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How to Integrate Rational Functions

T. N. Subramaniam and Donald E. G. Malm

The increasing availability of computer algebra systems has raised questions about
how traditional topics in calculus are to be taught. In this note we look at
integration of rational functions and propose a different approach, which has the
following advantages: i) it is easily implemented on a computer or calculator
algebra system, ii) it allows the students to use the computer algebra system in a
meaningful way, and avoids routine calculations by hand, iii) it provides the
students with some understanding of the general methods computer algebra
systems actually use to integrate rational functions.

Rational function integration is important for itself and also because many
integrals can be reduced to it by suitable substitutions, for example many trigonc-
metric integrals and the so-called binomial integral [Subramaniam, Klambauer]. A
rational function is traditionally integrated by expressing it in partial fractions
form. This involves the following steps:

(1) Factor the denominator into linear and irreducible quadratic factors.

(2) Find the partial fraction decomposition. This involves solving a system of
linear equations, with as many equations and unknowns as the degree of the
polynomial in the denominator.

(3) Integrate each partial fraction. Those involving a quadratic factor require a
trigonometric substitution or a reduction formula.

In the light of this recipe, consider the following integrals (of which the second
and third are taken from our references):

/ 8x° — 10x* + 5
(2x° — 10x + 5)°
4x° -1

[

(x5 +x+1)°

4x* + 4x3 + 16x% + 12x + 8
/x6+2x5+3x4+4x3+3x2+2;x+1
dx

fx7+1'

Each of these—as we shall see—has a simple antiderivative. However, in the
first, the denominator is not solvable by radicals [Hungerford] and we cannot even
get started, except by using numerical approximations to the roots. In the second
and third the denominators factorize over the integers though this is not obvious.
In the fourth the roots of the denominator are the seventh roots of unity. The
partial fractions computation is quite involved. In these problems, even after
factorization there is a great deal of algebra and integration left to do. Clearly this
method can be quite tedious, if not impossible.
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Recall that the integral of a rational function is the sum of a rational function
together with a sum of logarithms and arctangents of polynomials. These are called
respectively the rational and the transcendental parts of the integral. In this note
we show how the rational part can be found without any integration, even when
the factorization of the denominator is not known. All that is needed is the ability
to calculate the g.c.d. of polynomials and to solve systems of linear equations. The
algorithm is simple enough to work on any computer algebra system, even an
HP-28S calculator. (In an appendix we briefly consider the HP-28S implementa-
tion.) We also consider to what extent the transcendental part can be determined.
What follows is scattered between classical sources and the computer algebra
literature and does not appear to be well known. We feel it is useful to write down
an elementary and coherent account. Our bibliography should be consulted for a
deeper study.

I. In what follows, P/Q is a rational function over the rationals; we assume that
the leading coefficient of Q is one. We begin by proving the following proposition
(the Hermite-Ostrogradski formula). Our proof is simpler than the ones we have
been able to find (exemplified by [Davenport et al.] and [Klambauer]). We avoid
the use of partial fractions.

Proposition 1. Let P/Q be a rational function. Let Q = I'l]_ h{i be the factortza-
tion of Q into linear and irreducible quadratic factors, and let Q; = _h&la
Q, = I17_,h;. Then there are polynomials P, and P, such that

P P P
Jem %= o " om ™ M

Note that the proposition says what is intuitively clear—in a partial fractions
decomposition, the repeated factors of the denominator give us the rational part
and the factors without repetition give us the transcendental part.

We prove this proposition by considering two cases. The first case is when Q
has only one distinct irreducible factor: either Q(x) = (x — ¢)™ or Q(x) = (x* +
ax + b)™ where the quadratic is irreducible and m > 1.

If Q(x) = (x — ¢)™ then our integral is

P(x)
[a=or®
where P(x) is a polynomial. Write P(x) = L7 _oa,(x — ¢)*. Then
flx)_ﬁdx= nzm ak+mf(x—c)kdx.
(x - C) k=-m
If we integrate all the terms except the one for which k£ = —1, we get the desired

equation (1), since Q, = x — ¢ and the integrated terms have the common denomi-
nator Q, = (x — )" L

If O(x) = (x? + ax + b)™, we can essentially do the same thing, but it becomes
slightly more complicated. This is the price we pay for avoiding complex arith-
metic. Divide P(x) by Q,(x) =x% + ax + b: P(x) = R(x)Q,(x) + S(x), where
S(x) is linear. It follows that

