
Elimination with the Dixon Resultant
A fast algorithm implemented in Mathematica provides
one-step elimination of a block of unknowns from a
system of polynomial equations.
by George Nakos and Robert M. Williams
We implement an algorithm of Kapur, Saxena and Yang that computes the Dixon resultant and its generaliza-
tion by these authors. The Dixon resultant, can be used to eliminate a number of unknowns from a system
of polynomial equations in one step. To the Mathematica user this means code that complements and
greatly enhances the command Eliminate. Our program also improves the command Resultant,
which implements the Sylvester resultant. This is up to constant factor(s) a special case of the Dixon resul-
tant. The Dixon resultant has two advantages over the Sylvester resultant: 1) The end matrix has smaller
size; hence, it is often easier to row reduce it or compute its determinant. 2) A whole block of variables can
be eliminated in one calculation, instead of the successive eliminations. In the process we also offer a
symbolic Gauss elimination (without scaling) that may be of independent interest.

1. Introduction

From algebraic geometry to computer graphics there is a substantial need for efficient solutions of systems
of polynomial equations. The theory of resultants was developed and used during the nineteenth and early
twentieth century [Cayley 1865], [Dixon 1908], [Macaulay 1916], [Macaulay 1994] to solve such systems.
Recently, there has been renewed interest in the subject because fast computers and the availability of
symbolic mathematical packages have made old and new problems much more tractable.

We are interested in the Dixon resultant [Dixon 1908] and a recent generalization of it by Kapur, Saxena
and Yang [Kapur, Saxena, and Yang 1994]. References on resultants and related algebra include [van der
Waerden 1950], [Salmon 1964], [Mostowski and Stark 1964], [Gantmacher 1959], [Chionh 1990], [Canny
1990], [Gelfand, Kapranov, and Zelevinsky 1994]. The Dixon resultant is discussed in [Dixon 1908],
[Kapur and Lakshman 1992], [Kapur, Saxena, and Yang 1994], [Kapur and Saxena], [Chionh 1990]. An
excellent treatment of computational aspects of polynomials can be found in [Knuth 1969].

The material of this manuscript is organized as follows: In Section 2 we introduce the classical Dixon
resultant and discuss its merits and limitations. In Section 3 we outline the work of Kapur, Saxena and
Yang. In Sections 4 and 5 we compare our main function, DixonResultant, with Mathematica's Elimi!
nate and Resultant and point out strengths and weaknesses. It seems that for small easily factorable
polynomials Eliminate is at least as good as DixonResultant. However, if the polynomials are of
higher degree, or cannot be factored, or have constant terms, Eliminate is very slow or fails, while
DixonResultant may yield an answer in seconds. On the negative side, the computation of the Dixon
resultant can introduce extraneous factors that are avoided by slower methods. (Gröbner bases, for exam-
ple.) Section 6 briefly shows how to use the part of our code that performs symbolic Gauss elimination.
Finally, Section 7 follows with a description of our Mathematica program that computes the Dixon resul-
tant. The program is based on the main algorithm of [Kapur, Saxena, and Yang 1994] and is distributed
with the electronic subscriptions as Dixon.m.

From algebraic geometry to computer graphics there is a substantial need for efficient solutions of systems
of polynomial equations. The theory of resultants was developed and used during the nineteenth and early
twentieth century [Cayley 1865], [Dixon 1908], [Macaulay 1916], [Macaulay 1994] to solve such systems.
Recently, there has been renewed interest in the subject because fast computers and the availability of
symbolic mathematical packages have made old and new problems much more tractable.

We are interested in the Dixon resultant [Dixon 1908] and a recent generalization of it by Kapur, Saxena
and Yang [Kapur, Saxena, and Yang 1994]. References on resultants and related algebra include [van der
Waerden 1950], [Salmon 1964], [Mostowski and Stark 1964], [Gantmacher 1959], [Chionh 1990], [Canny
1990], [Gelfand, Kapranov, and Zelevinsky 1994]. The Dixon resultant is discussed in [Dixon 1908],
[Kapur and Lakshman 1992], [Kapur, Saxena, and Yang 1994], [Kapur and Saxena], [Chionh 1990]. An
excellent treatment of computational aspects of polynomials can be found in [Knuth 1969].

The material of this manuscript is organized as follows: In Section 2 we introduce the classical Dixon
resultant and discuss its merits and limitations. In Section 3 we outline the work of Kapur, Saxena and
Yang. In Sections 4 and 5 we compare our main function, DixonResultant, with Mathematica's Elimi!
nate and Resultant and point out strengths and weaknesses. It seems that for small easily factorable
polynomials Eliminate is at least as good as DixonResultant. However, if the polynomials are of
higher degree, or cannot be factored, or have constant terms, Eliminate is very slow or fails, while
DixonResultant may yield an answer in seconds. On the negative side, the computation of the Dixon
resultant can introduce extraneous factors that are avoided by slower methods. (Gröbner bases, for exam-
ple.) Section 6 briefly shows how to use the part of our code that performs symbolic Gauss elimination.
Finally, Section 7 follows with a description of our Mathematica program that computes the Dixon resul-
tant. The program is based on the main algorithm of [Kapur, Saxena, and Yang 1994] and is distributed
with the electronic subscriptions as Dixon.m.

2. The Classical Dixon Resultant

■ Cayley's Formulation of Bezout's Method
First we recall Cayley's formulation [Cayley 1865] of Bezout's method for solving a system of two polyno-
mial equations. It seems, however, (as professor Kapur points out) that the method is actually due to Euler!

Let f (x) and g(x) be polynomials in x, let d e g = max(degree(f), degree(g)), and let a be an auxiliary
variable. The quantity

δ(x, a) =
1

x - a

f (x) g(x)
f (a) g(a)

is a symmetric polynomial in x and a of degree d e g- 1 which we call the Dixon polynomial of f and g.
Cayley (and Bezout in different notation) observed that: Every common zero of f and g is a zero of δ(x, a)
for all values of a. Hence, at a common zero, each coefficient of ai in δ(x, a) is ≡ 0. In matrix notation,

M 

1
x
⋮

xd e g-1

 = 

0
0
⋮

0



where, the columns of the d e g⨯d e g matrix M consist of the coefficients of the ai's. This yields a homoge-
neous system in new variables v1, v2, … vd e g corresponding to x0, x1, …, xd e g-1 and equations corre-

sponding to the coefficients of ai.

M 

v1
v2

⋮
vd e g

 = 

0
0
⋮

0



System (1) has non–trivial solutions if and only if its determinant D is zero. D is called the Dixon resultant
of f and g and M is the Dixon matrix. We conclude that:

The vanishing of the Dixon resultant D is a necessary condition for the existence of a common zero of f and
g.

