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http://www.nature.com/nature/journal/v470/n7333/pdf/nature09796.pdf

A decade’s perspective on DNA sequencing technology
Elaine R. Mardis
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Sequencing technologies

lllumina:
— XaunAoTepn akpifela otnv avayvwplon Bacewv
Solid:
— TIOAAQ reads dev Talplalouyv oubeva oto yovidiwual
Roche 454 pyrosequencing
— AAQBn otov aplBud Twv BAocewyv eVTOC UIAC TIEPLOXNS OMOTIOAUUE PV
(rux. AAAAAAAAAAAAAAAAA)
Sanger:
— Xpelaletal OXeTIKA peyaAleg moootnteg DNA



Reads

Sanger: unkog: 1000-2000 bp

454: 450Mbp/run - unkog: ~330bp

lllumina: 18-35 Gbp/run - unkog: ~75-100bp
SOLID: 30-50 Gbp/run - pnkog: 50bp



Reviews o010 Next Generation Sequencing

Anal Chem. 2011 Jun 15;83(12):4327-41. Epub 2011 May 25.

Landscape of next-generation sequencing technologies.
Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE.
Department of Chemical Engineering, Stanford University, Palo Alto, California, USA.

PMID: 21612267 [PubMed - indexed for MEDLINE] PMCID: PMC3437308 Free PMC Article

http://www.ncbi.nlm.nih.gov/pubmed/21612267

Nat Rev Genet. 2010 Jan;11(1):31-46. Epub 2008 Dec 8.
Sequencing technologies - the next generation.

Metzker ML.
Human Genome Sequencing Center and Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA. mmetzker@bcm.edu

Abstract

Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has
catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the
primary advantage over conventional methods. Here, | present a technical review of template preparation, sequencing and imaging, genome
alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. | also outline the broad
range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

PMID: 18897069 [PubMed - indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/19997069



Pyrosequencing

a Roche/454, Life/APG, Polonator
Emulsion PCR

One DNA molecule per bead. Clonal amplification to thousands of copies occurs in microreactors in an emulsion

PCR
amplification
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Primer, template,

Break
emulsion

) Y - Py % 4

Template
dissociation

~
J

dNTPs and polymerase

100—200 million beads

e

Chemically cross-
linked to a glass slide

http://www.youtube.com/watch?v=nFfgWGFe0aA

http://www.ncbi.nlm.nih.gov/pubmed/19997069



Roche/454 — Pyrosequencing
1-2 million template beads loaded into PTP wells

Sulphurylase ATP

Luciferase Luciferin

Light and oxyluciferin



Pacific Biosciences
Analytical Chemistry | REVIEW |

“C" pulse | “A" pulse
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Figure 2. Schematic of PacBio’s real-time single molecule sequencing. (A) The side view of a single ZMW nanostructure containing a single DNA
polymerase ($29) bound to the bottom glass surface. The ZMW and the confocal imaging system allow fluorescence detection only at the bottom
surface of each ZMW. (B) Representation of fluorescently labeled nucleotide substrate incorporation on to a sequencing template. The corresponding
temporal fluorescence detection with respect to each of the five incorporation steps is shown below. Reprinted with permission from ref 39. Copyright

2009 American Association for the Advancement of Science.

http://www.ncbi.nlm.nih.gov/pubmed/21612267

http://www.youtube.com/watch?v=NHCJ8PtYCFc
http://www.youtube.com/watch?v=GX6RSKh4J7E
SMRT techonology — real time single molecule sequencing




Pacific Biosciences

Pacific Biosciences — Real-time sequencing

a Phospholinked hexaphosphate nucleotides

Limit of detection zone

Fluorescence pulse

\ I
INTENSITY  m—

Epifluorescence detection Time e

Figure 4 | Real-time sequencing. Pacific Biosciences' four-colour real-time sequencing method is shown.

a | The zero-mode waveguide (ZMW) design reduces the observation volume, therefore reducing the number of stray
fluorescently labelled molecules that enter the detection layer for a given period. These ZMW detectors address
the dilemma that DNA polymerases perform optimally when fluorescently labelled nucleotides are present in the
micromolar concentration range, whereas most single-molecule detection methods perform optimally when
fluorescent species are in the pico- to nanomolar concentration range*. b | The residence time of phospholinked
nucleotides in the active site is governed by the rate of catalysis and is usually on the millisecond scale. This
corresponds to a recorded fluorescence pulse, because only the bound, dye-labelled nucleotide occupies the ZMW
detection zone on this timescale. The released, dye-labelled pentaphosphate by-product quickly diffuses away,
dropping the fluorescence signal to background levels. Translocation of the template marks the interphase period
before binding and incorporation of the next incoming phospholinked nucleotide.




lllumina
http://www.youtube.com/watch?v=77r5p8IBwJk&feature=related

http://www.youtube.com/watch?v=199aKKHcxC4




b Illumina/Solexa
Solid-phase amplification
One DNA molecule per cluster

Sample preparation
DNA (5 ug)

Template
dNTPs

and
polymerase

Bridge amplification

http://www.ncbi.nlm.nih.gov/pubmed/19997069
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F Cleave dye
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http://www.ncbi.nlm.nih.gov/pubmed/19997069



REVIEWS

a Illumina/Solexa — Reversible terminators |
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Incorporate
all four
nucleotices,
each label
with a
cifferent dye

