
Integration of Rational Functions

Alkis Akritas
ECE/UTh/Volos

Abstract

In these notes we examine the integration of rational functions. This is a very important process, because
other cases � such as integration of transcendental functions � are reduced to it.

We present Ostrogradsky's1 method and Hermite's reduction method for the computation of the
rational part of the integral and two methods for the computation of the logarithmic part.

Table of contents

1 Introduction . 1

1.1 Basic Notions and De�nitions . 2
1.2 Computing the Partial Fraction Expansion . 3

1.2.1 Method 1: Computation of Residues by Solving a System of Linear Equations 3
1.2.2 Method 2: Computation of Residues by Evaluating (x¡ sk) � f(x) at the Poles sk 3

1.2.3 Method 3: Computation of Residues by Evaluating p(x)

q0(x)
at the Poles sk 4

1.2.4 Repeated Poles . 4
1.3 The Road Ahead . 5

2 Polynomial Part of the Integral . 6

3 Rational Part of the Integral . 7

3.1 Ostrogradsky's Method of 1845 for the Rational Part . 7
3.2 Hermite's Method of 1872 for the Rational Part . 11

4 Logarithmic (or Transcendental) Part . 15

4.1 Logarithmic Part with GCD Computations in Extension Fields . 16
4.2 Logarithmic Part with Subresultant PRS . 20

5 Examples . 23

1 Introduction

Throughout these notes we will use the computer algebra system Sympy, which can be initialized as follows:

>>> from sympy import *

>>> var('a:z')

(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z)

Python]

We begin our discussion with some basic de�nitions we will need.

1. For more information see: http://en.wikipedia.org/wiki/Mikhail_Ostrogradsky

1

1.1 Basic Notions and De�nitions
Consider the polynomials p(x); q(x) with integer coe�cients, i.e. p(x); q(x) 2 Z[x]; the expression p(x)

q(x)
is

called a rational function, and p(x); q(x) are called the numerator , denominator polynomial, respectively.

The polynomials p(x); q(x) are not uniquely determined, since 1

x+1
=

7

7x+7
=

x2+1

(x+1)(x2+1)
.

Given the rational function f(x)= p(x)

q(x)
� and assuming that the polynomials p(x); q(x) have no common

factors (cancel them if they do) � the roots of p(x) are called the zeros of f(x), whereas the roots of q(x)
are called the poles of f(x). The root % of q(x) is a pole of f(x) if limx!% jf(x)j=1. The multiplicity of
a zero (or pole) % of f(x) is the multiplicity of the root % of p(x) (or q(x)).

The factored or pole-zero form of f(x)= p(x)

q(x)
is

f(x) =
p(x)

q(x)
= k � (x¡ r1)���(x¡ rm)

(x¡ s1)���(x¡ sn)
;

where

i. m=deg(p); n= deg(q) are the degrees of p(x); q(x), respectively,

ii. k= lc(p)
lc(q) is the leading coe�cient of p(x) divided by the leading coe�cient of q(x),

iii. r1; :::; rm are the zeros of f(x) � that is, the roots of p(x), and

iv. s1; :::; sn are the poles of f(x) � that is, the roots of q(x).

Assuming that f(x) =
p(x)

q(x)
has no repeated poles (i.e. all poles of f(x) have multiplicity 1) and that

m=deg(p)<n= deg(q), then we can have the partial fraction expansion of f(x) as

f(x)=
p(x)
q(x)

=
f1

x¡ s1
+ ���+ fn

x¡ sn
;

where

i. s1; :::; sn are the poles of f(x)

ii. f1; :::; fn are called the residues,

iii. when sk= sl�, the complex conjugate of sl, then fk= fl�.

The word residue is used in a number of di�erent contexts in mathematics. Two of the most common uses
are the complex residue of a pole � used here � and the remainder of a congruence. The residue in our
case is the coe�cient a¡1 in the Laurent series

f(z)=
X

n=¡1

1

an(z¡ z0)n

of f(z) about the point z0.
For example, as can be easily veri�ed with the functions apart, together and residue of sympy, we have

x2¡ 2
x3+3x2+2x

=
¡1
x
+

1
x+1

+
1

x+2

>>> f = (x**2 - 2) / (x**3 + 3*x**2 + 2*x)

>>> fr = apart(f)

>>> fr

1/(x + 2) + 1/(x + 1) - 1/x

>>> together(fr)

(x*(x + 1) + x*(x + 2) - (x + 1)*(x + 2))/(x*(x + 1)*(x + 2))

>>> residue(f, x, 0)

-1

>>> series(f, x, x0=0)

2 Section 1

ece

ece

-1/x + 3/2 - 5*x/4 + 9*x**2/8 - 17*x**3/16 + 33*x**4/32 - 65*x**5/64 + O(x**6)

>>> residue(f, x, -1)

1

>>> series(f, x, x0=-1)

1/(x + 1) + 2 + 2*(x + 1)**2 + 2*(x + 1)**4 + O((x + 1)**6, (x, -1))

>>> residue(f, x, -2)

1

>>> series(f, x, x0=-2)

1/(x + 2) - 2 - 7*(x + 2)**2/8 - 15*(x + 2)**3/16 - 31*(x + 2)**4/32 - 63*(x +
2)**5/64 - 3*x/4 + O((x + 2)**6, (x, -2))

Python]

1.2 Computing the Partial Fraction Expansion
From the above discussion we see that in order to compute the partial fraction expansion of a rational function
f(x) =

p(x)

q(x)
we need to:

i. compute the poles s1; :::; sn of f(x) � i.e. compute the roots of q(x), and

ii. compute the residues f1; :::; fn.

To compute the poles of f(x) we can compute the roots of q(x) either with the function factor or with the
function solve.

Once we have the poles, the residues f1; :::; fn can be computed with several methods. We demonstrate
them using the following example

f(x)=
a2 �x2+ a1 �x+ a0

(x¡ s1)(x¡ s2)(x¡ s3)
=

f1
x¡ s1

+
f2

x¡ s2
+

f3
x¡ s3

: (1)

1.2.1 Method 1: Computation of Residues by Solving a System of Linear Equations

With this method we clear the denominators in (1) to obtain

a2 �x2+ a1 �x+ a0= f1 � (x¡ s2) � (x¡ s3)+ f2 � (x¡ s1) � (x¡ s3) + f3 � (x¡ s1) � (x¡ s2);

next equate coe�cients

i. a0=(s2 � s3) � f1+(s1 � s3) � f2+(s1 � s2) � f3
ii. a1=(¡s2¡ s3) � f1+(¡s1¡ s3) � f2+(¡s1¡ s2) � f3
iii. a2= f1+ f2+ f3

and solve the system of linear equations for f1; f2; f3.

1.2.2 Method 2: Computation of Residues by Evaluating (x¡ sk) � f(x) at the Poles sk

With this method, to compute fi; 16 i6 3, we do the following:

i. multiply both sides of (1) by (x¡ si),

ii. cancel (x¡ si) from numerator and denominator, and

iii. evaluate at x= si.