Cayley's formulation of Bezout's method is illustrated in Examples 1–4. We compute M and D for the
given f and g and comment on the relation between the vanishing of D and the common zeros of the
system f = 0, g = 0. In each case we factor f and g for easy checking.

Example 1: [Numeric Coefficients – Common Solution]
f (x) = x3 - 2 x2 - 11 x + 12 = (x - 1) (x + 3) (x - 4)

2 Dixon_Nakos.nb

g(x) = x2 + 3 x - 4 = (x + 4) (x - 1)

Solution: The Dixon polynomial is

δ = 1
x-a

x3 - 2 x2 - 11 x + 12 x2 + 3 x - 4
a3 - 2 a2 - 11 a + 12 a2 + 3 a - 4

=

x2 a2 + 3 x2 a + x a + 3 (x a)2 - 4 a - 4 a2 - 4 x2 - 4 x + 8

Equating the coefficients of the powers of a to zero yields,
8 - 4 x - 4 x2 = 0
-4 + x + 3 x2 = 0
-4 + 3 x + x2 = 0

Therefore,

M = 
8 -4 -4

-4 1 3
-4 3 1

 and D =
8 -4 -4

-4 1 3
-4 3 1

= 0

Since the system has a common root (x = 1) the resultant should be 0. (It is.) However, since D vanishes
identically, we get no information on how to compute this common root.

Example 2: [Numeric Coefficients – No Common Solution]
f (x) = x3 - 2 x2 - 11 x + 12 = (x - 1) (x + 3) (x - 4)

g(x) = x2 + 5 x + 4 = (x + 4) (x + 1)

Solution: A similar calculation yields

D =

-104 -20 4
-20 5 5

4 5 1
= 800

Since D is nonzero, there are no common zeros.

Let us examine now two cases with parametric coefficients.

Example 3: [Parametric Coefficients – Full Root Recovery]
f (x) = x2 A + 3 x2 - x A - A3 - 2 A2 - 3 x + 3 A

= (x + A - 1) (A + 3) (x - A)
g(x) = x2 + 4 x A + 3 A2 = (x + 3 A) (x + A)

Solution: The Dixon matrix is

M = 
-21 A2 + 5 A3 + 4 A4 -3 A + 11 A2 + 4 A3

-3 A + 11 A2 + 4 A3 3 + 13 A + 4 A2 

Its determinant is the resultant D
D = -8 A2(2 A + 1) (A + 3)2

Setting D = 0 and solving for A yields (with multiplicities)

A = -3, -3,
-1

2
, 0, 0

Dixon_Nakos.nb 3

On the other hand, the true solution of f (x, A) = 0, g(x, A) = 0 over Q is

(x, A) = (9, -3), (3, -3), (0, 0),
3

2
,
-1

2

Note that all the values of A of the solutions yielded the zeros of D. However, A = 0 has multiplicity 2 in
D = 0, while there is only one solution of the system with A = 0.

In this example all the zeros of the system were detected by the zeros of the Dixon resultant.

Example 4: [Parametric Coefficients – No Information]
f (x) = x2 A - (x A)2 + 3 x2 - 4 x A + A2 - 3 x + 3 A

= (A + 3) (x - 1) (x - A)
g(x) = x2 + x A - x - A = (x - 1) (x + A)

Solution: The Dixon matrix is

M = 
6 A + 2 A2 -6 A - 2 A2

-6 A - 2 A2 6 A + 2 A2 

and the determinant vanishes identically.
D ≡ 0

The true solution set of f (x, A) = 0, g(x, A) = 0 over Q is
(x, A) = (3, -3), (1, A), (0, 0)

This time, the vanishing of D yielded no information on the common roots.

Dixon's Generalization of the Cayley–Bezout Method

Dixon generalized Cayley's approach to Bezout's method to systems of three polynomial equations in two
unknowns.

f (x, y) = 0
g(x, y) = 0
h(x, y) = 0

δ is now defined by

δ (x, y, a, b) =
1

(x - a) (y - b)

f (x, y) g(x, y) h(x, y)
f (a, y) g(a, y) h(a, y)
f (a, b) g(a, b) h(a, b)

for auxiliary variables a and b. One gets a homogeneous linear system as before by setting the power
products ai bj equal to zero. The corresponding determinant of the coefficient matrix is the Dixon resultant
D.

Dixon proved that for three generic 2 degree polynomials, the vanishing of D is a necessary condition for
the existence of a common zero. Furthermore, D is not identically zero.

Dixon's method and proofs easily generalize to a system of n+ 1 generic ndegree polynomials in n
unknowns.

Recall, that a polynomial is generic if all its coefficients are independent parameters, unrelated to each
other. A polynomial in n variables is ndegree if all powers to the maximum of each variable appear in it.
(See [Kapur, Saxena, and Young 1994] for more details.)

n+ 1 polynomials in n variables, say, pj(x1, …, xn), j = 1, …, n+ 1, are generic ndegree if there are n
integers k1, …, kn such that

4 Dixon_Nakos.nb

for auxiliary variables a and b. One gets a homogeneous linear system as before by setting the power
products ai bj equal to zero. The corresponding determinant of the coefficient matrix is the Dixon resultant
D.

Dixon proved that for three generic 2 degree polynomials, the vanishing of D is a necessary condition for
the existence of a common zero. Furthermore, D is not identically zero.

Dixon's method and proofs easily generalize to a system of n+ 1 generic ndegree polynomials in n
unknowns.

Recall, that a polynomial is generic if all its coefficients are independent parameters, unrelated to each
other. A polynomial in n variables is ndegree if all powers to the maximum of each variable appear in it.
(See [Kapur, Saxena, and Young 1994] for more details.)

n+ 1 polynomials in n variables, say, pj(x1, …, xn), j = 1, …, n+ 1, are generic ndegree if there are n
integers k1, …, kn such that

pj =i1=0
k

1
…in=0

k

n
aj,i1,…,in x1

i
1 … xn

i
n , 1 ≤ j ≤ n + 1

where the a's are distinct indeterminants.

For example, the three polynomials below are generic of n degree(2, 1),
p1 = a0 + a1 x + a2 y + a3 x y + a4 x2 + a5 x2 y
p2 = b0 + b1 x + b2 y + b3 x y + b4 x2 + b5 x2 y
p3 = c0 + c1 x + c2 y + c3 x y + c4 x2 + c5 x2 y

while, the following three polynomials are not generic ndegree,
q1 = 3 x + (a x)2 + x2 y

q2 = y + x y - (a x)2

q3 = b + c1 x + c2 y

In q1 the coefficient 3 is not an indeterminant (hence, q1 is non–generic) and the coefficient of x0 y0 is
missing (and not ndegree).

Dixon's method applies to polynomials with symbolic variables, which allows for simultaneous elimination
of a block of unknowns by only one calculation. This feature, along with the relatively small size of the
resulting determinants (compared with other resultant methods) makes the method very attractive.

