
Fundamental Practices for
Secure Software Development

2ND EDITION

A Guide to the Most Effective Secure
Development Practices in Use Today

February 8, 2011

Authors
Mark Belk, Juniper Networks
Matt Coles, EMC Corporation
Cassio Goldschmidt, Symantec Corp.
Michael Howard, Microsoft Corp.
Kyle Randolph, Adobe Systems Inc.

Mikko Saario, Nokia
Reeny Sondhi, EMC Corporation
Izar Tarandach, EMC Corporation
Antti Vähä-Sipilä, Nokia
Yonko Yonchev, SAP AG

Editor Stacy Simpson, SAFECode

ii

Foreword

In 2008, the Software Assurance Forum for Excel-
lence in Code (SAFECode) published the first version
of this report in an effort to help others in the
industry initiate or improve their own software
assurance programs and encourage the industry-
wide adoption of what we believe to be the most
fundamental secure development methods. This
work remains our most in-demand paper and has
been downloaded more than 50,000 times since its
original release.

However, secure software development is not only a
goal, it is also a process. In the nearly two and a half
years since we first released this paper, the process
of building secure software has continued to evolve
and improve alongside innovations and advance-
ments in the information and communications
technology industry. Much has been learned not
only through increased community collaboration,
but also through the ongoing internal efforts of
SAFECode’s member companies. This 2nd Edition
aims to help disseminate that new knowledge.

Just as with the original paper, this paper is not
meant to be a comprehensive guide to all possible
secure development practices. Rather, it is meant to
provide a foundational set of secure development
practices that have been effective in improving
software security in real-world implementations by
SAFECode members across their diverse develop-
ment environments.

It is important to note that these are the “practiced
practices” employed by SAFECode members, which
we identified through an ongoing analysis of our
members’ individual software security efforts. By

bringing these methods together and sharing them
with the larger community, SAFECode hopes to
move the industry beyond defining theoretical best
practices to describing sets of software engineer-
ing practices that have been shown to improve
the security of software and are currently in use at
leading software companies. Using this approach
enables SAFECode to encourage the adoption of
best practices that are proven to be both effective
and implementable even when different product
requirements and development methodologies are
taken into account.

Though expanded, our key goals for this paper
remain—keep it concise, actionable and pragmatic.

What’s New

This edition of the paper prescribes new and
updated security practices that should be applied
during the Design, Programming and Testing activi-
ties of the software development lifecycle. These
practices have been shown to be effective across
diverse development environments. While the
original also covered Training, Requirements, Code
Handling and Documentation, these areas were
given detailed treatment in SAFECode’s papers on
security engineering training and software integrity
in the global supply chain, and thus we have refined
our focus in this paper to concentrate on the core
areas of design, development and testing.

The paper also contains two important, additional
sections for each listed practice that will further
increases its value to implementers—Common
Weakness Enumeration (CWE) references and
Verification guidance.

iii

CWE References

SAFECode has included CWE references for each
listed practice where applicable. Created by MITRE
Corp., CWE provides a unified, measurable set of
software weaknesses that can help enable more
effective discussion, description, selection and use
of software security practices. By mapping our
recommended practices to CWE, we wish to provide
a more detailed illustration of the security issues
these practices aim to resolve and a more precise
starting point for interested parties to learn more.

Verification

A common challenge for those managing software
security programs is the need to verify that devel-
opment teams are following prescribed security
practices. SAFECode aims to address that challenge
with this new edition. Wherever possible, we have
included methods and tools that can be used to
verify whether a practice was applied. This is an
emerging area of work and SAFECode hopes to use
community feedback to further bolster its guidance
in this area.

Software vendors have both a responsibility and
a business incentive to ensure software security.
SAFECode has collected and analyzed the secure
development methods currently in use among its
members in order to provide others in the industry
with highly actionable advice for improving soft-
ware security. This is a living document and we plan
to continue to update it as the industry and prac-
tices evolve. Thus, SAFECode encourages feedback
and suggestions as to how we can continue to
improve this paper’s usefulness to readers.

SAFECode encourages all software developers and
vendors to consider, tailor and adopt these practices
into their own development environments. The
result of efforts like these will not only benefit
industry through a more secure technology eco-
system, but also provide a higher level of end-user
confidence in the quality and safety of software
that underpins critical operations in governments,
critical infrastructure and businesses worldwide.

SAFECode has published a series of papers on software
supply chain integrity that aim to help others understand
and minimize the risk of vulnerabilities being inserted into
a software product during its sourcing, development and
distribution.

The software integrity controls discussed in the papers
are used by major software vendors to address the risk
that insecure processes, or a motivated attacker, could
undermine the security of a software product as it moves
through the links in the global supply chain. The controls
aim to preserve the quality of securely developed code by
securing the processes used to source, develop, deliver and
sustain software and cover issues ranging from contrac-
tual relationships with suppliers, to securing source code
repositories, to helping customers confirm the software
they receive is not counterfeit.

Copies of The Software Supply Chain Integrity Framework:
Defining Risks and Responsibilities for Securing Software
in the Global Supply Chain and Overview of Software Integ-
rity Controls: An Assurance-Based Approach to Minimizing
Risks in the Software Supply Chain are available at
www.safecode.org.

iv

Table of Contents

Foreword ii

What’s New ii

CWE References iii

Verification iii

Introduction 2

Secure Design Principles 2

Threat Modeling 2

CWE References 5

Verification 5

Resources 6

Use Least Privilege 7

CWE References 8

Verification 8

Resources 9

Implement Sandboxing 10

CWE References 10

Verification 10

Resources 11

Secure Coding Practices 12

Minimize Use of Unsafe String and
Buffer Functions 12

CWE References 13

Verification 14

Resources 15

Validate Input and Output to Mitigate
Common Vulnerabilities 15

CWE References 17

Verification 17

Resources 18

Use Robust Integer Operations for Dynamic
Memory Allocations and Array Offsets 19

CWE References 20

Verification 20

Resources 21

Use Anti-Cross Site Scripting (XSS) Libraries 22

CWE References 24

Verification 24

Resources 26

Use Canonical Data Formats 27

CWE References 27

Verification 28

Resources 28

v

Avoid String Concatenation for Dynamic
SQL Statements 29

CWE References 29

Verification 30

Resources 31

Eliminate Weak Cryptography 32

CWE References 33

Verification 34

Resources 35

Use Logging and Tracing 37

CWE References 37

Verification 38

Resources 38

Testing Recommendations 39

Determine Attack Surface 39

Use Appropriate Testing Tools 39

Perform Fuzz / Robustness Testing 40

Perform Penetration Testing 41

CWE References 41

Verification 42

Resources 42

Technology Recommendations 44

Use a Current Compiler Toolset 44

CWE References 45

Verification 45

Resources 46

Use Static Analysis Tools 47

CWE References 49

Verification 49

Resources 49

Summary of Practices 50

Moving Industry Forward 51

Acknowledgements 51

2

Introduction

A review of the secure software development
processes used by SAFECode members reveals that
there are corresponding security practices for each
activity in the software development lifecycle that
can improve software security and are applicable
across diverse environments. The examination
of these vendor practices reinforces the asser-
tion that software security must be addressed
throughout the software development lifecycle to
be effective and not treated as a one-time event or
single box on a checklist. Moreover, these security
methods are currently in practice among SAFECode
members, a testament to their ability to be inte-
grated and adapted into real-world development
environments.

The practices defined in this document are as
diverse as the SAFECode membership, spanning
cloud-based and online services, shrink-wrapped
and database applications, as well as operating
systems, mobile devices and embedded systems.

To aid others within the software industry in
adopting and using these software assurance best
practices effectively, this paper describes each
identified security practice across the software
development lifecycle and offers implementation
advice based on the experiences of SAFECode
members.

Secure Design Principles

Threat Modeling

The most common secure software design practice
used across SAFECode members is Threat Modeling,
a design-time conceptual exercise where a system’s
dataflow is analyzed to find security vulnerabilities
and identify ways they may be exploited. Threat
Modeling is sometimes referred to as “Threat
Analysis” or “Risk Analysis.”

Proactively understanding and identifying threats
and potential vulnerabilities early in the develop-
ment process helps mitigate potential design issues
that are usually not found using other techniques,
such as code reviews and static source analysis. In
essence, Threat Modeling identifies issues before
code is written—so they can be avoided altogether
or mitigated as early as possible in the software
development lifecycle. Threat Modeling can also
uncover insecure business logic or workflow that
cannot be identified by other means.

Rather than hope for an analysis tool to find
potential security vulnerabilities after code is
implemented, it’s more efficient for software
development teams to identify potential product
vulnerability points at design time. This approach
enables them to put in place defenses covering all
possible input paths and institute coding standards
to help to control the risk right from the beginning.
It is worth noting that an analysis tool lacks knowl-
edge of the operating environment in which the
system being analyzed executes.

3

By their nature, systemic architectural issues are
more costly to fix at a later stage of development.
Thus, Threat Modeling can be considered a cost-
efficient, security-oriented activity, because fixing
issues early in the process may be as easy as chang-
ing an architecture diagram to illustrate a change
to a solution yet to be coded. In contrast, addressing
similar issues after coding has begun could take
months of re-engineering effort if they are identi-
fied after code was committed, or even a major
release or a patch release if an issue was identified
even later by customers in the field.

Leveraging the full benefits of Threat Modeling
when designing systems can be challenging as
software designers and architects strive to iden-
tify all possible issues and mitigate them before
moving forward. This can be difficult to achieve,
so the focus must be on the high-risk issues that
can be identified at design time. In addition, Threat
Modeling results should be continuously updated
as design decisions change and added threats may
become relevant, and threats may be mitigated
during development or by virtue of documentation
or clearly visible use case limitations.

Threat Modeling can be done at any time in the
system’s lifecycle, but to maximize effectiveness
the process should be performed as early in the
development process as possible. Distinct software
development methodologies will have different
points where system design may change: in a
traditional “waterfall” development model, Threat
Modeling would be performed when the design

is relatively well established but has not yet been
finalized, and in the Agile model, the activity could
occur during initial design or be a recurring activity
during each iteration or sprint—when the design is
most likely to undergo change.

The process of Threat Modeling begins with the
identification of possible and commonly occurring
threats. Different SAFECode practitioners have
adopted different approaches to the task of enu-
merating threats against the design being analyzed:

• “STRIDE” – this methodology classifies threats
into 6 groups: Spoofing, Tampering, Repudia-
tion, Information Disclosure, Denial of Service
and Elevation of Privilege. Threat Modeling is
executed by looking at each component of the
system and determines if any threats that fall
into these categories exist for that component
and its relationships to the rest of the system.

• “Misuse cases” – The employment of misuse
cases helps drive the understanding of how
attackers might attack a system. These cases
should be derived from the requirements of the
system, and illustrate ways in which protective
measures could be bypassed, or areas where
there are none. For example, a misuse case
involving authentication would state “By suc-
cessively entering login names, an attacker can
harvest information regarding the validity (or
not) of such login names.”

• “Brainstorming” – if an organization does
not have expertise in building threat models,
having a security-oriented discussion where the

4

designers and architects evaluate the system is
better than not considering potential applica-
tion weaknesses at all. Such “brainstorming”
should not be considered a complete solution,
and should only serve as a stepping stone to a
more robust Threat Modeling exercise.

• “Threat library” – a format that makes threat
identification more accessible to non-security
professionals. Such a library must be open to
changes to ensure it reflects the evolving nature
of threats. Publicly available efforts like CWE
(Common Weakness Enumeration—a dictionary
of software weakness types), OWASP (Open Web
Application Security Project) Top Ten and CAPEC
(Common Attack Pattern Enumeration and
Classification that describes common methods
of exploiting software) can be used to help
build this library. Use of a Threat library can be a
quick way to take advantage of industry security
knowledge (helping teams that lack sufficient
knowledge themselves) or combine elements
of other Threat Modeling methods (such as
linking a threat to misuse cases and a STRIDE
classification).

Once identified, each threat must be evaluated
and mitigated according to the risk attached to
it (using a risk rating system such as Common
Vulnerability Scoring System (CVSSv2), for example),
the resources available, the business case and the
system requirements. This will help prioritize the
order in which threats should be addressed dur-
ing development, as well as the costs involved in
the mitigation. At times, this will drive changes

in design to enable less costly mitigations. Even
without available mitigations or design changes
introduced, a complete Threat Model provides a
good way to measure and manage security risk in
applications.

The end result of a Threat Modeling exercise may
vary, but it will certainly include an annotated
diagram of the system being evaluated, as well as a
list of the associated threats (mitigated and not).

It has been observed in some cases that Threat
Modeling as part of recurring activities in the
Software Development Lifecycle helps to drive a
culture that accepts security as an integral aspect
of software design—the benefit is cumulative, with
later iterations building on the experience of earlier
ones.

Different approaches offer varying requirements
of prior security expertise in order to achieve good
results, and it is possible to choose the one that bet-
ter suits the situation at hand, and later on change
to another approach based on the improving
awareness to security in the involved participants.

As a conceptual exercise, Threat Modeling will
highly benefit from close communication since
having all those responsible present in one location
can lead to lively, results-generating discussion.
However, geographically dispersed teams will
still be able to conduct Threat Modeling exercises
using the many means of communication at their
disposal, from remote presence setups to spread-
sheets and diagrams sent over email. The speed
of the exercise may vary, but there are no specific

5

negative impacts to the end result if the exercise
becomes a question-answer discussion using email,
for example.

Tools are available that support the Threat Model-
ing process with automated analysis of designs and
suggestions for possible mitigations, issue-tracking
integration and communication related to the
process. Some practitioners have honed their Threat
Modeling process to the point where tools are used
to automate as much of it as possible, raising the
repeatability of the process and providing another
layer of support with standard diagramming,
annotation, integration with a threat database and
test cases, and execution of recurring tasks.

