[MavetmioTuio @sooaliag
7 | Tunua MANPOPOPIKAG hitp://www.cs.uth.gr/
. Akadnuaikd ‘Etog 2014-2015 - Eapivo

s Bdoeig Acdopévwv

Mdaonua 2-8
KepaAaio 3: Eicaywyn otnv SQL

Eudyyehoc ©@eodwpidng (Ap.)
www.evangelostheodoridis.org

evangelos.theodoridis@gmail.com

http://goo0.9l/1D1jZD

Slides Based on Database System Concepts, 6" Ed. ©Silberschatz, Korth and Sudarshan www.db-book.com

http://www.db-book.com/
http://cs.uth.gr/
http://www.evangelostheodoridis.org/
mailto:Evangelos.Theodoridis@gmail.com
http://goo.gl/1D1jZD

KedaAaio 3: Eicaywyn otnv SQL

Overview of the SQL Query Language
Data Definition

Basic Query Structure

Additional Basic Operations

Set Operations

Null Values

Aggregate Functions

Nested Subqueries

Modification of the Database

3.2

loTopia

IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

Renamed Structured Query Language (SQL)
ANSI and ISO standard SQL.:

SQL-86, SQL-89, SQL-92

SQL:1999, SQL:2003, SQL:2008

Commercial systems offer most, if not all, SQL-92 features,
plus varying feature sets from later standards and special
proprietary features.

Not all examples here may work on your particular system.

3.3

Ny Data Definition Language

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

® The schema for each relation.

® The domain of values associated with each attribute.

B |ntegrity constraints

® And as we will see later, also other information such as
The set of indices to be maintained for each relations.
Security and authorization information for each relation.
The physical storage structure of each relation on disk.

3.4

Domain Types in SQL

char(n). Fixed length character string, with user-specified length n.

m varchar(n). Variable length character strings, with user-specified

maximum length n.

Int. Integer (a finite subset of the integers that is machine-
dependent).

smallint. Small integer (a machine-dependent subset of the integer
domain type).

numeric(p,d). Fixed point number, with user-specified precision of
p digits, with n digits to the right of decimal point.

real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.

float(n). Floating point number, with user-specified precision of at
least n digits.

More are covered in Chapter 4.

3.5

Create Table Construct

An SQL relation is defined using the create table command:
create tabler (A, D, A, D,, ..., A, D,,
(integrity-constraint,),
(iﬁtegrity-constraintk))
r is the name of the relation
each A is an attribute name in the schema of relation r
D, is the data type of values in the domain of attribute A,
Example:
create table instructor (

ID char(b),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2))

insert into instructor values (‘10211°, 'Smith’, 'Biology’, 66000);
Insert into instructor values ('10211°, null, 'Biology’, 66000);
Insert into instructor (ID,name, salary) values (‘10211’, 'Smith’, 66000);

3.6

Integrity Constraints in Create Table

® not null
m primary key (A, ..., A,)
m foreign key (A, ..., A,) referencesr

Example: Declare ID as the primary key for instructor

create table instructor (

ID char(b),

name varchar(20) not null,
dept_name varchar(20),

salary numeric(8,2),

primary key (ID),
foreign key (dept_name) references department)

-- foreign key (dept_name) references department(name)
primary key declaration on an attribute automatically ensures not null

3.7

E And a Few More Relation Definitions

o |
{74
==

B create table student (

ID varchar(5),

name varchar(20) not null,
dept_ name varchar(20),
tot_cred numeric(3,0),
primary key (ID),

foreign key (dept_name) references department));
m create table takes (

ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),

primary key (ID, course_id, sec_id, semester, year),
foreign key (ID) references student,
foreign key (course _id, sec_id, semester, year) references section);

Note: sec_id can be dropped from primary key above, to ensure a
student cannot be registered for two sections of the same course in the
same semester

3.8

And more still

B create table course (
course_id varchar(8) primary key,

title varchar(50),
dept_name varchar(20),
credits numeric(2,0),

foreign key (dept_name) references department));

Primary key declaration can be combined with attribute
declaration as shown above

3.9

Drop and Alter Table Constructs

m drop table student

Deletes the table and its contents
B delete from student

Deletes all contents of table, but retains table
m alter table

alter tableradd AD

» where A Is the name of the attribute to be added to
relation r and D is the domain of A.

