship between the sizes of G, orbG(i), and
stabG(i): we always get |orbG(i)| · |stabG(i)| equal to the size of G. This is true in general and is stated in the
next theorem.

Theorem 22.1 (Orbit-Stabilizer Theorem) Let G be a subgroup of SX . Then for any i in X,

|G| = |orbG(i)| · |stabG(i)|.

Proof: Since stabG(x) is a subgroup of G, we know from Lagrange’s Theorem that

|G|/|stabG(x)| = the number of distinct right cosets of stabG(x) in G.

So we need to show that the number of right cosets equals the number of elements in orbG(x). To this end
define

ψ : {(stabG(x))α | α ∈ G} → orbG(x)

by
ψ(stabG(x) α) = α(x).

Our goal is to show that ψ is a bijection.

(a) ψ is well defined. We have

stabG(x) α = stabG(x) β =⇒ α = γβ for some γ ∈ stabG(x)
=⇒ α(x) = (γβ)(x) = β(γ(x))
=⇒ α(x) = β(x) since γ ∈ stabG(x).

(b) ψ is injective. Let α, β ∈ G, we have

ψ(stabG(x) α) = ψ(stabG(x) β) =⇒ α(x) = β(x)

=⇒ β−1(α(x)) = x

=⇒ (αβ−1)(x) = x

=⇒ αβ−1 ∈ stabG(x)
=⇒ stabG(x) α = stabG(x) β.

(c) ψ is surjective. Let y ∈ orbG(x). Then for some α ∈ G we have y = α(x). Therefore,

ψ(stabG(x) α) = α(x) = y,

and so ψ is surjective.

Therefore ψ is a bijection, and so it follows that

|orbG(x)| = |{(stabG(x))α | α ∈ G}|
= the number of right cosets of stabG(x) in G

= |G|/|stabG(x)|,
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which implies
|G| = |orbG(i)| · |stabG(i)|.

�

We now consider a few applications of this theorem.

22.2 Permutations Acting on Sets: Application of the Orbit-Stabilizer Theorem

The orbit-stabilizer theorem (Theorem 22.1) is a counting theorem. It enables one to determine the number
of elements in a set. We will now see how this theorem will help us determine the number of rotational
symmetries of some familiar 3-dimensional objects.

For a object X we let GX be the group of all rotational symmetries of X. That is, the set of all ways the object
can be picked up, rotated, and placed back on a table in front of you, so that it looks as though it wasn’t moved.
For each of the objects below we will determine |GX |.

22.2.1 Rotation Group of a Tetrahedron

Let GT be the group of all rotational symmetries of a regular tetrahedron.

(a) (b)

Figure 4: regular tetrahedron.

Let VT be the set of 4 vertices of the tetrahedron, labeled as in Figure 4b. Then each rotation in GT induces a
permutation on VT . That is, each element of GT gives a permutation in SVT

= S4. Vertex 1 can be taken to any
other vertex by a rotation, so the orbit of vertex 1 is orbGT

(1) = {1, 2, 3, 4}, and therefore |orbGT
(1)| = 4. The

stabilizer of 1 consists satisfies |stabGT
(1)| = 3, and the rotations in the stabilizer are: the identity, and two

rotations corresponding to the permutations (2, 3, 4) and (2, 4, 3). Therefore, by the orbit-stabilizer theorem:

|GT | = |orbGT
(1)| · |stabGT

(1)| = 4 · 3 = 12.

The 12 rotations of GT are shown in Figure 5. Each rotation is described by the permutation it induces on the
vertices. It is clear from this description that GT ≈ A4.

22.2.2 Rotation Group of a Cube

Let GC be the group of all rotational symmetries of a cube.

We can view GC as a groups of permutations of the 8 corners, that is, as a subgroup of S8. Observe that

orbGC
(1) = {1, 2, 3, 4, 5, 6, 7, 8} ⇒ |orbGC

(1)| = 8

and that
stabGC

(1) = {ε, (2, 4, 5)(3, 8, 6), (2, 5, 4)(3, 6, 8)} ⇒ |stabGC
(1)| = 3.

