Precision Agriculture Adoption

Dr. Spyros Fountas University of Thessaly Volos, Greece

Overview

Adoption around the world
Farmers' experience
Adoption benefits
Adoption constraints
Adoption trends
References

Yield monitors estimates

In America

Country	Estimated	Year	Yield Monitors
	Number	of Estimate	per Million Acres
USA	30.000 *	2000	136
Argentina	1.000	2003	17
Brazil	100	2002	1
Chile	12	2000	8
Uruguay	4	2000	3

* Daberkow estimates that in 2003, the number of yield monitors in the USA will be up to 45.000

Yield monitors estimates Outside America

Country	Estimated	Year	Yield Monitors
	Number	of Estimate	per Million Acres
U.K.	400	2000	43
Denmark	400	2000	100
France	50	2000	2
Germany	4250	2003	212
Netherlands	6	2000	11
Sweden	150	2000	48
Belgium	6	2000	7
Spain	5	2003	<1
Portugal	4	2003	3
Greece	2	2005	1
Australia	800	2000	17
South Africa	15	2000	1

Crops And Precision Agriculture

In the U.S.A. crops harvested with yield monitor

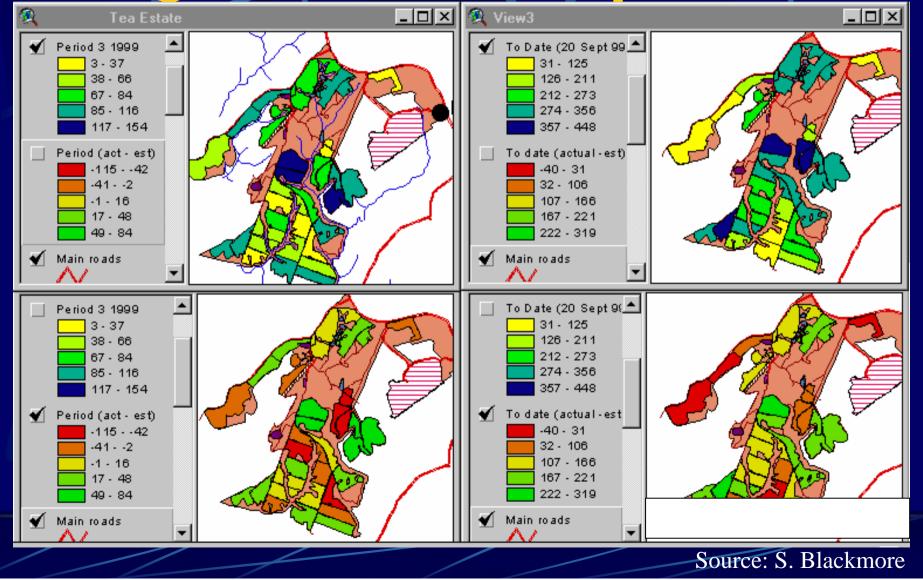
	Crop	<u>1996</u>	2000	<u>2003</u> *
۲	Corn	15.6%	34.2%	46%
۲	Soybean	13.3%	25.4%	36%
	Wheat	5.9%	9.1%	15%
	Cotton	NA	1.3%	NA

✓ Only about 1/3 of the combine harvesters use GPS..

✓ The 1st yield monitor for cotton was launched in 1998

* Estimates by Daberkow

Geo-referenced soil map


In the U.S.A., acres on which soil mapping was used:

Crop	<u>1998</u>	<u>1999</u>	2000	<u>2001</u>
Corn	18.6%	23.8%	25%	25%
🧧 Soybean	14.4%	16.7%	18.5%	11%*
🧕 Wheat	6.6%	NA	12.2%	NA
Cotton	3.1	1.3%	NA	NA

* For soybean in 2001, there was no data. The number stands for 2002

Is Precision Ag Only for the Developed World and Arable Crops?

Tea estate yield maps (kg of made tea per ha)

Fields

 Well established groves (each tree numbered) Yield mapping Record harvest from each tree Fertilizer Applied by hand, according to treatment maps Technology Low support Special considerations Labour shortages **Operator safety (15m trees!)**

PF for other tree crop

- Each tree uniquely located
 Harvested by hand
 Weighed by block
- Quality graded on farm?
 - Oranges in Brazil and Florida
 - Oil palm in Malaysia
 - Christmas trees in Denmark

