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In this lecture we focus our attention on the set of even permutations, An, and show every even
permutation can be written as a product of 3-cycles.

8.1 Swap Variation: A Challenge

Consider the following variation of Swap:

Variation: Legal move is to pick any 3 boxes and cycle their contents either to the left or right.

Using only these legal moves, try the following challenges.

Challenge 1: Solve the following puzzle:

Challenge 2: Solve the following puzzle:

8.2 The Alternating Group An

In Lecture 6 we discovered there are two types of permutations: even and odd. We will denote the
set of all even permutations by An, and the set of all odd permutations by On. Since every
permutation is either odd or even, and no permutation is both, it follows that

Sn = An ∪On, where An ∩On = ∅.
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There is one difference between these two sets which will be important for us, and this has to do with
how each of the sets behaves under composition.

The setAn of even permutations is closed under composition, closed under taking inverses,
and contains the identity. The set On of odd permutations is closed under taking inverses,
but definitely not closed under composition, nor does it contain the identity. In fact, the
composition of an two permutations in On is always in An.

When we say that An (or, in general, any subset of B of Sn) is closed under composition, we mean
that for any α, β ∈ An (or in B) the composition αβ ∈ An (in B). Similarly, by closed under taking
inverses we mean that for any α ∈ An (or in B) the inverse permutation α−1 is also in An (in B)

Let’s check why our statements about An and On are true. The product of any two even permutations
is another even permutation so An is closed under composition. The identity permutation is even and
therefore in An. For any permutation α ∈ An, it’s inverse α−1 is also even, since once way to express
α−1 as a product of transpositions is to just write the ones expressing α in reverse order. So if an even
number were used to express α then an even number can be used to express α−1. Similarly, if β ∈ On

then β−1 ∈ On. The product of two odd permutations gives a permutation that can be expressed in
terms of an odd + odd = even number of transpositions, and therefore is an even permutation.

This distinction between An and On will makes An a much more important object to study. Why?
Well, to answer this we go back to the properties of Sn.

In Lecture 3, we defined the set of all permutations to be the Symmetric Group, Sn. We listed various
properties this set has, but most notably it has the following four properties regarding composition:

(a) Closure. The product of two elements α, β ∈ Sn is another element αβ ∈ Sn.1

(b) Associativity. Permutation composition is associative: α(βγ) = (αβ)γ.

(c) Identity. The identity (or “do nothing”) permutation ε is in Sn. It has the property that εα =
εα = α for all α ∈ Sn.

(d) Inverses. Every α ∈ Sn has an inverse in Sn denoted by α−1. The defining property of an
inverse is αα−1 = α−1α = ε.

If we look back at all the computations we’ve done with permutations we see that we are making
extensive use of these properties, whether we are conscious of it or not. For example, the cancellation
property: αβ = αγ implies β = γ, and βα = γα implies β = γ, is a direct consequence of these four
properties. Look back at the proof of it in Lecture 3. This means that any set of objects, equipped with
an operation that combines two to produce a third, and the operation satisfies these four properties,
also has the cancellation property. For example, R under the operation of addition, +, satisfies these
four properties (identity is 0), so it must also have the cancellation property. The set of invertible
2 × 2 matrices, under matrix multiplication, satisfies these four properties, so it must also have the
cancellation property. In a sense, we have described the “important” properties of Sn.

A set A that comes equipped with an operation to combine pairs of elements (add/multiply/compose)
such that A is closed under the operation, the operation is associative, there is an identity in A, and

1the convention of these notes is to compose permutations from left-to-right,
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inverses exist in A, is called a group. Our explorations into permutations puzzles will essentially
consist of considering the set of all legal move sequences, call this set M , and noticing that this set
is a subset of Sn which is also a group. (Composition of legal moves is a legal move, composition is
associative, there is a “do-nothing” move, and for each move there is an way to “undo” it.) Therefore
to each permutation puzzle we can associate a group M of legal move sequences. The question is
then: Are we able to understand the group M? In order to do this, we’ll need to build up our stock of
examples of groups.

What we’ve shown above is that An is a group, whereas On is not. On fails to contain the identity, nor
is it closed under composition. An is an important family of groups, and in particular A5 has great
historical significance. The letter “A” in its name comes from the word “alternating”, which reflects
some properties that were important when these groups were first studied.

Definition 8.1 (Alternating Group of Degree n) The set of even permutations of Sn is denoted by
An, and is called the alternating group of degree n:

An = {α ∈ Sn : α is an even permutation}

We will sometimes refer to An as the set of even permutations. As a first step in investigating An, lets
show it contains exactly half the elements of Sn.

Theorem 8.1 (Cardinality of An) |An| = |On| =
n!
2

, for n ≥ 2.

Proof: To see this we will pair up all the even permutations α with odd permutations (1, 2)α, to
observe there are equal numbers of each.