» All tuples in the relation are assigned null as the value
for the new attribute.

alter table r drop A

» where A is the name of an attribute of relation r

» Dropping of attributes not supported by many
databases

3.10

Basic Query Structure

B The SQL data-manipulation language (DML) provides the
ability to query information, and insert, delete and update
tuples

m A typical SQL query has the form:

select A, A,, ..., A,
fromry,r, ..., 1
where P

A represents an attribute
R represents a relation
P is a predicate.
B The result of an SQL query is a relation.

3.11

The select Clause

The select clause list the attributes desired in the result of a query
corresponds to the projection operation of the relational algebra

Example: find the names of all instructors:
select name
from instructor

NOTE: SQL names are case insensitive (i.e., you may use upper- or
lower-case letters.)

E.g. Name = NAME = name

Some people use upper case wherever we use bold font.

3.12

The select Clause (Cont.)

SQL allows duplicates in relations as well as in query results.

To force the elimination of duplicates, insert the keyword distinct
after select.

Find the names of all departments with instructor, and remove
duplicates

select distinct dept_name
from instructor

The keyword all specifies that duplicates not be removed.

select all dept_name
from instructor

3.13

g The select Clause (Cont.)

==

B An asterisk in the select clause denotes “all attributes”

select *
from instructor

m The select clause can contain arithmetic expressions involving the
operation, +, —, *, and /, and operating on constants or attributes of tuples.

® The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, except that
the value of the attribute salary is divided by 12.

SELECT product, customer, timologio, quantity*itemprice
FROM sales;

SELECT YEAR(dateOfBirth), name
FROM users;

3.14

The where Clause

The where clause specifies conditions that the result must
satisfy

Corresponds to the selection predicate of the relational
algebra.

To find all instructors in Comp. Sci. dept with salary > 80000
select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

Comparison results can be combined using the logical
connectives and, or, and not.

Comparisons can be applied to results of arithmetic expressions.

3.15

he from Clause

B The from clause lists the relations involved in the query

Corresponds to the Cartesian product operation of the
relational algebra.

® Find the Cartesian product instructor X teaches

select =
from instructor, teaches

generates every possible instructor — teaches pair, with all
attributes from both relations

m Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra)

3.16

Cartesian Product: instructor X teaches

Instructor teaches
ID name dept_name salary ID | course_id | sec_id | semester | year
10101 | Srinivasan| Comp. Sci. | 65000 10101 | CS-101 1 Fall 2009
12121 [Wu Finance 90000 10101 | CS-315 1 Spring | 2010
15151 | Mozart Music 40000 10101 | CS-347 1 Fall 2009
22222 | Einstein Physics 95000 12121 | FIN-201 1 Spring 2010
32343 | El Said History 60000 15151 | MU-199 1 Spring 2010
““““ - I e 22222 | PHY-101 1 1 Fall 2009
inst.ID | name deptname |salary | teaches.ID | course_id | sec_id | semester | year
10101 | Srinivasan | Comp. Sci. | 65000| 10101 |Cs-101 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. | 65000 10101 |CS-315 1 |[Spring |2010
10101 | Srinivasan | Comp. Sci. | 65000 10101 |CS-347 1 |Fall 2009
10101 | Srinivasan | Comp. Sci. | 65000| 12121 | FIN-201 1 [Spring |2010
10101 |Srinivasan | Comp. Sci. 65000 15151 |MU-199 | 1 |Spring (2010
10101 |Srinivasan |Comp. Sci. [65000 22222 |PHY-101| 1 [Fall 2009
12121 | Wu Finance 90000| 10101 |[cCs-101 1 |Fall 2009
12121 | Wu Finance 90000| 10101 |[Cs-315 1 [Spring |2010
12121 | Wu Finance 90000| 10101 |[Cs-347 1 |Fall 2009
12121 | Wu Finance 90000 12121 |FIN-201 1 |Spring |2010
12121 | Wu Finance 90000 15151 |MU-199 1 [Spring |2010
12121 | Wu Finance 90000 22222 |PHY-101| 1 |Fall 2009

