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TI TTApPOUCIACTNKE EWC ONUEPO

* AvoAvtikeéc uEbooot emilvong tpoPAnudtov
BeAticTOmMOInOMC.

* M£Booot ypaptkod TPOYPAUUOTIGLOD Y10 TV ETIALGT
TPOPANUATOV UE YPOLUIKT AVTIKEILEVIKT] GUVAPTNON Kol
YPOULULUIKOVG TEPIOPLGUOVE 1GOTNTOC 1] OVICOTNTAC.

* M£0Booot emilivong Lovooldotatmv TpofAnudTmy
BeAticTOoMOINoNG, O1 OTTOlEC EIva YPTGLUEC GTNV EVPEGT

0L BEATIGTOV UNKOLS PMUaTog 6 TpoPANUaTa ETIAVGNC
LE EMOVOANTTITIKEC LeBOOOLC.



O TTOPOUCIAOTEN
® M£0Booot emilvong un YpOoUUK®OV TPoPANUdTOV.

* H ovykekpiuévn odAeén Ba ectidcel og TpoPfAnuoata yopig
TEPLOPIGLLOVC.

* 'Eva mpoktikd TpoPAnUa oTavia 0eV £XEL TEPLOPLGULOVG.
Oumc n perém 1€to1mv TpoPANUATOV EIVOL GTULOVTIKT] OLOTL:

® 01 TEPLOPICUOL GE KATOo TPOPAN AT EYOVV UIKPT] CT|ULOGIa,

® UEPTKEC OO TIC 1O OTTOO0TIKEG HEBOOOVE ETIAVGNC
TPOPBANUATOV UE TEPLOPIGLLOVC KAVOLV YPTIoTN TOV
AVTIOTOLY®V TEYVIKOV ETIAVOTG Y®PIC TEPLOPIGUONVG,

o [ToAAG TpoPAN T LE TEPIOPIGULOVE UTOPOVV VAL
LETOGYMNUATIOTOVV GE TPOoPANHOTA YOPIC TEPIOPIGLOVE,

° wapéyertn Pdon yo TRV Katovonon TV LeEBOOwmV EQUPLLOYNC
G€ TPOPANLOTO LE TEPLOPIGLLOVC.
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* H yevikn meprypaen mpofAnuatog BeAtiotonoinong ywpig
TEPLOPICULOVS Elvar oG EENG:

x|
X2

Find X = { _ ‘ which minimizes f(X)

X



= V4
Icaywyn
® 211 2" O10AEEN TOPOVGIAGTIKOY Ol OVOALTIKEC TEYVIKES
eniAvong tpoPAnudtmv BeATioTononGMC Kot
TOPOVCIAGTNKE OTL £va onueio X Yo Vo amoTEAEL TOTIKO
erdyioto e f(X) mpémel va 1oyveL n avaykoio GuvONKN:
af

—(X=X")=0, i=1,2...., 1" (6.2)
dx,

° Ta va eac@arlcotel 0T €ivor TOTIKO EAGY1GTO TPETEL
enionc o Eoclavog mivaxkog (Hessian matrix) va eivai
Oetucd opiouévog (positive definite):

a9 f

dx; dx

Jx =[Tlx= = [ I'?Z"l-j| = posiive definite {6.3)



“to BéLTioto onueio pe apopntucéc nedddouc.
* Av OLLOG M AVTIKEUEVIKT] GLVAPTNGCT OEV EIVOL TOPAYDYIGLUN
TOTE OEV UTOPOVV VO YPNGILOTONH00V Yo Vo avayvmpicouy To
BEATIGTO oMueio. Avtd yiveTon KOTovonTo LE TO €ENG
Topaosypo: £€6TM 0Tl OEAOVE VO EAAYIGTOTOGOVLLE TO EENC:

fix)
ax for x =0 f

fx) =
i —bhx for x <10

fix) = —hx
orov o=>0 ko b>0

0

* H ocvuykexpiuévn cuovaptnomn oev ivot mapaymyiciun 6to
BéATioTo onueio X =0, 0omdTE dEV UTOPOVV VO, EPOPLLOGTOVV Ol
eClomoelg 6.2-6.3 yio TV avayvopict| To.

® Y€ TETOLEC MEPUTTMGELS Y10, TNV OVAYVOPICT TOL PEATIGTOV
epapuoletarn yevikn covOnkn: f{(X*)<f(X) yia 6ho ta X.
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Karnyopliotroinon Twv Hebodwyv e1TiAuong
* O1VmoAOYIGTIKEC TEYVIKEG feATioTOTOINON G TPOPANUATOV
YO PIC TEPLOPIGLLOVC KOTUTACGOVTOL GE OVO KOTYOPIES:
* MéBooot aueong avalnmong (Direct search methods).
* Mé0Booot kabdoov 1] nébooor khionc (Descent methods).



0501 GUEDNC AVOCNTNONC
(Direct search methods)

* O1 uéBooot queomnc avalnTnong omaltovy Hovo TovV
VTTOAOYIGULO TNG OVTIKEIEVIKNG GLVAPTNGNG KOl OEV
YPNGLLOTOLOVV TIC LEPIKES TAPAYDYOVS TNE Y0l TOV
EVTOTIGLLO TOV OKPOTOTOV.

* OvoudCovtat kat peBooot ympic kAion (nongradient
methods) kol uebooor unoevikng tédEng (zeroth-order
methods).

* Eivon katdAANA0L Y10 E0KOAOTEPO TPOPANLOTO LE CYETIKA
Alyec uetaPantéc.
* Eivou Atydtepo amotedeopnatikéc amd tig pefodoovg kabooov,

AL EQaPUOCOVTOL KOl GE GLUVOPTIGELS GTIC OTOLEC OEV
VITAPYEL N OEV EIvO EDKOAO VO, VTOAOYIGTEL 1] TTAPAYMYOC.
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“ME£B0B01 KaBOBoU A KAioNC
(descent ) gradient ] indirect methods)

* O1 ugbooot kabooov (1 neBoool kAiong) amontovv EKTOC OO TOV
VITOAOYIGLLO TNG AVTIKEIUEVIKNG GUVAPTNGNC KO TOV DITOAOYIGUO
¢ 1" Tapayoyov M kol g 215, avaroya pe tn uEbooo.

* Avtéc o1 uEBoodot Tov ¥pNoomolovy Hovo v 11 Tapdymyo
ovoudZovrtal 1" taEng uEBooot. Avtictoryo OGEC YPMNGLLOTOIOVV
Ko TN 2" mopdywyo ovoudlovtal 2% tacne nEbooot.

