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Abstract

Estimating the genetic basis of phenotypic traits and the selection pressures acting on them
are central to our understanding of the evolution and conservation of wild populations.
However, obtaining such evolutionary-related parameters is not an easy task as it requires
accurate information on both relatedness among individuals and their breeding success.
Polymorphic molecular markers are very useful in estimating relatedness between indi-
viduals and parentage analyses are now extensively used in most taxa. The next step in the
application of molecular data to wild populations is to use them to derive estimates of
evolutionary-related parameters for quantitative traits, such as quantitative genetic
parameters (e.g. heritability, genetic correlations) and measures of selection (e.g. selection
gradients). Despite their great appeal and potential, the optimal use of molecular tools is
still debated and it remains unclear how they should best be used to obtain reliable
estimates of evolutionary parameters in the wild. Here, we review the methods available
for estimating quantitative genetic and selection parameters and discuss their merits and
shortcomings, to provide a tool that summarizes the potential uses of molecular data to
obtain such parameters in wild populations.
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Introduction

 

Our understanding of the evolutionary dynamics and
conservation of a population relies on the determination of
quantitative genetic and selection parameters. Estimates of
the selection intensity and the quantitative genetic architec-
ture of phenotypic traits together indicate the ability of a
population to respond to selection and thus to evolve (Lande
1982; Falconer & Mackay 1996). At the same time, comparison
of quantitative genetic parameters such as the variance
components of a trait among populations can prove useful
in conservation when attempting to estimate levels of
genetic variability (Storfer 1996). However, obtaining such
evolutionary parameters from wild populations is not an
easy task. One of the main problems is that the traditional
techniques available to estimate variance and covariance

components require accurate information about the rela-
tionships among individuals (we use relationships in the
sense of pedigree information; Falconer & Mackay 1996;
Lynch & Walsh 1998). In special cases, pedigrees can be
determined from observations of mating activities, but this
usually requires long-term intensive sampling (see Merilä

 

et al

 

. 2001; Kruuk 

 

et al

 

. 2002; Garant 

 

et al

 

. 2004) and still may
not be entirely reliable. In most studies of natural popu-
lations, relatedness information is generally absent.

In the past decade, the extensive development and appli-
cation of highly polymorphic molecular markers (especially
microsatellites) to wild populations has proven highly
valuable, particularly in the fields of population and
conservation genetics (Haig 1998). Such markers have also
proved to be efficient in kinship and parentage analyses
given their power to infer relationships between individuals
when part, or all, of the relatedness information between
individuals is missing (Hughes 1998; Avise 

 

et al

 

. 2002). With
such information and techniques now being routinely applied
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and parentage analyses being extensively conducted in
many species (see Jones & Ardren 2003 for a review of the
methods), the next step in the application of molecular data
to wild populations is to provide estimates of evolutionary-
related parameters including quantitative genetic features
(e.g. heritability, genetic correlation among traits) and
measures of selection (e.g. gradients).

First, relatedness information obtained from parentage
analyses can be used to assess quantitative genetics estimates.
Second, estimates of individual fitness, usually defined
as individual’s contribution to the next generation, can be
used to estimate selection. However, for both estimation
procedures there are a number of ways in which the
molecular data can be used that are distinguished by the
extent to which they require an explicit reconstruction of a
pedigree for the population. In addition, the reliability of
some of the methods is debatable and comparative studies
of the performance of different approaches are rare (but see
Thomas 

 

et al

 

. 2002; Wilson 

 

et al

 

. 2003b). The most suitable
means of exploiting molecular markers to obtain reliable
estimates of evolutionary-related parameters remains unclear.

