

Μεταπτυχιακό πρόγραμμα: Πληροφορική και Υπολογιστική Βιοϊατρική Ροή Πληροφορικής

ΤΙΤΛΟΣ ΕΡΓΑΣΙΑΣ: Χωρική κατανομή πλάτους μεταβολής εποχικού κύκλου(seas amp) επιφανειακού όζοντος στην Ευρώπη με μεταβολή Kriging στο ArcMap

Επιβλέπων Καθηγητής: Δωρόθεος Αγγέλης

Αλεξόπουλος Δημήτριος

Λάτου Χαρίκλεια

Μάιος 2017

ΕΙΣΑΓΩΓΗ

Ο γενικότερος χαρακτήρας του Kriging ως μεθόδου πρόγνωσης αναγνωρίσθηκε από το γάλλο μαθηματικό Georges Matheron με τη θεωρία του για τις περιφερειακές μεταβλητές (regionalized variables), βασιζόμενος στη διατριβή του νότιο-αφρικανού μηχανικού ορυχείων Danie G.Krige, ο οποίος πρωτοπόρησε στη χρήση στατιστικών μεθόδων και ανέπτυξε τη μέθοδο για την εκτίμηση αποθεμάτων μετάλλων στη Νότια Αφρική κατά τη δεκαετία του 1950.

Η μέθοδος χρησιμοποιείται εκτενώς από τις αρχές του 1970, αρχικά στις μεταλλευτικές βιομηχανίες της δυτικής Ευρώπης και της Νότιας Αφρικής, ενώ σήμερα η χρήση της έχει επεκταθεί σε μεταλλευτικά και μη πεδία (πετρέλαιο, περιβάλλον, εδαφολογία, σεισμολογία, υδρολογία κ.λπ.) σε Αμερική, Αυστραλία, Αφρική και Ασία.

Η μέθοδος αντανακλά την πυκνότητα κατανομής των γνωστών σημείων, παρέχει μία εκτίμηση σφάλματος και ένα διάστημα εμπιστοσύνης για κάθε ένα από τα άγνωστα σημεία καθώς και το βαθμό χωρικής αυτοσυσχέτισης, μοντελοποιώντας έτσι περιφερειακές τάσεις και τοπικές ανωμαλίες.

Η μέθοδος kriging χρησιμοποιεί για τη χωρική παρεμβολή ένα βαρυμετρικό μέσο όρο των δεδομένων (weighted average). Σε αντιπαράθεση με τις προσδιοριστικές μεθόδους π.χ. τη μέθοδο IDW όπου ο βαθμός επιρροής των δεδομένων επιλέγεται με μοναδικό κριτήριο την απόσταση, η μέθοδος kriging προσάπτει βάρη που υπολογίζονται με βάση τη συνάρτηση της χωρικής αυτοσυσχέτισης ή του ημιβαριογράμματος των δεδομένων. Επιπλέον η χρήση της γεωστατιστικής μεθόδου επιτρέπει τον υπολογισμό του σφάλματος της πρόβλεψης σε κάθε θέση, παρέχοντας ένα κριτήριο για την εκτίμηση της αξιοπιστίας της προκύπτουσας επιφάνειας παρεμβολής. Τέλος είναι δυνατή η αναγνώριση μεταβολών της χωρικής αυτοσυσχέτισης όχι μόνο ως συνάρτηση της απόστασης αλλά και της διεύθυνσης αναζήτησης ζευγών σημείων στο χώρο.

Υπάρχουν οι εξής πέντε κύριες παραλλαγές της μεθόδου Kriging (Burrough and McDonnell, 1998, Βαρουχάκης, 2005):

 Απλό Kriging (Simple Kriging): Εφαρμόζεται όταν η μέση τιμή του πεδίου είναι σταθερή και γνωστή σε όλη την περιοχή Ω, δηλαδή mX (s)= mX , όπου mX μία γνωστή σταθερά.

- ii) Κανονικό Kriging (Ordinary Kriging): Εφαρμόζεται όταν η μέση τιμή του πεδίου θεωρείται σταθερή στη γειτονιά ω(u) του σημείου εκτίμησης, αλλά η τιμή της mX (s) μπορεί να μεταβάλλεται από γειτονιά σε γειτονιά. Σε αυτή την περίπτωση θεωρείται ότι το mX (u) είναι άγνωστο.
- iii) Καθολικό Kriging με πρότυπο τοπικής τάσης (Universal Kriging): Εφαρμόζεται όταν η μέση τιμή του πεδίου μεταβάλλεται εντός της γειτονιάς του σημείου εκτίμησης. Σε αυτή την περίπτωση χρησιμοποιείται ως πρότυπο τάσης ένας γραμμικός συνδυασμός γνωστών συναρτήσεων (π.χ., περιοδικών συναρτήσεων και πολυωνύμων).

Στους τρεις παραπάνω τύπους Kriging η εκτιμώμενη συγκέντρωση στο σημείο εκτίμησης εκφράζεται ως ένας γραμμικός συνδυασμός των τιμών των γειτονικών σημείων. Οι γραμμικοί συντελεστές (παράμετροι) Kriging προσδιορίζονται από το ημιβαριόγραμμα χρησιμοποιώντας ένα κριτήριο βελτιστοποίησης (ελαχιστοποίηση του μέσου τετραγωνικού σφάλματος). Η μέση τιμή των εκτιμήσεων είναι ίση με την μέση τιμή του τυχαίου πεδίου, συνεπώς το Kriging είναι ένας βέλτιστος γραμμικά αμερόληπτος τρόπος εκτίμησης.

- iv) Kriging δεικτών (Indicator Kriging): Χρησιμοποιείται αν η συνάρτηση κατανομής είναι έντονα ασύμμετρη με σημαντική πυκνότητα πιθανότητας στις υψηλές τιμές. Σε αυτές τις περιπτώσεις δεν είναι δυνατό να χρησιμοποιηθεί το κανονικό (ή ακόμα και το λογαριθμοκανονικό) πρότυπο πιθανότητας. Το Kriging δεικτών υπολογίζει την πιθανότητα η τοπική τιμή να υπερβαίνει ένα καθορισμένο όριο. Επανάληψη της διαδικασίας για πολλαπλές τιμές του ορίου (multiple indicator Kriging) επιτρέπει την εκτίμηση της αθροιστικής κατανομής πιθανότητας.
- v) Συνδυαστικό Kriging (Cokriging): Χρησιμοποιείται προκειμένου να συμπεριληφθούν στην διαδικασία εκτίμησης ιδιότητες συσχετισμένες με τις εκτιμώμενες μεταβλητές. Επομένως, οι εξισώσεις του συνδυαστικού Kriging περιλαμβάνουν και την διασταυρωμένη συνάρτηση συμμεταβολής των μεταβλητών (Goovaerts, 1997, Journel, 1989). Το παραπάνω είναι

χρήσιμο όταν ο αριθμός των παρατηρήσεων της υπό μελέτης μεταβλητής είναι περιορισμένος αλλά υπάρχουν πρόσθετες πληροφορίες που αφορούν δευτερεύουσες παραμέτρους. Για παράδειγμα η πρόβλεψη της χωρικής κατανομής ενός αέριου ρύπου όπως το όζον, μπορεί να βελτιωθεί χρησιμοποιώντας ως δευτερεύουσες παραμέτρους την απόσταση από το οδικό δίκτυο ή μετρήσεις συγκεντρώσεων διοξειδίου του αζώτου. Το τίμημα της χρήσης του cokriging είναι η αύξηση της αβεβαιότητας στην αυξάνουν πρόσθετες πρόβλεψη όσο OI παράμετροι που χρησιμοποιούνται.

Πρέπει εδώ να σημειωθεί ότι η πρακτική εφαρμογή των μεθόδων Kriging βασίζεται σε ορισμένες παραδοχές.

- i) Υποτίθεται ότι το τυχαίο πεδίο είναι δυνατό να αναλυθεί σε δύο συνιστώσες, η πρώτη εκ των οποίων εκφράζει την τάση, δηλαδή μια αργά μεταβαλλόμενη εξάρτηση, ή μια περιοδική μεταβολή, και η δεύτερη την διακύμανση του πεδίου γύρω από την τάση.
- ii) Συνήθως θεωρείται ότι η διακύμανση περιγράφεται από ένα στατιστικά ομοιογενές πεδίο μηδενικής μέσης τιμής έτσι ώστε η συνάρτηση συνδιασποράς και το ημιβαριόγραμμα να εξαρτώνται αποκλειστικά από την απόσταση μεταξύ των σημείων.
- iii) Μια εκτίμηση που βασίζεται στην ελαχιστοποίηση της διασποράς του σφάλματος είναι ακριβής αν η συνάρτηση κατανομής πιθανότητας είναι συμμετρική και κατά προτίμηση κανονική (Gaussian). Γι αυτό το λόγο πολλές φορές είναι απαραίτητη η μετατροπή των δεδομένων π.χ. με λογαρίθμιση ώστε η στατιστικές κατανομές να προσεγγίσουν την κανονική πριν την γεωστατιστική επεξεργασία τους.