* Eivon armoootikotepec LEB0doL 6E GyEom pe tnv dueon
avalrInomn, AOY® TOV ETTAEOV TAT|POPOPIDV TOV TOPEYEL O
VTTOAOYIGULOC TV TTOPAYDYWOV.



Table 6.1 Unconstrained Minimization Methods

Direct search methods®

Descent methods?

Random search method
Gnd search method

Univariate method

Pattern search methods
Powell’s method

Simplex method

“Do not require the denvatives of the function.

"Require the derivatives of the function.

Steepest descent (Cauchy) method

Fletcher—Reeves method

Newton's method

Marquardt method

(Quasi-Newton methods
Davidon-Fletcher—Powell method
Broyden—-Fletcher—Goldfarb—Shanno method
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[ EVIKN TTPOCEYYION

® ‘OAec o1 pEBooot PedtioTomoinonc mpoPAnudToy ympic
TEPLOPLGULOVE EIVOIL ETAVOANTTIKEG.

* Exxtvodv amd £va 00KIaoTiKO onueio (Avon) kot
TPOYW®POVV TTPOG TO OKPOTOTO LLE OLOO0YIKA PrinaTol
(OOKIUEC).

* O1010popéG avaueca 6Tic LeBooovg Eykettou:

® GTO TMG EMAEYOLV TNV KatevOBuvon avalnnonc,

® TMOG EKTILOVV TO UNKOC PNUotog mpoc eKEL Ko

® TOG EAEYYOVV TO VEO OMUELD Yol TO v glval BEATIOTO.



o 1. Exkivnon amo évo Soxipooticd onueio X;.

* 2. Evpeon g KataAANANG Katevbuvonc avalnnong S;
(Eexvavtog ue 1=1), n omoia oonyel Tpog 10 PEATIGTO.

* 3. Ebpeomn tov kotdAAnAov punkovg Prnatoc A.* mpog v
Kotevuvon S..

* 4. Yroloyiouodg tov véov onueiov X, = X. + S

* 5.'EAeyyoc tov X, av givon fErTioTo. Av glvon T10tTE

OAOKANPpOVETOL T Oto0tKacio. AAALDG TifeTow1 =1+ 1 ko
emoavoAopuPavetor n owdkacio 6to Prua 2.
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PO LIOGC Y O AR a2 0TS ONAET

o O ui(popsg HEB0OO1 EY0oVV O1POPETIKOVE PLOLOVS GUYKAIGTC.

* I'evikog uo neBooo BeAtiotomoinonc avapépetat 0Tt £l pLOUO

GUYKAMONG NG TAENG P OV: IX., — X* o
|1X; —X*|p —

* omov Xi ko X,,, €ivon Ta onueio Tov vToAoyicTNKAY GTNV

emavOoAnyn i kou it/ avtiototya, To X oVTITPOCMTEVEL TO
BérTioTo onueio ko | X|| €tvon To unkog tov ovucpotoc X:

k=0, p=1

IX|| = \/_rf + X3 4o+ x2
° Av p=1 kou 0 <k <1 t0te N uEB0OOC avyrAiver ypouuira (apyQ).
* Av p=2 101€ 1 LEBOOOC TvyKAIVEL TETPOYWVIKG — quadratically
convergent (0VTIOTOLYEL GE YPIYOPT GLUYKALOT).

* Yrnepypouuikn cvykAon (superlinear convergence) ovoudCetal
OTOLV: i i1 — X7l
im0 |[X; — X*|

> ()
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MEBoOOI aueonc avalnTnong
Direct Search Methods



000l Tuxaiac avadntTnong
(random search methods)

* Baoilovtot otn ypnion toyaimv aplfpuov yio va Bpovv 1o
eldyioto onueio. H mepiocotepec PipAtodnkec
TPOYPOULUATIGTIKOD KOOIKO £YOVV YEVVITPIES TUYOLWDV
ap1Ouav (random number generators), omOTE UTOPOVV VU
EQPOPLOGTOVV Ol TEYVIKEC EDKOAL.

* Mepikég pEbooor Toyaiog avalntnong eivat:

* Random Jumping Method

* Random Walk Method

* Random Walk Method with Direction Exploitation



Although the problem 1s an unconstrained one, we establish the bounds /; and u; for
each design variable x;,i = 1,2, ..., n, for generating the random values of x;:

=<xi<w, i=1,2,..., n (6.16)
In the random jumping method, we generate sets of n random numbers, (ry, r2, ..., ),
that are uniformly distributed between 0 and 1. Each set of these numbers 15 used to

find a point, X, inside the hypercube defined by Eqgs. (6.16) as

b 4 ri(uy — 1)

X
X b+ ra(u2 — b)

=1 . 3= . * (6.17)
Ln l, +r (i, —1,)

and the value of the function is evaluated at this point X. By generating a large number
of random points X and evaluating the value of the objective function at each of these
points, we can take the smallest value of f(X) as the desired minimum point.



The randoem walk method 1s based on generating a sequence of improved approxima-
tions to the minmimum, eazch derived from the preceding approximation. Thus if X; is
the approximation to the minimum obtained in the (i — 1)th stage (or step or iteration),
the new or improved approximation in the fth stage 1s found from the relation

X; 1 =X + Ay (6.18)

where A 15 a prescnibed scalar step length and v; 15 8 unit mndom vector generated in the
ith stage. The detalled procedure of this method 15 given by the following steps [6.3]:

1.

Start with an imitial point X, a sufficiently large initial step length A, a minimum
allowable step length £, and a maximum permassible number of erations .
Find the function value f; = F(X,).

Set the iteration number as 1 = 1.

Generate a set of n random numbers rg.ra, ..., rn €ach lymg in the interval
[—1. 1] and formulate the unit vector u as

oz
1 ra
u=— _ 6.19
(Ff +ry+---+rl2 ] W=
Fa

The directions generated using Eq. (6.19) are expected to have a bias toward
the diagonals of the umit hypercube [6.3]. To avoid such a bias, the length
of the vector. K. 18 computed as

R=tr%+r§+~--+r;:}”2

and the random numbers generated (ry, r2. .- .. ry) are accepted only 1if R < 1
but are discarded 1if R > 1. If the random numbers are accepted, the unbiased
random vector u; 15 oiven by Eqg. (6.19).



. Compute the new vector and the corresponding function value as X = X + An
and f = f(X).

. Compare the values of f and fi. I f < f;, set the new values as X) = X and
fi=fandgotostep 3. I f = fy, goto step 7.

. If1 = N, set the new 1lerabion number as § =7 4 | and go to step 4. Un the
other hand, if i > N, go to step B.