P(x) R(x) S(x)
fQ(x) sz(x)'"_l bt sz(x)"’ *
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There is a standard reduction formula (easily obtained by integration by parts) of
the form

f Ax + B i M(x) N / N
(x> +ax+b)" (x2+ax+b)""" (x2+ax+b)" "

where M(x) is a linear polynomial and N is constant. This formula, applied
repeatedly, yields

/ Ax + B i M(x) f N I
7 i
(x*+ ax +b) (2+ax+b)"" T xPtax+b

where now M(x) is a polynomial and N is a constant. From this formula we obtain

P(x) R(x) M(x)
fQ(x) fQ (x)™" e+ Q,(x)" ! +sz(x) &

The process can be repeated on [R(x)/Q,(x)™ ' dx; this will ultimately lead to
the equation (1), since Q,(x) = (x? + ax + b) and Q(x) = (x* + ax + b)" L.

In the second case, when Q has at least two distinct irreducible factors, we
proceed by induction on the number k of distinct irreducible factors. Accordingly,
assume that (1) holds for k¥ < K (K > 1). Let Q(x) have K distinct irreducible
factors and let Q(x) = ['1X ;A% be the irreducible factorization of Q. Since k, and
[1X ,h(x)* = g(x) are relatively prime, by the Euclidean algorithm for polynomi-
als there are polynomials a(x) and b(x) for which

P(x) =a(x)h(x)" +b(x)g(x).

Then

P(x) a(x) b(x)
/Q(x) fg(x) fhl(x)al

By the inductive hypothesis and the first case, each integral on the right can be
expressed in the form (1). If we write them that way and collect terms, we have the
formula (1) for [P/Q. The proof is complete.

We remark that if degree P < degree Q then P, and P, can be found with
degree P, < degree Q, and degree P, < degree Q,. Indeed, if degree P, > degree
Q,, divide P, by Q,, integrate the polynomial quotient and absorb it into P,/Q;.
Now if degree P, = degree Q,, then P,/Q, is a constant plus a proper rational
function, and the constant may be dropped from the equation. Finally, if degree
P, > degree Q,, then P,/Q, is a polynomial of degree at least one plus a proper
rational function. But this is impossible, for then the limit at infinity of the
derivative of the right hand side of (1) would not be zero. In fact, P, and P, are
unique. We do not prove this since we don’t need this fact. Finally, note that the
last integral in (1) is a sum of logarithms and arctangents.

IL. The real utility of the Hermite-Ostrogradski formula comes from the fact that
it is possible to calculate P,, P,, Q,, and Q, without factorizing Q (see [Horowitz]
or [Klambauer].) We now show how this can be done.

It is clear that Q, = g.c.d.(Q, Q) and Q, = Q/Q,. Also it is easy to see that O,
divides Q}Q, whence S = 0,0,/0Q, is a polynomial. If we differentiate both sides
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of (1) we get
QIP{_PIQ,I +&= P{_PlQll/Ql +£
o7 0, 0, 0,

Clearing the denominators we have P = P{Q, — P;S + P,Q,.
In this equation, P, Q,, Q,, and S are known polynomials and we can solve for
P, and P, by the method of undetermined coefficients. Here then is the algorithm:

P/Q =

Input: Polynomials P and Q, with degree P < degree Q.
Output: P,/Q,, the rational part of (P/Q, and P,/Q,, the integrand of the
transcendental part of [P/Q.

(1) Q; = gcd(Q,0; 0, =0/0Q,

2 §:=010,/0,

(3) g = degree Q,; p = degree Q,.

(4) Write P((x) =A,_x?" '+ A, ,x7"%+ -+ +A4, and P(x) =B, x""!
+B,_,x?"*+ -+ +B,.

(5) Compute 7 := P;Q, — P,S + P,Q,.

(6) Equate the coefficients of T with those of P.

(7) Solve this linear system of equations for the unknowns A; and B,.

If deg Q = d, then in step 7 we solve a system of d equations in d unknowns,
which is the same amount of work as in the method of partial fractions, except that
now there is no integration left to do for the rational part. The algorithm involves
only polynomial arithmetic and solving systems of linear equations. We illustrate
by an example (which was done on the HP-28S). It is example #3 of the

- introduction.