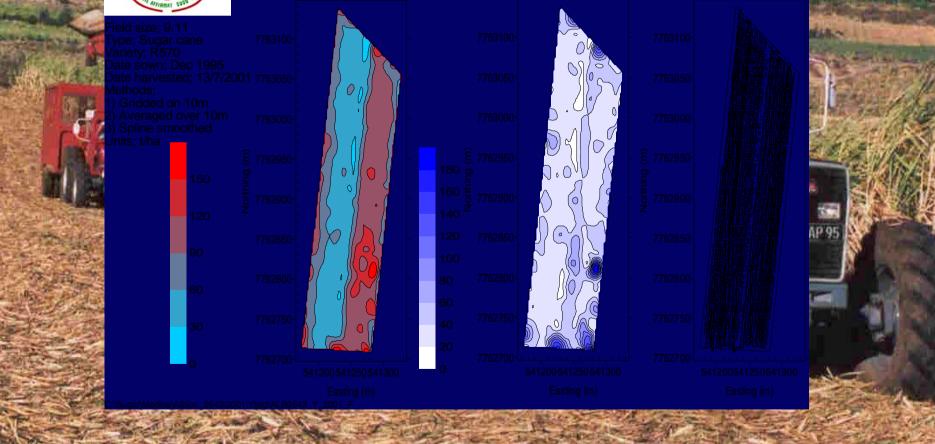
Source: S. Blackmore

Prapied to Sugar in Australia Brazil & Mauritius

Fields

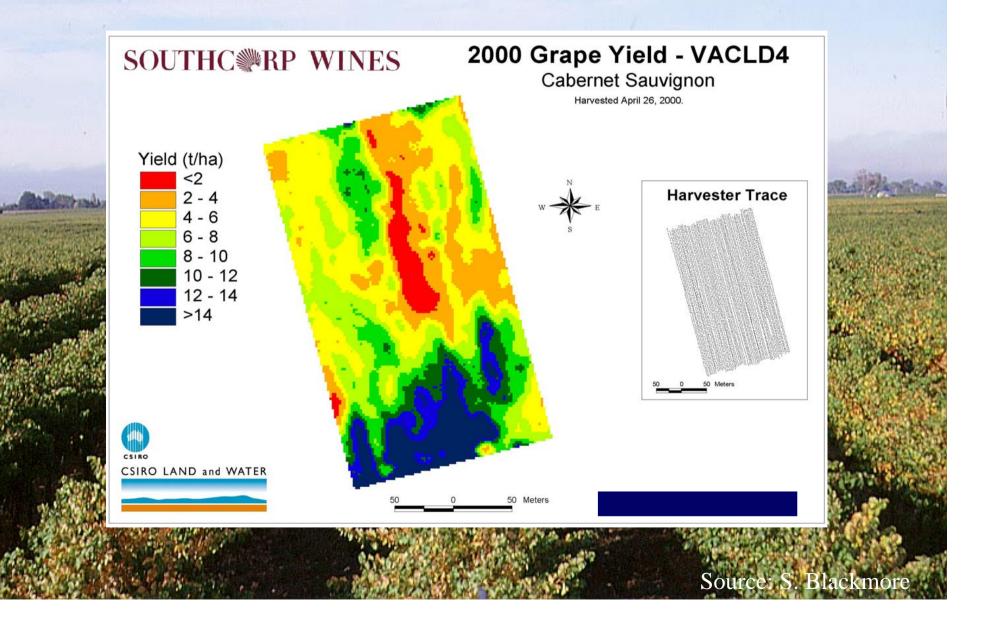
- Highly structured small blocks
- Yield mapping
 - Hand cutting moving to mechanical harvesters
- Fertilizer application
 - By hand, using maps, increasingly mechanized
- Technology
 - Medium support
- Special considerations
 - Reducing the cost of production, Mechanization

Source: S. Blackmore


De-rocking, no burning after 2006 in Brazil

Yield mapping sugar

cane harvester



Sugar cane Av. yield, Std Dev and (non zero) Points Albion_2643 field, Medine SE 2001

Source: S. Blackmon

Precision viticulture

Reasons for different adoption patterns around the world

- Auto-guidance popular in Australia, as their soils are vulnerable to compaction and have not freezing and thawing to counteract that compaction
 - Grid soil sampling is popular in the U.S. and Canada, mostly because soil analysis is cheaper there
- VRT in Europe has focused on nitrogen, due to environmental rules

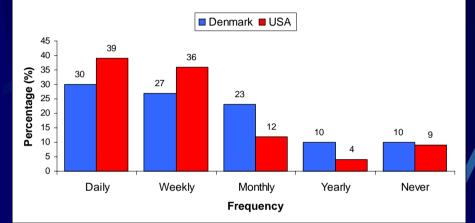
- - - -

Hypothesis for adoption of yield monitors in Europe

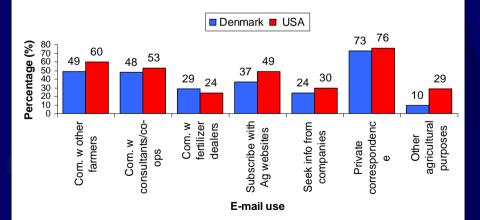
- Northern Europeans are used to intense crop management in comparison to US farmers with more extensive management. Will yield monitoring be another management tool for Europeans?
- What will be the role for Advisory Services in Europe in comparison to commercial advisors in the USA?
- Will European farmers be willing to spend time in the office analysing the yield data, in comparison to their US counterparts that prefer the outdoor lifestyle?