. Compute the new, reduced, step length as & = A/2. If the new step length is
smaller than or equal to &, go to step 9. Otherwise (1.e., if the new slep length
15 greater than £), go to step 4.

. Stop the procedure by taking X = X and fu = f1.



Example 6.3 Mimmize (v, ) =1 —1+ 1.1']! + 2xpea + .::1: using random walk

method from the point Xy = |} with a starting step length of A = 1.0. Take & = 0.05
and N = 100.
S Table 6.2 Minimization of f by Random Walk Method
Step Number of Current objective
length. trials Components of X 4 in function value,
A required” 1 2 fi= f(X; 4+ iu)
1.0 | —0.93696 00.34943 —0.06329
1.0 2 —1.15271 1.32588 —1.11986
MNext 100 trials did not reduce the function value.
(.5 | —=1.34361 1.78800 —1.12854
(.5 3 —=1.0731%8 1.36744 —1.200232
MNext 100 trials did not reduce the function value.
0.25 . —(0.86419 1.23025 —1.21362
0.25 p. —{.86Y55 1. 48019 —1.22074
0.25 8 =1.10661 1.55958 —1.23642
0.25 3 —=0.94278 1.37074 —1.24154
.25 5] —1.08729 1.57474 —1.24222
0.25 50 —0.92606 1 .38368 —1.24274
0.25 23 =1.07912 1.58135 =1.24374
Next 100 trials did not reduce the function value.
0.125 | 097986 |.50538 —1.24894
MNext 100 trials did not reduce the function value.
0.0625 100) trials did not reduce the function value.
0.03125 As this step length is smaller than e, the program is terminated.

“Out of the directions generated that satisfy R < 1, number of trials required to find a direction that also
reduces the value of f.
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Random Walk Method with Direction Exploitation

In the random walk method described in Section 6.2.2, we proceed to generate a new
unit random vector u;4+) as soon as we find that u; is successful in reducing the function
value for a fixed step length A. However, we can expect to achieve a further decrease
in the function value by taking a longer step length along the direction u;. Thus the
random walk method can be improved if the maximum possible step is taken along
each successful direction. This can be achieved by using any of the one-dimensional
minimization methods discussed in Chapter 5. According to this procedure, the new
vector X; 4 1s found as

Kf+1 =’ _K!' + l?ﬂf {E?.[:‘}
where A" is the optimal step length found along the direction u; so that

finn=fXi + A w) = nﬂnj{ﬂ,— + Aiug) (6.21)

The search method incorporating this feature is called the random walk method with
direction exploitation.



1

2

nX;OV%ZKTr']HGTG LEBOOWV
TUXaiac avalntnong

. These methods can work even if the objective function is discontinuous and
nondifferentiable at some of the points.

The random methods can be used to find the global minimum when the objective
function possesses several relative minima.

These methods are applicable when other methods fail due to local difficulties
such as sharply varying functions and shallow regions.

4. Although the random methods are not very efficient by themselves, they can be

used in the early stages of optimization to detect the region where the global
minimum is likely to be found. Once this region is found, some of the more effi-
cient techniques can be used to find the precise location of the global minimum

point.



This method involves setting up a switable grid in the design space, evaluating the
objective function at all the gird points, and finding the grid point corresponding to
the lowest function value. For example, if the lower and upper bounds on the ith
design vanable are known to be [; and u;, respectively, we can divide the range (/;. u;)

L] -:l ; ] ]
into p; — 1 equal parts so that -l.': 9, .1".[‘}1 i .._,_t': P denote the grid points along the x;

axis (r =1.2,...,n). This leads to a total of pyp>--- p, grid points n the design
space. A grid with p; = 4 1s shown in a two-dimensional design space in Fig. 6.4, The
erid points can also be chosen based on methods of experimental design [6.4, 6.5].
It can be seen that the grid method requires prohibitively large number of function
evaluations in most practical problems. For example, for a problem with 10 design
variables (n = 10), the number of grid points will be 3! = 59,049 with p; = 3 and
41" = 1,048,576 with p; = 4. However, for problems with a small number of design
variables, the grid method can be used conveniently to find an approximate minimum.
Also, the gnd method can be used to find a good starting point for one of the more
efficient methods.

e L S [ e |

Figure 6.4 Grid with p; = 4.



nivariate metho

® 211 GVYKEKPIUEVT LUEDBOOO aAAACeL uia petaPAntm kabe popd ko
EMOIMKETOL 1) OLOLOOYLKT TPOGEYYIOT TOV PEATIGTOL GMUELOL.
Zekvovtoc amo Eva factkd onueto X, otV i-o11 ETAVAANYN
uEvouv otabepéc ot n-1 petaPAntéc Kot aAAalel povo 1M
ATOUEVOVCO, LETAPANTY).

Emouévme 1o mpoPAnua yiveton Lovooldotato Kot epapuoletol
OTOLOONTTOTE TEYVIKT] TNG TPOTNYOVUEVNC OLAAEENC, DGTE VAL
nopoyOel To emOuevo onueio Xi,q.

H véa xatevBuvon kabopiletal TpomonToI®VTOS OTOLONTOTE OTTO
TIG amouévovoeg n-1 petafAntéc mov Nrav otabepéc 610
wponyovuevo Prua. Otav eleyyBovv OAeC 01 KaTeLOVVGELS O
KUKAOG OAOKANp@OVETOL KOt EEKIVAEL 1] O100IKAGIO EOVAL atd TNV
apyN €0G OTOL Vo UNVv exEpyeTal Pertimon yio kauio katevbovvon.



Choose an arbitrary staring point X, and set i = 1.
Find the search direction §; as

5 B BE § PRSI b for i=1l,n+1.2n4+1,...
NG R for i=2n+2.2n42, ...
gl — 1(0,0,1,....0) for i=3.n4+3.2n413. ... (6.22)

-

(0,0,0,...,1) for I=n,2n 3n, ...

Determine whether 4; should be positive or negative. For the current direction
S;. this means find whether the function value decreases in the positive or
negative direction. For this we take a small probe length (£) and evaluate f; =
X)), fFf=FfX;+&8).and f- = f(X; —&8;). If f+ < f;. S; will be the
correct direction for decreasing the value of f and if f~ < fi, —8; will be the
correct one. If both f* and f~ are greater than f;, we take X; as the minimum
along the direction S;.

Find the optimal step length A7 such that

FIX; &+ 478;) = min(X; &+ 4;S;) (6.23)

where 4 or — sign has to be used depending upon whether §; or —8; 15 the
direction for decreasing the function value.

