Baocileroc Moyoipdc

[HoArtikoc Mnyavikoc Ph.D.

P——————

- Ti mapoucidoTnKke £€WC orNEPaA

* AvaoAvtikég uEbooot emilvonc tpoPAnudtov
BeAticTomoinong.

® M£00001 YpauUtKoD TPOYPOULOTIGUOD YL TNV ETTIALOT
TPOPANUATOV LE YPOLUUIKT] OVTIKEILEVIKT) GUVAPTNGT KOl
YPOUUTKOVE TEPLOPICUOVE 1GOTNTAC 1] AVICOTNTOC.

* M£0ooot emilvong Lovooldotatmv TpofAnudtmy
BeAticTomoinong, o1 0moieg Elva YP1NGIUEC GTNV EVPECT
TOL BEATIGTOV UNKOLS PNUaTog 6 TpoPANUaTa ETIAVGNC
LE ETOVOANTTIKEC LeBdOOLC.

* M£0ooot emiAvong un YpouUKov TpoPAnudtoy yopig
TEPLOPIGLLOVG

T1 Ba TTapouciaoTEi

* M£0Booot emidvong un ypauutkov tpopinudtov ME
TEPLOPIGLLOVG

P vt

“Eloaywyn

* H yevikn meprypapn mpoPfAnuatog BeATiotonoineng e
TEPLOPICULOVG Elvar oG EENG:

Xi

X3
Find X = { . } which minimizes f(X)

X

subject to
g;X)=0, j=L2,....m

hiX)=0, k=1,2,....p

Table 7.1 Constrained Optimization Techmques

Direct methods Indirect methods

Random search methods Transformation of vanables technigue

Heunstic search methods Sequential unconstrained minimization
Complex method lechnigques

Objective and constramnt approximation Interior penalty function method
methods Exterior penalty function method
Sequential linear programming method Augmented Lagrange muluplier method

Sequential quadratic programming method
Methods of feasible directions

Zoutendyk’s method

Rosen's gradient projection method
Generalized reduced gradient method

AKTNPIOTI
UE TTEPIOPICPOUC

1. O mepropiouog mhavov va unv ennpedCel mn BEATIO
AOo™M, OTOTE AOVETOL GOV VOL UNV £YEL TEPLOPIGLLOVC.

Figure 7.1 Constramned and unconstrained minima are the same (linear constraints).

UE naploplopoug
2. H BéAtiot (Lovaoikn) AVGT veioTaTol 6T0 OPLO TOL TEPLOPLOUOV.
H anapaitntn cuvinkn Kuhn — Tucker vrooeiyvel 0t o apvntikd g

KALOMC TEPLYPAPETUL OC YPUUUKOS GLVOLAGUOC TOV KAIGEDV TMV
EVEPYWOV TTEPLOPLOUMDV. &0

-'Ji.']

Figure 7.2 Constrained minimum occurring on a nonlinear constraint.

3. Av N QVTIKEWWEVIKT] GLVAPTNON €YEL 2 1) TEPIGGOTEPA TOTIKA,
aKPOTATO TOTE TO TEPLOPIGUEVO TPOPANUA IGMC £YEL TOAAN
aKPOTOTA.

-4

Figure 7.3 Relative minima introduced by objective function.

4. Y& LEPIKEC TEPUTTOGELC N AVTIKEEVIKT] GUVAPTNGT) EYEL
LOVOOIKT) BEATIGTN AVGT), OLU®G 1 EICAYWMYT TEPLOPLC LDV
OVOOEIKVUEL TTOAAS, TOTTIK G, 0UKPOTOLTAL.

Xa
'y

NSNS NS

)

AT it

Figure 7.4 Relative mimima introduced by constraints.

Y TTOAOYICHOC TOU
JKOUC BriNaTO

Avavewan Twv
TTAPAMETPWY

€YXO0G
OUVKAIO

random search methods)

The random search methods described for unconstrained mimmzation (Section 6.2)
can be used, with minor modifications, to solve a constrained optimization problem.
The basic procedure can be described by the following steps:

1.
2.

Generate a trial design vector using one random number for each design variable.

Verify whether the constraints are satisfied at the trial design vector. Usually,
the equality constraints are considered satished whenever their magnitudes lie
within a specified tolerance. If any constraint is violated, continue generating
new trial vectors until a trial vector that satisfies all the constraints 1s found.

If all the constraints are satisfied, retain the current trial vector as the best
design if it gives a reduced objective function value compared to the previous
best available design. Otherwise, discard the current feasible trnial vector and
proceed to step 1 to generate a new trial design vector.

The best design available at the end of generating a specified maximum number
of trial design vectors is taken as the solution of the constrained optimization
problem.

It can be seen that several modifications can be made to the basic procedure indicated
above. For example, after finding a feasible trial design vector, a feasible direction can
be generated (using random numbers) and a one-dimensional search can be conducted
along the feasible direction to find an improved feasible design vector.

e

’Mx Method

* O Box enékteve ™ ueEBooo simplex, wote va Umopet va
EMAVGEL TPOPANLOTA LE TEPLOPIGLLOVC.