3.17

Joins

m For all instructors who have taught some course, find their names
and the course ID of the courses they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID

® Find the course ID, semester, year and title of each course offered
by the Comp. Sci. department

select section.course_id, semester, yeatr, title

from section, course

where section.course _id = course.course_id and
dept_name = ‘Comp. Sci.’

section course
course id » course id
sec_id title
semester dept_name
year credits
bmldmg
rYoom_Hno
time_slot_id

3.18

Natural Join

Natural join matches tuples with the same values for all common
attributes, and retains only one copy of each common column

select *
from instructor natural join teaches;

SELECT instructor.*, teaches.course_id, teaches.sec id,
teaches.semester, teaches.year

From Instructor JOIN teaches ON instructor.ID=teaches.ID;

ID name | dept_name | salary | course_id| sec_id | semester| year
10101 |Srinivasan| Comp. Sci.| 65000 | CS-101 1 [Fall 2009
10101 |Srinivasan| Comp. Sci.| 65000| CS-315 1 |Spring | 2010
10101 |Srinivasan| Comp. Sci.| 65000 | CS-347 1 |Fall 2009
12121 |Wu Finance | 90000| FIN-201 1 |Spring | 2010
15151 |Mozart Music 40000 | MU-199 1 |Spring | 2010
22222 |Einstein | Physics 95000 PHY-101| 1 [Fall 2009
32343 |El Said History | 60000| HIS-351 1 |Spring | 2010
45565 |Katz Comp. Sci.| 75000| CS-101 1 |Spring | 2010
45565 |Katz Comp. Sci.| 75000| CS-319 1 Spring | 2010
76766 |Crick Biology | 72000(BIO-101 | 1 |[Summer| 2009
76766 1Crick Rinloov 77000 BTO-201 1 Stimmer| 2010

..qé Natural Join Example

m List the names of instructors along with the course ID of the courses that
they taught.

select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID;

select name, course_id
from instructor natural join teaches;

3.20

e Natural Join (Cont.)

m Danger in natural join: beware of unrelated attributes with same name which get
equated incorrectly

®m List the names of instructors along with the the titles of courses that they teach
Incorrect version (makes course.dept_name = instructor.dept_name)

» select name, title
from instructor natural join teaches natural join course;

» Instructor (tid, name, dept)

» Teaches(tid, cid)

» Course(cid, name, dept)
Correct version

» select name, title
from instructor natural join teaches, course
where teaches.course _id = course.course _id;

Another correct version

» select name, title
from (instructor natural join teaches)
join course using(course _id);

3.21

The Rename Operation

The SQL allows renaming relations and attributes using the as clause:
old-name as new-name
E.Q.

select ID, name, salary/12 as monthly_ salary
from instructor

where monthly salary>1000 rj where salary/12>1000

Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sci'.

select distinct T. name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

Keyword as is optional and may be omitted
instructor as T = instructor T

Keyword as must be omitted in Oracle

3.22

s String Operations

B SQL includes a string-matching operator for comparisons on
character strings. The operator “like” uses patterns that are
described using two special characters:

percent (%). The % character matches any substring.
underscore (_). The _ character matches any character.

B Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

® Match the string “100 %”
like ‘100 \%' escape "\

3.23

String Operations (Cont.)

m Patters are case sensitive.
m Pattern matching examples:
‘Intro%’ matches any string beginning with “Intro”.
“%Comp%’ matches any string containing “Comp” as a substring.

__"matches any string of exactly three characters.

1

_ %’ matches any string of at least three characters.

m SQL supports a variety of string operations such as
concatenation (using “||")
converting from upper to lower case (and vice versa)
finding string length, extracting substrings, etc.

3.24

Ordering the Display of Tuples

List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

We may specify desc for descending order or asc for
ascending order, for each attribute; ascending order is the
default.