Set X;4 = X; = 475, depending on the direction for decreasing the function
value, and fi+1 = f(Xiq1).

Set the new value of i =1 + 1 and go to step 2. Continue this procedure until
no significant change is achieved in the value of the objective function.



The univariate method 1s very simple and can be implemented easily. However,
it will not converge rapidly to the optimum solution, as it has a tendency to oscil-
late with steadily decreasing progress toward the optimum. Hence it will be better to
stop the computations at some point near to the optimum point rather than trying to
find the precise optimum point. In theory, the unmivanate method can be applied to find
the minimum of any function that possesses continuous derivatives. However, if the
function has a steep valley, the method may not even converge. For example, consider
the contours of a functuon of two variables with a valley as shown in Fig. 6.5. If the
univariate search starts at point P, the function value cannot be decreased either in
the direction =8, or in the direcion £8-. Thus the search comes to a halt and one
may be misled to take the point P, which 1s certainly not the optimum point, as the
optimum point. This situation arises whenever the value of the probe length £ needed
for detecting the proper direction (=8 or ==82) happens to be less than the number of
significant figures used in the computations

Line of steep
valley

Optimum paeint

Univariate method

x

Figure 6.5 Failure of the univariate method on a steep valley.




Example 6.4 Minimize f(x;,x;)=x; —x3 4 2x7 +2x;x; + 17 with the starting
point (0, 0).

SOLUTION We will take the probe length (£) as 0.01 to find the correct direction for
decreasing the function value in step 3. Further. we will use the differential calculus
method to find the optimum step length A7 along the direction £8; in step 4.

fteration i = 1

Step 2: Choose the search direction 8; as 8; = {,}.



Step 3: To find whether the value of f decreases along 8§ or —8;. we use the probe
length £. Since

fi=fXy))= f(0.0)=0,

= f(X) +£81) = fie.0) = 0.01 — 0+ 2(0.0001)
+0+40=0.0102> f

f~ = f(X, —eS;) = f(—¢, 0) = —0.01 — 0 + 2(0.0001)
+0+0=—0.0098 < fi.

—81 1s the correct direction for minimizing f from X;.
Step 4: To find the optimum step length A7, we minimize

FX) =481 = f(=A1.0)
= (=) =0+ 2(=2)* +04+0= 247 — 4,

As dffdr; =0 at &y = 4. we have i} = 1.

Step 5 Sel
B
essne 44

fr=f(Xa) = f(=1.00=—1.



Tteration | = 2

" Step 2: Choose the search direction S, as S, = {}}.
: Step 3: Since > = f(X2) = —0.125,

fH= F(Xa+£85) = f(—0.25,0.01) = —0.1399 < £,
== f(Xs+ £8;) = f(—=0.25, —0.01) = —0.1099 = f>

5> 18 the correct direction for decreasing the value of f from X,.
Step 4: We minimize f(X; 4+ 4,8;) to find A3.

Here
F(X2 + A282) = f(—0.25, A2)

= —0.25 — ks + 2(0.25)% — 2(0.25)(%3) + A3
= A3 — 1.543 — 0.125

df
=24 — 1.5=0 at X5 =075

d}._l =

Step 5: Sel

0 1 0.75
fy = f(X3) = —0.6875

Next we set the iteration number as i = 3, and continue the procedure until the optimum
solution X* = =17} with f(X*) = —1.25 is found.

Note: If the method 1s to be computerized, a suitable convergence criterion has to
be used to test the point X;4 (i = 1, 2. ...) for optimality.

X = X+ 328 = {_MS} +0.75 {ﬂ} - {‘”"EEI




—% 211 uébodo univariate owochrsnou 10 BéATIGTO G€
KotevBouveelg mapdAANAo 6TOVS AEOVES TV UETAPANTOV.

° AAMGCovtog KataAAnAa v katevbuven avaltnong Utopel
va, emToyLvOel n dookacial.

Minimum point

Figure 6.6 Lines defined by the alternate points hie in the general direction of the minimum,
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Pattern search

* I'evika n avalntnon o€ potio viomoiel # Pripato
uetafdArovioc povo po petaPfAntn kabe opd, OTov # o
aplOuog TV pHeTaPAnTOv.

* 'Enerta avalntd 1o PEATioTo oty Katevbuvon S, , 1 omoia
KaBopiCetar:. S; =X — X,

* 0mov X; to onueio wov BpEdnke 610 TEAOG TOV 1 PiudTov
Kot X, TO apytKO Gnueio Tov KOKAOL avalnTnong.



MEBodo¢ Tou Powell

* Amotelel eméktaon tne Pacikng avalntnong o€ potipo.
* Eivou apketd 0100€00UEVT).

o Kaverypnon twv «conjugate directions» yio v EKTIUNCEL
Vv KatevBvvon avalnnong:

Definition: Conjugate Directions. Let A = [A] be an n % n symmelric matrix. A sel
of n vectors (or directions) {8;} 18 said to be conjugate (more accurately A-conjugate) if

STAS; =0 for alli##j. i=1.2....n. j=12.....n (6.25)

It can be seen that orthegonal directions are a special case of conjugate directions
(obtained with [A] = [/] in Eqg. (6.25)).



x

1

— X, xar X, to eEAdylota,
otV avalTnon Kotd
Vv Katevbuvon S

Figure 6.7 Conjugate directions.
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Figure 6.8 Progress of Powell’s method.
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Start with X3

l

Set §, equal to the coordinate unit
vectorsi =1 ton

'

Find A* to minimize fIX; + 2S,,)

l

Set X = Xy + A*S,,

l

Set new E
A SetZ =X - S$;=5;,1 |u—
l :T:l,E,,,.,n
aeti=1
Yes
Isi=n+ 17 } e Set§=X-12 B
P l



¥

A, SetZ =X _—
Seti=1

'

Yes
——— ISsE=n+ 17 1\"
C )

lND

Find A* to minimize f{X+ AS;)
Set X = X + --"'-*5,

Y

Is X optimum? )
C )

No

seti=i1+ 1

Yes

Y

= Set§ =X-1Z B

'

Find 2* to minimize C
f(X + A5;)

'

Set X=X+ 2*S, | D

Yes :
s X optimum?
No

Stop

Figure 6.9 Flowchart for Powell’'s Method.



ﬁOXH! I AEN EXEI XXEXH ME TH ME®OAO SIMPLEX
EINTAY2ZHX ITPOBAHMATQN I'PAMMIKOY ITPOI' PAMMATIZMOY !!!
Definition: Simplex. The geometric figure formed by a set of n 4+ | pomnts in an
n-dimensional space is called a simplex. When the points are equidistant, the simplex
15 said o be regular. Thus in two dimensions, the simplex 1s a triangle, and in three
dimensions, it 1s a tetrahedron.

