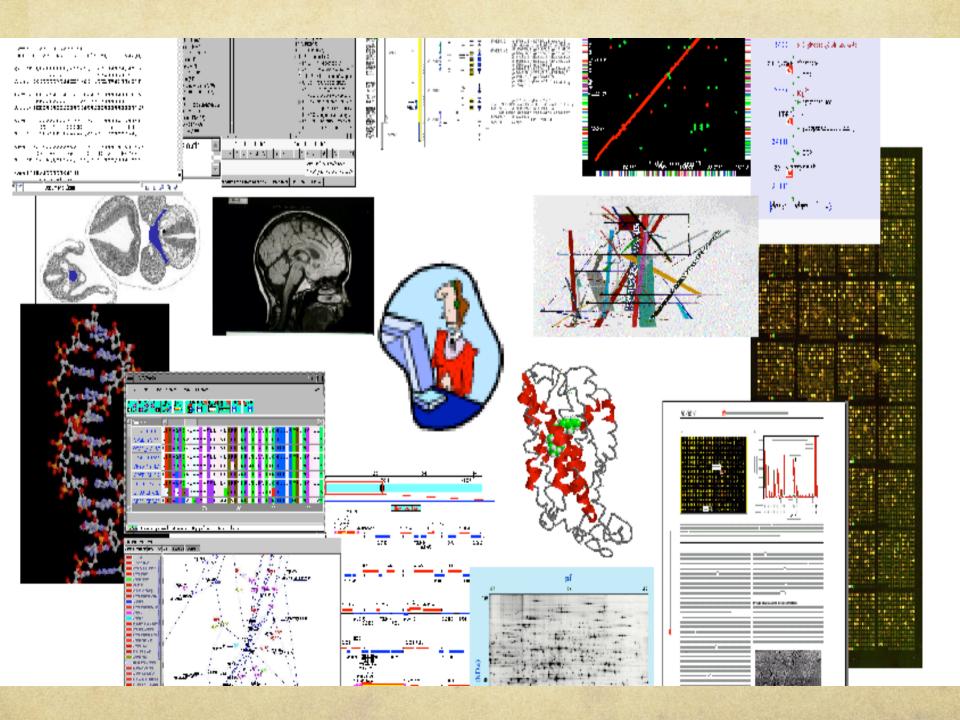

Ontologies & Biomedical Research

NATURE | NEWS

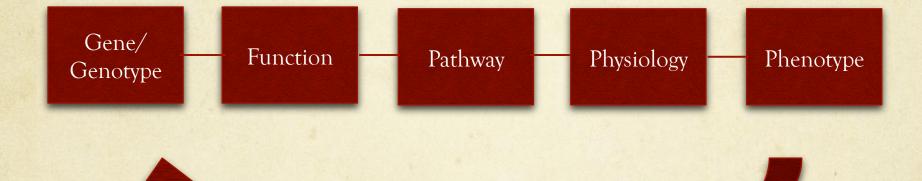
Data-crunch highlights potential transplant drugs

Widely prescribed statin could have alternative applications.

Monya Baker

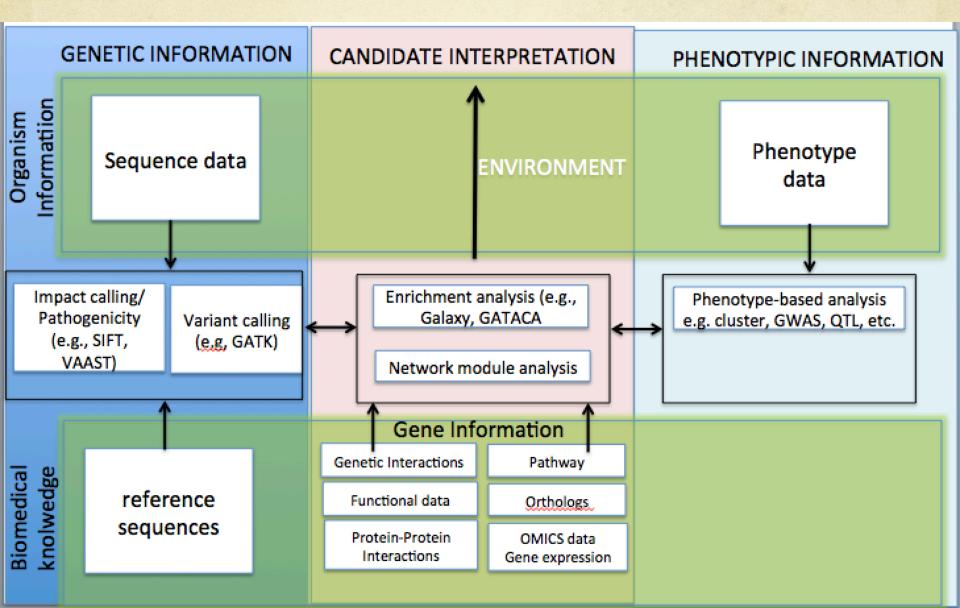

14 October 2013

""It took me about thirty minutes. Honestly, it is scary how easy it seems now, in retrospect.""

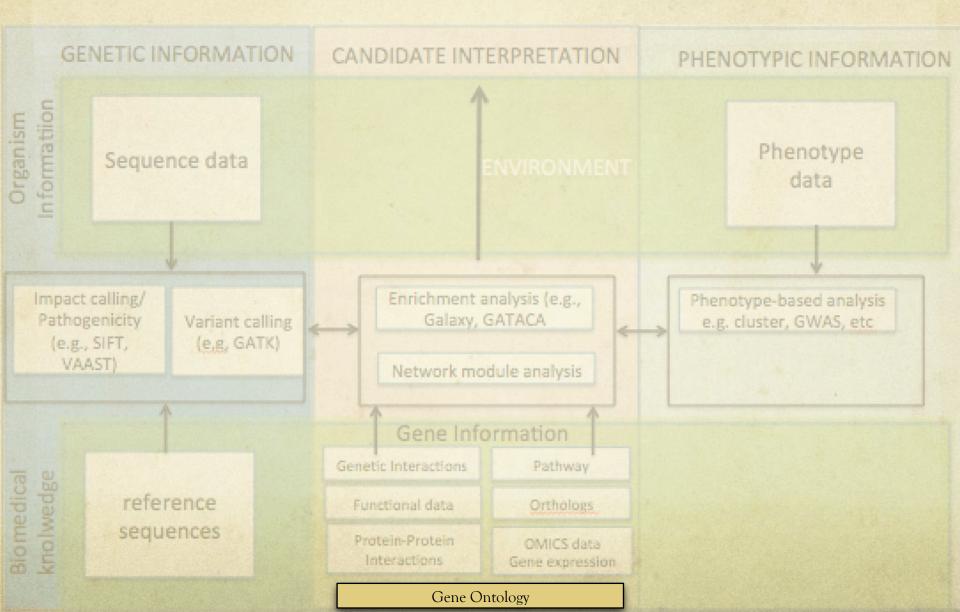


"This is a good story, and there is some promise for future directions," Suthanthiran adds. "It will be nice to see these drugs evaluated in a prospective clinical trial."

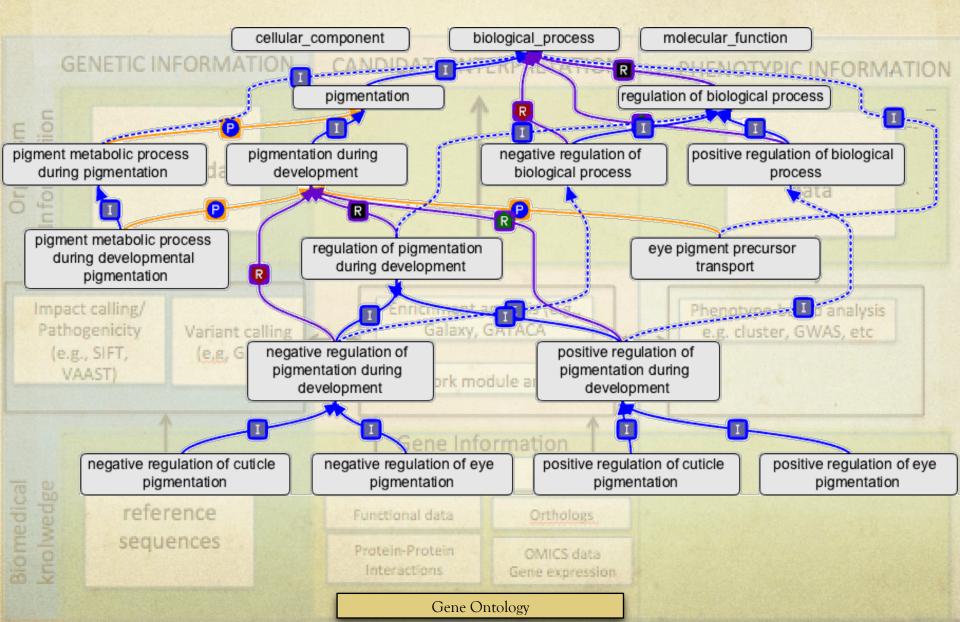
Nature doi:10.1038/nature.2013.13944



Reverse Genetics Functional Analysis

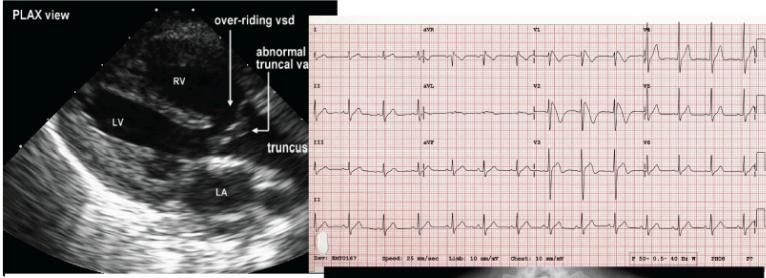


Forward Genetics Positional Cloning


Candidate gene prioritization

Gene Ontology

Gene Ontology

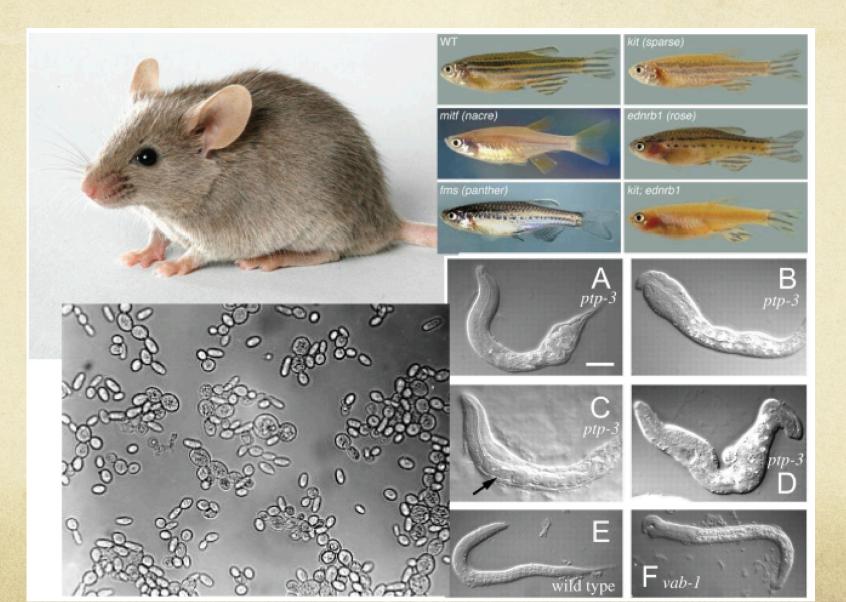

How much data?

• Our ability to identify causative variants/variants of interest *depends* on the layer of biological knowledge

• More genetic data will *increase our ability* to prioritise gene candidates (GWAS, QTL, etc.)

• More phenotype data will alter our potential for revealing gene candidates

Phenotypes in the clinic



Complete Blood Count:

	Patient Value	Normal Rang 2 years – 6 ye	
WBC RBC Hgb Hct MCV MCH MCHC RDW PLT	8.4 x 10 ⁹ / L 2.77 x 10 ¹² / L 7.5 g/dl 21.8 % 78.6 fl 26.9 pg 34.2 gm/dl 17.3 % 192 x 10 ⁹ / L	(5.0 - 17.0) (3.90 - 5.30) (11.5 - 13.5) (34.0 - 40.0) (75.0 - 87.0) (25.0 - 31.0) (31.0 - 36.0) (11.5 - 15.0) (150 - 450)))))
Differential:	Absolute	Normal Rang Number	e 2 years – 6 y
Neutrophils Bands	43 % 6 %	(3.61) (0.50)	(1.50 - 8.50) (0.00 - 1.00)

Animal Model Phenotypes

Plant Phenotypes

Comparative Phenomics

Power of the Phenotype

The meaningful cross species and across domain translation of phenotype is essential \rightarrow phenotype-driven gene function discovery and comparative pathobiology

Goal - "A platform for facilitating mutual understanding and interoperability of phenotype information *across*

- species,
- domains of knowledge,

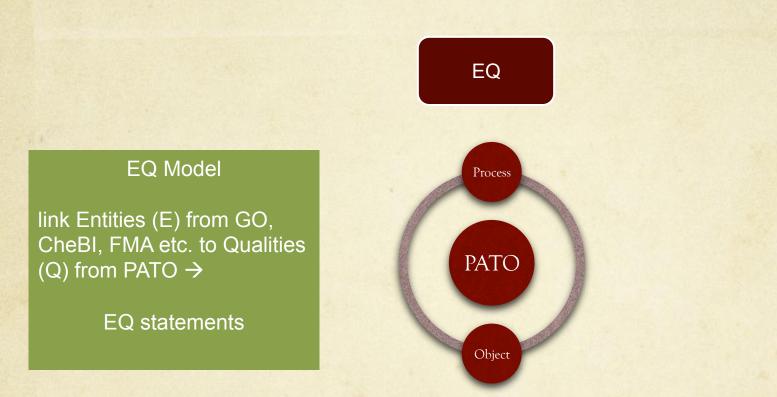
and amongst people and machines"

