About me Blog Talks
INIRUVITLWA L. Jlyliauwl

Resultants in SymPy

Jun 5, 2018

| have recently been doing some work related to systems of polynomial equations.
This work has lead me to study several academics papers on resultant theory. In
this blog post | aim to give an introduction to resultant theory and a demonstration
of how we can use the Python package SymPy to calculate the resultant of
systems. | will end the blog post by describing the particular contribution I've
recently made to SymPy.

To start of let us familiarise ourselves with some mathematical definitions and | am
going to use SymPy to demonstrate several examples.

>>> import sympy as sym

Initially what is polynomial? A polynomial is an expression consisting of variables
and coefficients. Using the following code we can define the polynomials f and g
which are depended on a variable .

>>> x = sym.symbols('x")
X ** 2 - 5 % x + 6
>>> g = x ** 2 - 3 * x + 2

>>> f

Now a system of polynomial equations is a set of simultaneous equations. For
example, the following two expressions compose a system of two polynomials
where both must equal 0.

f()

0
g(z) =0

We are interested in the values of x for which both equations f and g
simultaneously fall to zero. More superficially we are interested if values for which
all polynomials are nullified do exist! Though there are other methods for


https://nikoleta-v3.github.io/
http://www.sympy.org/en/index.html
http://www.sympy.org/en/index.html
https://nikoleta-v3.github.io/about-me
https://nikoleta-v3.github.io/blog/
https://nikoleta-v3.github.io/talks

addressing such problem here we consider the resultant.

The resultant of two polynomials is a polynomial expression of their coefficients,
which is equal to zero if and only if the polynomials have a common root.

Several resultant formulations exist within the literature. One of the most common
ones is Sylvester’s resultant which is defined as the determinant of Sylvester’s
matrix. Sylvester’s formulation is implemented within SymPy (docs) and it can
easily be calculated using a few lines of code.

>>> from sympy.polys import subresultants qqgq zz
>>> matrix = subresultants qq zz.sylvester(f, g, Xx)
>>> matrix

Matrix([

[r, -5, 6, 01,

(o, 1, -5, 61,

L, -3, 2, 01,

[0, 1, =3, 211)

By calculating the determinant of Sylvester’s resultant we know that the system has
a common root. That is because the determinant is equal to 0. The common root is
for x = 2 which is trivial if we were to factorise f and g.

>>> matrix.det()
0

>>> f.factor()

(X = 3)*(x - 2)
>>> g.factor()
(X = 2)*(x = 1)

The resultant can do more than just assure us that systems do have roots. For
example when we have a system of 2 polynomial equations in two variables we can
solve for one variable where the second one is kept as a coefficient. This actually
allow us to find the roots of the system. That is also why the resultant is often
refereed to as the eliminator.

Let’s consider another example where now f and g are also depended on y.

>>> y = sym.symbols('y")

>>> f

X ** 2 + x *y+ 2 *x+vy -1
>>> g =X ** 2 + 3 * X =y ** 2 + 2 *xy -1


http://mathworld.wolfram.com/SylvesterMatrix.html
http://docs.sympy.org/latest/modules/polys/internals.html?highlight=sylvester

>> matrix = subresultants qq zz.sylvester(f, g, vy)

>> matrix

Matrix([

[x + 1, x**¥2 + 2*x - 1, 01,
[ 0, X+ 1, x**2 + 2*x - 1],
[ -1, 2, X*¥*2 + 3*x - 111)
>>> matrix.det().factor()

-X*(x = 1)*(x + 3)

What we see is that in order for the system to have a common root, * must be
€ {—3,0,1}. Now by substituting these values of x, each at a time, in f and g and
repeat the process and find roots for y.

But what if we had a more generic system? Lets say a system of m polynomials in
n variables. Sylvester’s formulation would not be able to be applied to such
systems. For such systems we use multivariate resultants.

A number of multivariate resultants can be found in the literature. An example of a
multivariate resultant is Dixon’s resultant. Let us consider our final example with a
3 polynomial system dependent on x and y.

>>> from sympy.polys.multivariate resultants import DixonResultant
>>> p =x + vy

>>> g = x ** 2 + y **% 3

>>> h = x ** 2 + y

>>> matrix = DixonResultant(variables=[x, y], polynomials=[p, q, h])
>>> matrix.det()

0

Dixon’s resultant, the determinant of the matrix, is equal to zero. This indicates that
our system has indeed a common root.

Multivariate resultants have many advantages. It allow us to know if a large system
has roots but moreover there are several ways the roots can be extract, but we will
not cover those, however this great paper does Comparison of various

multivariate resultant formulations.

Multivariate resultants were not implemented within SymPy until recently. | am very
happy to say that Dixon’s and Macaulay’s resultant have been my first contribution

to the library. Sympy is a great project that continuously helps with me with my


https://pdfs.semanticscholar.org/074d/652f97d07a2d5150764c2f448a6d98d3ab3b.pdf
https://dl.acm.org/citation.cfm?id=220370
https://projecteuclid.org/euclid.chmm/1263317746

research and | am thrilled to have contributed to the project!

Contact me

) Nikoleta-v3
¥ NikoletaGlyn
GlynatsiNE @cardiff.ac.uk



https://github.com/Nikoleta-v3
https://twitter.com/NikoletaGlyn
mailto:GlynatsiNE@cardiff.ac.uk