The basic idea in the simplex method’ is to compare the values of the objective
function at the n 4 1 vertices of a general simplex and move the simplex gradu-
ally toward the optimum point during the iterative process. The following equations
can be used to generate the vertices of a regular simplex (equilateral tnangle in
two-dimensional space) of size a in the n-dimensional space [6.10]:

X; =Xp + pu; + Z gy i= L Zicein (6.46)
J=1,j#i

where

(vn+14+n-— and g = (vn4+1-—1) (6.47)

rw"_ rw*'_

where Xg 1s the initial base point and u; 1s the unit vector along the jth coordinate axis.
This method was onginally given by Spendley, Hext, and Himsworth [6.10] and was

developed later by Nelder and Mead [§ The moyxement of the simplex 1s achieved
by using three operations. known : Ceflectiog¥gontractiop)and xpansion )




Nelder-Mead Method

A simplex method for finding a local minimum of a function of several variables has
been devised by Nelder and Mead. For two vanables, a simplex is a tnangle, and
the method 1s a pattern search that compares function values at the three vertices of a
triangle. The worst vertex, where f(x, v) 1s largest, is rejected and replaced with a new
vertex. A new triangle 1s formed and the search i1s continued. The process generates
a sequence of triangles (which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of the triangles 1s reduced and
the coordinates of the minimum point are found.

The algonthm is stated using the term simplex (a generalized triangle in N di-
mensions) and will find the minimum of a function of N vanables. It is effective and
computationally compact.



Initial Triangle BGW

Let f(x. v) be the function that 1s to be minimized. To start, we are given three vertices
of atriangle: Vi = (x¢, vi), k = 1, 2, 3. The function f(x, v) is then evaluated at each
of the three points: zp = f(xg, vi) for k = 1,2, 3. The subscripts are then reordered
so that 71 < 72 < z3. We use the notation

(5) B=(x.y), G=(x,)y), ad W=(xy)
to help remember that B is the best vertex, G is good (next to best), and W 1s the worst

VEriEX.

Midpoint of the Good Side

The construction process uses the midpoint of the line segment joining B and G . It is
found by averaging the coordinates:

B+G Xi+x ¥ '
(6) M = -+ a l|+-'l._..11+:1r2 |
2 2 2



Reflection Using the Point R

The function decreases as we move along the side of the triangle from W to B, and it
decreases as we move along the side from W to . Hence it is feasible that f(x, v)
takes on smaller values at points that lie away from W on the opposite side of the line
between B and . We choose a test point R that is obtained by “reflecting™ the triangle
through the side BG. To determine R. we first find the midpoint M of the side BG.
Then draw the line segment from W to M and call its length 4. This last segment 1s
extended a distance 4 through M to locate the point R (see Figure 8.6). The vector
formula for R is

(7) R=M4+M—-—W)=2M_—W.

Expansion Using the Point E

If the function value at K i1s smaller than the function value at W, then we have moved
in the correct direction toward the minimum. Perhaps the minimum is just a bit farther
than the point R. So we extend the line segment through M and R to the point E.
This forms an expanded triangle BG E. The point E is found by moving an additional
distance 4 along the line joining M and R (see Figure 8.7). If the function value at E
15 less than the function value at R, then we have found a better vertex than K. The
vector formula for E is

(8) E=R+(R—M)=2R - M.



Figure 8.6 The tnangle ABGW
and midpoint M and reflected point
R for the Nelder-Mead method.

G
Figure 8.7 The triangle ABGW and point R and extended point E.



Contraction Using the Point C

If the function values at R and W are the same. another point must be tested. Perhaps

the function is smaller at M, but we cannot replace W with M because we must have
a triangle. Consider the two midpoints C| and C» of the line segments WM and MR,

respectively (see Figure 8.8). The point with the smaller function value is called C,
and the new triangle is BGC. Note. The choice between C| and C; might seem
inappropriate for the two-dimensional case, but it is important in higher dimensions.

Shrink toward B

If the function value at C is not less than the value at W, the points G and W must be

shrunk toward B (see Figure 8.9). The point G is replaced with M, and W is replaced
with §. which is the midpoint of the line segment joining B with W.

Logical Decisions for Each Step

A computationally efficient algorithm should perform function evaluations only if
needed. In each step. a new vertex is found, which replaces W. As soon as it is

found, further investigation is not needed, and the iteration step is completed. The
logical details for two-dimensional cases are explained in Table 8.5.



Figure 8.8 The contraction point
C or C> for Nelder-Mead method.

Figure 8.9 Shrinking the triangle
G toward B.



Table 8.5 Logical Decisions for the Nelder-Mead Algonthm

IF f(R) = f(G), THEN Perform Case (1) {either reflect or extend)
ELSE Perform Case (1) {either contract or shrink]

BEGIN {Case (1).}

IF f(B) < f(R) THEN
replace W with K

ELSE

Compute E and f(E)
IF f(E) = f(B) THEN
replace W with E
ELSE
replace W with R
ENDIF
ENDIF
END {Case (1).]

BEGIN {Case (11).}
IF f(R) < f(W) THEN
| replace W with R
Compute C = (W 4+ M) /2
orC =(M+ R)/2and f(C)
IF f(C) <= f(W) THEN
replace W with C
ELSE
Compute § and f(5)
replace W with §
replace v with M
ENDIF
END {Case (11).}




"_I‘

1

[
Lad

Figure 8.10 The sequence of triangles [T} converging to the point (3, 2) for the
Nelder-Mead method.
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Indirect Search (Descent) Methods
MEBoooI kaBodou N ueEBodoIl KAIoNC



The gradient of a function is an n-component vector given by

df fdx) ]
df faxa |
Vi= . ! (6.56)
nxl 2 |

i f,."lﬂxn

The gradient has a very important property. If we move along the gradient direction
from any point in n-dimensional space, the function value increases at the fastest rate.
Hence the gradient direction is called the direction of steepest ascent. Unfortunately, the
direction of steepest ascent 15 a local property and not a global one. This is illustrated
in Fig. 6.14, where the gradient vectors V f evaluated at points 1, 2, 3, and 4 lie along
the directions 11°, 22, 33', and 44', respectively. Thus the function value increases at
the fastest rate in the direction 11’ at point 1, but not at point 2. Similarly, the function
value increases at the fastest rate in direction 22'(33") at point 2 (3), but not at point
3 (4). In other words, the direction of steepest ascent generally varies from point to
point, and if we make infinitely small moves along the direction of steepest ascent, the
path will be a curved line like the curve 1-2—3—4 in Fig. 6.14.