Wash, four
colour imaging

Cleave cye
and terminating
groups, wash

Repeat cycles R =

http://www.ncbi.nlm.nih.gov/pubmed/19997069



Table 1 | Comparison of next-generation sequencing platforms

Platform  Library/
template
preparation

Roche/454's Frag, MP/

GS FLX emPCR

Titanium

Illumina/ Frag, MP/

Solexa’sGA, solid-phase

Life/APG’s  Frag, MP/
SOLID 3 emPCR

chemistry

Gb
per
run

0.45

183,
358

30°%,
50°

Machine
cost

(US$)

500,000

540,000

595,000

Pros

Longer reads
improve
mappingin
repetitive
regions; fast
run times

Currently the
most widely
used platform
in the field

Two-base
encoding
provides
inherent error
correction

Cons

High reagent
cost; high
error rates

in homo-
polymer
repeats

Low
multiplexing
capability of
samples

Long run
times

Biological
applications

Bacterial and insect
genome de novo
assemblies; medium
scale (<3 Mb) exome
capture; 16S in
metagenomics

Variant discovery

by whole-genome
resequencing or
whole-exome capture;
genediscoveryin
metagenomics

Variant discovery

by whole-genome
resequencing or
whole-exome capture;
gene discoveryin
metagenomics

Refs

D. Muzny,
pers.
comm.

D. Muzny,
pers.
comm.

D. Muzny,
pers.
comm.



lon Proton

http://www.lifetechnologies.com/global/en/home/about-us/news-gallery/press-releases/2012/life-techologies-itroduces-the-bechtop-io-proto.html

Press Releases

Life Technologies Introduces the Benchtop lon Proton™ Sequencer; Designed to Decode a Human Genome
in One Day for $1,000

SAN FRANCISCO, Jan. 10, 2012 /PRNewswire/ — Life Technologies Corporation (NASDAQ: LIFE) today announced it is taking
orders for the new benchtop lon Proton™ Sequencer that is designed to sequence the entire human genome in a day for $1,000.

(Photo: http://photos.prnewswire.com/prmh/20120110/LA31914-a)
(Photo: http://photos.prnewswire.com/prmh/20120110/LA31914-b)

The lon Proton™ Sequencer, priced at $149,000, is based on the next generation of semiconductor sequencing technology that
has made its predecessor, the lon Personal Genome Machine™ (PGM™), the fastest-selling sequencer in the world.

Up to now, it has taken weeks or months to sequence a human genome at a cost of $5,000 to $10,000 using optical-based
sequencing technologies. The slow pace and the high instrument cost of $500,000 to $750,000 have limited human genome
sequencing to relatively few research labs.



lon Proton
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lon torrent chemistry

http://www.youtube.com/watch?v=yV{2295JgUg

OuoliaoTIKA €ival Eva TTOAU JIKpO pH-meter
Aev BaaoileTal o€ avixveuon ewToc!



ION Torrent Personal Genome Machine (PGM)

dNTP — | WNTPs

Example:

Sensing Layer
Sensor Plate

Drain Source

Silicon Substrate

';J*,uu.dlu e iyl g
© kwaine K. marais g

Eikova A1o Elaine Mardis



Oxford Nanopore
(210 €yyUC HEAAOV;)

Nanopore
http://www.youtube.com/watch?v=UWcCbIRPzvs

http://www.nanoporetech.com/technology/minion-a-
miniaturised-sensing-instrument



Biological Nanopore
(210 €YYUG PEANOV;)

Nanopore sensing
A nanopore may be used to identify a target analyte as follows.

4444

vr-—v-w Latai ade 4 L ataie i g WA A — (P p——
W——
Pripn—

L e iing

current

This diagram shows a protein nanopore set in an electrically resistant membrane bilayer. An ionic current is passed through the
nanopore by setting a voltage across this membrane.

If an analyte passes through the pore or near its aperture, this event creates a characteristic disruption in current. By measuring that
current, it is possible to identify the molecule in question. For example, this system can be used to distinguish between the four standard
DNA bases G, A, T and C, and also modified bases. It can be used to identify target proteins, small molecules, or to gain rich molecular
information, for example to distinguish the enantiomers of ibuprofen or molecular binding dynamics.

http://www.nanoporetech.com/technology/introduction-to-nanopore-sensing/introduction-to-nanopore-sensing



Solid state (Graphene) Nanopore
(210 €yyUC UEANOV;)
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http://www.nanoporetech.com/technology/introduction-to-nanopore-sensing/solid-state-
nanopores



The sequence read archive:
explosive growth of
sequencing data

http://nar.oxfordjournals.org/content/40/D1/D54 full

lllumina™ platform comprises 84% of sequenced bases, with
SOLID™ and Roche/454™ platforms accounting for 12% and
2%, respectively.

The most active SRA submitters in terms of submitted bases are
the Broad Institute, the Wellcome Trust Sanger Institute and
Baylor College of Medicine with 31, 13 and 11%, respectively.

The largest individual global project generating next-generation
sequence is the 1000 Genomes project which has contributed
nearly one third of all bases.
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XapnAO KOOTOC YEVWUIKWY TEXVOAOYIWYV Ba
o0NynNoel o€ KABNUEPIVEC EPAPUOYEC.

K6o10¢ aAANAoVY 16T TEPTEL O10PKMDC.
— lllumina -> 1 lane: 19GBp, ~ €3000, 10 BakTnplokd yEVWUATA.
Ta dciypaTa atTTOOTEANOVTAI O€ KEVTPA PE MEYAAEG EYKATAOTAOEIG KAl

XapNAG KOOTOG AsiToupyiag (oikovopia kKAipakag). H avaAuon Twv
OEQOUEVWY OPWG OEV UTTOKEITAI O€ OPOUG OIKOVOMIaG KAiUaKaG.

