
A quick intro to Git and GitHub

Miguel Lázaro-Gredilla
miguel@tsc.uc3m.es

June 2014
Machine Learning Group

http://www.tsc.uc3m.es/~miguel/MLG/

miguel@tsc.uc3m.es
http://www.tsc.uc3m.es/~miguel/MLG/


Contents

Introduction

Basic Git

Branching in Git

GitHub

Hands-on practice



Introduction Basic Git Branching in Git GitHub Hands-on practice

Git

I Don’t confuse Git with GitHub
I Git is a version control tool

I GitHub provides cloud services using Git
(remote repositories, bug tracking, wiki page...)

I Git is not like Dropbox or Google Drive
I True version control, not just file history

I Need to resort to console sooner or later

I Git is not like CVS, Subversion or Perforce
I There is no need for a central (such as cloud) repository

I You can work offline most of the time

I Each local copy contains the full repository’s history

I Devised by Linus, motivated by Linux Kernel development

1/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Git

I Don’t confuse Git with GitHub
I Git is a version control tool

I GitHub provides cloud services using Git
(remote repositories, bug tracking, wiki page...)

I Git is not like Dropbox or Google Drive
I True version control, not just file history

I Need to resort to console sooner or later

I Git is not like CVS, Subversion or Perforce
I There is no need for a central (such as cloud) repository

I You can work offline most of the time

I Each local copy contains the full repository’s history

I Devised by Linus, motivated by Linux Kernel development

1/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Git

I Don’t confuse Git with GitHub
I Git is a version control tool

I GitHub provides cloud services using Git
(remote repositories, bug tracking, wiki page...)

I Git is not like Dropbox or Google Drive
I True version control, not just file history

I Need to resort to console sooner or later

I Git is not like CVS, Subversion or Perforce
I There is no need for a central (such as cloud) repository

I You can work offline most of the time

I Each local copy contains the full repository’s history

I Devised by Linus, motivated by Linux Kernel development

1/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Git: General concepts (I/II)
I Local operations (staging area == index)

I Evolution over time

2/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Git: General concepts (II/II)

I clone: Clone remote repository (and its full history) to your
computer

I stage: Place a file in the staging area

I commit: Place a file in the git directory (repository)

I push: Update remote repository using local repository

I pull: Update local repository using remote repository

I add: Start tracking a new file, or stage a modified file

I branch: An end point in the commit tree

I fork: A copy of another repository for reuse

I merge: Combine two commits

3/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Github: trending repositories

4/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Github: repository view

5/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Github pricing

6/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Set up Git and GitHub

Go to http://www.github.com

and create a user. Choose a nickname you like!

Then go to http://help.github.com, look for“Set up Git” and
download and install the native app for your platform.

In the process you should also be installing the command-line
tools. The apps aren’t that good, but keep them just in case.

You should be all set!

7/31

http://www.github.com
http://help.github.com


Contents

Introduction

Basic Git

Branching in Git

GitHub

Hands-on practice



Introduction Basic Git Branching in Git GitHub Hands-on practice

Cloning a repository

This clones a repository (and its full history) to your computer

$ git clone https://github.com/lazarox/charla.git

I It creates folder charla (your working directory)

I It creates folder charla/.git (the local repository)

I Might include text files
I charla/.gitignore

I charla/.gitattributes

I Remote server will be referred to as origin.

8/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Possible file statuses

9/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Checking the status of things

Tells you about modified files, untracked files, staged files ready for
commit, etc. Even provides suggestions about what to do next.
Very useful!

Also informs you about which branch you are at (master)

$ cd charla

$ git status

ACTION: Put a file with your name (e.g., miguel.txt) in directory
“charla” and then check the status

10/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Start tracking a file

Untracked files in the working directory can’t be staged or
committed. You can track a file using

$ git add miguel.txt

Multiple files can be added at a time (don’t forget the quotes)

$ git add ’*.txt’

$ git add folder

ACTION: Track the file you just added and check the status
QUESTION: was the previous diagram accurate?
ACTION: Modify the file that you just added and check the status
QUESTION: What if I commit now? How can we avoid that issue?

11/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Committing changes

Commit everything from the staging area to the repository (locally)

$ git commit -m ’I improved all files’

The message is compulsory! Otherwise, you’d avoid it and soon
forget that commit’s purpose

Each commit has an identifying SHA-1 hash and comment. You
can roll back to past commits.

You can stage everything that is tracked and commit in a single
step using

$ git commit -a -m ’I improved all files’

ACTION: Commit everything.

12/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Removing and moving files

Untrack a file and delete a file, or rename/move a file are
modifications

$ git rm miguel.txt

$ git mv miguel.txt newmiguel.txt

You will need to commit this changes! As any commit, they can be
undone.

If you delete or rename files on your own, Git will notice and you’ll
still have to stage and commit

ACTION: Delete the file you created, check state, commit

13/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Browsing existing commits

You can see the list of previous commits with

$ git log

There are many options to filter commits, compare them, see what
was added or removed, etc.

http://git-scm.com/book/en/

Git-Basics-Viewing-the-Commit-History

ACTION: Browse your current commits

14/31

http://git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History


Introduction Basic Git Branching in Git GitHub Hands-on practice

Rolling back a previous commit

You can destructively roll back to a previous commit (as if
posterior commits never happened) with

git reset --hard <HASH> (to move to that commit)
git reset --hard master^ (to move one step back in master)

Or you can move to a previous commit and play around without
destroying anything

git checkout <HASH> (to move to that commit)
git checkout master^^ (to move two steps back in master)

15/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Working with remotes (such as GitHub)
You can download and merge from the remote repository you
cloned from

$ git pull origin

Or upload your local repository to the remote repository you
cloned from

$ git push origin master

This will fail if the repository is ahead of you. Pull, check
everything is fine, then push. You can force it with
$ git push --force, but that destroys the remote! Never do
that!

