
Secure Product
Development

Overview

Dr. Panayotis Kikiras
INFS133

March 2019

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Intro to Secure Development

Why Worry About
Security

• We are a Security Company (apply to all software
development organizations) –basic class assumption

• Embarrassment.

• Damage in reputation.

• Direct or Indirect loss of revenue.

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

What is a product?

• product is something (physical or not) that is created through a process
and that provides benefits to a market.

• A product can be a something

– Physical

– Digital

– Service

– Idea (patented algorithm)
• Each of these is created through a process or, more generally, one or

more activities

• The process that creates a product does not need to be formal or defined.

• The creators may not even be aware of the process.

• But some form of activity goes into creating every product.

What is a product

• A product can exist within another product.
– Pen and ink cartridges

• Products can be defined recursively
– E.g from tree to create a chair (each processing step is a product for the members of the

value chain)

• Products Provide Benefits to a Market
– When we identify subproducts within a larger product, we need to be careful that each

subproduct provides benefits to a market.

– must satisfy a need or desire

What is a software product

• The Carnegie Mellon Software Engineering Institute defines a software
product line:

– as "a set of software-intensive systems that share a common, managed set of features
satisfying the specific needs of a particular market segment or mission and that are
developed from a common set of core assets in a prescribed way."

Definition of Secure

Secure product is one that protects the confidentiality, integrity,

and availability of the customers’ information, and the

integrity and availability of processing resources under

control of the system’s owner or administrator.

-- Source: Writing Secure Code (Microsoft.com)

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

CIA Triad: The Three Tenets
To keep sensitive customer and
corporate information secure,
organizations need to preserve the
confidentiality, integrity, and
availability of that information.
Only by maintaining these aspects
of their information can organizations
successfully engage in commercial
activities.
Loss of one or more of these
attributes can threaten the continued
existence of even the largest
corporate entities.

Why Security is still a
problem?

• Security is hard to design!!!!

• Security is harder to implement.

• Main reasons:

– Lack of Education

– Lack of priority

– No liability enforcement by law.

• Security is non-functional -> Nobody pays for it

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Security is mainly
a software problem

• Depending on the source, an
estimated 70% to 92% of security
breaches result from vulnerabilities in
software.

• Network Security Layer is adequately
addressed (firewalls, IDS, IPS,
Antivirus).

• A new star is raising though…
The end user

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Software Vulnerabilities
Trends

Source: IEEE Computer Society

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Why Software Induces
Vulnerabilities?

Design Goals Security Issues

Feature Richness • The more feature rich the
application is, the more bugs it is
likely to have.

Reliability • Writing error-handling code
increases the chance of introducing
security bugs.

• When error handlers fail, the
application fails. In this case, how
will you ensure application
security?

Performance • Security code can slow down apps
performance

Usability Running every process as admin/root
is convenient for both developer and
user; however that creates a security

nightmare.

Why Software Induces
Vulnerabilities?

Intended Behavior

Traditional Bugs

Actual Behavior

Security Bugs

Secure Software
Development

• Include security aspects into the development process
• Continuous effort to minimize risks

Assess
Assets

Identify
Threats

Mitigate
Vulnerabilities

Validate
Solution

Famous disasters

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Bad Algorithms

http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-422-
human-supervisory-control-of-automated-systems-spring-

2004/projects/vincennes.pdf

USS Vincennes shot down Iran
Air Flight 655, killing 290 civilian

passengers and
crew, who may have been the
first known victims of artificial

intelligence. According
to senior military officials,

computer generated
Mistakes (the civilian Airbus

categorized as an F-4 fighting
aircraft) were the cause of the

disaster.