ΜΕΓΕΘΗ ΓΕΩΓΡΑΦΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ: Lat, Lon, Altitude

Lat (Latitude): Το γεωγραφικό πλάτος (latitude) είναι ένα από τα δύο μεγέθη των γεωγραφικών συντεταγμένων με τα οποία προσδιορίζεται η θέση των διαφόρων τόπων και πλοίων στην επιφάνεια της γης και κατά προβολή η θέση των αεροσκαφών υπεράνω αυτής. Συγκεκριμένα, προσδιορίζει την γωνιακή απόσταση των διάφορων τόπων από τον Ισημερινό, ο οποίος έγει γεωγραφικό πλάτος ίσο με 0. Συμβολίζεται με το γράμμα (φ), αγγλικά lat. Το γεωγραφικό πλάτος αποδίδεται σε μοίρες, πρώτα και δεύτερα της μοίρας ή και ως δεκαδικός αριθμός επί των προηγουμένων

Lon: Το γεωγραφικό μήκος (longitude) είναι ένα από τα δύο μεγέθη των γεωγραφικών συντεταγμένων με τα οποία προσδιορίζεται η θέση των διαφόρων τόπων (εκτός των πόλων) και πλοίων στην επιφάνεια της γης και "κατά προβολή" η θέση των αεροσκαφών υπεράνω αυτής. Συμβολίζεται στην ελληνική με το γράμμα (λ) εκ της αγγλικής I (long).

Η μέτρηση του γεωγραφικού μήκους έχει οριστεί κατά σύμβαση να μετριέται από τον Μεσημβρινό που διέρχεται από το Αστεροσκοπείο του Γκρήνουιτς στην Μεγάλη Βρετανία καλούμενος πρώτος μεσημβρινός ή αριθμητικά 000° 00′ 00′′. Το γεωγραφικό μήκος αποδίδεται σε μοίρες, πρώτα και δεύτερα της μοίρας ή και ως δεκαδικός αριθμός επί των προηγουμένων

Altitude (ύψος): Υψόμετρο, όπως η ανύψωση, είναι η απόσταση πάνω από τη στάθμη της θάλασσας. Οι περιοχές συχνά θεωρούνται "υψηλού υψομέτρου" εάν φτάσουν τουλάχιστον 2.400 μέτρα (8.000 πόδια) στην ατμόσφαιρα.

Το υψηλότερο σημείο υψομέτρου στη Γη είναι το όρος Everest.

Το ύψος σχετίζεται με την πίεση του αέρα. Στην πραγματικότητα, οι αεροπόροι και οι ορειβάτες μπορούν να μετρήσουν το ύψος τους μετρώντας την πίεση του αέρα γύρω τους. Αυτό ονομάζεται ενδεικτικό ύψος και μετράται με όργανο που ονομάζεται υψόμετρο.

Καθώς αυξάνεται το υψόμετρο, μειώνεται η πίεση του αέρα. Με άλλα λόγια, αν το ενδεικνυόμενο υψόμετρο είναι υψηλό, η πίεση του αέρα είναι χαμηλή. Αυτό συμβαίνει για δύο λόγους. Ο πρώτος λόγος είναι η βαρύτητα. Η βαρύτητα της γης τραβά τον αέρα όσο το δυνατόν πιο κοντά στην επιφάνεια.

Ο δεύτερος λόγος είναι η πυκνότητα. Καθώς το υψόμετρο αυξάνεται, η ποσότητα των αερίων των αερίων μειώνεται - ο αέρας καθίσταται λιγότερο πυκνός από τον αέρα κοντά στο επίπεδο της θάλασσας. Αυτό σημαίνουν οι μετεωρολόγοι και οι ορειβάτες με "λεπτό αέρα". Ο λεπτός αέρας ασκεί λιγότερη πίεση από τον αέρα σε χαμηλότερο υψόμετρο.

Οι τοποθεσίες υψηλού υψομέτρου είναι συνήθως πολύ ψυχρότερες από τις περιοχές που βρίσκονται πιο κοντά στη στάθμη της θάλασσας. Αυτό οφείλεται στη χαμηλή πίεση αέρα. Ο αέρας επεκτείνεται καθώς αυξάνεται και τα λιγότερα μόρια αερίου - συμπεριλαμβανομένου του αζώτου, του οξυγόνου και του διοξειδίου του άνθρακα - έχουν λιγότερες πιθανότητες να χτυπήσουν το ένα στο άλλο.

Παρεμβολή KRIGING με arcmap (ARCGIS v. 10.2.2)

<u>Ερώτηση 1</u>

Να εμφανίζονται στο επίπεδο οι θέσεις των σταθμών του αρχείου pro97 στο παράθυρο εργασίας

<u>Απάντηση 1</u>

Αφού δημιουργήσουμε φάκελο με το όνομα pro 97 στην επιφάνεια εργασίας, τοποθετούμε σε αυτόν το αρχείο pro97.txt.

Πατάμε το εργαλείο Add **Ε** Data από τη βασική γραμμή εργαλείων και μετά Connect Folder .

Q Untitled - ArcMap		0	×
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help			
D 🖻 🖶 台 🗏 尚 🖄 × I つ ⊂ I 🔶			
④, ○, ♥ ④ ☆ → ◎ - □ ▶ ④ / □ 盐 然 送 祭 □ □ ;			
Image:	×		s Catalog R Search
			-
		P.	
1/0918 999,99 Unknown	Units	10.20	
	•	10:50 μ 3/6/201	μ .7

Βρίσκουμε το φάκελο που δημιουργήσαμε και στη συνέχεια επιλέγουμε το αρχείο pro97.txt και Add.

Q Untitled - ArcMap	- 0	×
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help		
④ ● 劉 ● 詳 21 ★ → ◎ - □ ▶ ● / □ 註 ▲ ☆ ◎ □ 目		
Table Of Contents 🗘 ×		-
8: 🔍 🧇 🧶 🗄 🗄		Ca
a Layers		talog
Add Data		Sea
		rch
pro97.bt		
i pro97b.b.t		
		-
Name:		
Datasets, Layers and Results Cancel		
		-
	nits	
	10:21	μμ 2017

Για να μετατρέψουμε αρχείο pro97.txt. σε pro97.dbf, στην γραμμή εργασιών πατάμε

ArcToolbox -> Conversion Tools -> To dBase -> Table to dBase

Στον πίνακα που ανοίγει συμπληρώνουμε

 Input Table: το αρχείο pro97.txt και Output Folder: το φάκελο στον οποίο θέλουμε να αποθηκευτεί το καινούριο αρχείο pro97.dbf

Table to dBASE (multiple)	
Input Table	*
	- 🖻
C:\Users\USER\Desktop\pro 97\pro97.txt	•
	×
	(
Output Folder	
C: \Users \USER \Desktop \pro 97	
	_
	·
OK Cancel Environments	Show Help >>

Τώρα μετατρέψαμε το pro97.txt σε .dbf ώστε να το αναγνωρίσει το πρόγραμμα. Για να το εισάγουμε πάμε πάλι στην γραμμή εργασιών.

 Πατάμε Add Data, επιλέγουμε το καινούριο αρχείο pro97.dbf και πατάμε Add.

Add Data							x
Look in:	pro 97 🔻) 💪		- ₽	1 6		8
Name: Show of type:	pro97_1.dbf Datasets, Layers and Results			•		Add	

Αριστερά στο Table of Contents κάνουμε δεξί κλικ στο pro97 και επιλέγουμε Display XY Data

Q Untitled - ArcMa	р			
File Edit View	Bo	okmarks Insert Selection Geoproces	ing Customize Windows Help	
i 🗋 🧀 🔚 🖨 l	* 1	। 🔶 🖉 अ ल	- i i i i i i i i i i i i i i i i i i i	
: C. C. 🕅 🥥 :		🚓 🔶 🕅 - 🖾 👠 🚺 🖉 💭	🛗 🖪 📇 🖇 🔟 📼 🖕	
Table Of Contents		4 ×	2000	
8: 🔋 🧇 📮 🗄				Cat
🖃 🥌 Layers				alog
C:\Users	(USEI 7.txt	\Desktop\p		
😑 🚞 C:\Users	USE	\Desktop\¢		Sear
m pro9	1	Open		ch l
		Joins and Relates		
	×	Remove		
		Data >		
		Edit Features +		_
	P	Geocode Addresses		E
	#	Display Route Events		
	***	Display XY Data		
	2	Properties Display XY Data		
		Adds a new map laye	r based on	
		XY events from a tab	e.	
				_
٠ III				 •
	_			-806,973 942,177 Unknown Units
👧 🚱		🗒 🔍 🔍	😬 🕹	EN 🔺 🍢 🎲 🌓 10:43 µµ 3/6/2017

Εμφανίζεται το παρακάτω παράθυρο.

Q Untitled - ArcMap	_ 0 ×
File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help	
- C 😂 📾 会 い ち ろ I 🔶 - I	
[원, Q, 환 ④] XX 22 (← →) 與- 의 ▶ [④ / 의 盐 M 齿 유 四 [Display XY Data] [20]	
Table Of Contents # × Image: Conte	Catalog (Search)
	-805,272 925,17 Unknown Units
	EN 🔺 🎼 🗰 10:48 µµ 3/6/2017

Αφήνουμε τα πεδία X =lon, Y=lat και επιλέγουμε Z= seasamp και πατάμε ΟΚ. Εμφανίζονται έτσι τα σημεία Για να εμφανίσουμε το χάρτη επιλέγουμε το εργαλείο Add Data από τη βασική γραμμή εργαλείων και μετά Add Basemap και από τους χάρτες

επιλέγουμε National Geographic.