* Avtictowya pe tn uEbooo simplex oynuoariCovral
TOAVYMOVIKA GYNUOTA, EVO 6€ KAOE 00KIUN ECETALETULT
epiktotnTa (feasibility) tng Avonc.

* H puébooog complex tomikd enexteivetatl. Otav
cuvavtnOel KATO10 OPLO GLOTEAAETOL KOl «TTAATOIVE.
‘Emetto emektelveTon Kot UKo ToL 0plov, EKTOC KO OV
otapopomotnbovv ot woovyeic. H néBooog oroyepiCetan
KO TEPIGCOTEPA OO £VOL OPLOL KO UTTOPEL VO
TEPIGTPEPETOL OTIC YOVIEC.

C»

&fnfplex Method (ouvéxeia)

* Av 1 €QIKT] TEPLOYN EIVAL U1 KVPTT 0V ECAGPAMEETON OTL
TO KEVTPOTOEC TV EPIKTOV GMUEI®V Elvan ETIoNC EQIKTO.
2. TETOL0 TEPIMTMOOT) OEV UTOPEL 1] Olo0tKaGio Vo Bpet
ETOLLEVO GMUETLO.

* H nuéboooc complex ogv etval amoooTikn 0tav ot
HeTaPANTEC elval TOAAEC.

* Agv umopel va ypnotponotndet yio mpoAnuato e
TEPLOPIGULOVE 1G0TNTOC.

* Amouteiton 1) EKKivnomn amo 6nuEio, TO OTolo Elval EQIKTO.

% XIKOG YPOAUMIKOG HM

e

(Sequential | Successive Linear Programming (SLP)
N Cutting Plane Method)

* H puébooog SLP emidver MH ypapupika tpoPAnuoato
TPoGEYYICOVTAC TO LLE YPOLLUKES GUVAPTNGELC.

* H avtikeevikn cuvaptnon Kot 0t GLVOPTHGELS
weplopopv tpoceyyiCovron e celpd Taylor 1°° fabuov
GTO GLYKEKPYEVO onueio X,.

* To mwaparyOUEVO YPOUUIKO TPOPANLLO ADVETOL OTOOOTIKE, LLE
™ uEBooo simplex yio va Bpebei to emoduevo onueio X, ;.

* Av 10 onueio X, 0V IKOVOTOLEL TOL KPLTHPLOL CUYKAIGTG

TOTE TO TPOPANLLAL «YPULUKOTOIEITOL EOVA GTO VEO
onueio X,,; Ko n otaowkacio eravolapuavetor.

Algorithm. The SLP algorithm can be stated as follows:

1. Start with an initial point X; and set the iteration number as i = 1. The point
X need not be feasible.

2. Linearize the objective and constraint functions about the point X; as

FX) = f(X)+ VX' (X=X)) (7.14)
g,(X) =~ g, (X;) + Vg,;(Xp)' (X = X;) (7.15)
hp(X) = hpe (X)) 4+ Vig(X)T(X - X;) (7.16)

3. Formulate the approximating linear programming problem as'

Minimize f(X;)+ V(X = X;)

subject to o
X+ Ve XN X=X) <0, j=12%..., m

h(X)) + Vi (X)) (X=X =0, k=1.2..... p (7.17)
4. Solve the approximating LP problem to obtain the solution vector X; .

‘Eneito eAéyyovtal o Kprtrplo GUYKAIGTC Kot oV OYL 1
OLaOIKaGio ETovoAauBaveTal.

e

.--\~

= Emiléyeton éva onpeio ekkivnong kot n avoalntnon

KoatevduveTOL ETOVOANTTIKA OC €ENG: Xy = X, + AS;

® Omnov X, gtval 1o onueio ekkivnong otnv 1-6TtN EXOVAANYN, S;
N kKatevOvVoN TG LETAKIVNGNC, A 1| ATOGTAGT TNG
uetaxivnong (neyebog frinatoc) kot X,,; T0 GNUELO TOV
OVOOEIKVDEL T 1-GTT ETAVAATIYN.

* To A emA€&yeTor, MGTE Vo 10 X, VO PploKETAL OTNV EQPIKTT
TEPLOYN).

* H katevOuvon S; emAEyeTaLl, OOTE) L0 LLIKPT) LETOKIVION G
LT TV KatevBvvon va unv mopoPidlel Kaveva TEPLOPIGUO
Ko B) M T TS AVTIKEWEVIKNG GLVAPTNONG VA PEATIOVETL
TTPOG TOL EKEL.

* M£0Booot tmv epikTtov KatevBiveemy eivan n uEBoOoC Tov
Zoutendyk kon) gradient projection nEBooog tov Rosen.

pJ

1. Start with an initial feasible point X, anma]l numbers £;, g5, and &5 to test

=

the convergence of the method. Evaluate f(X;) and g;(X;), j=1.2,...,m.
Set the iteration number as { = 1.

A g (X)) <0, j=1,2,....m (ie, X; is an interior feasible point), set the
current search direction as

S =—-Vf(X) (7.29)

Normalize §; in a suitable manner and go to step 5. If at least one g;(X;) =0,
go to step 3.