[MA€ov, Eva onuavTIKO NEPOC TOU OAIKOU KOOTOUG Eival N
BIoTTAnpOPOpPIK avaAuaon.

Mnyxavruara aAAnAouxiong akpipa (lllumina ~ €600.000) - service
PTNVO.

MicB6¢ akpIO¢ (iowg Eva VEO HOVTEAO OUNBOUAEUTIKNC?)
YT1oAoyIoTAS ¢TNVOC (€3-5.000), e@OOOV TTPOKEITAI VIO UIKPA
yovidiwpaTta (de novo assembly), i yia re-sequencing.



XaPNAO KOOTOC YEVWHIKWY TEXVOAOYIWYV Ba
o0NynNoeEl 0€ KABNUEPIVEC EQPAPUOYEC

« KooTtog aAAnAouxiong
— http://www.genome.gov/sequencingcosts/

* O vépocg Tou Moore TTpoBAETTEN DITTAACIACHO TNG UTTOAOYIOTIKNC I0XUG
KGBe dUo xpovia.

$10,000




XaPNAO KOOTOC YEVWHIKWY TEXVOAOYIWYV Ba
o0NynNoeEl 0€ KABNUEPIVEC EQPAPUOYEC

« KooTtog aAAnAouxiong
— http://www.genome.gov/sequencingcosts/

,0st per Genome

$100,000,000 <: .

$10,000,000 Moore's Law

$1,000,000

$100,000

”“H“ Il National Human

Il [
$10,000 w““ I Genome Research

Institute

genome.gov/sequencingcosts




http://genomebiology.com/content/pdf/gb-2011-12-8-125.pdf

Sboner et al. Genome Biology 2011, 12:125
http://genomebiology.com/2011/12/8/125

Genome Biology

The real cost of sequencing: higher than you think!

Andrea Sboner'?, Xinmeng Jasmine Mu', Dov Greenbaum'**#* Raymond K Auerbach' and Mark B Gerstein*'**

Sample collection and . Data reduction Downstream
perimental a experimental design B Sequ 8 M Data management analyses
design
100% _
Mapped reads
(BAM, CRAM. MAF)
0% -
Pre-NGS Now Future
(Approximately 2000) (Approximately 2010)  (Approximately 2020)
Figure 1. Contribution of different factors to the overall cost of a sequencing project across time. Left, the four-step process: (1) experimental
design and sample collection, (i) sequencing, (i) data reduction and management, and (iv) downstream analysis. Right, the changes over time
of relative impact of these four components of a sequencing experiment. BAM, Binary Seguence Alignment/Map; BED, Browser Extensible Data;
CRAM, compression algorithm; MRF, Mapped Read Format; NGS, next-generation sequencing; TAR, transcriptionally active region; VCF, Variant Call
Format.
J
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Sequence read — Fastqg format

@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
4

PP UR((((*F*4))RBR44) (BBRR) L 1xx*_4%' ) ) **55CCF>>>>>>CCCCCCCHS

|

Ta oUpBoAa otV TeAeuTtala ypauun avilotolxouv oe TIuEC Q,
yla TNV KaBe pia Baon mou aAAnAouxiOnke.

To Q-score eival pla akEpata TN TOU TPOKUTITEL A0 TNV
mbavoTtnTa va €xel yivet A\aBog otnv aAAnAouxlon Hiag

OUYKEKPLUEVNC BAonc.

Av p = TuBavotnta va £xet yivelt Ad8og otnv aAAnAouxion mg
OUYKEKPLUEVNC BAoNng, TOTE:

Q=-10l0g¢(P)

Q=30 -> p=0.001 (TIOAU KaANG ToloTNTAC aAANnAOUXION)
Q=13 -> p=0.05



[ToidTnTa TWV Reads

Error ratio in illumina GA reads

. 454 5
. © /
*  lllumina S 0
/
o}
- SOLID - o
2 /
3 o o
Lo /
O
g °
Table 2. Comparison of mapping. E, o
= g | ©
o o)
Method Ratio of mapped reads Accuracy per base | OOOO
ocR
FLX 89.0 99.9 S OopooaP
GA 63.7 96.7 P T T T T T T T
SOLID 47.3 99.8 0 5 10 15 20 25 30 35
Base position
Filtered data set of GA was shown.

tok10.1371/joumal pane00195341002 Figure 1. Error ratio in GA reads depending on the base
position of the read. Ratio of mismatch between mapped reads and
reference sequence to the total number of mapped reads was plotted

SOLI D NSOO/O readS 68V 393:1”5; base posit!qn in_ th_e re_ads. The mism‘atch ratio infreases along
otolxiCovtal oto yovidiwua do10.137 Joumalpone 0010539001 oy O bese cals
X1G Yovioiwpa,
artd TO OToio EYLVE TO , , ,
Sequencing! Edw, To MpOPAnua evtorudetal otnv

cuocowpeuon AaBwv Katd TNV

MpOBANUA OTL IKE , ;
pa\%nnél:)c’wsmg ﬁgk)\ovq. evowpatwon ¢Bopillovtwyv dNTPs.



Sequence reads — 'EAgyx0¢ 1TOI0TNTOC
dedopEvwyY (quality control)

MoAU uPnANng MotoTNTAC
oedopéva.