Feature Richness Without Careful
Security Audits

On May 4, 2000, the Love virus struck.
According to Computer Economics, the
worldwide economic impact of the ‘Love
Bug’ was $8.75 billion.
The fact that Microsoft Outlook was
designed to execute programs that were
mailed to it made the virus possible.
The Love virus event shows that feature
richness without careful security audits for
each feature is a dangerous combination.
You should question every feature and
remove those that aren’t required

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

The Horrible Truth

• No matter how much effort we expend, we
will never get code 100 percent correct
– This is an asymmetric problem

• We must be 100 percent correct, 100 percent of the time,
on a schedule, with limited resources, only knowing what
we know today

– Oh, and the product has to be reliable, supportable, compatible,
manageable, affordable, accessible, usable, global, doable, deployable…

• They can spend as long as they like to find one bug,
with the benefit of future research

• We’re human and our tools are far from perfect
• There’s still a business case for improving security

now

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

The Horrible Truth (continued)

• Tools make it easy to build exploit code
• Reverse engineering tools

– Structural Comparison of Executable Objects, Halvar
Flake

– http://www.zynamics.com/downloads/dimva_paper2.pdf
– PCT Bug: "Detecting and understanding

the vulnerability took less than 30 minutes"
– H.323 ASN.1 Bug: "The total analysis took

less than three hours time"

• Exploit payloads
• www.metasploit.com

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

http://www.metasploit.com/

Incentives to Improve

Source: Fundamentals of Secure Architecture – online available at
https://knowledge.elementk.com

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Incentives to Improve

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Software Quality

Feature Richness

Time to Market

Total Cost of
Ownership

Security

&

Privacy
1980s

1990s

2000s

Today &

Tomorrow

Next Differentiator ?

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Security as a market
differentiator

• As software security becomes an increasingly higher priority, it also
becomes a strong market differentiator in the eyes of customers.
Before committing to a software purchase, customers now ask a variety
of questions such as:

– How much will this software cost to deploy?

– How would a security breach affect my bottom line?

– Does this software need to be patched frequently?

– How will these patching requirements affect the amount of money I spend on training
and maintenance?

AN OVERVIEW

Software Development Methodologies

Secure Programming in C- INFS133- University of Thessaly – Dept. of Computer Science

Which software is good?

27

What are the attributes of
good software?

• Should deliver the required functionality and
performance to the user and should be
maintainable, dependable and usable

• Maintainability
– Software must evolve to meet changing needs

• Dependability
– Software must be trustworthy

• Efficiency
– Software should not make wasteful use of system

resources

• Usability
– Software must be usable by the users for which it was

designed

28

System dependability

• The most important system property
is dependability

• Dependability of a system reflects the
user’s degree of trust in that system.

• Usefulness and trustworthiness are
not the same thing.
– A system does not have to be trusted to

be useful.

29

Importance of dependability

• Systems that are not dependable and
are unreliable, unsafe or insecure
may be rejected by users

• High costs of system failure

• Undependable systems may cause
information loss with a high
consequent recovery cost

30

Software Development
Methodologies

• A methodology is:
– a collection of procedures, techniques,

principles, and tools that help
developers build computer system

• There are two main approaches to
development methodologies:
– Traditional monumental or waterfall

methodologies
– Agile or lightweight methodologies

Methodologies

• Waterfall

• Prototype model

• Incremental

• Iterative

• V-Model

• Spiral

• Scrum

• Cleanroom

• RAD

• DSDM

• RUP

• XP

• Agile

• Lean

• Dual Vee Model

• TDD

• FDD

32

Development process
taxonomy

All
development

processes

Waterfall Iterative

Agile

33

Waterfall versus iterative

Project A: Waterfall development process

J F M A M J J A S O N D

Requirements definition Formal approval process for requirements change

Release

Opportunity for
requirements

change

Opportunity for
requirements

change

Opportunity for
requirements

change

Opportunity for
requirements

change

Project B: Iterative development process

J F M A M J J A S O N D

Release 1
Iteration 0

Release 2 Release 3 Release 5Release 4

34

Agile iterations are not
mini-waterfalls

• Activities like design, development, and
testing are nearly concurrent.

• “Just enough upfront design,” “real-time
specification,” and “continuous testing.”