Theorem 6.3 The gradient vector represents the direction of steepest ascent.

Theorem 6.4 The maximum rate of change of f at any point X is equal to the mag-
nitude of the gradient vector at the same point.

Figure 6.14 Steepest ascent directions,



The evaluation of the gradient requires the computation of the partial derivatives df/dx;,
i=1,2,...,n There are three situations where the evaluation of the gradient poses
certain problems:

1. The function is differentiable at all the points, but the calculation of the com-
ponents of the gradient, af/dx;, i1s either impractical or impossible.

2. The expressions for the partial derivatives df/dx; can be derived, but they
require large computational time for evaluation.

3. The gradient V f is not defined at all the points.

In the first case. we can use the forward finite-difference formula

H_f . FiXn + Axig) — f(Xy)
dx;i |x - Ax; '

L

i=1,2....n (6.63)

to approximate the partial denvative df/dx; at X,,. If the function value at the base
point X, 1s known, this formula requires one additional function evaluation to find
(df/8x;)| xm. Thus it requires n additional function evaluations to evaluate the approxi-
mate gradient V f|xm,. For better results we can use the central finite difference tormula
to find the approximate partial derivative af/dx;|xm:

af | fXm+ Ax) = f(Xy — Axiu;)
H""-i Ko - 2.&-’-‘.": '

i=1.2 00 (6.64)




2. The expressions for the partial derivatives df/dx; can be derived, but they

require large computational time for evaluation.

3. The gradient V f is not defined at all the points.

In the second case also, the use of finite-difference formulas is preferred whenever
the exact gradient evaluation requires more computational time than the one involved
in using Eqg. (6.63) or (6.64).

In the third case, we cannot use the finite-difference formulas since the gradient
is not defined at all the points. For example, consider the function shown in Fig. 6.15.
If Eq. (6.64) is used to evaluate the denvative df/ds at X,,,, we obtain a value of
¢y for a step size Ax; and a value of o+ for a step size Ax,. Since, in reality, the
derivative does not exist at the point X,,,, use of finite-difference formulas might lead
to a complete breakdown of the minimization process. In such cases the minimization

can be done only by one of the direct search techniques discussed earlier.
f

Figure 6.15 Gradient not defined at x,.



STEEPEST DESCENT (CAUCHY) METHOD [

The use of the negative of the gradient vector as a direction for minimization was
first made by Cauchy in 1847 [6.12]. In this method we start from an initial trial
point X, and iteratively move along the steepest descent directions until the optimum
point is found. The steepest descent method can be summarized by the following

steps:

1. Start with an arbitrary imitial point X,. Set the iteration number as i = 1.
2. Find the search direction S; as

8; ==V [i==Vf(X) (6.69)
3. Determine the optimal step length A7 in the direction §; and set

4. Test the new point, X; 4, for optimality. If X;4 is optimum, stop the process.
Otherwise, go to step 5.

5. Set the new iteration number i =7 4+ 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained minimization
technique since each one-dimensional search starts in the “best” direction. However,
owing to the fact that the steepest descent direction is a local property, the method is
not really effective in most problems.



Example 6.8 Minimize [y, x)=x;—x:+ 11.']2 + 2x;x2 4 .JI:'% starting from the
point X; = {H}

SOLUTION

Iteration 1

The gradient of f is given by

df fdx 1 44x; +2x»
dffoxa -1 42x; 4+ 2x>

VAa=Vfi(X)) = !—I]

Theretore,

S1==-Vfi= l_i]

To find X5, we need to ﬁnd the optimal step length A7. For this, we minimize f(X; 4
M8 = fi=A .4 = ;-. — 24, with respect to A,. 5111::& dffdi; =0at AT =1, we

obtain
. 0 Iy 3
HE=E.+ALS.=|U}+]| ]}={ 1]

AsVEAE=VI(X:) = I::I & Ig],}{g iIs not optimum.



Iteration 2

S:==Vfii= ! i l
To minimize
Fi(Xs 4+ 1382 = f(=1 4 Aa, 1 4+ Aa)
= 543 — 24, — |

we set df/diz = 0. This gives A5 = é- and hence

L | il

0.2

Since the components of the gradient at X3, V fi = l_ﬂ 2

l., are not zero, we proceed

to the next iteration.



Iteration 3

o--vn- ]

As
F(Xz 4 A18:3) = f(—08 —0.243, 1.2 4+ (0.243)
3 fff
= 004335 =008z = 1.20, — =0 at A= 1.0
ad h s -
Therefore,

—{).8 —().2 —-1.0
H_,:Hg%—l}‘ﬁ;:l 1“!]‘“‘”{ DI]=I |4’
The gradient at X4 1s given by

-0.20
Vig= !—u.zui

Since V fy # m} X4 1s not optimum and hence we have to proceed to the next iteration.
This process has to be continued until the optimum point, X* = {_ﬂ] 15 found.



Convergence Criteria: The following criteria can be used to terminate the iterative
PrOCESS.

1. When the change in function value in two consecutive iterations is small:

Xiy1) = fiX;
‘f{ #1)— J{ J‘EE] 6.71)
FiXi)
2. When the parhal denivatives (components of the gradient) of f are small:
i)
‘—f <gy, I=12.... n (6.72)
r.'}..'l.';

3. When the change in the design vector in two consecutive iterations is small:

1Xi1 — Xl <& (6.73)



CONJUGATE GRADIENT (F
ﬁ

The iterative procedure of Fletcher—Reeves method can be stated as follows:

1.
2,
3.

Start with an arbitrary initial point X,.
Set the first search direction §; = =V f(X;) = =V fi.
Find the point X, according to the relation

X=X, + l?Sl (6.80)

where A7 1s the optimal step length in the direction §;. Set i = 2 and go to the
next step.