In other words, we have the general formula:

fk=(x¡ sk) � f(x)jx=sk; (2)

Introduction 3

which means do the last three steps (i), (ii), (iii).
So, to compute f1 in our example we �rst multiply both sides of (1) by (x ¡ s1) to obtain � after

cancellations:

(x¡ s1)(a2 �x2+ a1 �x+ a0)
(x¡ s1)(x¡ s2)(x¡ s3)

=
f1 � (x¡ s1)
x¡ s1

+
f2 � (x¡ s1)
x¡ s2

+
f3 � (x¡ s1)
x¡ s3

(a2 �x2+ a1 �x+ a0)
(x¡ s2)(x¡ s3)

= f1+
f2 � (x¡ s1)
x¡ s2

+
f3 � (x¡ s1)
x¡ s3

;

then replacing x by s1 we have the explicit formula

a2 � s12+ a1 � s1+ a0
(s1¡ s2)(s1¡ s3)

= f1:

We can compute f2; f3 the same way.

1.2.3 Method 3: Computation of Residues by Evaluating p(x)

q 0(x)
at the Poles sk

With this method, we have fi=
p(si)

q0(si)
; 16 i6 3. To see this, note that from formula (2) we have

fk= lim
x!sk

(x¡ sk) � p(x)
q(x)

= lim
x!sk

p(x)+ p0(x)(x¡ sk)
q 0(x)

=
p(sk)
q 0(sk)

;

where l'Hopital's rule was used.

1.2.4 Repeated Poles

Suppose now that we have

f(x)=
p(x)

q(x)
=

p(x)

(x¡ s1)k1���(x¡ sl)kl
; (3)

where:

i. m=deg(p)<n= deg(q), and

ii. the poles si are distinct � that is, si=/ sj for i=/ j and have multiplicity ki.

Then the partial fraction expansion of (3) has the form

f(x) =
f1;k1

(x¡ s1)k1
+

f1;k1¡1
(x¡ s1)k1¡1

+ ���+ f1;1
(x¡ s1)

+
f2;k2

(x¡ s2)k2
+

f2;k2¡1
(x¡ s2)k2¡1

+ ���+ f2;1
(x¡ s2)

��� :::

+
fl;kl

(x¡ sl)kl
fl;kl¡1

(x¡ s2l)kl¡1
+ ���+ fl;1

(x¡ sl)
:

Here, we have n residues, just as before and the terms involve higher powers of 1

(x¡ s) . Consequently, formula
(2) above becomes

fi;ki=(x¡ si)kif(x)jx=si (4)

from which we obtain the residue fi;ki. To obtain the other residues, fi;ki¡1; :::; fi;1 we use the following
extension

fi;ki¡j=
1
j!

dj

dxj
((x¡ si)ki � f(x))jx=si: (5)

Example 1. The rational function f(x)=
1

x2(x+1)
has the partial fraction expansion

f(x) =
f1
x2
+
f2
x
+

f3
x+1

=
1
x2
¡ 1
x
+

1
x+1

:

4 Section 1

With method 2, the residues f1; f3 are computed using formulae (4) and (2), respectively, whereas residue
f2 is computed using formula (5). So we have:

f1 = x2f(x)jx=0=
1

x+1
jx=0=1

f2 =
d
dx

(x2 � f(x))jx=0=
¡1

(x+1)2
jx=0=¡1

f3 = (x+1) � f(x)jx=¡1=
1
x2
jx=¡1=1

Note that sympy's function residue returns the residues fi;1, and, therefore, using it we obtain f2; f3.

Python] f = 1 / (x**2 * (x + 1))

Python] residue(f, x, 0)

-1

Python] residue(f, x, -1)

1

Python] apart(f)

1/(x + 1) - 1/x + x**(-2)

Python]

1.3 The Road Ahead

In the sequel we will compute � in several stages � the integral
R p(x)

q(x)
dx, where p(x)=4x7+4x6+ 16x5+

12x4+8x3 and q(x)=x6+2x5+3x4+4x3+3x2+2x+1.

Python] p = 4*x**7 + 4*x**6 + 16*x**5 + 12*x**4 + 8*x**3

Python] q = x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1

Python]

Python]

Before we present the algorithms for the various stages we reveal the answer which is obtained with the
function integrate:

Python] integrate(p / q, x)

2*x**2 - 4*x + (4*x**2 + 3*x + 5)/(x**3 + x**2 + x + 1) + 9*log(x + 1) + 3*log(x**2 +
1)/2 - 3*atan(x)

Python]

Notice that the above expression contains three parts:

i. the polynomial part , which in our case is

2x2¡ 4x; (6)

ii. the rational part , which in our case is
4x2+3x+5
x3+x2+x+1

; (7)

iii. and the logarithmic (or transcendental) part, which in our case is

9 � log(x+1)+ 3 � log(x2+1)
2

¡3 � atan(x): (8)

Introduction 5

In the sequel we elaborate on each part individually.

2 Polynomial Part of the Integral

This is the easiest part to compute. It appears only when the degree of the numerator polynomial p(x) is
greater than the degree of the denominator polynomial q(x)� as is the case with our polynomials presented
in the Introduction. In such cases, all we have to do is take the quotient and remainder of p(x) and q(x).

Integrating the quotient of p(x) and q(x) � quite an easy task to perform � we obtain the polynomial part
of the integral we are after. In our case, to obtain the result in (6) we have:

Python] pp = quo(p, q, x)

Python] pp

4*x - 4

Python] integrate(pp, x)

2*x**2 - 4*x

Python]

On the other hand, the remainder provides us with a new polynomial p(x), which will be the numerator of
a new rational function having the same denominator q(x). However, this time the degree of the numerator
is smaller than that of the denomintor.

Python] rem(p, q, x)

12*x**5 + 8*x**4 + 12*x**3 + 4*x**2 + 4*x + 4

Python]

Below is the algorithm to compute the polynomial part:

Python] def int_poly_part(p, q, x):
"""
Input: Polynomials p, q with deg(p) <=> deg(q).
Output: If deg(p) > deg(q) computes the polynomial part of the integralZ
p

q
and a new polynomial, p, deg(p) < deg(q), which will be the numerator

of a new rational function with the same denominator q.
"""
poly_part = quo(p, q, x)
r = rem(p, q, x)
return [integrate(poly_part, x), r]

Python]

For the polynomials p(x); q(x) given in the Introduction we obtain the polynomial part (6) of the integral
and a new polynomial p(x), deg(p)<deg(q), to be used in the following stages.

Python] [poly_part, p] = int_poly_part(p, q, x)

Python] poly_part

2*x**2 - 4*x

Python] p

6 Section 2

12*x**5 + 8*x**4 + 12*x**3 + 4*x**2 + 4*x + 4

Python]

3 Rational Part of the Integral

At this point we have the new pair of polynomials p(x); q(x), where p(x) changed, whereas q(x) remained
the same and deg(p)< deg(q). That is, we have

Python] p = 12*x**5 + 8*x**4 + 12*x**3 + 4*x**2 + 4*x + 4

Python] q = x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1

Python]

Below we go through the steps that lead to (7), the rational part of the integral computed in the Introduction.

In other words, we will compute the integral
R p(x)

q(x)
dx.

We present two methods for the computation of the rational part: Ostrogradsky's method of 1845 and
Hermite's reduction method of 1872.

3.1 Ostrogradsky's Method of 1845 for the Rational Part

Our discussion in this section is taken from the paper �How to Integrate Rational Functions� by T. N.
Subramaniam and D. E. G. Malm.