Unfortunately, if the polynomials are not generic and ndegree, things can go wrong.

In the following examples we illustrate Dixon's method and its limitations on polynomials that are not
necessarily generic or ndegree.

Example 5:
f (x) = x y + 3 x - 3 y - 9 = (x - 3) (y + 3)
g(x) = x y - 3 x + 3 y - 9 = (x + 3) (y - 3)
h(x) = x y + 2 x - 2 y - 4 = (x - 2) (y + 2)

Solution: The Dixon polynomial is 30 y+ 30 a and the Dixon matrix M is given by
x0 y0 x0 y1

a0 b0

a1 b0 
0 30

30 0 

The Dixon resultant D = det(M) = -900 of M is non–zero. So, we expect no solutions (which is true).

Example 6:

Dixon_Nakos.nb 5

The Dixon resultant D = det(M) = -900 of M is non–zero. So, we expect no solutions (which is true).

Example 6:
f (x) = x y + 3 x - y2 - 3 y = (x - y) (y + 3)
g(x) = x2 + 4 x y + 3 y2 = (x + 3 y) (x + y)

h(x) = x2 - x y - 2 y2 = (x - 2 y) (x + y)

Solution: This time the Dixon matrix M is
x0 y0 x0 y1 x0 y2 x1 y0 x1 y1 x1 y2

a0 b0

a0 b1

a1 b0

a1 b1

a2 b0

a2 b1



0 0 0 0 0 0
0 0 15 0 15 0
0 0 -15 0 -15 0
0 15 0 -15 -10 0
0 15 10 -15 0 0
0 0 0 0 0 0



Its determinant is the resultant D, which is identically zero:
D ≡ 0

This situation yields no information on the common solution.

On the other hand, the system has common solutions, namely,
(x, y) = (0, 0), (3, -3)

Note: We may reduce the size of the Dixon matrix by removing the zero rows and columns, as done in
[Kapur, Saxena, and Yang 1994]. This in general reduces the size of the matrix in case of sparse polynomi-
als or sparse Dixon polynomial. In this case we could write,

M = 

0 15 0 15
0 -15 0 -15

15 0 -15 -10
15 10 -15 0



(Note that the determinant is still zero, here.) This, however, may cause some temporary problems that will
be fixed in Section 3.

From now on we drop the zero columns and rows from the Dixon matrix and still call the resulting matrix
Dixon matrix.

Example 7:
f (x) = y x - 3 y = (x - 3) y
g(x) = y x - 3 x = x(y - 3)
h(x) = y x - 2 y = (x - 2) y

Solution: The Dixon polynomial is 3 y a. The original Dixon matrix M = 
0 0
0 3

 reduces to the new one,

[3]:
x0 y1

a1 b0 [3]

The determinant of the new Dixon matrix is non–zero, but this doesn't mean that the system has no solution!
(It has the trivial solution.)

In Example 7 we saw that the vanishing of the determinant of the new Dixon matrix is not even a necessary
condition for the existence of solutions of the system. The determinant of the original Dixon matrix is zero,
as expected.

Example 8:

6 Dixon_Nakos.nb

The determinant of the new Dixon matrix is non–zero, but this doesn't mean that the system has no solution!
(It has the trivial solution.)

In Example 7 we saw that the vanishing of the determinant of the new Dixon matrix is not even a necessary
condition for the existence of solutions of the system. The determinant of the original Dixon matrix is zero,
as expected.

Example 8:
f = x y + x A + x - A2 - A + y2 + y

= y + A + 1 - A + x + y
g = x2 + x A - x + x y + y A - y

= x + y x - 1 + A
h = x2 + x y + 2 x - x A - y A - 2 A

= x + y + 2 x - A

Solution: The Dixon matrix M is given by
x0 y0 x0 y1 x0 y2 x1 y0 x1 y1

a0 b0

a0 b1

a1 b0

a1 b1

a2 b0



-2 A + 2 A2 A + 2 A3 + A2 2 A A + 2 A3 + A2 2 A
-2 A + 2 A2 -2 + 4 A 2 A - 1 2 A 2 A - 1

2 A2 5 A - 2 A2 - 4 -3 + 2 A -2 + 3 A - 2 A2 -3 + 2 A
2 A 2 A - 1 0 -3 + 2 A 0
2 A 2 A - 1 0 -3 + 2 A 0



Computation of the determinant yields zero. Hence, D = det(M) ≡ 0.

Actually, the system f (x, y, A) = 0, h(x, y, A) = 0, g(x, y, A) = 0, has several solutions over Q, namely,

(x, y, A) = (0, -2, 1), (3, -5, -2), (0, 0, 0),  1
2

, -3
2

, 1
2
,  1

2
, 0, 1

2


We see that in this case the resultant is 0 as expected but since it is identically zero it yields no information
on the solutions of the system.

Example 9:
f = (a x)2 - x y a + (c - 2 a) x + a y + 3 c - 3

g = 2 a2 x2 - 2 a2 x y - (y a)2 - a3

h = 8 x a - 4 a2

Solution: The Dixon matrix after removing the zero second row is

M = 
-24 a3 + 4 a4 c + 24 a3 c - 16 a5 -12 a5 12 a5

48 a3 c - 48 a3 + 8 a4 c + 4 a5 24 a4 -24 a4 

M this time is not even square. So the determinant is undefined.

Possible Problems with Dixon's Method

Dixon's method applies only to generic ndegree polynomials. If this condition fails then one can face the
following problems:
◼ 1. The Dixon matrix may be singular (Examples 6 and 8).

◼ 2. After we remove the zero rows and columns the vanishing of the determinant of the Dixon matrix
may not give a necessary condition for the existence of a common zero (Example 7).

Dixon_Nakos.nb 7

◼ 3. After we remove the zero rows and columns the Dixon matrix may not even be square. Hence, its
determinant cannot be defined (Example 9).

3. The Kapur–Saxena–Yang Approach

Kapur, Saxena and Yang addressed all three problems successfully, provided a certain precondition holds.
Let us describe their main theorem and algorithm.

Suppose we have a system of n+ 1 polynomial equations in n variables such that the coefficients of the
polynomials are themselves polynomials in a finite set of parameters. Let M be the Dixon matrix obtained
as before.

Let M′ be an echelon form matrix obtained from M by using elementary row operations except for scaling
of rows. (Such a reduction is always possible.) Let D be the product of all pivots of M′.

The Precondition: Assume that the column that corresponds to the monomial 1 = x1
0 x2

0 … of the Dixon
matrix is not a linear combination of the remaining ones. (In our notation this is the first column of the
Dixon matrix.)

Theorem 10:

[Kapur–Saxena–Yang] If the precondition is true, then D = 0 is a necessary condition for the existence of
common zeros.

This theorem yields a simple algorithm for obtaining the necessary condition D = 0, which we call the
Kapur–Saxena–Yang Dixon resultant.