. Find V f; = V f(X;), and set

Vil

VAP g
IV fiz1l®
Compute the optimum step length A7 in the direction §;, and find the new point

g, (6.81)

Xiir = X; + A7S; (6.82)

Test for the optimality of the point X; 4. If X;; is optimum, stop the process.
Otherwise, set the value of i =i 4 1 and go to step 4.



| Remarks:

1. The Fletcher—Reeves method was originally proposed by Hestenes and Stiefel

[6.14] as a method for solving systems of linear equations derived from the
stationary conditions of a quadratic. Since the directions §; used in this method
are A-conjugate, the process should converge in n cycles or less for a quadratic
function. However, for ill-conditioned quadratics (whose contours are highly
eccentric and distorted), the method may require much more than n cycles for
convergence. The reason for this has been found to be the cumulative effect
of rounding errors. Since §; i1s given by Eq. (6.81), any error resulting from
the maccuracies involved in the determination of A7, and from the round-off
error involved in accumulating the successive |V FilPSi—1/IV fic1| terms, is
carried forward through the vector §;. Thus the search directions §; will be
progressively contaminated by these errors. Hence 1t is necessary, in practice,
to restart the method periodically after every, say, m steps by taking the new
search direction as the steepest descent direction. That is, after every m steps,
Smi1 18 set equal to =V f,, instead of the usual form. Fletcher and Reeves
have recommended a value of m = n 4+ 1. where n is the number of design
variables.

. Despite the limitations indicated above, the Fletcher—Reeves method is vastly
superior to the steepest descent method and the pattern search methods, but
it turns out to be rather less efficient than the Newton and the quasi-Newton
(variable metric) methods discussed in the latter sechions.



Example 6.9 Minimize f(x;,x2)=x; —x2+4 11;13 4 2x1x9 + .r% starting from the
point X; = {H}

SOLUTION
Iteration 1
I .
= logzon) = 11 20 420
VHai=ViX)= {_:I»
The search direction is taken as §) ==V fj = {_:] To find the optimal step length

A7 along 8. we minimize f(X; 4 A,;8;) with respect to &;. Here

FXy +38)) = f(=Ay, +4y) = A7 — 2,
d f

—_— =) Ar =1
7P at A

Therefore,

x=x, 18 = fo} + 11} = 1]



Iteration 2
Since VA=V f(X2) = [::]., Eq. (6.81) gives the next search direction as

IV fa]?
S ==V
: R GRE
where
IVAilP=2 and |Vfo| =2
Theretore.

=@ -1
i = 2 1 +2
To find A3, we minimize
F (X5 +358:) = f(=1.1+424;)
= —1— (1 + 2k2) +2 = 2(1 +242) + (1 + 24)°
=435 — 20 — 1

with respect to A;. As df /di; = 84; —2=10at A3 = 5, we obtain

x3=xg+lzﬂz=|_” II i l




Thus the optimum point is reached in two iterations. Even if we do not know this point
to be optimum, we will not be able to move from this point in the next iteration. This
can be venified as follows.

Iteration 3
Now
: () 5
Vhi=VfK) = {ﬂ| . IVAP=2 and VAP =0.
Thus

S; ==Vi+(VAIY/IVAIDS: = — l l I{}I { l

This shows that there 15 no search direction to reduce f further, and hence Xs is
optimum.



Newton yio. TN BeATIoTOTOINGT LOVOOLAGTATWOV
TpoPANUAT®V.

* H peboooroyia mpocEyyiong g cuvaptTnong LE avamTucn
TETPAYOVIKNG oe1pdc Taylor umopei va epapuoctel ko o€
GUVOPTNCELS TOAADV HETAPANTOV.

* 'Emerta vroloyiCeton avaAuTika 10 PEATIGTO TNG
TPOGEYYIGTIKNG CUVAPTNONG KUl LW GLTOV TOV TPOTO
TPoGEYYICETAL TOAD TTLO YPNYOPO TO TPOAYLLOTIKO BEATIGTO.

° [ teTpaymvikéc cuvaptncelc To PEATIOTO e€dyeTan G€ 1
Brua. I'o un teTpayovikeég cuvaptnoels N HEB0oog
Newton umopei va amokKAIVEL 1] VO GUYKAIVEL GE GMUETLD
cayuatog (saddle point).



IIMIEB050 Marquarir——

* H nébooog e néyiotnc kabooov (steepest descent method)
EAMOTTMOVEL TNV OVTIKEUEVIKT] GUVAPTNGT OTAV TO VPIGTAUEVO
onueio X; Bpioketar pokpid amod 1o PEATIoro X . H uébodog
Newton cuykAivel ypryopo otov Bpicketol KOVTa GTO
BerTioTO.

H péBoooc Marquardt emoumkel vo, amoKTnGEL T
TAEOVEKTNLOTO TOV OVO TUPATAV® LeEBOOwV. Tpomomoimvtoc
T Olry®vio, ototyeio Tov Ecolavov mivaka (Hessian matrix)
nwpootifeton Evac OeTikOc otalepOc aplOuoc o, 0 omoloc otav
EYEL LEYAAEC TILEC I avalNTNON AELTOVPYEL TOPOUOLN, LULE TN
steepest descent method. Otav o o, £yel pikpéc TYEC TOTE M
avalrnon Aettovpyel mapouota pe ™ uEbooo Newton.

Emopévac pia kaAn Aettovpyia €tvor  EKKivnem g
avalnTnong 1e Ueyares Tiueg o Ko kabmg Ba eeAloceTon va
LLEWOVOVTOL Ol TWWEC TOV O TPOGEYYILOVTOC TO UNOEV.



B QUASI-NEWTON METHODS [

The basic iterative process used in the Newton’s method 1s given by Eq. (6.86):

Xig =X = [L]7'VF(X) (6.93)

where the Hessian matrix [J;] 1s composed of the second partial derivatives of f
and varies with the design vector X; for a nonquadratic {general nonlinear) objective
function f. The basic idea behind the quasi-Newton or variable metric methods is to
approximate either [J;| by another matrix [4;] or [J;]~' by another matrix | B;], using
only the first partial derivatives of f. If [J;]™' is approximated by [B;]. Eq. (6.93) can
be expressed as

Xipi =Xi = 4BV f(Xi) (6.94)
where A7 can be considered as the optimal step length along the direction
S = —[Bi]V f(X;) (6.95)

It can be seen that the steepest descent direction method can be obtained as a special

case of Eq. (6.95) by setting | B;] = [[].

Yndapyovv 010@popot HEB0d0L LITOAOYIGLOV Y1d TNV AVAVENDGT) TOL TTivaka B;



DAVIDON-FLETCHER-POWELL METHOD

The iterative procedure of the Davidon—Fletcher—Powell (DFP) method can
| /,,._« described as follows:

hEl

1. Start with an initial point X; and a n x n positive definite symmetric matrix
[Bi] to approximate the inverse of the Hessian matrix of f. Usually, [Bi] is
taken as the identity matrix [[]. Set the iteration number as { = 1.