Ostrogradsky's method is based on his theorem, which states the following:

Theorem 2. (Ostrogradsky, 1845) Let p

q
be a rational function. Let q =

Q
i=1
n

hi
�i be the factorization

of q into linear and irreducible quadratic factors, and let q1=
Q

i=1
n

hi
�i¡1 and q2=

Q
i=1
n

hi. Then there are
polynomials p1; p2 such that Z

p(x)

q(x)
dx=

p1(x)

q1(x)
+

Z
p2(x)

q2(x)
dx: (9)

Proof. Here q(x); q1(x); q2(x) are known polynomials of degrees deg(q); deg(q1); deg(q2), respectively; p(x)
is also a known polynomial of degree not greater than deg(q) ¡ 1. By contrast, p1(x) ; p2(x) are unknown
polynomials � of degrees not greater than deg(q1) ¡ 1; deg(q2) ¡ 1 respectively � and (their coe�cients)
have to be computed.

The proof can be found in the paper by Subramaniam and Malm and hence it is omitted here. �

What is really nice about formula (9) is the fact that we can compute p1(x) ; p2(x); q1(x); q2(x) without
actually factoring q(x)! Here is how:

From a theorem we stated when discussing square-free factorization we see that q1(x) = gcd (q(x); q 0(x)),
from which it easily follows that q2(x)=

q(x)

q1(x)
. That is, for our example, the denominator polynomials q1(x);

q2(x) in (9) are:

Python] q1 = gcd(q, diff(q, x, 1))

Python] q1

x**3 + x**2 + x + 1

Rational Part of the Integral 7

Python] q2 = quo(q, q1)

Python] q2

x**3 + x**2 + x + 1

Python]

To compute p1(x); p2(x) in (9), both of which are of degree 62, note that because of the above relations,
q1(x) divides q 0(x). However, since q(x)= q1(x)q2(x), q1(x) also divides the product q10(x)q2(x) and, therefore,

s(x)=
q1
0(x)q2(x)

q1(x)
is a polynomial. Di�erentiating both sides of (9) we obtain

p(x)
q(x)

=
q1(x)p1

0 (x)¡ p1(x)q1
0(x)

q1
2(x)

+
p2(x)
q2(x)

=
p1
0 (x)¡ p1(x)

q1
0(x)

q1(x)

q1(x)
+
p2(x)
q2(x)

:

Clearing the denominators and keeping in mind that q(x)= q1(x)q2(x), we have

p(x)= p1
0 (x)q2(x)¡ p1(x)s(x) + p2(x)q1(x): (10)

Hence, since p(x); q1(x); q2(x) and s(x) are known polynomials, we solve for p1(x); p2(x) with the method of
undertermined coe�cients.

Since the polynomial p1(x); p2(x), in (9), are both of degree 62, suppose that p1(x) =w2 � x2+w1 � x+w0
and p2(x) = z2 � x2 + z1 � x + z0. In sympy these polynomials are formed with the help of the functions
numbered_symbols, take and sum.

Python] coeffs_p1 = take(numbered_symbols(w), 3)

Python] coeffs_p1

[w0, w1, w2]

Python] p1 = sum([coeffs_p1[i]*x**i for i in range(3)])

Python] p1

w0 + w1*x + w2*x**2

Python] coeffs_p2 = take(numbered_symbols(z), 3)

Python] coeffs_p2

[z0, z1, z2]

Python] p2 = sum([coeffs_p2[i]*x**i for i in range(3)])

Python] p2

x**2*z2 + x*z1 + z0

Python]

Compute now the polynomial s(x), and substitute it in (10) to obtain the polynomial

t(x) = z2 �x5+(¡w2+ z1+ z2) �x4+(¡2 �w1+ z0+ z1+ z2) �x3

+ (¡3 �w0¡w1+w2+ z0+ z1+ z2) �x2+(¡2 �w0+2 �w2+ z0+ z1) �x
+ (¡w0+w1+ z0):

Python] s = diff(q1, x, 1) * q2 / q1

Python] s

3*x**2 + 2*x + 1

8 Section 3

Python] t = (
diff(p1, x, 1) * q2 - p1 * s + p2 * q1

).expand().collect(x)

Python] t

-w0 + w1 + x**5*z2 + x**4*(-w2 + z1 + z2) + x**3*(-2*w1 + z0 + z1 + z2) + x**2*(-3*w0
- w1 + w2 + z0 + z1 + z2) + x*(-2*w0 + 2*w2 + z0 + z1) + z0

Python]

Now, set t(x)¡ p(x)= 0 and solve the following system of undetermined coe�cients

z2 = 12
¡w2+ z2+ z1 = 8

¡2w1+ z2+ z1+ z0 = 12
w2¡w1¡ 3w0+ z2+ z1+ z0 = 4

2w2¡ 2w0+ z1+ z0 = 4

w1¡w0+ z0 = 4

In sympy this is done quite easily by setting t(x) ¡ p(x) = 0 (the 0 is omitted in the function
solve_undetermined_coeffs) and specifying the list of undetermined coe�cients:

Python] sols = solve_undetermined_coeffs(t - p, coeffs_p1 + coeffs_p2, x)

Python] sols

{z1: 0, w1: 3, w0: 5, z0: 6, z2: 12, w2: 4}

Therefore, the numerator polynomials p1(x); p2(x) in (9) are

p1(x) = 4 �x2+3 �x+4

p2(x) = 12 �x2+6;

Python] p1 = p1.subs(sols)

Python] p1

4*x**2 + 3*x + 5

Python] p2 = p2.subs(sols)

Python] p2

12*x**2 + 6

Python]

and the integral becomes:Z
12x5+8x4+ 12x3+4x2+4x+4

x6+2x5+3x4+4x3+3x2+2x+1
dx=

4x2+3x+5

x3+x2+x+1
+

Z
12x2+6

x3+x2+x+1
dx:

The rational part 4x2+3x+5

x3+x2+ x+1
is the same as (7), which was computed in the Introduction, whereas the

integral
R 12x2+6

x3+ x2+ x+1
dx and will give us the logarithmic part.

The above procedure can be made into the function int_rat_part presented below.

Rational Part of the Integral 9

Python] def int_rat_part_O(p, q, x):
"""
Input: Polynomials p, q with deg(p) < deg(q).

Output:
p1
q1

the rational part of the integral

Z
p
q

and
p2
q2
,

the integrand of the logarithmic (transcendental) part.
"""
form q1, q2 and take their degrees
q1 = gcd(q, diff(q, x, 1))
q2 = quo(q, q1, x)
dq1 = degree(q1, x)
dq2 = degree(q2, x)

form p1, p2 with undetermined coefficients
coeffsp1 = take(numbered_symbols(w), dq1)
p1 = sum([coeffsp1[i]*x**i for i in range(dq1)])
coeffsp2 = take(numbered_symbols(z), dq2)
p2 = sum([coeffsp2[i]*x**i for i in range(dq2)])

form s, t
s = quo(diff(q1, x, 1)*q2 , q1, x)
t = (diff(p1, x, 1)*q2 - p1*s + p2*q1
).expand().collect(x)

solve system to find coefficients of p1, p2
slts = solve_undetermined_coeffs(t - p, coeffsp1 + coeffsp2, x)

form rational part p1 / q1
if degree(p1, x) >= 0:

p1 = p1.subs(slts)
rat_part = p1 / q1

form log part p2 / q2
if degree(p2, x) >= 0:

p2 = p2.subs(slts)
log_part = p2 / q2

simplify numerators, denominators
temp = together(rat_part)
temp_num = expand(numer(temp))
temp_den = expand(denom(temp))
rat_part = temp_num / temp_den

temp1 = together(log_part)
temp1_num = expand(numer(temp1))
temp1_den = expand(denom(temp1))
log_part = temp1_num / temp1_den

return [rat_part, log_part]

Python]

The integral of the rational function for the polynomials p(x); q(x) of our example gives both a rational part
and a logarithmic part.