CWE References

Much of CWE focuses on implementation issues,
and Threat Modeling is a design-time event. There
are, however, a number of CWEs that are applicable
to the threat modeling process, including:

• CWE-287: Improper authentication is an example
of weakness that could be exploited by a Spoof-
ing threat

• CWE-264: Permissions, Privileges, and Access
Controls is a parent weakness of many Tamper-
ing, Repudiation and Elevation of Privilege
threats

• CWE-311: Missing Encryption of Sensitive Data is
an example of an Information Disclosure threat

• CWE-400: (uncontrolled resource consumption)
is one example of an unmitigated Denial of
Service threat

Verification

A comprehensive verification plan is a direct deriva-
tive of the results of the Threat Model activity. The
Threat Model itself will serve as a clear roadmap for
verification, containing enough information so that
each threat and mitigation can be verified.

During verification, the Threat Model and the
mitigated threats, as well as the annotated archi-
tectural diagrams, should also be made available
to testers in order to help define further test cases
and refine the verification process. A review of the
Threat Model and verification results should be
made an integral part of the activities required to
declare code complete.

An example of a portion of a test plan derived from
a Threat Model could be:

Threat
Identified

Design
Element(s)

Mitigation Verification

Session
Hijacking

GUI Ensure ran-
dom session
identifiers of
appropriate
length

Collect session
identifiers
over a number
of sessions
and examine
distribution and
length

Tampering
with data
in transit

Process A
on server to
Process B on
client

Use SSL to
ensure that
data isn’t
modified in
transit

Assert that
communica-
tion cannot
be established
without the use
of SSL

http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/287.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/264.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/400.html

6

Resources

References:

• OWASP; “Open Web Application Security
Project”; http://www.owasp.org

• CWE; “Common Weakness Enumeration”;
http://cwe.mitre.org

• CAPEC; “Common Attack Pattern
Enumeration and Classification”;
http://capec.mitre.org

• CVSSv2; “Common Vulnerability Scoring
System”; http://www.first.org/cvss/

Presentations:

• AND-304: Threat Modeling: Lessons
Learned and Practical Ways To Improve Your
Software; RSA Conference 2010; Dhillon &
Shostack

 Books, Articles and Reports:

• The Security Development Lifecycle; Chapter
9, “Stage 4: Risk Analysis”; Microsoft Press;
Howard & Lipner

• Software Security Assurance: State-of-the-
Art Report; Section 5.2.3.1, “Threat, Attack,
and Vulnerability Modeling and Assess-
ment”; Information Assurance Technology
Analysis Center (IATAC), Data and Analysis
Center for Software (DACS); http://iac.dtic.
mil/iatac/download/security.pdf

• Software Security; Chapter 2, “A Risk
Management Framework”; McGraw;
Addison-Wesley; 2006.

• Security Mechanisms for the Internet;
Bellovin, Schiller, Kaufman; http://www.ietf.
org/rfc/rfc3631.txt

• Capturing Security Requirements through
Misuse Cases; Sindre and Opdahl; http://
folk.uio.no/nik/2001/21-sindre.pdf

• Software Security; Chapter 8, “Abuse Cases”;
McGraw; Addison-Wesley; 2006.

Tools / Tutorials:

• The Microsoft SDL Threat Modeling Tool;
http://www.microsoft.com/security/sdl/
getstarted/threatmodeling.aspx

http://www.owasp.org
http://cwe.mitre.org
http://capec.mitre.org
http://www.first.org/cvss/
http://iac.dtic.mil/iatac/download/security.pdf
http://iac.dtic.mil/iatac/download/security.pdf
http://www.ietf.org/rfc/rfc3631.txt
http://www.ietf.org/rfc/rfc3631.txt
http://folk.uio.no/nik/2001/21-sindre.pdf
http://folk.uio.no/nik/2001/21-sindre.pdf
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx
http://www.microsoft.com/security/sdl/getstarted/threatmodeling.aspx

7

Use Least Privilege

The concept of executing code with a minimum set
of privileges is as valid today as it was 30 years ago
when it was described in Saltzer and Schroeder’s
seminal paper, “The Protection of Information in
Computer Systems.” The concept of least privilege
is simple, but it can be hard to achieve in some
cases. Even though “least privilege” means different
things in different environments, the concept is the
same:

“Every program and every user of the system should
operate using the least set of privileges necessary to
complete the job.”

Least privilege is important because it can help
reduce the damage caused if a system is compro-
mised. A compromised application running with
full privileges can perform more damage than a
compromised application executing with reduced
privileges. The value of operating with reduced
privileges cannot be stressed enough.

The concept of privilege varies by operating system,
development technologies and deployment sce-
narios. For example:

• Most mobile platforms will force all non-oper-
ating system code to run in a sandbox running
with minimal privilege, but developers should
still only select the privileges or permissions
required for the application to execute correctly.
For example:

• Android requires applications to describe the
permissions needed by the application in the
application’s AndroidManifest.xml file.

• Windows Phone 7 uses WMAppManifest.xml
to describe application capabilities.

• Symbian applications can have capabilities
assigned to them.

• iOS applications have the concept of
“entitlements.”

• .NET applications can describe required permis-
sions in the app.manifest file.

• Java can do likewise in the policy file named
java.policy.

• Windows applications and services run under
an account (a Security Identifier [SID]) that is
granted group membership and privileges.

• Linux applications and daemons run under an
account that has implicit privileges.

• Some Linux distributions (e.g. MeeGo) use
capabilities derived from the now-defunct POSIX
1003.1e draft (also referred to as POSIX.1e).

• Some Linux distributions (e.g.; Fedora and
RedHat) use SELinux, which provides extensive
technologies including SIDs and labels.

• Some Linux distributions (e.g.; Ubuntu and Suse)
use AppArmor, which supports some POSIX
1003.1e draft capabilities and supports applica-
tion profiles.

8

• Grsecurity is a set of patches for Linux that
provide, amongst other security tools, role-based
access control (RBAC) mechanisms.

In short, privileges, capabilities and entitlements
determine which sensitive operations can be per-
formed by applications and users. In the interests of
security, it is imperative that sensitive operations be
kept to a minimum.

There are two development aspects of least privi-
lege that must be considered. The first is making
sure that the application operates with minimum
privileges and the second is to test the application
fully in a least privilege environment. Develop-
ers are notorious for building and smoke-testing
applications using full privilege accounts, such as
root or members of the administrators group. This
can lead to problems during deployment, which are
usually conducted in low-privilege environments.
It is strongly recommended that all developers
and testers build and test applications using least
privilege accounts.

The second point of consideration is to thoroughly
test the application in a least privilege environ-
ment to shake out least-privilege related bugs. It
is recommended that the application under test
be subject to a complete test pass and all security-
related issues noted and fixed.

Finally, a least privilege environment must include
tamper proof configuration, otherwise applica-
tions or users might be able to grant more trusted
capabilities.

CWE References

Like sandboxing, the core CWE is the following:

• CWE-250: Execution with Unnecessary Privileges

Verification

Verifying an application is running with least
privilege can be subjective, but there are some tools
that can provide details to help an engineer under-
stand which permissions and privileges are granted
to a running process:

• In Windows, Application Verifier will issue
“LuaPriv” warnings if potential least privilege
violations are detected at runtime.

• For Windows Phone 7, the Windows Phone Capa-
bility Detection Tool can help determine what
the permission set should be for a Windows
Phone 7 application.

Least privilege is typically enforced in applications
via configurable user or code permissions. Therefore,
performing regular audits or reviews of the default
permissions can be an effective means toward
ensuring least privilege in secure code. The review
can be based on a software specification, outlining
user roles or the functions of supplementary com-
ponents, or via a post-implementation validation of
the software, for example, with integration tests.

http://cwe.mitre.org/data/definitions/250.html

9

Resources

Books, Articles and Reports:

• The Protection of Information in Computer
Systems; Saltzer, Schroeder; http://www.
cs.virginia.edu/~evans/cs551/saltzer/

• nixCraft; Linux Kernel Security (SELinux vs
AppArmor vs Grsecurity); Gite; http://www.
cyberciti.biz/tips/selinux-vs-apparmor-vs-
grsecurity.html

• SAP Developer Network; Integrated Iden-
tity and User Management; http://www.
sdn.sap.com/irj/sdn/go/portal/prtroot/
com.sap.km.cm.docs/library/netweaver/
netweaver-developers-guide-2004s/
SAP%20NetWeaver%20Developer%27s%20
Guide%202004s/IUAM%20Further%20
Information.ca

• Authorizations in SAP Software: Design and
Configuration; Lehnert, Bonitz & Justice; SAP
Press; 2010.

Presentations:

• Linux Capabilities: Making Them Work; Linux
Symposium 2008; Hallyn, Morgan; http://

ols.fedoraproject.org/OLS/Reprints-2008/
hallyn-reprint.pdf

Tools / Tutorials:

• Android Manifest.permission; http://
developer.android.com/reference/android/
Manifest.permission.html

• MSDN Library; Application Manifest File for
Windows Phone; http://msdn.microsoft.
com/en-us/library/ff769509(v=VS.92).aspx

• MSDN Library; How to: Use the Windows
Phone Capability Detection Tool; http://
msdn.microsoft.com/en-us/library/
gg180730(VS.92).aspx

• MSDN Library; Windows Application Verifier;
http://msdn.microsoft.com/en-us/library/
dd371695(VS.85).aspx

http://www.cs.virginia.edu/~evans/cs551/saltzer/
http://www.cs.virginia.edu/~evans/cs551/saltzer/
http://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
http://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
http://www.cyberciti.biz/tips/selinux-vs-apparmor-vs-grsecurity.html
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://www.sdn.sap.com/irj/sdn/go/portal/prtroot/com.sap.km.cm.docs/library/netweaver/netweaver-developers-guide-2004s/SAP%20NetWeaver%20Developer%27s%20Guide%202004s/IUAM%20Further%20Information.ca
http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/hallyn-reprint.pdf
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html
http://msdn.microsoft.com/en-us/library/ff769509(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff769509(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/gg180730(VS.92).aspx
http://msdn.microsoft.com/en-us/library/gg180730(VS.92).aspx
http://msdn.microsoft.com/en-us/library/gg180730(VS.92).aspx
http://msdn.microsoft.com/en-us/library/dd371695(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd371695(VS.85).aspx

10

Implement Sandboxing

While the concept of “sandboxing” processes is not
new, the industry has seen an increase in interest
in the topic since the first version of this paper was
written.

Running a process in a user’s session on many
popular operating systems usually implies that the
process has all of the privileges and access rights to
which the user is entitled. No distinction is made
between what a user’s web browser should have
access to and what their word processing software
should have access to. This model has three risks of
abuse of those privileges:

a. Unrestricted execution of arbitrary native code
achieved via memory corruption bugs

b. Abuse of functionality using the privileges avail-
able to the user

c. Executing arbitrary code from within a man-
aged code (C#, Java, Python, Ruby etc) runtime
environment

Using a managed language, such as C# or Java,
defends against the first scenario by managing
memory on behalf of the application. Managed
runtimes also have their own sandboxes to defend
against the second scenario using policy-driven
code access security. When switching to a managed
language is not an option, such as in large legacy
code bases, sandboxing offers an alternative mitiga-
tion by utilizing operating system security features
to restrict the abilities of a sandboxed process.

Features provided by operating systems to support
sandboxing functionality include:

• Process-level memory isolation

• Integrity Levels on Windows

• Dropping process privileges

• Disabling high-privilege user accounts used by
the process

• Running each application as a unique user

• Permission Manifests

• File system ‘jails’

Applications that are installed on a large number
of systems (>1 million, for example) and process
untrusted data from the Internet are highly
encouraged to implement sandboxing. In addition,
applications that are installed as plugins to high-
risk applications like browsers should work within
the host application’s sandbox.

Many current mobile platforms run all applications
in a sandboxed environment by default.

CWE References

There is one parent CWE that relates directly to
sandboxing:

• CWE-265: Privilege / Sandbox Issues

Verification
• Ensure that all ingredients provided by the plat-

form for a sandbox are implemented correctly

http://cwe.mitre.org/data/definitions/265.html

11

by reviewing the resources below for the target
platform. One missing ingredient can render the
entire sandbox protection ineffective.

• Review the attack surface that is available from
within the sandbox. This can be accomplished
using tools like SandKit, which enumerates
all resources that are accessible from within
the sandbox. Validate that each item found
performs adequate input validation and authori-
zation checks.

• Review the sandbox policy to ensure the
least amount of access necessary is granted.
For example, review an Android application’s
androidmanifest.xml for granted permissions
that are too relaxed.

Resources

Books, Articles and Reports:

• Practical Windows Sandboxing – Part 1;
Leblanc; http://blogs.msdn.com/b/
david_leblanc/archive/2007/07/27/
practical-windows-sandboxing-part-1.
aspx

• Inside Adobe Reader Protected Mode –
Part 1 – Design; McQuarrie, Mehra,
Mishra, Randolph, Rogers; http://
blogs.adobe.com/asset/2010/10/
inside-adobe-reader-protected-mode-
part-1-design.html

Resources (continued)

Tools / Tutorials:

• Chromium Sandbox Design Document;
http://www.chromium.org/developers/
design-documents/sandbox

• OS X Sandboxing Design; http://
www.chromium.org/develop-
ers/design-documents/sandbox/
osx-sandboxing-design

• iOS Application Programming Guide:
The Application Runtime Environment;
http://developer.apple.com/library/
ios/documentation/iphone/concep-
tual/iphoneosprogrammingguide/
RuntimeEnvironment/RuntimeEnvi-
ronment.html#//apple_ref/doc/uid/
TP40007072-CH2-SW44l

• Android Security and Permissions;
http://developer.android.com/guide/
topics/security/security.html

• The AndroidManifest.xml file; http://
developer.android.com/guide/topics/
manifest/manifest-intro.html

• SandKit; http://s7ephen.github.com/
SandKit/

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://www.chromium.org/developers/design-documents/sandbox
http://www.chromium.org/developers/design-documents/sandbox
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://www.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html#//apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html#//apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html#//apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html#//apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html#//apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/RuntimeEnvironment/RuntimeEnvironment.html#//apple_ref/doc/uid/TP40007072-CH2-SW44l
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://s7ephen.github.com/SandKit/
http://s7ephen.github.com/SandKit/

12

Secure Coding Practices

In this section, the focus shifts to the low-level
development-related practices used by SAFECode
members.