Our goal here is to review the available methods for
estimating quantitative genetic and selection parameters
given varying amounts of pedigree information available 

 

a
priori

 

. In doing so we aim to provide a tool that summarizes
the potential applicability of molecular data (microsatellites)
to evolutionary studies of wild populations. As phenotypic
traits of interest are likely to be influenced by multiple genes
and environmental factors, we focus on methods that deal
with quantitative traits. Therefore, approaches using marker
data to infer changes in allele frequencies through selection
are not discussed here (see Ford 2002 for a review). We
provide examples of the application of each method, with

a special emphasis on those studies that have compared
alternative methods. Our aim therefore is not to review the
different methods available to estimate relatedness or infer
parentage (for recent reviews in this area see Blouin 2003;
Jones & Ardren 2003), but rather to cover the subsequent
investigation of the evolutionary dynamics of a population
in which molecular data may be used to examine the
quantitative genetics and selection on phenotypic traits.

 

Methods available to estimate quantitative genetic 
parameters in the wild

 

Overview

 

Causal components of variance and covariance in quantit-
ative phenotypic traits, and other key quantitative genetic
parameters (see Box 1) can be derived by comparing the
phenotypic similarity between individuals with their
relatedness. The latter may be assessed either directly from
their similarity at marker loci, or via pedigree information.
The potential use of molecular markers will depend to a
large extent on the situation encountered in the wild and in
particular, on the extent and reliability of pedigree informa-
tion already available via other means. Here we briefly
summarize the different methods available to estimate
quantitative genetic (QG) parameters from molecular marker
data, separating them into four broad categories (see also
Fig. 1): (i) direct estimation of QG parameters with no
assumptions about relatedness; (ii) direct estimation of
QG parameters assuming known classes of relatedness;
(iii) explicit reconstruction of sibling groups; and (iv) expli-
cit reconstruction of full pedigree involving all types of
relatedness.

Box 1 Definitions of quantitative genetic 
parameters of general interest

Additive (genetic) variance: the component of phenotypic
variance among individuals in a trait that can be attri-
buted to additive genetic differences, those associated
with the additive effects of alleles that are independent
of other alleles or loci.

Environmental variance: the component of phenotypic
variance among individuals in a trait among genetically
identical individuals. This variation might be due to
different environmental conditions experienced by indi-
viduals or to random factors.

Genetic covariance: the covariance between two traits
that is due to additive genetic effects.

Genetic correlation: a standardized measure of genetic
covariance that takes value between −1 and 1, cal-
culated as ratio of the genetic covariance between two
traits to the square root of the product of their respective
additive variances.

Heritability (narrow-sense): expresses the extent that a
given phenotype is determined by the genes trans-
mitted from its parents and will thus determine the
degree of resemblance between relatives (in a population).
It is defined as the ratio of additive genetic variance to
the total phenotypic variance.

Phenotypic variance: describes the total amount of vari-
ance (sum of all components) observed for a given character
in a given population. It is generally decomposed into its
genetic and environmental components.
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Direct estimation of QG parameters with no assumptions 
about relatedness: the ‘Ritland’ method (regression 
method)

 

Overview.

 

The first approach, proposed by Ritland (1996,
2000), uses method of moments estimators based on the
quantification of pairwise relatedness between individuals
(see Queller & Goodnight 1989; Lynch & Ritland 1999). At
first view, this method appears widely applicable and
appealing as it is based on the determination of the simplest
relationship between phenotype and genotype. Indeed,
trait heritability is estimated from the covariance between
pairwise phenotypic similarity and pairwise relatedness
(Box 2). The approach therefore relies heavily on the
efficiency of estimators of pairwise relatedness (see Van de
Casteele 

 

et al

 

. 2001 for a review), but does not require
specification of an explicit pedigree or prior knowledge of
population structure, other than maximizing the chance of
getting significant actual variation in relatedness in the
sample (see Box 2; see also Ritland 1996, 2000 for a detailed
description).

 

Examples of application.

