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Most symbolic computation involves mathematical expressions that con-
tain more than one symbol or generalized variable. In order to manipulate
these expressions, we must extend the concepts and algorithms described so
far to polynomials with several variables. This generalization is the subject of
these notes. Included is a description of coefficient domains and a recursive
representation of multivariate polynomials (Section 1), recursive polynomial
division (Section 2) and monomial-based polynomial division (Section 3).

1 Recursive Representation of Multivariate
Polynomials

A multivariate polynomial u in the set of distinct symbols {x1 , x2 , .. . , xk } is a
finite sum with (one or more) monomial terms of the form

c ·x1
n1x2

n2

 xk

nk,

where the coefficient c is in a coefficient domain K and the exponents ni are
non-negative integers. The notation K[x1, x2, . . . , xk] represents the set of
polynomials in the symbols x1 , x2 , . . . , xk with coefficients in K. For example,
Z[x, y] represents all polynomials in x and y with coefficients that are integers.

A particularly important instance when K is not a field has to do with the
recursive representation of multivariate polynomials. For example, let Q[x, y]
be the polynomials in x and y with rational number coefficients. By collecting
coefficients of powers of x , a polynomial f(x, y) is represented as

f(x, y)= f0(y)x
n+ f1(y)x

n−1+
 + fn(y),

where the coefficients fi(y) are in Q[y]. In this sense, Q[x, y] is equivalent to
K[x], where K=Q[y].
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The above discussion suggests that a fruitful way to approach the study of
polynomials in several variables is to consider polynomials in one variable K[x]
where Kmay not satisfy all of the properties of a field. But what axioms should
define K? Let us take as a prototype the recursive view of polynomials in two
variables with rational number coefficients (Q[y])[x] = K[x]. The coefficient
domain is not a field since polynomials in K=Q[y] with positive degree do not
have inverses that are polynomials. K does, however, have all the properties of
another algebraic system known as an integral domain.

Definition 1. Let K={a,b, c,	 } be a set of expressions and let a+b and a·b be
two operations defined for expressions a and b in K. The set K is an integral

domain if, it satisfies all the field axioms except that of the multiplicative
inverse. The latter is replaced by the following axiom:

IntDom: If a · b=0, then either a=0 or b =0.

A field is an integral domain, but the converse is not true. Both Z and Q[x]
are integral domains although neither one is a field.

Although an integral domain may not contain inverses, the divisibility con-
cept can still be defined.

Definition 2. Let b and c be expressions in an integral domain K.

i. An expression b� 0 is a divisor of (or divides) c if there is an expres-
sion d in K such that b·d=c. We use the notation b|c to indicate that
b is a divisor of c and b ∤ c if it does not. The expression d is called the
cofactor of b in c and is represented by cof(b, c).

ii. A common divisor of b and c is an expression d� 0 in K such that
d|b and d|c.

Definition 3. Let b, c, and d be expressions in an integral domain K.

i. An expression b is called a unit if it has a multiplicative inverse.

ii. Two expressions c� 0 and d� 0 are called associates if c=b·d, where
b is a unit.

InQ[x], the unit expressions are the non-zero polynomials of degree zero (i.e.
the rational numbers), and whenever one polynomial f is a (non- zero) rational
multiple of another polynomial g , the two are associates. In Z, the only units
are 1 and -1. At the other extreme, in a field all non-zero expressions are units,
and any two non-zero expressions are associates.
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Definition 4. Two expressions b and c in an integral domain K are relatively
prime if any common divisors of b and c is a unit.

For example, in Z the integers 3 and 5 are relatively prime because the only
common divisors are the units 1 and −1.

In the field Q, any two rational numbers are relatively prime because all
common divisors are units.

On the other hand, in the integral domain Z[x], the polynomials 2x+2
and 2x−2 are not relatively prime because 2, which is not a unit, divides both
polynomials.

Definition 5. An expression b� 0 in an integral domain K is reducible if
there are non-unit expressions c and d such that b=c·d. The expression b is
irreducible if it is not reducible.

Example 6. Consider the expression f=2x+2 as a member of the integral
domain Q[x]. In this context, f is irrreducible. However, when f is viewed as
a member of the integral domain Z[x], f is reducible with the factorization
f =2(x+1).