Algorithm (Computation of the Kapur–Saxena–Yang Dixon resultant)

Input: A set of polynomials, with numeric or parametric coefficients.

◼ 1. Compute the Dixon matrix M. If the precondition holds continue.

◼ 2. Row reduce M without scaling to row echelon form M′.

◼ 3. Compute the product D of the pivots of M′.

Output: D is the Kapur–Saxena–Yang Dixon resultant. Its vanishing is a necessary condition for a solution
of the given system.

Checking for the Validity of the Precondition: Let M be the Dixon matrix and let m1, m2, …, ms, be
its columns. Also let w = (w1, …, ws)T be a solution of the system

M w = 0 ⇔ w1 m1 + w2 m2 +⋯ ws ms = 0

8 Dixon_Nakos.nb

Clearly, m1 is not a linear combination of m2, …, ms if and only if
w1 = 0

So the precondition is equivalent to the validity of (2). This is, usually, a simple test in practice. For exam-
ple, for numerical entries the reduced row echelon form of M should contain a first row of the form
[1 0× 0 ⋯ 0].

Let us now rework Examples 3, 4, 8, 9 by computing the Kapur–Saxena–Yang Dixon resultant, D.

Example 11:

Redo Example 3.

Solution: Since the first column of the Dixon matrix is not a scalar multiple of the second, the precondition
of the Theorem applies. Hence, we may continue by reducing without scaling to get


-21 A2 + 5 A3 + 4 A4 -3 A + 11 A2 + 4 A3

0
-8 3+7 A+2 A2

-7+4 A



Factoring the product of pivots yields, D = -8 A2 (3+ A)2 (1+ 2 A). Setting D = 0, is a necessary condi-
tion for the existence of a common zero. We solve for A to get

A = -3, -3,
-1

2
, 0, 0

the same answer as before.

In our next example the precondition fails, so the theorem does not apply. However, if we row reduce
anyway we get the A–values of some solutions of the system!

Example 12:

Redo Example 4.

Solution: Since the first column of the Dixon matrix is a scalar multiple of the second the precondition fails.
So the Theorem does not apply. If we reduce anyway, we get

 6 A + 2 A2 -6 A - 2 A2

0 0


and the pivot 2 A2 + 6 A = 2 A(A+ 3) yields A = 0, -3.

The true solution of the system is
(x, A) = (3, -3), (0, 0), (1, A)

So in this case by reducing we got the A–values for all but one solution (!). Only (1, A) was not obtained
from the pivot this time.

Example 13:

Redo Example 8.

Solution: First we show that the precondition of the Theorem holds by proving that the first column of the
Dixon matrix M is not a linear combination of the remaining

ones. Indeed, if we substitute A = -1 in M and row reduce, we get:

Dixon_Nakos.nb 9

So in this case by reducing we got the A–values for all but one solution (!). Only (1, A) was not obtained
from the pivot this time.

Example 13:

Redo Example 8.

Solution: First we show that the precondition of the Theorem holds by proving that the first column of the
Dixon matrix M is not a linear combination of the remaining

ones. Indeed, if we substitute A = -1 in M and row reduce, we get:

M{A=-1} = 

4 -2 -2 -2 -2
4 -6 -3 -2 -3
2 -11 -5 -7 -5

-2 -3 0 -5 0
-2 -3 0 -5 0



1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0



So we see that the system M{A=-1} w = 0 has w1 = 0 hence, the first column of M{A=-1} (hence, of M) is
not a linear combination of the remaining ones.

We conclude that the precondition holds and the Theorem applies.

Row reduction of the Dixon matrix yields the Dixon–Kapur–Saxena–Yang resultant as a product of pivots:
D = 8 (-1 + 2 A)2 A(1 - A) (A + 2)

Setting D = 0, we get

A = -2, 0, 1,
1

2
,

1

2

The solutions of the system f (x, y, A) = 0, h(x, y, A) = 0, g(x, y, A) = 0 are:

(x, y, A) = (0, -2, 1), (3, -5, -2), (0, 0, 0),  1
2

, -3
2

, 1
2
,  1

2
, 0, 1

2


This time all A–values of the solutions were detected by D. Recall that the classical Dixon resultant in this
case was identically zero and had yielded no information on the solutions.

Example 14:

Compute D for Example 9.

Solution: Recall that the Dixon matrix is rectangular. Since the first column is not a linear combination in
the remaining, the precondition holds and the Theorem applies. The product of pivots after reduction yields
the Dixon (D–K–S–Y) resultant:

D = 48 a3 - 12 a + 14 a c + 2 (c a)2 - 12 - 8 a2 + 12 c a7

Let us study one last example where the precondition fails.

Example 15:
f = x y z

g = x2 - z2

h = x + y + z

Solution: Let us eliminate x and y. The Dixon polynomial (with auxiliary variables a and b) is,
(y z)3 - (a z)3 - a2 z x - a2 z y - (a z)2 x - a2 z2

The Dixon matrix,

10 Dixon_Nakos.nb

M = 
0 z3 0

-z3 0 -z2

-z2 -z -z


has determinant ≡ 0. Note that in this case the precondition fails (the first column is z times the last), so the
Theorem does not apply. If we reduce anyway and take the product of pivots we get

z6

which is 0 at z = 0. The true solution of the system is
(x, y, z) = (-z, 0, z) , z any

In this case only the trivial solution was detected.

Extraneous Factors; A Persistent Problem

Both the classical Dixon resultant and its K–S–Y generalization suffer from a persistent problem. The
answer often has extraneous factors. In this paragraph we find the extraneous factors for a few simple
examples. We compute the resultant both by the K–S–Y approach and by using Gröbner bases [Buchberger
1985] and compare answers. One of the elements of a Gröbner basis with respect to pure lexicographical
order is the resultant (always). This resultant has no extraneous factors. Alas, the computation of such
Gröbner basis is resource demanding. Mathematica's GroebnerBasis command computes Gröbner
bases with respect to pure reverse lexicographical order efficiently, but even so one can rarely compute the
resultant for systems with polynomial equations of degrees > 3 with more than 3 or 4 variables.

For generic polynomials, the extraneous factor (except for signs), if none of f and g is a constant, is
I deg f -degg

where I is the leading coefficient of the highest degree polynomial (see [Kapur and Lakshman]).

Examples with Non–Generic Polynomials The extraneous factors for non–generic polynomials are a lot
harder to predict as shown in Table 1. The patterns get increasingly complicated, especially for multivariate
polynomials.

TABLE 1

Dixon_Nakos.nb 11

TABLE 2

More complicated cases In Table 2 we display examples where the extraneous factors are harder to pre-
dict. In the fourth and fifth examples the extra factor is, up to constant, the entire Dixon resultant! The last
example was used by Bruno Buchberger in several of his publications to explain how Gröbner bases are
computed.