3. Find a usable feasible direction S by solving the direction-finding problem:

Minimize —a (7.30a)
subject to
S'Vg;(X;)+0;a<0, j=1.2,..., p (7.30b)
S'Vf+a<0 (7.30¢)
—-1=<g=<1, i=12....,n (7.30d)

where s; 1s the ith component of S, the first p constraints have been assumed
to be active at the point X; (the constraints can always be renumbered to satisfy
this requirement), and the values of all #; can be taken as unity. Here « can be
taken as an additional design variable.

_ﬂfff = et i

- Zoutendijk’s method of feasible directions

4. If the value of ¢* found in step 3 is very nearly equal to zero, that is, if ¢ < £,
terminate the computation by taking X =~ X;. If @® > g1, go to step 5 by taking
S; =8.

5. Find a suitable step length A; along the direction §; and obtain a new point
Xi41 as

X = X4 A8 (7.31)

The methods of finding the step length 4; will be considered later.
6. Evaluate the objective function f(X;;).
7. Test for the convergence of the method. If

(X)) — f(Xi41) o
f(X5) =

terminate the iteration by taking X, =~ X; ;. Otherwise, go to step 8.

g2 and || Xi — Xl < &3 (7.32)

8. Set the new iteration number as i = i + 1. and repeat from step 2 onward.

Generalized Reduced Gradient (GRG)

The basic concept of GRG method entails lineanzing the Non-linear objective and
constraint functions at a local solution with Taylor expansion equation. Then, the concept of
reduced gradient method 1s emploved which divides the variable set into two subsets of basic
and non-basic variable and the concept of implicit variable elimination to express the basic
variable by the non-basic variable. Finally, the constraints are eliminated and the varniable
space 1s deduced to only non-basic variables. The proven efficient method for non-constraints
NLP problems are involved to solve the approximated problem and, then, the next optimal

solution for the approximated problem should be found. The processes repeat again until it

" Algorithm
2 1. Specify the design and state variables. Start with an initial trial vector X. Identify
the design and state variables (Y and Z) for the problem using the following
guidelines.

(a) The state variables are to be selected to avoid singularity of the matrix, [D].

(b) Since the state variables are adjusted during the iterative process to maintain
feasibility, any component of X that is equal to its lower or upper bound
mnitially is to be designated a design variable.

(c) Since the slack variables appear as linear terms in the (originally inequality)
constraints, they should be designated as state variables. However, if the
initial value of any state variable is zero (its lower bound value), it should
be designated a design variable.

. Compute the generalized reduced gradient. The GRG is determined using
Eqg. (7.105). The derivatives involved in Eq. (7.105) can be evaluated
numerically, if necessary.

. Test for convergence. It all the components of the GRG are close to zero, the
method can be considered to have converged and the current vector X can be
taken as the optimum solution of the problem. For this, the following test can
be used:

IGrll = &

where £ is a small number. If this relation is not satisfied, we go to step 4.

dient of an unconstrained objective function to generate a suitable search
direction, S§. The techniques such as steepest descent, Fletcher—Reeves,
Davidon—Fletcher—Powell, or Broydon—Fleicher—Goldfarb—Shanno methods

can be used for this purpose. For example, if a steepest descent method is
used, the vector 8§ is determined as

S = —Gg (7.110)

. Find the minimum along the search direction. Although any of the one
-dimensional minimization procedures discussed in Chapter 5 can be used
to find a local minimum of [along the search direction 8, the following
procedure can be used conveniently.

(a) Find an estimate for A as the distance to the nearest side constraint. When
design variables are considered, we have

[(u)
Vi — (%o

&i
i)
¥, — (¥idald
Si

if 5; =0
(7.111)

if 5; <0

where s; is the ith component of 8. Similarly, when state variables are
considered, we have, from Eq. (7.102),

dZ = —|D17'[C]1dY (7.112)

Using dY = 48, Eq. (7.112) gives the search direcion for the variables
Z. as

T=—[D]7'[C]S (7.113)
Thus ;
2" — (zi)old
- —— if=0
K= £ (7.114)
z; = {Zi)oid g
-~ . J if; <=0

where 1; i1s the ith component of T.

(b) The minimum wvalue of A given by Eq. (7.111), A,. makes some design
variable attain its lower or upper bound. Similarly, the minimum value of
» given by Eqg. (7.114), 4,5, will make some state variable attain its lower
or upper bound. The smaller of A; or A; can be used as an upper bound
on the value of A for initializing a suitable one-dimensional minimization
procedure. The quadratic interpolation method can be used conveniently for
finding the optimal step length A*.

(c) Find the new vector X, .-

1ilru:nl.d +d¥Y 1illr::nlu:j + A'S
, = (7.115)
Log +d Log + AT

Generalized Reduced Gradient (GRG)

If the vector X,y corresponding to A" is found infeasible, then Y.y is held

constant and Zy., 1s modified using Eq. (7.108) with dZ = Zpew — Zola.
Finally, when convergence is achieved with Eq. (7.108), we find that

Yoa + AY
X —| 4 } (7.116)

new —

zﬂ]ﬂ + AZ

and go to step 1.