Definition 7. A unique factorization domain K is an integral domain
that satisfies the following axiom:

UFD: Each a� 0 in K that is not a unit has a factorization in terms of
non-unit, irrreducible expressions in K

a=a1 · a2
 ak.

The factorization is unique up to the order of the factors and associates of the
factors.

The set of integers Z is a unique factorization domain and so is the polyno-
mial domain F[x], where F is a field.

The next theorem states that the integral domain property of the coef-
ficient domain is inherited by the polynomial domain K[x].

Theorem 8. If K is an integral domain, then K[x] is also an integral domain.

By utilizing the recursive nature of multivariate polynomials, we extend the
integral domain property to multivariate polynomials.
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Theorem 9. If K is an integral domain, then K[x1,x2,	 ,xk] is also an integral
domain.

2 Recursive Polynomial Division in K[x]

Suppose f , g are polynomials with coefficients in a field. The division operation
of f by g is defined using recurrence relations, which include the field compu-
tation

lc(ri, x)

lc(g, x)
,

where lc(poly, x) is the leading coefficient of poly with respect to x . This
operation causes a problem when the coefficient domain K is not a field because
lc(g, x)−1 may not exist in K.

For f , g inK[x], polynomial division is often used to determine if g |f . If this
is the goal, one way to define the division process is to continue the iteration
as long as lc(v, x)|lc(ri, x), that is, as long as cof(lc(v, x), lc(ri, x)) exists in K.

The general division process is called recursive polynomial division

because it depends on a division process in the coefficient domain that deter-
mines if lc(g, x) divides lc(ri, x). For multivariate polynomials in K[x1,x2, 	 ,

xk], this means that division in terms of the main variable x1 depends recur-
sively on division of polynomials in K[x2,	 , xk].

Definition 10. Let f and g� 0 be polynomials in K[x]. The recursive poly-

nomial division of f by g is defined by the following sequence of quotients and
remainders:

q0 = 0

r0 = f

qi = qi−1+ cof(lc(g, x), lc(ri−1 , x))x
deg(ri−1 ,x)−deg(g,x) ,

ri = ri−1+ cof(lc(g, x), lc(ri−1 , x))x
deg(ri−1 ,x)−deg(g,x)g.

The iteration terminates when either

deg (ri, x)< deg (g, x)

or

lc(g, x) ∤ lc(ri, x).
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If the process stops after i=σ iterations, then qσ and rσ are, respectively, the
recursive quotient and recursive remainder on dividing f by g.

Example 11. Consider the polynomials f =x2y2+x and g=xy+1 in Q[x, y],
with x the main variable. On dividing f by g we obtain

f= q1 g+ r1=(xy)(xy+1)+ x(1− y)

and the division process stops after one iteration because

lc(g, x)= y ∤ (1− y)= lc(r1, x).

Notice that deg (g,x)=deg (r1, x)=1, which means that the remainder does not
satisfy the Euclidean property — which requires the degree of the remainder
to be less than the degree of the divisor.

In Sympy, recursive division is performed by specifying the coefficient
domain. So we have:

Python] from sympy import *

Python] x, y = var(’x y’)

Python] f = x**2 * y**2 + x

Python] g = x * y + 1

Python] quo( f, g, domain = QQ[y] )

x*y

Python] rem( f, g, domain = QQ[y] )

x*(-y + 1)

On the other hand, when y is the main variable, the process terminates after
two iterations with

f= q2 g+ r2=(xy− 1)(xy+1)+x+1.

Now we have 0= deg (r2 , y)<deg (g, y) =1, and so in this case the remainder
does satisfy the Euclidean property.

Python] quo( f, g, domain = QQ[x] )

x*y - 1

Python] rem( f, g, domain = QQ[x] )
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x + 1

If the division process stops because lc(g, x) ∤ lc(ri, x), then the represen-
tation f= qj g + rj may not be unique. This point is illustrated in the next
example.

Example 12. Consider f=xy+x+ y and g=xy as polynomials in Q[x, y]
with main variable x . Since

lc(g, x)= y ∤ (y+1)= lc(f , x)

the process terminates with j=0, q0=0, and r0=xy+x+y. In this case, f has
the following representations

f= q0 g+ r0 = 0 · g+(xy+x+y)

f= q0 g+ r0 = 1 · g+(x+y).