Source: Lowenberg-Deboer, 2003. Purdue University, USA

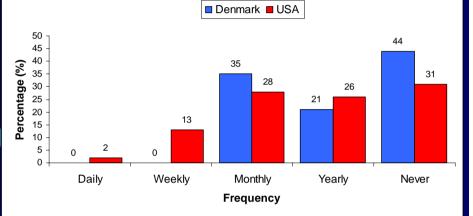
Two surveys conducted in Denmark and the Eastern Cornbelt in the USA, in 2002, targeted farmers practicing Precision Ag
 63 respondents in DK, 135 in the USA


Respondents' Average Age: 43 (DK) 46 (USA)

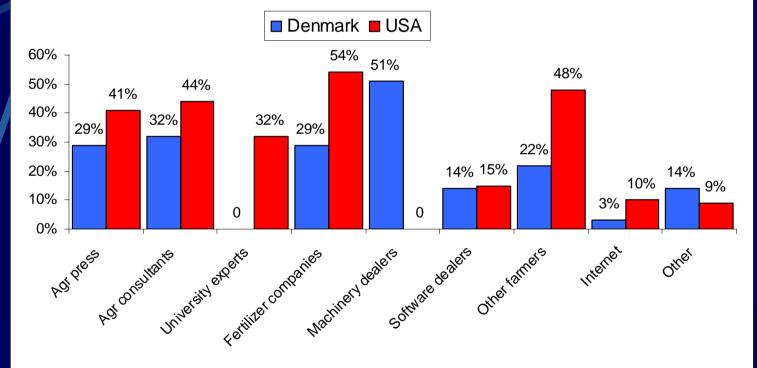
Farmers' Average Age: 52 (DK – 2000 statistics) 57 (USA – 1997 statistics) Respondents' Cultivating Area: 422 ha (DK) 790 ha (USA)


Farmers' Average Cultivating Area : 50 ha (DK – 2000 statistics) 190 ha (USA – 1997 statistics)

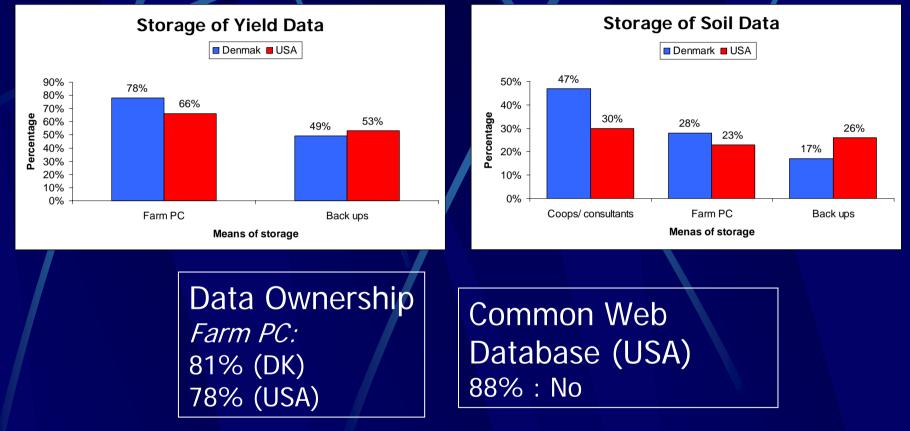
Respondents a decade younger than the average farmer
 Farmers who cultivate large farms tend to practice PF