Sequential quadratic programming
(SQP)

P———

Sequential quadratic programming (SQP)

* Amotelel po amo TIC KOAVTEPEC LEBOOOVC
BeAticTOomoOinoMC.

* H Beopntikn ¢ Bdon oyetiCeton e o) tnv EXIAVGT EVOC
GLVOAOL UN YPOUUUIKOV ECIGOGEMV, YPNCILOTOLOVTOS T1
1EBooo Newton kau B) Tnv maporyyn Un YPOLLUIKOV
eCloMGEMV, ypnononolwvtog T cvvOnkn Kuhn-Tucker
otn Lagrangian tov tpoPAnuatoc feAtictonoinong ue
TEPLOPIG LOVC.

* Eivan emavoAnmtikn néboooc.

* Yvuvdptnon fmincon tov MATLAB (medium scale)

i A

,—o—'—''_'_'_'_'_'_'_

Sequential quadratic programming (SQP)
* Kataokevdletoun cvuvaptnon Lagrange pe mpocEyyion
2°° BaBuov.
* Kataokenalovton YpoUUKES GLVOPTNOELS, Ol OTTOLEG
TPOGEYYILOLY TOLC TEPLOPLGUOVC.

* EmAveton to mpoPAnua 2% tdEnc yio Ppebein
Koatevbuvon S

* Movodidotorn avalntnon 1-D ywa to pikoc Prpatoc.
* AVOvE®GT TNG TPOCEYYIGTIKNC cuvaptnong Lagrange

Algornithm

Relative advantages

Relative disadvantage

SLP

Easy to implement

Widely used in practice
Rapid convergence when
optimum 1S at a vertex

Can handle very large
problems

Does not attempt to satisty
equalities at each iteration
Can benefit from
improvements in LP solvers

May converge slowly on
problems with nonvertex
optima

Will usually violate nonlinear
constraints until convergence,
often by large amounts

Algonthm

Relative advantages

Relauve disadvantage

SQP

SLP

Easy to implement
Widely used in practice
Rapid convergence when
optimum 1s at a vertex
Can handle very large

problems
Does not attempt to satisty

equalities at each iteration
Can benefit from
improvements in LP solvers

Usually requires fewest
functions and gradient
evaluations of all three
algorithms (by far)

Does not attempt to satisfy
equalities at each iteration

May converge slowly on
problems with nonvertex
optima

Will usually violate nonlinear

constraints until convergence,
often by large amounts

Will usually violate nonlinear
constramnts until convergence,
often by large amounts
Harder than SLP to
implement

Requires a good QP solver

Algonthm Relative advantages Relauve disadvantage
GRG Probably most robust of all Hardest to implement
three methods Needs to satisfy equalities at
Versatle--especially good each step of the algorithm

for unconstrained or linearly
constrained problems but
also works well for nonlinear
constraints

Can utilize existing process
simulators employing
Newton's method

Once 1t reaches a feasible
solution it remains feasible
and then can be stopped al
any stage with an improved
solution

Indirect Search (Descent) Methods
MEBoooI kaBodou N ueEBodoIl KAIoNC

GUYKEKPIUEVT] OTTAT] LOPPT) TOTE EIVaL SLVATOV VOl YiVOLV
LETOGYNUATICULOL OTIC avESAPTNTEC LETAPANTES, OOTE O1
TEPLOPIGLLOL VOL TKOVOTOIOVVTHL QUTOLLOLTAL.

* 'Etol Eva mpoPAnua e mePopioLons UTOPEL VO LETOOYNUATIGTEL
o€ TPOPAN UL YO PIC TEPLOPIGLOVE KOl VO ETIAVOEL LE TIC
avtioTolyeg uebdoouc.

* O1 mepropiouol TPETEL VoL EVOL ATAEC GLVOPTNCELC.

° [o pepuKoe TEPLOPIGUOVE UTOPEL VO UMV Elvor duvatr) N EVPEGCT
TOV OVOLYKOIOL UETAGYNULATIGLLOV.

* Av ogv e€ore1pboiv OAOL 01 TEPLOPIGLOL IGMC Elval KOADTEPO VL
unv viomombel Kavévac LeETAGYNMUOTIGULOGC. A10TL 0 LEPKOG
LETOCYNUATICUOG IoMC TOPAYEL AVTIKELEVIKT] GLVAPTNGT, T
omoia Ba elval apkeTE O OVGKOAO VO ETAVOEL GE GYEGT LE TNV
aPYIKN GLVAPTNO).

If lower and upper bounds on x; are specified as

I; = X < Uj {?‘143)
these can be satisfied by transforming the variable x; as
xi = I + (u; — I;)sin®y; (7.149)

where v; is the new variable, which can take any value.

If a variable x; is restricted to lie in the interval (0, 1), we can use the transfor-
mation:
. 7 2
xj=sin ¥, X;=CO8 ¥
= 2
E_I'I.-.I' .r
X = . = or X = = 3 [?‘] Eﬂ_]
gM 4 =¥ L + ¥;

If the variable x; is constrained to take only positive values, the transformation
can be

x; = abs(y;), xi=y or xi=e" (7.151)

If the variable is restricted to take values lying only in between —1 and 1, the
transformation can be

2y

7.152
1+ ¥; [:

X =8mMYy, Xp=CO8Y, Of X=

-10 -5 0 5

V= Siﬂ(l'] ' 51'[1(.1.:]‘

10 -2 ’ !