3 Monomial-Based Division in Q[x1,	 , xk]

Another approach to polynomial division is called monomial-based division.
Like recursive division, monomial-based division can determine if g |f . However,
because the process is based on the monomial structure of polynomials rather
than the recursive structure, it may produce a different quotient and remainder
when g ∤ f .

To simplify the presentation, we describe the process for the polynomial
domain Q[x1,	 , xk]. For the remainder of this section, we view polynomials in
the form

f = f1+ f2+
 + fl,

where each fi is a monomial of the form

fi= c·x1
n1x2

n2

 xk

nk.

Let us begin with a simple example in which the divisor g is a monomial.

Example 13. Consider the polynomials f , g with x as the main variable:

f =2x2 y+3x2+4xy+5x+6y+7, g= xy.
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First, doing recursive polynomial division of f by g , we notice that

lc(g, x)=y ∤2y+3= lc(f , x),

and, hence, the process terminates immediately with q0=0, r0= f . Indeed,

Python] quo(2*x**2 * y + 3*x**2 + 4*x*y + 5*x + 6*y + 7, x*y,

domain = QQ[y])

0

Python] rem(2*x**2 * y + 3*x**2 + 4*x*y + 5*x + 6*y + 7, x*y,

domain = QQ[y])

x**2*(2*y + 3) + x*(4*y + 5) + 6*y + 7

On the other hand, monomial-based division recognizes that the monomial
g=xy divides the first and third monomials in f and we obtain

f= qg+r=(2x+4)(xy)+3x2+5x+6y+7.

In Sympy to perform monomial polynomial division use the function reduced,
where the second argument can be a list of polynomials.

Python] reduced(2*x**2 * y + 3*x**2 + 4*x*y + 5*x + 6*y + 7,

[x*y])

Notice that g does not divide any of the monomials in the remainder r .

The above example leads us to the following definition — at least when the
divisor is a monomial:

Definition 14. Let f = f1 + f2 + 
 + fl be a polynomial and let g� 0 be a
monomial in K[x]. Dividing f by g gives

f= q(f , g) · g+ r(f , g)

where

Q(f , g)=
∑

16i6l,g |fi

fi

g
(1)

and

r(f , g)=
∑

16i6l,g ∤fi

fi. (2)
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The formula of the sum for the quotient, above, includes all monomials fi
from f such that g |fi, while the formula of the sum for the remainder includes
all monomials fi from f such that g ∤ fi.

3.1 Lexicographical Ordering of Monomials

To complete the definition of the new division process, we must show how it is
defined when g is a sum of monomials. The approach we use is to repeatedly
apply a process similar to that in Equations (1) and (2), but with g replaced
by the leading monomial of g which is defined by the order relation in the next
definition.

Definition 15. Let f and g be monomials in Q[x1, x2,	 , xk].

i. f is less than g in lexicographical order with respect to the list L= [x1,
x2,	 , xk ] if one of the following conditions is true:

a) deg (f , x1 )< deg (g, x1), or

b) for some j, 1< j6 k, deg (f , xi )=deg (g, xi ) for i=1, 2,	 , j−1
and deg (f , xj )< deg (g, xj).

The condition that f is less than g in lexicographical order is denoted by
f ≺ g.

ii. The monomials f and g are called equivalent monomials if they have
the same term (or variable part).1 The condition that f is equivalent to
g is represented by f ≡ g.

iii. The condition that f ≺ g or f ≡ g is denoted by f � g.

Example 16. For L= [x, y, z],

x2y3z4 ≺ x2y4z3

xy3z ≺ x2y

yz5 ≺ x

2xy ≡ 3xy

1. Term or variable part is the monomial without its numerical coefficient. The terminology

has not been standardized yet.

8 Section 3



Lexicographical order depends on the order of the symbols in the list L. In
the previous example, when the order of the symbols is changed to L=[z, y, x],
the lexicographical order of the first three examples above is reversed.

The designation of this order relation as “lexicographical” suggests that it
is similar to an “alphabetical” order. Indeed, the most significant factor in the
order relation is the main variable x1 . It is only when f and g have the same
degree in this variable that the next variable x2 is significant. If the degree of
f and g with respect to x2 are also the same, then x3 is significant and so forth.