@FastQC Report

Summar .
y @ Per base sequence quality
@ Basic Statistics Quality scores across all bases (lllumina 1.5 encoding)
38
@ Per base sequence qualit 6
@ Per sequence quality scores 34 V4 ¥4
b scpsnc cones : XaunAng rnototntac
30
@ Per base GC content 25 6 8 6 O é Va
@ Per sequence GC content 26 l'l -
@ Por base N content 24
22
@ Sequence Length Distribution @ .
Q N Per base sequence quality
Sequence Duplication Levels 18
Quality scores across all bases (lllumina 1.5 encoding}
@ Overrepresented sequences 16
34
14 IEICAEIC
Kmer Content 1EEEIEIEE]
32
” LU
10 30 L H
q ]
8 28 q L
6 26 T |
R L]
24 TN
2 N —H—H—]
o 22 Lo ML T =t |
12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 20 L >t
Position in read (bp)
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12345678910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Position in read (bp)



Sequence reads — QIATpApIcua/trimming

Q Per base sequence quality

Quality scores across all bases (lllumina 1.5 encoding}

|IIIIIIIITTT

—|
i
—|
—|

I

g 123456780910 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Eite 6a anodacicoupe va kOYPoupe OAa Ta sequence reads oe JLa
OUYKEKPLUEVN BEON, HeTA TNV oTrioia n ToloTNTa aAAnAoUxiong
MEPTEL ONUAVTIKA OTA TIEEPLOCOTEPA

Eite 6a kOYoupe Ta MPOBANMATIKA KOMMATIA YIA TO KABE sequence
read xwplotd. Meta 6a armoppipBboUlv OAEC Ta KOPUEVA Sequence
reads TOU £X0UV TIOAU ULKPO UNKOG.



Road map

Raw sequence source

( Chip Non-coding RNA cDNA Genomic DNA )
£\ N

Expression Identify Reference De novo or

analysis genes assembly no reference

- Mapping
studies

===» Expression
counting

De novo
assembly

A 4 \
Align to areference

For example,
Magq, SSAHA,
BLAT and SOAP

PP R ——

Expression
counting
-

|

De novo assembly

" de Bruijn Consensus overlap)
assembler assembler
« Velvet « Newbler
» ALLPATHS « SSAKE
« Euler-SR « SHARCGS
* Edena « VCAKE Y.

Draft assemb& ‘Gold-standard’
genome — finishing
_and closing

-
-
\\<

( Annotation > -

Figure 3 | Road map for planning software solutions for experiments with different
data sources and different goals. Sequence reads derived from ChlIP, non-coding RNA
and cDNA sequencing experiments are aligned to a reference sequence before
expression counting and final annotation. Sometimes, a cDNA sequence can be
assembled de novo before these steps. Genome sequence reads may be aligned if a

reference is available, but if not assembly de novo can still be carried out.




De novo Sequencing
assembly workflow

~— Figure 1: De Novo Assembly Workflow =~

Simulations to Estimate Coverage (optional)

Ensure coverage is = 50

Prepare Insert Libraries
Combine high-coverage short-insert library with long-insert libraries

Genome Analyzer Run
Apply Quality Filters

Bacterial Assembly Mammalian Assembly

Velvet or
SOAPdenovo

(de Bruijn graph methods) (overlap methods) (de Bruijn graph methods)
Choice of k Choice of k

Forge ABySS

Output Output

Check Quality of Assembly
Contig size distribution: N50, longest contig/scaffold
Align reads to contigs

Map to Reference Genome (if available)
Genome Coverage




Sequencing
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Single end reads
Paired end reads

Genomic DNA

1 Fragment (200-500bp)




Sequencing - paired end reads
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Genomic position

A region of the de novo assembly of £. coli K-12, with the de novo-assembled contigs covering the region shown in blue along the bottom axis. The paired-end reads generated

575,000 576,000 577,000 578,000 579,000 580,000 581,000 582,000 583,000 584,000

with this protocol are capable of bridging the 0.2-kb and 1.5-kb gaps between the contigs, highlighted in green.



Lander - Waterman

- T10600 sequencing coverage amnaltTeital yla va unopei va
ouvapuoAoynbei €éva yovidioua?

« Toulaxlotov 8-10X
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Lander - Waterman

>Tnv paé&n, o aplBuog Twv contigs
elval peyaAUtepog aro 1o
AVAUEVOUEVO, YIATL:

Mavta uriapxel pla ruiéavotnTta yla
Ula TiepLloxn va unv aAAnAouxBei

Karmola koppdtia ortacpuevou DNA
elval To&lka oe dopeig
KAwvoroinong (r.x. otnv E.coli).
EravaAnyeig
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[TooBAARUOTO CUVAPHOAGYIONCG
QTTO ETTAVAANWEIC - contigs

The ability of an assembly program to produce a single contig is also limited by regions of the genome that occur in multiple near-
identical copies throughout the genome (repeats). The reads originating from different copies of a repeat appear identical to the
assembler and cause assembly errors. A simple example is shown in Figure 5, where the assembler incorrectly collapses the two
copies of repeat A leading to the creation of two contigs instead of one (Figure 6).

RPT A1 RPT A2

P — e e —
— == — —— == - ——

Figure 5. Two copies of a repeat along a genome. The reads colored in red and those colored in yellow appear identical to
the assembly program.

—I—

Figure 6. Genome mis-assembled due to a repeat. The assembly program incorrectly combined the reads from the two
copies of the repeat leading to the creation of two separate contigs




[TooBAARUOTO CUVAPHOAGYIONCG
QTTO £TTAVOANYEIC - scaffolds

Scaffolding

The contigs produced by an assembly program can be ordered and oriented along a chromosome using additional information
contained in the shotgun data. In most sequencing projects, the sizes of the fragments generated through the shotgun process are
carefully controlled, thus providing a link between the sequence reads generated from the ends of a same fragment (called paired
ends or mate pairs). In a typical shotgun project, multiple libraries -- collections of fragments of similar sizes -- are usually
generated, providing the assembler with additional constraints: within the assembly the paired end reads must be placed at a
distance consistent with the size of the library from which they originate and must be oriented towards each other. Within an
assembly each read is assigned an orientation corresponding to the DNA strand from which the read was generated. The constraints
provided by mate pairs lead to constraints on the relative order and orientation of the contigs (Figure 7). The process through which
the read pairing information is used to order and orient the contigs along a chromosome is called scaffolding.