-10 -5 0 5

Example 7.6 Find the dimensions of a rectangular prism-type box that has the largest
volume when the sum of its length, width, and height is limited to a maximum value
of 601n. and its length is restricted to a maximum value of 361n.

SOLUTION Let x, x5, and x3 denote the length, width, and height of the box,
respectively. The problem can be stated as follows:

Maximize f(xy, x2, x3) = x1x203 (E1)

subject to
xj+x+x3 <60 (Es)
X1 = 36 {EE}

x=0, i=123 (E4)

By introducing new variables as
Yi=X, Y=IX, yp=x+iun-+in (Es)

or
X1=», Xx2=y, X3d=yp—yMi—m»m (Es)

the consiraints of Egs. (E;) to (E;) can be restated as
0=y =36, 0=y, =60, 0=<y; <60 (E7)

where the upper bound, for example, on y; 1s obtained by setting x; = x3 =0 in
Eqg. (E2). The constraints of Eq. (E7) will be satisfied antomatically if we define new
variables z;, i = 1, 2, 3, as

v =36sin®z;, v, =60sin"z5. vy = 60sin” z; (Eg)
Thus the problem can be stated as an unconstrained problem as follows:
Maximize f(z1.22,23)
= Y1y2¥3— Y1 —Y2) (Eqg)

: = . A F Foiy &
= 2160 sin” z; sin zgiﬁﬂsm‘? 73 — 36sin” z; — 60sin" z3)

The necessary conditions of optimality yield the relations

i : : . . .

&—f = 259,200 sin z; cos 71 sin” z2(sin” z3 — g sin®z; —sin" 72) = 0 (E1n)
Z1

df e o 3ot . 3

o = 518,400 sin" 2y 8in 22 cos 22(5 SIn” 23 — 5 8in° 21 —8in~ 22) =0 (E11)
22 2

d,!" ; 9 = s] gz

—= 259,200 sin" z; sin” zasinzycos 23 = 0 (Ej2)
23

Equation (E;2) gives the nontrivial solution as cos z3=0 or sin” z3 = 1. Hence

Egs. (Eqp) and (Eqy) yield sin® z; = % and sin” 73 = : Thus the optimum solution is

given by x{ = 20 in., x7 = 20 in., x§ = 20 in., and the maximum volume = 8000 in®.

e

2. UVOPTNOEIC TTOIVNC
Penalty functions

“OUVOPTACEWV TTOIVAC (Penalty functions)

* H Aoywr) tov cuvaptneemv Tovav VAL OTAT] KOl 0TOCKOTEL
GTNV EICOYMYN TEPLOPICUOV GE KATOL0 TPOPANU
BeAticTomoinong.

* 'Eotm 011 £yovue Eva TpOPANU EAAYIGTOTOINGNG TG
avTikelneviknc cuvaptnong {(X), oto omoio amatteiton n
€O QAAIOT KAo10VL TtEPLopIoov g(X)<0.’Evac amAdg Tpomog
EIGAYMYNC TOL TEPIOPIGUOV VAL LETOGYNUATICOVTOC TNV
OVTIKELUEVIKT] GLVAPTNOT OG EENC:

’(X]—{ f(X) + oo, av g(X) <0
/ U (X)), oTI¢ GAdec mepurTOTELC

* H ocvykekpiuévn mowvn ovoualeton «mwowvn Oavatoun Kol
ONUIoVPYEL TPOPANUATA, OLOTL EIGAYEL ACVVEYELEC GTTV
QVTIKEWWEVIKT] GLVAPTNOTN. Y TAPYOLVV KAADTEPES VAOTOMGELG,
aALd PaciCovtor oTnVv 10100 AoYIKT.

i A

- E¢ao@pdaAion m:ploplou(bv UEOW
ouvapTtnoewy tToivnce (Penalty functions)

* H yprion cuvoptcemv Tovmv LETAGYNUOTICEL TO
TPOPANUO LE TEPLOPIGUOVE GE TPOPATILAL YOPIg
TEPLOPLGUOVE, OTOTE UTOPOVV VO ¥ PNCILOTOINO0VV Ot
avtiototyec neboool PeAtiotonoinonc.

* I'evikd n avtikepevikn cuvaptnon {(x) petacynuotiCeto
oe I’(x) = {(x) + p(x)

® Omov p(X) Uto GLVAPTNG™M N OTOia TPOGHETEL TOVEG OTOV
mopoPraleTal KAmolo¢ TEPLOPLoUAG.

* H mown umopel va e@oapuocTel Kot TOAAOTAUGIOGTUCO OC
e€Ne (Mo onavia mepintoon): °(x) =1(x) - p(x)

e e el

2. UVAPTNOEIC TTOIVIC ECWTEPIKOU ONUEIOU

(Exterior point penalty functions)

* H mowvn epapuoletal poAS mopoPlactel KAmTo1og
TEPLOPIG LLOC.