Consider the set of all elements in Sn of the form (1, 2)α where α ∈ An, and denote this set by (1, 2)An:

(1, 2)An = {(1, 2)α : α ∈ An}

Observe that (1, 2)An ⊂ On, since extending an even permutation by a transposition is an odd per-
mutation. On the other hand, for β ∈ On we have (1, 2)β ∈ An and so β = (1, 2)(1, 2)β ∈ (1, 2)An.
Since β was just any element of On this means, On ⊂ (1, 2)An. It follows that On = (1, 2)An.

Next we note that (1, 2)An and An have exactly the same number of elements. To see this, we just
observe that the function φ : An → (1, 2)An defined by φ(α) = (1, 2)α is a bijection. (See exercise 11.)

Therefore |An| = |On| and |An|+ |On| = |Sn|. Since |Sn| = n! it follows that An = On = n!
2 . �

Example 8.1 List the elements of A4.

These are the permutations in S4 which are even. The most straightforward way to list elements is to
do it in disjoint cycle form, so we’ll begin with the identity:

ε.

Next, we list elements involving cycles of length at most 2. And since we want even permutations we
don’t included single transpositions:

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3).
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Next we can list 3-cycles:

(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3).

This is all the elements of A4, and there are 12 as predicted by Theorem 8.1.

8.3 Products of 3-cycles

The fact that every permutation in Sn can be expresses as a product of 2-cycles, is something we have
used quite a bit. There is a similar result for the even permutations An and 3-cycles.

Theorem 8.2 Every permutation in An, for n ≥ 3, can be expressed as a product of 3 cycles.

Proof: Suppose α is an even permutation, then we can express it as the product of an even number
of 2-cycles:

α = τ1τ2 · · · τ2k−1τ2k.

We’ll group together adjacent pairs of 2-cycles as follows:

α = (τ1τ2)(τ3τ4) · · · (τ2k−1τ2k).

It suffices to show that a product of two transpositions can either be dropped from the expression or
be expressed as a product of 3-cycles, without changing the the value of the expression.

Each product τiτi+1 can be expressed in one of the following ways as shown on the left, depending on
whether the transpositions move two things in common, one thing in common, of nothing in common:

(a, b)(a, b) = ε

(a, b)(a, c) = (a, b, c)
(a, b)(c, d) = (a, b, c)(a, d, c)

If the first case occurs we may delete τiτi+1 in the original product. In the other two cases we replace
τiτi+1 with what appears on the right to obtain a new product of 3-cycles. �

Example 8.2 Express the even permutation α = (1, 6, 4)(2, 3, 7, 8)(9, 10) as a product of 3-cycles.

To do this the first thing we do is express it as a product of transpositions:

α = (1, 6)(1, 4)(2, 3)(2, 7)(2, 8)(9, 10)

Then we group adjacent transpositions and express each in terms of 3-cycles.

(1, 6)(1, 4) = (1, 6, 4)
(2, 3)(2, 7) = (2, 3, 7)

(2, 8)(9, 10) = (2, 8, 9)(2, 10, 9)

It may seem mysterious how we obtained the last one. The following simple game of Swap shows how
we can express (2, 8)(9, 10) as the product of two 3-cycles.
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In general, this is precisely the result we used in the proof of the theorem. The way we came up with it
there was to look at a simple game of Swap on four objects a|b|c|d. To swap a with b and c with d we
can first cycle abc to the right: c|a|b|d. Then we can cycle objects in positions acd to the left: b|a|d|c.

Now we can put everything back together to get:

α = (1, 6, 4)(2, 3, 7)(2, 8, 9)(2, 10, 9).

8.4 Variations of Swap: Revisited

Let’s go back to the variation of Swap in Section 8.1.

Variation: Legal move is to pick any 3 boxes and cycle their contents either to the left or right.

For example, suppose the puzzle started in the following position:

The corresponding permutation is α = (1, 4, 5, 11, 3, 9)(2, 12, 6)(8, 10).

We can solve the puzzle as follows. In each line the shaded boxes represent our choice of 3 boxes, and
the arrow on the right indicates which direction the contents are being moved. We also summarize
the move by writing the corresponding 3-cycle above the arrow.
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In term of permutations this move sequence tells us:

α(2, 8, 10)(2, 8, 6)(1, 2, 12)(1, 2, 9)(1, 3, 11)(1, 5, 4) = ε

or in other words,

α = [(2, 8, 10)(2, 8, 6)(1, 2, 12)(1, 2, 9)(1, 3, 11)(1, 5, 4)]−1

= (1, 4, 5)(1, 11, 3)(1, 9, 2)(1, 12, 2)(2, 6, 8)(2, 10, 8).

That is, considering α as a starting position for this variation of Swap, solving the puzzle is equivalent
to expressing α as a product of 3-cycles. Since we know only even permutations are expressible as
products of 3-cycles this give us a very simple solvability condition for this variation of Swap.

Corollary 8.1 (Solvability of Swap Variation) The Swap puzzle, where the legal moves consist of
3-cycles on any three boxes, is solvable only when the starting position is an even permutation. In other
words, only even permutations can be obtained in this variation of Swap.