Minimize Use of Unsafe String
and Buffer Functions

Memory corruption vulnerabilities, such as buffer
overruns, are the bane of applications written in
C and C++. An analysis of buffer overrun vulner-
abilities over the last 10 years shows that a common
cause of memory corruption is unsafe use of string-
and buffer-copying C runtime functions. Functions
such as, but not limited to, the following function
families are actively discouraged by SAFECode
members in new C and C++ code, and should be
removed over time from older code.

• strcpy family

• strncpy family

• strcat family

• strncat family

• scanf family

• sprint family

• memcpy family

• gets family

Development engineers should be instructed to
avoid using these classes of function calls. Using
tools to search the code for these calls helps verify
that developers are following guidance and helps
identify problems early in the development cycle.
Building the execution of these tools into the
“normal” compile/build cycle relieves the develop-
ers from having to take “special efforts” to meet
these goals.

It is important to be aware of library- or operating
system-specific versions of these function classes.
For example, Windows has a functional equivalent
to strcpy called lstrcpy and Linux has a memcpy
equivalent called bcopy, to name a few, and these
too should be avoided.

Some example replacement functions include:

Unsafe Function Safer Function

strcpy strcpy_s

strncpy strncpy_s

strcat strcat_s

strncat strncat_s

scanf scanf_s

sprintf sprintf_s

memcpy memcpy_s

gets gets_s

13

Developers using C++ should consider using the
classes built into the standard language library to
manipulate buffers and strings. For example, rather
than using strcpy or strncpy in C++, developers
should use std::string objects.

The memcpy function deserves special mention
because many developers believe it is safe. It is safe
when used correctly, but if an attacker controls the
number of bytes to copy, or the developer incor-
rectly calculates the buffer size, then the function
becomes insecure. SAFECode believes that develop-
ers should move away from using memcpy in favor
of memcpy_s as the latter forces the developer to
think about the maximum destination buffer size.

Automatic use of safer functions

Both Microsoft Visual C++ and GNU gcc offer an
option to migrate some buffer-copying function
calls to safer calls if the destination buffer size is
known at compile time. Consider adding the follow-
ing definitions to the respective compiler options:

Visual C++: –D_CRT_SECURE_CPP_OVERLOAD_
STANDARD_NAMES=1

gcc: –D_FORTIFY_SOURCE=2 –O2

Some SAFECode members note that using these
options can make code review more complex
because the resulting object code differs from the

source code. However, the benefit of using these
options is high as in many cases over 50 percent of
insecure functions are migrated to safer function
calls in legacy code for very little engineering effort.

CWE References

There are many CWE entries that related to
memory- and buffer-related issues, including:

• CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer

• CWE-120: Buffer Copy without Checking Size of
Input (‘Classic Buffer Overflow’)

• CWE-805: Buffer Access with Incorrect Length
Value

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/805.html

14

Verification

The following tools and techniques can be used to verify this practice is used.

Tool or Technique Outcome

banned.h No function deprecation warnings when compiling with this header

Coverity No warnings from the “OVERRUN_STATIC” checker

Fortify SCA 360 C/C++: Buffer Overflow

None of the following warnings:

C/C++: Format String

C/C++: Buffer Overflow (Off-by-One)

C/C++: Buffer Overflow (Signed Comparison)

C/C++: Out-of-Bounds Read

C/C++: Out-of-Bounds Read (Off-by-One)

C/C++: Out-of-Bounds Read (Signed Comparison)

Klocwork No warnings from the “NNTS”, “NNTS.TAINTED”, “SV.STRBO.GETS”, “SV.STRBO.
UNBOUND_COPY”, “SV.STRBO.UNBOUND”, ”SPRINTF” checkers

Microsoft Visual C++ None of the following warnings:

C4996

The following require the code to be compiled with /analyze:

C6029

C6053

C6057

C6059

C6200

C6201

C6202

C6203

C6204

RATS No “Severity: High” warnings

15

Resources

Books, Articles and Reports:

• Please Join Me in Welcoming memcpy()
to the SDL Rogues Gallery; http://blogs.
msdn.com/b/sdl/archive/2009/05/14/
please-join-me-in-welcoming-memcpy-
to-the-sdl-rogues-gallery.aspx

Presentations:

• strlcpy and strlcat – Consistent, Safe,
String Copy and Concatenation; USENIX
99; Miller, de Raadt; http://www.usenix.
org/events/usenix99/millert.html

Tools / Tutorials:

• banned.h; http://www.microsoft.
com/downloads/en/details.
aspx?FamilyID=6aed14bd-4766-4d9d-
9ee2-fa86aad1e3c9

• Strsafe.h; http://msdn.microsoft.com/
en-us/library/ms647466(VS.85).aspx

• SafeStr; https://buildsecurityin.us-cert.
gov/bsi/articles/knowledge/coding/271-
BSI.html

Validate Input and Output to
Mitigate Common Vulnerabilities

Checking the validity of incoming data and rejecting
non-conformant data can remedy the most com-
mon vulnerabilities that lead to denial of service,
data or code injection and misuse of end user data.
In some cases, checking data validity is not a trivial
exercise; however, it is fundamental to mitigating
risks from common software vulnerabilities.

Checking the validity of outgoing data can remedy
many web-based vulnerabilities, such as cross site
scripting, as well as mitigate information leakage
issues.

Data enter and exit an application in the form
of a byte stream, which is then interpreted into
variables with specific parameters for length and
data type. Input validation refers to checking data
validity before it is processed by the application,
whereas output validation refers to validating appli-
cation data after it is processed, with the purpose of
matching the expectations of its intended recipient.
For successful data validation, the variable’s con-
tents should be validated according to the following
guidelines:

• Input variable must be checked for existence
and for conformance to specified data lengths.

• Data must be normalized, or transformed into
its simplest and shortest representation. Also
referred to as canonicalization. This topic is
discussed in more detail in “Use Canonical Data
Formats” on page 27.

http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://blogs.msdn.com/b/sdl/archive/2009/05/14/please-join-me-in-welcoming-memcpy-to-the-sdl-rogues-gallery.aspx
http://www.usenix.org/events/usenix99/millert.html
http://www.usenix.org/events/usenix99/millert.html
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=6aed14bd-4766-4d9d-9ee2-fa86aad1e3c9
http://msdn.microsoft.com/en-us/library/ms647466(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms647466(VS.85).aspx
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/271-BSI.html

16

• Data must be checked for conformance with
data types specified by the application and its
output recipients.

• For fields with clear value ranges, data must be
checked for conformance with a specified value
range.

• A whitelist filter should be applied to limit input
to allowed values and types. For data where
defining such a whitelist is not possible, the
data validation should be performed against a
blacklist of disallowed values and data types.

A whitelist is a list or register of data elements and
types that are explicitly allowed for use within the
context of a particular application. By contrast, a
blacklist is a list or register of data elements and
types that are explicitly disallowed for use within a
particular application. Whitelisting typically con-
strains the application inputs to a pre-selected list
of values, whereas blacklisting gives more freedom
and rejects only the banned data elements and/or
types. Applications should not rely solely on using
blacklists as there are often many ways around
the list using various escaping mechanisms. This is
especially true for web-based applications.

Another approach with greater flexibility is to
use data validating libraries for input and output
validation and cleanup during development. Such
data validating libraries are available for almost all
programming languages and application platforms.

To be effective, this approach requires disciplined
application of data validation to all input and out-
put. The implementation of data validation libraries
should be supported by an explicit requirement
in a secure development standard or specification
document.

In some user applications types, notably web-based
applications, validating and/or sanitizing output
is critical in mitigating classes of attacks against
user applications, arising from vulnerabilities such
as cross-site scripting, HTTP response splitting and
cross-site request forgery.

For applications running on a remote server and
consumed over the network from a user client, data
validation should take place on the server. Imple-
menting data validation within the user client can
be bypassed and is discouraged. If data validation at
the user client can’t be avoided, it should be associ-
ated with data validation at the server application
and the corresponding error handling.

Data validation should also not be neglected for
applications that exchange data with other appli-
cations without user interaction, particularly for
applications that expose functions via remotely
callable interfaces—either via proprietary or
standardized protocols such as SOAP, REST or others.
Interfaces that accept text and structured XML data,
can use regular expressions or string comparisons
for validation against data type descriptors.

17

Last but not least, nontransparent and harder-to-
validate binary or encoded data should at minimum
be checked for data length and field validity.
Additionally, the source of the binary data may be
verified with the use of digital signatures. The use
of digital signatures as a data validation method
should, in general, be deployed for data exchanges
with integrity protection requirements, such as the
exchanges in banking transactions. In these cases,
signature validation should be the very first check
that is applied.

CWE References

Input and output validation is often the parent
issue that leads to many classes of vulnerability
such as XSS, buffer overruns and cross-site request
forgery. CWE captures the high-level nature of
this weakness in a number of CWEs including the
following:

• CWE-20: Improper Input Validation

• CWE-183: Permissive Whitelist

• CWE-184: Incomplete Blacklist

• CWE-625: Permissive Regular Expression

Verification

An effective way to verify this practice is to look for
the existence and use of validation methods within
the application. The specific methods should be
described in secure development guidelines, requir-
ing the use of libraries or manual input and output
verification and when they should be used.

The verification of the proper application of the
recommended methods can be performed via
standardized QA methods such as code reviews
or automated code scanning tools. Verification
should be performed during the active application
development phase, ideally in close collaboration
with interface definitions during application design
phases.

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/183.html
http://cwe.mitre.org/data/definitions/184.html
http://cwe.mitre.org/data/definitions/625.html

18

Resources

Books, Articles and Reports:

• Writing Secure Code 2nd Ed; Chapter 10, All
Input is Evil!; Howard, LeBlanc; Microsoft
Press.

• Protecting Your Web Apps: Two Big Mis-
takes and 12 Practical Tips to Avoid Them;
Kim, Skouis; SANS; http://www.sans.org/
reading_room/application_security/protect-
ing_web_apps.pdf

• JavaWorld; Validation with Java and XML
Schema, Part 1; Mclaughlin; http://www.
javaworld.com/javaworld/jw-09-2000/jw-
0908-validation.html?page=1

Tools / Tutorials:

• SAP Developer Network Secure Program-
ming Guides; http://www.sdn.sap.
com/irj/scn/go/portal/prtroot/docs/
library/uuid/334929d6-0a01-0010-45a9-
8015f3951d1a

• Input and Data Validation; ASP.NET;
http://wiki.asp.net/page.aspx/45/
input-and-data-validation/

• Data Validation; OWASP; http://www.
owasp.org/index.php/Data_Validation

• Flash Validators; http://code.google.com/p/
flash-validators/

• Struts; OWASP; http://www.owasp.org/
index.php/Struts

• Java Data Validation – Swing Components;
http://www.java2s.com/Code/Java/Swing-
Components/Data-Validation.htm

http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf
http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf
http://www.sans.org/reading_room/application_security/protecting_web_apps.pdf
http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-validation.html?page=1
http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-validation.html?page=1
http://www.javaworld.com/javaworld/jw-09-2000/jw-0908-validation.html?page=1
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://wiki.asp.net/page.aspx/45/input-and-data-validation/
http://wiki.asp.net/page.aspx/45/input-and-data-validation/
http://www.owasp.org/index.php/Data_Validation
http://www.owasp.org/index.php/Data_Validation
http://code.google.com/p/flash-validators/
http://code.google.com/p/flash-validators/
http://www.owasp.org/index.php/Struts
http://www.owasp.org/index.php/Struts
http://www.java2s.com/Code/Java/Swing-Components/Data-Validation.htm
http://www.java2s.com/Code/Java/Swing-Components/Data-Validation.htm

19

Use Robust Integer Operations for Dynamic
Memory Allocations and Array Offsets

There are three types of integer issues that can
result in security vulnerabilities such as buffer
overflows:

• Overflow and underflow

• Signed versus unsigned errors

• Data truncation

These integer issues can occur during arithmetic,
assignment, cast, type conversion, comparison, shift,
boolean and binary operations.

It’s important to note that this issue can apply to all
programming languages, not just C and C++.

The proper solution is to use robust integer
datatypes, such as the ones provided in the SafeInt
library, which force robust handling of all integer
operations. When this solution is not feasible
to implement, the following best practices are
recommended:

• Use unsigned integers (such as DWORD and
size_t) for array indexes, pointer offsets, and
buffer sizes.

• Use unsigned integers for while, do, and for
loops. An integer overflow can occur in the loop
during increment and decrement operations of
the index variable. These overflows may cause
either an infinite loop or reading/writing a large
number of bytes from a buffer.

• Do not use signed integers for arguments to
memory allocation functions or array offsets;
use unsigned integers instead.

• Check that the number of elements expected
(e.g.; number of bytes in a request) is no larger
than a predetermined value that is smaller than
the largest amount of memory the application
should allocate.