* Ovoudleton Kot «yaAapds TEPLOPIGLOC», O1OTL EMITPETEL

TNV ovalTNom GE TEPLOYEC, OTIC 0Toiec mopaPrdlovrot
TEPLOPIGLLOL.

(Exterlor point penalty functions)
[Mapadelyua

We will be working with a very simple example:

minimize f(x) = 100/x

subjecttox <5

(With a little thought, you can tell that f(x) will be minimized
when x = 5, so we know what answer we should get!)

Before starting, convert any constraints into the
form (expression) < 0. In this example, x £ 5
becomes:

x—5<0

| (Exterlor point penalty functions)

[Tapadsiyua
With the constraint x—5 £ 0, we need a penalty that is:

* Owhenx-5<0 (the constraint is satisfied)
* positive when x—=5is >0 (the constraint is violated)
This can be done using the operation
P(x) = max(0, x — 5)

which returns the maximum of the two values, either O
or whatever (x — 5) is.

We can make the penalty more severe by using
P(x) = max(0, x — 5)2.

This is known as a quadratic loss function.

“(Exterior point penalty functions)

[Mapadelyua
It is even easier to convert equality constraints

into quadratic loss functions because we don’t
need to worry about the operation (max, g(x)).
We can convert h(x) = cinto h(x) —c =0, then

use

P(x) = (h(x) =)’

The lowest value of P(x) will occur when h(x) =c,
in which case the penalty P(x) = 0. This is exactly
what we want.

(Exterlor point penalty functions)
[Mapadelyua

Once you have converted your constraints into
penalty functions, the basic idea is to add all the
penalty functions on to the original objective
function and minimize from there:

minimize T(x) = f(x) + P(x)
In our example,
minimize T(x) = 100/x + max(0, x — 5)?

I 2

UVOPTNOEIC TTOIVNC ECWTEPIKOU ONMEIoOU
(Exterior point penalty functions)
But... it isn’t quite that easy.

The addition of penalty functions can create severe
slope changes in the graph at the boundary, which
interferes with typical minimization programs.

Fortunately, there are two simple changes that will
alleviate this problem.

b

"~ 2UVAPTNOEIC TTOIVNC sf,w“TsleoO onueiou
(Exterior point penalty functions)

The first is to multiply the quadratic loss function by

a constant, r. This controls how severe the penalty
s for violating the constraint.

The accepted method is to start withr =

10, which is a mild penalty. It will not form ¢t
a very sharp point in the graph, but the
minimum point found using r = 10 will not
be a very accurate answer because the
penalty is not severe enough.

{F_

I 2

UVOPTNOEIC TTOIVNC ECWTEPIKOU ONMEIoOU
(Exterior point penalty functions)

Then, ris increased to 100 and the

function minimized again starting from the

minimum point found when r was 10. The

higher penalty increases accuracy, and as

we narrow in on the solution, the

sharpness of the graph is less of a

problem.

We continue to increase r values until the
solutions converge.

-~_§»

’-.'..” an

“_

(Exterlor point penalty functlons)

* I'evikn mepintmon mTovav EEMTEPIKOD GTUELOL:

In the exterior penalty function method, the ¢ function is generally taken as

i

dX.rp) = fX)+r Y (g (X)) (7.199)

j=1

where ry is a positive penalty parameter, the exponent ¢ is a nonnegative constant, and

the bracket function (g;(X)) is defined as

(2;(X)) = max(g;(X), 0)

gi(X) ifg;(X)=0
_ | (constraint is violated) (7.200)
0 if g;(X) =0

(constraint is satisfied)

1. ¢ = 0. Here the ¢ function is given by

P(X.rp) = f(X) +rg Z (g; (X"

j=1
(X)+n if all ¢;(X)=0
_}! et & (7.201)
F(X) if all g;(X) <0

This function is discontinuous on the boundary of the acceptable region as
shown in Fig. 7.11 and hence it would be very difficult to minimize this function.

.i.if fz ;}:}}ﬁ-
“ an
> —

A Section A-A

f"IIIII + M

B T T T e T W . T T Y

X

Y

fiX) = oy .,___q

o - X] -1

p

(e} (b)
Figure 7.11 A ¢ function discontinuous for g = (.

2.) = g < 1. Here the ¢ function will be continuous, but the penalty for violating
a constraint may be too small. Also, the derivatives of the function are discon-
tinuous along the boundary. Thus it will be difficult to minimize the ¢ function.
Typical contours of the ¢ function are shown in Fig. 7.12.

i f
A
FIX) = oy
i
f
B
Section A-A
- X1 =

0 xp=p

(e} ()

Figure 7.12 Derivatives of a ¢¢ function discontinuous for () =< g =< 1.

4. g = 1. The ¢ function will have continuous first derivatives in this case as shown
in Fig. 7.13. These derivatives are given by

d _df < 1 3g;(X)
X))t = 7.202
Y +f‘k§ff{£;(N dx; ()
Generally, the value of g is chosen as 2 in practical computation. We assume a
value of ¢ = 1 in subsequent discussion of this method.

& f

ﬂx} =X

Sectionon A=A

- X -
0 1 - X

(a) (b)
Figure 7.13 A ¢ function for g = 1.