Add Basemap			x
Imagery	Imagery with Labels	Breets	Hing de Ternante Topographic
Dark Gray Canvas	Light Gray Canvas	TRANCE Barrier Barrier Barrier TRANCE Barrier	NOHTR ASLANTIC OCEAN Oceans
Ferrain with Labels	OpenStreetMap		
			Add Cancel

Στη συνέχεια εμφανίζεται ο χάρτης:

Για να φαίνονται καλύτερα τα σημεία, αριστερά στο πλαίσιο Table of Contents κάνουμε διπλό κλικ στην κουκκίδα και από το παράθυρο που εμφανίζεται επιλέγω circle 2 και μέγεθος 8.

Type here to	search	- 🤜 😣 🗄	 Current Symbol
Search: (All Styles	Referenced Styles	
ESRI			
Circle 1	Square 1	Triangle 1	
•	•	•	Size:
Pentagon 1	Hexagon 1	Octagon 1	<u>A</u> ngle: 0,00
Rnd Square	1 Circle 2	Square 2	Edit Symbol
	٠	•	
Triangle 2	Pentagon 2	Hexagon 2	
	_		Style References

Από το μενού File επιλέγουμε Page and Print Setup και προσανατολισμό Landscape. Για να το κάνουμε αυτό πρέπει να είμαστε σε προβολή Layout View.

λαβές του χάρτη τροποποιούμε τις διαστάσεις όπως στην εικόνα:

Αριστερά στο Table of Contents κάνουμε δεξί κλίκ στο pro97 και επιλέγουμε Properties

Layer Properties							×
General Source Select Show: Features Categories Quantities 	ion Display Draw quar Fields Value: Normalizatio	Symbology Fields ntities using color to seasamp n: none	Definition Query	Labels Classification Natur Cla <u>s</u> ses: 5	Joins & Relates	Time nport s) sify	HTML Popup
Charts Multiple Attributes	Color <u>H</u> amp: Symbol F ◇ 1(◇ 1 ⁴ ◇ 1 ⁷ ◇ 2(◆ 2 ⁴	lange),870000 - 14,390000 I,390001 - 17,400000 7,400001 - 20,980000),980001 - 24,000000 I,000001 - 34,170000	Lab 10,8 14,3 17,4 20,9 24,0	el 70000 - 14, 90001 - 17, 00001 - 20, 80001 - 24, 00001 - 34,	390000 400000 980000 000000 170000		
	Sho <u>w</u> clas	s ranges using feature	values	OF	Adva	upo	Εφαρμογή

Στην καρτέλα Symbology στο Show επιλέγουμε Quantities και Graduated colors. Στη συνέχεια στο πεδίο Value επιλέγουμε seasamp.

Στο πλαίσιο που εμφανίζονται τα Symbol, Range και Lebel κάνουμε δεξί κλικ σε μια τιμή και επιλέγουμε Properties for Selected Symbols και αλλάζουμε το χρώμα και το μέγεθος από τις κουκκίδες που εμφανίζονται στο χάρτη.

Στο παράθυρο Layer properties πάμε στην επιλογή Classification και στο πεδίο Method επιλέγουμε Equal Interval και πατάμε OK.

Εμφανίζεται έτσι ο παρακάτω χάρτης.

Για να εμφανίσουμε το υπόμνημα, στην καρτέλα Insert επιλέγουμε Legend και ανοίγει το Legend Wizard (πρέπει να είμαστε σε προβολή Layout View).

Στη στήλη Legend Items αφήνουμε μόνο το pro97 Events και πατάμε επόμενο. Στα επόμενα βήματα πατάμε επόμενο και δημιουργείται έτσι το υπόμνημα που το μετακινούμε με το ποντίκι και το τοποθετούμε κάτω αριστερά στη σελίδα του χάρτη.

Για να εμφανίσουμε την ένδειξη του Βορά στο χάρτη, στην καρτέλα Insert επιλέγουμε North Arrow και ανοίγει το παρακάτω παράθυρο (πρέπει να είμαστε σε προβολή Layout View).

Επιλέγουμε ESRI North 8 και πατάμε ΟΚ. Εμφανίζεται το σύμβολο της πυξίδας πάνω στο χάρτη και με το ποντίκι το σέρνουμε πάνω αριστερά.

Για να εμφανίσουμε την κλίμακα πάμε στο Insert επιλέγουμε Scale Bar και ανοίγει το παρακάτω παράθυρο (πρέπει να είμαστε σε προβολή Layout View).

Επιλέγουμε τον τρόπο εμφάνιση της κλίμακας στο χάρτη και σέρνουμε την κλίμακα κάτω δεξιά.

<u>Ερώτηση 2η</u>

Εμφανίστε το Attribute Table.

<u>Απάντηση 2η</u>

Για την εμφάνιση του Attribute Table πατάμε δεξί κλικ στο pro97 Events και επιλέγουμε Open Attribute Table

Εμφανίζεται έτσι ο παρακάτω πίνακας

<u>Ερώτηση 3^η</u>

Εμφανίστε όλα τα στάδια από 1-5 του Kriging.

<u>Απάντηση3^η</u>

Για να εμφανίσουμε τα 5 στάδια του Kriging,

Πηγαίνουμε στην καρτέλα Customize->extensions και κάνουμε κλικ σε όλα τα τετραγωνάκια

Στη συνέχεια πάμε ξανά στην καρτέλα Customize επιλέγουμε Toolbars και μετά Geostatistical Analyst

Και εμφανίζεται στην επιφάνεια εργασίας μια νέα εργαλειοθήκη η Geostatistical Analyst

Στην εργαλειοθήκη Geostatistical Analyst πατάμε Geostatistical Wizard

Εμφανίζεται έτσι ο παρακάτω πίνακας και στο πεδίο Data Field συμπληρώνουμε seas amp

Geostatistical Wizard: Kriging / CoKrig	jing	-		×		
Methods	Input	t Data				
Deterministic methods	Dataset					
Geostatistical methods	S	ource Dataset	pro97 Events	· · · ·		
 Interpolation with barriers 	Di	ata Field	seasamp	-		
		ataset 2				
	S	burce Dataset	<none></none>			
	🗆 D	ataset 3				
	S	ource Dataset	<none></none>			
		ataset 4				
	So	ource Dataset	<none></none>	····		
Kriging / CoKriging						
Kriging is an interpolator that can be exact or smoothed depending on the measurement error model. It is very flexible and allows you to investigate graphs of spatial auto- and cross-correlation. Kriging uses statistical models that allow a variety of output surfaces including predictions, prediction standard errors, probability and quantile. The flexibility of kriging assumes the data come from a stationary stochastic process, and some methods assume the tor flexible of decision making. Kriging assumes the data come from a stationary stochastic process, and some methods assume the tor flexible of decision making.						
About Kinging 7 Consignig						
		< Back	t > Einish Ca	ancel		

Ordinary -> Prediction

<u>1[°] στάδιο Kriging</u>

Πηγαίνουμε στην αριστερή στήλη του πίνακα και ανοίγουμε το Geostatical Methods και επιλέγουμε Kriging/Cokriging και στη δεξιά στήλη στο Data Fields επιλέγουμε seasamp και μετά πατάμε Next.

Matheada	In suit Data					
Methods						
Deterministic methods	🖃 Dataset					
Geostatistical methods	Source Dataset	pro97 Events				
Kriging / CoKriging	Data Field	seasamp				
Areal Interpolation	Dataset 2					
Empirical Bayesian Kriging	Source Dataset	<none></none>	····			
Interpolation with barriers	Dataset 3					
	Source Dataset	<none></none>	· · · · ·			
	Dataset 4					
	Source Dataset	<none></none>	· · · · · · · · · · · · · · · · · · ·			
Kriging / CoKriging Kriging is an interpolator that can be exact or smoothed depending on the measurement error model. It is very flexible and allows you to investigate graphs of spatial auto- and cross-correlation. Kriging uses statistical models that allow a variety of output surfaces including predictions, prediction standard errors, probability and quantile. The flexibility of kriging can require a lot of decision-making. Kriging assumes the data come from a stationary stochastic process, and some methods assume						
About Kriging / CoKriging						

<u>2ο στάδιο Kriging</u>

Εμφανίζεται το παρακάτω παράθυρο. Στη συνέχεια επιλέγουμε Ordinary και Prediction στην αριστερή στήλη και πατάμε Next.

Geostatistical wizard - Kriging step 2 of 5	Testament.	
Kiging Type Ordinary Simple Universal Indicator Probability Disjunctive	Dataset #1 Transformation type Order of trend removal	None None
Output Surface Type Prediction Quantile Probability Prediction Standard Error	Dataset #1 Location: C:\Users\USER\Desktop\pr Name: pro97_Features Data field: seasamp	° 97

Αφού επιλεγεί η μέθοδος χαρτογράφησης του πλάτους μεταβολής εποχικού κύκλου(seasamp), κάνουμε κλικ στο Finish για να δημιουργήσουμε μια επιφάνεια χρησιμοποιώντας τις προεπιλεγμένες παραμέτρους.

ΣΗΜΕΙΩΣΗ: Υπάρχει ένα πλαίσιο στο κάτω δεξιά μέρος του Geostatistical Wizard που δείχνει μια σύντομη περιγραφή της επιλεγμένης μεθόδου ή παραμέτρου. Σε αυτό το στάδιο, το πλαίσιο δείχνει το σύνολο δεδομένων και το πεδίο που θα χρησιμοποιηθεί για τη δημιουργία της επιφάνειας.