 

The Ritland method was suggested
to be well suited to studies of plants given that they are

sedentary and show passive dispersal and it is also where
it was first applied, with modest success (Ritland & Ritland
1996). In brief, a wild population of yellow monkeyflowers
(

 

Mimulus guttatus

 

) for which data were available on 10
quantitative characters and 10 polymorphic allozyme
loci, was studied by Ritland & Ritland (1996), who found
substantial differences between heritability values obtained
from the marker-based method and those obtained from
laboratory estimates. Specifically, for many characters, the
marker-based estimates of heritability in the field were
higher than in the laboratory, and sometimes outside the
true parameter space (> 1; Ritland & Ritland 1996). In con-
trast, a recent study on the same species failed to find
significant heritability for similar characters (Van Kleunen
& Ritland 2004). Furthermore, another study applying the
same technique to estimate the heritability of phenolic
compounds in a population of Turkey oak (

 

Quercus laevis

 

)
showed that the method failed to estimate heritability as
there was very low relatedness between individuals and
insignificant variance in relatedness in the population
(Klaper 

 

et al

 

. 2001; see Box 2).

 

Methodological issues.

 

When further surveying the literature
it is surprising to realize that, although the Ritland method
was published almost 10 years ago (Ritland 1996), there are
very few other examples in either plant or animal popu-
lations, perhaps indicating difficulties in its application
(Table 1; see Postma 

 

et al

 

. 2003). First, there seems to be a high
sampling variance for all pairwise relatedness estimators
(Van de Casteele 

 

et al

 

. 2001; Belkhir 

 

et al

 

. 2002). Moreover,
the relative performance of different relatedness estimators
may vary in such a way that there is no single best-
performing estimator (Van de Casteele 

 

et al

 

. 2001). A probably
more important problem, however, is the dependence of
the estimates on the variance of relatedness in a population
(see Box 2). On this point, it is unclear if one should use all
potential pairwise comparisons available in the sample or
if one should try to restrict such comparisons to the level
where variance in relatedness has a better chance of being
detected. Ritland & Ritland (1996), for example, used various
distances cut-offs to choose the distance that maximized
the variation in relatedness in their plants sample and thus
increased their power to detect heritability. Furthermore,
Klaper 

 

et al

 

. (2001) suggested that an appropriate sampling
design should increase the chance of getting a larger range
of relatedness and more variation in this parameter, but
this has not yet been demonstrated (see Postma 

 

et al

 

. 2003).
In any case, a significant actual variance in relatedness is
required in the sample analysed, and for this to occur one
needs to reliably sample a fairly high proportion of related
individuals, which may be problematic in natural popu-
lations (see Klaper 

 

et al

 

. 2001). Thus, the limited number of
applications of this method is probably largely attributable
to the low actual variance of relatedness found in most

Fig. 1 Flow chart representing how the information gathered
could be used to estimate quantitative genetics parameters, with
potential benefits (+) and shortcomings (–) of methods.
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sampled populations. Therefore, despite its appeal, the
utility of the Ritland method may be minimal.

 

Direct estimation of QG parameters assuming known 
classes of relatedness: maximum-likelihood approach

 

Overview.

 

If some prior information is available on popu-
lation structure (

 

a priori

 

 knowledge of the distribution
of relatedness, e.g., all individuals are either full-sibs or
unrelated), it is possible to use likelihood-based procedures
to estimate quantitative genetics parameters (Thompson
1975). With this approach, pairs of individuals are placed
into a predetermined population structure according to
the probability of observing their genotype and phenotype
(Herbinger 

 

et al

 

. 1997; Painter 1997; Mousseau 

 

et al

 

. 1998;
Thomas 

 

et al

 

. 2000). This is done by using the joint probability
of observed phenotypic and genotypic data to determine
likelihoods for assigning pairs to either full-sibs or unrelated
groups; there is thus no explicit reconstruction of any form
of pedigree and the method relies on assumptions about
the distribution of relatedness in the sample.

In brief, individuals are first genotyped for molecular
marker loci and scored for quantitative traits. Then, a
maximum-likelihood procedure infers the relatedness
between pairs of individuals (based on molecular marker

data), but with the assumption of a mixture of unrelated
and full-sib pairs only. Finally, the estimates of relatedness
and data on quantitative traits are combined in a mixture
model (as there are only two types of relatives) to infer
quantitative genetic parameters (see Mousseau 

 

et al

 

. 1998
for further statistical details).