PATO today

PATO is now being used as a community standard for phenotype description

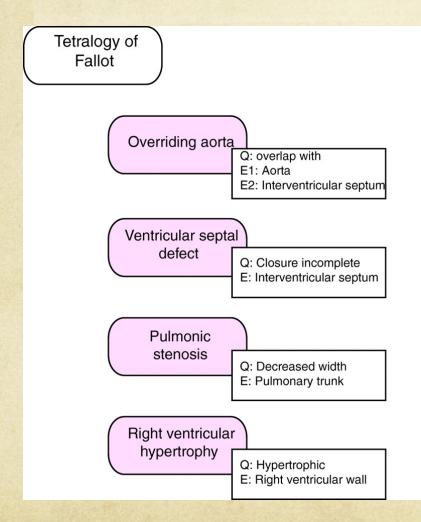
- many consortia (e.g. Phenoscape, The Virtual Human Physiology project (VPH), IMPC, BIRN, NIF)
- most of the major model organism databases, (e.g. example Flybase, Dictybase, Wormbase, Zfin, Mouse genome database (MGD))
- international projects

PATO's Semantic Framework


Conceptual Layer

Semantic Components Layer

O Unification Layer

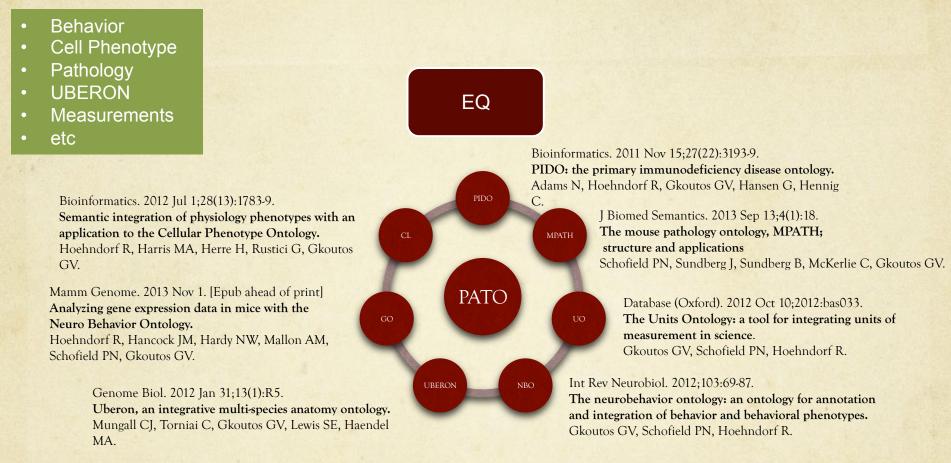

Integration Layer

PATO Conceptual Layer

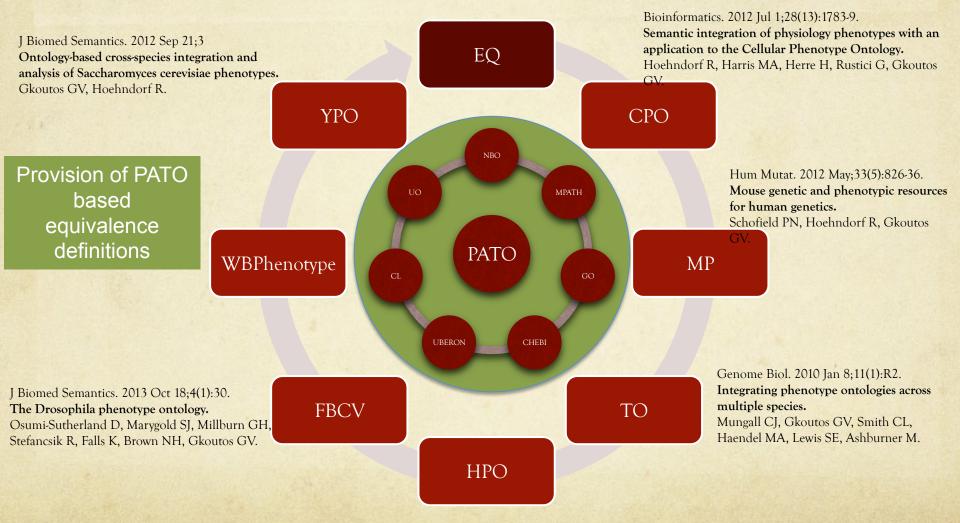
Genome Biol. 2005;6(1):R8. Using ontologies to describe mouse phenotypes. Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson

Endophenotype disaggregation of the tetralogy of Fallot (OMIM:187500)

[Term]id: HP:0001636 ! Tetralogy of Fallot intersection_of: PATO:0000001 ! Quality intersection_of: has_part HP:0002623 ! Overriding aorta intersection_of: has_part HP:0001629 ! Ventricular septal defect intersection_of: has_part HP:0001642 ! Pulmonic stenosis intersection_of: has_part HP:0001667 ! Right ventricular hypertrophy

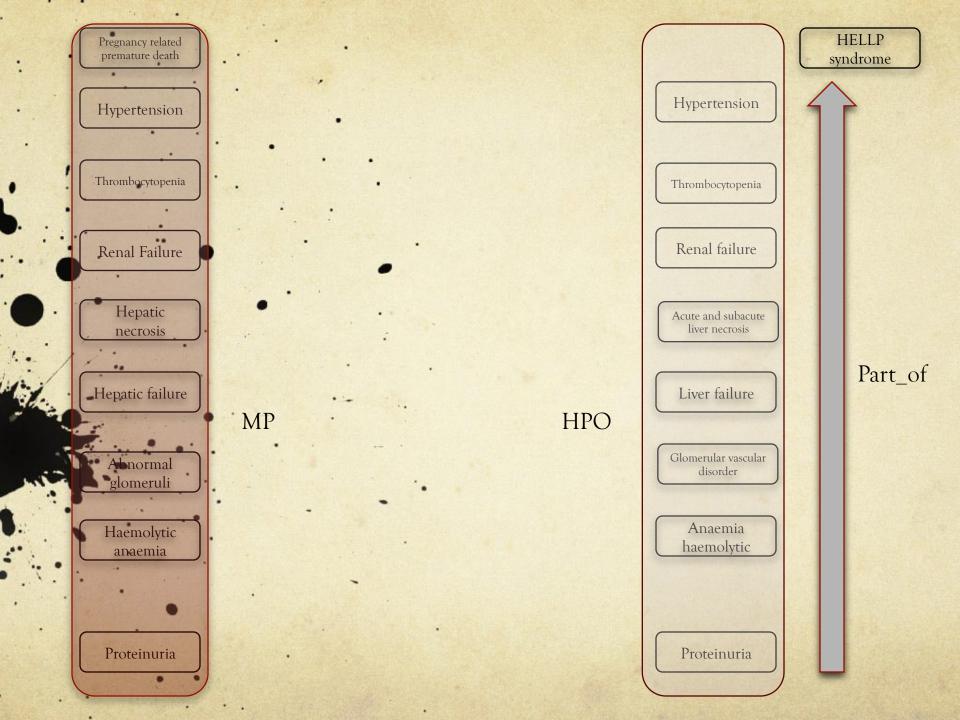

[Term]id: HP:0002623 ! Overriding aorta intersection_of: PATO:0001590 ! overlap with intersection_of: inheres_in FMA:3734 ! Aorta intersection_of: towards FMA:7135 ! Membranous interventricular septum

[Term]id: HP:0001629 ! Ventricular septal defect intersection_of: PATO:0000609 ! closure incomplete intersection_of: inheres_in FMA:7133 ! Interventricular septum


[Term]id: HP:0001642 ! Pulmonic stenosis intersection_of: PATO:0000599 ! decreased width intersection_of: inheres_in FMA:8615 ! Pulmonary arterial trunk

[Term]id: HP:0001667! Right ventricular hypertrophy intersection_of: PATO:0000584! hypertrophic intersection_of: inheres_in FMA:9533! Right ventricular wall

Semantic Components Layer


Unification Layer

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:7069-72.

PN.

Entity/quality-based logical definitions for the human skeletal phenome using PATO. Gkoutos GV, Mungall C, Dolken S, Ashburner M, Lewis S, Hancock J, Kohler S, Robinson

PATO-based definitions

Aristotelian definitions (genus-differentia)

A <Q> *which* inheres_in an <E>

[Term] id: MP:0005325 name: abnormal renal glomerulus morphology namespace: mammalian_phenotype_xp Synonym: abnormal glumeruli morphology Synonym: abnormal malpighian tuft morphology def: " lower than normal average weight "[] is_a: MP:0002827 ! abnormal renal corpuscle morphology intersection_of: PATO:0000051 ! morphology intersection_of: qualifier PATO:0000460 ! abnormal intersection_of: inheres_in MA:0001657 ! glomerulus

🖃 🖛 👥 abhormaí adipose tissue 🕀 🗲 🕦 abnormal brown adir 🗄 🗲 🕦 abnormal percent bo 🗄 🕂 🕕 abnormal white adip ← 🕦 decreased adipose t 🗕 🕤 increased adipose ti 🗄 🗲 🕦 abnormal adipose tissue d 🗄 🗲 🕦 abnormal brown adipose t 🗄 🗲 🕕 abnormal fat pad ⊕ ← ① abnormal white adipose tis 🗄 🕂 🕦 abnormal adipose tissue physiol ⊕ ← ① behavior/neurological phenotype ⊕ ← ① cardiovascular system phenotype ⊟←① cellular phenotype 🖃 🕂 🕕 abnormal cell content/ morphol 🗄 🕂 🚯 abnormal cell mass <₽ fig. decreased cell mass ← ← ① increased cell mass 🗄 🗲 🗊 abnormal lysosome morph 🗕 🕦 abnormal mitochondrial m 🗄 🗲 🕦 abnormal nucleus count 🗄 🗲 🕦 abnormal nucleus morpho 🗄 🕂 🕦 abnormal plasma membra 🗕 🚯 abnormal cell migration 🗄 🗲 🗊 abnormal cell number 🗄 🗲 🕦 craniofacial phenotype ⊕ ← ① embryogenesis phenotype ⊕ ← ① endocrine/exocrine gland phenotype ⊟←① growth/size phenotype ⊡ ← ① abnormal postnatal growth/weight 🗄 🕂 🗊 abnormal body size 🗄 🗲 🕦 abnormal body heig 🗄 🗲 🕦 abnormal body leng 🗄 🗲 🗊 abnormal body weig 🗄 🕂 🚯 decreased bod 🕀 🗲 🕦 increased body 🕀 🗲 🕦 decreased body size 🗄 🗲 🗊 increased body size 🗄 🗲 🕦 abnormal chest morpholog 🗄 🕂 🕕 abnormal lean body mass 🗄 🕂 🗊 abnormal postnatal growth ← 🗊 distended abdomen 🗕 🕤 heterotaxia 🗄 🗲 🕦 left-sided isomerism ⊕ ← ① right-sided isomerism ← 🕦 situs ambiguus 🗕 🕤 situs inversus 🗄 🕂 🕦 abnormal prenatal growth/weigh ⊕ ← ① hematopoietic system phenotype ⊕ ← ① homeostasis/metabolism phenotype ⊕ ← ① lethality-embryonic/perinatal 🗄 🗲 🚯 lethality-postnatal ⊕ ← ① life span-post-weaning/aging 💿 💠 ≑ 💥 🔒 📀 🔞

intersection_of: PATO:0000573 ! increased length
intersection_of: inheres_in MA:0002405 ! adult mouse

[Term]

id: MP:0001258 ! decreased body length intersection_of: PATO:0000574 ! decreased length intersection_of: inheres_in MA:0000004 ! trunk

[Term]

id: MP:0001259 ! abnormal body weight intersection_of: PATO:0000128 ! weight intersection_of: qualifier PATO:0000460 ! abnormal intersection_of: inheres_in MA:0002405 ! adult mouse

[Term]

id: MP:0001260 ! increased body weight intersection_of: PATO:0000582 ! increased weight intersection_of: inheres_in MA:0002405 ! adult mouse

[Term]

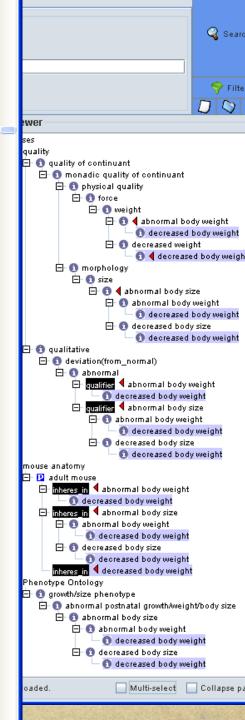
id: MP:0001262 ! decreased body weight intersection_of: PATO:0000583 ! decreased weight intersection_of: inheres_in MA:0002405 ! adult mouse

[Term]

id: MP:0001264 ! increased body size intersection_of: PATO:0000586 ! increased size intersection_of: inheres in MA:0000004 ! trunk

[Term]

id: MP:0001267 ! enlarged chest intersection_of: PATO:0000586 ! increased size intersection_of: inheres_in MA:0000031 ! chest


[Term]

id: MP:0001270 ! distended abdomen intersection_of: PATO:0001602 ! distended intersection_of: inheres_in MA:0000029 ! abdomen

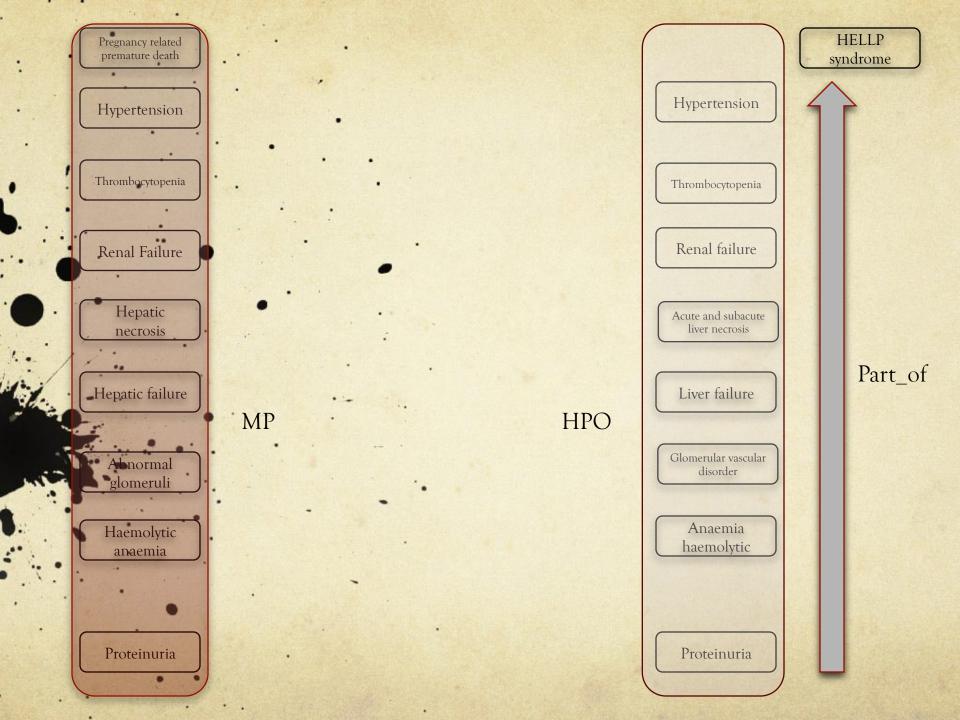
[Term]