<u>3° στάδιο Kriging</u>

Εμφανίζεται έτσι το Νέφος Ημιβαριογράμματος και ο Χάρτης Ημιβαριογράμματος.

Geostatistical wizard - Kriging step 3 of 5 - Semivariogram	/Covariance Modeling		X		
Semivariogram	General				
	Optimize model	€ /			
Y ·10-1	Variable	Semivariogram			
9,496	Model Nugget				
7,122	Enable	True			
4 748	Calculate Nugget	True			
	Nugget	13,22887			
2,3/4	Measurement Error	100	%		
	Model #1				
	Туре	Stable			
Madel + 12 220*Nuccest + 19 945*Stelle (22 124 2)	Parameter	2			
Model: 13,223 Nugget+16,643 Stable(22,124,2)	Major Range	22,12449	幂		
94,961 🖂 View Settings	Anisotropy	False			
79 134 Show se False	Calculate Partial Sill	True			
Show all False	Partial Sill	18,84473			
Show poi Binned a	⊞ Model #2				
E Export	Model #3				
8 47,48	🗆 Lag				
	Lag Size	2,50073			
ie 31,654	Number of Lags	12			
15,827 0 View Settings	General Kriging is an interpolator depending on the measu	that can be exact or smooth rement error model. It is ver	<more> ned ry flexi</more>		
	< Back Next >	<u>F</u> inish Ca	ancel		

ΣΧΟΛΙΟ: Η μπλε γραμμή απεικονίζει το Μαθηματικό Μοντέλο για τη βέλτιστη εκτίμηση με βάση τις παρατηρήσεις. Φαίνεται επίσης η απόσταση επίδρασης από τα γειτονικά σημεία.

4° στάδιο Kriging

Στη συνέχεια πατάμε Next.

Στο παραπάνω παράθυρο μπορούμε να παρατηρήσουμε πόσο μεταβάλλονται οι μετρήσεις από τους γειτονικούς σταθμούς, βάση των μετρήσεων με Maximum neighbors :5 και Minimum neighbors :2.

ΠΑΡΑΤΗΡΗΣΗ: Το σταυρόνημα δείχνει μια θέση για την οποία δεν έχουμε μέτρηση. Για να προβλέψουμε την τιμή ακριβώς στη θέση που δείχνει το σταυρόνημα, χρησιμοποιούμε τις τιμές στις γειτονικές μετρούμενες θέσεις. Γνωρίζουμε ότι οι τιμές των πλησιέστερων μετρούμενων θέσεων είναι οι ίδιες με την αξία της μη μετρημένης θέσης που προσπαθούμε να προβλέψουμε. Τα κόκκινα σημεία στην παρακάτω εικόνα θα σταθμιστούν (ή θα επηρεάσουν την άγνωστη τιμή) περισσότερο από τα πράσινα σημεία, δεδομένου ότι είναι πιο κοντά στην τοποθεσία που προβλέπουμε. Χρησιμοποιώντας τα περιβάλλοντα σημεία και το προηγούμενο μοντέλο ημιβαριογράμματος, μπορούμε να προβλέψουμε τις τιμές για τη μη μετρημένη θέση.

Το παραπάνω διάγραμμα μας δίνει μια ιδέα για το πόσο καλά το μοντέλο προβλέπει τις τιμές στις άγνωστες τοποθεσίες.

Παρατηρούμε επίσης ότι η κατανομή δεν είναι ομοιόμορφη.

5° στάδιο Kriging

Στο προηγούμενο παράθυρο πατάμε Next. Εμφανίζεται έτσι το παρακάτω παράθυρο στο οποίο φαίνεται η συνάρτηση παλινδρόμησης που είναι 1^{ου} βαθμού – ευθεία

Παραπάνω βλέπουμε ότι το Μέσο σφάλμα(Mean error)=0,00280585 δηλ. κοντά στο μηδέν.

Τυποποιημένο μέσο σφάλμα(Mean Standardized error)=0,09827245 δηλ. κοντά στο μηδέν.

(RMSE) Τετραγωνική ρίζα του μέσου τετραγωνικού σφάλματος (Root Mean Square Error)=3,671258

(SAE) Τυπικό σφάλμα (Average Standar Error)=3,979448

(RMSE) Τυποποιημένη τετραγωνική ρίζα του μέσου τετραγωνικού σφάλματος (Standardized Root Mean Square Error)= 0,9171802

ΠΑΡΑΤΗΡΗΣΗ: Από το Τυπικό σφάλμα που είναι 3,9 μπορούμε να πούμε ότι οι μετρήσεις έχουν μεγάλη διασπορά, όχι πολύ μεγάλη αλλά σημαντική. Η μοντελοποίηση είναι σχετικά καλή αφού η τιμή Root-Mean-Square Standardized είναι 0,917 κοντά στο 1.

ΣΧΟΛΙΑ: Το Cross Validation μας δίνει το σφάλμα πρόβλεψης (διαφορά μεταξύ της μετρούμενης και της προβλεπόμενης τιμής). Σε αυτή τη μέθοδο μια τιμή αφαιρείται από το δείγμα και η αναμενόμενη τιμή αφαιρείται από την πραγματική. Η διαδικασία αυτή επαναλαμβάνεται για όλες τις τιμές και έτσι λαμβάνονται η υπόλοιπα τα οποία θεωρητικά έχουν κανονική κατανομή. Οι στατιστικές που υπολογίζονται με βάση τα σφάλματα πρόβλεψης και

χρησιμεύουν ως διαγνωστικά που δείχνουν αν το μοντέλο είναι λογικό για τη λήψη αποφάσεων και την παραγωγή χαρτών.

Για να κρίνουμε αν ένα μοντέλο παρέχει ακριβείς προβλέψεις, πρέπει

- Οι προβλέψεις να είναι αμερόληπτες, και να υποδεικνύονται από ένα μέσο σφάλμα πρόβλεψης (mean prediction error) κοντά στο 0.
- Τα τυπικά σφάλματα (standard errors) να είναι ακριβή, να υποδεικνύονται από τυποποιημένο σφάλμα πρόβλεψης (root-mean-square) με μέση τετραγωνική απόσταση (root-mean-square standardized prediction error) κοντά στο 1.
- Οι προβλέψεις να μην αποκλίνουν πολύ από τις μετρούμενες τιμές (measured values), που υποδεικνύονται από το σφάλμα ρίζας μέσου τετραγώνου (root-mean-square error) και το μέσο τυποποιημένο σφάλμα (average standard error) που είναι όσο το δυνατόν μικρότερο.

<u>Ερώτηση 4^η</u>

Να εμφανίζεται ο πίνακας αποτελεσμάτων "Kriging", δηλ. "Summary"

<u>Απάντηση 4^η</u>

Μετά το 5ο στάδιο του Kriging πατάμε Finish και εμφανίζεται ένας πίνακαs ο Method Report που συνοψίζει πληροφορίες σχετικά με τη μέθοδο (και τις παραμέτρους που σχετίζονται με αυτήν) και θα χρησιμοποιηθούν για τη δημιουργία της επιφάνειας εξόδου.

Method Report		X
Input datasets		^
Dataset	C:\Users\temp_user\Desktop\pro_97	
	\pro97_Features	
Туре	Feature Class	
Data field 1	seasamp	
Records		
🛛 🗆 Method	Kriging	
Туре	Ordinary	
Output type	Prediction	
🗆 Dataset #		
Trend type	None	
Searching neigh	hborhood Standard	
Neighbors to inclu	Jde5	
Include at least		
Sector type	Four and 45 degree	
Major semiaxis	22.124493254905	
Minor semiaxis	22.124493254905	
Angle	0	
🗆 Variogram	Semivariogram	
Number of lags		
Lag size	2.500730459756	
Nugget	13.228867342606	
Measurement error	%100	
🗆 Model type	Stable	
Parameter		
Range	22.124493254905	
Anisotropy	No	
Partial sil	18.844734006034	
		-
Save	OK Car	ncel

Και πατώντας ΟΚ εμφανίζεται η παρακάτω εικόνα

ΠΑΡΑΤΗΡΗΣΗ: Παρατηρούμε ότι υπάρχει μια ομαλή διαβάθμιση στο παραπάνω Kriging

Ordinary -> Prediction Standard Error

Για να εμφανίσουμε το Kriging με Kriging Type: Ordinary και output Surface Type: Prediction Standard Error μπορούμε να επαναλάβουμε τα βήματα από το 2° και μετά ή για συντομία από το table of contents κάνουμε δεξί κλικ στην επιλογή change output To Prediction Standard Error.

Έτσι εμφανίζεται η παρακάτω εικόνα

Simple -> Prediction

Επαναλαμβάνουμε το Kriging από το βήμα 2 και μετά, έχοντας επιλέξει Kriging Type: Simple και output Surface Type: Prediction και παίρνουμε τις παρακάτω εικόνες και πατάμε Next.

Geostatistical wizard - Kriging step 2 of 5				10	
Kriging Type	🗆 Dataset	#1			
Ordinary	Transform	nation type		Normal Score	
Simple	Deduster	before transform	mation	False	
Universal	Order of	trend removal		None	
Probability					
Disjunctive					
Output Surface Type					
Prediction					
Quantile					
Probability					
Prediction Standard Error					
		- Back	Nevts	Finish	Cancel
			Mext >		Cancer

Αφού επιλεγεί η μέθοδος χαρτογράφησης του πλάτους μεταβολής εποχικού κύκλου(seasamp), κάνουμε κλικ στο Finish για να δημιουργήσουμε μια επιφάνεια χρησιμοποιώντας τις προεπιλεγμένες παραμέτρους.