Example:

4x* + 4x3 + 16x2 + 12x + 8 0
/x6+2x5+3x4+4x3+3x2+2x+1 ’

Q,=g.cd.(x°+2x°+3x*+4x3 + 3x> + 2x + 1,
6x° + 10x* + 12x3 + 12x? + 6x + 2)
=x’+x?+x+1
0,=0/0,=x>+x*+x+1
P, =Ax*+Bx+C, P,=Dx>+Ex+F
T=PQ,—-PS+P,0,
=Dx>+(-A+D+E)x*+(-2B+D+E + F)x®
+(A-B-3C+D+E+F)x>+ (24 -2C+E + F)x
+(B—-C+F).

Equating coefficients with P = 4x* + 4x3 + 16x2 + 12x + 8 and solving the re-
sulting system of equations for 4, B, C, D, E, and F, we get the result

x2—x+4 3x + 3 0
- + [ .
P Hxt+x+1 X H+x2+x+1
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The last term is

dx
— -1
3fx2+1—3tan X.

Examples #1 and #2 of the introduction can be worked the same way. One finds
that

dx =
(2x5 — 10x + 5)2 2x°> - 10x + 5

/8x5—10x4+5 1—x

and
4x° — 1 x
[
(x>+x+1) x?+x+1

In a hand computation or when using a computer or calculator algebra system
without a built-in g.c.d. function, the g.c.d. can be calculated using the algorithm of
[Kung]. However, g.c.d. calculations can lead to a large increase in the size of the
intermediate results, this is “intermediate expression swell” (see [Knuth] or
[Collins]). See the Appendix for another way to determine the system of equations.

III. We have seen that the rational part and the integrand of the transcendental
part can be found using only polynomial arithmetic and linear algebra. Since most
of the computational complexity of the method of partial fractions comes from the
repeated factors, this is a considerable simplification in that the denominator of
the integral still to be evaluated is now square free. One could, of course, now use
the method of partial fractions to evaluate this integral. We, however, show now
that if the roots of the denominator are known, there is a closed formula for the
transcendental part. In fact,
P(a)

JPx)/0(x) dr = £ 5

where the sum ranges over all the roots a of Q(x) (including the complex ones). In
this formula, we use the complex logarithm.

To establish this formula, note that we are assuming that Q has no repeated
roots and we may assume degree P < degree Q. Let a be a root of Q(x), and
write Q(x) = (x — a)Q(x), with Q,(a) # 0. (Note that we are using Q, with a
different meaning now.) We wish to write

Log(x — a), (2)

Py(x)
X —a i Oy(x)

for a constant A and polynomial P, (again, we use P, with a different meaning).
This is possible, for if we choose 4 = P(a)/Q,(a) then

Pl(x>=Q1(x>{P(x) F(a) 1}

P/Q =

0(x) Qa)x—a
P(a) 5
—Ql(ﬂ) Ql(x)} ( )

Since P(x) — (P(a)/Q(a)Q(x) has a as a root, P,(x) is a polynomial. Also
Q'(a) = Q,(a), and thus we have

P(x)/Q(x) =

1
= {P(x) —

X —a

P(a)/Q'(a) N Py(x)
X —a 0y(x)
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We now establish that
P(b) _ P(b)
0y(b) Q'(b)
for every root b of Q,. First note that Q'(x) = (x — a)Q(x) + Q(x), so Q'(b) =

(b — a)Q|(b). Also P(b) = P(b)/(b — a) by (3). It follows that P(b)/Q'(b) =
P(b)/Q(b). We may now repeat our process, expressing

Py(b)/Q\(b) N Py(x)
x—b 0,(x)

where Q,(x) = (x — b)Q,(x) and P, is a polynomial. We now have

P(x)/0Q\(x) =

P(a)/Q'(a) P(b)/Q'(b)  Py(x)
P = + +
(¥)/Q(x) = === = " o)
with
Pe) _ P(c)
2(e)  Q(c)
for every root ¢ of Q,(x). Since the degrees of the polynomials P(x), P,(x),
Py(x),... strictly decrease, we eventually arrive at the formula
P(a)/Q'(a)

P(x)/Q(x) = X

alg@=0 X @4

If we integrate each term we obtain the formula (2). However, if P(x) and Q(x)
are real polynomials, the complex roots of Q(x) come in conjugate pairs and a real
formula for [P(x)/Q(x) dx can be obtained as follows.

Let @ and a be a complex conjugate pair of roots of Q(x).