Note that,
@ = 64 z5 + 48 z4 + 1100 z3 + 225 z2 + 3812 z - 1796

Conclusions

The Dixon resultant especially as modified by Kapur, Saxena and Yang is a very effective elimination
method. Kapur and Saxena run experiments that place it well above other elimination techniques ([Kapur
and Saxena]). Our limited testing certainly agrees with their claims for the topics we treated. The method is
very fast. According to [Kapur and Saxena], it is up to 70 times faster than the Sparse method (which is
faster than the Macaulay method) as improved by Gauss elimination, for the examples of [Kapur and
Saxena]. Dixon works with parametric coefficients. The size of the Dixon matrix is small. It is smaller by a
factor of O(en+1) and O(e2 n+1) (n is the number of variables) compared with the size of the Sparse and
Macaulay resultant matrices, respectively. (These estimates were again taken from [Kapur and Saxena].)
The method is easy to implement. Unlike Gröbner bases the algorithm here is not hard to analyze, count the
number of operations, etc.. Because its core is a simple Gauss elimination.

On the negative side, the method yields extraneous factors, that are hard to identify. Also, while we can
eliminate a block of variables we do not get a triangularization of the original polynomial system. This may
be the worst aspect of the method. Triangularization is desirable, since a form of back–substitution may
lead to the solution of the system. (Triangularization can be done by computing Gröbner bases with respect
to pure lexicographical orders. It may be also achieved by the step–by–step use of the Sylvester resultant
but in an non–automated way.) Also, the method can be slow if the polynomials are either of high degree or
of a wide range of degrees. Finally, it is not clear how the method works and how sparsity is built in to it.
Let us summarize:

Advantages of the Dixon method:

12 Dixon_Nakos.nb

The Dixon resultant especially as modified by Kapur, Saxena and Yang is a very effective elimination
method. Kapur and Saxena run experiments that place it well above other elimination techniques ([Kapur
and Saxena]). Our limited testing certainly agrees with their claims for the topics we treated. The method is
very fast. According to [Kapur and Saxena], it is up to 70 times faster than the Sparse method (which is
faster than the Macaulay method) as improved by Gauss elimination, for the examples of [Kapur and
Saxena]. Dixon works with parametric coefficients. The size of the Dixon matrix is small. It is smaller by a
factor of O(en+1) and O(e2 n+1) (n is the number of variables) compared with the size of the Sparse and
Macaulay resultant matrices, respectively. (These estimates were again taken from [Kapur and Saxena].)
The method is easy to implement. Unlike Gröbner bases the algorithm here is not hard to analyze, count the
number of operations, etc.. Because its core is a simple Gauss elimination.

On the negative side, the method yields extraneous factors, that are hard to identify. Also, while we can
eliminate a block of variables we do not get a triangularization of the original polynomial system. This may
be the worst aspect of the method. Triangularization is desirable, since a form of back–substitution may
lead to the solution of the system. (Triangularization can be done by computing Gröbner bases with respect
to pure lexicographical orders. It may be also achieved by the step–by–step use of the Sylvester resultant
but in an non–automated way.) Also, the method can be slow if the polynomials are either of high degree or
of a wide range of degrees. Finally, it is not clear how the method works and how sparsity is built in to it.
Let us summarize:

Advantages of the Dixon method:
◼ 1. It is fast.

◼ 2. It eliminates a block of variables in only one step.

◼ 3. It works with parametric coefficients.

◼ 4. The size of the Dixon matrix is small.

◼ 5. It is easy to implement.

◼ 6. The algorithm is easy to analyze, count operations, etc..

Disadvantages of the Dixon method:

◼ 1. It has extraneous factors that are hard to identify.

◼ 2. It offers no triangularization of the polynomial system.

◼ 3. It can be slow for large degree polynomials.

◼ 4. It is not intuitively clear how is works.

4. DixonResultant and Eliminate

In this section we briefly compare our main function, DixonResultant, and Mathematica's Elimi!
nate. It seems that for small easily factorable polynomials Eliminate is at least as good as DixonRe!
sultant. However, if the polynomials are of higher degree, or cannot be factored, or have constant terms,
Eliminate is either very slow or fails, while DixonResultant may yield an answer in seconds. This
is expected since Eliminate is based on Gröbner bases computations which are often slow or resource
demanding. On the negative side, the computation of the Dixon resultant can introduce extraneous factors
that are avoided by Eliminate and by GroebnerBasis. All calculations in this section were per-
formed on a SPARC2 with Mathematica 2.2.

In Examples 16-17 we eliminate x from the system f (x) = 0, g(x) = 0 for the given f and g by using a)
DixonResultant and b) Eliminate. In each case we time the calculation.

Example 16:

f (x) = (a x)3 + (b x)2 + c x+ d, g(x) = 3 (a x)2 + 2 b x+ c.

Mathematica Session:

Dixon_Nakos.nb 13

In this section we briefly compare our main function, DixonResultant, and Mathematica's Elimi!
nate. It seems that for small easily factorable polynomials Eliminate is at least as good as DixonRe!
sultant. However, if the polynomials are of higher degree, or cannot be factored, or have constant terms,
Eliminate is either very slow or fails, while DixonResultant may yield an answer in seconds. This
is expected since Eliminate is based on Gröbner bases computations which are often slow or resource
demanding. On the negative side, the computation of the Dixon resultant can introduce extraneous factors
that are avoided by Eliminate and by GroebnerBasis. All calculations in this section were per-
formed on a SPARC2 with Mathematica 2.2.

In Examples 16-17 we eliminate x from the system f (x) = 0, g(x) = 0 for the given f and g by using a)
DixonResultant and b) Eliminate. In each case we time the calculation.

Example 16:

f (x) = (a x)3 + (b x)2 + c x+ d, g(x) = 3 (a x)2 + 2 b x+ c.

Mathematica Session:

F = {a x^3+b x^2 +c x + d,
 3 a x^2 + 2 b x +c};

Timing[DixonResultant[F,{x},{X}]]

 2 2 2 3 3
{0.816667 Second, a b c - 4 a c -

 2 3 3 4 2
4 a b d + 18 a b c d - 27 a d }

Timing[Eliminate[F=={0,0},{x}]]

 2
{0.283333 Second, b (4 b - 18 a c) d +

 2 2 2 2
 27 a d == c (b - 4 a c)}

In this example Eliminate was faster than DixonResultant.

Example 17:

f (x) = (a x)3 + (b x)2 + c x+ d, g(x) = (b x)3 + (c x)2 + a x+ d.