 

Example of applications.

 

Mousseau 

 

et al

 

. (1998) specifically
presented and tested this method using a captive population
of Chinook salmon (

 

Oncorhynchus tshawytscha

 

). The herit-
ability values they obtained for male early sexual maturity
and colour were significant and within ranges commonly
observed for these traits in salmonids (e.g. Gjerde & Gjedrem
1984; Heath 

 

et al

 

. 1994; Wilson 

 

et al

 

. 2003a). However,
estimates obtained for body weight and length were not
significant. Genetic correlations among traits were usually
positive, but they did not differ significantly from zero.
Despite this, the relative magnitude of the correlations was
in agreement with theoretical expectations as size traits were
highly positively correlated and other traits showed only
intermediate level of correlations (Mousseau 

 

et al

 

. 1998).

 

Methodological issues.

 

The main difference between this
procedure and the approach of Ritland (1996) is that in the
present case there is an explicit assumption made about the

Box 2 The Ritland’s regression method (Ritland 
1996, 2000)

To assess the phenotypic similarity among pairs of
individuals one calculates the value of a given quantitative
trait Y for two individuals i and j such that Yi is the
phenotypic value for the first individual and Yj for the
second. Their shared phenotype is measured by:

Zij  =  (Yi − U)(Yj − U)/V (eqn 1)

where U and V are the mean and variance of the
phenotypic trait Y in the population. Then among all
pairs, the average Zij equals the phenotypic correlation.
As shared phenotypes are most likely determined by
the sharing of both genes and environments, then

Zij = 2rij h2 + re + eij (eqn 2)

where rij is the relatedness coefficient (see Van de
Casteele et al. 2001 for a review), re is a correlation
due to sharing of environments, and eij is the error. As
this is a linear regression equation, one can estimate
heritability over several pairs of individuals as:

h2 = cov(Zij, rij)/2 var(rij) (eqn 3)

where cov(Zij, rij) is the covariance between the
phenotypic similarity and the estimated relatedness,
and var(rij) is the actual variance of relatedness (see
Appendix 4 in Ritland 2000 for details of calculations).
As noted by Ritland (2000), to apply this method, the
need to measure the actual variance of relatedness is
critical. Actual variance of relatedness occurs when there
is a mixture of different relatives, such as full-sibs and
unrelated individuals. However, if the actual variance
of relatedness is not statistically significant, one could at
least verify the presence of genetic variation by testing
for positive cov(Zij, rij) (Ritland 2000). Genetic correlations
between two traits of interest could also be estimated
by considering Yi as being the first trait measured in
individual i, Yj the second trait measured in individual
j, and V the sample covariance between traits, using
equations 1–3. Furthermore, the sign of any potential
genetic correlation among traits i and j could be estimated
as being the sign of this cov(Zij, rij). It is important to
note here that the estimation of genetic correlations does
not require estimating the actual variance of relatedness
and thus will not be affected by this potential source
of error (see Lynch 1999; Ritland 2000). Significance
of estimates is usually obtained by bootstrapping over
individuals, but it is unclear if this is the best level
where it should be performed (see Thomas et al. 2002).
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Table 1

 

Summary of studies comparing different methods applied to obtain quantitative genetic parameters in the wild with benchmark reference estimates

 

 

 

Species Environment
Parameters 
estimated

Ritland 
method

Pairwise 
likelihood

MCMC sibships 
reconstruction

Benchmark reference estimate 
used for comparison Reference

Soay sheep (

 

Ovis aries

 

) Natural Heritability Unreliable Unreliable Similar but only when 
used in combination with 
known maternal-offspring 
relationships

Maternal information + 
reconstructed paternity 
and sibships

Thomas 

 

et al

 

. 
(2002)

Rainbow trout 
(

 

Oncorhynchus mykiss

 