If P(a)/Q'(a) = ¢ + id, then P(a)/Q'(a) = ¢ — id, and

P(a) 1 P(a) 1
Q'(a)x—a+Q’(ﬁ)x—a
=c(1+1)+id(1—1)

xX—a xX—a X —a xX—a

2x — 2Re(a) Im(a)
c— 5 = > 5.
x?—2Re(a) + lal x* — 2Re(a) + lal

Write @ = Re(a) and 8 = Im(a). We have

P(a) dx P(a) dx

B dx
Q(a)x—a +fQ’(c7)x—a

(x—af)2+B2

=clog|(x—a)2+32|—2df

5 x—a
=clog|(x — @) +B2|—2darctan( 5 )
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Thus

loglx — al

P(x) P(a)
fQ(X) a)

0
{ ( = ))mgl(x—Re(a)) + (Im(a))?|

P(a) ‘x— Re(a)
—Zlm(m)arctan(w)},

where the first sum is over all real roots a, while the second sum is over all pairs of
complex conjugate roots a, a.

This formula is often superior to the method of partial fractions. For instance, if
the roots are found numerically, finding the coefficients in partial fractions will
compound round-off errors, unlike this formula. Even when the roots are known in
a closed form this formula is preferable.

Example. [dx/(x” + 1) (this is example #4 of the introduction). The roots of the
denominator are w, = ¢‘@"*Y7/7 for 0 < n < 6, and

P(w,) 1
- = —e~@n+D6T/T for() < n < 6.
o(w,) 7
Thus
dx 1
fx7+1 = —7ln|x+1|
1 2 2j + 1)6m 2j+ D
+= ) (¢ (——)lnxz—Zcos(———)—+1
75 7 7
2j+ D
C(2j + 1)6m X — cos 7
+2sin — arctan 2+ D
sm——7——

If the roots of the denominator are known in a closed form, the transcendental
part of the integral can be written in a closed form.

IV. We now show that if the roots of the denominator cannot be expressed in a
closed form, then in general the integral cannot be expressed in a closed form.
First, we make precise what we mean by a closed form.

Definition: A field F is said to be a radical extension of 2 if there is a chain of
fields

2=F,CF, -+ cF,=F

such that for i with 1 <i < n, F; = F,_,(u;) with some power of u; in F,_,
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Now in (2), collecting terms with the same coefficients we have
f P(x)
QO(x)

where each R,(x) is a polynomial.

We say that [P/Q can be expressed in closed form if there is a radical extension
F of 2 with b; in F and R,(x) in F[x]. Note that this simply means that b, and
the coefficients of R,(x) can be expressed by repeated use of arithmetical opera-
tions and root extractions on rational numbers.

We now have this proposition:

dx = Zbi Log R,(x) (4)

Proposition. Suppose [P/Q can be expressed in closed form over F. If Q is
irreducible over F then P = CQ’ for some C in F.

Proof: We can assume that P and Q have no common factors, and can also
assume that in (4) R, and R have no common factors, for otherwise R; would
have a repeated factor S$” and this would just give us another summand b;n Log S.
Similarly, we may assume that R; and R; for i # j have no common factors. Then
differentiating (4) we have

PRl Rn=QZbiRl R:. Rn‘
4

Now R; divides all the summands on the right except (by our assumption)
R, -+ R; -+ R,. Hence R;, and more generally R, --- R,, divides Q. Since P
and Q have no common factors Q divides R, --- R, and Q = C(R, -+ R,) for
C in F. This contradicts our assumption that Q is irreducible over F (unless
n = 1). Hence, say, Q = CR and P/Q = bR, /R,.

As an example, since x> — 2 is 1rreduc1ble over 2, [dx/(x* — 2) cannot be
written without irrationals. Risch [Risch] pointed out that this integral cannot be
expressed without involving v2 .

For another example, we have already noted that 2x> — 10x + 5 cannot be
solved by radicals. Hence this polynomial is irreducible over any radical extension
F of 2.

It follows that

f P(x)
2x3—10x + 5

cannot be expressed in closed form unless P is a multiple of x* — 1.

The close relationship between the problem of integrating rational functions in
closed form and the solvability of polynomials in radicals is hardly surprising. As
the recent book [Ebbinghaus, et al.] makes clear, the hard basic questions that led
to the Fundamental Theorem of Algebra arose in part from the problem of
integrating rational functions. As Hardy [Hardy] put it nearly a century ago, “The
solution of the problem [of integration] in the case of rational functions may be
said to be complete; for the difficulty with regard to the explicit solution of
algebraic equations is not one of inadequate knowledge but of proved impossibil-
ity.”