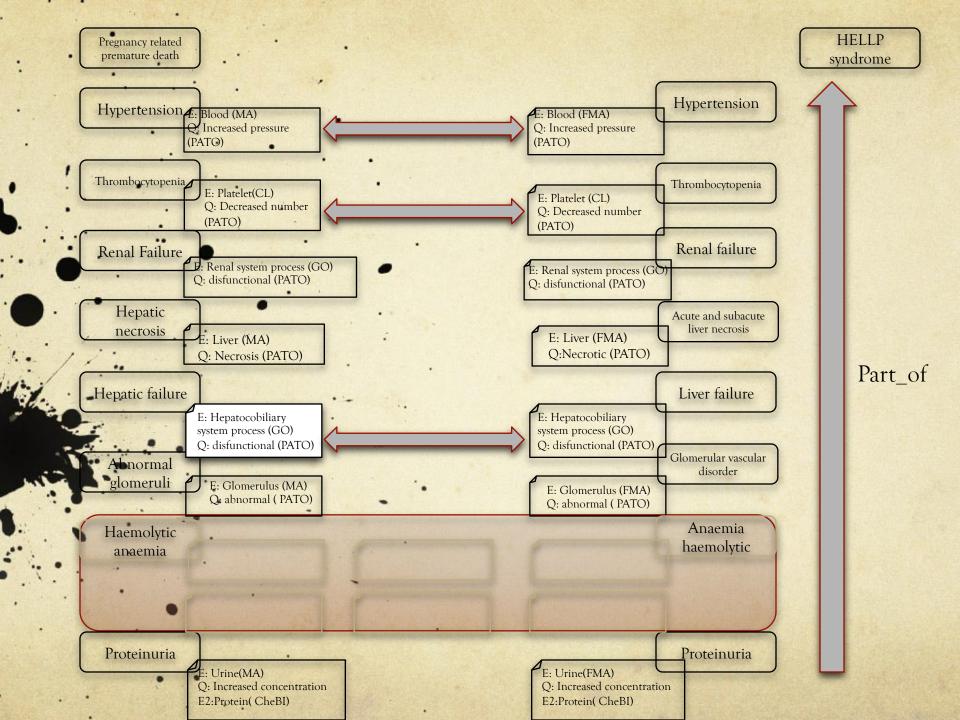
id: MP:0001274 ! curly vibrissae intersection_of: PATO:0000405 ! curled intersection_of: inheres_in MA:0000163 ! vibrissa

[Term]

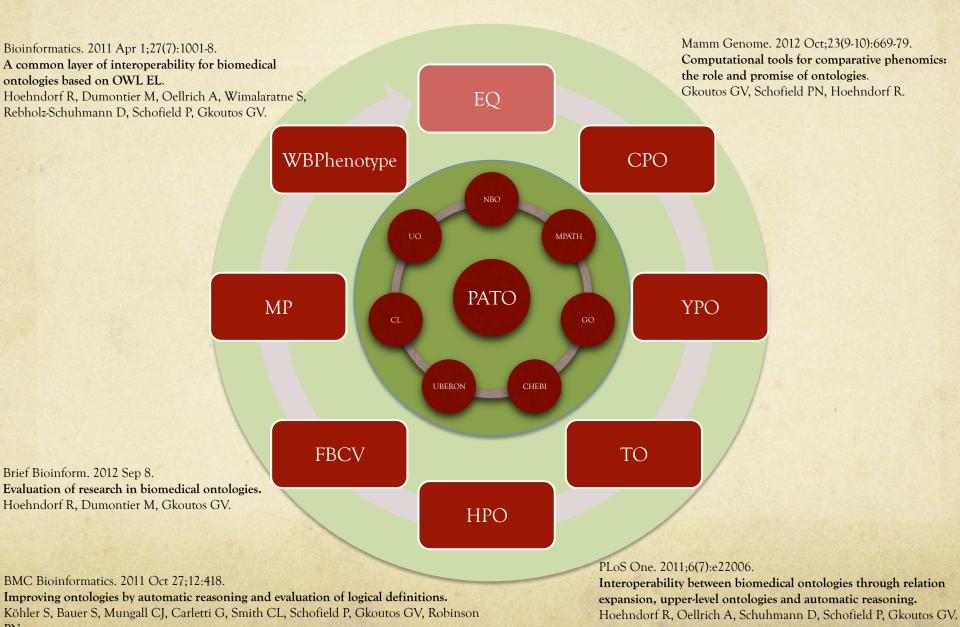
MP - PATO based definitions

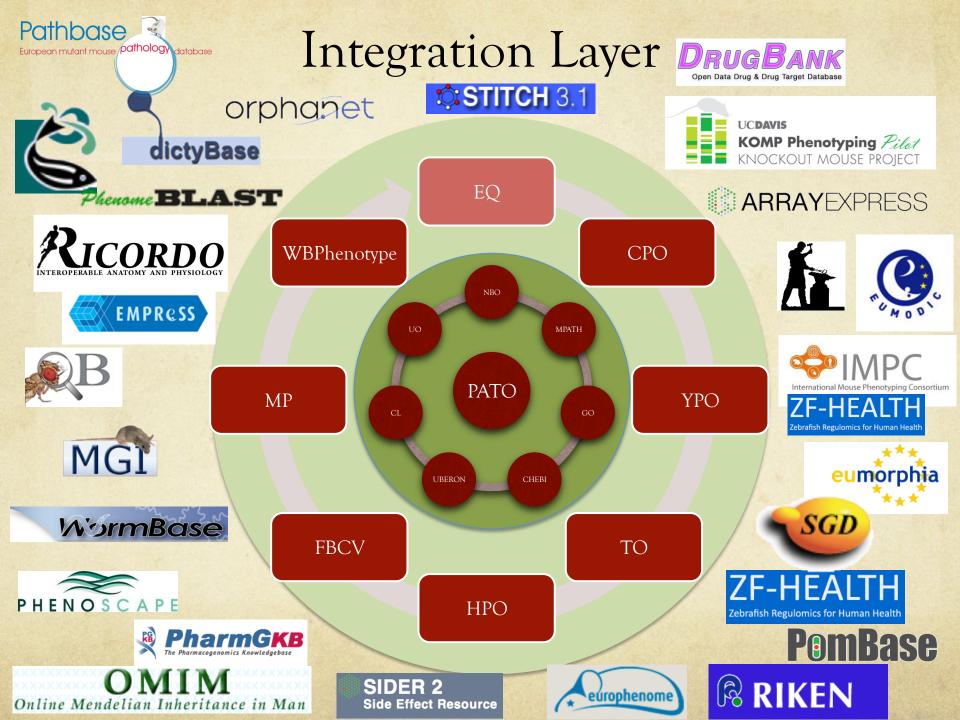
MP term	MP Definition	Entity	Quality
cataract	complete or partial opacity of the lens	lens	opaque
MP:0001304		MA:0000275	PATO:0000963
		FMA:58241	
jaundice	clinical manifestation of hyperbilirubinemia, with deposition of bile pigments in the skin, resulting in	skin	yellow
MP:0000611	yellowish staining of the skin and mucous membranes	MA:0000151	PATO:0000324
		FMA:7163	
		skin mucous gland	yellow
		MA:0000148 mucous gland	PATO:0000324
		FMA:62888	
		pigment accumulation in	yellow
		tissues	PATO:0000324
		GO:0043480	
		pigment accumulation in	mislocalized
		tissues	PATO:0000628
		GO:0043480	


HPO-PATO based definitions


• OBO format

[Term] id: HP:0004349 ! Reduced bone mineral density intersection_of: PATO:0001790 ! decreased density intersection of: inheres in FMA:30317 ! bone


OWL format

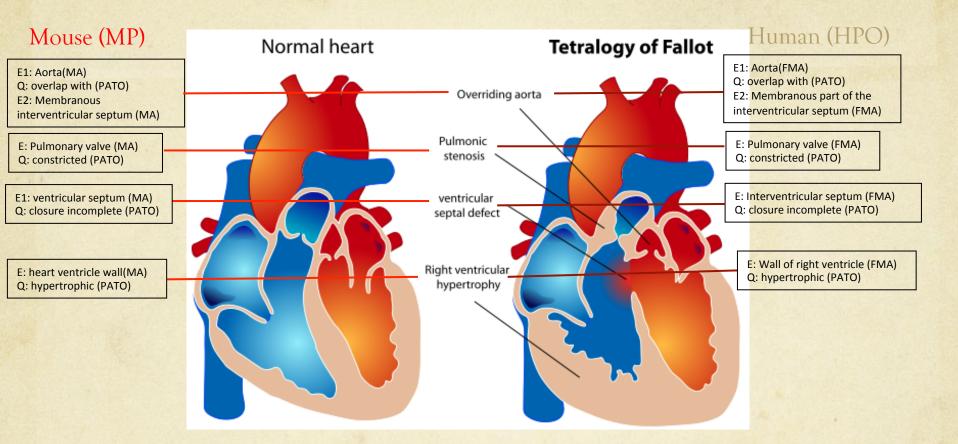

Class: Hypoglycemia EquivalentTo: 'decreased concentration' and towards some 'glucose' and inheres_in some 'portion of blood' and qualifier some 'abnormal'

Formalisation Layer

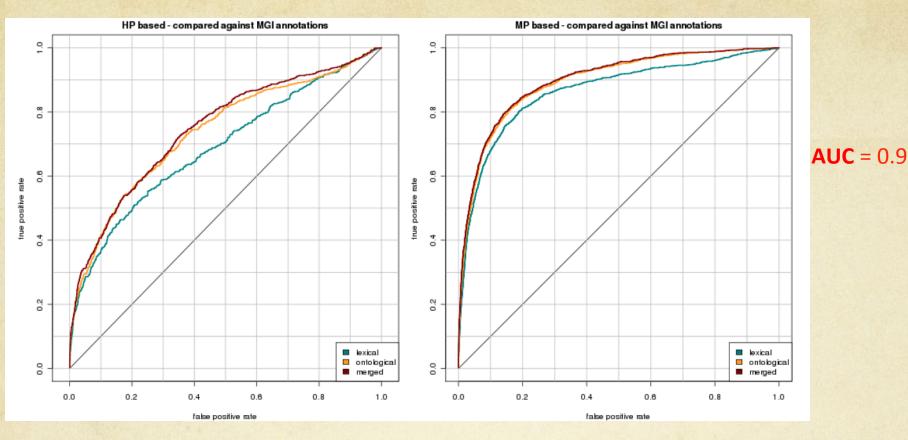


Cross Species Data Integration

Cross species integration framework


- A PATO-based cross species phenotype network based on experimental data from 5 model organisms yeast, fly, worm, fish and mouse and human disease phenotypes (OMIM)
- integration of anatomy and phenotype ontologies
 more than 1.000,000 classes and 3,500,000 axioms
- PhenomeNET forms a network with more than 310.000 complex phenotype nodes representing complex phenotypes
- Semantic phenotype similarity pairwise comparison of disease and animal phenotypes

PhenomeNet



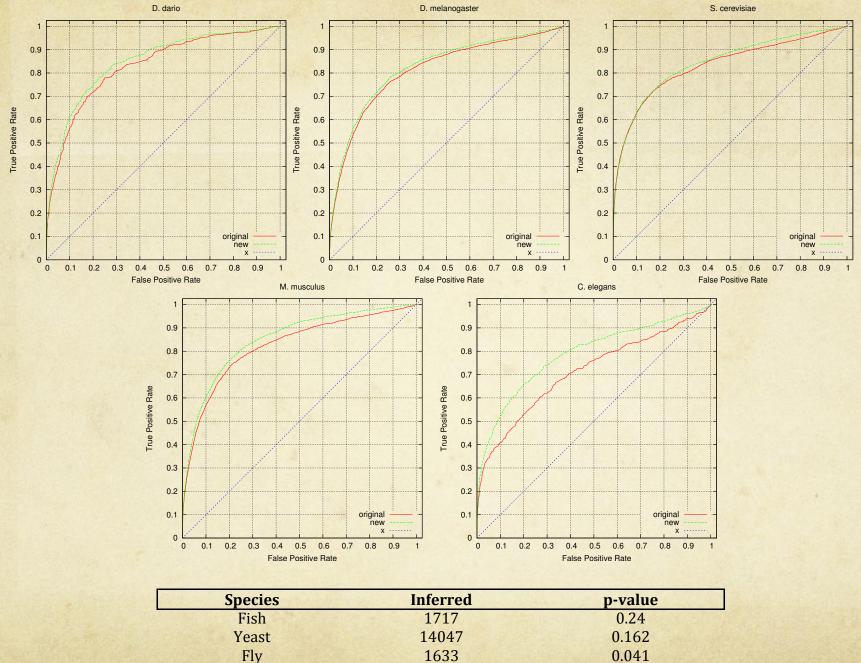
- quantitative evaluation based on predicting orthology, pathway, disease
- Receiver Operating Characteristic (ROC) Curve analysis
- Area Under Curve (AUC) = 0.7

Candidate disease gene prioritization

- Predict all known human and mouse disease genes
- Adam19 and Fgf15 mouse genes
- using zebrafish phenotypes mammalian homologues of Cx36.7 and Nkx2.5 are involved in TOF

- Enhance the network e.g.
 - Semantics e.g Behavior and pathology related phenotypes etc.
 - Methods e.g. text mining, machine learning etc.
 - Resources e.g. OrphaNet
- PhenomeNET now significantly outperforms previous phenotypebased approaches of predicting gene-disease associations
- Performance matches gene prioritization methods based on prior information about molecular causes of a disease