To get info about the remote: $ git remote show origin

ACTION: Push your changes. Try an actual merge with collisions!

16/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Browsing current changes

Differences between your working directory and staging area

$ git diff

Differences between your staging area and your repository

$ git diff --staged

17/31



Contents

Introduction

Basic Git

Branching in Git

GitHub

Hands-on practice



Introduction Basic Git Branching in Git GitHub Hands-on practice

Branching

I Each commit has a pointer to its parent(s) commits.

I Each branch is a pointer to a concrete commit.

I The HEAD is a pointer to the current branch.

I When create a new commit, the current branch moves forward
to point to it

18/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Several commits

19/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Creating a new branch

$ git branch testing

The current branch is still the old one
Use $ git branch to list existing branches

20/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Moving to a different branch

$ git checkout testing

Short-hand for the previous steps: $ git checkout -b testing

You could also checkout commits, and then provide a branch name
Always commit before leaving the current branch!

21/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Bifurcations may appear (I/II)

If you now make a new commit while on branch testing...

22/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Basic merge

Given this structure

you can merge two commits using
$ git checkout master

$ git merge iss53

23/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Deleting branches

After the previous merge, we get

since iss53 is no longer needed, we can delete it
$ git branch -d iss53

24/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Solving merge conflicts

In case of conflict, no commit occurs. Instead, the working
directory has conflicting files like this

<<<<<<< HEAD

<div id="footer">contact :

email.support@github.com</div>

=======

<div id="footer">

please contact us at support@github.com

</div>

>>>>>>> iss53

Conflicting files are shown on $ git status

To solve conflicts, fix each file and stage it

25/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Sample workflow

26/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Remote repositories
The remote repository and its local snapshot may diverge

Option 1: Pull, solve any conflicts, and then push
Option 2: Use another branch, push it, and issue a pull request

27/31



Contents

Introduction

Basic Git

Branching in Git

GitHub

Hands-on practice



Introduction Basic Git Branching in Git GitHub Hands-on practice

Using “Issues”

28/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Pull requests

29/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Progress tracking towards milestones

Other Features: labels, cross-referencing, mark-down, per-line
comments in commits, mentions, gists, etc.

30/31



Contents

Introduction

Basic Git

Branching in Git

GitHub

Hands-on practice



Introduction Basic Git Branching in Git GitHub Hands-on practice

Exercise
1. Make sure your local repo is up-to-date (i.e, pull)

2. Don’t interact again with the server unless you are told to

3. Make a branch called myfixName (use your own name) at the
current commit and switch to it

4. Go to folder fibos and fix only the file with your name on it

5. There is a bug that requires your immediate attention! Switch
to branch master and pull new files from server

6. Go to folder factorials and fix only the file with your name

7. Push corrections in master to server

8. Switch to myfixName and finish corrections in folder fibos

9. Push that branch to GitHub and issue a Pull Request to get
your branch merged

31/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Exercise
1. Make sure your local repo is up-to-date (i.e, pull)

2. Don’t interact again with the server unless you are told to

3. Make a branch called myfixName (use your own name) at the
current commit and switch to it

4. Go to folder fibos and fix only the file with your name on it

5. There is a bug that requires your immediate attention! Switch
to branch master and pull new files from server

6. Go to folder factorials and fix only the file with your name

7. Push corrections in master to server

8. Switch to myfixName and finish corrections in folder fibos

9. Push that branch to GitHub and issue a Pull Request to get
your branch merged

31/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Exercise
1. Make sure your local repo is up-to-date (i.e, pull)

2. Don’t interact again with the server unless you are told to

3. Make a branch called myfixName (use your own name) at the
current commit and switch to it

4. Go to folder fibos and fix only the file with your name on it

5. There is a bug that requires your immediate attention! Switch
to branch master and pull new files from server

6. Go to folder factorials and fix only the file with your name

7. Push corrections in master to server

8. Switch to myfixName and finish corrections in folder fibos

9. Push that branch to GitHub and issue a Pull Request to get
your branch merged

31/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Exercise
1. Make sure your local repo is up-to-date (i.e, pull)

2. Don’t interact again with the server unless you are told to

3. Make a branch called myfixName (use your own name) at the
current commit and switch to it

4. Go to folder fibos and fix only the file with your name on it

5. There is a bug that requires your immediate attention! Switch
to branch master and pull new files from server

6. Go to folder factorials and fix only the file with your name

7. Push corrections in master to server

8. Switch to myfixName and finish corrections in folder fibos

9. Push that branch to GitHub and issue a Pull Request to get
your branch merged

31/31



Introduction Basic Git Branching in Git GitHub Hands-on practice

Exercise
1. Make sure your local repo is up-to-date (i.e, pull)

2. Don’t interact again with the server unless you are told to

3. Make a branch called myfixName (use your own name) at the
current commit and switch to it

4. Go to folder fibos and fix only the file with your name on it

5. There is a bug that requires your immediate attention! Switch
to branch master and pull new files from server

6. Go to folder factorials and fix only the file with your name

7. Push corrections in master to server

8. Switch to myfixName and finish corrections in folder fibos

9. Push that branch to GitHub and issue a Pull Request to get
your branch merged

31/31


	Introduction
	Basic Git
	Branching in Git
	GitHub
	Hands-on practice