10 Section 3

Python] p = 12*x**5 + 8*x**4 + 12*x**3 + 4*x**2 + 4*x + 4

Python] q = x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

-1/(5*x - 5)

Python] log_part

-1/(5*x**2 + 15*x - 20)

Python]

The computation of the logarithmic part, that is the computation of the integralZ
12x2+6

x3+x2+x+1
dx (11)

will be discussed in the next section. In the following subsection below we elaborate on the second approach
to compute the rational part.

3.2 Hermite's Method of 1872 for the Rational Part

Almost 30 years after Ostrogradsky, Hermite �reinvented� the integration of rational functions.

Hermite's method provides a constructive means for obtaining the rational part of the integral of a rational
function and requires only rational operations.

The method has the following two stages:

i. �rst, we obtain the complete squarefree partial fraction expansion (de�ned below) of the integrand,

ii. and then to each fraction, computed in (i), with the denominator raised to a power j > 1, we apply
a reduction scheme producing two functions: one of these is the rational part of the integral, whereas
the integral of the other is the logarithmic (or transcendental) part of the original integral.

Even though the required concepts mentioned above are known, we remind ourselves that:

De�nition 3. Let p(x)2Z[x] be a polynomial of positive degree. Then p(x) is said to be square-free if it
cannot be written in the form p(x)= q(x) � r2(x), where r(x) is a polynomial of positive degree.

It follows that a square-free polynomial has only roots of multiplicity one.

De�nition 4. Let p(x)2Z[x] and suppose p(x)= p0 �
Q

i=1
k pi

i(x), where each pi(x)2Z[x], pi(x) is primitive
and has positive leading coe�cient for 1 6 i 6 k. Also. deg(pk) > 0, p0 2 Z and the polynomials pi(x) are
pairwise relatively prime. Then the expression p0 �

Q
i=1
k pi

i(x) is called the square-free factorization of
p(x).

In sympy the functions sqf and sqf_list compute the square-free factorization of a given polynomial. The
output follows Mathematica and is slightly di�erent from the output of Xcas and maxima � but otherwise
suits our purposes �ne. On this topic see issue #8695 for sympy.

De�nition 5. Let p(x)

q(x)
be a rational function with deg(p) < deg(q) and let q0 �

Q
i=1
k qi

i(x) be the square-

free factorization of q(x). Suppose, moreover, that there exist polynomials pi(x)2Q[x], 16 i6 k, such that

Rational Part of the Integral 11

p(x)

q(x)
=

P
i=1
k pi(x)

qi
i(x)

, deg(pi)<deg(qii), or if deg(qi)=0 then pi(x)=0. Then, this sum is called a square-free

partial fraction expansion of p(x)

q(x)
.

We will not exactly make use of the above expansion. Instead, we will use the following:

De�nition 6. Let p(x)

q(x)
be a rational function with deg(p)<deg(q) and let q0 �

Q
i=1
k qi

i(x) be the square-free

factorization of q(x). Suppose, moreover, that there exist polynomials pi;j(x)2Q[x], 16 j6 i; 16 i6k, such
that p(x)

q(x)
=

P
i=1
k P

j=1
i pi;j(x)

qi
j(x)

, deg(pi;j)<deg(qi), or if deg(qi)=0 then pi;j(x)=0, for 16 j6 i. Then, this
sum is called a complete, square-free partial fraction expansion of p(x)

q(x)
.

In other words, the partial fraction expansion discussed in the Introduction is a complete, square-free partial
fraction expansion. Sympy has two functions for computing complete, square-free partial fraction expansions:
the �rst is apart, which returns the complete, square-free partial fraction expansions mentioned above, and
the second is apart_list, which is useful for later processing of the output.

For example, consider the rational function 1

(x2+1)(x¡ 1)2(x¡ 2)3(x¡ 3)3 . Its complete, square-free partial frac-
tion expansion is

1

(x2+1)(x¡ 1)2(x¡ 2)3(x¡ 3)3 =
¡(x+1)

1000(x2+1)
+

7

32(x¡ 1) +
1

16(x¡ 1)2 ¡
66

125(x¡ 2)

¡ 1
25(x¡ 2)2 ¡

1
5(x¡ 2)3 +

1241
4000(x¡ 3) ¡

23
200(x¡ 3)2 (12)

+
1

40(x¡ 3)3

and is obtained from sympy's function apart:

Python] f = 1 / ((x**2 + 1) * (x - 1)**2 * (x - 2)**3 * (x - 3)**3)

Python] fr = apart(f)

Python] fr

-(x + 1)/(1000*(x**2 + 1)) + 7/(32*(x - 1)) + 1/(16*(x - 1)**2) - 66/(125*(x - 2)) -
1/(25*(x - 2)**2) - 1/(5*(x - 2)**3) + 1241/(4000*(x - 3)) - 23/(200*(x - 3)**2) +
1/(40*(x - 3)**3)

Python]

Note that we can get a list of all the terms in an expansion using the attribute args. So for our example we
have:

Python] fr_terms = fr.args

Python] fr_terms

(-1/(25*(x - 2)**2), -1/(5*(x - 2)**3), 1/(40*(x - 3)**3), -23/(200*(x - 3)**2),
1/(16*(x - 1)**2), -66/(125*(x - 2)), 7/(32*(x - 1)), -(x + 1)/(1000*(x**2 + 1)),
1241/(4000*(x - 3)))

Python]

Once we have a list of all the terms of the complete square free partial fraction expansion we apply to those
with denominator raised to power j >1, Hermite's reduction scheme, which is described below for the general
case.

12 Section 3

Suppose we want to compute the integral
R p(x)

q(x)
dx, where p(x); q(x) 2 Q(x), with LC(q) = 1, i.e. q(x) is

monic, gcd (p; q) =1 and deg(p)<deg(q). Hermite's method proceeds as follows.

We compute the partial fraction expansion of p(x)

q(x)
in the form

p(x)
q(x)

=
X
i=1

k X
j=1

i
pi;j(x)

qi
j(x)

:

Then, the integral of p(x)

q(x)
can be expressed in the formZ

p(x)
q(x)

dx=
X
i=1

k X
j=1

i Z
pi;j(x)

qi
j(x)

dx: (13)

Our goal now is to apply reductions on the integrals appearing in the right-hand side of (13) until each
integral that remains has a denominator which is simply square-free � rather than a power j>1 of a square-
free qi(x). To achieve this, we will use integration by parts � the known formula

R
u dv= u � v ¡

R
vdu �

and the extended Euclidean algorithm.