Ontologies & Biomedical Research

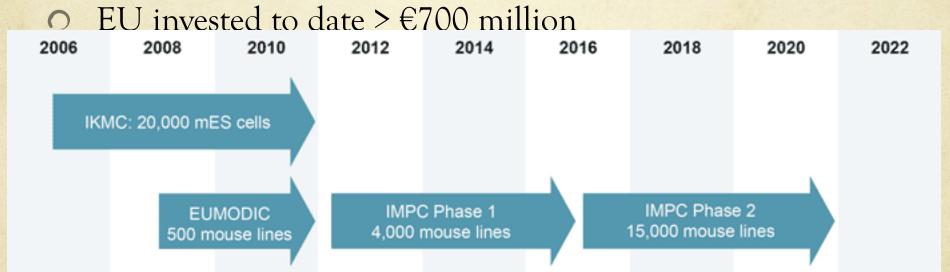

- Gene Function Determination
- Systematic Genome-Wide Phenotyping
- From Genotype to Phenotype
- Candidate Disease Gene Prioritisation
- Rare and Orphan Diseases
- Diagnostics Strategies to support Identification of Causative Genes
- Big Data
- Pharmacogenomics

Gene function determination

• phenotype data are commonly annotated, automatically, semiautomatically and manually, with terms from species-specific phenotype ontologies,

utilize phenotype ontologies → infer the functions (impaired given a phenotype observation)

- phenotype data from 5 different species \rightarrow evaluation
 - manually for biological correctness
 - predict genetic interactions (semantic similarity between genes)


Fly16330.041Worm92210.03Mouse156930.00007

Systematic Genome-Wide Phenotyping

The promise of animal models

• Forward and reverse genetics (e.g. Collaborative Cross panel, IKMC/IMPC)

→ understanding of gene function by taking a pangenomic and pan-phenomic approach

• IMPC - systematic, agnostic phenotyping of the mouse genome

Gene-Disease associations based on minimal phenotype information

• The nature of a phenotyping pipeline is breadth whilst depth will rely on secondary and tertiary phenotyping carried out by domain experts

- Results to date has not revealed any significant associations
- Challenge select genes based on primary screens to look at for secondary phenotyping
- Aim platform for the identification of possible gene disease associations based on minimal phenotype information

Nsun2

Gene Details

Marker Name(s):	NOL1/NOP2/Sun domain family member 2 view this gene in MGI
Marker Type:	protein coding gene
Synonyms:	D13Wsu123e, Misu
Location:	Chr13:69672624-69774658(+)

Related Human Conditions (from OMIM) - no related Human Condition

More Information

Data provided by Mouse Genome Informatics (MGI), Ensembl

No Raw Data

WTSI Phenotyping

			al	E					gland		ear	F	lism																
Allele Name	Colony Prefix	adipose tissue	behavior/neurological	cardiovascular system	cellular	craniofacial	dige stive/alimentary	embryogenesis	endocrine/exocrine g	growth/size	hearing/vestibular/e	hematopoietic system	homeostasis/metabolism	immune system	integument	limbs/digits/tail	liver/biliary system	mortality/aging	muscle	nervous system	other	pigmentation	renal/urinary system	reproductive system	respiratory system	skeleton	taste/olfaction	tumorigenesis	vision/eve
Nsun2tm1a(EUCOMM)Wtsi	MBKW	d.	d.	1	<u>.</u>	1			1	1	<u>.</u>	њ	<u>1</u>	Ь	1	1		1		Ь			1	<u>.</u>		1			d

Legend:

No Significant Annotations

Significant Annotation Present

📊 Link to a test report page

Hyperactivity Glucose homoeostasis Decreased body fat Decreased grip strength Decreased body weight Increased erythrocytes Decreased blood lipids Abnormal skeletal morphology and mineralisation Cataracts Abnormal cornea

PhenomeBrowser

Related genotypes and diseases for MENTAL RETARDATION, AUTOSOMAL RECESSIVE 2

Contents

- 1. <u>Related OMIM diseases and genes</u> (with similarity value > 0.1)
- 2. <u>Related mouse genotypes/genes</u> (with similarity value > 0.1)
- 3. <u>Related yeast genotypes/genes</u> (with similarity value > 0.1)
- 4. <u>Related worm genotypes/genes</u> (with similarity value > 0.1)
- 5. <u>Related fly genotypes/genes</u> (with similarity value > 0.1)
- 6. <u>Related zebrafish genotypes/genes</u> (with similarity value > 0.1)

New query

Related OMIM diseases for MENTAL RETARDATION, AUTOSOMAL RECESSIVE 2

Donk	r Nome (ID)	Similarity		
1	MENTAL RETARDATION, AUTOSOMAL RECESSIVE 2 (OMIM:607417)	1	<u>Show</u> phenotype	explore
2	HYPERLEXIA (OMIM:238350)	0.423264395686282	2 phenotype	explore
3	SPECIFIC LANGUAGE IMPAIRMENT 2 (OMIM:606712)	0.323633032411548	8 Show phenotype	explore
4	CEREBROCORTICAL DEGENERATION OF INFANCY (OMIM:213950)	0.283242266968077	7 <u>Show</u> phenotype	explore
5	MICROCEPHALY WITH SPASTIC QUADRIPLEGIA (OMIM:251280)	0.262401084926546	6 <u>Show</u> phenotype	explore
6	INDOLYLACROYL GLYCINURIA WITH MENTAL RETARDATION (OMIM:243050)	0.256622755335947	7 <u>Show</u> phenotype	explore
7	AMINOADIPIC ACIDURIA (OMIM:204750)	0.252725770031264	4 <u>Show</u> phenotype	explore
8	CYSTEINE PEPTIDURIA (OMIM:219550)	0.246945469322116	6 Show phenotype	explore
9	PSEUDOURIDINURIA AND MENTAL DEFECT (OMIM:264500)	0.246945469322116	6 Show phenotype	explore
10	GLUTATHIONURIA (OMIM:231950)	0.246945469322116	6 Show phenotype	explore
11	MENTAL RETARDATION, X-LINKED 72 (OMIM:300271)	0.244120270515175	Show	explore

Nsun2 is the pathogenic gene at MRT5 on 5p15

<mark>%</mark>611091

MENTAL RETARDATION, AUTOSOMAL RECESSIVE 5; MRT5

HGNC Approved Gene Symbol: MRT5

Cytogenetic location: 5p15-p14 Genomic coordinates (GRCh37): 5:0 - 28,900,000 (from NCB0

Gene Phenotype Relationships

Location	Phenotype	Phenotype MIM number
5p15-p14	Mental retardation, autosomal recessive, 5	611091

Phenotypic Series

TEXT

Clinical Features

Najmabadi et al. (2007) reported a large consanguineous Iranian family in which 3 individuals had nonsyndromic moderate to severe mental retardation.

Mapping

By linkage analysis in a large consanguineous Iranian family in which 3 individuals had nonsyndromic moderate to severe mental retardation, Najmabadi et al. (2007) identified a candidate locus on chromosome 5p, termed MRT5, with a maximum lod score of 3.0. Haplotype analysis delineated a 5.6-Mb candidate region between SNPs rs1824938 and rs60701.

By homozygosity mapping of a consanguineous Iranian family in which 2 patients had moderate nonsyndromic mental retardation, Kuss et al. (2011) found linkage to a 6.8-Mb region on chromosome 5p between SNPs rs2008927 and rs60701 (lod score of 3.9).

Abstract/Session Information for Program Number 1100W

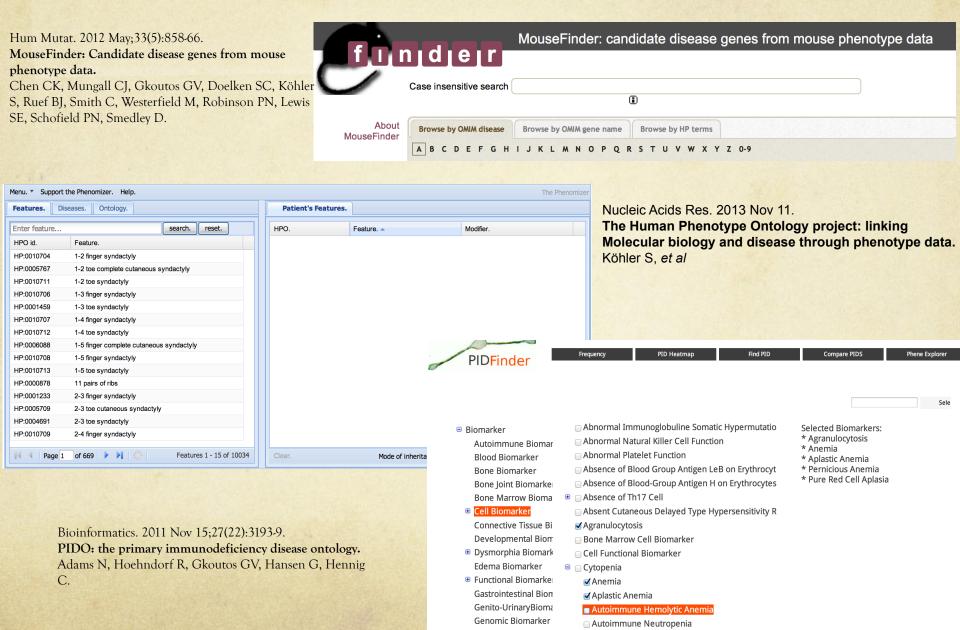
Session Information

Session Title: Molecular Basis of Mendelian Disorders Session Type: Poster

Session Location: Exhibit Hall, Level 2, Convention Center Session Time: Wed 10:00AM-7:00PM

Abstract Information

Program Number: 1100W Presentation Time: Wed, Oct 12, 2011, 3:00PM-4:00PM


Keywords: Molecular Basis of Mendelian Disorders, KW011 - BRAIN/NERVOUS SYSTEM, KW106 - MENTAL RETARDATION, KW113 - MODEL ORGANISMS, KW123 - NEUROGENETICS, KW109 - METHYLATION Abstract Content

Mutations in the NSUN2 gene cause autosomal recessive intellectual disability in Middle Eastern populations with elevated frequency. L. Abbasi Moheb¹, S. Mertel², L. Nouri Vahid³, K. Kahrizi³, A. Tzschach¹, D. Wieczore⁴, M. Garshash¹, S. Cirak², S. Abedin³, H. Majmabad³, H. Ropers¹, S. Sigris², AW. Kass^{1,6} 1) Human Molec Gen, Max Planck Inst Molec Gen, Berlin, Germany; 2) Genetics, Institute for Biology, Freie Universität Berlin, Berlin, Germany; 3) Genetics Research Center, Liniversity of Social Welfers and Rehabilitation Sciences, Tehran, Iran; 4) Institut for Humangenetik, Universitätsilikum, Essen, Germany; 5) The Duboitz Neuromuscular Centre, University College London Institute of Child Health London, UK; 6) Current address: Institute for Human Genetics, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany.

During the course of our investigations into the autosomal recessive causes of intellectual disability (ARID) where here previously identified numerous new loci for this condition. Interestingly, so far no more than six hotspot loci for unspecific or non-syndromic autosomal recessive intellectual disability (NS-ARID) have been identified (Kuss et al. 2011, Human Genetics Vol.129, 141-148). In this study we now resolved the underlying gene defect of MRT 5 and report three deletions unstations in NSUNZ. These were found in two independent consenguineous lanian families and one Turishi family with several patients suffering from non-syndromic ARID. NSUNZ encodes a methyltransferase, which catalyzes the intron-dependent formation of 5-methylo/tosine at C34 of (RNA-leu(CAA). Two of the observed changes were nonsense mutations (p.0227X and p.0372X), which cause a compilet loss of NSUNZ transcripts in the patient limity we found an intronic exchange of an adenosine of ra quanien 11 nucleidus upsteram of exon 6. This change causes exon 6 to be skipped during splicing and results in the loss of the main transcript. Hence all mutations lead to a loss of NSUN2 protein function in homozygous mutation carriers and thus in all likelihood cause the patient phenotype. In order to gain further evidence for an involvement of NSUN2 in cognitive functions, we studied fuilt fly mutants that lack the NSUN2 ortholog. These experiments revealed a marked learning impairment in mutant flies, which clearly underscores the relevance of NSUN2 in higher brain functions.

- 3 patients in consanguineous Iranian and Turkish families
- Non-syndromic ARID
- Complete loss of Nsun2 transcripts
 - -Two nonsense mutations
 - Intronic exchange of A for G 11 nt upstream of exon 6. Cause exon 6 skipping and loss of main transcript.