ΠΑΡΑΤΗΡΗΣΕΙΣ: Στο σχήμα φαίνεται η επιφάνεια που δημιουργήθηκε με την μέθοδο Kriging η οποία έχει χωρισθεί σε 10 κλάσεις. Οι τιμές του άξονα x έχουν αναπροσαρμοσθεί με συντελεστή 10 για να είναι πιο ευανάγνωστες. Αν θέλουμε μπορούμε να αλλάξουμε το μέγεθος πηγαίνοντας στο Number of bins και αντί για 10 επιλέγουμε άλλο αριθμό.

Το ιστόγραμμα δεδομένων για το όζον δείχνει κάποιες υπερεκτιμήσεις στις ακραίες τιμές και φαίνεται να υποτιμά κάποιες μεσαίες αλλά <u>τα δεδομένα είναι</u> κοντά σε μια κανονική κατανομή.

Παρατηρούμε επίσης ότι στο μοντέλο μας τα δεδομένα είναι διαστρεβλωμένα αριστερά και λοξά δεξιά. Η δεξιά ουρά της κατανομής δείχνει την παρουσία ενός σχετικά μικρού αριθμού σημείων δειγματοληψίας με μεγάλες τιμές συγκέντρωσης όζοντος.

Αν πατήσουμε Next εμφανίζεται το Νέφος Ημιβαριογράμματος και ο Χάρτης Ημιβαριογράμματος.

Geostatistical wizard - Kriging step 4 of 6 - Semivariogram	/Co	variance Modeling		х
Covariance		General		
	E	Optimize model	V	
С		Examine bivariate di	False	
0.873		Variable	Covariance	
0.436		Model Nugget		
0.000		Enable	True	
-0.436		Calculate Nugget	True	
-0.873		Nugget	0,1238918	
		Measurement Error	100 %	
- Model & Rinned - AverDicthree (Degree) h :10-1		Model #1		
Madel : 0 12200*Nuccet: 0 002C1*Steble(10 210 1 7200)		Туре	Stable	
Model : 0,12365 Nugget+0,66561 Stable(10,515,1,7556)		Parameter	1,739844	屋
1,0233 E View Settings		Major Range	10,31852	扇
0 6598 Show se False		Anisotropy	False	
Show all False		Calculate Partial Sill	True	
General Show poi Binned a		Partial Sill	0,8836146	
E Export	Ŧ	Model #2		
e -0.067289	Ŧ	Model #3		
		Lag		-
ල් <u>-0,430</u> 83		Lag Size	1,197948	
		Number of Lags	12	
-0,79438 -1,1579 View Settings	G Kr de	eneral riging is an interpolator t epending on the measure	hat can be exact or smoothe ement error model. It is very	<more> ed flexi</more>
[C	<	Back Next >	<u> </u>	ncel

ΠΑΡΑΤΗΡΗΣΕΙΣ: από το ημιβαριόγραμμα παρατηρούμε ότι μας εισάγει μεγάλο συστηματικό σφάλμα. Αυτό που λέμε Nugget Effect είναι τεράστιο. Αυτό σημαίνει ότι δεν μας επηρεάζουν οι κοντινές μετρήσεις αλλά μας επηρεάζουν οι μακρινές. Υπάρχει κάποιο συστηματικό σφάλμα που μας εισάγει μεγάλη διαφορά.

Στη συνέχεια πατάμε Next.

Geostatistical wizard - Kriging step 5 of 6 - Searching Neig	ghbo	rhood	
		Dataset	#0 [pro97_Features - seasa 🔻
	Ð	Search Neighborho	od
		Neighborhood type	Standard
		Maximum neighbors	5
		Minimum neighbors	2
		Sector type	⊗ 4 Sectors with 45° offset
		Copy from Variogram	True
		Angle	0
		Major semiaxis	10,31852
		Minor semiaxis	10,31852
		Anisotropy factor	1
	Ξ	Predicted Value	
		х	9,9508
		Y	57,2
		Value	17,33129
	÷	Weights (18 neight	oors)
	Da Lo Na	ataset cation: C:\Users\temp_ ame: pro97_FeaturesDa	user\Desktop\pro 97 ata field: seasamp
	<	Back Next >	<u>Finish</u> Cancel

Στο παραπάνω παράθυρο πατάμε Next και εμφανίζεται το παρακάτω παράθυρο στο οποίο φαίνεται η συνάρτηση παλινδρόμησης που είναι 1^{ου} βαθμού – ευθεία

Source ID	Included	Measured	Predicted	Error	St 🔦	Predicted ·10 ⁻¹
D	Yes	28.49	27.04	-1	2.	3,417
1	Yes	20.24	18.46	-1	1.! =	
2	Yes	28.08	25.34	-2	2.:	3,029
3	Yes	22.46	21.12	-1	2.:	2.640
4	Yes	15.7	21.26	5	2.	
5	Yes	15.27	21.41	6	2.:	2,252
5	Yes	17.88	21.46	3	2.1	1 864
7	Yes	22.98	28.09	5	2.	1,004
3	Yes	26.66	18.68	-7	2.1	1.475
)	Yes	23.65	25.18	1	2.:	
10	Yes	28.19	26.64	-1	2.:	1.087 1.553 2.019 2.485 2.951 3.41
11	Yes	34.17	24.56	-9	2.:	Measured 10
12	Yes	25.1	26.10	1	2.:	Predicted Error Standardized Error Normal QQPlot
13	Yes	26.07	27.05	0	2.:	
14	Yes	27.31	26.55	-0	2.:	Regression function 0,608185514660775 *
15	Yes	18.89	19.44	0	2.1	Prediction Errors
16	Yes	18.08	19.10	1	2.1	Samples 89 of 89
17	Yes	16.67	19.29	2	1.!	Mean 0,03246438
18	Yes	11.74	24.85	13	2.	Root-Mean-Square 3,860004
19	Yes	26.27	17.32	-8	2.1	Mean Standardized -0,02456254
20	Yes	27.15	19.88	-7	2.1 -	Root-Mean-Square Stan 1,521574
(•	Average Standard Error 2,69009

Παραπάνω βλέπουμε ότι το Μέσο σφάλμα(Mean error)=0,03246438 δηλ. κοντά στο μηδέν.

Τυποποιημένο μέσο σφάλμα(Mean Standardized error)=0,02456 δηλ. κοντά στο μηδέν.

(RMSE) Τετραγωνική ρίζα του μέσου τετραγωνικού σφάλματος (Root Mean Square Error)=3,860004

(SAE) Τυπικό σφάλμα (Average Standar Error)=2,69009

(RMSE) Τυποποιημένη τετραγωνική ρίζα του μέσου τετραγωνικού σφάλματος (Standardized Root Mean Square Error)= 1,521574

Μετά το 5ο στάδιο του Kriging πατάμε Finish και εμφανίζεται ένας πίνακαs ο Method Report .

Method Report		X
		~
Input datasets		
Dataset	C:\Users\temp_user\Desktop\pro 97	
Type	Feature Class	
Data field 1	seasamp	
Records	89	
Nacardo		
🗆 Method	Kriging	
Туре	Simple	
Output type	Prediction	
🗆 Dataset #		
Trend type	None	
Transformation	Normal Score Transformation	
Approximation	DensitySkew	
Kernels		
BaseDistribution	Gamma	
Searching neight	borhood Standard	
Neighbors to inclu	.de5	
Include at least		
Sector type	Four and 45 degree	
Major semiaxis	10.318516210429	
Minor semiaxis	10.318516210429	
Angle	0	
🗆 Variogram	Covariance	
Number of lags		
Lag size	1.197947543015	
Nugget	0.123891825577	
Measurement error	%100	
Model type	Stable	
Parameter	1.73984375	
Range	10.318516210429	
Anisotropy	No	
Partial sill	0.883614575968	
Save	OK Car	ncel

Και πατώντας ΟΚ εμφανίζεται η παρακάτω εικόνα

Simple -> Prediction Standard Error

Για να εμφανίσουμε το Kriging με Kriging Type: Simple και output Surface Type: Prediction Standard Error μπορούμε να επαναλάβουμε τα βήματα από το 2° και μετά ή για συντομία από το table of contents κάνουμε δεξί κλικ στην επιλογή change output To Prediction Standard Error.

Και εμφανίζεται η παρακάτω εικόνα

ΣΥΜΠΕΡΑΣΜΑΤΑ ΓΙΑ ΤΟ KRIGING: επιλέγουμε το 1° Kriging γιατί έχει πιο ομαλή διαβάθμιση αυτό φαίνεται και από το ημιαβαριόγραμμα από το οποίο φαίνεται ότι έχουμε συστηματικό σφάλμα αλλά έχει ομαλή συμπεριφορά.