Consider a particular non-zero integrand pi;j(x)

qi
j(x)

, with j>1. Since qi(x) is square-free gcd (qi; qi0) = 1, and

using the extended Euclidean algorithm we can compute polynomials s(x); t(x)2Q[x] such that

s(x) � qi(x) + t(x) � qi0(x) = pi;j(x); (14)

and deg(s)<deg(qi)¡ 1=deg(qi0) and deg(t)< deg(qi); the degree requirement is very important. Dividing
(14) by qi

j(x) yields Z
pi;j(x)

qi
j(x)

dx=
Z

s(x)

qi
j¡1(x)

dx+
Z
t(x) � qi0(x)
qi
j(x)

dx:

Now we can apply integration by parts to the second integral on the right, where

u= t(x); v=
¡1

(j ¡ 1)qi
j¡1(x)

:

The result is Z
t(x) � qi0(x)
qi
j(x)

dx=
¡t(x)

(j ¡ 1)qi
j¡1(x)

+

Z
t 0(x)

(j ¡ 1)qi
j¡1(x)

dx;

and, hence, we have achieved the reductionZ
pi;j(x)

qi
j(x)

dx=
¡t(x)/(j ¡ 1)

qi
j¡1(x)

+

Z
s(x) + t 0(x)/(j ¡ 1)
(j ¡ 1)qi

j¡1(x)
dx: (15)

Note that this process has produced a rational function � which contributes to the overall rational function
of the integral � and another integral where the power of qi(x) has been reduced by one. It may happen
that the numerator of the new integrand is zero, in which case the process terminates. Otherwise, if j¡1=1
the integral contributes to the logarithmic part, whereas if j ¡ 1> 1 the same process maybe applied again.
Note that the new integrand satis�es the degree inequality

deg(s+ t 0/(j ¡ 1))6max fdeg(s); deg(t 0)g< deg(qi)¡ 1;

which is consistent with De�nition (6).

By repeated application of the reduction process (15), until the denominators of all remaining integrands are
square-free, we obtain the full rational part of the integral. Thus we now have Hermite's method for rational
function integration.

Rational Part of the Integral 13

Python] def int_rat_part_H(p, q, x):
"""
Input: Polynomials p, q with deg(p) < deg(q).

Output:
p1
q1

the rational part of the integral

Z
p
q

and
p2
q2
,

the integrand of the logarithmic (transcendental) part.
"""
rat_part = []
log_part = []
Compute a list of all fractions in the complete, square-free partial
fraction expansion of p / q.
pfe = apart(p / q)
lpf = Add.make_args(pfe)

apply reduction process to each fraction in the list
for fr in lpf:

fa = factor_list(denom(fr))
expo = fa[1][0][1]

append it to log_part if expo = 1
if expo == 1:

log_part.append(fr)

else:
n = expo
get the numerator of fr
nm = numer(fr) / fa[0]
get square-free factor
poly = fa[1][0][0]
while n > 1:

pp = diff(poly, x)
compute s, t such that deg(s) < deg(pp), deg(t) < deg(poly)
[s, t, g] = gcdex(poly, pp)
s = s * nm
s = rem(s, pp, x) ## ensure degree requirement
t = t * nm
t = rem(t, poly, x) ## ensure degree requirement
n = n - 1
rat_part.append((-t / n) / poly**n)
nm = s + diff(t, x) / n

log_part.append(nm / poly)

simplify numerator, denominator
temp = together(sum(rat_part))
temp_num = expand(numer(temp))
temp_den = expand(denom(temp))
rat_part = temp_num / temp_den

temp1 = together(sum(log_part))
temp1_num = expand(numer(temp1))
temp1_den = expand(denom(temp1))
log_part = temp1_num / temp1_den

return [rat_part, log_part]

14 Section 3

Python]

Python] int_rat_part_H(1, (x**2 + 1) * (x - 1)**2 * (x - 2)**3 * (x - 3)**3, x)

[(37*x**4 - 227*x**3 + 342*x**2 + 148*x - 400)/(400*x**5 - 4400*x**4 + 18800*x**3 -
38800*x**2 + 38400*x - 14400), (370*x**3 + 1380*x**2 + 330*x + 1420)/(4000*x**5 -
24000*x**4 + 48000*x**3 - 48000*x**2 + 44000*x - 24000)]

Python] int_rat_part_O(1, (x**2 + 1) * (x - 1)**2 * (x - 2)**3 * (x - 3)**3, x)

[(37*x**4 - 227*x**3 + 342*x**2 + 148*x - 400)/(400*x**5 - 4400*x**4 + 18800*x**3 -
38800*x**2 + 38400*x - 14400), (37*x**3 + 138*x**2 + 33*x + 142)/(400*x**5 - 2400*x**4
+ 4800*x**3 - 4800*x**2 + 4400*x - 2400)]

Python] int_rat_part_H(735*x**4 + 441*x**2 -(S(12446)/3)*x + S(21854)/9, x**6 +
(S(2)/3)*x**5 - (S(65)/9)*x**4 + (S(20)/9)*x**3 + 15*x**2 - (S(154)/9)*x +
S(49)/9, x)

[(-6615*x**3 + 6615*x**2 + 6762*x - 6272)/(9*x**4 - 6*x**3 - 36*x**2 + 54*x - 21), 0]

Python] int_rat_part_O(735*x**4 + 441*x**2 -(S(12446)/3)*x + S(21854)/9, x**6 +
(S(2)/3)*x**5 - (S(65)/9)*x**4 + (S(20)/9)*x**3 + 15*x**2 - (S(154)/9)*x +
S(49)/9, x)

[(-6615*x**3 + 6615*x**2 + 6762*x - 6272)/(9*x**4 - 6*x**3 - 36*x**2 + 54*x - 21), 0]

Python]

4 Logarithmic (or Transcendental) Part

As we saw, the integral of the rational function
R p(x)

q(x)
dx presented in the Introduction gave us a polynomial

part, a rational part and the logarithmic part
R 12x2+6

x3+x2+ x+1
dx.

To evaluate the integral above we could, of course, use the method of partial fractions. However, instead of
that, we use the following theorem mentioned in the paper by T. M. Subramaniam and D. E. G. Malm (p.
766), Z

p(x)
q(x)

dx=
X p(a)

q 0(a)
log(x¡ a); (16)

where the sum ranges over all the roots a of q(x) � including the complex ones � and log is the complex
logarithm de�ned in sympy by the function log.

Python] log(-3)

log(3) + I*pi

Python] log(I)

I*pi/2

Python]

The method based on theorem (16) is superior to the method of partial fractions.

Logarithmic (or Transcendental) Part 15

Recall that the fraction b= p(a)

q 0(a)
, for some root a of q(x) is called the residue of p(x)

q(x)
. Note that

i. b is a residue if and only if p(a)¡ b � q 0(a)=0 for some a such that q(a)=0 and this holds if and only
if p(x)¡ b � q 0(x) and q(x) have a common root.

ii. if gcd (p(x)¡ b � q 0(x); q(x)) = r(x), then the roots of r(x) are precisely the roots of q(x) which have
b as their residue.

Collecting together terms with the same coe�cient in (16) we obtainZ
p(x)
q(x)

dx=
X
i

bi � log(ri(x)); (17)

where the bi are the complex numbers b such that p(x) ¡ b � q 0(x) and q(x) have a common root and
ri(x)=gcd (p(x)¡bi � q 0(x); q(x)). Equivalently, p(x)¡b � q 0(x) and q(x) have a common root if their resultant
(de�ned below) is zero.

Therefore, if we can compute the residues bi, then a gcd calculation � most probably over an extension �eld
� will give us the integral.

Both algorithms discussed below are based on the resultant of p(x)¡ b � q 0(x) and q(x), where p(x); q(x) are
the numerator and denominator, respectively, of the integrand.

The resultant of two polynomials a(x); b(x) is de�ned as the product of di�erences of the roots of the two
polynomials, i.e.,

res(a; b)=
Y
i=1

n Y
j=1

m

(�i¡ �j);

where a(x)=(x¡�1)���(x¡�n) and b(x)=(x¡ �1)���(x¡ �m) are monic polynomials split into linear factors.