Other general best practices for robust handling
of integers:

• Pay attention to the assumptions about sign
and size of data types in and across different
languages, platforms, compilers, or managed to
unmanaged code. For example, a size_t is a dif-
ferent type depending on the platform you use.
A size_t is the size of a memory address, so it is
a 32-bit value on a 32-bit platform, but a 64-bit
value on a 64-bit platform.

• Compile code with the highest possible warn-
ing level, such as /W4 when using Visual C++
or –Wall when using gcc.

• When available, enable compiler features to
detect integer issues, such as –ftrapv in gcc.

• Catch exceptions for detected integer issues if
they are provided by the platform or language.
Some languages and platforms may need a spe-
cial directive to throw exceptions for detected
integer issues. For example, use the checked
keyword in C#.

20

• It is not necessary to use robust integer opera-
tions when the integers involved cannot be
manipulated by an attacker. Assumptions like
this must be evaluated regularly as the software
evolves.

CWE References
• CWE-129: Improper Validation of Array Index

• CWE-190: Integer Overflow or Wraparound

• CWE-131: Incorrect Calculation of Buffer Size

• CWE-680: Integer Overflow to Buffer Overflow

• CWE-805: Buffer Access with Incorrect Length
Value

Verification

A blend of actions is recommended to verify that
safe integer arithmetic has been implemented:

• Review static analysis output for arithmetic
issues. Results vary widely by static analysis tool.

• Review compiler output resulting from a com-
pilation with a high warning level enabled, such
as ‘/W4’. Results vary by compiler. In general,
compilers are typically more effective at identify-
ing signed/unsigned mismatches and truncation
issues than overflows and underflows. Examples
of warnings related to integer issues include
C4018, C4389 and C4244.

• Investigate all use of pragmas that disable
compiler warnings about integer issues. Com-
ment them out, re-compile and check all new
integer-related warnings.

• Develop fuzzing models that exercise inputs
used for pointer arithmetic, such as arguments
used for payload size and array offset. Also, have
the models exercise boundary conditions, such
as –1 and 0xFFFFFFFF.

• Manually review the code for functions that
allocate memory or perform pointer arithmetic.
Make sure that the operands are bounded into a
small and well-understood range.

http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/680.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/805.html

21

The following tools and techniques can be used to
verify this practice is used.

Tool or
Technique

Outcome

Coverity No warnings from the “OVER-
RUN_DYNAMIC”, “MISRA_CAST”,
“NEGATIVE_RETURNS”, “REVERSE_
NEGATIVE”, “TAINTED_SCALAR”
checker

Fortify SCA
360

C/C++: Buffer Overflow (Off-by-One)

C/C++: Format String

C/C++: Out-of-Bounds Read

C/C++: Out-of-Bounds Read
(Off-by-One)

C/C++: Integer Overflow

C/C++: Buffer Overflow

C/C++: Buffer Overflow (Signed
Comparison)

C/C++: Out-of-Bounds Read (Signed
Comparison)

Klocwork No warnings from the “SV.TAINTED.
ALLOC_SIZE”, “ABV.TAINTED Buffer”,
“SV.TAINTED.CALL.INDEX_ACCESS”, “SV.
TAINTED.INDEX_ACCESS” checkers

RATS No “Severity: High” warnings

Resources

Books, Articles and Reports:

• Phrack; Basic Integer Overflows;
Blexim; http://www.phrack.org/issues.
html?issue=60&id=10#article

• Safe Integer Operations; Plakosh; Pear-
son Education; https://buildsecurityin.
us-cert.gov/bsi/articles/knowledge/
coding/312-BSI.html?layoutType=plain

• MSDN Library; Integer Handling with
the C++ SafeInt Class; LeBlanc; http://
msdn.microsoft.com/en-us/library/
ms972705

• The Art of Software Security Assess-
ment: Identifying and Preventing
Software Vulnerabilities; Dowd, McDon-
ald, Shuh; ISBN: 978-0321444424.

Tools / Tutorials:

• MSDN Library; Reviewing Code for
Integer Manipulation Vulnerabilities;
Howard; http://msdn.microsoft.com/
en-us/library/ms972818

http://www.phrack.org/issues.html?issue=60&id=10#article
http://www.phrack.org/issues.html?issue=60&id=10#article
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html?layoutType=plain
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html?layoutType=plain
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/312-BSI.html?layoutType=plain
http://msdn.microsoft.com/en-us/library/ms972705
http://msdn.microsoft.com/en-us/library/ms972705
http://msdn.microsoft.com/en-us/library/ms972705
http://msdn.microsoft.com/en-us/library/ms972818
http://msdn.microsoft.com/en-us/library/ms972818

22

Use Anti-Cross Site Scripting (XSS) Libraries

This section is a web-specific variant of “Validate
input and output to mitigate common vulnerabili-
ties” above.

Cross Site Scripting (XSS) stands for a class of
vulnerabilities in applications that allow the injec-
tion of active scripting data into script-enabled
application screens. XSS-based attacks most often
target script-interpreting web clients, generally
web browsers. XSS attacks occur by maliciously
injecting script into an application that fails to
validate incoming and outgoing data. A successfully
conducted attack that exploits XSS vulnerabilities
can lead to serious security violations such as user
privilege escalation, user impersonation, code
injection, user client hijacking and even background
propagation of XSS based attacks.

A cross site scripting attack is typically executed in
the following steps:

1. Attacker identifies input fields into a web-based
application, which lack input validation and are
reused to generate static or dynamic output
in a subsequent script-enabled application
screen. Attackers may use visible or hidden input
fields in the input pages, or input parameters
exchanged via web application URLs.

2. The attacker misuses the identified input fields
to inject active scripts in the application flow.
The script code may be delivered directly in
the input field, remotely via a custom URL or
based on a previous injection. A variant of XSS,

DOM-based XSS, can also misuse input for
legitimate client-side scripts to execute mali-
cious scripts on the user client side.

3. Once the user browser displays the static or
dynamically-generated HTML, generated from
the misused input field, the malicious script
is identified as such by the user browser and
automatically executed. With its automated
browser-side execution, the script runs under
the browser privilege of the user client and is
able to access and misuse private user data that
is shared with the browser.

As a defense-in-depth measure, XSS issues can be
avoided by validating all output that may include
untrusted user client-originating input. The large
number of input and output fields in a typical web
application, however, makes manual validation of
every field impractical. As an alternative to manual
validation, the use of anti-XSS libraries, or web
UI frameworks with integrated XSS protection,
can minimize the developer’s efforts by correctly
validating application input and outputs. Anti-XSS
libraries are available for most web application plat-
forms, where exposure to XSS attacks is highest. The
resources section contains a list of the most popular
ones; further references are available from the web
platform vendor’s support documentation.

Generally, anti-XSS measures must be built in to
software applications when the following condi-
tions are present:

1. Application accepts input from users

23

2. The input is used for dynamic content genera-
tion, or is displayed to users in a subsequent
script-enabled application screen.

While XSS protections can be used to a large extent
by applying output validation techniques, input
validation addresses the root cause of the XSS
vulnerabilities. As a general rule, both must always
be used in conjunction with each other. In addition
to the techniques outlined in section “Validate
Input and Output to mitigate common vulner-
abilities,” the basic development rules to avoid XSS
vulnerabilities, as well as criteria for anti XSS library
selection, are as follows:

• Constrain Input:

• Define a codepage (such as charset =
ISO-8859-1) to narrow down problematic
characters.

• Filter meta-characters based on their
intended interpreter (e.g. HTML client, web
browser, file system, database, etc.) Used
alone, this practice is not secure; therefore
filtering meta-characters should be consid-
ered an extra defensive step.

• Normalize input, or bring it to a specified form
before its validation.

• Validate all user input at the server:

• Against a whitelist, to accept only known
unproblematic characters or data types

• If users are allowed to enter a URL within the
input field, restrict the domain of the URL and
permit only the selection of approved URLs.

• Encode all web applications outputs so that
any inserted scripts are prevented from being
transmitted to user browsers in an executable
form.

• Use HTML meta elements to clearly iden-
tify the character encoding in the output
document.

• Depending on the output context and the
encoding used, convert problematic meta-
characters originating from user input, for
example in HTML < to < , > to > , and “ to
"

• Wherever feasible, encode the whole page
displayed to the user to plain HTML. This
measure has to be used carefully as it also
deactivates capabilities for dynamic web
page content and customizations.

In addition, most of the current web browsers offer
options for deploying user client-side protection
measures, via browser plug-ins, or as in integral part
of the browser UI rendering engine. By adding an
“HTTPOnly” flag to client-side cookies, user clients
can also be instructed to limit cookie use and make
cookies unavailable to access from an active script
or one embedded in the browser objects (Java
applet, ActiveX control, etc.). Anti-virus solutions
can also validate to some extent user client-side
application inputs and detect attacks. For local

24

applications with script-enabled UIs, placing the UIs
in a sandboxed file system location can also help to
reduce the available attack surface.

Client-side protection measures against XSS are,
however, web browser or client platform specific
and their consistent use by users can’t be relied
upon. Therefore, client-side protection against XSS
should not be considered a replacement for server
side protection that uses input and output valida-
tion methods or anti-XSS libraries.

CWE References

The following CWE is relevant to XSS issues:

• CWE-79: Improper Neutralization of Input Dur-
ing Web Page Generation (‘Cross-site Scripting’)

There are many child CWEs that relate to web
vulnerabilities:

• CWE-81: Improper Neutralization of Script in an
Error Message Web Page

• CWE-82: Improper Neutralization of Script in
Attributes of IMG Tags in a Web Page

• CWE-83: Improper Neutralization of Script in
Attributes in a Web Page

• CWE-84: Improper Neutralization of Encoded
URI Schemes in a Web Page

• CWE-85: Doubled Character XSS Manipulations

• CWE-86: Improper Neutralization of Invalid
Characters in Identifiers in Web Pages

• CWE-87: Improper Neutralization of Alternate
XSS Syntax

Verification

Verification follows the basic rules laid out in the
section “Validate Input and Output to Avoid Com-
mon Security Vulnerabilities.” Detailed strategies for
mitigating XSS vulnerabilities are also listed in the
referenced CWE.

The following methods can be used to find XSS
issues:

• Automated code scanning tools with application
data flow analysis capabilities

• Code scanning or reviews to verify the applica-
tion of anti-XSS libraries or proper application
input and output validation methods

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/81.html
http://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/83.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/84.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/86.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/87.html

25

The following tools and techniques can be used to verify this practice is used.

Tool or Technique Outcome

Fortify SCA 360 None of the following warnings:

.NET: Cross-Site Scripting (Persistent)

.NET: Cross-Site Scripting (Reflected)

.NET: Cross-Site Scripting (Poor Validation)

Java: Cross-Site Scripting (DOM)

Java: Cross-Site Scripting (Persistent)

Java: Cross-Site Scripting (Reflected)

Java: Cross-Site Scripting (Poor Validation)

JavaScript: Cross-Site Scripting (DOM)

PHP: Cross-Site Scripting (Persistent)

PHP: Cross-Site Scripting (Reflected)

PHP: Cross-Site Scripting (Poor Validation)

Python: Cross-Site Scripting (Persistent)

Python: Cross-Site Scripting (Reflected)

Python: Cross-Site Scripting (Poor Validation)

SQL: Cross-Site Scripting (Persistent)

SQL: Cross-Site Scripting (Reflected)

SQL: Cross-Site Scripting (Poor Validation)

VB/VB.NET: Cross-Site Scripting (Persistent)

VB/VB.NET: Cross-Site Scripting (Reflected)

VB/VB.NET: Cross-Site Scripting (Poor Validation)

ColdFusion: Cross-Site Scripting (Persistent)

ColdFusion: Cross-Site Scripting (Reflected)

ColdFusion: Cross-Site Scripting (Poor Validation)

Klocwork No warnings from the “NNTS “, “NNTS.TAINTED”, “SV.STRBO.GETS”, “SV.STRBO.
UNBOUND_COPY”, “SV.STRBO.UNBOUND”,_”SPRINTF” checkers

26

Resources

References:

• Apache Wicket; http://wicket.apache.org/

• OWASP Top 10 2010, Cross Site Script-
ing; http://www.owasp.org/index.php/
Top_10_2010-A2

• Wikipedia Entry; http://en.wikipedia.org/
wiki/Cross_site_scripting

• IE 8 XSS Filter; http://www.microsoft.com/
windows/internet-explorer/features/safer.
aspx

Tools / Tutorials:

• OWASP Enterprise Security API; Interface
Encoder; http://owasp-esapi-java.google-
code.com/svn/trunk_doc/latest/org/owasp/
esapi/Encoder.html

• OWASP PHP AntiXSS Library; http://www.
owasp.org/index.php/Category:OWASP_
PHP_AntiXSS_Library_Project

• Microsoft Web Protection Library; http://
www.codeplex.com/AntiXSS

• OWASP Reviewing Code for Cross-site script-
ing; http://www.owasp.org/index.php/
Reviewing_Code_for_Cross-site_scripting

• Mozilla Content Security Policy; http://
people.mozilla.org/~bsterne/content-
security-policy/index.html

• OWASP XSS (Cross Site Scripting) Prevention
Cheat Sheet; http://www.owasp.org/index.
php/XSS_%28Cross_Site_Scripting%29_Pre-
vention_Cheat_Sheet

• SAP Developer Network, Secure Program-
ming Guides; http://www.sdn.sap.
com/irj/scn/go/portal/prtroot/docs/
library/uuid/334929d6-0a01-0010-45a9-
8015f3951d1a

• MSDN Library; Microsoft Anti-Cross Site
Scripting Library V1.5: Protecting the Contoso
Bookmark Page; Lam; http://msdn.micro-
soft.com/en-us/library/aa973813.aspx