To see this solvability condition in action, consider the following scramble of Swap.

Try solving it using only 3-cycles.

You would very quickly realize it is a difficult task. It is possible to get all but two numbers back into
their home positions. In fact, this position corresponds to the permutation (1, 4, 3, 5, 6, 2) which is a
6-cycle, and therefore an odd permutation. Therefore, by Theorem 8.1 no matter how long we play
with the puzzle it we don’t have a hope of solving it. It is simply impossible!

Looking back at Section 8.1 we see that the permutation in Challenge 1 is (1, 6, 4)(2, 3, 7, 8)(9, 10)
which is even and hence solvable, whereas the permutation in Challenge 2 is (9, 10) which is odd, and
therefore not solvable. Just knowing Challenge 1 is solvable doesn’t actually answer the question, we
were actually asked to solve the puzzle. This is equivalent to expressing (1, 6, 4)(2, 3, 7, 8)(9, 10) as a
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product of 3-cycles, which we’ve already done in Example 8.2. there we found (1, 6, 4)(2, 3, 7, 8)(9, 10) =
(1, 6, 4)(2, 3, 7)(2, 8, 9)(2, 10, 9). So applying the inverse of this permutation: (2, 9, 10)(2, 9, 8)(2, 7, 3)(1, 4, 6)
will solve the puzzle. On the other hand, knowing the puzzle in Challenge 2 is not solvable means
we can abandon playing with it, since there is not way to solve it.

8.5 Exercises

1. Given an example of an element in A7 which contains a 4-cycle. Give an example of an element
in A10 which contains at least one 3-cycle, and at least one 4-cycle.

2. Demonstrate the truth of Theorem 8.2 by expressing these even permutations as products of
3-cycles.

(a) α = (1, 2)(1, 3)

(b) β = (1, 2)(3, 4)

(c) γ = (1, 2, 3, 4, 5, 6)(3, 4, 5)(2, 5)(1, 4)(5, 2)

(d) δ = (1, 2)(2, 3)(4, 5)(1, 3)(6, 7)(6, 8)(9, 10)(11, 12)

(e) σ = (1, 2, 3, 4)(2, 3, 4, 5)(4, 5, 6, 7)(8, 9)

3. Expressing odd permutations in terms of 3-cycles and one transposition.
(a) Show that all odd permutations in Sn can be expressed using exactly one transposition
together with zero or more 3-cycles.
(b) Demonstrate the truth of this claim by expressing these odd permutations with a single
transposition and 3-cycles.

(i) α = (1, 2, 3, 4, 5, 6)

(ii) β = (1, 2, 3, 4)(5, 6, 7)(8, 9, 10)

(iii) γ = (2, 5, 3, 7, 6)(3, 5, 8, 4)(6, 8, 2, 1, 9)

4. Using the solvability condition for the variation of Swap we considered in this section (Corollary
8.1), determine whether each of the following scrambles are solvable. For the ones that are
solvable, find a sequence of moves that solve the puzzle.

(a)

(b)

(c)

(d)

5. What are the possible orders for permutations in A6? What about A7?

6. Show that A5 contains no element of order 15.
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FS: Part B: IV, V, VI 
Appendix B4
Stanley 99: Ch. 6
Handout #1
(self-study)

Complex Analysis

8 26
IV.5 V.1

Singularity Analysis

9 Nov 2 Asymptotic methods Asst #2 Due

10
9 VI.1 Sophie

12 A.3/ C

Random Structures 
and Limit Laws
FS: Part C
(rotating 
presentations)

Introduction to Prob. Mariolys

11
18 IX.1 Limit Laws and Comb Marni

20 IX.2 Discrete Limit Laws Sophie

12
23 IX.3 Combinatorial 

instances of discrete Mariolys

25 IX.4 Continuous Limit Laws Marni

13 30 IX.5 Quasi-Powers and 
Gaussian limit laws Sophie

14 Dec 10 Presentations Asst #3 Due
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7. What is the maximum order of any element in A10?

8. Compute the order of each permutation in A4. What arithmetic relationship do these orders
have with he cardinality of A4.

9. How many elements of order 5 are there in A6.

10. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 15 elements of order 2.

11. Show that the function φ : An → (1, 2)An defined by φ(α) = (1, 2)α is a bijection. (This result is
used in the proof of Theorem 8.1.)

12. Products of 4-cycles? 5-cycles? All permutations in Sn are expressible using transpositions,
and all permutations in An are expressible using 3-cycles, provided n ≥ 3. Stating this another
way, this says that you get all permutations by taking all possible products of 2-cycles, and
similarly you get all the even permutations by taking all possible products of 3-cycles. What do
you get when you take all possible products of 4-cycles? Or 5-cycles. Or k-cycles? Explore this
question and see what you can discover. Note of course that we must assume n ≥ k before we
can talk about k-cycles in Sn.

Jamie Mulholland, Spring 2011
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