—— —>

Figure 7. A scaffold of 3 contigs (the thick arrows) held together by mate pairs. Thin lines connect the paired ends.

AgouU £xouv yivel ta scaffolds, 6Tola keva uttpxouv KaAUurttovTal
LUE OTOXEUMEVN aAAnAouUxLon - gap closure
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Figure 1. Assessing the cause of gaps in an assembly of 36nt
reads. The predicted number of sequence gaps based on the Lander-
Waterman model (+) is presented along with the actual number of
sequence gaps in sets of 36nt lllumina reads (). This was determined
by aligning the reads in each set to the reference sequence. The total
number of gaps present in Velvet assemblies of the various read sets is
also included (@). The numerous additional gaps observed in the
assemblies are due to unresolvable repeats (O vs. @). Additional details
can be found in the Supplementary Methods (File S1).
doi:10.1371/journal.pone.0011518.9001
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Figure 2. A model of repeat assembly. To unambiguously assemble a repeat (black rectangle), a read must encompass the entirety of the repeat
and extend, in both directions, into unique sequence. If the repeat has a length of R nt, and the adjacent unique sequence must be at least ' nt,
then resolution of the repeat requires that a read starts in a L—(R-+2¥V —1) window next to the repeated sequence. The likelihood of this failing to
occur in an assembly of a given number of reads of a particular length, can be estimated using an approach analogous to that used to compute

sequence gaps [13,14].
doi:10.1371/journal.pone.0011518.g002

“@E). PLoS ONE | www.plosone.org

3 July 2010 | Volume 5 | Issue 7 | e11518



Keva JETA TNV ouvApPUOAOYIOoN

OPEN @ ACCESS Freely avallable online PLoS one

Read Length and Repeat Resolution: Exploring
Prokaryote Genomes Using Next-Generation Sequencing
Technologies

Matt J. Cahill', Claudio U. Koser', Nicholas E. Ross?, John A. C. Archer®

1 Department of Genetics, University of Cambridge, Cambridge, United Kingdorn, 2 Department of Chemical Engineering ard Biotechnolagy, University of Cambridge,
Cambridge, Urited Kingdoen, 3 Division of Chemnical and Biological Engineering, Computational Bioscience Ressarch Center, King Abdulizh University of Scierce and
Technalogy, Thuwal, Saudi Arabia

MeyaAUTepo YUNKog sequence read = AlyoTepa KeEVA

A B C
200 r 900 ~ 2000
175 800 1800
150 700 1600
1400
» 125 » 000 = {50
3 & 500 S
¢ 100 ] ¢» 1000
400
75 800
300 600
S0 200
400
25 100 200
0 0 0
36 75 125 250 500 36 75 125 250 500 36 75 125 250 500
Read length (nt) Read length (nt) Read length (nt)

Figure 3. Assessing the accuracy of the algorithm. The number of repeat-induced gaps predicted by the algorithm (grey bars) compared to the
number of gaps observed (black bars) in actual assemblies of 36, 75, 125, 250, and 500nt simulated reads from A) M. genitalium, B} E. coli and C)
S. coelicolor. The observed gaps are those between unigue, non-redundant contigs larger than the read length. The coverage depth of each read set
was the threshold at which random gaps are no longer predicted by the Lander-Waterman model. This occurs at effective coverage depths of 9-17 x.
doi:10.1371/journal.pone.0011518.g003
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Figure 5. Read length and repeat resolution in 6 genomes. The algorithm was used to predict the occurrence of repeat-induced gaps in
assemblies of six bacterial genomes from a range of read lengths. A raw coverage of 100x was used for all genome/read length pairings. Assembly
results were predicted for read lengths at increments between 30-1,000nt. Between 30 and 100nt the increment was 5nt; 100-250nt, 10nt; 250-

500nt, 25nt; and 500-1,000nt, 50nt. A) M. genitalium (580 kb), B) H. Influenza (1.8 Mb), C) E. coli (4.6 Mb), D) N. meningitidis (2.3 Mb), E) S. coelicolor
(8.7 Mb) and F) S. cellulosum (13.0 Mb).

doi:10.1371/journal.pone.0011518.9g005
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Figure 6. Variation in assembly results within taxa. The median number of repeat-induced gaps for all members of a2 group is represented by (.
The lower and upper bounds of the hollow rectangle correspond to the first and third quartile, and the range is indicated by the whiskers. Any outliers
are plotted as (x). In A}-C), the species are are Buchnera aphidicola, Prochlorococcus marinus, Franciselia tularensis, Streptococcus pyogenes, Heicobacter
pylori, Adnetobacter baumannii, Salmeonella enterica, Staphylococcus aureus, Sulfolobus isiandicus, Streptococcus pneumoniae, Bacillus cereus, Chstridium
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outliers at 36nt (6,307) and 125nt (1,219) have been omitted. Gap predictions are for reads of A)/D) 36nt, B)/E) 125nt, and C)/F) 500nt.
doi:10.1371/journal.pone.0011518.9006
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Ta repIocOTEPA BAKTNPIAKA YOVidIa UTTOPOUV
va ouvapuoAoynBouv