Mathematica Session:

F={a x^3+b x^2 +c x + d,
 b x^3 + c x^2 + a x +d};

14 Dixon_Nakos.nb

Timing[DixonResultant[F,{x},{X}]]

 5 2 3 4
{1.45 Second, a d + a b d - a c d -

 3 3 2 2
 3 a b c d - a b c d + 3 a b c d +

 2 3 4 3 2 2 2 2
 a c d - a c d + a b d + a b d -

 3 2 4 2 3 2
 2 a b d + b d - 3 a c d +

 2 2 2 2 3 2
 3 a b c d - 4 a b c d + b c d +

 2 2 2 2 2 3 2
 2 a c d + a b c d - a c d -

 3 3 2 3 2 3 3 3
 a d + 3 a b d - 3 a b d + b d }

Timing[Eliminate[F=={0,0},{x}]]

{5.31667 Second, a

 4 3 3 2
 (-a - a b + a c + 3 a b c +

 3 2 3 4
 b c - 3 a b c - a c + c) d +

 3 2 2 3 4
 (-(a b) - a b + 2 a b - b +

 3 2 2
 3 a c - 3 a b c + 4 a b c -

 3 2 2 2 3 2
 b c - 2 a c - a b c + a c) d +

 3 2 2 3 3
 (a - 3 a b + 3 a b - b) d == 0}

In this example Eliminate was slower than DixonResultant.

The following Mathematica session shows that DixonResultant in contrast with Eliminate may
introduce extraneous factors. Both answers are compared with that from GroebnerBasis.

Mathematica Session:

Dixon_Nakos.nb 15

In this example Eliminate was slower than DixonResultant.

The following Mathematica session shows that DixonResultant in contrast with Eliminate may
introduce extraneous factors. Both answers are compared with that from GroebnerBasis.

Mathematica Session:

F={x^5 + a, x^3 -a x +a^2 x^2};

Factor[DixonResultant[F,{x},{X}]]

 3 3 6 9
a (-1 + 6 a + 5 a + a)

Factor[Eliminate[F=={0,0},{x}][[1]]]

 3 6 9
a (-1 + 6 a + 5 a + a)

Factor[GroebnerBasis[F,{x,a}]]

 3 6 9
{a (-1 + 6 a + 5 a + a),

 2 5
 a (3 a + a + x),

 3 6 9 3
 4 a + 4 a + a + x }

In Table 3 we display some timings for DixonResultant and Eliminate. The few examples were
meant to give the reader some assurance for our claims. In all cases x and y were eliminated. The time is in
seconds truncated to 2 decimal places. OM stands for "Out of memory" and T for "terminating the job after
3 hours". The performance of the last example (whose system was taken from [Kapur and Saxena]) is
perhaps the most impressive of this set.

TABLE 3

16 Dixon_Nakos.nb

5. DixonResultant and Resultant

In this section we briefly compare DixonResultant with Mathematica's Resultant which is the
Sylvester resultant. Our conclusions are that each command has its merits and limitations.

For relatively low degree polynomials with few terms Resultant seems to be faster. For example:

F1 = {d + c x + b x^2 + a x^3,
 c + 2 b x + 3 a x^2};

Dixon_Nakos.nb 17

Timing[DixonResultant[F1,{x},{X}]]

 2 2 2 3 3
{0.783333 Second, a b c - 4 a c -

 2 3 3
 4 a b d + 18 a b c d -

 4 2
 27 a d }

Timing[Resultant[F1[[1]],F1[[2]],x]]

 2 2 2 3
{0.6 Second, -(a b c) + 4 a c +

 3 2
4 a b d - 18 a b c d +

 3 2
 27 a d }

For polynomials with more terms Resultant may be slower:

F2 = {d + c x + b x^2 + a x^3,
 a + b x + c x^2 + d x^3};

18 Dixon_Nakos.nb

Timing[DixonResultant[F2,{x},{X}]]

 6 4 2 3 2
{1.63333 Second, -a + a b - 2 a b c +

 4 2 2 2 2 2 4
 2 a c + a b c - a c +

 2 3 3 3
 2 a b d - 6 a b c d - 2 a b c d +

 2 2 3 4 2
 4 a b c d + 2 a b c d + 3 a d +

 2 2 2 4 2 2 2
 a b d + b d - 4 a b c d -

 2 2 2 2 2 2 3 2
 a c d - b c d - 2 a c d +

 3 2 3 2 4
 6 a b c d + 2 b c d - 3 a d -

 2 4 2 4 6
 2 b d - c d + d }

Dixon_Nakos.nb 19

Timing[Resultant[F2[[1]],F2[[2]], x]]

 6 4 2 3 2
{2.86667 Second, a - a b + 2 a b c -

 4 2 2 2 2 2 4
 2 a c - a b c + a c -

 2 3 3 3
 2 a b d + 6 a b c d + 2 a b c d -

 2 2 3 4 2
 4 a b c d - 2 a b c d - 3 a d -

 2 2 2 4 2 2 2
 a b d - b d + 4 a b c d +

 2 2 2 2 2 2 3 2
 a c d + b c d + 2 a c d -

 3 2 3 2 4
 6 a b c d - 2 b c d + 3 a d +

 2 4 2 4 6
 2 b d + c d - d }

To eliminate two variables from three equations requires two steps using Resultant and only one by
using the DixonResultant.

F3 = Expand[{(y+a+1)(x+y+a),
 (x+y) (x+a-1),(y+x+2)(x-a)}];

Timing[DixonResultant[F3,{x,y},{X,Y}]]

 2
{13.3167 Second, 8 (-2 a + 11 a -

 3 4 5
 21 a + 16 a - 4 a)}

Factor[%]

{13.3167 Second,

 2
 8 (1 - a) (-2 + a) a (-1 + 2 a) }

20 Dixon_Nakos.nb

Timing[
 Resultant[Resultant[F3[[1]],F3[[2]],x],
 Resultant[F3[[2]],F3[[3]],x],y]]

 2 3
{0.15 Second, 64 a - 608 a +

 4 5 6
 2400 a - 5088 a + 6240 a -

 7 8 9
 4416 a + 1664 a - 256 a }

Factor[%]

{0.15 Second,

 3 2 3
 32 (2 - a) (-1 + a) a (-1 + 2 a) }

Note that in the last example the combination of the Sylvester resultants was still a lot faster than the one–
step DixonResultant. However, it yielded more extraneous factors!

While in general, it is hard to tell, it seems that Dixon- Resultant is faster for larger systems, especially
those whose equations cannot be factored. Because the Dixon matrix has smaller size that the Sylvester
matrix. Resultant is expected to be faster when the end determinant has numerical entries. Because there
is no slow symbolic Gauss elimination. On the other hand, DixonResultant is ideal in eliminating a
block of variables in one step.

6. Symbolic Gauss Elimination

In this paragraph we show how to use the package's command GaussElimination. This is a symbolic
Gauss elimination without scaling as discussed in Section 3. We have made this command user accessible
in the package because it may be of independent interest to some readers. The code can be easily appended/-
modified to allow scaling and back substitution. We exclude these extra features as they would be a diver-
sion from our topic.