The leading monomial of a polynomial is defined in terms of the lexi-
cographical order of its monomials.

Definition 17. Let f be in Q[x1, x2, 	 , xk], and let L=[x1, x2, 	 , xk ]. If f is
a sum of monomials, then the leading monomial is the monomial of f that
is greatest in the lexicographical order. If f is a monomial, then the leading
monomial is just f itself. The operator notation

lm(f , L)

denotes the leading monomial of f. The inclusion of the list L in this notation
emphasizes that the leading monomial is defined with respect to the order of the
symbols in L.

Example 18. If f =3x2 y+4xy2+y3 +x+1, then

lm(f , [x, y]) = 3x2 y

lm(f , [y, x]) = y3

In Sympy we have the function LM which returns the variable part of the leading
monomial and the function LT which returns the leading monomial.

Python] LM( 3*x**2 * y + 4*x*y**2 + y**3 + x + 1, [x, y] )

x**2*y

Python] LM( 3*x**2 * y + 4*x*y**2 + y**3 + x + 1, [y, x] )

y**3

Python] LT( 3*x**2 * y + 4*x*y**2 + y**3 + x + 1, [x, y] )

3*x**2*y

Python] LT( 3*x**2 * y + 4*x*y**2 + y**3 + x + 1, [y, x] )

y**3
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By contrast, in Xcas/Giac the function lcoeff does the same job as LT.

> lcoeff( 3*x**2 * y + 4*x*y**2 + y**3 + x + 1, [x, y] )

3 ·x2 · y

> lcoeff( 3*x**2 * y + 4*x*y**2 + y**3 + x + 1, [y, x] )

y3

3.2 Monomial-Based Division Algorithm

Definition 19. Let f and g� 0 be polynomials in Q[x1,x2,	 ,xk], and let L=[x1,
x2,	 , xk ]. Suppose that gl= lm(g, L), and define the iteration scheme

q0 = 0

r0 = f

and for i> 1

fi = Q(ri−1, gl)

qi = qi−1+ fi

ri = ri−1− fi g,

where the function Q is defined in Equation (1). The iteration terminates when
Q(ri , gl )=0. If i=τ is the first such index, then qτ is the monomial-based

quotient of f divided by g, and rτ is the monomial-based remainder.

Example 20. Let f =x3+3x2 y+4xy2 and g=xy+2y+3y2 , and let L=[x, y]
define the variable order. Then, we start with

q0=0, r0= f , gl= xy, gr=3y2+2y,

and after the first iteration we have

f1=Q(r0, gl)= 3x+4y, q1=3x+4y,

and

r1 = (f − f1 gl)+ (−f1 gr)

= (f − (3x2y+4xy2))+ (−9xy2− 6xy− 8y2− 12y3)

= x3− 9xy2− 6xy− 8y2− 12y3.
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The next iteration gives

f2=Q(r1, gl)=−9y− 6

and

q2=3x− 5y− 6, r2= x3+ 28y2+ 15y3+ 12y.

Since gl does not divide any monomial of r2, Q(r2, gl) = 0 and the iteration
terminates with τ = 0; the monomial-based quotient and remainder are q2, r2
above.

Indeed, performing monomial-based division with Sympy we verify that our
computations are correct:

Python] f = x**3 + 3*x**2*y + 4*x*y**2

Python] g = x*y + 2*y + 3*y**2

Python] reduced( f, [g], [x, y] )

([3*x - 5*y - 6], x**3 + 15*y**3 + 28*y**2 + 12*y)

On the other hand, recursive polynomial division terminates after σ=0 itera-
tions with qσ=0 and rσ=f .

Python] quo( f, g, domain = QQ[y] )

0

Python] rem( f, g, domain = QQ[y] )

x**3 + 3*x**2*y + 4*x*y**2

However, if the variable order is changed to [y, x], then both monomial-based
division and recursive division give the same result:

Python] reduced( f, [g], domain = QQ[x] )

([4*x/3], x**3 + y*(5*x**2/3 - 8*x/3))

Python] quo( f, g, domain = QQ[x] )

4*x/3

Python] rem( f, g, domain = QQ[x] )

x**3 + y*(5*x**2/3 - 8*x/3)
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