• Microsoft Code Analysis Tool .NET
(CAT.NET) v1 CTP-32 bit; http://www.
microsoft.com/downloads/en/details.
aspx?FamilyId=0178e2ef-9da8-445e-9348-
c93f24cc9f9d&displaylang=en

http://wicket.apache.org/
http://www.owasp.org/index.php/Top_10_2010-A2
http://www.owasp.org/index.php/Top_10_2010-A2
http://en.wikipedia.org/wiki/Cross_site_scripting
http://en.wikipedia.org/wiki/Cross_site_scripting
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://www.microsoft.com/windows/internet-explorer/features/safer.aspx
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/Encoder.html
http://www.owasp.org/index.php/Category:OWASP_PHP_AntiXSS_Library_Project
http://www.owasp.org/index.php/Category:OWASP_PHP_AntiXSS_Library_Project
http://www.owasp.org/index.php/Category:OWASP_PHP_AntiXSS_Library_Project
http://www.codeplex.com/AntiXSS
http://www.codeplex.com/AntiXSS
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://www.owasp.org/index.php/Reviewing_Code_for_Cross-site_scripting
http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://people.mozilla.org/~bsterne/content-security-policy/index.html
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://msdn.microsoft.com/en-us/library/aa973813.aspx
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en
http://www.microsoft.com/downloads/en/details.aspx?FamilyId=0178e2ef-9da8-445e-9348-c93f24cc9f9d&displaylang=en

27

Use Canonical Data Formats

Where possible, applications that use resource
names for filtering or security defenses should use
canonical data forms. Canonicalization, also some-
times known as standardization or normalization,
is the process for converting data that establishes
how various equivalent forms of data are resolved
into a “standard,” “normal,” or canonical form. For
example, within the context of a windows file path,
the data file ‘Hello World.docx’ may be accessible by
any one of the following paths:

“C:\my files\Hello World.docx”

“C:\my files\Hello World.docx” (same as above, but
the ‘o’ in docx is a Cyrillic letter, U+043E)

 “c:\my files\hello worLD.docx”

c:\myfile~1\hellow~1.doc

“C:/my files/Hello World.docx”

 “\\?\c:\files\hello.pdf”

“%homedrive%\my files\Hello World.docx”

“\\127.0.0.1\C$\my files\Hello World.docx”

“C:\my files\.\..\my files\Hello World.docx”

“\ :-) \..\my files\\\\Hello World.docx”

Besides the use of numerous canonical formats,
attackers on the web often take advantage of
rich encoding schemes available for URL, HTML,
XML, JavaScript, VBScript and IP addresses when

attacking web applications. Successful attacks may
allow for unauthorized data reading, unauthorized
data modification or even denial of service, thus
compromising confidentiality, integrity and avail-
ability respectively.

Canonical representation ensures that the various
forms of an expression do not bypass any security
or filter mechanisms. Best design practices sug-
gest all decoding should be executed first using
appropriate APIs until all encoding is resolved. Next,
the input needs to be canonicalized. Only then can
authorization take place.

CWE References

The CWE offers many examples of canonicalization
issues, including:

• CWE-21: Pathname Traversal and Equivalence
Errors

• CWE-22: Improper Limitation of a Pathname to a
Restricted Directory (‘Path Traversal’)

• CWE-35: Path Traversal: ‘.../...//’

• CWE-36: Absolute Path Traversal

• CWE-37 Path Traversal: ‘/absolute/pathname/
here’

• CWE-38 Path Traversal: ‘\absolute\pathname\
here’

• CWE-39 Path Traversal: ‘C:dirname’

• CWE-40 Path Traversal: ‘\\UNC\share\name\’

http://cwe.mitre.org/data/definitions/21.html
http://cwe.mitre.org/data/definitions/21.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/35.html
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/37.html
http://cwe.mitre.org/data/definitions/37.html
http://cwe.mitre.org/data/definitions/38.html
http://cwe.mitre.org/data/definitions/38.html
http://cwe.mitre.org/data/definitions/39.html
http://cwe.mitre.org/data/definitions/40.html

28

Verification

Few tools can find real canonicalization issues,
but automated techniques can find areas where
path traversal weaknesses exist. However, tuning
or customization may be required to remove or
de-prioritize path-traversal problems that are only
exploitable by the software’s administrator or other
privileged users.

Examples of automated tests include adding extra
path details (such as path traversal characters),
changing case and using escaped characters at
random when running stress tests that exercise file
access. This could be considered a form of directed
fuzz testing.

The following tools and techniques can be used to
verify this practice is used.

Tool or
Technique

Outcome

Coverity No warnings from the “TAINTED_
STRING” checker

Fortify SCA
360

ColdFusion: Path Manipulation

C/C++: Path Manipulation

.NET: Path Manipulation

Java: Path Manipulation

PHP: Path Manipulation

Python: Path Manipulation

VB/VB.NET: Path Manipulation

Veracode None for the aforementioned CWE
weakness

Tests used: Automated Static

Resources

Books, Articles and Reports:

• Writing Secure Code 2nd Ed.; Chapter 11 “Canoni-
cal Representation Issues”; Howard & Leblanc;
Microsoft Press.

• Hunting Security Bugs; Chapter 12 “Canonical-
ization Issues”; Gallagher, Jeffries & Lanauer;
Microsoft Press.

Tools / Tutorials:

• OWASP ESAPI Access Reference Map API;
http://owasp-esapi-java.googlecode.com/svn/
trunk_doc/latest/org/owasp/esapi/AccessRefer-
enceMap.html

• OWASP ESAPI Access Control API; InterfaceAccess
Controller; http://owasp-esapi-java.googlecode.
com/svn/trunk_doc/latest/org/owasp/esapi/
AccessController.html

• Microsoft KnowledgeBase; How to Programmati-
cally Test for Canonicalization Issues with ASP.
NET; http://support.microsoft.com/kb/887459

• MSDN Library; PathCanonicalize Function (Win32);
http://msdn.microsoft.com/en-us/library/
bb773569(VS.85).aspx

• MSDN Library; .Net Framework 4 URI class;
http://msdn.microsoft.com/en-us/library/sys-
tem.uri.aspx

• SAP Developer Network Secure Program-
ming Guides; http://www.sdn.sap.com/
irj/scn/go/portal/prtroot/docs/library/
uuid/334929d6-0a01-0010-45a9-8015f3951d1a

http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessReferenceMap.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://support.microsoft.com/kb/887459
http://msdn.microsoft.com/en-us/library/bb773569(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb773569(VS.85).aspx
http://msdn.microsoft.com/en-us/library/system.uri.aspx
http://msdn.microsoft.com/en-us/library/system.uri.aspx
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a

29

Avoid String Concatenation for
Dynamic SQL Statements

Building SQL statements is common in database-
driven applications. Unfortunately, the most
common way and the most dangerous way to build
SQL statements is to concatenate untrusted data
with string constants. Except in very rare instances,
string concatenation should not be used to build
SQL statements. Common misconceptions include
the use of stored procedures, database encryption,
secure socket layer (SSL), and removal and duplica-
tion of single quotes as ways to fix SQL injection
vulnerabilities. While some of those techniques can
hinder an attack, only the proper use of SQL place-
holders or parameters can build SQL statements
securely.

Different programming languages, libraries and
frameworks offer different functions to create SQL
statements using placeholders or parameters. As a
developer, it is important to understand how to use
this functionality correctly as well as to understand
the importance of avoiding disclosing database
information in error messages.

Proper database configuration is a vital defense in
depth mechanism and should not be overlooked:
ideally, only selected stored procedures should
have execute permission and they should provide
no direct table access. System accounts servicing
database requests must be granted the minimum
privilege necessary for the application to run. If
possible, the database engine should be configured
to only support parameterized queries.

SQL injection flaws can often be detected using
automated static analysis tools. False positives may
arise when automated static tools cannot recognize
when proper input validation was performed. Most
importantly, false negatives may be encountered
when custom API functions or third-party librar-
ies invoke SQL commands that cannot be verified
because the code is not available for analysis.

Successful SQL injection attacks can read sensitive
data, modify data and even execute operating
system level commands.

CWE References

There is one major CWE:

• CWE-89: Improper Neutralization of Special Ele-
ments used in an SQL Command (‘SQL Injection’)

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html

30

Verification

OWASP offers pertinent testing advice to uncover SQL injection issues (see Resources). Various tools can help
detect SQL injection vulnerabilities:

Tool or Technique Outcome

Microsoft CAT.NET (using SQL Injection checks) No “A SQL injection vulnerability was found …” warnings

Microsoft Visual Studio Code Analysis No CA2100 warnings

Microsoft FxCop (Microsoft.Security category) No CA2100 warnings

W3AF (sqli and blindSqli plugins) No warnings

Fortify SCA 360 ColdFusion: SQL Injection

C/C++: SQL Injection

.NET: SQL Injection

.NET: SQL Injection (Castle Active Record)

.NET: SQL Injection (Linq)

.NET: SQL Injection (NHibernate)

.NET: SQL Injection (Subsonic)

Java: SQL Injection

Java: SQL Injection (JDO)

Java: SQL Injection (Persistence)

Java: SQL Injection (Ibatis Data Map)

JavaScript: SQL Injection

PHP: SQL Injection

Python: SQL Injection

SQL: SQL Injection

VB/VB.NET: SQL Injection

Veracode None for the aforementioned CWE weakness

Tests used: Automated Static, Automated Dynamic,
Manual

31

Resources

References:

• OWASP; SQL Injection; http://www.owasp.
org/index.php/SQL_Injection

Books, Articles and Reports:

• Giving SQL Injection the Respect it Deserves;
Howard; http://blogs.msdn.com/sdl/
archive/2008/05/15/giving-sql-injection-
the-respect-it-deserves.aspx

• Unixwiz.net; SQL Injection Attacks by
Example; Friedl; http://www.unixwiz.net/
techtips/sql-injection.html

Tools / Tutorials:

• OWASP; Guide to SQL Injection;
http://www.owasp.org/index.php/
Guide_to_SQL_Injection

• OWASP; Testing for SQL Injection;
http://www.owasp.org/index.php/
Testing_for_SQL_Injection_(OWASP-DV-005)

• Web Application Attack and Audit Frame-
work (W3AF); http://w3af.sourceforge.net/

• SAP Developer Network Secure Program-
ming Guides; http://www.sdn.sap.
com/irj/scn/go/portal/prtroot/docs/
library/uuid/334929d6-0a01-0010-45a9-
8015f3951d1a

http://www.owasp.org/index.php/SQL_Injection
http://www.owasp.org/index.php/SQL_Injection
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx
http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx
http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.owasp.org/index.php/Guide_to_SQL_Injection
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://www.owasp.org/index.php/Testing_for_SQL_Injection_(OWASP-DV-005)
http://w3af.sourceforge.net/
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/334929d6-0a01-0010-45a9-8015f3951d1a

32

Eliminate Weak Cryptography

Over the last few years, serious weaknesses have
been found in many cryptographic algorithms and
their implementation, including underlying security
protocols and random number generation. Due to
the widespread use of cryptography for securing
authentication, authorization, logging, encryp-
tion or data validation/sanitization application
processes, and their confidentiality and integrity
protection in particular, cryptography-related
weaknesses can have a serious impact on a soft-
ware application’s security.

When appropriate for communication purposes,
especially network communications, strong prefer-
ence should be given to standardized protocols that
have undergone public review—Secure Socket Layer
(SSL), Transport Layer Security (TLS), IPSec, Kerberos,
OASIS WS-Security, W3C XML Encryption and XML
Signature, etc.—rather than using low-level cryp-
tographic algorithms and developing a custom or
unique cryptographic protocol.

If low-level cryptography must be used, only
standardized cryptographic algorithms and
implementations, known to be presently secure,
should be used in software development. When
appropriate, consideration should be given to
government-approved or required algorithms. For
example, U.S. federal government customers require
FIPS 140-2 validation for products using cryptogra-
phy. FIPS 140-2 defines a set of algorithms that have
been determined to be sound, as well as an assess-
ment process that provides a level of assurance
of the quality of cryptographic implementations.

Though vendors need to account for cryptographic
export restrictions, FIPS 140-2 is an example of a
sound standard to consider.

The following algorithms and cryptographic tech-
nologies should be treated as insecure:

• MD4

• MD5

• SHA1

• Symmetric cryptographic algorithms (such as
DES, which only supports 56-bit key length)
imposing the use of keys shorter that 128-bits

• Stream ciphers (such as RC4 and ARC) should be
discouraged due to the difficulty of using stream
ciphers correctly and securely

• Block ciphers using Electronic Code Book (ECB)
mode

• Any cryptographic algorithm that has not been
subject to open academic peer review

The design, implementation and public review of
cryptographic technology has inherent technical
complexities. Even in small development projects
with easy task coordination, security weaknesses
can result from the improper use of cryptography.
To avoid common implementation errors, applica-
tions should reuse cryptographic functions as a
service, and design and implementation of propri-
etary cryptographic methods should be avoided.
The mandatory use of the common cryptographic
functions should be required by internal develop-
ment standards or policies and verified as outlined
below.

33

Application developers must use high quality
random number generation functions when creat-
ing cryptographic secrets, such as encryption keys.
Cryptographic code should never use algorithmic
random number generation functions, such as
rand() in C or C++, java.util.Random in Java and
System.Random in C# or VB.NET.

Another key element for eliminating weak cryptog-
raphy is ensuring secure management of and access
to cryptographic keys. Cryptographic keys are used
during program execution to perform encryption,
decryption and integrity verification operations.
Their exposure to malicious users via insecure
program flow, configuration or mismanagement
can result in serious weaknesses in the security of
software applications and security protocols.

Treating keys as application data with very high
security requirements and ensuring their security
throughout the application lifecycle should be
among the top priorities in secure application
development. While at rest, keys should always be
managed within a secure system configuration
database, a secure file system or hardware storage
location. Access to system keys must be granted
explicitly to applications via key storage access
control mechanisms or role assignment of the
applications’ users. After reading key material from
a secure key, storage applications shouldn’t embed
or persistently store keys or key material elsewhere.