Clearly, the resultant of two polynomials is 0 if and only if the two polynomials share a root. An important
result states that the resultant of two polynomials can be computed from only their coe�cients by taking
the determinant of the Sylvester matrix (of 1840) of the two polynomials � to be discussed elsewhere.

4.1 Logarithmic Part with GCD Computations in Extension Fields

For the logarithmic part of our example, the polynomials are:

Python] p = 3*x + 3

Python] q = x**3 + x**2 + x + 1

Python] qq = diff(q, x, 1)

Python] qq

3*x**2 + 2*x + 1

Python]

The roots of q(x) are ¡1;¡i, and i .

Python] roots = solve(q, x)

Python] roots

[-1, -I, I]

Python]

16 Section 4

and according to formula (16), the integral is

Python] sum([simplify((p.subs(x, roots[i]) / qq.subs(x, roots[i]))) * log(x -
roots[i]) for i in range(len(roots))])

-3*I*log(x - I)/2 + 3*I*log(x + I)/2

as can be veri�ed by sympy � after we rewrite the output.

Python] t = integrate(p / q, x)

Python] t

3*atan(x)

Python] t.rewrite(log)

3*I*log((-I*x + 1)/(I*x + 1))/2

The same result is also obtained with residues and gcd computations.

Python] residues = [simplify((p.subs(x, roots[i]) / qq.subs(x, roots[i]))) for i in
range(len(roots))]

Python] residues

[0, 3*I/2, -3*I/2]

Python] gcd(p - residues[1]*qq, q, x)

x + I

Python] gcd(p - residues[2]*qq, q, x)

x - I

Python]

Then, the integral is the sum in (17):

Python] residues[1]*log(x + I) + residues[2]*log(x - I)

-3*I*log(x - I)/2 + 3*I*log(x + I)/2

Python]

Another example is the following:

Python] p = x

Python] q = x**4 + 1

Python] qq = diff(q, x, 1)

Python] roots = solve(q, x)

Python] roots

[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2,
sqrt(2)/2 + sqrt(2)*I/2]

Python] residues = [simplify(quo(p.subs(x, roots[i]), qq.subs(x, roots[i]), x)) for i
in range(len(roots))]

Python] residues

Logarithmic (or Transcendental) Part 17

[-I/4, I/4, I/4, -I/4]

Python] gcds = [gcd(p - residues[i]*qq, q, x) for i in range(len(roots))]

Python] gcds

[x**2 - I, x**2 + I, x**2 + I, x**2 - I]

Python] logcombine(sum([residues[i]*log(gcds[i]) for i in range(len(roots))]),
force=True)

I*log(sqrt(x**2 + I)/sqrt(x**2 - I))

Python] t = integrate(p / q, x)

Python] t

atan(x**2)/2

Python] t.rewrite(log)

I*log((-I*x**2 + 1)/(I*x**2 + 1))/4

Python]

The same result can be computed with the resultant � where we introduce the variable z .

Python] resultant(p - z*qq, q, x)

256*z**4 + 32*z**2 + 1

Python] solve(resultant(p - z*qq, q, x), z)

[-I/4, I/4]

Python] gcd(p - (-I/4)*qq, q, x)

x**2 - I

Python] gcd(p - (I/4)*qq, q, x)

x**2 + I

Python] logcombine((-I/4)*log(gcd(p - (-I/4)*qq, q, x)) + (I/4)*log(gcd(p - (I/4)*qq, q,
x)), force=true)

I*log((x**2 + I)**(1/4)/(x**2 - I)**(1/4))

Python]

So far the roots were computed in closed form. In the following example below, this is not possible and the
gcd's have to be computed in a �eld extended by RootOf.

Python] p = x**2 - 1

Python] q = x**6 - x + 1

Python] c = solve(q)

Python] c

[RootOf(x**6 - x + 1, 0), RootOf(x**6 - x + 1, 1), RootOf(x**6 - x + 1, 2),
RootOf(x**6 - x + 1, 3), RootOf(x**6 - x + 1, 4), RootOf(x**6 - x + 1, 5)]

Python] map(N, c)

[-0.94540233331126 - 0.611836693781009*I, -0.94540233331126 + 0.611836693781009*I,
0.154735144496843 - 1.03838075445846*I, 0.790667188814418 - 0.300506920309552*I,

18 Section 4

0.790667188814418 + 0.300506920309552*I, 0.154735144496843 + 1.03838075445846*I]

Python]

This example produces a very long output and will only be treated with sympy.

Python] integrate(p / q, x)

RootSum(43531*_t**6 + 363*_t**4 - 1060*_t**3 + 27*_t**2 + 13*_t + 3, Lambda(_t,
_t*log(19442177907668010*_t**5/10374601222607 - 1538552499493896*_t**4/10374601222607
- 198788025618967*_t**3/10374601222607 - 429257255345079*_t**2/10374601222607 +
5578472509755*_t/10374601222607 + x + 8754932267486/10374601222607)))

Python]

Here is our �rst integration algorithm for the logarithmic part. Note how we specially treat the case of
quadratic resultants (i.e. of degree 2).

Python] def int_log_part(p, q, x):
"""
Input: Polynomials p, q with deg(p) < deg(q) and q monic
and square-free.

Output: The integral

Z
p
q
, provided the roots of q can be

expressed in closed form (without the RootOf function).
"""
compute the resultant
r = resultant(p - y*q.diff(x), q, x)
r = r / content(r)

factor the resultant
fr = factor_list(r)

add log terms
integral = []
for i in range(len(fr[1])):

d = degree(fr[1][i][0], y)
if d==1:

c = solve(fr[1][i][0], y)
v = gcd(p - c[0]*q.diff(x), q, x)
v = v / LC(v)
integral.append(c[0]*log(v))

elif d==2:
give answer in terms of radicals
c = solve(fr[1][i][0], y)
compute the gcd in a field extension!!
v = [simplify(gcd(p - c[j]*q.diff(x), q, x)) for j in range(d)]
for j in range(d):

integral.append(c[j]*log(v[j]))
else:

answer in terms of rootsum / rootof
c = solve(fr[1][i][0])
v = [gcd(p - c[j]*q.diff(x), q, x, extension=c[j]) for j in range(d)]
for j in range(d):

integral.append(c[j]*log(v[j]))

return sum(integral)

Logarithmic (or Transcendental) Part 19

Python]

For our example from the Introduction we have

Python] p = 12*x**2 + 6

Python] q = x**3 + x**2 + x + 1

Python] integrate(p / q, x) ## sympy output

9*log(x + 1) + 3*log(x**2 + 1)/2 - 3*atan(x)

Python] int_log_part(p, q, x)

9*log(x + 1) + (3/2 + 3*I/2)*log(x - I) + (3/2 - 3*I/2)*log(x + I)

Python]

We repeat again that even though the answer above di�ers from the one obtained by sympy and the one in
formula (8), stated in the Introduction, they are actually the same� just expressed di�erently to accomodate
students of Calculus courses. To see this, just rewrite the term 3 � atan(x) in terms of logarithms and
logcombine the terms 3

2
log(x¡ i)+ 3

2
log(x+ i).

Python] t = 3*atan(x).rewrite(log)

Python] t

3*I*log((-I*x + 1)/(I*x + 1))/2

Python] expand_log(t, force=True)

3*I*(log(-I*x + 1) - log(I*x + 1))/2

Python] (S(3)/2) * simplify(logcombine(log(x - I) + log(x + I), force=True))

3*log(x**2 + 1)/2

Python]

In summary, we can get the expressions to look the same, but that requires additional work and we will not
follow that path.