Example: order by name desc
Can sort on multiple attributes
Example: order by dept _name, name

3.25

Where Clause Predicates

® SQL includes a between comparison operator

m Example: Find the names of all instructors with salary between
$90,000 and $100,000 (that is, > $90,000 and < $100,000)

select name
from instructor
where salary between 90000 and 100000

® Tuple comparison

select name, course _id
from instructor, teaches
where (instructor.1D, dept_name) = (teaches.ID, 'Biology’);

3.26

el Duplicates

® In relations with duplicates, SQL can define how many copies
of tuples appear in the result.

B Multiset versions of some of the relational algebra operators —
given multiset relations r, and r,:

1. Oy(ry): If there are ¢, copies of tuple t; inr;, and t;

satisfies selections G g, then there are c, copies of t; in Gy
(ry).
2. I1, (r): For each copy of tuple t; in r;, there is a copy of

tuple I, (t;) inI1, (r;) where I1, (t;) denotes the
projection of the single tuple t;.

3. r; Xr,:Ifthere are c, copies of tuple t, in r, and c, copies
of tuple t, in r,, there are c, X c, copies of the tuple t;. t, inr;
X I,

3.27

Duplicates (Cont.)

Example: Suppose multiset relations r; (A, B) and r, (C)
are as follows:

rn={1,a2a} r,={@2)(3) (3)}

Then Ilg(r;) would be {(a), (a)}, while T1z(r;) x r, would be
{(@,2), (&,2), (a,3), (a,3), (a,3), (a,3)}

SQL duplicate semantics:

select A, A,, ..., A,

fromry, 1y, . Iy
where P

IS equivalent to the multiset version of the expression:

HAl,AZ,...,An (GP (rl XTI, XX T))

3.28

ol & Set Operations

® Find courses that ran in Fall 2009 or in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union
(select course_id from section where sem = ‘Spring’ and year = 2010)

® Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect
(select course_id from section where sem = ‘Spring’ and year = 2010)

® Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
except
(select course_id from section where sem = ‘Spring’ and year = 2010)

3.29

Set Operations

B Set operations union, intersect, and except

Each of the above operations automatically eliminates
duplicates

m To retain all duplicates use the corresponding multiset versions
union all, intersect all and except all.

Suppose a tuple occurs m times in r and n times in s, then, it
OCcCurs:

m + ntimesinrunion all s
min(m,n) times in r intersect all s
max(0, m —n) times in r except all s

3.30

Null Values

It is possible for tuples to have a null value, denoted by null, for
some of their attributes

null signifies an unknown value or that a value does not exist.

The result of any arithmetic expression involving null is null
Example: 5+ null returns null

The predicate is null can be used to check for null values.
Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

3.31

E Null Values and Three Valued Logic

—

® Any comparison with null returns unknown
Example: 5 <null or null<>null or null=null
® Three-valued logic using the truth value unknown:

OR: (unknown or true) =true,
(unknown or false) = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown,
(false and unknown) = false,
(unknown and unknown) = unknown

NOT: (not unknown) = unknown

“P is unknown” evaluates to true if predicate P evaluates
to unknown

®m Result of where clause predicate is treated as false if it
evaluates to unknown

3.32

g Aggregate Functions

- |
e —

B These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value

min: minimum value
max: maximum value
sum: sum of values
count: number of values

3.33

Aggregate Functions (Cont.)

Find the average salary of instructors in the Computer Science
department

select avg (salary)
from instructor
where dept_name='Comp. Sci.’;

Find the total number of instructors who teach a course in the
Spring 2010 semester

select count (distinct ID)
from teaches
where semester = 'Spring’ and year = 2010

Find the number of tuples in the course relation

select count (*)
from course;

3.34

-—
X _2 S

Aggregate Functions — Group By

® Find the average salary of instructors in each department

select dept_name, avg (salary)
from instructor
group by dept_name;