Waterfall

• Sequential design
process

• Progress is seen as
flowing steadily
downwards (like a
waterfall) through
SDLC

Waterfall model phases

² There are separate identified phases in the waterfall model:
§ Requirements analysis and definition
§ System and software design
§ Implementation and unit testing
§ Integration and system testing
§ Operation and maintenance

² The main drawback of the waterfall model is the difficulty of
accommodating change after the process is underway. In
principle, a phase has to be complete before moving onto
the next phase.

36

Waterfall model problems

² Inflexible partitioning of the project into distinct stages
makes it difficult to respond to changing customer
requirements.
§ Therefore, this model is only appropriate when the

requirements are well-understood and changes will be
fairly limited during the design process.

§ Few business systems have stable requirements.
² The waterfall model is mostly used for large systems

engineering projects where a system is developed at
several sites.
§ In those circumstances, the plan-driven nature of the

waterfall model helps coordinate the work.

37

Prototyping

• Creating prototypes of
software applications
i.e. incomplete
versions of the
software program
being developed

• A prototype typically
simulates only a few
aspects of, and may be
completely different
from, the final product.

Incremental Build Model

• The model is designed,
implemented and tested
incrementally (a little
more is added each
time).

• Finished when satisfies
all the requirements.

• Combines the elements
of the waterfall model
with the iterative
philosophy of
prototyping.

Incremental (exploratory)
development

40

Incremental development benefits

² The cost of accommodating changing customer requirements is
reduced.
§ The amount of analysis and documentation that has to be redone

is much less than is required with the waterfall model.
² It is easier to get customer feedback on the development work that

has been done.
§ Customers can comment on demonstrations of the software and

see how much has been implemented.
² More rapid delivery and deployment of useful software to the

customer is possible.
§ Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

41

Spiral Model

• Combining elements of
design and prototyping-
in-stages

• Combines the features
of the prototyping and
the waterfall model

• The spiral model is
intended for large,
expensive and
complicated projects

• Advantages of top-down
and bottom-up concepts

Incremental development problems

² The process is not visible.
§ Managers need regular deliverables to measure progress. If

systems are developed quickly, it is not cost-effective to
produce documents that reflect every version of the system.

² System structure tends to degrade as new increments are added.
§ Unless time and money is spent on refactoring to improve the

software, regular change tends to corrupt its structure.
Incorporating further software changes becomes increasingly
difficult and costly.

43

Iterative and Incremental
Development

• Iterative and
incremental
development is any
combination of both
iterative design or
iterative method and
incremental build
model for
development.

Incremental vs. Iterative

A Bit Different
Understanding

RAD

• Minimal planning and
fast prototyping.

• Developing instead of
planning

• The lack of pre-
planning generally
allows software to be
written much faster,
and makes it easier to
change requirements.

Agile

• Group of software
development methods

• Based on iterative and
incremental development

• Most important phrases
– self-organizing, cross-

functional teams
– adaptive planning,
– evolutionary development

and delivery,
– a time-boxed iterative

approach,
– rapid and flexible response

to change.
• A conceptual framework
• The Agile Manifesto in 2001.

Scrum

• Scrum is an iterative and
incremental agile
software development
framework

• A flexible, holistic
product development
strategy

• Development team
works as an atomic unit

• Opposing to sequential
approach

Lean (Kanban)

• A translation of lean
manufacturing
principles and
practices

• Toyota Production
System,

• Today part of Agile
community.

Extreme Programming (XP)

• Improve software quality
and responsiveness to
changing customer
requirements

• A type of agile software
development

• Frequent "releases" in
short development
cycles

• Introduce checkpoints
where new customer
requirements can be
adopted.

Reuse-oriented software engineering

² Based on systematic reuse where systems are integrated
from existing components or COTS (Commercial-off-the-
shelf) systems.

² Process stages
§ Component analysis;
§ Requirements modification;
§ System design with reuse;
§ Development and integration.

² Reuse is now the standard approach for building many
types of business system

52

Reuse-oriented software engineering

53

• Questions ?