Jamie Mulholland, Spring 2011

Math 302

22-5



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  Schedule

LECTURE 22 ORBIT-STABILIZER THEOREM

(a) ε (b) (1, 4)(2, 3) (c) (1, 3)(2, 4) (d) (1, 2)(3, 4)

(e) (2, 3, 4) (f) (2, 4, 3) (g) (1, 4, 3) (h) (1, 3, 4)

(i) (1, 2, 4) (j) (1, 4, 2) (k) (1, 3, 2) (l) (1, 2, 3)

Figure 5: All 12 rotational symmetries of a regular tetrahedron

(a) (b)

Figure 6: cube.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 7.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGC
(1)| · |stabGC

(1)| = 8 · 3 = 24.

Recall the symmetric group S4 has 24 elements. Perhaps GC is S4 in disguise. To see if it is we should find 4
things in the cube that GC permutes. There are 4 diagonals as shown in Figure 7, and each rotation of the cube
permutes these diagonals. In fact, each rotation of the cube can be described precisely by how these diagonals
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are permuted. Therefore GC ≈ S4.

Figure 7: Viewing GC as a group of permutations on the diagonals 1, 2, 3, 4.

22.2.3 Rotation Group of an Octahedron

Let GO be the group of all rotational symmetries of a regular octahedron.

(a) (b)

Figure 8: regular octahedron.

We can view GO as a groups of permutations of the 6 vertices, that is as a subgroup of S6. Observe that

orbGO
(1) = {1, 2, 3, 4, 5, 6} ⇒ |orbGO

(1)| = 6

and that
stabGO

(1) = {ε, (2, 3, 4, 5), (2, 4)(3, 5), (2, 5, 4, 3)} ⇒ |stabGO
(1)| = 4.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 6.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGO
(1)| · |stabGO

(1)| = 6 · 4 = 24.

It is no coincidence that this is the same size as the group of symmetries of the cube. Figure 9 shows the
octahedron sitting inside the cube (join midpoints of every two squares by a line). This means that GC ≈ GO.
The cube and the octahedron are referred to as dual solids.

22.2.4 Rotation Group of an Dodecahedron

Let GD be the group of all rotational symmetries of a regular dodecahedron.

We can view GD as a groups of permutations of the 20 vertices, that is as a subgroup of S20. Observe that

orbGD
(1) = {1, 2, 3, . . . , 20} ⇒ |orbGD

(1)| = 20
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Figure 9: The octahedron is dual to the cube, so GO ≈ GC .

(a) (b)

Figure 10: regular dodecahedron.

and that
|stabGD

(1)| = 3.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 18.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGD
(1)| · |stabGD

(1)| = 20 · 3 = 60.

22.2.5 Rotation Group of an Icosahedron

Let GI be the group of all rotational symmetries of a regular icosahedron.

(a) (b)

Figure 11: regular icosahedron.
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We can view GI as a groups of permutations of the 12 vertices, that is as a subgroup of S20. Observe that

orbGI
(1) = {1, 2, 3, . . . , 12} ⇒ |orbGI

(1)| = 12

and that
|stabGI

(1)| = 5.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 12.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGI
(1)| · |stabGI

(1)| = 20 · 3 = 60.

It is no coincidence that this is the same size as the group of symmetries of a regular dodecahedron. Figure 12
shows the octahedron sitting inside the cube (join midpoints of every two squares by a line). This means that
GI ≈ GD.

Figure 12: The icosahedron is dual to the dodecahedron, so GI ≈ GD.

22.2.6 Rotation Group of an Soccer Ball, Basket Ball, Volley Ball, and Tennis Ball

The balls used in soccer, basketball, volleyball, and tennis have district patterns on their surface. We can use
the orbit-stabilizer theorem to determine the rotational groups of symmetries of these patterns.

(a) soccer ball (b) basket ball (c) volley ball (d) tennis ball

Figure 13: Familiar sports balls.

For each ball, pick an object on the ball: either a point, or shape. Determine the size of the orbit and stabilizer
of the point/shape and verify the results in the Table 1.

It will help if you have a physical ball in your hands. For the soccer ball, there are 12 pentagons (the black
faces), and 20 hexagons. See Figure 14 for an unfolded view of the soccer ball.

In case you are interested, the rotational group of the soccer ball is A5.