4.2 Logarithmic Part with Subresultant PRS

In this section the algorithm presented for the integration of the logarithmic part makes use of subresultant
polynomial remainder sequences in order to replace the direct computation of the resultant and to avoid
time consuming gcd operations in extension �elds.

Namely, the resultant of two polynomials a(x); b(x) is more e�ciently calculated using the subresultant
polynomial remainder sequence (prs), which in addition to giving the resultant of a(x); b(x), also gives a
sequence of polynomials with some useful properties to be discussed below.

A subresultant polynomial remainder sequence is a generalization of the Euclidian algorithm where in each
step, the remainder ri is divided by a constant �i. The Fundamental Theorem of prs's shows how to compute
speci�c �i such that the resultant can be calculated from the polynomials in the sequence.

It turns out that the polynomials vi= gcd (p(x)¡ ci � q 0(x); q(x)) encountered in the previous algorithm will
appear in the subresultant prs of p(x)¡ y � q 0(x) and q(x). Furthermore, we can use the prs to immediately
�nd the resultant r= res(p(x) ¡ y � q 0(x); q(x)), which as we saw, is all we need in order to compute the
logarithmic part.

20 Section 4

Here is the algorithm:

Python] def int_log_part_S(p, q, x):
"""
Input: Polynomials p, q with deg(p) < deg(q) and q monic
and square-free.

Output: The integral

Z
p
q
, provided the roots of q can be

expressed in closed form (without the RootOf function).
"""
compute the subresultant prs
sr = subresultants(p - y*q.diff(x), q, x)

form a deg:poly dictionary of the polys in sr
degs = [Poly(sr[i], x).degree() for i in range(len(sr))]
d = {degs[i]:sr[i] for i in range(len(sr))}

retrieve the resultant from the prs
r = sr[-1] ## the last element of the sequence
r = r / content(r)

square-free factor r
sqfr = sqf_list(r)[1]
print 'sqf_list resultant', sqfr

add log terms
integral = []
for i in range(len(sqfr)):

normalize to make monic
w = LC(d[sqfr[i][1]], x)
s, t, _ = gcdex(w, sqfr[i][0])
ddi = rem(s*d[sqfr[i][1]], sqfr[i][0] , y)
ddi = ddi / content(ddi, x)

fr = factor_list(sqfr[i][0])[1]

for j in range(len(fr)):
degj = degree(fr[j][0], y)
if degj == 1:

c = solve(fr[j][0], y)
integral.append(c[0]*log(ddi.subs(y, c[0])))

elif degj == 2:
c = solve(fr[j][0], y)
for k in range(degj):

integral.append(c[k]*log(ddi.subs(y, c[k])))
else:

c = solve(fr[j][0], y)
for k in range(degj):

integral.append(c[k]*log(simplify(ddi.subs(y, c[k]))))

return simplify(sum(integral))

Python]

Python] p = x**3 + 9*x**2 - 18*x + 9

Logarithmic (or Transcendental) Part 21

Python] q = x**4 - 7*x**2 - 18

Python] int_log_part(p, q, x)

21*log(x - 3)/22 - 39*log(x + 3)/22 + (10/11 - 9*sqrt(2)*I/44)*log(x - sqrt(2)*I) +
(10/11 + 9*sqrt(2)*I/44)*log(x + sqrt(2)*I)

Python] int_log_part_S(p, q, x)

21*log(x - 3)/22 - 39*log(x + 3)/22 + 10*log(x - sqrt(2)*I)/11 - 9*sqrt(2)*I*log(x -
sqrt(2)*I)/44 + 10*log(x + sqrt(2)*I)/11 + 9*sqrt(2)*I*log(x + sqrt(2)*I)/44

Python] integrate(p/ q, x)

21*log(x - 3)/22 - 39*log(x + 3)/22 + 10*log(x**2 + 2)/11 +
9*sqrt(2)*atan(sqrt(2)*x/2)/22

Python]

Python] p = 1

Python] q = x**7 + 1

Python] int_log_part(p, q, x)

log(x + 1)/7 + log(x + 7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 +
49*y**2 + 7*y + 1, 0))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 +
49*y**2 + 7*y + 1, 0) + log(x + 7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 +
343*y**3 + 49*y**2 + 7*y + 1, 1))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 +
343*y**3 + 49*y**2 + 7*y + 1, 1) + log(x + 7*RootOf(117649*y**6 + 16807*y**5 +
2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 2))*RootOf(117649*y**6 + 16807*y**5 +
2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 2) + log(x + 7*RootOf(117649*y**6 +
16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 3))*RootOf(117649*y**6 +
16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 3) + log(x +
7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1,
4))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 4) +
log(x + 7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1,
5))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 5)

Python] int_log_part_S(p, q, x)

log(x + 1)/7 + log(x + 7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 +
49*y**2 + 7*y + 1, 0))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 +
49*y**2 + 7*y + 1, 0) + log(x + 7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 +
343*y**3 + 49*y**2 + 7*y + 1, 1))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 +
343*y**3 + 49*y**2 + 7*y + 1, 1) + log(x + 7*RootOf(117649*y**6 + 16807*y**5 +
2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 2))*RootOf(117649*y**6 + 16807*y**5 +
2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 2) + log(x + 7*RootOf(117649*y**6 +
16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 3))*RootOf(117649*y**6 +
16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 3) + log(x +
7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1,
4))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 4) +
log(x + 7*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1,
5))*RootOf(117649*y**6 + 16807*y**5 + 2401*y**4 + 343*y**3 + 49*y**2 + 7*y + 1, 5)

Python] integrate(p/q, x)

log(x + 1)/7 + RootSum(117649*_t**6 + 16807*_t**5 + 2401*_t**4 + 343*_t**3 + 49*_t**2
+ 7*_t + 1, Lambda(_t, _t*log(7*_t + x)))

Python]

22 Section 4

5 Examples

The next two rational functions have no logarithmic part:

Python] p = 8*x**5 - 10*x**4 + 5

Python] q = (2*x**5 - 10*x + 5)**2

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

(-x + 1)/(2*x**5 - 10*x + 5)

Python] log_part

0

Python] [rat_part, log_part] = int_rat_part_H(p, q, x)

Python] rat_part

(-x + 1)/(2*x**5 - 10*x + 5)

Python] log_part

0

Python]

Python] p = 4*x**5 - 1

Python] q = (x**5 + x + 1)**2

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

-x/(x**5 + x + 1)

Python] log_part

0

Python] [rat_part, log_part] = int_rat_part_H(p, q, x)

Python] rat_part

-7*x/(7*x**5 + 7*x + 7)

Python] log_part

0

Python]

The following example has both a polynomial part and a rational part:

Python] p = 441*x**7 + 780*x**6 - 2861*x**5 + 4085*x**4 + 7695*x**3 + 3713*x**2 - 43253*x
+ 24500

Python] q = 9*x**6 + 6*x**5 - 65*x**4 + 20*x**3 + 135*x**2 - 154*x + 49

Python] [poly_part, p] = int_poly_part(p, q, x)

Python] poly_part

49*x**2/2 + 54*x

Python] p

6615*x**4 + 3969*x**2 - 37338*x + 21854

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Examples 23

Python] rat_part

(-6615*x**3 + 6615*x**2 + 6762*x - 6272)/(9*x**4 - 6*x**3 - 36*x**2 + 54*x - 21)