Diagnostics applications

From Genotype to Phenotype

From Genotype to Phenotype

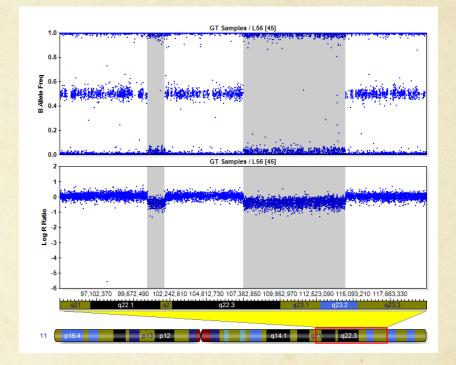
- similar function
 - GO-based semantic similarity
- similar cellular location
 - GO-based semantic similarity
- similar protein interactions/pathways
 - distance in PPI network
- similar (gene, protein) sequence
 Smith–Waterman distance
- expression in similar organ systems
 - semantic similarity over anatomy ontology
- similar phenotypes
 - semantic similarity over phenotype ontology

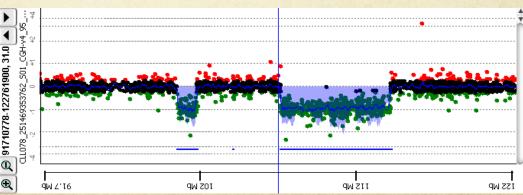
Existing measures

Additional measures

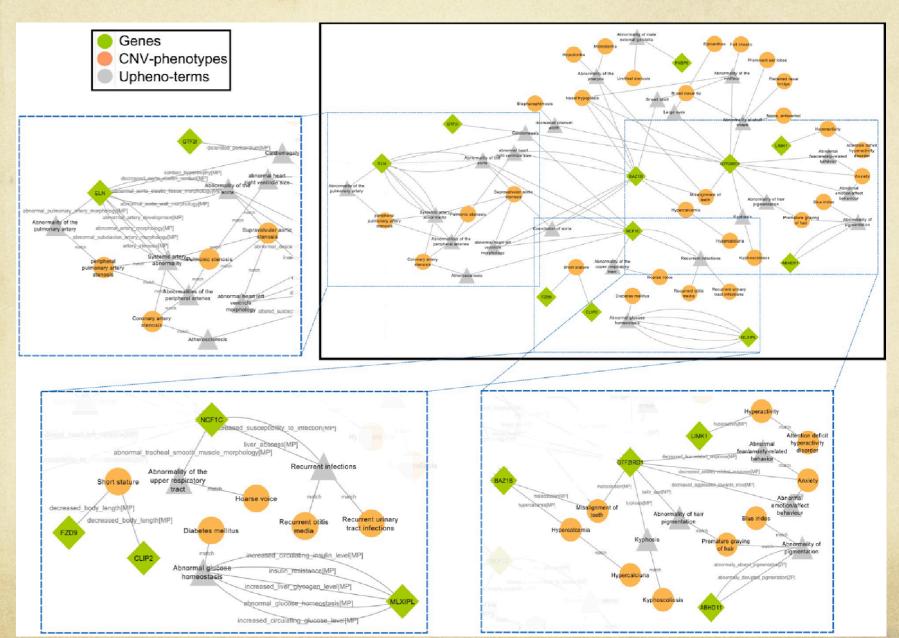
Predict the phenotypes resulting from single gene knockouts in mice

training data (genotype)
 15,000 mouse models with single gene mutations


• SVM to combine similarity scores


• work in progress: 0.70 AUC for predicting gene-disease associations using PhenomeNET

Candidate Disease Gene Prioritisation


Copy Number Variation (CNV)

- Common in human genomes
 - 35% of the human genome 0 demonstrates evidence of coverage by CNVs
 - 300,000 SNPs from each of 0 three European population isolates, spanning from Northern to Southern Europe,
 - detected 4016 CNVs in 1964 0 individuals, clustering into 743 CNVRs.
- Associated with common traits via SNP analysis Associated with recurrent syndrome 0
- 0

Semantic Modelling of 27 CNVs

Genotype-phenotype correlations in pathogenic CNVs

- 879 potential gene candidates 430 of which were not previously reported in the literature
- evaluated against two patients suffering from *Williams-Beuren Syndrome* (WBS) with rare microdeletions seen in clinic
 - analysis generated a profile of 32 phenotypic abnormalities connected to 11 candidate genes through 39 associations.

• basis for understanding previously uninterpretable genotype-phenotype correlations in pathogenic CNVs

Dis Model Mech. 2013 Mar;6(2):358-72.

Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish.

Doelken SC, Köhler S, Mungall CJ, Gkoutos GV, Ruef BJ, Smith C, Smedley D, Bauer S, Klopocki E, Schofield PN, Westerfield M, Robinson PN, Lewis SE.

Rare and Orphan Diseases

Rare and orphan diseases

Autosomal	X Linked	Y Linked	Mitochondrial	Totals
12,750	627	48	35	13,460
250	14	0	2	266
2,836	240	4	28	3,108
1,628	135	5	0	1,768
1,819	130	2	0	1,951
19,283	1,146	59	65	20,553
	12,750 250 2,836 1,628 1,819	12,750 627 250 14 2,836 240 1,628 135 1,819 130	12,750 627 48 250 14 0 2,836 240 4 1,628 135 5 1,819 130 2	12,750 627 48 35 250 14 0 2 2,836 240 4 28 1,628 135 5 0 1,819 130 2 0

• at least 4000 diseases without known molecular basis

• disease-gene identification methods have a limited focal range

• necessary to suggest possible causative genes

Bassoe Syndrome

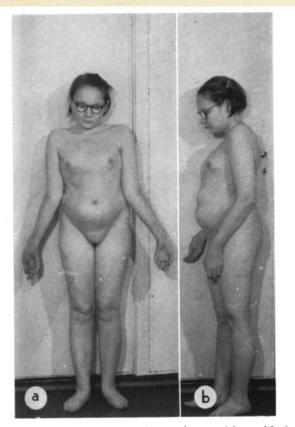


FIG. 2. Case 1. a. Showing cubitus valgus, elongated extremities and lack of pubic hair.b. Showing protruding abdomen, thoracic kyphosis and underdeveloped breasts.

FAMILIAL CONGENITAL MUSCULAR DYSTROPHY WITH GONADAL DYSGENESIS

HANS H. BASSÖE, M.D.*

Hammerfest Hospital, Hammerfest, Norway (Medical Section-Head, H. Schartum-Hansen)

IN A family living in a small isolated village in Finnmark county, Norway, we have observed 7 persons suffering from congenital muscular dystrophy. Their symptoms were similar to those seen in congenital amyotonia (Oppenheim). Several children in the family had died very early in life; 3 others had been still born. In the third generation (III, Fig. 1) the child mortality was 33.3 per cent, whereas the average child mortality in Finnmark in the period 1926–1930 was 9.17 per cent. In the same generation, 2 siblings (Cases 1 and 2) were affected. In addition to the muscular dystrophy there was gonadal dysgenesis—ovarian agenesis and testicular

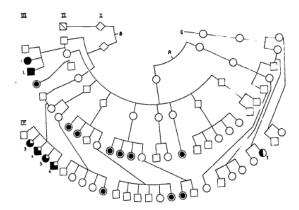


FIG. 1. Family history. Upright white squares and circles indicate normal men and women; slanted white squares indicate unknown sex. Black squares and circles indicate men with Klinefelter's syndrome and women with ovarian agenesis, both with cataract and muscular dystrophy. Black squares and circles with $\frac{1}{4}$ white area indicate men and women with muscular dystrophy, but without endocrine disorder. Black circle with $\frac{1}{2}$ white area indicates woman with muscular dystrophy and epicanthus. Black double circles indicate stillbirths.

Received for publication February 9, 1956.

* Present address: Medical Department B, University Clinic of Bergen, Bergen, Norway.

Bassoe Syndrome

organ system	Orphanet	mouse models (MGI)	additional mouse phenotypes reported in literature
skeletal	kyphosis, hypertensible joints, cubitus valgus	abnormal spine curvature, lordosis	kyphosis [24], kypholordosis [25], spinal defects [26]
muscular	amyotrophy, hypotonia, muscle hypotrophy	abnormal muscle morphology	muscle hypotrophy [27], muscle wasting [27]
behavioural	abnormal gait, amimia	abnormal gait, hypoactivity, tremors	failure to thrive [25], ataxia [24], defects in presynaptic function [27]
visual	cataract, strabismus	nuclear cataracts, microphthalmia	cataracts [26]
reproductive	testicular atrophy, hypogonadism, hypogenitalism, abnormal ovaries, reduced fertility	testicular atrophy, male infertility	decreased testicular weight [28], testicular degeneration [26,28], increased apoptosis of postmeiotic spermatids [28], oligospermia [28], decreased fertility [26,29], reduced sperm count and motility [26,29], ovarian abnormalities [29]

HIP1 candidate gene for Bassoe syndrome

h 🔻 Downloa	d 🔻 More Resources 🕶 Submit Data 🛛 Find Mice	(IMSR) 🍏	Analysis Tools	
		lip1 ne Detail		
-	Hip1 huntingtin interacting protein 1 MGI:1099804			
Synonyms	2610109B09Rik, A930014B11Rik, E130315I21Rik, HIP-1, MG	C:27616		
Feature Type	protein coding gene			
Genetic Map	Chromosome 5 75.18 cM, cytoband F-G2 Detailed Genetic Map ± 1 cM			
	Mapping data(<u>13</u>)	Α		
Sequence Map	Chr5:135406523-135545122 bp, - strand From Ensembl annotation of GRCm38 Get FASTA 138600 bp ± 0 kb flank VEGA Genome Browser Ensembl Genome Browser UCSC	Hip1 ^{null/null}		
	human; rat; cattle; chimpanzee; dog, domestic (<u>Mammali</u> Comparative Map (<u>Mouse/Human Hip1 ± 2 cM</u>) Protein SuperFamily: <u>huntingtin-interacting protein 1-relater</u> Gene Tree: <u>Hip1</u>	Hip1*/+		95 L
	HIP1 huntingtin interacting protein 1 NCBI Gene ID 3092 Human Synonyms: ILWEQ Human Chr7:75163409-75368279 bp, - strand Reference GRC Human Diseases Associated with Human HIP1 (1)	В	Hip1*/*	
Alleles and phenotypes	All alleles(<u>32</u>) : Targeted(<u>8</u>) Gene trapped(<u>24</u>) Homozygous mutants may exhibit axial skeleton defe whereas others did not.			J-J
	All GO classifications: (29 annotations) Process activation of cysteine-type endopeptid Component clathrin-coated vesicle, cytoplasm, Function actin binding, clathrin binding, External Resources: <u>FuncBase</u>	lase activity invo	lved in apoptotic proc	

MON

REPORT

Recurrent Distal 7q11.23 Deletion Including *HIP1* and *YWHAG* Identified in Patients with Intellectual Disabilities, Epilepsy, and Neurobehavioral Problems

lelissa B. Ramocki,^{1,2,16} Magdalena Bartnik,^{3,16} Przemysław Szafranski,^{4,16} Katarzyna E. Kołodziejska,⁴ hilam Xia,⁴ Jacylo Bravo,⁴ G. Steve Miller,^{5,16} Diana L. Rodriguez,^{1,2} Charles A. Williams,⁷ atricia L. Bader,⁶ Eizbieta Szczepanik,⁹ Tomasz Mazurczak,⁹ Dorota Antczak-Marach,⁹ mes G. Coldwell,⁵ Cigdem I. Akman,^{1,2} Karen McAlmon,^{10,1,1,2} Melinda P. Cohen,¹³ mes McGrath,¹⁴ Elizabeth Roderli⁵ Jennifer Mueller,⁷ Zumg-Hae L. Kang,⁸ Carlos A. Bacino,⁴ nkita Patel,⁴ Ewa Bocian,³ Chad A. Shaw,⁴ Sau Wai Cheung,⁴ Tadeusz Mazurczak,³ d Pawel Stankiewicz^{3,4,4}

Vereport 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of pelicpy, learning difficulties, intelletural disabilities, and/or neurobdevisorial abnormalities are setuel for a heteroxygous microdebetion di stuly adjacent to be Williams-Benten syndrome region on chromosome 7q11.23. In six families with a common recurrent -1.2 Mbdeleison that includes the Huntingtin-interacting protein 1 (*HPI*) and tyrosin 8-monoxygenase/hyptophan 5-monoxygenase activation proteing gamma *WHAG*) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination to two patients. There were no cases of this -1.2 Mb distal 7q11.23 deletion copy number variant identified in ore # 20/000 control amples surveyed. Three individuals with smaller, nonneurcurrent deletions (-160-500 kb) that include *HPI*) and tyr/*HAG* suggest hat deletion of *HIPT* is sufficient to cause neurological disease. Mice with targeted mutation in the *HBJ* gene.(*HBJ*⁻¹⁻⁷) developmential and encludent of *HIPT* is sufficient to cause neurological disease. Mice with targeted mutation in the *HBJ* gene.(*HBJ*⁻¹⁻⁷) developmential and

aused by recurrent and nonrecurrent deletions, including *HIP1*. These data do not exclude the possin is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein MPA and NMDA ionotropic glutamate receptor trafficking, we believe that *HIP1* haploinsufficiency in nal drug design for improved seizure control and cognitive and behavioral function.

tients with Williams-Beuren not. Supporting this notion, Manhall et al. found that)]), a common multisystem acterized by supravalvular in *Stargazin* cause epilepsy in mice.^{7,8}

edata: Neumology and Devolopmental Neuroscience, Bayler College of Medicine, Heusten, TX7 7080, USA, ¹Tease (0, USA, ¹Dogaramet of Medial Genetics, Institus of Modera and Coll, Hayler Meyaritnent of str College of Medicine, Houston, TX 77080, USA, ¹Chaildren's Medial Center at Billenst, Tulas, OK 74104, USA, 135, USA, ¹Bayamot C, Billos Bescach and Biotacino Unit. Divolsion of Genetics and Metaboline, Department flege of Medicine, Gainesville, FL 32511, USA, ⁶Northeat Indana Genetic Counseing Center, Fort Wayne, IN Didden and Adadescent, Institute of Modera and Child, Warama (0-21), Poinder ¹Colladers, Biopial Botton, adial School, Booton, MA 2015, USA, ¹Special Care Nunery, Wirchester Hospital, Wincheter, MA 01890, USA, ¹Dogaramic Medicine, Nonderbit University, Rohville, IN 37222, USA, ¹²Department of Comparative Medicine and edecine, New Bayon, CT 06520, USA, ¹²Department of Poliantes, Division of Genetics and Metabolic Deonders, 144 and Neuro, CT 022, USA, ¹²Department of Poliantes, Division of Genetics and Metabolic Deonders, 144 and Neuro, CT 022, USA, ¹²Department of Poliantes, Division of Genetics and Metabolic Deonders, 144 and Neurosci. Nature, Nature

10 by The American Society of Human Genetics. All rights reserved.