In nature, the helix is the structure that occurs most often. The second most commonly found structures are
polyhedrons made from pentagons and hexagons, such as the dodecahedron and the truncated icosahedron

Jamie Mulholland, Spring 2011

Math 302

22-9



Week Date Sections 
from FS2009

Part/ References Topic/Sections Notes/Speaker

1 Sept 7 I.1, I.2, I.3 Combinatorial 
Structures
FS: Part A.1, A.2
Comtet74
Handout #1
(self study)

Symbolic methods

2 14 I.4, I.5, I.6 Unlabelled structures

3 21 II.1, II.2, II.3 Labelled structures I

4 28 II.4, II.5, II.6 Labelled structures II

5 Oct 5 III.1, III.2 Combinatorial 
parameters
FS A.III
(self-study)

Combinatorial 
Parameters Asst #1 Due

6 12 IV.1, IV.2 Multivariable GFs

7 19 IV.3, IV.4 Analytic Methods
FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due

Dr. Marni MISHNA, Department of Mathematics, SIMON FRASER UNIVERSITY
Version of: 11-Dec-09

 

f acul ty of  sc ience   MATH 895-4 Fall 2010
depar tment of  mathemat ics  Course  Schedule

LECTURE 22 ORBIT-STABILIZER THEOREM

ball size of group of rotations

soccer ball 60
basket ball 4
volley ball 12
tennis ball 4

Table 1: The size of the rotational group for various playing balls.

Figure 14: A soccer ball unfolded.

(soccer ball). Although it is impossible to enclose a space with hexagons along, adding 12 pentagons will be
sufficient to enclose the space (like the soccer ball). Many viruses have this kind of structure (Figure 15). 1

(a) rhinovirus (common cold) (b) Archaeal virus

Figure 15: Viruses.

1John Galloway, Nature’s Second-Favourite Structure. New Scientist 114 (March 1988); 36-39
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22.3 Exercises

1. Prove the relation defined in (1) is an equivalence relation.

2. Let RC3 be the Rubik’s cube group and let H be the subgroup generated by the product α = UR.

H = 〈UR〉.

Let X be the set of all cubies of Rubik’s cube.

(a) If x denotes the ufr corner cubie, determine orbH(x).
(b) If y denotes the uf edge cubie, determine orbH(y).
(c) How many elements do stabH(x) and stabH(y) have?

3. Instead of considering the set of vertices of the tetrahedron, consider how GT permutes the 6 edges of
the tetrahedron. By picking one edge, say the edge 12, the edge between vertices 1 and 2, verify that
|orbGT

(12)| · |stabGT
(12)| = 12.

4. Consider how GT permutes the 3 triangular faces of the tetrahedron. That is, consider GT as a subgroup
of S3. By picking one face, say the face f1,2,3 containing vertices 1, 2 and 3, verify that |orbGT

(f1,2,3)| ·
|stabGT

(f1,2,3)| = 12.

5. Instead of considering the set of vertices of the dodecadedron, consider how GD permutes the 30 edges of
the dodecahedron. That is, consider GD as a subgroup of S30. By picking one edge, say the edge 12, the
edge between vertices 1 and 2, verify that |orbGD

(12)| · |stabGD
(12)| = 60.

6. Consider how GD permutes the 12 pentagonal faces of the dodecahedron. That is, consider GD as a
subgroup of S12. By picking one face, say the face f containing vertices 1, 2, 3, 4, 5, verify that |orbGD

(f)| ·
|stabGD

(f)| = 60.

7. For each of the following objects, describe each element of the group of rotations as a single rotation.
(Similar to what was done for the tetrahedron in Figure 5.)

(a) cube
(b) octahedron

8. Let G be the group of rotations of a rectangular box of dimensions 1× 2× 3. Describe each element of G
as a rotation.

9. Let G be the group of rotations of a rectangular box of dimensions 1× 2× 2. Describe each element of G
as a rotation.

10. The group D4 acts as a group of permutations of the points enclosed by the square shown below. (The
axis of symmetry are drawn for reference purposes.) For each square, locate the points in the orbit of the
indicated point P under the action of D4. In each case, determine the stabilizer of P .

(a) (b) (c)
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11. A soccer ball has 20 faces that are regular hexagons and 12 faces that are regular pentagons (see Figures
13a and 14). Use the orbit stabilizer theorem to explain why a soccer ball cannot have 60◦ rotational
symmetry about a line through the centres of two opposite hexagonal faces.

12. For each of the solids below, determine the number of rotational symmetries. (In the figures each solid is
also shown as “unfolded”.)

(a) cuboctahedron

(b) (small) rhombicuboctahedron

(c) great rhombicuboctahedron or truncated cuboctahedron
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