Για το Kriging που επιλέξαμε εφαρμόζουμε λογάριθμο και προκύπτουν τα παρακάτω:

Ge	osta	tistica	al wizard	- Kriging step 5	of 5 - Cross Validation				
	ś	I	Mea	Predicted	Error	Standard Error	Standardized Error	Normal Value	Predicted ·10 ⁻¹
	0	Yes	28.49	25.07271379	-3.4172862028293522	4.5093434923858515	-0.7578234411726524	-0.9378633	3,417
	1	Yes	20.24	21.31979412	1.0797941227692363	3.839425956943231	0.2812384285772025	0.37472478	
	2	Yes	28.08	24.46076829	-3.619231703629044	4.364478610116245	-0.8292472084157261	-0.9825220	3,205
	3	Yes	22.46	20.52568614	-1.9343138557427935	3.7248993080791837	-0.5192929246563338	-0.5308747	
	4	Yes	15.7	23.07946356	7.3794635683310155	4.145169037307152	1.7802563663664184	2.12354911	2,993
	5	Yes	15.27	21.23035443	5.960354431051623	3.8534925037809673	1.546740891594689	1.53985581 =	
	6	Yes	17.88	23.34523254	5.465232543821518	4.1815644999043675	1.306982719971558	1.37691242	2,782
	7	Yes	22.98	24.74035426	1.7603542631205542	4.425395295170947	0.39778463746311593	0.53087470	
	в	Yes	26.66	22.12256847	-4.537431529186712	3.9610542263492503	-1.1455110861657367	-1.4535633	2,570
	9	Yes	23.65	24.64441399	0.994413992501503	4.402424873598028	0.22587869663946933	0.31493766	
	10	Yes	28.19	24.34862691	-3.8413730805040736	4.339317362655224	-0.8852482451648894	-1.2440446	2,358
	11	Yes	34.17	24.05681474	-10.113185257716058	4.293165356533773	-2.355647737240027	-2.1235491	
	12	Yes	25.1	24.69218361	-0.4078163808670965	4.409458709988749	-0.0924867217700145	-0.0563585	2,146
	13	Yes	26.07	24.90829637	-1.1617036217799104	4.450140149259381	-0.2610487721320975	-0.2562564	
	14	Yes	27.31	24.67069480	-2.639305190395941	4.412050690400405	-0.5982037323683643	-0.6656763	1,934
	15	Yes	18.89	19.08676307	0.19676307265832094	3.44389676411462	0.057133847538227846	0.14129049	1722
	16	Yes	18.08	20.09361126	2.0136112614512705	3.6259776315739956	0.5553292011283547	0.66567637	1,722
	17	Yes	16.67	19.13729748	2.4672974827935477	3.4526752146587647	0.7146045687466714	0.81385094	1511
	18	Yes	11.74	21.45276967	9.712769679011887	3.957659004724905	2.4541704243382676	2.53527353	1,511
	19	Yes	26.27	19.49694047	-6.773059522994586	3.6087902523170508	-1.8768227160461577	-1.7585634	1 700
	20	Yes	27.15	19.90818669	-7.241813301669644	3.611901747621205	-2.0049862392959876	-1.9096385	1,200
	21	Yes	21.8	19.91638712	-1.88361287611977	3.628867505591079	-0.5190635572165819	-0.4987187	
	22	Yes	23.58	20.37254334	-3.2074566568141663	3.6786022639425116	-0.8719226561277111	-1.1851578	1,087 1,420 1,753 2,086 2,418 2,751 3,084 3,417
	23	Yes	23.99	23.69560775	-0.2943922433699342	4.2521108055860495	-0.06923437719054441	-0.0281680	Measured ·10 ⁻¹
	24	Yes	23.62	23.41921156	-0.20078843558082937	4.208282829311165	-0.047712676102070715	0.05635853	Predicted Error Standardized Error Normal QQPlot
	25	Yes	21.17	18.86174278	-2.3082572171597953	3.438428775462096	-0.6713116274597211	-0.8138509	
	26	Yes	24	21.37787820	-2.622121799096501	3.8882937530375195	-0.6743630923070331	-0.8537230	Regression function 0,53088569096733 * X + 8,9571 *
	27	Yes	19.87	20.53520304	0.6652030493220771	3.7021085020507307	0.179682213245127	0.28547416	Prediction Errors
	28	Yes	25.54	21.86920785	-3.6707921408817334	3.985908469352405	-0.9209424072595753	-1.3075934	Samples 89 0F 89
	29	Yes	22.13	21.08592548	-1.0440745175900474	3.839952349816307	-0.27189777957530986	-0.2854741	Pream 0,05030895
	30	Yes	18.69	18.93972321	0.24972321722323443	3.4645999607586027	0.07207851412910467	0.16979857	Norm Standardized 0.002122402
	31	Yes	19.32	20.66775677	1.3477567768281347	3.7657646910436853	0.35789723665782275	0.46707051	Poot Moon Standardized 0.027965
	32	Yes	18.32	18.51856739	0.19856739430720083	3.5731692871772727	0.05557178469539147	0.11289680	Average Standard Error 2 900212
	*	Vec	12 04	10 70210012	1 00000000000000	9 4666107700101007	0 55422020000005056660	0 20120100	Evport Deput Table
Ľ									LAPOIL RESULT I dDIE
									< <u>Back</u> <u>N</u> ext > <u>Finish</u> Cancel
	_								44

Dotocot	Cillicers)temp_user\Decktep\pro_07
Dataset	<pre>\pro97 Features</pre>
Туре	Feature Class
Data field 1	seasamp
Records	
Method	
Туре	Ordinary
Output type	Prediction
🗆 Dataset #	
Trend type	None
Transformation	Log
Searching neight	borhood Standard
Neighbors to inclu	ıde5
Include at least	
Sector type	Four and 45 degree
Major semiaxis	23.500821925651
Minor semiaxis	23.500821925651
Angle	0
🗆 Variogram	Semivariogram
Number of lags	
Lag size	2.630281396052
Nugget	0.029671092226
Measurement error	%100
Model type	Stable
Parameter	2
Range	23.500821925651
Anisotropy	No
Partial sill	0.062830496323

ΠΑΡΑΤΗΡΗΣΕΙΣ: Αυτό που πετυχαίνουμε με το log είναι ότι μας κάνει τις διακυμάνσεις πιο σταθερές σε όλη την περιοχή μελέτης και τα δεδομένα πιο κοντά στην κανονική κατανομή. Τα λάθη φαίνεται να περιορίζονται.

Ο χάρτης όπως παρατηρούμε και παρακάτω δεν εμφανίζει μεγάλες αλλαγές.

Αφαιρούμε την 1^{ης} τάξης παράγωγο που εκφράζει την τάση και πάλι δεν παρουσιάζει μεγάλη διαφορά στο Kriging

Geosta	istical	wizard - Kri	ging step 6 of 6 - Cro	s Validation				
So	I	Measured	Predicted	Error	Standard Error	Standardized Error	Normal Value	Predicted ·10 ⁻¹
0	Yes	28.49	25.944424229475942	-2.5455757705240565	3.755256292543152	-0.6778700499	-1.0783022	3,417
1	Yes	20.24	19.261229613660664	-0.9787703863393347	3.8603958964329896	-0.2535414534	-0.34467718	
2	Yes	28.08	25.34797270335013	-2.7320272966498678	3.545135952980649	-0.7706410509	-1.2440446(3 205
3	Yes	22.46	20.549869294764314	-1.9101307052356873	4.001855533743024	-0.4773112595	-0.8138509	
4	Yes	15.7	22.27740420713667	6.57740420713667	3.7059842252581716	1.77480631523	1.90963850	2 002
5	Yes	15.27	21.532554162586568	6.262554162586568	3.9806033535716474	1.57326756934	1.75856346	2,000
6	Yes	17.88	22.17721320381856	4.297213203818561	3.802647096284366	1.13005837644	1.18515780 =	•
7	Yes	22.98	28.364529185971417	5.384529185971417	3.6619570201456946	1.47039660934	1.63943069	2,702
8	Yes	26.66	19.711699090613468	-6.948300909386532	3.7778507163745387	-1.8392206127	-1.7585634	· · · ·
9	Yes	23.65	25.286874236089396	1.6368742360893975	3.6257492496784587	0.45145820170	0.63092450	2,5/0
10	Yes	28.19	25.93445440281769	-2.255545597182312	3.5627344705992896	-0.6330939383	-1.0292317:	
11	Yes	34.17	24.041708131121403	-10.128291868878598	3.670422351431843	-2.7594349911	-2.5352735:	2,358
12	Yes	25.1	25.92315502814249	0.8231550281424873	3.5410950041408045	0.23245776438	0.37472478	
13	Yes	26.07	26.904065029126507	0.8340650291265064	3.281391798107597	0.25418026265	0.40511463	2,146
14	Yes	27.31	26.01145937355536	-1.2985406264446375	3.3087762366064566	-0.3924534430	-0.5308747(· · · · · · · · · · · · · · · · · · ·
15	Yes	18.89	19.557433865145924	0.6674338651459237	3.7610570102345395	0.17745911942	0.28547416	1,934
16	Yes	18.08	19.53094982207453	1.4509498220745307	3.906000941981012	0.37146683875	0.49871877	
17	Yes	16.67	19.11766852065367	2.447668520653668	3.7889101729707013	0.64600859057	0.81385094	1722
18	Yes	11.74	22.23580696580656	10.49580696580656	3.9386083711317332	2.66485163712	2.53527353	• •
19	Yes	26.27	18.50787995240414	-7.762120047595861	3.8755955226406846	-2.0028199543	-2.1235491	1511
20	Yes	27.15	20.35211909504028	-6.797880904959719	3.7395914279163	-1.8178138002	-1.63943069	1,511
21	Yes	21.8	21.18678221229085	-0.61321778770915	3.8136654746279306	-0.1607948551	-0.1984453!	
22	Yes	23.58	22.273722385358784	-1.306277614641214	3.655608975904301	-0.3573351589	-0.4987187	1.299
23	Yes	23.99	23.97172237600209	-0.018277623997907	3.7740009709250675	-0.0048430363	0	
24	Yes	23.62	23.72330596831099	0.1033059683109876	3.6973900014817356	0.02794024116	0.02816808	1007 1246 1605 1064 2122 2201 2640 2000 2150 2417
25	Yes	21.17	18.70577415863557	-2.4642258413644313	4.099739604260252	-0.6010688675	-0.9378633!	1,007 1,040 1,000 1,004 2,123 2,301 2,040 2,033 3,130 3,417 Manuari 10:1
26	Yes	24	22.190957378704592	-1.8090426212954078	4.165032130585082	-0.4343406160	-0.7012515(Deskind (Free Stradesteed Free Nervel 000ht /
27	Yes	19.87	21.664538278489932	1.7945382784899309	3.759076990467782	0.47738800855	0.70125150	
28	Yes	25.54	21.317738512807114	-4.222261487192885	4.105339867834158	-1.0284803751	-1.3769124	Regression function 0,596600078794596 * x + 7,69732374256 A
29	Yes	22.13	21.455014631322452	-0.6749853686775467	4.025954644200893	-0.1676584632	-0.2272559!	Prediction Errors
30	Yes	18.69	17.813474543720965	-0.8765254562790368	4.088211149951868	-0.2144031763	-0.2854741	Samples 89 of 89
31	Yes	19.32	21.346013747202008	2.0260137472020077	4.025935561595283	0.50324048067	0.73773720	Mean 0,110634
32	Yes	18.32	19.591746740579463	1.271746740579463	4.19534539798893	0.30313278644	0.46707051	Root-Mean-Square 3,595363
33	Yes	16.84	17.8995271350306	1.0595271350305993	4.105479104350344	0.25807636772	0.43588338	Mean Standardized 0,02285599
34	Yes	20.68	19.116392346709045	-1.5636076532909549	4.427935600027558	-0.3531233953	-0.4670705	Root-Mean-Square Standardized 0,904812
35	Yes	15.08	18.706743942778566	3.6267439427785657	4.122251858227786	0.87979678765	0.98252209 -	Average Standard Error 3,995854
•				m			•	Export Result Table
								< Back Next > Einish Cancel