Kingsford et al. BMC Bioinformatics 2010, 11:21
http://www.biomedcentral.com/1471-2105/11/21

BMC
Bioinformatics

Assembly complexity of prokaryotic genomes

using short reads

Carl Kingsford’, Michael C Schatz, Mihai Pop

MikpoU pnkoug reads
uropouv va
OUVapPUOAOYT|oOUV
TA TEPLOCOTEPA
yovidla, aAAG omiave
TO Yovidiwua oe
TIOAAQ UIKPA
KoupaTia (contigs)

Table 2 Median N50 and reconstructible genes.

k N50 (%) Genes (%)
25 1.14 9629
35 241 98.12
50 3.90 9894
100 8.12 9951
250 13.52 9984
500 18.03 100
1000 46.57 100

Median N50 as a percentage of the chromosome size and median number of
genes that are reconstructible for various read lengths k.
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Figure 4 Fraction of reconstructible genes. Cumulative histogram plotting a percentage of genes (x-axis) against the percentage of
chromosomes for which at least that many genes can be reconstructed. When k = 1000, nearly all chromosomes have all their genes
completely reconstructed. When k = 25, the number of reconstructible genes falls off quicker, but many genes an still be reconstructed: 90% or
more of the genes can be reconstructed in 89% of the chromosomes when k = 25,
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MikpoU unkoug reads umopoUv va CUVAPHUOAOYOOUV TA TEPLOCOTEPA
yovidla, aAAd oriave To yovidiwpa og TIOAAA HIKpA KopudaTia (contigs)



Ta repIocOTEPA BAKTNPIAKA YOVidIa UTTOPOUV
va ouvapuoAoynBouv

FovIdlwPATLIKA oTolXeia Tou TpoKaAoUV TpoBANpaATa OTNV
ouvapuoAoyLon:

Metabetd otolxeia
transposons
Intergenic repeats
Insertion sequences
prophages

[ovidla mou ocuvnOwc dev urmopouUv va cuvapuoAloynboulyv:
Transposases

Phages

Integrases

[ovidla rou oxeTtiCovTal ue TNV anodpuyn ToU avoooTIoLNTIKOU
OUOTNMATOC (EXOUV ETAVAANYELQ)



De novo Sequence assemby

http://www.cbcb.umd.edu/research/assembly primer.shtml

De novo assembly
— Greedy extention
— OLC
— De Bruijn graph
— Hybrid



Greedy assemblers

Greedy assemblers - The first assembly programs followed a simple but effective strategy in which the assembler greedily joins
together the reads that are most similar to each other. An example is shown in Figure 8, where the assembler joins, in order,
reads 1 and 2 (overlap = 200 bp), then reads 3 and 4 (overlap = 150 bp), then reads 2 and 3 (overlap = 50 bp) thereby creating a
single contig from the four reads provided in the input. One disadvantage of the simple greedy approach is that because local
information is considered at each step, the assembler can be easily confused by complex repeats, leading to mis-assemblies.

] 200
L, I TTT1
, 150
L5 [TTT 1]
150
: 200 ., X 4 TTT T
m.~ , LTI TT1°[TT]

Figure 8. Greedy assembly of four reads.



Overlap - layout - consensus
(OLC)

Overlap-layout-consensus - The relationships between the reads provided to an assembler can be represented as a graph, where
the nodes represent each of the reads and an edge connects two nodes if the corresponding reads overlap. The assembly problem
thus becomes the problem of identifying a path through the graph that contains all the nodes - a Hamiltonian path (Figure 9). This
formulation allows researchers to use techniques developed in the field of graph theory in order to solve the assembly problem.
An assembler following this paradigm starts with an overlap stage during which all overlaps between the reads are computed and
the graph structure is computed. In a layout stage, the graph is simplified by removing redundant information. Graph algorithms
are then used to determine a layout (relative placement) of the reads along the genome. In a final consensus stage, the
assembler builds an alignment of all the reads covering the genome and infers, as a consensus of the aligned reads, the original
sequence of the genome being assembled.

Figure 9. Overlap graph for a bacterial genome. The thick edges in the picture on the left (a Hamiltonian cycle) correspond
to the correct layout of the reads along the genome (figure on the right). The remaining edges represent false overlaps
induced by repeats (exemplified by the red lines in the figure on the right)



[ papnuarta De Bruijn

Box 1| Overlap consensus assembly and de Bruijn graph assembly

Original sequence
GTAGTATAGTCAGTATCA

"4 N\

Sequence reads k-mers (2-mers)
GTAGTA TAGTAT AGTATA GT TA AG AT TC CA
GTATAG TATAGT
ATAGTC TAGTCA AGTCAG
GTCAGT TCAGTA
CAGTAT AGTATC GTATCA

V

Consensus overlap assembly de Bruijn graph

GTAGTA 1 2
TAGTAT GT |j—————p | TA || AG

AGTATA
GTATAG 4 3
TATAGT AT
ATAGTC
TAGTCA
AGTCAG
GTCAGT
TCAGTA
CAGTAT
AGTATC
GTATCA

GTAGTATAGTCAGTATCA




De bruijn graph

Figure 3: De Bruijn Graph for Read with K=3

Read: AGATGATTCG

- AGA
GAT

TGA
3-mers: GAT

ATT

(AGA) ——+(GAT)——(ATG) ——+(TGA)

De Bruijn \

(ATT)
Graph ATT)

(10— (1c0)

The length of overlaps is k-1=2. Gray arrows indicate where all the k-mers
derived from the one read are placed in the graph. Blue arrows indicate the
order of the k-mers and their overlaps.