Note: departments with no instructor will not appear in result

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. | 80000
12121 |Wu Finance 90000
76543 | Singh Finance 80000
32343 | El Said History 60000
58583 | Califieri History 62000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
22222 | Einstein Physics 95000

dept_name avg_salary
Biology 72000
Comp. Sci. | 77333
Elec. Eng. | 80000
Finance 85000
History 61000
Music 40000
Physics 91000

3.35

..,g.n Aggregation (Cont.)
B Attributes in select clause outside of aggregate functions must
appear in group by list

[* erroneous query */

select dept_name, ID, avg (salary)
from instructor

group by dept_name,

3.36

g Aggregate Functions — Having Clause

® Find the names and average salaries of all departments whose
average salary is greater than 42000

select dept_name, avg (salary)
from instructor

group by dept_name
having avg (salary) > 42000;

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

3.37

Null Values and Aggregates

m Total all salaries

select sum (salary)
from instructor

Above statement ignores null amounts
Result is null if there is no non-null amount

m All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

® What if collection has only null values?
count returns 0
all other aggregates return null

3.38

Nested Subqueries

m SQL provides a mechanism for the nesting of subqueries.

® A subquery is a select-from-where expression that is nested
within another query.

® A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

3.39

Example Query

® Find courses offered in Fall 2009 and in Spring 2010

select distinct course _id
from section
where semester = 'Fall’ and year= 2009 and
course_id in (select course_id
from section
where semester = 'Spring’ and year= 2010);

m Find courses offered in Fall 2009 but not in Spring 2010

select distinct course _id
from section
where semester = 'Fall’ and year= 2009 and
course_id not in (select course _id
from section
where semester = 'Spring’ and year= 2010);

3.40

s Example Query

® Find the total number of (distinct) studentswho have taken
course sections taught by the instructor with ID 10101

select count (distinct ID)
from takes
where (course _id, sec_id, semester, year) in
(select course_id, sec_id, semester, year
from teaches
where teaches.|ID=10101);

m Note: Above query can be written in a much simpler manner. The
formulation above is simply to illustrate SQL features.

3.41

Set Comparison

® Find names of instructors with salary greater than that of some
(at least one) instructor in the Biology department.

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = 'Biology’;

m Same guery using > some clause

select name
from instructor
where salary > some (select salary
from instructor
where dept_name = 'Biology’);

3.42

“ Definition of Some Clause

|
ey
e l«!!‘_‘_

®m F <comp>somer < 3t er suchthat (F <comp>t)
Where <comp> can be: <, <, >, = #

0
(5<some | § |)=true
5 (read: 5 < some tuple in the relation)
0
(5<some | § |)=false
0
(5=some| § |)=true
0
(5# some | 5 |) =true (since 0 # 5)

(=some) =in
However, (= some)/;é not in

3.43

Example Query

® Find the names of all instructors whose salary is greater than
the salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary
from instructor
where dept_name = 'Biology’);

3.44

Definition of all Clause

m F<comp>allreVvViter (F<comp>t)

0
(5<all | 5|)=false
0
6
(5<all |10/)=true
4
(5=all| § |)="false
4
(5#all| 6 |)=true (since 5 # 4 and 5 # 6)

(zall)=notin
However, (= all) £ in

3.45

Test for Empty Relations

B The exists construct returns the value true if the argument
subquery is nonempty.

B existsre rg
B notexistsre r=9@

3.46

Correlation Variables

Yet another way of specifying the query “Find all courses
taught in both the Fall 2009 semester and in the Spring 2010
semester”

select course id
from section as S
where semester = 'Fall’ and year= 2009 and
exists (select *
from sectionas T
where semester = 'Spring’ and year= 2010
and S.course_id= T.course_id);

Correlated subquery
Correlation name or correlation variable

3.47

Not Exists

®m Find all students who have taken all courses offered in the
Biology department.

select distinct S.ID, S.name
from studentas S
where not exists ((select course _id
from course
where dept_name = 'Biology’)
except
(select T.course_id
fromtakesas T
where S.ID = T.ID));

m Notethat X—-Y=0 < XcVY
m Note: Cannot write this query using = all and its variants

3.48

Test for Absence of Duplicate Tuples

|
i
R ,‘{E.-;! !_‘ =

® The unique construct tests whether a subquery has any duplicate tuples
In its result.