Input datasets	
🗆 Dataset	C:\Users\temp_user\Desktop\pro 97
Туре	Feature Class
Data field 1	seasamp
Records	

many suffragence factors

×

A.

🗆 Method	Kriging
Туре	Ordinary
Output type	Prediction
🗆 Dataset #	
Trend type	First
Trend removal	Local Polynomial Interpolation
Power	
Output type	Prediction
Exploratory trend surface	ce analysis0
Searching neighborh	ood Standard
Neighbors to include	5
Include at least	
Sector type	Four and 45 degree
Major semiaxis	2.631714129229
Minor semiaxis	2.631714129229
Angle	0
🗆 Variogram	Semivariogram
Number of lags	
Lag size	0.308544302138
Nugget	0
Measurement error %	
🗆 Model type	Stable
Parameter	0.58671875
Range	2.631714129229
Anisotropy	No
Partial sill	15.887872220741
Save	OK Cancel

ΠΑΡΑΤΗΡΗΣΗ: δεν παρουσιάζει μεγάλη διαφορά στο Kriging

<u>Ερώτηση 5^η</u>

Να εμφανίζεται η επιφάνεια "Kriging" με:

- α) χρωματική κλίμακα
- β) αποχρώσεις ενός χρώματος

γ) Contours - ισοπληθείς , σε ρύθμιση "Geometrical interval" (Classify). Τι συμβαίνει αν αλλάξει η ρύθμιση;

δ) Να σχεδιαστούν το ιστόγραμμα, το ημιβαριόγραμμα, το QQ διάγραμμα και να γίνει μελέτη τάσεων.

<u>Απάντηση 5^η</u>

Επιφάνεια Kriging :

α) Αριστερά στο Table of Contents κάνουμε δεξί κλίκ στο Kriging και επιλέγουμε Properties και στην κατρέλα Symbology επιλέγουμε πολλά χρώματα. Ενώ από την επιλογή classify έχουμε διαλέξει Method: Geometric Intervals.

Q Untitled - ArcMap	a same blood had	
File Edit View Bookmarks Insert Selection Geoprocessing	Customize Windows Help	
ି 🗋 🚔 🕼 🐁 🗿 🛍 🗙 🗠 ल । 🔶 • ।		
i 🔍 🔍 🖉 🥥 i 💥 🖸 🖛 🧼 🔯 - 🖄 🖡 🏮 🥖 💷 🔛	A 🖞 🖧 💿 🗊 🖕	
Table Of Contents # ×		· 😨
%: 🖳 🗇 📮 🖾	laver Dronarties	Ca
🗄 🥌 Layers		lalog
C:\Users\USER\Desktop\r	General Source Display Extent Symbology Method Summary	
pros/ Events	Show: Draw surface as filled contours Import	Se
m pro97	Hilshade Color Ramp: Classify	arch
E 🗹 Kriging	Contours	
Prediction Map	Gina Synton Range Lober	
Filled Contours	14,0019163 - 16,465932 14,0019163 - 16,465932	
10,87 - 14,0019163	16,465932 - 18,4044811 16,465932 - 18,4044811	
14,0019163 - 16,465932	18,404-8811 - 19,92962/6 18,404-8811 - 19,92962/6	
16,405932 - 18,4044811 18,4044811 - 19,929622	21,1295183 - 22,6546598 21,1295183 - 22,6546598	
19,9296226 - 21,129518	22,6546598 - 24,5932089 22,6546598 - 24,5932089	E
21,1295183 - 22,654659	27,952.069 - 27,1057.246 27,955.069 - 27,057.246 20,1091.246	
22,6546598 - 24,593208	30,1891409 - 34,17 30,1891409 - 34,17	
27,0572246 - 30,189140		
30,1891409 - 34,17	Classification type: Geometric Interval, 10 - dasses	
	Presentation quality Display NODATA as:	
	Refine on zoom	
	ΟΚ Άκωρο Εφαρμογή	
		-
<	m	F
	-38,176 29,911 Deci	mal Degrees
	🖳 😓 EN 🔺 (😵 🛍 🕕 11:24 μμ 3/6/2017

Πατάμε ΟΚ και εμφανίζεται στην επιφάνεια εργασίας ο χάρτης,

β) Αριστερά στο Table of Contents κάνουμε δεξί κλίκ στο Kriging και επιλέγουμε Properties και στην κατρέλα Symbology επιλέγουμε αποχρώσεις ενός χρώματος.

γ) Αριστερά στο Table of Contents κάνουμε δεξί κλίκ στο Kriging και επιλέγουμε Properties και στην καρτέλα Symbology κάνουμε κλικ στο Contours για να εμφανίσουμε τις ισοπληθείς.

Και στις τρεις περιπτώσεις στην επιλογή classify έχουμε διαλέξει Method: Geometric Intervals.

Το ψηφιδωτό (Raster) είναι η πιο κλασσική μέθοδος για ομαλές περιοχές.

δ) Στην εργαλειοθήκη Geostatistical Analyst επιλέγουμε Explore Data -> Histogram

Εμφανίζεται το επόμενο παράθυρο και κάτω δεξιά στο Attribute επιλέγουμε seas amp.

Q Untitled - ArcMap		-	(Sec.)					
File Edit View Bookmarks Inse	ert Selection Geop	processing Customize	Windows Help					
🗄 🗋 🚔 🖓 👘 🛍 🗙 🔊) ୯ 🔶 -	·	🖂 🧊 🗟 🚳 🗁 🦕 💡					
10, 0, 🐑 🔕 💥 🖸 💠 🕅	🂱 - 🖾 💺 🚯 🖉	💷 🔛 🗛 🖏 🛛	💿 I 🗊 🖕					
Table Of Contents 🛛 🛱 🗙								<u>^</u>
State - State								Cat
🖃 <i> Eayers</i>	Histo	aram						alog
C:\Users\USER\Desktop\p	- Insto	gram 10 ⁻¹			C I OD ISI			
E Prosv Events	1,8	iency 10			Min : 10,87 Kurtos	is :2,6343		Se
pro97					Max : 34,17 1-st Q Mean : 19.59 Media	uartile : 15,68 n : 19,49		arch
E Kriging	1,44				Std. Dev. : 4,9109 3-rd Q	uartile : 22,59		
Prediction Map	1,08							
Filled Contours	0.72							
10,87 - 14,0019163	0,72							
14,0019163 - 16,465932	0,36							
16,403932 - 18,4044811	0							
19,9296226 - 21,129518	1,0	09 1,32 1,	55 1,79 2,02	2,25 2,48 Dataset 10 ⁻¹	2,72 2,95 3	3,18 3,42		=
21,1295183 - 22,654659	Tip:	Click or drag over bars to	select			Add to Layout		
22,0340398 - 24,593208	Bars	10	Statistics			· · ·		
27,0572246 - 30,189140	∇	ransformation						
30,1891409 - 34,17	Trans	formation: None	*					
		lata Source						
	Layer	r:		Attribute:				
	pro9	7 Events		▼ seasamp				
				,	-			
								-
<) [E	2000 - 00 - 00 - 00 - 00 - 00 - 00 - 00			"				•
							-5,21 30,233 Decimal Degrees	
🕑 ⋵ 📋 🕻		2 😬 🔇	2				EN 🔺 🔯 🛱 🕩	8:06 µµ 3/6/2017

ΠΑΡΑΤΗΡΗΣΗ: Μας ενδιαφέρει η Skewness και Kurtosis. Στο ιστόγραμμα η kirtosis=2,6343 και Skewness=0,34176 η μορφή της κατανομής είναι περίπου κανονική με μία λοξότητα αριστερά.