/^3-5

The American Journal of Human Genetics 87, 857–865, December 10, 2010 857

Interface Focus. 2013 Apr 6;3(2):20120055. An integrative, translational approach to understanding ra

and orphan genetically based diseases. Hoehndorf R, Schofield PN, Gkoutos GV.

orpha News Europe

Newsletter of the European Union Committee of Experts on Rare Diseases

Summary

1 October 2013

print 昌

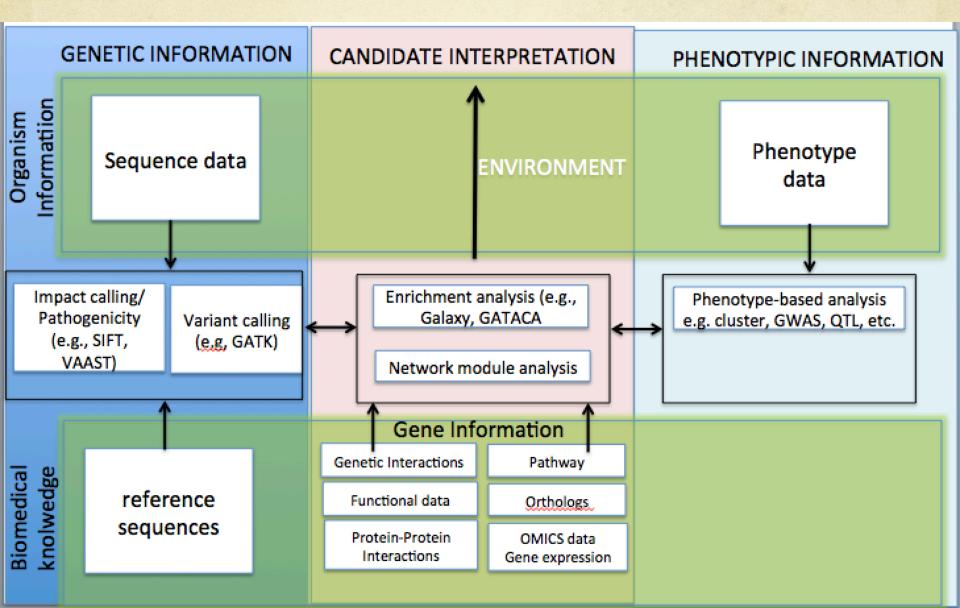
PhenomeNet: a phenotype-based system to identify known candidate genes for diseases now integrates clinical signs from Orphanet

"integration and computational analysis of human disease and animal model phenotypes using PhenomeNet has the potential to reveal novel insights into the pathobiology underlying genetic diseases"

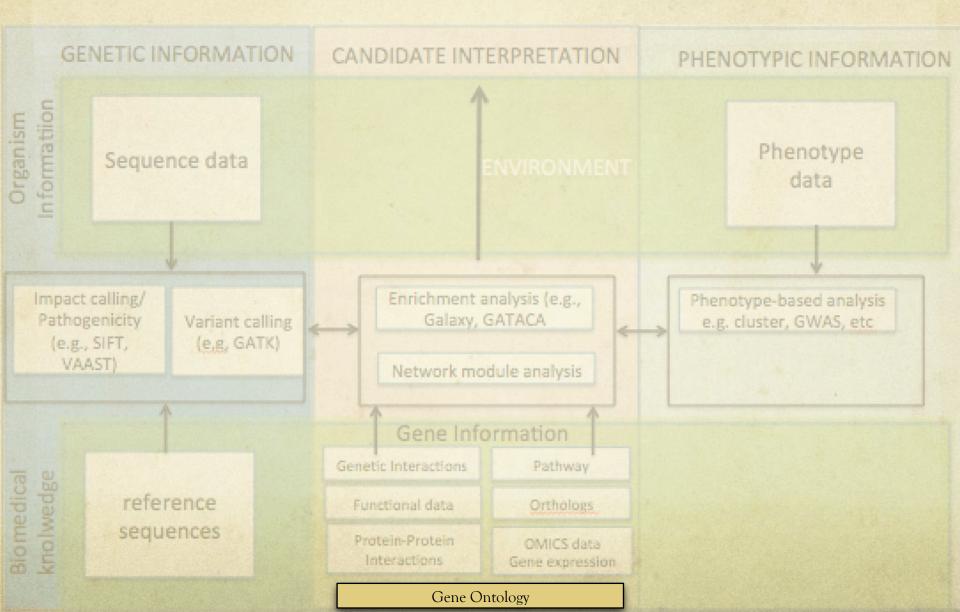
The Desminopathy Reporter

Making sense of missense, nonsense, and other vexsome gene mutations

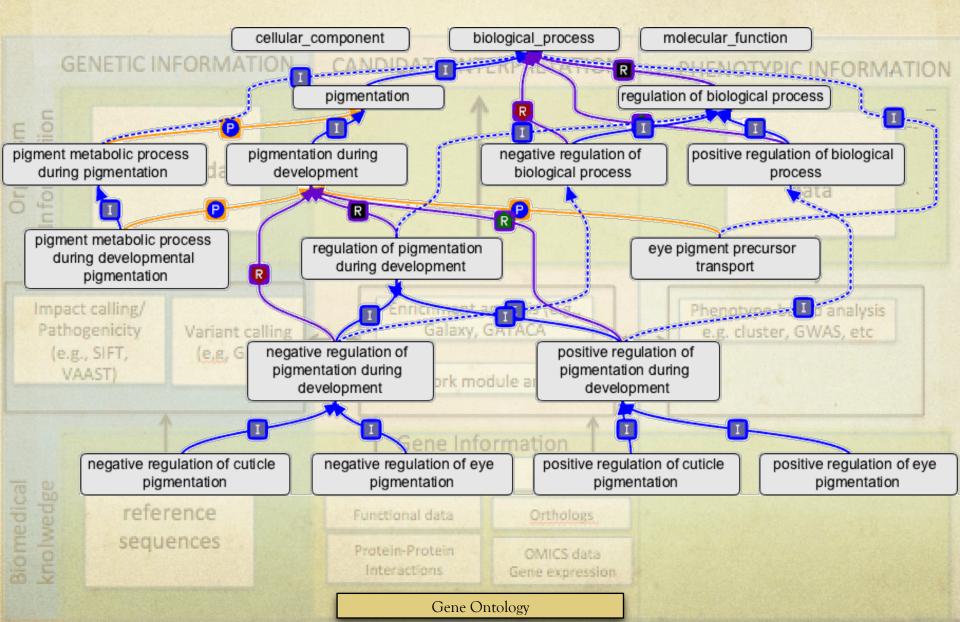
About GotoLibrary

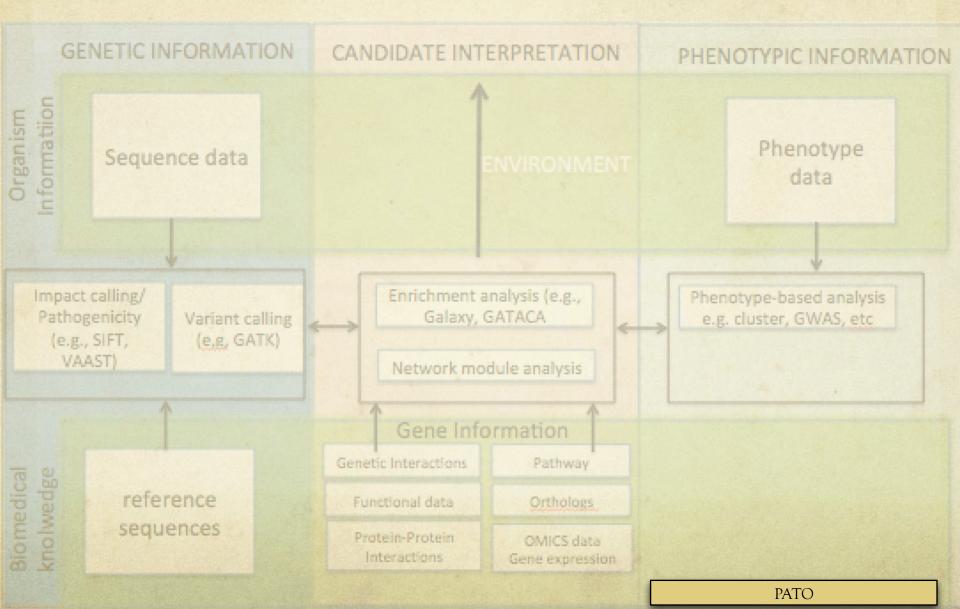

Document Locker
Weblog Donate Contact Us Services

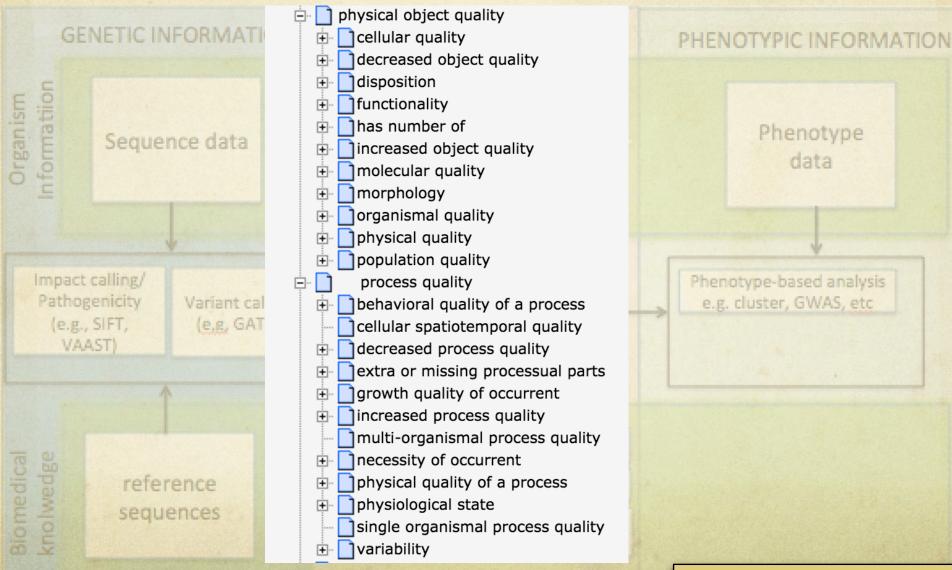
Research In Action

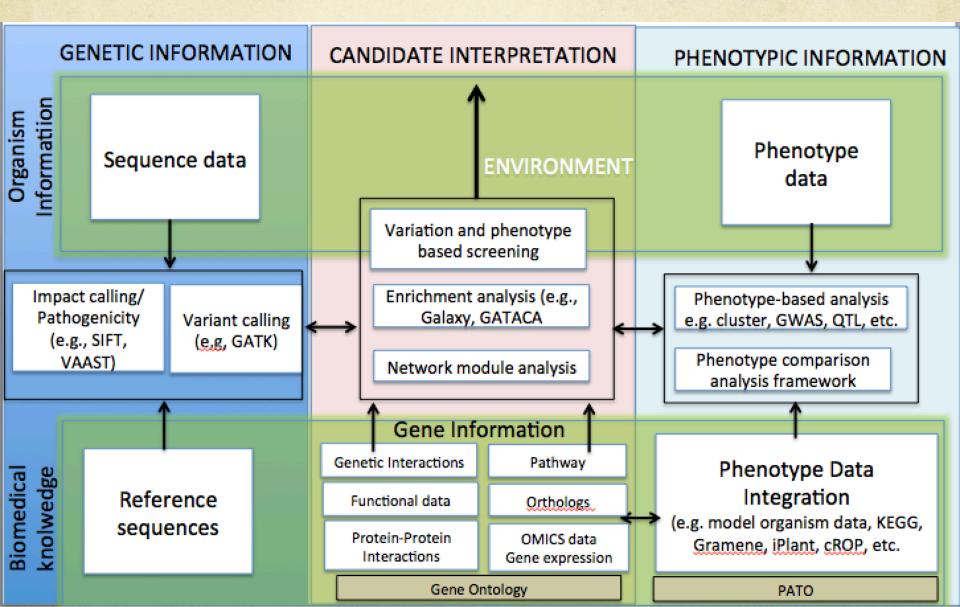


<u>PhenomeNet</u> is an integrated, searchable, cross-species <u>phenotype</u> network. It's also a wowsa! for "identifying candidate genes for genetic diseases [in humans] based on the similarity between a disease and animal model phenotypes." In an article


Candidate gene prioritization


Gene Ontology


Gene Ontology


PATO

PATO

Candidate gene prioritization

Diagnostics Strategies to support Identification of Causative Genes

Clinical diagnostics decision support systems

- "show me all genes involved in degenerative processes of the brain or heart for which no evidence of cerebellar degeneration is available in mouse models"
- "show me all genes associated with a particular process that are also associated with mental retardation"
- "prioritize these genes in order with their relevance to a particular set of phenotypes or a particular syndrome"

MouseFine phenotype Chen CK, S, Ruef BJ,	at. 2012 May;33(5):858-66. der: Candidate disease genes data. Mungall CJ, Gkoutos GV, Do Smith C, Westerfield M, Rol eld PN, Smedley D.	oelken SC, Köhler	About MouseFinder	insensitive search	h	ene name	Browse by HP terms	
Menu. • Support	the Phenomizer. Help.				The Phenomize	er		
Features. Dis	eases. Ontology.	Patient's Fe	atures.					
Enter feature	search. reset	HPO.	Feature.	Modifier.		Nuclei	c Acids Res.	2013 Nov 11.
HPO id. HP:010704 HP:0010704 HP:0010706 HP:0010706 HP:0010707 HP:0010707 HP:0010712 HP:0006088 HP:0010713 HP:0000878 HP:0001233 HP:0008709 HP:0004691 HP:0010709	Feature. 1-2 finger syndactyly 1-2 toe complete cutaneous syndactyly 1-2 toe syndactyly 1-3 finger syndactyly 1-4 forger syndactyly 1-4 forger syndactyly 1-5 finger complete cutaneous syndactyly 1-5 finger syndactyly 1-5 finger syndactyly 1-5 finger syndactyly 1-5 finger syndactyly 2-3 finger syndactyly 2-3 toe cutaneous syndactyly 2-3 toe syndactyly 2-3 toe syndactyly 2-3 toe syndactyly 2-4 finger syndactyly 2-5 toe syndactyly 2-6 toe syndactyly 2-7 toe syndactyly 2-8 toe syndactyly 2-9 toe syndactyly 2-9 toe syndactyly 2-15 toe syndactyly 2-2 toe syndactyly 2-3 toe syndactyly 2-3 toe syndactyly	of 10034	Mode of inheritance	3.	✓ Get diagnosis.	Molec		otype Ontology project: linking y and disease through phenotype data
	PhenoPPIOrt	Home d Search 🗶	Advanced Search	Settings	Download Hi "A ph ur fu ex id	Additionenotype ncover rther t cample entifyi	nally, inf pes, espect the mech o aid dru , new dru	ferring the candidate genes of cially diseases, helps to nanisms of diseases, and thus g development. For g might be discovered by roducts of candidate disease

Big Data

Can we apply the same approach across biology ?

Can we achieve the same type of phenotype data standardization for plants?