Key material must be securely erased from memory
when it is no longer needed by the application.

Symmetric encryption keys are also frequently used
in network communication over open networks
such as the Internet. In these cases, preference
should be given to asymmetric key cryptographic
algorithms to distribute symmetric keys. These
algorithms have, by design, lower exposure of
secret key material in the remote communica-
tion, and with security protocol standardization
efforts, enable more secure distribution of keys
over specialized key distribution, management and
revocation infrastructures.

For key protection beyond the secured endpoints,
application developers should consider providing
security guides to help administrators protect and
manage keys used by the application.

CWE References

The CWE includes a number of cryptographic weak-
nesses under the following umbrella:

• CWE-310: Cryptographic Issues

Under this weakness are issues like:

• CWE-326: Inadequate Encryption Strength

• CWE-327: Use of a Broken or Risky Cryptographic
Algorithm

• CWE-329: Not Using a Random IV with CBC
Mode

• CWE-320: Key Management Errors

• CWE-331: Insufficient Entropy

• CWE-338: Use of Cryptographically weak PRNG

http://cwe.mitre.org/data/definitions/310.html
http://cwe.mitre.org/data/definitions/326.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/320.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/338.html

34

Verification

Applications should be verified for compliance to
internal development standards or requirements for
the use of cryptographic operations.

During the application design phase, internal
standards should require statements about the
availability of cryptographic functions to meet the
use cases and requirements outlined in application
specification. Where cryptographic functions are
used, the verification has to focus on driving the
application planning toward prescribed guidelines
for:

• The cryptography-providing libraries that should
be used

• How the libraries should be accessed from
within the application

• How keys should be created, accessed, used and
destroyed

• Where relevant, the security protocol that
should be used for exchanging cryptographic
keys or communication

During application development, verification must
focus on checking the source code implementation
for the correct use of the prescribed guidelines and
ensuring the secure handling of keys, including
while they are in use or at rest. The verification
can be conducted either by source code review, or
by automated source code scanners. The valida-
tion should be performed in the following general
directions:

• Reuse of centrally-provided cryptographic and
random number functions

• Check against invocation of banned crypto-
graphic algorithms, known to be insecure

• Check against hard-coded or self-developed
functions for random number generation,
encryption, integrity protection or obfuscation
that shouldn’t be used

• Secure management and use of keys

• Secure configuration for keys to keys by default

• Check for proper protocol selection to appli-
cation interaction channels that require
cryptography-based confidentiality or integrity
protection

35

Tool or
Technique

Outcome

Fortify
SCA 360

None of the following warnings:

C/C++: Weak Cryptographic Hash

C/C++: Weak Cryptographic Hash (Hard-coded
Salt)

C/C++: Weak Encryption (Inadequate RSA
Padding)

C/C++: Weak Encryption (Insufficient Key Size)

Java: Weak Cryptographic Hash (Hard-coded Salt)

Java: Weak Encryption

Java: Weak Encryption (Inadequate RSA Padding)

Java: Weak Encryption (Insufficient Key Size)

PHP: Weak Cryptographic Hash

PHP: Weak Cryptographic Hash (Hard-coded Salt)

PHP: Weak Encryption (Inadequate RSA Padding)

PHP: Weak Encryption

SQL: Weak Cryptographic Hash

VB/VB.NET: Weak Cryptographic Hash

VB/VB.NET: Weak Encryption (Insufficient Key
Size)

ColdFusion: Weak Cryptographic Hash

ColdFusion: Weak Encryption

JavaScript: Weak Cryptographic Hash

JavaScript: Weak Encryption

JavaScript: Weak Encryption (Insufficient Key
Size)

Klocwork No warnings from the “SV.FIU.POOR_ENCRYP-
TION” checker

Resources

References:

• NIST; Computer Security Division
Computer Security Resource Center;
Cryptographic Module Validation
Program (CMVP); http://csrc.nist.gov/
groups/STM/cmvp/index.html

• National Institute of Standards and
Technology (NIST) Federal Information
Processing Standard (FIPS) 140-2; Secu-
rity Requirements for Cryptographic
Modules; http://csrc.nist.gov/publica-
tions/fips/fips140-2/fips1402.pdf

• RSA Laboratories; Public-Key Cryptogra-
phy Standards (PKCS); http://www.rsa.
com/rsalabs/node.asp?id=2124

• Public-Key Infrastructure (X.509)
(pkix);Description of Working Group;
http://www.ietf.org/html.charters/pkix-
charter.html

• W3C XML Encryption Work Group;
http://www.w3.org/Encryption

• W3C XML Signature Work Group;
http://www.w3.org/Signature

• Cryptographically secure pseudorandom
number generator; http://en.wikipedia.
org/wiki/Cryptographically_secure_
pseudorandom_number_generator

• Common Criteria Portal: http://www.
commoncriteriaportal.org/

http://www.klocwork.com/products/documentation/Insight-9.0/Checkers:SV.FIU.POOR_ENCRYPTION
http://www.klocwork.com/products/documentation/Insight-9.0/Checkers:SV.FIU.POOR_ENCRYPTION
http://csrc.nist.gov/groups/STM/cmvp/index.html
http://csrc.nist.gov/groups/STM/cmvp/index.html
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
http://www.rsa.com/rsalabs/node.asp?id=2124
http://www.rsa.com/rsalabs/node.asp?id=2124
http://www.ietf.org/html.charters/pkix-charter.html
http://www.ietf.org/html.charters/pkix-charter.html
http://www.w3.org/Encryption
http://www.w3.org/Signature
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/

36

Resources (continued)

Books, Articles and Reports:

• The Developer’s Guide to SAP NetWeaver
Security; Raepple; SAP Press; 2007.

• Cryptography Engineering: Design Prin-
ciples and Practical Applications; Ferguson,
Schneier and Kohno; Wiley 2010.

• The Security Development Lifecycle; Chapter
20; “SDL Minimum Cryptographic Stan-
dards”; Howard & Lipner; Microsoft Press.

• Security Engineering: A Guide to Building
Dependable Distributed Systems, Chapter
5; Cryptography; Anderson; http://www.
cl.cam.ac.uk/~rja14/book.html

• Programming Satan’s Computer; Ander-
son and Needham; http://www.cl.cam.
ac.uk/~rja14/Papers/satan.pdf

• SDL Crypto Code Review Macro; Howard;
http://blogs.msdn.com/b/michael_howard/
archive/2007/06/14/sdl-crypto-code-review-
macro.aspx

Tools / Tutorials:

• Oracle ; Java SE Security Cryptography Exten-
sion; http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136007.html

• Generic Security Services Application
Program Interface; http://en.wikipedia.org/
wiki/GSSAPI

• The Generic Security Service API Version
2 update 1; http://tools.ietf.org/html/
rfc2743

• The Generic Security Service API Version
2: C-bindings; http://tools.ietf.org/html/
rfc2744

• Randomness Requirements for Security;
http://tools.ietf.org/html/rfc4086

http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/book.html
http://www.cl.cam.ac.uk/~rja14/Papers/satan.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/satan.pdf
http://blogs.msdn.com/b/michael_howard/archive/2007/06/14/sdl-crypto-code-review-macro.aspx
http://blogs.msdn.com/b/michael_howard/archive/2007/06/14/sdl-crypto-code-review-macro.aspx
http://blogs.msdn.com/b/michael_howard/archive/2007/06/14/sdl-crypto-code-review-macro.aspx
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://en.wikipedia.org/wiki/GSSAPI
http://en.wikipedia.org/wiki/GSSAPI
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2743
http://tools.ietf.org/html/rfc2744
http://tools.ietf.org/html/rfc2744
http://tools.ietf.org/html/rfc4086

37

Use Logging and Tracing

In the event of a security-related incident, it is
important for personnel to piece together relevant
details to determine what happened, and this
requires secure logging. The first practice embraced
by SAFECode members is to use the logging fea-
tures of the operating system if possible rather than
creating new logging infrastructure. Developers
should use the Event Log APIs for Windows and
syslog for Linux and MacOS. In some cases, it is
appropriate to use non-OS logging, for example
W3C log files used by web servers. The underly-
ing infrastructure for these logging technologies
is secure as they provide tamper protection. It is
critically important that any logging system provide
controls to prevent unauthorized tampering. Some
processes, for example those running in a sandbox,
may require a broker-process to hand off event data
to the logging system because the process itself has
insufficient rights to update log files.

Developers should log enough data to trace and
correlate events, but not too much. A good example
of “too much” is logging sensitive data such as pass-
words and credit card information. For cases where
the logging of such information can’t be avoided,
the sensitive data has to be made hidden before it
is written in the log record.

Examples of minimum information that should be
logged include:

• User access authentication and authorization
events

• Unambiguous username or email address

• Client machine address (IP address)

• UTC time & date

• Event code (to allow rapid filtering)

• Event description

• Event outcome (e.g. user access allowed or
rejected)

• Changes to application security configuration

• Configuration changes to level of logged events

• Maintenance of log records for security or
system events

A good best practice is to differentiate between
monitoring logs, relevant for configuration trouble-
shooting, and audit logs, relevant for forensic
analysis for the application security issue exploita-
tion. This best practice helps avoid an overload of
log records with useless event records. Both types
of logs should be configurable during application
runtime, with the configuration allowing the defini-
tion of levels of richness of logging information.

CWE References

There are three main CWE logging references
software engineers should be aware of:

• CWE-778: Insufficient Logging

• CWE-779: Logging of Excessive Data

• CWE-532: Information Leak Through Log Files

http://cwe.mitre.org/data/definitions/778.html
http://cwe.mitre.org/data/definitions/779.html
http://cwe.mitre.org/data/definitions/532.html

38

Verification

Verification for the use of logging and tracing
should be benchmarked to industry standards,
internal development standards or the require-
ments of product security certification programs
such as Common Criteria. In the verification process,
testers should check configuration capabilities of
application logging and tracing functionalities and
keep in mind that the level of logging information
is not standardized and is subjective to the environ-
ment in which the application operates.

The methods that can be used to verify proper use
of logging and tracing include code reviews, code
scans and security assessments. Results from threat
modeling should also be used to evaluate the secu-
rity risk exposure of the application and determine
the level of necessary auditing needed.

Resources

References:

• Common Criteria for Information
Technology Security Evaluation; Part 2:
Security functional components; July
2009; http://www.commoncriteriapor-
tal.org/files/ccfiles/CCPART2V3.1R3.pdf

• IETF; RFC 5425 Transport Layer Security
(TLS) Transport Mapping for Syslog;
Miao, Ma and Salowey; http://tools.ietf.
org/search/rfc5425

Books, Articles and Reports:

• The Security Development Lifecycle;
p. 279 “Repudiation Threat Tree Pattern”;
Howard & Lipner; Microsoft Press.

Tools / Tutorials:

• SAP Help Portal; Security Audit
Log (BC-SEC); http://help.sap.com/
saphelp_nw70ehp2/helpdata/en/68/
c9d8375bc4e312e10000009b38f8cf/
frameset.htm

• SAP Help Portal; Security Audit Log of
AS Java; http://help.sap.com/saphelp_
nw70ehp2/helpdata/en/03/37dc4c25e43
44db2935f0d502af295/frameset.htm

http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf
http://tools.ietf.org/search/rfc5425
http://tools.ietf.org/search/rfc5425
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/68/c9d8375bc4e312e10000009b38f8cf/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/03/37dc4c25e4344db2935f0d502af295/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/03/37dc4c25e4344db2935f0d502af295/frameset.htm
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/03/37dc4c25e4344db2935f0d502af295/frameset.htm

39

Testing Recommendations

Testing activities validate the secure implementa-
tion of a product, which reduces the likelihood of
security bugs being released and discovered by
customers and/or malicious users. The goal is not
to add security by testing, but rather to validate the
robustness and security of the software.

Automated testing methods are intended to find
certain types of security bugs, and should be
performed on the source code of all products under
development because the cost of running such
automated tests is low. In addition to automated
tests, security test cases can be based on results
from threat modeling, misuse cases (use cases
that should be prevented), or previously identified
bugs. Often, security test cases differ from “regular”
quality assurance test cases in that instead of try-
ing to validate expected functionality, security test
cases try to uncover application failures by creating
unexpected and malicious input and circumstances.

Though security testing is sometimes done as
acceptance testing prior to making the product
available to customers, it is likely to be more cost-
effective and detect regressions and errors better
when brought to an earlier phase in the software
development lifecycle—to module or integration
testing, for example. Security test case creation
can even precede implementation, as in test or
behavior-driven development models.

Determine Attack Surface

A prerequisite for effective testing is to have an up-
to-date and complete understanding of the attack
surface. A great deal of attack surface detail can be
gathered from an up-to-date threat model. Attack
surface data can also be gathered from port scan-
ning tools and tools like Microsoft’s Attack Surface
Analysis Tool (see Resources).

Once the attack surface is understood, testing can
then focus on areas where the risk or compliance
requirements are the highest. In most cases, this
includes any protocol and parser implementa-
tions that process inputs. In some cases, parts of
the attack surface may be elsewhere than on the
immediate external interface.

Attack surface can be determined from the prod-
uct’s requirements and design by looking at the
inputs to the program—networking ports, IPC/RPC,
user input, web interfaces, and so on, or by scanning
the product, for example, with a port scanner. Peri-
odically validating the attack surface of the actual
code can also assist in preventing new vulnerabili-
ties being opened up in the system by a change
or bug fix. Products with a large attack surface or
complex input processing are more susceptible to
attack.