)
Controlled 
(aquaculture 
strain)

Heritability, 
genetic 
correlations

 

h

 

2

 

: unreliable 

 

r

 

G

 

: similar
—

 

h

 

2

 

: similar 

 

r

 

G

 

: similar 
(underestimated)

Parentage exclusion Wilson 

 

et al

 

. 
(2003b)

Capricorn silvereye 
(

 

Zosterops lateralis 
chlorocephalus

 

)

Natural Heritability, 
genetic 
correlations

 

h

 

2

 

: unreliable 
rG: unreliable, 
but G-matrix 
comparison 
indicated 
similarity

— — Full-sib analysis from 
cross-fostering

Frentiu 
(2004)

Bighorn sheep (Ovis 
canadensis)

Natural Heritability Unreliable* — — Maternal information + 
reconstructed paternity and 
sibships (as in Coltman et al. 2003)

D. W. Coltman 
(unpublished)

*Standard errors were not available but values differed markedly (see Fig. 2).
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distribution of relatedness (either full-sibs or unrelated),
allowing maximum-likelihood methods to be used. The
maximum-likelihood method therefore allows QG para-
meters to be estimated without a separate first stage of
constructing a pedigree.

Simulation work has shown that the maximum-likelihood
method returns lower errors around estimates of heritability
than the regression method; however, they were still 50%
higher than those obtained with reconstructed sibships
(Thomas & Hill 2000; see next section). Apparently, only
in cases of balanced populations containing two classes
of relationship, with families weighted equally, does the
method gives estimates similar to estimates obtained from
known pedigree information (Thomas et al. 2000). In wild
populations such scenario is very unlikely, and in most cases
the prior relatedness distribution will also be unknown,
which may explain why this method has not been broadly
applied. Furthermore, because this approach has also received
less empirical attention than others (see next section), it is
unclear how deviations from the ideal conditions of two
classes of relatedness might impact QG estimates.

Explicit reconstruction of sibling groups

Overview. The third approach involves an explicit recon-
struction of groups of a certain relatedness, which can then
be used as pedigree information in a standard quantitative
genetics analysis. In this case, the construction a pedigree
from genetic data without parental information is usually
performed using Markov chain Monte Carlo (MCMC)
procedure (Hastings 1970) to reconstruct sibships within a
single generation (see Thomas & Hill 2000; Smith et al. 2001;
see Blouin 2003 for a review). The MCMC method allows
improved parameter estimation through the weighting of
families and uses more information than the regression
method (Thomas & Hill 2000). In brief, the sibship recon-
struction procedure generates probable sibships from
the population sample using the marker data, aiming to
reconstruct a number of groups with specific relationships
rather than determining likely distances between each
member in the sample (Thomas & Hill 2000). The method
uses allele frequencies estimated from a given sample to
provide likelihood, or the allele frequencies can be iteratively
re-estimated at each step as families are constructed (as in
Thomas & Hill 2000). The number of possible partitions
increases rapidly with the number of individuals included
in the analysis; an MCMC procedure is thus used to sample
from the distribution of likelihoods in order to identify the
most likely partitions. Alternatively, other methods can
partition individuals into full sibships without the need for
information about population allele frequencies. Almudevar
& Field (1999), for example, presented an algorithm that
searches for all possible full-sibling groups that could have
been produced by a single pair of parents and that assigns

a score to each possible sibship that is function of its prob-
ability given the parental genotypes; these scores are then
used to find the most likely partition (based on likelihood
principles; see Blouin 2003).

Whatever the method adopted to reconstructed sibships,
the next step is then to build a relationship matrix suitable
for use in either traditional quantitative genetics analyses
such as a full-sibling analysis of variance (Falconer & Mackay
1996) or more complex analyses such as an animal model
(Lynch & Walsh 1998; Kruuk 2004; see next section for
details).