Algorithm. The exterior penalty function method can be stated by the following
steps:

1. Start from any design X, and a suitable value of ry. Set k = L
2. Find the vector X} that minimizes the function

6(X, 1) = fFX) 41) (g;(X))?

j=1

3. Test whether the point X} satisfies all the constraints. If X is feasible, it is the
desired optimum and hence terminate the procedure. Otherwise. go to step 4.

4. Choose the next value of the penalty parameter that satisfies the relation
Tk+1 = T}

and set the new value of k as original & plus 1 and go to step 2. Usually,
the value of r;; is chosen according to the relation ry.; = cry, where ¢ 1s a
constant greater than 1.

xterior point penalty functions)
A Note About Exterior Penalty
Functions

Because exterior penalty functions start outside
the feasible region and approach it from the
outside, they only find extremes that occur on
the boundaries of the feasible region. They will
not find interior extremes.

In order to accomplish that, these are often
used in combination with interior penalty
functions... next lesson!

VOPTAOEIC TTOIV

* I'evikd o1 GLVOPTNCELS TOWVNG GYNUaTiCovToL MG EENG:

Find X which minimizes f(X)
subject to
2;(X) =<0, j=12,..., m (7.153)

This problem is converted into an unconstrained minimization problem by constructing
a function of the form

I

de =X, r) = fX)+r) Gjlgi(X)] (7.154)
j=I

where (G; is some function of the constraint g;, and r; is a positive constant known
as the penalty parameter. The significance of the second term on the right side of
Eq. (7.154), called the penalty term, will be seen in Sections 7.13 and 7.15. If the
unconstrained minimization of the ¢ tfunction is repeated for a sequence of values of
the penalty parameter ri(k = 1,2,...), the solution may be brought to converge to
that of the original problem stated in Eq. (7.153). This is the reason why the penalty
function methods are also known as sequential unconstrained minimization technigues
(SUMTs).

TUTrlKeg OUVAPTNOEIC TTOIVNC

ThE penalty function formulations for inequality constrained problems can be
divided into two categories: interior and exterior methods. In the interior formulations.,
some popularly used forms of G; are given by

1
Gi=— (7.155)
! zi(X)

Gj = log[—g;(X)] (7.156)

Some commonly used forms of the function G ; in the case of exterior penalty function
formulations are

G; = max|0, g_l.-{K}] (7.157)
G = (max[0, g (X))’ (7.158)

@, f

A
L R T |
giryl
P
qirs) ﬂm\;\ml
\ by
t,'lf:ll:.l"l]' a = -,
P2 Optimum X*
0 i
]
1
0 — Ll

G lgi(X) = [max [0.4,001)
()

@

0

U

he . W " O L T T ™

Optimum X*

[TX) = oex;
: - X
X1 = ﬁ
G lgiiX) = - 1ig, (X}
(h]

Figure 7.10 Penalty function methods: (a) exterior method; (#) interior method.

2. UVOPTNOEIC TTOIVIC ECWTEPIKOU OnNEiou
(Interior point penalty functions) Barrier Functions)

_ ‘I.L'ML_____'_ OE ‘ ..h.--\
ior point penalty functions rj Barrier Functions)

The simplest interior penalty function, called an “inverse
barrier function”, involves writing a barrier function for
each constraint g(x) < 0 as follows:
1
B(x) =
(x) gj(x)
This procedure has two effects:

* The negative sign changes the constraint from a
negative number (< 0) to a positive.

* The fraction ensures that as g(x) approaches the
constraint boundary at 0, the barrier function gets
infinitely large.

Therefore, this barrier creates a positive number that
approaches infinity as x nears the boundary.

(X, rﬂ—jiﬂl—qz X (7.160)
Ji)

It can be seen that the value of the function ¢ will always be greater than [since g;(X)
is negative for all feasible points X. If any constraint g;(X) is satisfied critically (with
equality sign), the value of ¢ tends to infinity. It is to be noted that the penalty term in
Eq. (7.160) is not defined if X is infeasible. This introduces serious shortcoming while
using the Eq. (7.160). Since this equation does not allow any constraint to be violated,
it requires a feasible starting point for the search toward the optimum point. However,
in many engineering problems, it may not be very difficult to find a point satisfying
all the constraints, g;(X) < 0, at the expense of large values of the objective function,
f(X). If there is any difficulty in finding a feasible starting point, the method described
in the latter part of this section can be used to find a feasible point. Since the initial
point as well as each of the subsequent points generated in this method lies inside the
acceptable region of the design space, the method is classified as an interior penalty
function formulation. Since the constraint boundaries act as barriers, the method is also

known as a barrier method. The iteration procedure of this method can be summarized
as follows.

Iterative Process

1,

Start with an initial feasible point X; satisfying all the constraints with strict
inequality sign, that is, g;(X;) <0 for j = 1.2,...,m. and an initial value of
ry>0.Set k = 1.

Minimize ¢(X, rp) by using any of the unconstrained minimization methods
and obtain the solution X},

Test whether X} 1s the optimum solution of the original problem. If X7 1s found
to be optimum, terminate the process. Otherwise, go to the next step.