Python] log_part

0

Python] [rat_part, log_part] = int_rat_part_H(p, q, x)

Python] rat_part

(-6615*x**3 + 6615*x**2 + 6762*x - 6272)/(9*x**4 - 6*x**3 - 36*x**2 + 54*x - 21)

Python] log_part

0

Python]

Consider now the example:

Python] p = 36*x**6 + 126*x**5 + 183*x**4 + (13807/S(6))*x**3 - 407*x**2 - (3242/S(5))*x +
3044/S(15)

Python] p

36*x**6 + 126*x**5 + 183*x**4 + 13807*x**3/6 - 407*x**2 - 3242*x/5 + 3044/15

Python] q = (x**2 + S(7)/6*x + S(1)/3)**2 * (x - S(2)/5)**3

Python] q.expand()

x**7 + 17*x**6/15 - 263*x**5/900 - 1349*x**4/2250 + 2*x**3/1125 + 124*x**2/1125 +
4*x/1125 - 8/1125

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

(158130*x**3 + 118641*x**2 - 186108*x + 42852)/(150*x**4 + 55*x**3 - 66*x**2 - 12*x +
8)

Python] log_part

(1080*x**2 + 35010*x + 53235)/(30*x**3 + 23*x**2 - 4*x - 4)

Python] [rat_part, log_part] = int_rat_part_H(p, q, x)

Python] rat_part

(158130*x**3 + 118641*x**2 - 186108*x + 42852)/(150*x**4 + 55*x**3 - 66*x**2 - 12*x +
8)

Python] log_part

(17280*x**2 + 560160*x + 851760)/(480*x**3 + 368*x**2 - 64*x - 64)

Python] int_log_part(numer(log_part) , denom(log_part), x)

37451*log(x - 2/5)/16 - 8000*log(x + 1/2) + 91125*log(x + 2/3)/16

Python] int_log_part_S(numer(log_part) , denom(log_part), x)

37451*log(x - 2/5)/16 - 8000*log(x + 1/2) + 91125*log(x + 2/3)/16

Python]

Python] p = 36

Python] q = x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

24 Section 5

(12*x + 6)/(x**2 - 1)

Python] log_part

(12*x - 12)/(x**3 - 2*x**2 - x + 2)

Python] [rat_part, log_part] = int_rat_part_H(p, q, x)

Python] rat_part

(12*x + 6)/(x**2 - 1)

Python] log_part

12/(x**2 - x - 2)

Python] int_log_part(numer(log_part) , denom(log_part), x)

4*log(x - 2) - 4*log(x + 1)

Python] int_log_part_S(numer(log_part) , denom(log_part), x)

4*log(x - 2) - 4*log(x + 1)

Python] integrate(p / q, x)

36*(2*x + 1)/(6*x**2 - 6) + 4*log(x - 2) - 4*log(x + 1)

Python]

Python] p = x

Python] q = x**2 + 2*x -3

Python] int_log_part(p, q, x)

log(x - 1)/4 + 3*log(x + 3)/4

Python] int_log_part_S(p, q, x)

log(x - 1)/4 + 3*log(x + 3)/4

Python] integrate(p /q, x)

log(x - 1)/4 + 3*log(x + 3)/4

Python]

Python] p = 4*x - 1

Python] q = (x - 1) * (x + 2)

Python] int_log_part_S(p, q, x)

log(x - 1) + 3*log(x + 2)

Python] integrate(p / q, x)

log(x - 1) + 3*log(x + 2)

Python]

Python] p = x

Python] q = (x**2 + 1) * (x**2 + 2)

Python] int_log_part(p, q, x)

log(x**2 + 1)/2 - log(x**2 + 2)/2

Python] logcombine(int_log_part(p, q, x), force=True)

log(sqrt(x**2 + 1)/sqrt(x**2 + 2))

Python] int_log_part_S(p, q, x)

log(x**2 + 1)/2 - log(x**2 + 2)/2

Examples 25

Python] integrate(p / q, x)

log(x**2 + 1)/2 - log(x**2 + 2)/2

Python]

Python] p = x

Python] q = x**2 - 1

Python] int_log_part(p, q, x)

log(x**2 - 1)/2

Python] int_log_part_S(p, q, x)

log(x**2 - 1)/2

Python] integrate(p / q, x)

log(x**2 - 1)/2

Python]

Python] p = 1

Python] q = (x - 1)**2 * (x + 4)

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

-1/(5*x - 5)

Python] log_part

-1/(5*x**2 + 15*x - 20)

Python] int_log_part(numer(log_part), denom(log_part), x)

-log(x - 1)/25 + log(x + 4)/25

Python] int_log_part_S(numer(log_part), denom(log_part), x)

-log(x - 1)/25 + log(x + 4)/25

Python] integrate(p / q, x)

-log(x - 1)/25 + log(x + 4)/25 - 1/(5*x - 5)

Python]

Python] p = 2*x + 3

Python] q = (x + 1)**2

Python] [rat_part, log_part] = int_rat_part_O(p, q, x)

Python] rat_part

-1/(x + 1)

Python] int_log_part(numer(log_part), denom(log_part), x)

2*log(x + 1)

Python] integrate(p / q, [x, 0, 1])

1/2 + 2*log(2)

Python]

Python] p = x**2 + 1

Python] q = x**2 - x

Python] integrate(p / q, x)

x - log(x) + 2*log(x - 1)

26 Section 5

Python] [poly_part, rat_part] = int_poly_part(p, q, x)

Python] poly_part

x

Python] rat_part

x + 1

Python] [rat_part, log_part] = int_rat_part_O(rat_part, q, x)

Python] rat_part

0

Python] log_part

(x + 1)/(x**2 - x)

Python] int_log_part(numer(log_part), denom(log_part), x)

-log(x) + 2*log(x - 1)

Python]

Python] p = 1

Python] q = x**2 - a**2

Python] a = Symbol('a', positive=True)

Python] with assuming(Q.real(a), Q.is_true(a != 0)):
print integrate(p / q, x)

(log(-a + x)/2 - log(a + x)/2)/a

Python] int_log_part(p, q, x)

log(-a + x)/(2*a) - log(a + x)/(2*a)

Python] with assuming(Q.real(a), Q.is_true(a != 0)):
print int_log_part_S(p, q, x)

Traceback (most recent call last):
ValueError: univariate polynomial expected

Python]

Python]

Examples 27

	1 Introduction
	1.1 Basic Notions and Definitions
	1.2 Computing the Partial Fraction Expansion
	1.2.1 Method 1: Computation of Residues by Solving a System of Linear Equations
	1.2.2 Method 2: Computation of Residues by Evaluating \(x-s_k\)⋅f\(x\) at the Poles s_k
	1.2.3 Method 3: Computation of Residues by Evaluating \(p\(x\)\)/\(q'\(x\)\) at the Poles s_k
	1.2.4 Repeated Poles

	1.3 The Road Ahead

	2 Polynomial Part of the Integral
	3 Rational Part of the Integral
	3.1 Ostrogradsky's Method of 1845 for the Rational Part
	3.2 Hermite's Method of 1872 for the Rational Part

	4 Logarithmic \(or Transcendental\) Part
	4.1 Logarithmic Part with GCD Computations in Extension Fields
	4.2 Logarithmic Part with Subresultant PRS

	5 Examples