Comparative assembly

Align-layout-consensus - As more and more genomes become available in public databases, it is increasingly the case that a
completed genome exists that is closely related to the genome being assembled. The assembly problem thus becomes easier as the
relative placement of reads can be inferred from their alignment to the related genome (or reference), in a process called
comparative assembly. Thus, the overlap stage of assembly (often one of the most computationally intensive assembly tasks) is

replaced by an alignment step. The layout stage is also greatly simplified due to the additional constraints provided by the
alignment to the reference.



BAC-by-BAC sequencing

BAC-by-BAC (hierarchical) sequencing - In order to avoid some of the complexity involved in assembling large genomes,
scientists developed a hierarchical approach. First, the genome is broken up into a collection of large fragments (between 40 and
200 kbp) called Bacterial Artificial Chromosomes or BACs. The BACs location along the genome is then mapped using specialized
laboratory experiments. A minimal tiling path of BACs is chosen such that each base in the genome is covered by at least one
BAC, and the overlap between BACs is minimized. Each BAC is then sequenced through the standard shotgun method, the resulting
assemblies being combined into an assembly for each chromosome using the information provided by the tiling paths (Figure 10).

==

Figure 10. BAC-by-BAC approach. The long lines represent individual BACs. The minimal tiling path is represented by thick
lines. Each BAC in the tiling path is then sequenced through the shotgun method.



Short read alignment
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25 million 35-bp reads per hour. Bowtie indexes the genome with a Burrows-Wheeler index to keep its memory footprint small: typically

Bowtie is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome at a rate of over n
about 2.2 GB for the human genome (2.9 GB for paired-end).
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AnAadn, T600 KaAUTepn N cuvapuoAoyLon.

MLKPN TIMN onuaivel 6TL To yovidiwpa dev €Xel
ouvapuoAoynBei KaAa.



KAaAuwn Tou YOVIOIWMATOC KOl KOPETHOC

Figure 4: Effect of Coverage
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coli de novo assembly.
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Emidnuia xoAépag otnv At 2010

* AAANAOUYIGTM TOV YOVIOIOUOTOC!
*2 KAVIK®OV GTEAEYMV OO TNV TOPIVI ETONUiC 6TV ATTY).
] KAvikd otéheyog and v emdonuia tov 1991 ot Notio Apepixn).
2 otéleym mov amopovodnkav ot Notia Acia 1o 2002 ko 2008.

*Entionc ypnoipwonomdnkoy o1 uepikég aAlniovyiec amd 23 dAla oteAEyn avd TV
VENAL0 (Ta TeEAevTOia 98 Ypdviw).

*1588 cuvinpnuéva opBoroya yovidia ypnoipomomOnkay omd to Kdbe otéAe)0C,
Y10, VO YIVEL TO PUAOYEVETIKO OEVOPO.
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ORIGIN OF CHOLERA OUTBREAK STRAIN IN HAITI

CIRS 101 Bangladesh 2002
M4 (MDC126 Bangladesh 2008)
M]J-1236 Bangladesh 1994

B33 Mozambique 2004

MO10 India 1992

RC9 Kenya 1985
N16961 Bangladesh 1971

/6 (C6706 Peru 1991)

BX330286 Australia 1986
NCTC 8457 Saudi Arabia 1910
MAK757 Celebes Islands 1937
b 2740-80 United States 1980

0395 India 1965
_:vsz Sudan 1968

1587 Peru 1994

62-339 Bangladesh 2002

TMA21 Brazil 1982
AM19226 Bangladesh 2001

MZO-2 Bangladesh 2001
MZO-3 Bangladesh 2001

12129(1) Australia 1985

TM11079-80 Brazil 1980

V51 United States 1987

VL0426 UK Unknown

RC385 Chesapeake Bay 1998

Figure 2 (facing page). Reconstructing Phylogenetic
Relationships among V. cholerae Strains.

Panel A shows the phylogenetic relationships among
pandemic V. cholerae strains on the basis of single-
nucleotide variations identified among all strains for
which a set of 1588 orthologous genes has been com-
pletely sequenced.’® The magnified inset represents
strains in the seventh pandemic, including H1, H2,
M4, C6, and N5. Panel B shows the phylogenetic rel-
ationships among a broad set of seventh-pandemic
V. cholerae strains.*® The phylogenetic tree is rooted
with three pre—seventh-pandemic strains.
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Enterotypes of the human gut microbiome

Manimozhiyan Arumugam’*, Jeroen Raes'?*, Eric Pelletier™*®, Denis Le Paslier®*>, Takuji Yamada', Daniel R. Mende',
Gabriel R. Fernandes™®, Julien Tap"’, Thomas Bruls®**, Jean-Michel Batto’, Marcelo Bertalan®, Natalia Borruel®,

Francesc Casellas’, Leyden Fernandez”, Laurent Gautier®, Torben Hansen'™ ", Masahira Hattori", Tetsuya Ha_vashi“.
Michiel Kleerebezem'®, Ken Kurokawa'®, Marion Leclerc’, Florence Levenez’, Chaysavanh Manichanh®, H. Bjern Nielsen®,
Trine Nielsen", Nicolas Pons’, Julie Poulain®, Junjie Qin'’, Thomas Sicheritz-Ponten® ™, Sebastian Tims", David Torrents'?"'®,
Edgardo Ugarte®, Erwin G. Zoetendal®, Jun Wang'”®, Francisco Guarner®, Oluf Pedersen'>??23 Willem M. de Vos'>?*,
Seren Brunak®, Joel Doré’, MetaHIT Consortiumt, Jean Weissenbach™**, S. Dusko Ehrlich’ & Peer Bork™*

Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still
based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal
metagenomes of individualks from four countries with previously published data sets, here we identify three robust
clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the
enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not
continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states
that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but
abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a
functional analysis to understand microbial communities. Although individual host properties such as body mass
index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can
be identified for each of these host properties. For example, twelve genes significantly correlate with age and three
functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

http://www.nature.com/nature/journal/v473/n7346/full/nature09944 .htm|
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FIGURE 10.12 The distnibution of genome size vanation among prokaryotes based on complete
genome sequencing and pulse-field gel electrophoresis (PFGE) estimates. This includes 18 complete
sequences and 29 PFGE measurements for Archaea (black bars), and 125 complete sequences and
323 PFGE estimates for Bacteria (gray bars). Based on this combined dataset, the mean genome size
for the Archaea is 2.22 = 0.13 Mb, and for the Bactenia is 3.10 £ 0.09 Mb. For sequenced genomes
alone, the means are 2.19 £ 0.27 Mb for Archaea and 3.40 £ 0.17 Mb for Bacteria. Values from mul-
tiple strains per species were averaged, and complete sequencing data were used prelerentially where
measurements had been made by both methods. Complete genome sequence data were taken from
the Center for Biological Sequence Analysis (CBS) Genome Atlas Database (www.chs.diu.dk/
services/GenomeAtlas) in the spring of 2004, and the PFGE estimates were taken {rom the dataset
compiled by Islas et al. (2004), now available as part of the Prokaryote Genome Size Database
(www.genomesize.com/prokaryotes).
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FIGURE 10.13 The distribution ol genome sizes according to lifestyle in the Bacteria. Each point
represents the genome size (measured by pulse-lield gel electrophoresis) of one e species or strain ol
bacteria categonized as either free-living (n = 398), obligately parasitic (n = 227), or obligately sym-
biotic (n = 20) as in [slas et al. (2004). The means for each category are indicated with vertical Llllpst_s
Data were provided by S. Islas and A. Lazcano, Universidad Nacional Auténoma de México.
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FIGURE 10.11
in prokaryotes, as revealed by data from 140 completely sequenced genomes. Unlike in eukaryotes,
gene number 1s strongly positively correlated with genome size in both Archaca (@) and Bacteria ().
The regression statistics were as lollows, Archaea: ¢ = 0.88, P < 0.0001, n = 18; Bactenia: r* = 0.97,
P < 0.0001, n = 122; all prokaryotes: ¥ = 0.97, P < 0.0001, n = 140. The regressions were very
slightly stronger following log-transformation, but not substantially different. It has been reported that
the archaeon Aeropyrum pernix and the bacterium Mycobacterium leprae represent exceptions to this
trend, with the former having more than the expected number of genes and the latter exhibiting {ewer
than expected (Doolittle, 2002; Tanaka et al., 2003). However, that these two species are distinet out-
liers is not so readily apparent with the large dataset used here, in which the relationship generally
becomes slightly looser at the higher end of the distnibution. Moreover, if the large number of pseudo-

The relationship between gene (i.e., open reading frame) number and genome size

genes in the M. leprae genome are included, this species falls on the line as well (see Mira et al, 2001).
Data were taken from the Center for Biological Sequence Analysis (CBS) Genome Atlas Database
(www.cbs.dtu.dk/services/GenomeAtlas) in the spring of 2004.
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FIGURE 10.9 Prophage content and locations (gray boxes) in several strains of two species of bacteria. (A) Streptococcus pyogenes, also known as “group A
Streptococcus” (GAS), which causes a wide range of infections. The numbered rings represent the genomes of three different serotypes: (1) M1, (2) M18, (3)
M3. (B) Escherichia coli, a normally benign gut bacterium that includes some enterohemorrhagic and uropathogenic strains. The numbered rings represent
the genomes of four different strains: (1) O157:H7 VI2-Sakai, (2) O157:H7 EDL933, (3) K12-MG1655, (4) CFT073. Prophages account for about 12% and
16% of the S. pyogenes and pathogenic E. coli genomes, respectively (Canchaya et al., 2003). Note that the circumferences of these schematic circular draw-
ings are not to scale and therefore do not reflect the real relative lengths of the chromosomes depicted. Adapted from Canchaya et al. (2003), reproduced by
permission (© American Society for Microbiology).
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FIGURE 10.6 Gene position plots showing examples of both plasticity and stability in gene order
berween closely related species of prokaryotes. In these plots, the location of a given gene, measured
as its distance from a given starting point in kilobases (kb), is plotted on one axis each for the two
species being compared. Unless otherwise indicated, the origin of the axes represents the origin of
replication in the chromosomes. (A) The archaeons Sulfolobus solfataricus and S. tokodaii, whose
genomes share very little common gene order and are clearly extremely dynamic. (B) The bacteria
Chlamydia muridarum and C. pneumoniae, which exhibit a clear “X-alignment,” indicating a single,
large, symmetrical inversion around the origin of replication (see also Eisen et al, 2000; Hughes,
2000). (C) The bacteria Salmonella typhi and S. typhimurium, which show evidence of two smaller sym-
metrical inversions, one around the origin of replication and one around the replication terminus. (D)
Two strains (or possibly species) of the endosymbiotic bacterium Buchnera aphidicola living in
distantly related aphid hosts (Ap = Agyrthosiphon pisum; Sg = Schizaphis graminum). In this case, there
has been remarkable stasis in gene order for 50-70 million years, despite considerable sequence
divergence (see Tamas et al., 2002). Based on a figure presented by Mira et al. (2002), reproduced by
permission (@ Elsevier Inc.).
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