Eπιλέγουμε Geostatical Analist-> Explore Data ->Normal QQPlot και επιλέγουμε seas amp στο Attribute

ΠΑΡΑΤΗΡΗΣΗ: Το μοντέλο παρουσιάζει κάποιο σφάλμα. Υπερεκτιμά τις χαμηλές τιμές από -1,5 ως -0,6 και υποτιμά τις τιμές από 1,01 ως 1,9 περίπου ενώ συμφωνεί με τις υπόλοιπες.

ΣΧΟΛΙΑ: Η γραφική παράσταση QQ δείχνει τα ποσοστά της διαφοράς μεταξύ των προβλεπόμενων και των μετρούμενων τιμών και των αντίστοιχων ποσοτήτων από μια τυποποιημένη κανονική κατανομή. Εάν τα λάθη των

προβλέψεων από τις πραγματικές τους τιμές κατανέμονται κανονικά, τα σημεία θα πρέπει να βρίσκονται κατά προσέγγιση κατά μήκος της γκρίζας γραμμής. Εάν τα σφάλματα διανέμονται κανονικά, τότε μπορούμε να είμαστε σίγουροι για για τη χρήση μεθόδων που βασίζονται στην κανονικότητα.

Η γραφική παράσταση QQ χρησιμοποιείται για να συγκρίνει την κατανομή των δεδομένων σε μια κανονική κατανομή, παρέχοντας ένα άλλο μέτρο της κανονικότητας των δεδομένων. Όσο πιο κοντά βρίσκονται τα σημεία στην ευθεία γραμμή (45 μοιρών) στο γράφημα, τόσο πιο κοντά βρίσκονται τα δεδομένα δείγματος ακολουθώντας κανονική κατανομή

Μια γραφική παράσταση QQ είναι ένα γράφημα στο οποίο απεικονίζονται τα ποσοστά από δύο κατανομές. Για δύο ταυτόσημες κατανομές, το διάγραμμα QQ θα είναι μια ευθεία γραμμή. Επομένως, είναι δυνατόν να ελεγχθεί η κανονικότητα των δεδομένων του όζοντος με την απεικόνιση των ποσοτήτων αυτών των δεδομένων έναντι των ποσοτήτων μιας κανονικής κατανομής. Από το κανονικό κομμάτι QQ παραπάνω, μπορούμε να δούμε ότι έχουμε απόκλιση από την ευθεία γραμμή

Στη συνέχεια επιλέγουμε Geostatical Analyst-> Explore Data - >Semivariogram (Νέφος Ημιβαριογράμματος)

ΠΑΡΑΤΗΡΗΣΗ: Από την παραπάνω εικόνα μπορούμε να πούμε ότι το νέφος παρουσιάζει κάποιες ανομοιομορφίες.

ΣΧΟΛΙΑ: Το Semivariogram/Covariance Cloud μπορεί να χρησιμοποιηθεί για να εξετάσει τα τοπικά χαρακτηριστικά της χωρικής συσχέτισης μέσα σε ένα σύνολο δεδομένων και την αναζήτηση τοπικών ακραίων τιμών. Το νέφος των κόκκινων σημείων απεικονίζει τις παρατηρήσεις και το Lag size τη μετατόπιση αυτών.

Trend Analysis

Πηγαίνουμε ξανά επιλέγουμε Geostatical Analyst> Explore Data->Trend Analysis και επιλέγουμε seas amp στο Attribute έτσι βλέπουμε τρισδιάστατη απεικόνιση των δεδομένων.

ΠΑΡΑΤΗΡΗΣΕΙΣ: αν κοιτάξουμε την ανοιχτή πράσινη γραμμή στην παραπάνω εικόνα, μπορούμε να δούμε ότι ξεκινάει με χαμηλές τιμές, αυξάνεται καθώς μετακινείται προς το κέντρο του άξονα x και έπειτα μειώνεται.

Η μπλε γραμμή βλέπουμε ότι αυξάνεται οπότε είναι ξεκάθαρο ότι έχουμε βαθμίδα. Αυτό θα το διαπιστώσουμε από το αντίστοιχο Kriging από το οποίο θα επιβεβαιώσουμε αν όντως υπάρχει βαθμίδα, ή αν η ένδειξη είναι απατηλή.

Στη σελίδα 39 παρατηρούμε ότι έχουμε σταδιακή μεταβολή της απόχρωσης οπότε επιβεβαιώνουμε ότι έχουμε βαθμίδα

ΣΧΟΛΙΑ:Το εργαλείο ανάλυσης τάσεων μας επιτρέπει να προσδιορίσουμε την παρουσία-απουσία τάσεων στο σύνολο δεδομένων εισόδου και να προσδιορίσουμε ποια σειρά πολυώνυμων ταιριάζει καλύτερα στην τάση.

Κάθε κάθετο ραβδί στο διάγραμμα ανάλυσης τάσεων αντιπροσωπεύει τη θέση και την τιμή (ύψος) κάθε μέτρησης του όζοντος. Τα σημεία δεδομένων προβάλλονται στα κατακόρυφα επίπεδα, σε ανατολικό-δυτικό και βορειο-νότιο επίπεδο. Μια γραμμή βέλτιστης προσαρμογής (ένα πολυώνυμο) αντλείται από τα προβαλλόμενα σημεία, δείχνοντας τάσεις σε συγκεκριμένες κατευθύνσεις. Αν η γραμμή ήταν επίπεδη, αυτό θα έδειχνε ότι δεν υπάρχει τάση.

Οι τάσεις εμφανίζονται πάντοτε ανάποδα U σχήματα. Επειδή η τάση είναι σχήμα U, ένα πολυώνυμο δεύτερης τάξης είναι μια καλή επιλογή να χρησιμοποιηθεί ως μοντέλο παγκόσμιας τάσης.

<u>Ερωτήσεις</u>

1. Τι είναι το ημιβαριόγραμμα και τι δείχνει στην περίπτωσή σας.

Το Ημιβαριόγραμμα (μοντέλο συνδιακύμανσης) μας επιτρέπει να εξετάσουμε χωρικές σχέσεις μεταξύ των μετρούμενων σημείων. Μπορούμε να υποθέσουμε ότι τα πράγματα που είναι πιο κοντά είναι πιο ομοειδή από τα πράγματα που είναι πιο μακριά.

2. Είναι η κατανομή κανονική, ποια η λόξωση και η κυρτότητά της;

Όπως φαίνεται και στη σελίδα 63 μας ενδιαφέρει η Skewness και Kurtosis. Στο ιστόγραμμα η kirtosis=2,6343 και Skewness=0,34176 η μορφή της κατανομής είναι περίπου κανονική με μία λοξότητα αριστερά.

3. Παρουσιάζει κάποια βαθμίδα η χωρική παρεμβολή που προέκυψε;

Από το Trend Analysis φαίνεται να υπάρχει βαθμιδα.

4. Ποια η διασπορά των παρατηρήσεων και η τυπική τους απόκλιση;

Από το Τυπικό σφάλμα που είναι 3,9 μπορούμε να πούμε ότι οι μετρήσεις έχουν μεγάλη διασπορά, όχι πολύ μεγάλη αλλά σημαντική. Η μοντελοποίηση είναι σχετικά καλή

5. <u>Πως κρίνετε αν το μοντέλο της παρεμβολής και οι μέθοδοι Kriging</u> είναι ικανοποιητικό σε σχέσεις με τις μετρήσεις - παρατηρήσεις;

Από το ημιβαριόγραμμα, το QQ Plot και λαμβάνοντας υπόψη την παρακάτω εικόνα και τις στήλες Predicted Error Standard Error συμπεραίνουμε ότι το μοντέλο δουλεύει καλά.

Σε περίπτωση που θέλουμε μια διαφορετική εμφάνιση για την απεικόνιση του Kriging μπορούμε να κάνουμε δεξί κλικ στο Layers να επιλέξουμε Properties

Και στη συνέχεια στην καρτέλα Coordinate Systems επιλέγουμε Projected Coordinate Systems.

Στη συνέχεια World (Sphere Based) και μετά Polyconic Sphere

Στη συνέχεια πατάμε Οk και εμφανίζεται η παρακάτω εικόνα

Τα σημεία του αρχείου pro97.dbf μπορούμε να τα εμφανίσουμε στη γήινη σφαίρα πηγαίνοντας στο φάκελο ArcGIS -> ArcGlobe εισάγοντας τα στοιχεία με Add Data, επιλέγοντας το αρχείο pro97.dbf και μετά Add.

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

Νικολάου,Σ. Χωρική κατανομή δυνητικά τοξικών στοιχείων σε επιφανειακά εδάφη της ΝΑ Χαλκιδικής, Διπλωματική Εργασία ΠΜΣ, Τμήμα Γεωλογίας και Γεωπεριβάλλοντος,

ЕКПА, 2007

portal.survey.ntua.gr/.../kef%208%20-%20Synexeis%20Katanomes%20Epifaneion.p...