Description of Mutant Phenotype	Atomized Phenotype statements	Entity	Quality (PATO)
	dwarf	PO: shoot system	decreased height
Dwarf with profuse slender tillers, small panicles	profuse tillers	PO: whole plant	has extra parts of type (basal axillary shoot system)
	slender tillers	PO: basal axillary shoot system	slender
	small panicles	PO: inflorescence	decreased size
Delayed flowering; Reduction in total		GO: flowering	delayed
chlorophyll		ChEBI: chlorophyll	decreased concentration

Plant Phenotype Pilot Project (PPPP)

Species ¤	#EQs	#unique EQs across	#genes	#genotypes	##phenotype	Ħ
	(phenes)	^{μ} all genotypes ^{μ}			S ^{II}	
Arabidopsis thaliana	¤ 5172 ¤	1 260 ¤	2393 ¤	2393* ¤	1385 ¤	п
Zea mays ssp mays ¤	373 ¤	180 ¤	114 ¤	1 69 ¤	117 ¤	п
<u>Oryza</u> sativa L.¤	340 ¤	271 ¤	92 ¤	95 ¤	86 ¤	н
<u>Solanum</u>	269 ¤	1 74 ¤	72 ¤	128 ¤	90 ¤	п
lycopersicum [¤]						
Medicago truncatula	¤ 149 ¤	99 ¤	40 ¤	45 ¤	40 ¤	н
Glycine max ¤	61 ¤	39 ¤	30 ¤	30* ¤	24 ¤	п
Total ¤	6364 ¤	2023 ¤	2741 ¤	2866 ¤	1742 ¤	д

¶

* # genotypes equals # genes because no distinction between them was made for these

species ¶

Plant PhenomeNet

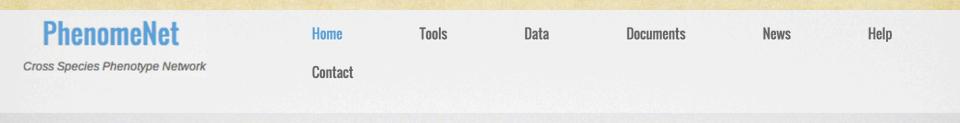
$\textbf{\leftarrow} \rightarrow \textbf{C}$	D phenom	nebrowser.n	et/plant/								☆ 🐟	w 🐮	•	≡
Apps	New folder	Imported	Imported (1)	📄 department	Wolverhapton	other_citations		New	folder		»	Other E	Bookma	arks
						t		Ŀ	V	-	٣	S	•	
Phen	omeNet	t	Home	Tools	Data	Documei	ıts		N	ews		Help		
Cross Specie	s Phenotype Ne	etwork	Contact											

Plant Phenotype Pilot Project PhenomeNet- Cross Species Plant Phenotype Network

This version of Plant Phenotype Pilot Project PhenomeNET contains the results of the analysis conducted in the frame of the Plant Phenotype Pilot Project study with annotation files from six plant species (Arabidopsis thaliana, Zea mays, Oryza sativa, Medicago truncatula, Glycine max, and Solanum lycopersicum), last updated in June 2014.

Search Plant Phenotype Pilot Project PhenomeNet

To explore the network, enter a search term in the query field below. At the moment it's sufficient to enter "g" to obtain a full list of all assessed genotypes.


Submit

PhenomeNet can be queried using plant species, gene, genotype and allele names. For example queries, see the help pages.

Medtr5g011250- leucoanthocyanidin dioxygenaselike protein

$\leftarrow \Rightarrow \mathbf{C}$ \square phenomeb	prowser.net/plant/showphenotype.php?val=GENO_2425 🔀 🐟 🚼 🔶 🚍					
Apps 📄 New folder 📄	Imported 📄 Imported (1) 📄 department 📄 Wolverhapton 📄 other_citations 📄 New folder 🛛 » 📄 Other Bookmarks					
	Search PhenomeNet					
	To explore the network, enter a search term in the query field below.					
	Submit					
Phenotypes directly as:	sociated with Medicago truncatula ANS Medtr5g011250 (GEN0_2425)					
Term ID	Name					
PO:1484 Reduced leaf Anthocyanin levels						
PPO:1485 Reduced seed Oligomeric proanthocyanidin levels						
Plant phenotypes infer	red for Medicago truncatula ANS Medtr5g011250 (GEN0_2425)					
Term ID	Name					

Name
Abnormal unsaturated fatty acid levels in seeds
Seed raffinose concentration reduced
gibberellin deficiency
Low ABA levels in seeds
50% defective seeds
ow glucosinolate levels in seeds
ow hydroxyl fatty acid levels in seeds
Low iron levels in seeds
ow nicotianamine levels in seeds
ow nitrate levels in seeds
ow phytic acid levels in seeds
Low sterol ester content in seeds
Low tocopherol levels in seeds
A) gii _((_(_(_(_(_(

Search PhenomeNet

To explore the network, enter a search term in the query field below.

Submit

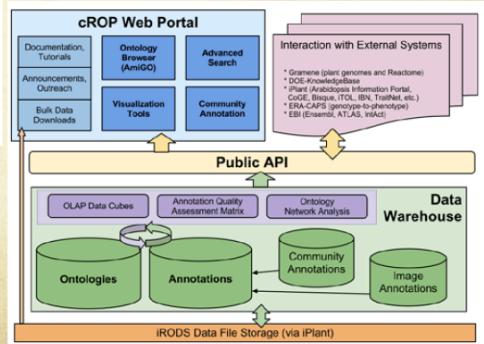
Related genotypes and diseases for Medicago truncatula ANS Medtr5g011250

Contents

1. Related plant genotypes

New query

Related Plant phenotypes for Medicago truncatula ANS Medtr5g011250

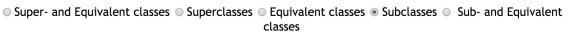

Rank	Name (ID)	Similarity		
1	Medicago truncatula ANS Medtr5g011250 (GENO_2425)	1	Show	explore
2	Arabidopsis thaliana At5g60760 (GENO_2393)	0.933333333	3Show	explore
3	Arabidopsis thaliana AtNRT2.7 At5g14570 (GENO_319)	0.933333333	3Show	explore
4	Arabidopsis thaliana MYB28 At5g61420 (GENO_1461)	0.933333333	3Show	explore
5	Arabidopsis thaliana AtCBR At5g17770 (GENO_245)	0.933333333	3Show	explore
6	Arabidopsis thaliana VTE5 At5g04490 (GENO_2319)	0.933333333	3Show	explore
7	Glycine max RS1-2 Glyma06g18890.1 (GENO_2420)	0.875	Show	explore
8	Glycine max RS2 Glyma06g18890.1 (GENO_2421)	0.875	Show	explore
9	Arabidopsis thaliana YSL1 At4g24120 (GENO_2360)	0.823529411	.8Show	explore
10	Solanum lycopersicum gamybl1 Solyc01g009070 gib-1 (GENO_2641)	0.823529411	8Show	explore
11	Arabidopsis thaliana NCED6 At3g24220 (GENO_1484)	0.736842105	3Show	explore
12	Arabidopsis thaliana PSAT1 At1g04010 (GENO_1787)	0.652173913	Show	explore
13	Arabidopsis thaliana ROD1 At3g15820 (GENO_1884)	0.133333333	3Show	explore

cROP - Common Reference Ontologies and Applications for Plant Biology

	Environment Ontology (ENVO)							
È	Plant Environmental Conditions (EO)							
GRANULARITY	Plant Taxonomy	NCBI, <u>uBio,</u> USDA-GRIN, etc.	Quality		Biological Process (GO)			
I	Anatomy	Plant Anatomical Entity Plant Ontology (PO)	Plant Stress Ontology (PSO)	y (TO)	cture : Stage			
I	Cell	Plant Cell (PO) Cell (CL)	s Ontol	Plant Ontology	Plant Structure evelopment Stag (PO)			
I	Cellular Component	Cellular Component (GO)	t Stres	Trait	Pla			
	Molecule	Molecular Entity (ChEBI, PR)	Plar	Molecular Function (GO)	Molecular Process (GO)			

cROP portal

cROP-related ontologies



BIG DATA: ontology-based heteregeneous, multi-modal data access

Search in Pubmed Use in SPARQL query

Aber-OWL:

- biological data
 - SPARQL endpoints
- literature
 - MEDLINE/PubMed
 - PubMed Central

\$

ABEROWL

Help

'ventricular septal defect'

Submit

Try <u>'ventricular septal defect'</u>, <u>part of some heart</u>, <u>develops from some 'stem cell'</u>, <u>'part of some 'apoptotic process' and</u> <u>regulates some 'apoptotic process'</u>, <u>or 'has part' some alcohol</u>.

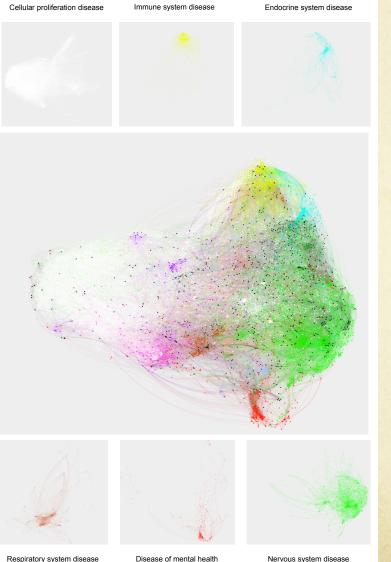
Copy CSV Excel PDF Pr	int Show 50 \$ entries	Search:			
http://purl.obolibrary.org/ob o/DOID_6406	http://purl.obolibrary.org/ob o/doid.owl	double outlet right ventricle			
http://purl.obolibrary.org/ob o/HP_0011622	http://purl.obolibrary.org/ob o/hp.owl	Inlet ventricular septal defect	A ventricular septal defect that involves the inlet of the right ventricular septum immediately inferior to the		

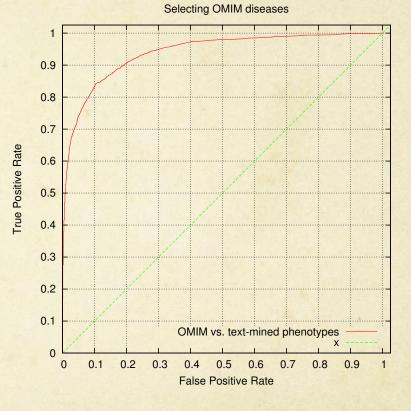
[Tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries].

Patients with **tetralogy** of **Fallot** (TOF), **pulmonary atresia** (PA), and major aortopulmonary collateral artery (MAPCA) usually need some staged surgical procedures. There is no clear consensus to the initial procedure and also the most proper initial procedure is different in each case. We report here a case of 6-year-old girl with TOF, PA, and MAPCA. We performed right ventricular outflow tract reconstruction (RVOTR) for the initial procedure because her pulmonary artery was extremely diminutive. Her pulmonary artery got good growth after the palliative surgery. Five years later she underwent complete repair after two other surgeries and 1 interventional embolization. RVOTR is a useful procedure for pulmonary artery growth, but it should be well considered that what size of RVOTR is needed in each case.

Imaging findings in uncorrected tetralogy of Fallot and pulmonary atresia with major aortopulmonary collateral arteries and septic embolism

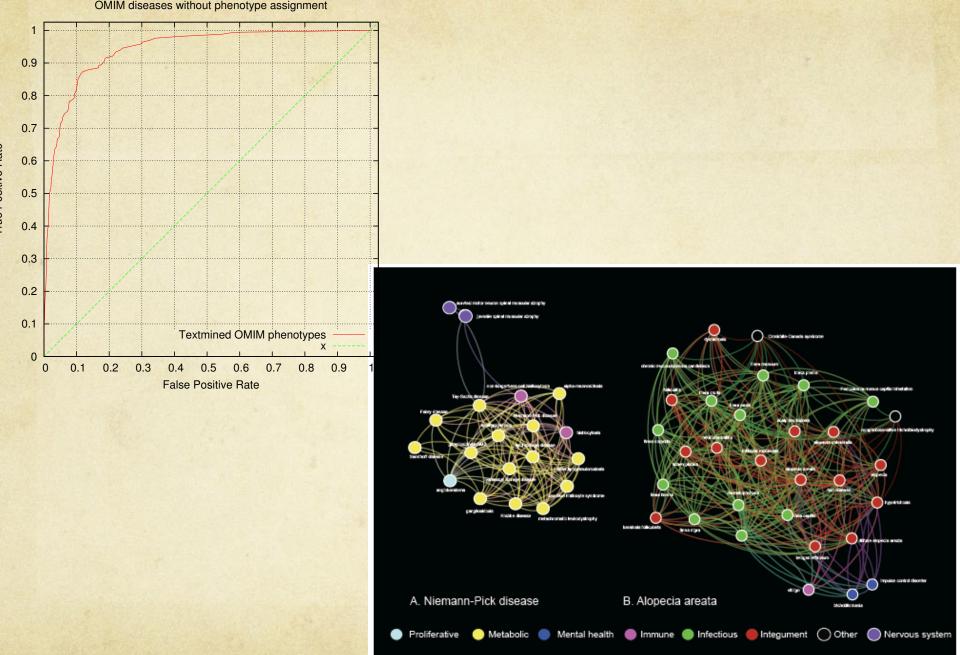
Full text available.

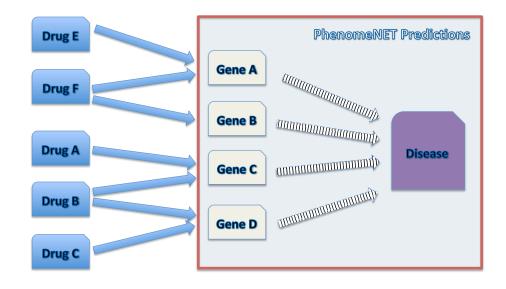

Tetralogy of **Fallot** (TOF) is one of the most common congenital heart malformations comprising a ventricular septal defect, right ventricular outflow tract obstruction, right ventricular hypertrophy, and overriding aorta. A rare variant includes pulmonary atresia and major aortopulmonary collateral arteries. Altered hemodynamics within the functional single-ventricle results in turbulent flow and predisposes to endocardial vegetation formation which may consequently lead to thromboembolic events. We present a rare case of an adult survivor of uncorrected TOF with pulmonary atresia.

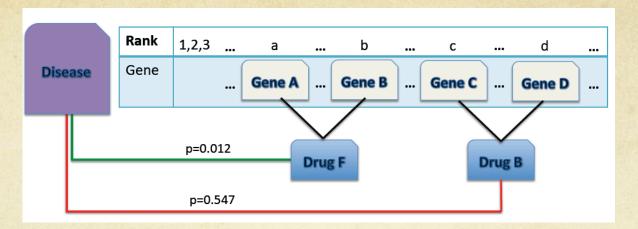

Early and late results of repair of tetralogy of Fallot with subarterial ventricular septal defect. A comparative evaluation of tetralogy with perimembranous ventricular septal defect.