2. Compute the gradient of the function, V f;. at point X;. and set
Si = =[BilVf; (6.128)
3. Find the optimal step length A7 in the direction 8; and set
Xivi =X; + 47S; (6.129)

4. Test the new point X, for optimality. If X, is optimal, terminate the iterative
process. Otherwise, go to step 5.

5. Update the matrix [ B;] using Eq. (6.119) as

[Bix1] = [B:i] + [M;] + [N:] (6.130)
where
Sis?
[M;i] = A} Sf_ (6.131)
iy o3 T
(vy) = - (Bile)Bilg) 6.152)
g [B;leg
g =ViXin)-ViX)=Via—-V/fi (6.133)

6. Set the new iteration number as i = { 4+ 1, and go to step 2.



BROYDEN-FLETCHER-GOLDFARB-SHANNO METHOD

As stated earlier, a major difference between the DFP and BFGS methods is that
o~ the BFGS method, the Hessian matrix is updated iteratively rather than the inverse of
the Hessian matrix. The BFGS method can be described by the following steps.

inl

1. Start with an initial point X, and a n x n positive definite symmetric matrix | 5]
as an initial estimate of the inverse of the Hessian matrix of f. In the absence
of additional information, [ B,] is taken as the identity matrix [[/]. Compute the

gradient vector V f; = V f(X,) and set the iteration number as | = 1.
2. Compute the gradient of the function, V f;, at point X, and set

Si = —[Bi|Vf; (6.134)

3. Find the optimal step length A7 in the direction 8; and set

x,-+| —_— Kr' +- .:ILTS, f'&.]BS}

4. Test the point X;, for optimality. If ||V fis1]| < e, where £ is a small quantity,

take X* =~ X, and stop the process. Otherwise. go to step 5.
5. Update the Hessian matrix as

TIB:lg,y d.dT d;g' [B; B, |gd’
|ﬂ,—+|j=|3.-}+(1+g’ IT Jg) i — g.,TE J—l !,.g' - (6.136)
d; g d; g d; g d; gi
where
di=Xu —Xi =45 (6.137)
g=Vin-=-Vi=VIiXin)=VSfiXy) (6.138)

6. Sel the new iteration number as i =i + 1 and go to step 2.



Remarks:

1.

2.

3

The BFGS method can be considered as a quasi-Newton, conjugate gradient,
and variable metric method.

Since the inverse of the Hessian matrix is approximated, the BFGS method can
be called an indirect update method.

It the step lengths &7 are found accurately, the matrix, [B;]. retains its positive
definiteness as the value of i increases. However, in practical application, the
matrix | B;] might become indefinite or even singular if A7 are not found accu-
rately. As such, periodical resetting of the matrix [B;] to the identity matnx [/]
1s desirable. However, numerical experience indicates that the BFGS method is

less influenced by errors in A7 than is the DFP method.

. It has been shown that the BFGS method exhibits superlinear convergence near

X* [6.19].



P—————

~ AOKIUOOTIKEC OUVOPTAOEIC

* H andooon twv aryopiOuwmv Pertictonoinong
OOKIUACETOL GE TLTTIKEC CLVOPTICELC.

* "Exovv mpotabel o1dpopec GuVOPTNGELS LE OLOUPOPETIKA
otoyeio, OT®¢ 0 aplBuoc Twv peTaPAntov, N
TOAVTTAOKOTNTA, O UPIOUOC TOV OKPOTATOV K. (.

* O oKomOC TV GLVOPTNCEMV EIval VoL GLYKPIEL 1)
amOO0CT TV aAYyopiOumv.

* Yuvnbmc n ekkivnomn tov aAyopibumyv vAomoleiton amo
GLYKEKPIUEVO GNUELD.

® ()C KPUITNP1O0 GLYKPIGNG TUTIKA EIvVOl 0 GUVOAIKOG apPtOUOS
TOV EKTIUNCEWDV TNC AVTIKEWEVIKNC GLVAPTNGCTC.



AOKIUOOTIKEC OUVOPTNOEIC



1. Rosenbrock’s parabolic valley [6.8]:

Filxy. x5) = 100(x2 — x7) + (1 — x,)°

=[] x=[)

X
fi =24.0. f*=0.
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2. A guadratic function:

Flxy. x2) = (x) + 2x2 — —I~{1r| 4+ 12 — 5

II =1

=740, f*=0.0




3. Powell’s quartic function [6.7]:

Fixy, xa, x3, x4) = (x1 4 10x2)% + 5(x3 — x4)°

+ (3 — 2x3)* + 100x; — x4)*
Xi={xpxaxsu)={3-101), X*T=(0000)
fi=2150, =00
4. Fletcher and Powell’s helical valley [6.21]:

flxy, x2,x3) = 100§ [x3 — l{H[Ili.tg}]I-[-[ I1E-|-.I'§— l]1 +1

where
X
arctan — if x;=0
X
2rl(xy, x2) = I %5
T + arctan — if xy<0

[} =-f

fr=25,0000, =00



5. A nonlinear function of three variables [6.7]: -

"

| . i
LX1, Xy, x3) = + s | —Taax
flx1, x2, x3) T (2 2 3)

mp[ ,H.._h_zﬂ]
f) =

fi=1 " = foax = 3.0

10. Wood’s function [6.30]:
ey, X2, x3, x4) = [10(xy — 13}]1 + (1 =x1)° 4+ 90(xy — 11’:,,":}1

+ (1= 13} -+ ]ﬁ{11+14—2] + 0.1{x2 — x3)




. Freudenstein and Roth function [6.27]: —
Fxr,x2) = {=13 4 x1 + [(5 = x2)x2 = 2)x2)°

+ =29 4+ x) + [({x2 4+ 1)x2 = ”Lﬁ]’l

0.5 . E . 11.41...
El=!_1 ]T X =i4]' El-]lfm“tf=!—l]ﬂg'ﬁg]

fi=4005, f*=00, f3_ . _=489842 .




. Powell's badly scaled function |6.28]:

flxy, x2) = (10,000x) x5 — 1)* + lexp(—x;) 4+ exp({—x1) — 1.0001 |1

{} 1.098 ... x 10~
9.106. ..
=1.1354, f*=0.0

3D View




8. Brown’s badly scaled function [6.29]:

filx;.xa) =[xy — 10%)2 + (X7 — 2 x H’I_'h]l1 4 (xyxs — 2}3

l Z 10"
}"r"=i1}* 2 =|1:=:m-“]

fi=10" =00
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9. Beale’s function [6.29]: —

flxy, my=[L5—x(1 — Jrg}l1 + [2.25 — x; (1 —.1‘%}!1
+ [2.625 — x;1(1 — x3)]

x-f) x-f

fi = 14203125, f*=00
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