In particular cases we may be able to express the transcendental part of the
integral without some or even any of the roots. Consider [x/(x*+ 1)dx. A
calculus student would substitute u = x? and get the antiderivative (3)arctan(x?).
It is instructive to work this example using our method (3) above. The roots of
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x*+ lare +1/V2 +i/V2. We get the solution

f xdx l{arctan(\/fx — 1) — arctan(v2x + 1)}.

x*+1 2

This incidentally is how Mathematica expresses the answer, which is of course
expressed over 2(y2). But by using the addition formula arctan A + arctan B =
arctan((A4 + B)/(1 — AB)) we have

X dx 1 -1 -1/ , 1 . c
= —arctan — = — | — — arct — — arct L C
fx4+1 5 arctan — 5 (2 arctan( x )) 2arcan(x)

Thus the integral of a rational function may be expressible over a smaller field
than the one that contains the roots of the denominator, i.e. its splitting field.
Indeed the integration of the transcendental part turns on the solvability of a
polynomial different from the denominator. (See [Trager] or [Lazard].)

Definition: If b = P(a)/Q'(a) for some root a of Q, we say b is a residue of
P/Q.

Observe that:

1) b is a residue if and only if P(a) — bQ'(a) = 0 for some a such that
Q(a) = 0, and this holds if and only if P(x) — bQ’(x) and Q(x) have a common
root.

2) If g.c.d.(P(x) — bQ'(x), O(x)) = R(x), then the roots of R(x) are precisely
the roots of Q(x) which have b as their residue.

We collect together terms with the same coefficients in (2) to get

P(x)
E(T)dX— Zi:biLOg Ri(x),

where the b, are the complex numbers b such that P — Q' and Q have a common
root and R,(x) = g.c.d(P — b,Q’, Q). Thus if we can compute the residues b;, a
g.c.d. calculation (perhaps over an extension field) will give us the integral.

The problem of finding common roots of two polynomials is classical and is
solved in terms of the resultant of the polynomials [Uspensky, Knuth, Griffiths,
Davenport et al.]. We can avoid the resultant by realizing that if P(x) — bQ'(x)
and Q(x) have a common factor then if we calculate their g.c.d. we will obtain as a
remainder a polynomial in b which must be zero (the first remainder which is
independent of x). This is a factor of the resultant. The calculation also yields the
g.c.d. in terms of b.

We illustrate this by redoing our previous example [x/(x* + 1) dx.

We need to find b such that x — 4bx>® and x* + 1 have a common root. We
compute their g.c.d. (the algorithm of [Kung] works nicely) and get the polynomial
1 + 16562 = 0, with the g.c.d. being 1 — 4bx2. (The resultant is (1 + 16562)2.) Thus
b =i/4 or —i/4. We substitute these values into the g.c.d. 1 — 4bx? to obtain

i dcx =Y b LogR )—iLo l—ixz)—iLo(1+ix2)
fx4+1—[,-g,-(x—4 &( 2 Log

x%—i

x%+i

The answer is expressed over 2(i), the splitting field of 1 + 1652, It is the further
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relation between log and arctan

arctan x = (Zii)log((x =) /(x +1i)) - %’

which gives us the answer (3)arctan(x?) over 2. This example illustrates that if the
resultant has multiple roots then the integral may be expressible over a smaller
field than the splitting field of the denominator. If not, then the problem of finding
the residues is no better than the problem of finding the roots of the denominator.
In that sense Hardy’s observation still holds. It is worth noting that even in the
case where the denominator is a cubic with three real roots, in general 2(i) will be
required to express the integral, since the roots in general cannot be expressed in
closed form using real radicals only.

ACKNOWLEDGMENTS. The first author would like to thank Professor Tom Tucker for his encour-
agement. We are grateful to Oakland University for its support of our Calculus with the HP-28S
project.

APPENDIX. We briefly discuss the HP-28S implementation. The routines for
polynomial arithmetic can be found in the booklet Mathematical Applications
published by the Hewlett-Packard Company in 1988. These can even be made to
work over rational arithmetic, using routines available from the first-named au-
thor. In these routines, a polynomial is stored as a list of coefficients. The
denominator in example #3 of the introduction for instance is stored as
{1,2,3,4,3,2,1}. At the end of step 5 we get the polynomial T represented by the
list {D, —A+D+E, -2B+D+E+F, A—-B-3C+D~+E+F, 24 —
2C+ E + F, B — C + F}. Now if we set all the variables except A to be zero and
A to be one (and successively for the other variables) we get a matrix whose
transpose is the coefficient matrix for the system of equations in step 7. This is
easily implemented on the HP-28S. The first named author will be happy to
provide the codes on request.