Use Appropriate Testing Tools

Different tools have different focuses. Fuzz testing
tools aim to detect errors in the program code,
and do not rely on knowledge of previously known

40

vulnerabilities, although new fuzz test cases should
be added to detect any newly discovered vulner-
abilities. See “Perform Fuzz/Robustness testing”
below for further information about fuzz testing.

Some network and web application vulnerability
scanners can also target programming errors. Some
of these scanners can test against known classes of
vulnerabilities such as SQL injections and cross-site
scripting vulnerabilities. Many scanning tools are
used by IT staff to verify their systems are correctly
updated and configured rather than used by devel-
opers. But some tools, especially those that focus in
finding application-level vulnerabilities, rather than
administrative issues, can be very useful at finding
security issues.

Network packet analyzers and network or web
proxies that allow man-in-the-middle attacks and
data manipulation are typically used for explor-
atory testing. The use of these tools often requires
extensive knowledge of the underlying protocols.
For example, a web proxy could be used to change
session identifiers or message headers on the fly.

Automation at all stages of the testing process
is important because automation can tirelessly
augment human work. On the other hand, the use
of automated tools will require careful setup and
tweaking to get proper results. An automated tool
that is blindly run against a system without under-
standing the system or its attack surface might not
test some parts of the system at all, or test it with
the wrong type of inputs. The risk of this happening

is typically larger if test tools are run by an external
group that may not have complete understanding
on the system.

Perform Fuzz / Robustness Testing

Fuzz testing is a reliability and security testing
technique that relies on building intentionally
malformed data and then having the software
under test consume the malformed data to see how
it responds. The science of fuzz testing is maturing
rapidly. Fuzz testing tools for standard protocols and
general use are available, but in some cases soft-
ware developers must build bespoke fuzz testers
to suit specialized file and network data formats
used by their application. Fuzz testing is an effective
testing technique because it uncovers weaknesses
in data-handling code that may have been missed
by code reviews or static analysis.

The process of fuzz testing can be lengthy, so auto-
mation is critical. It is also important that priority be
given to higher exposure entry points for fuzz test-
ing, for example, an unauthenticated and remotely
accessible TCP port, because higher exposure entry
points are more accessible to attackers.

In order to perform effective fuzz testing, select
tools that best support the networking protocols
or data formats in use. If none can be found in the
marketplace, fuzz test tools should be built. Though
the low-level process required to build effective
fuzz tools is beyond the scope of this paper, the
Resources section below provides some references
for readers interested in learning more.

41

Fuzz testing is not static. Fuzz testing cases
should evolve as new vulnerabilities are found.
For example, if a vulnerability is discovered in the
application’s file parser, a fuzz test case should be
created that would trigger that condition. This new
test case should be added to the library of tests
that are run regularly against the application. In
some cases, a new fuzzer may be needed if the data
format has not been previously fuzz tested.

Fuzz testing may be used in conjunction with other
testing types. For example, a more focused vulner-
ability scanner can be used to inject fuzz inputs to
the target product.

Perform Penetration Testing

The goal of penetration testing is to break the
system by applying testing techniques usually
employed by attackers, either manually or by using
attack tools. Penetration testing is a valuable tool
for discovering vulnerabilities that reside in the
system’s business logic. High-level business logic
aspects are often hard to detect from the code level.
However, it is important to realize that a penetra-
tion test cannot make up for an insecure design or
poor development and testing practices.

Some SAFECode members have dedicated penetra-
tion testing teams while others employ external
penetration and security assessment vendors. Some
SAFECode members use both in-house and external
security penetration expertise. Penetration testing
should be performed along with standard func-
tional testing as part of a comprehensive test plan.

Penetration test cases can be based on “misuse
cases” or “attacker stories,” requirements that
specify what should not be possible.

The advantage of using competent, third-party pen-
etration testers is their breadth of experience. The
challenge is finding third-party testers that will do
an effective job for the product type, architecture or
technologies. Developing an in-house penetration
team has the advantage of maintaining internal
product knowledge from one test to the next. How-
ever, it takes time for an internal team to develop
the experience
and skill sets to
do a complete
penetration
testing job and
penetration test-
ing should be
prioritized after
secure design
and coding and
other security testing measures.

CWE References

Security testing should cover any aspect of the
system or application and therefore should vali-
date the effectiveness of controls for all types of
weaknesses.

Fuzz testing mainly targets exception and incorrect
input handling (CWE-20). However, sometimes
the input might be valid, but mishandled by the
application.

It should be stressed that testing
is not a replacement for a develop-
ment process that helps build more
secure software, but rather that
security testing is a core part of such
a software development process.

42

First-line input handling weaknesses include, for
example:

• CWE-118: Improper Access of Indexable Resource

• CWE-703: Failure to Handle Exceptional
Conditions

• CWE-228: Improper Handling of Syntactically
Invalid Structure

• CWE-237: Improper Handling of Structural
Elements

• CWE-229: Improper Handling of Values

• CWE-233: Parameter Problems

Protocol-level security testing is useful for detect-
ing, for example, weaknesses related to CWE-693:
Protection Mechanism Failure, such as CWE-757:
Selection of Less-Secure Algorithm During Nego-
tiation (‘Algorithm Downgrade’) or CWE-345:
Insufficient Verification of Data Authenticity.

Penetration testing could, in theory, find any type
of weakness depending on the skill of the people
performing the penetration test.

Verification

The existence of security testing can be verified by
evaluating:

• Documented business risks or compliance
requirements that provide prioritization for all
testing activities. Failed or missed test cases
should be evaluated against these.

• Mitigating controls to identified threats, abuse
cases, or attacker stories as requirements

• Security test case descriptions

• Security test results

• Penetration testing or security assessment
reports

Resources

Attack surface tools include:

• Process Explorer: http://technet.micro-
soft.com/en-us/sysinternals/bb896653.
aspx

• WinObj: http://technet.microsoft.com/
en-us/sysinternals/bb896657.aspx

• Determining open ports can be done,
for example, using nmap (http://nmap.
org/)

• On Unix systems, listing open files can
be done with the lsof command, open
ports can be viewed with netstat, and
running processes and which files they
are opening can be traced with strace.

• Attack Surface Analyzer – Beta http://
www.microsoft.com/downloads/en/
details.aspx?FamilyID=1283b765-f57d-
4ebb-8f0a-c49c746b44b9

http://cwe.mitre.org/data/definitions/118.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/703.html
http://cwe.mitre.org/data/definitions/228.html
http://cwe.mitre.org/data/definitions/228.html
http://cwe.mitre.org/data/definitions/237.html
http://cwe.mitre.org/data/definitions/237.html
http://cwe.mitre.org/data/definitions/229.html
http://cwe.mitre.org/data/definitions/233.html
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896657.aspx
http://nmap.org/
http://nmap.org/
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=1283b765-f57d-4ebb-8f0a-c49c746b44b9

43

Resources (continued)

Examples of software security testing refer-
ences include:

• The Art of Software Security Testing: Iden-
tifying Software Security Flaws; Wysopal,
Nelson, Dai Zovi & Dustin; Addison-Wesley
2006.

• Open Source Security Testing Methodology
Manual. ISECOM, http://www.isecom.org/

• Common Attack Pattern Enumeration and
Classification. MITRE, http://capec.mitre.
org/

Examples of common fuzz testers are listed
below. Different test tools are useful for dif-
ferent targets, and sometimes it is necessary
to build an additional tool to actually get the
malformed data to the right place (for example,
fuzzing a compressed file tests the compression
layer but not necessarily the parser for the data
that had been compressed).

• Zzuf: http://caca.zoy.org/wiki/zzuf

• Peach: http://peachfuzzer.com/

• Radamsa: https://code.google.com/p/
ouspg/wiki/Radamsa

• Untidy: http://untidy.sourceforge.net/

• MiniFuzz: http://www.microsoft.com/down-
loads/details.aspx?displaylang=en&FamilyI
D=b2307ca4-638f-4641-9946-dc0a5abe8513

• SDL Regex Fuzzer; http://www.
microsoft.com/downloads/en/details.
aspx?FamilyID=8737519c-52d3-4291-9034-
caa71855451f

Examples of protocol testing and proxy tools
include:

• Scapy: http://www.secdev.org/projects/
scapy

• PortSwigger Web Security; Burp Proxy;
http://portswigger.net/burp/proxy.html

Other fuzz testing resources include:

• Fuzzing: Brute Force Vulnerability Discovery;
Sutton, Greene, & Amini, Addison-Wesley

• Fuzzing Reader – Lessons Learned; Randolph;
December 1, 2009 http://blogs.adobe.
com/asset/2009/12/fuzzing_reader_-_les-
sons_learned.html

• BlueHat v8: Fuzzed Enough? When it’s OK to
Put the Shears Down; http://technet.micro-
soft.com/en-us/security/dd285263.aspx

• Writing Fuzzable Code; Microsoft Security
Development Lifecycle; http://blogs.msdn.
com/b/sdl/archive/2010/07/07/writing-
fuzzable-code.aspx

http://www.isecom.org/
http://capec.mitre.org/
http://capec.mitre.org/
http://caca.zoy.org/wiki/zzuf
http://peachfuzzer.com/
https://code.google.com/p/ouspg/wiki/Radamsa
https://code.google.com/p/ouspg/wiki/Radamsa
http://untidy.sourceforge.net/
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=b2307ca4-638f-4641-9946-dc0a5abe8513
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=b2307ca4-638f-4641-9946-dc0a5abe8513
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=b2307ca4-638f-4641-9946-dc0a5abe8513
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.microsoft.com/downloads/en/details.aspx?FamilyID=8737519c-52d3-4291-9034-caa71855451f
http://www.secdev.org/projects/scapy
http://www.secdev.org/projects/scapy
http://portswigger.net/burp/proxy.html
http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html
http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html
http://blogs.adobe.com/asset/2009/12/fuzzing_reader_-_lessons_learned.html
http://technet.microsoft.com/en-us/security/dd285263.aspx
http://technet.microsoft.com/en-us/security/dd285263.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx
http://blogs.msdn.com/b/sdl/archive/2010/07/07/writing-fuzzable-code.aspx

44

Technology Recommendations

Use a Current Compiler Toolset

As noted earlier in this paper, memory-corruption
issues, including buffer overruns and underruns,
are a common source of vulnerabilities in C and
C++ code. It is easy to fix many memory-corruption
issues by moving away from low-level languages
like C and C++ to higher-level languages such as
Java or C# for new projects. However, using a new
programming language is much harder to do in
practice because the migration cost of training and
hiring can be expensive, and time-to-market can be
put at risk as engineers grapple with the nuances
inherent in an updated toolset. There is also a very
large base of legacy C and C++ code in the market-
place that must be maintained. Finally, for some
classes of software, C or C++ is the most appropri-
ate programming language, and the languages are
ubiquitous. Because memory-corruption vulner-
abilities in C and C++ are serious, it is important to
use C and C++ compilers that offer compile-time
and run-time defenses against memory-corruption
bugs automatically. Such defenses can make it
harder for exploit code to execute predictably and
correctly. Examples of defenses common in C and
C++ compilers include:

• Stack-based buffer overrun detection

• Address space layout randomization

• Non-executable memory

• Insecure code warnings

• Safe exception handling

• Automatic migration of insecure code to
secure code

The two most common C and C++ compilers are
Microsoft Visual C++ and GNU’s gcc. Because of the
security enhancements in newer versions of each
of these tools, software development organizations
should use:

• Microsoft Visual C++ 2008 SP1 or later. Microsoft
Visual C++ 2010 is preferred owing to better
stack-based buffer overrun defenses.

• gcc 4.4.x or later.

Software development organizations should
compile and/or link native C and C++ code with the
following options:

• Microsoft Visual C++

• /GS for stack-based buffer overrun defenses

• /DYNAMICBASE for image and stack
randomization

• /NXCOMPAT for CPU-level No-eXecute (NX)
support

• /SAFESEH for exception handler protection

• /we4996 for insecure C runtime function
detection and removal (see “Minimize unsafe
function use”)

45

• gcc

• –fstack-protector or –fstack-protector-all for
stack-based buffer overrun defenses

• –fpie –pie for image randomization

• –D_FORTIFY_SOURCE=2 and –Wformat-secu-
rity for insecure C runtime function detection
and removal (see “Minimize use of unsafe
functions”)

• –ftrapv to detect some classes of integer
arithmetic issues (see “Audit dynamic
memory allocations and array offsets”)

While this topic mainly focuses on native C and
C++ code, other toolsets can take advantage of
operating system defenses, such as address space
layout randomization and non-executable memory.
Examples include:

• Microsoft Visual C# 2008 SP1 and later (address
space layout randomization and non-executable
data memory by default)

• Microsoft Visual Basic 2008 SP1 and later
(address space layout randomization and non-
executable data memory by default)

CWE References

Most of the defenses added by the compiler or
linker address memory-corruption issues such as:

• CWE-120: Buffer Copy without Checking Size of
Input (‘Classic Buffer Overflow’)

• CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer

• CWE-805: Buffer Access with Incorrect Length
Value

• CWE-129: Improper Validation of Array Index

• CWE-190: Integer Overflow or Wraparound

• CWE-131: Incorrect Calculation of Buffer Size

Verification

A Microsoft tool named the BinScope Binary
Analyzer can verify if most of the compiler and
linker options (/GS, /DYNAMICBASE, /NXCOMPAT
and /SAFESEH) are enabled in a Windows image.
The tool should yield a “Pass” for every binary
that ships with an application.