(Evaluates to “true” on an empty set)
m Find all courses that were offered at most once in 2009

select T.course_id
fromcourseas T
where unique (select R.course_id
from section as R
where T.course_id= R.course _id
and R.year = 2009);

3.49

Subqueries in the From Clause

m SQL allows a subquery expression to be used in the from clause

®m Find the average instructors’ salaries of those departments where the
average salary is greater than $42,000.

select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)
where avg_salary > 42000;

® Note that we do not need to use the having clause

® Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)
from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)
where avg_salary > 42000;

3.50

..;-"é Subqueries in the From Clause (Cont.)

® And yet another way to write it: lateral clause

select name, salary, avg_salary
from instructor |1,
lateral (select avg(salary) as avg_salary
from instructor 12
where 12.dept_name= |1.dept_name);

m Lateral clause permits later part of the from clause (after the lateral
keyword) to access correlation variables from the earlier part.

® Note: lateral is part of the SQL standard, but is not supported on many
database systems; some databases such as SQL Server offer
alternative syntax

3.51

With Clause

B The with clause provides a way of defining a temporary view

whose definition is available only to the query in which the with
clause occurs.

® Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)
select budget
from department, max_budget
where department.budget = max_budget.value;

3.52

E Complex Queries using With Clause

o |
'y
==

® With clause is very useful for writing complex queries

B Supported by most database systems, with minor syntax
variations

® Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),
dept_total avg(value) as
(select avg(value)
from dept_total)
select dept_name
from dept_total, dept_total avg
where dept_total.value >= dept_total avg.value;

3.53

Scalar Subquery

Scalar subquery is one which is used where a single value is expected

E.g. select dept_name,
(select count(*)
from instructor
where department.dept_name = instructor.dept_name)
as num_instructors
from department;

E.g. select name
from instructor
where salary * 10 >
(select budget from department
where department.dept_name = instructor.dept_name)

Runtime error if subquery returns more than one result tuple

3.54

Modification of the Database

m Deletion of tuples from a given relation
®m Insertion of new tuples into a given relation
m Updating values in some tuples in a given relation

3.55

Modification of the Database — Deletion

Delete all instructors
delete from instructor

Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance’;

Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept_name in (select dept_name
from department
where building = 'Watson’);

3.56

Deletion (Cont.)

®m Delete all instructors whose salary is less than the average
salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);

e Problem: as we delete tuples from deposit, the average salary
changes

e Solution used in SQL:
1. First, compute avg salary and find all tuples to delete

2. Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

3.57

Lk Modification of the Database — Insertion

® Add a new tuple to course

Insert into course
values ('CS-437’, 'Database Systems’, 'Comp. Sci.’, 4);

®m or equivalently
Insert into course (course_id, title, dept_name, credits)
values ('CS-437’, 'Database Systems’, '‘Comp. Sci.’, 4);

® Add a new tuple to student with tot_creds set to null

Insert into student
values ('3003’, ‘Green’, 'Finance’, null);

3.58

Insertion (Cont.)

m Add all instructors to the student relation with tot_creds setto O

Insert into student
select ID, name, dept_name, O
from instructor

® The select from where statement is evaluated fully before any of
Its results are inserted into the relation (otherwise queries like
Insert into tablel select * from tablel
would cause problems, if tablel did not have any primary key
defined.

3.59

Modification of the Database — Updates

B Increase salaries of instructors whose salary is over $100,000 by
3%, and all others receive a 5% raise

Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;

The order is important
Can be done better using the case statement (next slide)

3.60

Case Statement for Conditional Updates

B Same query as before but with case statement

update instructor
set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03
end

3.61

Updates with Scalar Subqueries

B Recompute and update tot_creds value for all students

update student S
set tot_cred = (select sum(credits)
from takes natural join course
where S.ID=takes.ID and
takes.grade <> 'F’ and
takes.grade is not null);

B Sets tot_creds to null for students who have not taken any course
B Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else O
end

3.62