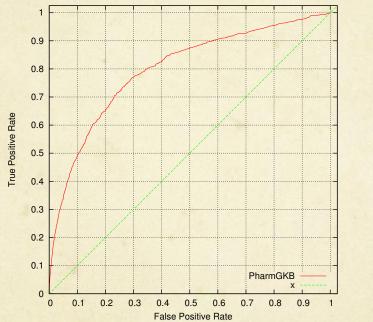
Between November 1966 and December 1990, 511 pediatric patients with **tetralogy** of **Fallot** underwent corrective operation at Tenri Hospital. There were 78 patients with **subarterial ventricular septal defect**. Mean age at repair was 5.6 +/- 3.3 years. The method of right ventricular outflow tract reconstruction was simple infundibulectomy in 14 patients, right ventricular ventricular outflow patch in 36, and transannular patch in 28. There were 7 (9.0%) early deaths as a result of low cardiac output syndrome and acute renal failure. The pressure ratio of the right ventricle to the left ventricle was 0.62 +/- 0.18 during the early postoperative catheterization. Follow-up was achieved for 442.6 patient-years and ranged from 0.5 to 27 years, with an average of 8.5 +/- 6.7 years. There were three late deaths (2 cardiac and 1 noncardiac). Actuarial survival was 94.8% +/- 4.0% at 20 years. Catheterization during late follow-up (6.8 +/- 4.7 years after repair) was done in 53 patients and the pressure ratio of the right ventricle was 0.48 +/- 0.21. Fifteen patients underwent subsequent operation because of residual lesions, including ventricular septal defect in four patients, pulmonary stenosis in nine, combined ventricular septal defect and pulmonary stenosis in one, and pulmonary regurgitation in one, with no mortality. Actuarial rate of freedom from reoperation was 71.1% +/- 8.0% at 10 years and 58.8% +/- 16.8% at 20 years. Patients with tetralogy and **subarterial ventricular septal defect** were more likely to have the development of residual obstruction at the level of the pulmonary valve anulus after repair than were those with tetralogy and **perimembranous ventricular septal defect**.

[A case of coronary artery-pulmonary artery fistula in tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries (MAPCA)].


Aber-OWL: Common diseases


Nat. Scientific Reports. 2015 in press. Analysis of the human diseasome reveals phenotype modules across common, genetic, and infectious diseases Hoehndorf R, Schofield PN, Gkoutos GV.


Respiratory system disease



Pharmacogenomics

Can a phenotype of gene which the drug interacts be used to predict diseases in which the drug is active?

AUC: 0.76

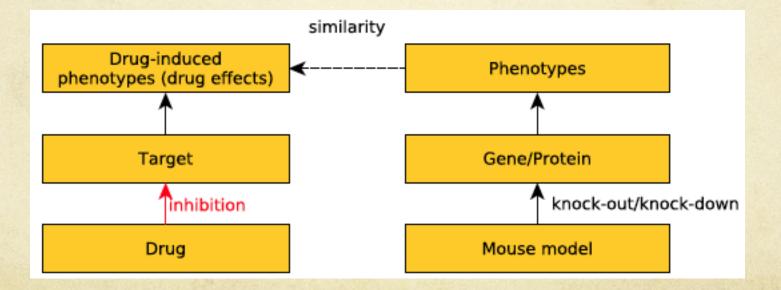
Extend PhenomeNET to include side effects, drug indications, drug targets

Pac Symp Biocomput. 2012:388-99. Linking PharmGKB to phenotype studies and animal models of disease for drug repurposing. Hoehndorf R, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV.

Disease and drug pathways

Integrate:

- chemical ontologies and disease ontologies
 - e.g. ATC, ChEBI, MeSH (chemicals, diseases) HumanDO
- databases containing drug, gene and disease information
 - DrugBank, PharmGKB, CTD, Pathway Interaction Database
 - associations: drug-gene, gene-disease, drug-disease


Identify:

- 22,653 disease-pathway associations (disease pathways)
 - e.g. Mood disorder and Zidovudine Pathway ($p < 10^{-10}$)
- 13,826 pathway-chemical associations (drug pathways)
 - e.g. Clopidogrel and Endothelin signaling pathway ($p < 10^{-3}$)

Bioinformatics. 2012 Aug 15;28(16):2169-75. Identifying aberrant pathways through integrated analysis of knowledge in pharmacogenomics. Hoehndorf R, Dumontier M, Gkoutos GV.

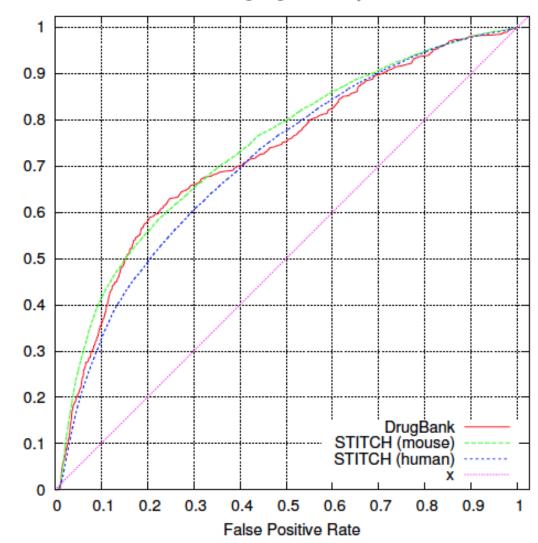
Drug targets and indications identification

A similarity between drug D's effects and phenotypes resulting from *knock-out/knock-down* of a gene/protein in an animal model may indicate that D *inhibits* the gene/protein (or its human ortholog).

PhenomeDrug

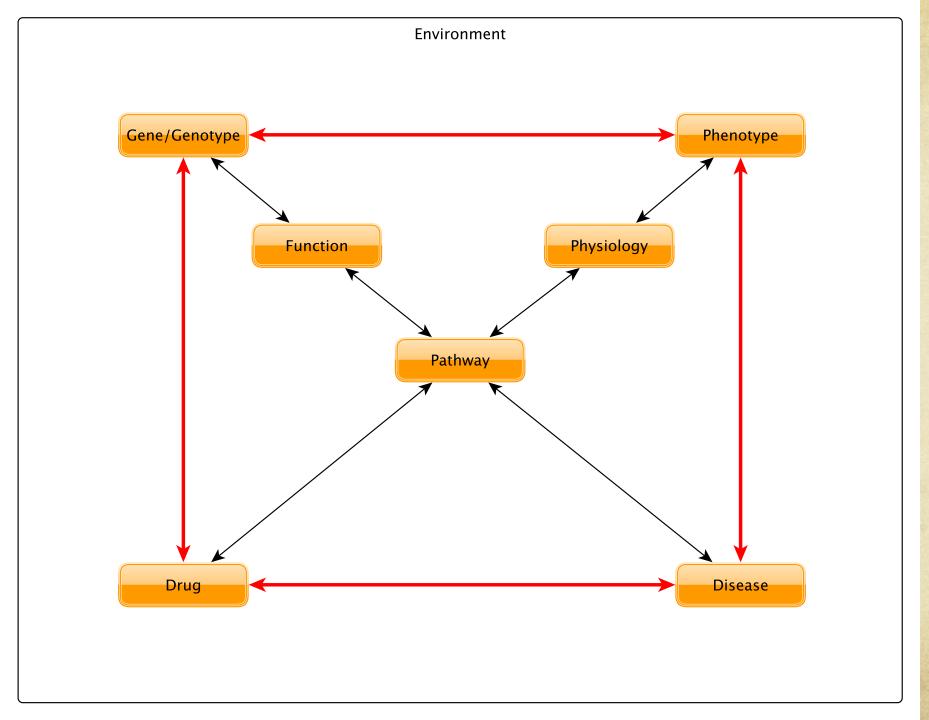
True Positive Rate

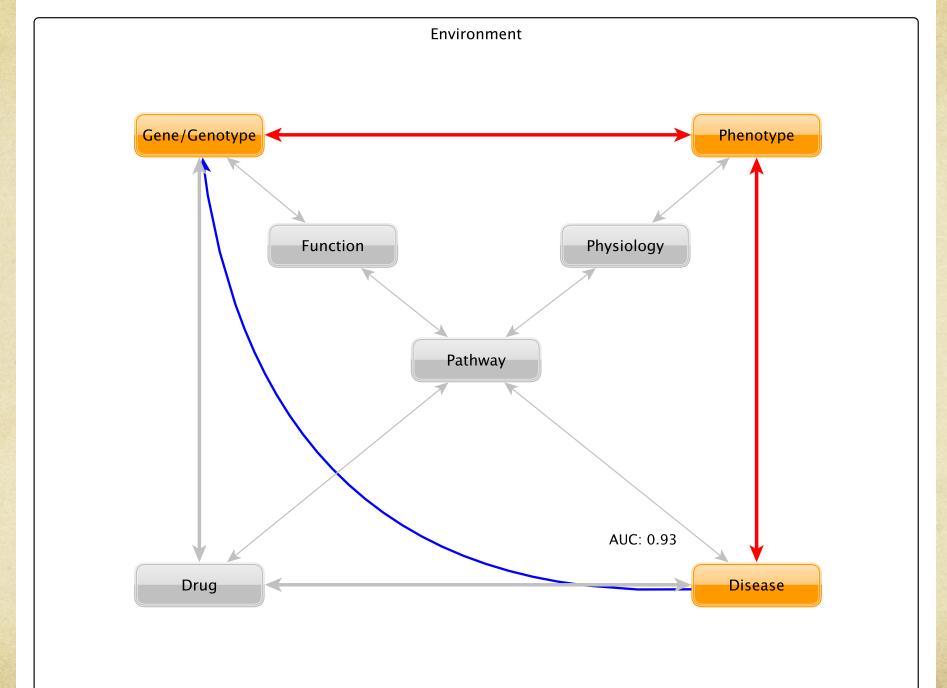
Evaluation using human and mouse drug targets

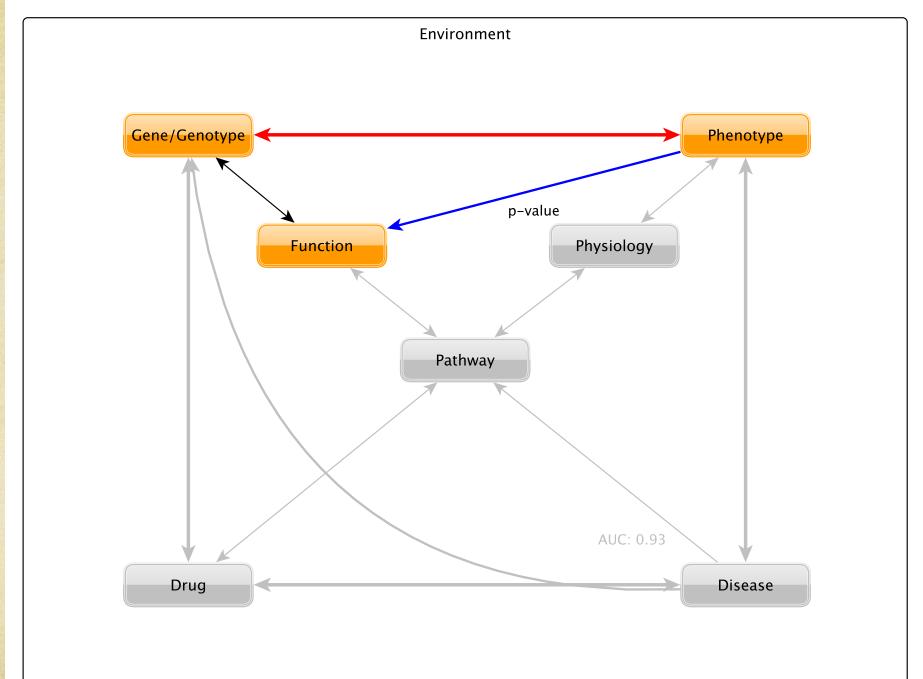

- DrugBank
- STITCH

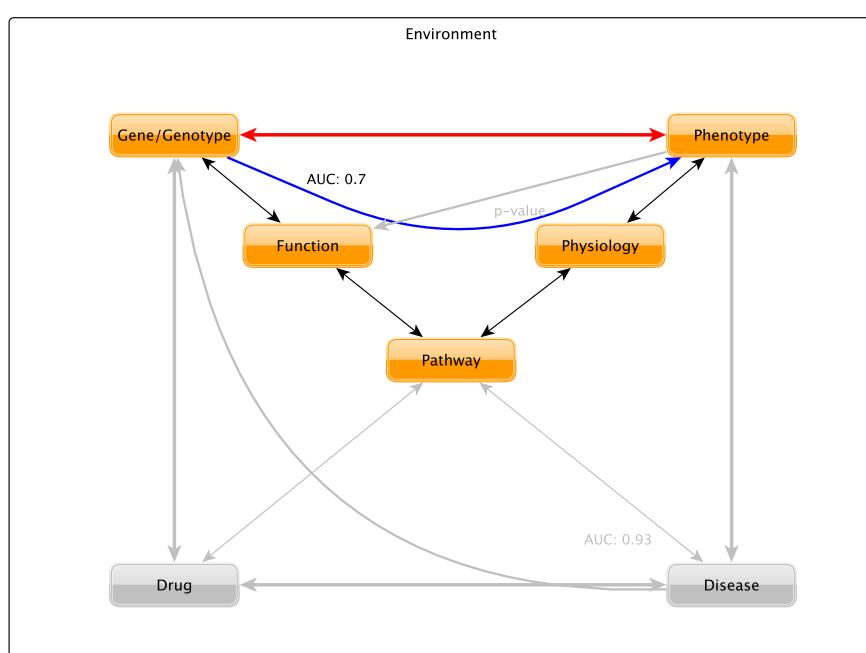
Drug side effects

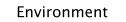
• SIDER


Overall AUC: 0.82


InterPro family	ROCAUC (STITCH)
G protein-coupled receptor, rhodopsinlike	0:800
Peptidase S1A, chymotrypsin-type	0:892
Steroid hormone receptor	0:916
Neurotransmitter-gated ion-channel	0:581




Bioinformatics. 2013 Oct 24, PMID: 24158600 Mouse model phenotypes provide information about human drug targets. Hoehndorf R, Hiebert T, Hardy NW, Schofield PN, Gkoutos GV


Drug target similarity