Verifying that /we4996 is enabled requires looking
for the compiler setting in all build files, or looking
for the following line of code in an application-wide
header file:

 #pragma warning(3 : 4996)

Developers can verify that gcc-compiled applica-
tions are position independent with the following
command-line instruction:

 readelf –h <filename> | grep Type

Position independent executables are type “DYN”

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/131.html

46

Resources

References:

• Hardened Linux from Scratch – Version
SVN-20080603; Chapter 2.6 Position
Independent Executables; http://linuxfrom-
scratch.xtra-net.org/hlfs/view/unstable/
glibc-2.4/chapter02/pie.html

Books, Articles, and Reports

• MSDN Library; Windows ISV Software Secu-
rity Defenses; Howard, Miller, Lambert &
Thomlinson; December 2010; http://msdn.
microsoft.com/en-us/library/bb430720.aspx

Presentations:

• Exploit Mitigation Techniques (in OpenBSD,
of course); The OpenBSD Project; de Raadat;
http://www.openbsd.org/papers/ven05-
deraadt/index.html

Tools / Tutorials :

• BinScope Binary Analyzer: http://www.
microsoft.com/downloads/en/details.
aspx?displaylang=en&FamilyID=90e61
81c-5905-4799-826a-772eafd4440a

• Patch: Object size checking to prevent
(some) buffer overflows: http://gcc.gnu.org/
ml/gcc-patches/2004-09/msg02055.html

• GCC extension for protecting applications
from stack-smashing attacks: http://www.
trl.ibm.com/projects/security/ssp/

• Process Explorer: http://technet.microsoft.
com/en-us/sysinternals/bb896653

http://linuxfromscratch.xtra-net.org/hlfs/view/unstable/glibc-2.4/chapter02/pie.html
http://linuxfromscratch.xtra-net.org/hlfs/view/unstable/glibc-2.4/chapter02/pie.html
http://linuxfromscratch.xtra-net.org/hlfs/view/unstable/glibc-2.4/chapter02/pie.html
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://msdn.microsoft.com/en-us/library/bb430720.aspx
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.openbsd.org/papers/ven05-deraadt/index.html
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=90e6181c-5905-4799-826a-772eafd4440a
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg02055.html
http://www.trl.ibm.com/projects/security/ssp/
http://www.trl.ibm.com/projects/security/ssp/
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653

47

Use Static Analysis Tools

Static analysis tools are now commonly used by
development organizations, and the use of such
tools is highly recommended to find common
vulnerability types.

Static code analysis tools can help to ensure coding
mistakes are caught and corrected as soon as
possible. Tools that integrate with development
environments are usually considered easier to use
and often lead to faster bug resolution; they also
help get developers used to identifying security
defects as they develop code and before they check-
in. Using static analysis tools that are integrated
with development environments does not replace
the need for codebase-wide analysis. Developers
may have a modified view of the current code base
(e.g., on a dedicated maintenance branch) or may
only be dealing with a limited set of source code
(e.g., one module or application tier). Both scenarios
can result in false negatives resulting from limited
data flow and control flow analysis and other
problems that full-codebase and/or main branch
analysis (at product build time) would otherwise
find.

Ideally, static code analysis tools should be site
licensed to the entire development team, includ-
ing QA, making this tool as commonly used by the
development team as spell checkers that are built
in to modern word processors. Both experienced
and inexperience developers can greatly benefit
from analysis tools much like all writers take

advantage of spell checkers. Because many vulner-
abilities are hard to spot but simple to solve, it’s not
unreasonable to expect most vulnerabilities to be
fixed immediately after a routine scan completes.
Performing a Threat Model before starting a code
analysis effort can also help in the triage process, as
it can help focus auditors on critical or risky compo-
nents, getting defects from those areas prioritized
to be addressed first.

First time static analysis tools users should expect
some up-front investment to get the greatest
benefit from the tools. Before running a static
analysis tool for the first time, it is recommended
to clean the code from compiling warnings. Still, an
initial run will result in a significant list of findings.
Depending on the project size, management should
consider dedicating team resources to do the initial
triage. Once triage is complete, some findings
may be determined to be false due to contextual
information the static analysis tool does not have,
and some issues that were considered by the tool
to be less severe may be elevated in priority to be
addressed (again due to context, such as business
risk or other factors, which the tool is not aware).
Tuning the tool and the code using standard anno-
tation language (SAL) will often result in fewer false
findings, and providing training to developers can
greatly aid in the triage effort as they become more
familiar both with the tool output and software
security concepts. Maintaining a dedicated team of
security-savvy developers to review static analysis
results may be helpful for resource-constrained

48

development teams, but in the long run does the
team a disservice by masking or hiding results, both
good and bad, from the folks who created them.
Once a tree is clean of static analysis warnings,
the revision control system should be configured
to prohibit check-ins of code that introduces new
warnings and the code needs to be regularly
audited for pragmas that disable warnings. Devel-
opment teams often create a separate build system
with static analysis tools running continuously. This
practice minimizes the impact on the time it takes
to generate a new build.

Several static code analysis tools are capable of gen-
erating results even if the codebase is incomplete or
does not compile. While teams may greatly benefit
from testing code before reaching integration
checkpoints, analyzing code that does not compile
is highly discouraged as it yields suboptimal results.
It’s also important to understand that static code
analysis tools are a complement to manual code
review, not a substitute. A clean run does not
guarantee the code is perfect. It merely indicates
the code is free of well-known and well-understood
patterns.

Static analysis tools really shine when a new vulner-
ability is discovered: automated tools can perform
an initial assessment of a large body of software
a lot quicker than manual code review can be
performed. Many static analysis tools operate using
flexible and extensible rules, which can be added
to when new vulnerability classes are discovered
or modified for changes in common APIs. New

rules can often be added to account for internal
coding standards or APIs (e.g., to indicate certain
internally-developed interfaces affect the security
of code passing through them, either negatively or
positively). Caution must be taken when updating
rules between builds, especially in large complex
codebases—modifying existing rules (for analysis
bugs discovered) may result in a reduction of
findings as analysis improves, but adding new rules
for new issues may result in additional findings.
These new findings would need to be triaged and
may result in spikes in metrics not due to anything
done by developers (i.e. adding new code). Rule
updates should be planned to keep up-to-date with
changes in the security landscape without throwing
a project off its rails.

Depending on the codebase size, a full analysis can
take a considerable amount of time to run. Tuning
can help reduce the time required for analysis. It
is also recommended to reduce the initial set of
things that the tool looks for, such as to specific
security issues, or simply to security issues only
(rather than traditional quality defects, like memory
leaks, which are better discovered by other tools).
This initial modification to what is being analyzed
can help reduce analysis time and may result in
fewer findings leading to better overall adoption.
Then, as development teams get more comfortable
with the tool, they can open up the rule set to find
more issues. Some tools also perform analysis in
two or more stages, usually a build stage and a
separate analysis stage. The analysis stage can be

49

performed in parallel with other build activities
(such as linking or dynamic testing) and can take
advantage of dedicated processing power and CPU/
disk resources, which can speed up analysis.

Regardless of the tool and the type of technology
employed, no one tool today finds all faults. In fact,
all SAFECode companies employ multiple tools
throughout the development lifecycle. Furthermore,
neither static nor dynamic analysis can recognize
sophisticated attack patterns or business logic
flaws, so they should not be considered a replace-
ment for code reviews. While tools can reliably
identify vulnerability types, automated severity
metrics cannot be taken for granted as they don’t
factor business risk such as asset value, cost of
down time, potential for law suits and impact of
brand reputation.

CWE References

Static analysis tools find a plethora of security
vulnerabilities, so one could argue that many CWEs
can be found through the use of analysis tools.

Verification

Static analysis tools are themselves a form of
verification. While a clean analysis tool run does not
imply an application is secure, it is a good indicator
of rigor by the development team.

Resources

References:

• List of tools for static code analysis;
http://en.wikipedia.org/wiki/
List_of_tools_for_static_code_analysis

Books, Articles, and Reports:

• Secure Programming with Static Analysis; Chess
& West; Addison-Wesley 2007.

• The Security Development Lifecycle; Chapter
21 “SDL-Required Tools and Compiler Options”;
Howard & Lipner; Microsoft Press.

• SecurityInnovation; Hacker Report: Static
Analysis Tools, November 2004 Edition; http://
www.securityinnovation.com/pdf/si-report-
static-analysis.pdf

• Cigital Justice League Blog; Badness-ometers
are good. Do you own one?; McGraw; http://
www.cigital.com/justiceleague/2007/03/19/
badness-ometers-are-good-do-you-own-one/

Presentations:

• Using Static Analysis for Software Defect
Detection; William Pugh; July 6, 2006;
http://video.google.com/videoplay?do
cid=-8150751070230264609

Tools / Tutorials:

• MSDN Library; Analyzing C/C++ Code Quality
by Using Code Analysis; http://msdn.microsoft.
com/en-us/library/ms182025.aspx

• MSDN Library; FxCop; http://msdn.microsoft.
com/en-us/library/bb429476(VS.80).aspx

http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf
http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf
http://www.securityinnovation.com/pdf/si-report-static-analysis.pdf
http://www.cigital.com/justiceleague/2007/03/19/badness-ometers-are-good-do-you-own-one/
http://www.cigital.com/justiceleague/2007/03/19/badness-ometers-are-good-do-you-own-one/
http://www.cigital.com/justiceleague/2007/03/19/badness-ometers-are-good-do-you-own-one/
http://video.google.com/videoplay?docid=-8150751070230264609
http://video.google.com/videoplay?docid=-8150751070230264609
http://msdn.microsoft.com/en-us/library/ms182025.aspx
http://msdn.microsoft.com/en-us/library/ms182025.aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx

50

Summary of Practices

Section Practice Page number

Secure Design Principles Threat Modeling 2

Use Least Privilege 7

Implement Sandboxing 10

Secure Coding Practices Minimize Use of Unsafe String and Buffer Functions 12

Validate Input and Output to Mitigate Common
Vulnerabilities

15

Use Robust Integer Operations for Dynamic Memory
Allocations and Array Offsets

19

Use Anti-Cross Site Scripting (XSS) Libraries 22

Use Canonical Data Formats 27

Avoid String Concatenation for Dynamic SQL Statements 29

Eliminate Weak Cryptography 32

Use Logging and Tracing 37

Testing Recommendations Determine Attack Surface 39

Use Appropriate Testing Tools 39

Perform Fuzz / Robustness Testing 40

Perform Penetration Testing 41

Technology Recommendations Use a Current Compiler Toolset 44

Use Static Analysis Tools 47

51

Moving Industry Forward

One of the more striking aspects of SAFECode’s
work in putting this paper together was an oppor-
tunity to review the evolution of software security
practices and resources in the two and a half years
since the first edition was published. Though
much of the advancement is a result of innovation
happening internally within individual software
companies, SAFECode believes that an increase in
industry collaboration has amplified these efforts
and contributed positively to advancing the state-
of-the-art across the industry.

To continue this positive trend, SAFECode encour-
ages other software providers to not only consider,
tailor and adopt the practices outlined in this
paper, but to also continue to contribute to a broad
industry dialogue on advancing secure software
development. For its part, SAFECode will continue
to review and update the practices in this paper
based on the experiences of our members and
the feedback from the industry and other experts.
To this end, we encourage your comments and
contributions, especially to the newly added work
on verification methods. To contribute, please visit
www.safecode.org.

Acknowledgements

Brad Arkin, Adobe Systems Incorporated

Eric Baize, EMC Corporation

Gunter Bitz, SAP AG

Danny Dhillon, EMC Corporation

Robert Dix, Juniper Networks

Steve Lipner, Microsoft Corp.

Gary Phillips, Symantec Corp.

Alexandr Seleznyov, Nokia

Janne Uusilehto, Nokia

http://www.safecode.org

About SAFECode
The Software Assurance Forum for Excellence in Code
(SAFECode) is a non-profit organization exclusively dedicated
to increasing trust in information and communications
technology products and services through the advance-
ment of effective software assurance methods. SAFECode
is a global, industry-led effort to identify and promote best
practices for developing and delivering more secure and
reliable software, hardware and services. Its members include
Adobe Systems Incorporated, EMC Corporation, Juniper
Networks, Inc., Microsoft Corp., Nokia, SAP AG and Symantec
Corp. For more information, please visit www.safecode.org.

Product and service names mentioned herein are the trademarks

of their respective owners.

(p) 703.812.9199

(f) 703.812.9350

(email) stacy@safecode.org

www.safecode.org

SAFECode

2101 Wilson Boulevard

Suite 1000

Arlington, VA 22201

© 2011 Software Assurance Forum for Excellence in Code (SAFECode)

	Foreword
	What’s New
	CWE References
	Verification

	Introduction
	Secure Design Principles
	Threat Modeling
	CWE References
	Verification
	Resources

	Use Least Privilege
	CWE References
	Verification
	Resources

	Implement Sandboxing
	CWE References
	Verification
	Resources

	Secure Coding Practices
	Minimize Use of Unsafe String and Buffer Functions
	CWE References
	Verification
	Resources

	Validate Input and Output to Mitigate Common Vulnerabilities
	CWE References
	Verification
	Resources

	Use Robust Integer Operations for Dynamic Memory Allocations and Array Offsets
	CWE References
	Verification
	Resources

	Use Anti-Cross Site Scripting (XSS) Libraries
	CWE References
	Verification
	Resources

	Use Canonical Data Formats
	CWE References
	Verification
	Resources

	Avoid String Concatenation for Dynamic SQL Statements
	CWE References
	Verification
	Resources

	Eliminate Weak Cryptography
	CWE References
	Verification
	Resources

	Use Logging and Tracing
	CWE References
	Verification
	Resources

	Testing Recommendations
	Determine Attack Surface
	Use Appropriate Testing Tools
	Perform Fuzz / Robustness Testing
	Perform Penetration Testing
	CWE References
	Verification
	Resources

	Technology Recommendations
	Use a Current Compiler Toolset
	CWE References
	Verification
	Resources

	Use Static Analysis Tools
	CWE References
	Verification
	Resources

	Summary of Practices
	Moving Industry Forward
	Acknowledgements