Numeric:

m1 = {{1,2,3},{2,2,3},{4,4,4}};

GaussElimination[m1]

{{1, 2, 3}, {0, -2, -3}, {0, 0, -2}}

m2 = {{1,2,3,4},{2,2,3,4},{4,4,4,4}};

Dixon_Nakos.nb 21

GaussElimination[m2]

{{1, 2, 3, 4}, {0, -2, -3, -4},

 {0, 0, -2, -4}}

Symbolic:

m3 = {{x,1,0},{z,0,1},{1,y,1}};

GaussElimination[m3] // MatrixForm

x 1 0

 z
 -(-)
0 x 1

 -1 + x y + z

0 0 z

7. Implementation in Mathematica

We have implemented the Kapur–Saxena–Yang algorithm in Mathematica. In general, the program per-
forms quite well. However, the absence of built–in symbolic Gauss Elimination prompted us to write our
own routine, which, as interpreted, is sometimes slow. We have also implemented a very fast probabilistic
test for the precondition. If the test fails, the precondition fails. If the test succeeds, the precondition very
likely holds. This is done by a random specialization of the parameters. The code here can be easily modi-
fied to increase the reliability of the test by using more random specializations. A non–probabilistic test for
the precondition would demand the reduction of the entire Dixon matrix. This is wasted calculation in case
of failure.

In the next two paragraphs we describe the program in sufficient detail so that it can be easily run by a
reader with very little prior knowledge of Mathematica. We divide the functions into primary and sec-
ondary. We then only discuss the primary functions, their usage and examples. The secondary functions are
subroutines leading to the definitions of the primary ones. Some of them may stand alone and can be useful
in other applications. (See comments before the code of each of these functions.)

The Main Functions of the Program

The Mathematica Program is actually made into a package with user accessible functions the primary
functions and on line help on them. The secondary functions are hidden and cannot be accessed from the
package. They can, however, be copied and used independently. The entire program can be "unpacked" by
removing the BeginPackage[``Dixon`"];, Begin[```Private`''];, End[]; and EndPack!
age[]; commands.

Primary Functions: DixonSub, DixonPolynomial, DixonMatrix, DixonResultant, Classi!
calDixonResultant, PreconditionQ.

All primary functions have 3 arguments:

22 Dixon_Nakos.nb

The Mathematica Program is actually made into a package with user accessible functions the primary
functions and on line help on them. The secondary functions are hidden and cannot be accessed from the
package. They can, however, be copied and used independently. The entire program can be "unpacked" by
removing the BeginPackage[``Dixon`"];, Begin[```Private`''];, End[]; and EndPack!
age[]; commands.

Primary Functions: DixonSub, DixonPolynomial, DixonMatrix, DixonResultant, Classi!
calDixonResultant, PreconditionQ.

All primary functions have 3 arguments:
◼ ◼ [(a)] A list of polynomials. (The system.)

◼ ◼ [(b)] A list of variables. (The "unknowns", or all symbols that are not parameters.)

◼ ◼ [(c)] A list of auxiliary variables to substitute for the variables in the Dixon process. (This argu-
ment was added to keep the notation flexible, so that one is free to use any names for parameters.)

DixonSub[polys, xlist, alist] forms the (Dixon substitution) matrix by successively substitut-
ing the a- list into the xlist of polys.

DixonPolynomial[polys, xlist, alist] computes the Dixon polynomial of the system
polys with respect to variables xlist and auxiliary variables alist.

DixonMatrix[polys, xlist, alist] computes the Dixon matrix of the system polys with
respect to variables xlist and auxiliary variables alist. (NOTE: At this stage the zero rows or columns
are not removed. This is only done for clarity. The zeros do get removed in the computation of the Dixon
resultant.)

ClassicalDixonResultant[polys, xlist, alist] computes the classical Dixon resultant of
the system polys with respect to variables xlist and auxiliary variables alist, as the determinant of
the Dixon matrix. (NOTE: The Dixon matrix has to be square. The answer may or may not coincide with
that from DixonResultant.)

DixonResultant[polys, xlist, alist] This is the main function of the program. It computes
the D–K–S–Y resultant of the system polys with respect to variables xlist and auxiliary variables
alist. (NOTE: Sometimes the answer needs simplification. This can be done by using the Simplify
command.)

PreconditionQ[polys, xlist, alist] This is a probabilistic test for the precondition. If the
test fails the precondition fails. If the test is true the precondition is very likely to be true.

Sample Session: (Input–Output)

GW2 = {x - a z + b,y - c z + d,
 x^2 + y^2 + z^2 - R^2}

{b + x - a z, d + y - c z,

 2 2 2 2
 -R + x + y + z }

Dixon_Nakos.nb 23

DixonSub[GW2,{x,y},{X,Y}]

{{b + x - a z, d + y - c z,

 2 2 2 2
 -R + x + y + z },

 {b + X - a z, d + y - c z,

 2 2 2 2
 -R + X + y + z },

 {b + X - a z, d + Y - c z,

 2 2 2 2
 -R + X + Y + z }}

DixonPolynomial[GW2,{x,y},{X,Y}]

 2
-R - b x - b X - x X - d y - d Y - y Y +

 2
 a x z + a X z + c y z + c Y z + z

DixonMatrix[GW2,{x,y},{X,Y}]

 2 2
{{-R + z , -d + c z, -b + a z, 0},

 {-d + c z, -1, 0, 0},

 {-b + a z, 0, -1, 0},

 {0, 0, 0, 0}}

ClassicalDixonResultant[GW2,{x,y},{X,Y}]

0

DixonResultant[GW2,{x,y},{X,Y}]

 2 2 2
b + d - R - 2 a b z - 2 c d z +

 2 2 2 2 2
 z + a z + c z

PreconditionQ[{x y z, x - z ,x + y + z},
 {x, y}, {X, Y}]

24 Dixon_Nakos.nb

The precondition is probabilistically TRUE.

DixonMatrix[{x y z, x - z , x + y + z},
 {x, y}, {X, Y}] // MatrixForm

 2
0 z

 2
-2 z -z

PreconditionQ[{x y z, x^2 - z^2,
 x + y + z}, {x, y}, {X, Y}]

The precondition is FALSE.

DixonMatrix[{x y z, x^2 - z^2, x + y + z},
 {x, y}, {X, Y}] // MatrixForm

 3
0 z 0 0

 3 2
-z 0 -z 0

 2
-z -z -z 0

Acknowledgments

We would like to thank the Office of Naval Research for financial support. Many thanks to Deepak Kapur
and Tushar Saxena for making preprints of their work available to us. We would also like to thank Janet
McShane for help with the testing and commenting of our programs. She also offered valuable suggestions
to improve the presentation of the material. Finally, we thank the following U. S. Naval Academy midship-
men who have pointed out typographical errors in the first version of the manuscript: Marius Harrison, C.
Johnson, Terrence Nawara, Scott Powell and Richard Stephens.