Internet Use for Agricultural Purposes

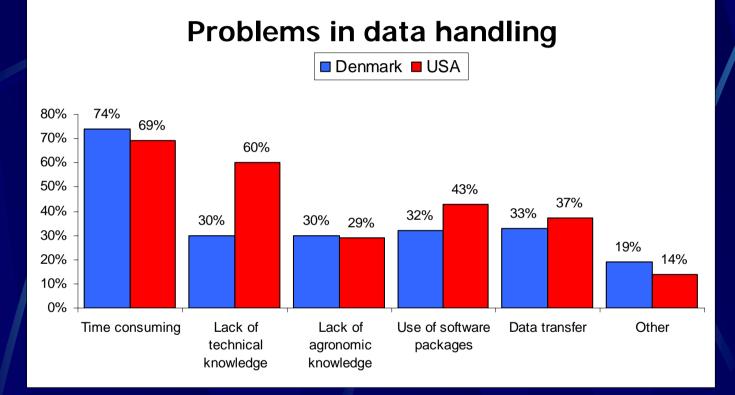
E-mail Use



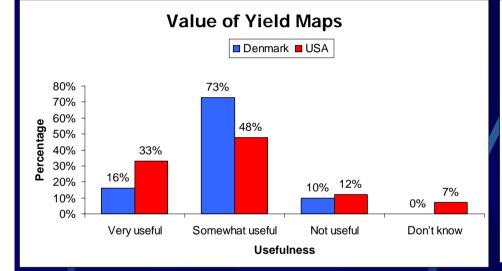
Internet Use for PF purposes

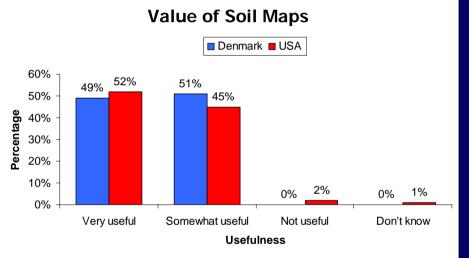


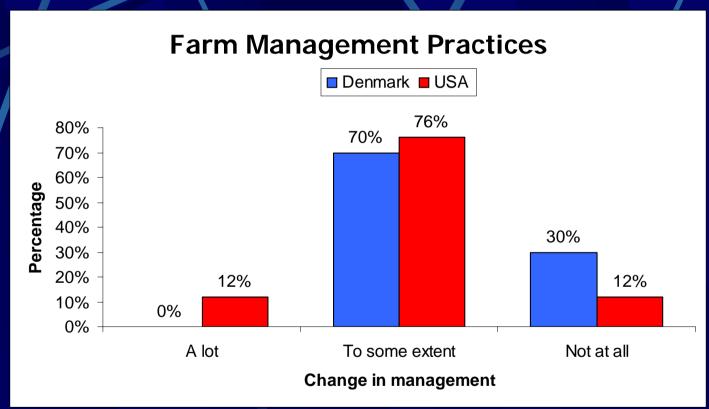
✓ 90% in DK & 87% in USA
 have used Internet and e-mail
 for agricultural purposes, but a
 small number for PF


Information sources to invest in PA

Machinery dealers, ag consultants, ag press in Denmark
 Fertilizer companies, farmers, ag consultants, ag press in the USA




Low percentage of making back-ups.
 Farmers do not trust other sources to store their data


• *57% very costly in the USA*

✓ Time consumption, lack of technical knowledge, and cost are the most important impediments in the implementation of PA

✓ Soil maps are currently more valuable to make management decisions then yield maps

 Respondents have changed farm management practices, but not substantially

Satisfaction from PF Service Providers Yes ■ No ■ Not used □ Don't know 80 Percentage (%) 70 60 50 40 30 20 10 0 DK USA DK USA DK USA DK USA DK USA Crop advisors Software Fertilizer Machinery Hardware dealers dealers vendors vendors Service providers

Higher satisfaction from crop advisors & fertilizer dealers (USA)
 The majority has not used software & hardware vendors

PA constraints

- Precision Ag is information-intensive management practice
- Data analysis the major problem
 - Farmers are not willing to spend time in the office analysing the data
 - There is not a "cook-book" on how to analyse the data
 - "Closed-looped" approaches to make farm management decisions is not acceptable by farmers
- PA Farm management is more of an "ART" than "Science"

PA benefits

Software and Hardware prices continually falling, while their capacity increasing
The public acceptance on IT is broadening, e.g. GPS in cars, sensors in everyday life
Environmental incentives to reduce inputs, e.g. new CAP in the E.U.
New Technologies in Agriculture may look more "fancy" for the new generation of farmers

The potential of PA

 The Role of Advisory/Extension Service
 Initially to understand the reasons why farmers don't adopt PA

 Then, the advisors should target on these reasons, trying to give practical and profitable solutions

Still, need to educate agronomists to work with PA and help farmers using and analysing PA data

References

- Griffin, T.W., J. Lowenberg-Deboer, D.M. Lambert, J. Peone, T. Payne, and S.G. Daberkow, 2004. Adoption, Profitability, and Making Better Use of Precision Farming Data. Staff Paper #04-06. Department of Agricultural Economics, Purdue University
 - Lowenberg-Deboer, J., 2003. Is the US falling behind in yield monitor adoption? Site-Specific Management Center, Purdue University. Newsleter, August 2003.
- S. Fountas, D. Ess, C.G. Sorensen, S. Hawkins, H.H. Pedersen, S. Blackmore, J. Lowenberg-Deboer, 2005. Farmer experience with Precision Agriculture in Denmark and US Eastern Corn Belt. Precision Agriculture. In Press.