REFERENCES

1. Lindsay Childs, A Concrete Introduction to Higher Algebra, Springer-Verlag (1979).

G. E. Collins, Computer algebra of polynomials and rational functions, American Mathematical

Monthly 80 (1973), 725-755.

T. H. Davenport, Y. Siret, E. Tournier, Computer Algebra, Academic Press (1988).

H.-D. Ebbinghaus, et al., Numbers, Springer-Verlag, (1990).

5. H. B. Griffiths, Cayley’s version of the resultant of two polynomials, American Math Monthly 88,
no. 5 (1981), 328--338.

6. G. H. Hardy The Integration of Functions of a Single Variable, 2nd Edition Hafner, 1971 (originally
published in 1905).

7. E. Horowitz, Algorithms for Symbolic Integration of Rational Functions, Ph.D. Thesis, University of
Wisconsin, 1970.

8. T. W. Hungerford, Abstract Algebra, An Introduction, Saunders, 1990.

9. G. Klambauer, Aspects of Calculus Springer-Verlag, 1986.

10. D. E. Knuth, The Art of Computer Programming, (2nd ed.) v. 2, Addison-Wesley, 1981.

11. Sidney H. Kung, and Yap S. Chang A Zero-Row reduction algorithm for obtaining the gcd of
polynomials, The College Mathematics Journal 21 (1990), 138—141.

12. L. Lazard, and R. Rioboo, Integration of rational functions: rational computation of the logarith-
mic part., J. Symbolic Computation 9 (1990), 113-115.

>

1992] HOW TO INTEGRATE RATIONAL FUNCTIONS 771



13. Robert H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc., 139 (1969),
167-189.

14.  Subramaniam, T. N., & D. E. G. Malm, Reduction formulas revisited, The College Mathematics
Journal 22 (1991), 421-429.

15. B. Trager, Algebraic factoring & rational function integration, Proceedings of the 1976 ACM

Symposium on Symbolic and Algebraic Computation, ACM Inc. (1976), 219-226.

Department of Mathematical Sciences
Oakland University

Rochester, MI 48309-4401
malm@vela.acs.oakland.edu

1

)

N QA s
A . 4 1
2 .

\ Y iy
— 2% S
Y w

[VE<S T

20 v

oW v

= 5

<t

3 »

< £
s -}

—
[

Hol Al Aot time wasted ! Tts true
but ot 'pmV&bl&.

772 HOW TO INTEGRATE RATIONAL FUNCTIONS [October



	Article Contents
	p. 762
	p. 763
	p. 764
	p. 765
	p. 766
	p. 767
	p. 768
	p. 769
	p. 770
	p. 771
	p. 772

	Issue Table of Contents
	The American Mathematical Monthly, Vol. 99, No. 8 (Oct., 1992), pp. 713-809
	Front Matter [pp. 713-713]
	Comments [p. 714]
	The Fifty-Second William Lowell Putnam Mathematical Competition [pp. 715-724]
	Dedekind's Theorem: [pp. 725-733]
	A Modified Babylonian Algorithm [pp. 734-737]
	Lines Without Order [pp. 738-745]
	An Identity for [pp. 746-748]
	Newton's Identities [pp. 749-751]
	On Sums of Triangular Numbers and Sums of Squares [pp. 752-757]
	On the Superlinear Convergence of the Secant Method [pp. 758-761]
	How to Integrate Rational Functions [pp. 762-772]
	Picture Puzzle [pp. 773+796]
	The Authors [pp. 774-775]
	Letters [pp. 776-778]
	Unsolved Problems
	On the Intersection Points of Unit Circles [pp. 779-780]

	Problems and Solutions
	Problems: 10247-10255 [pp. 781-783]
	Notes
	(10249) [p. 783]
	(10255) [p. 783]

	Solutions
	6616 [pp. 783-789]
	E3427 [p. 790]
	E3430 [pp. 790-791]
	6655 [pp. 791-794]
	E3443 [pp. 794-795]
	E3445 [p. 795]
	E3458 [pp. 795-796]


	Reviews
	Review: untitled [pp. 797-801]
	Review: untitled [pp. 801-803]

	Telegraphic Reviews [pp. 804-809]
	Back Matter