Find the value of the next penalty parameter, ry4;, as

Pyl = CT

where ¢ < 1.

Set the new value of k = k + 1. take the new starting point as X; = X}, and
go to step 2.

Although the algorithm is straightforward, there are a number of points to be considered
in implementing the method:

1. The starting feasible point X; may not be readily available in some cases.
2. A suitable value of the initial penalty parameter (r) has to be found.

3. A proper value has to be selected for the multiplication factor, c.
4. Suitable convergence criteria have to be chosen to identify the optimum point.

5. The constraints have to be normalized so that each one of them vary between
—1 and 0 only.

“I.L'M_____'_ oS D, U
erior point penalty functions i

\

Barrier Functions)

As with exterior penalty functions, the inverse
barrier method causes some graphical

problems. Because it involves an inverse
function 1/g(x), it creates an asymptotic graph:

objective function T(x)

L

Ac | ¢ ! _constraint
s long as we stay on \/\ .« barrier
J i

the left side of the

barrier, the method 7
will work. J\

- ' \/ L . = .-..-I\

Yerior point p;nal functions Al Barrier Functions)

Problems with Barriers

If the initial point ever moves

g outside the boundary, however,
\/\i the method will fail, because

i outside the constraint (in this
; case, the right side of the graph)
J\ the other side of the function will

come into play.

The values here are lower, so a minimization
program will pick them up and run with them,

even though they violate the constraint.

- ' \/ L . = .-..-I\

erior point p“emnal ctis fi Barrier Functions)
The Solution: r, again!

As with exterior penalty functions, part of the
solution is to include a multiplier, in this case 1/r. We
will begin with r = 1 and gradually increase r by
factors of 10.

This has the effect of successively reducing the
penalty. In the beginning the penalty is large,
preventing the minimum point from crossing the
barrier of the constraint. This barrier is so effective

that the minimum point will not be very accurate.

As the penalty gets smaller, the minimum point will
approach closer to the boundary.

Sarrier Functions)

ertlng the Penalty Function

Using our previous example,
minimize f(x) = 100/x
subjecttox <5
we will first convert the constrainttox—-5 <0,

then write the barrier function:
1

B(x) =
X—5
and then the modified objective function:
minimize T(x) = S

X r Xx-=5

FETS TTOTVITS "CO BT
terior point penalty functions 1

\

Barrier Functions)

Final Comments

The difficulties on problem 3 bring up an interesting
point: penalty methods are not just plug-and-play!
There are many variables involved, including:

* theinitial value of r

* how fast r grows

* the initial value of x

* the step size in the minimizer

In an actual problem, these variables are tried in
different combinations, and typically both interior
and exterior methods are used.

2. UVOPTNOEIC TTOIVAC (ETTEKTAOEIC)

7.17 EXTENDED INTERIOR PENALTY FUNCTION METHODS

In the interior penalty function approach, the ¢ function is defined within the feasible
domain. As such, if any of the one-dimensional minimization methods discussed in

Chapter 5 is used, the resulting optimal step lengths might lead to infeasible designs.
Thus the one-dimensional minimization methods have to be modified to avoid this prob-
lem. An alternative method, known as the extended interior penalty function method,
has been proposed in which the ¢ function is defined outside the feasible region. The
extended interior penalty function method combines the best features of the interior and
exterior methods for inequality constraints. Several types of extended interior penalty
function formulations are described in this section.

,—o—'—''_'_'_'_'_'_'_

—_—

Linear extended penalty function method

function is constructed as follows:

il
dr=dX.n) = fX) +r) 2;(X) (7.222)
j=1
where |
— — if g;(X)<e¢
(X Jj =
g;(X) = g‘{ :' - (7.223)
- EH'E;’ if g;(X)>¢

and £ 1s a small negative number that marks the transition from the interior penalty
[2;(X) = £] to the extended penalty [g;(X) > £]. To produce a sequence of improved
feasible designs, the value of £ is to be selected such that the function ¢; will have a
positive slope at the constraint boundary. Usually, £ is chosen as

£ = —c(rp)? (7.224)

:—'—''_'_'_'_'_'_'_'_

- Quadratic extended penalty function method

The ¢ function defined by Eq. (7.222) can be seen to be continuous with continuous
first derivatives at gj{}ij — £. However, the second derivatives can be seen to be
discontinuous at g ;(X) = £. Hence it is not possible to use a second-order method for
unconstrained minimization [7.20]. The quadratic extended penalty function is defined
so as to have continuous second derivatives at g;(X) = ¢ as follows:

b =pXorp) = fX)+r) §;(X) (7.225)
=1
where |
— if g:(X)<eg¢
g2;(X) = 1 " (7.226)

I X)|° (X

l—— [g’“r }] gBHH -I-E‘ if giX)>e¢
E E £

Uadratic extended penalty

Start with Xy, riv e, a

l

Setk=1

:

— Compute £=-clrg)”

l

Minimize ¢ =t X, ri, &

as an unconstrained function

:

Check for convergence

lIon method

Converged
-

Not converged l

Set rp =y

stop

Figure 7.14 Linear extended penalty function method.