References

Buchberger B., Gröbner bases: An Algorithmic method in Polynomial Ideal theory, Multidimensional
Systems Theory, N.K. Bose, ed., D. Reidel Publ. Co., 1985.

Canny J., Generalized Characteristic Polynomials, Journal of Symbolic Computation, 1990, 241-250.

Cayley A., On the theory of elimination. Cambridge and Dublin Mathematical Journal, III, 1865, 210-270.

Chionh E., Base points, resultants, and the implicit representation of rational Surfaces. Ph. D. thesis,
Dept. Comp. Sci., Univ. of Waterloo, 1990.

Dixon A. L., The eliminant of three quantics in two independent variables. Proc. London Mathematical
Society, 6, 1908, 468-478.

Gantmacher F., R., Matrix Theory, vol. 1. Chelsea Publishing, 1959, Ch. 2.

Gelfand I., M., Kapranov M. M., and Zelevinsky A. V., Discriminants, Resultants and Multidimensional
Determinants, Birkhäuser, Boston, 1994.

Gleason R. F., Williams R. M., A Primer On Polynomial Resultants, Technical Report, Naval Air Develop-
ment Center, Report No. NADC-91112-50.

Kapur D., Lakshman Y. N., Elimination Methods: an Introduction. Symbolic and Numerical Computation
for Artificial Intelligence B. Donald et. al. (eds.), Academic Press, 1992.

Kapur D., Saxena T., Comparison of Various Multivariate Resultant Formulations, Preprint.

Kapur D., Saxena T. and Yang L., Algebraic and Geometric Reasoning using Dixon Resultants, Proc. ACM
ISSAC, Oxford, England, July 1994.

Knuth D. E., The Art of Computer Programming, v. 1-3, Addison-Wesley Publishing Co., Reading, Mass,
1969.

Macaulay F. S., The Algebraic Theory of Modular Systems, Cambridge Tracts in Math. and Math. Phys., 19,
1916.

Macaulay F. S., The Algebraic Theory of Modular Systems, Cambridge Mathematical Library, Cambridge
University Press, 1994.

Mostowski A., Stark M., Introduction to Higher Algebra, Pergamon Press, New York, 1964.

Salmon G., Lessons Introductory to the Modern Higher Algebra, Chelsea Publishing Company, Bronx, NY,
1964.

van der Waerden B. L., Modern Algebra, volume 2, Fredric Ungar Publishing Co., New York, 1950.

Dixon_Nakos.nb 25

Buchberger B., Gröbner bases: An Algorithmic method in Polynomial Ideal theory, Multidimensional
Systems Theory, N.K. Bose, ed., D. Reidel Publ. Co., 1985.

Canny J., Generalized Characteristic Polynomials, Journal of Symbolic Computation, 1990, 241-250.

Cayley A., On the theory of elimination. Cambridge and Dublin Mathematical Journal, III, 1865, 210-270.

Chionh E., Base points, resultants, and the implicit representation of rational Surfaces. Ph. D. thesis,
Dept. Comp. Sci., Univ. of Waterloo, 1990.

Dixon A. L., The eliminant of three quantics in two independent variables. Proc. London Mathematical
Society, 6, 1908, 468-478.

Gantmacher F., R., Matrix Theory, vol. 1. Chelsea Publishing, 1959, Ch. 2.

Gelfand I., M., Kapranov M. M., and Zelevinsky A. V., Discriminants, Resultants and Multidimensional
Determinants, Birkhäuser, Boston, 1994.

Gleason R. F., Williams R. M., A Primer On Polynomial Resultants, Technical Report, Naval Air Develop-
ment Center, Report No. NADC-91112-50.

Kapur D., Lakshman Y. N., Elimination Methods: an Introduction. Symbolic and Numerical Computation
for Artificial Intelligence B. Donald et. al. (eds.), Academic Press, 1992.

Kapur D., Saxena T., Comparison of Various Multivariate Resultant Formulations, Preprint.

Kapur D., Saxena T. and Yang L., Algebraic and Geometric Reasoning using Dixon Resultants, Proc. ACM
ISSAC, Oxford, England, July 1994.

Knuth D. E., The Art of Computer Programming, v. 1-3, Addison-Wesley Publishing Co., Reading, Mass,
1969.

Macaulay F. S., The Algebraic Theory of Modular Systems, Cambridge Tracts in Math. and Math. Phys., 19,
1916.

Macaulay F. S., The Algebraic Theory of Modular Systems, Cambridge Mathematical Library, Cambridge
University Press, 1994.

Mostowski A., Stark M., Introduction to Higher Algebra, Pergamon Press, New York, 1964.

Salmon G., Lessons Introductory to the Modern Higher Algebra, Chelsea Publishing Company, Bronx, NY,
1964.

van der Waerden B. L., Modern Algebra, volume 2, Fredric Ungar Publishing Co., New York, 1950.

About the Authors

Dr. Nakos received his Ph.D. from the Johns Hopkins University in 1985. He is currently a professor at the
U. S. Naval Academy where he often uses Mathematica, Maple and MATLAB in the classroom. His
research interests include algebraic topology and computer algebra.

Mathematics Department, M/S 9E

U.S. Naval Academy

572 Holloway Road

Chauvenet Hall

Annapolis, MD 21402-5002

gcn@sma.usna.navy.mil

Dr. Williams received his Ph.D. in Electrical Engineering from the University of Pennsylvania. He currently
leads a research group using advanced types of algorithms to increase pilot awareness in confusing situa-
tions. The group is a heavy user of computer algebra systems. His research interests are in using advanced
arithmetics with nonlinear algebras as architectures for novel algorithms.

Aircraft Division

Naval Air Warfare Center

Patuxent River Naval Air Station, MD

bobw@henry.nawcad.navy.mil

26 Dixon_Nakos.nb

Dr. Nakos received his Ph.D. from the Johns Hopkins University in 1985. He is currently a professor at the
U. S. Naval Academy where he often uses Mathematica, Maple and MATLAB in the classroom. His
research interests include algebraic topology and computer algebra.

Mathematics Department, M/S 9E

U.S. Naval Academy

572 Holloway Road

Chauvenet Hall

Annapolis, MD 21402-5002

gcn@sma.usna.navy.mil

Dr. Williams received his Ph.D. in Electrical Engineering from the University of Pennsylvania. He currently
leads a research group using advanced types of algorithms to increase pilot awareness in confusing situa-
tions. The group is a heavy user of computer algebra systems. His research interests are in using advanced
arithmetics with nonlinear algebras as architectures for novel algorithms.

Aircraft Division

Naval Air Warfare Center

Patuxent River Naval Air Station, MD

bobw@henry.nawcad.navy.mil

Dixon_Nakos.nb 27