Comparisons of algorithms. Recent work using both simulated
and real data sets assessed the existing algorithms for
sibship reconstruction in terms of accuracy and computer
efficiency under a range of sample size (number of indi-
viduals), DNA marker information (number of loci, number
of allele per loci and type of allelic frequency distribution)
and family structure (ranging from highly unrelated to
highly related sets). Specifically, Butler et al. (2004) examined
(i) the Almudevar & Field method (Almudevar & Field
1999), (ii) the MCMC pairwise score method (Smith et al.
2001), and (iii) the MCMC full joint likelihood method
(Painter 1997; Smith et al. 2001). They also tested a new
algorithm called the ‘Simpson method’ that uses an ascent
method to maximize the Simpson’s index of concentration
(the probability that two randomly chosen individuals are
classified in the same group; the larger the index, the more
concentrated the individuals into a smaller number of
groups; see Butler et al. 2004), while imposing a full-sib
genotype constraint similar to that implemented in the
pairwise score algorithm (Butler et al. 2004). Overall, and not
surprisingly, the accuracy in full-sibship reconstruction
improved with the level of information included in the
data set from four loci with four alleles each to eight loci
with eight alleles each. Also, increasing the number of
alleles per locus (from four to eight) while keeping the
number of loci constant at four was usually better than the
reverse tactic. In general, it seemed that using at least six to
eight loci with six to eight alleles per locus should be a
minimum for accurate full sibship reconstruction. All four
algorithms were robust to deviations from uniform allelic
distribution and performed well with resampled real data
sets as with simulated data sets. In contrast, there were
marked differences among the algorithms in their ability to
deal with different types of family distribution and thus,
no single approach performed well over all conditions
tested (see Butler et al. 2004 for more details). In brief, the
Almudevar & Field and Simpson approaches were efficient
at reconstructing the pedigree of highly related sets, but
the former had computational problems with large data
sets. The pairwise score method operated well with low
to medium relatedness and was very fast, but had major
problems with highly related sets. The full likelihood
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approach performed best with small data sets of medium
relatedness but had computational issues in the presence
of large families. Butler et al. (2004) thus suggested that a
combination of approaches is probably the best strategy
and that it might be useful to use the predicted partition
from one approach as the starting point for another. This
still remains to be tested.

Explicit reconstruction of full pedigree involving all types 
of relatedness

Overview. If molecular data are used to reconstruct different
types of pairwise relationships, these can be integrated to
form a complex pedigree potentially spanning a number
of generations. Whilst this approach could theoretically
incorporate the sibship-reconstruction methods outlined in
the previous section, it is more typically used with parentage
analysis, such that a multigenerational pedigree is con-
structed from a combination of maternal and paternal
identity information. To this end, it will involve using one
of the many possible approaches to parentage assignment
(Blouin 2003; Jones & Ardren 2003). Prior information about
relatedness or pedigree structure is not a prerequisite,
although construction of a multigenerational pedigree will
require temporal information, for example, to be able to
distinguish parental vs. sibling relationships.

In many situations, the molecular data may only be used
to provide paternal identities where maternal identities are
already known from field observations, such as in many
mammalian studies (e.g. Milner et al. 2000). In other situ-
ations, all maternal and some paternal links may be known,
and the marker data used to provide additional paternities
(e.g. Kruuk et al. 2000). In many passerine bird studies,
identities of both parents may be based on field observations,
with molecular data used to check the reliability of those
links, particularly when extra-pair paternity is suspected
(e.g. Merilä et al. 1998). It is also feasible to supplement the
information from these parentage analyses with additional
groupings of individuals. For example, reconstructed
sibships of individuals with unresolved paternities (made
using methods discussed in the previous section) could be
added so as to include as many individuals as possible in
the pedigree. Although this is a potentially fruitful approach
that would maximize the marker data available, it has been
rarely applied to date (Thomas et al. 2002; Coltman et al.
2003; see below).

It is worth noting however, that pedigree reconstructions
using genetic data are potentially imperfect. For example,
some studies used a confidence level of only 80% in their
assessment of paternity (Kruuk et al. 2000; Coltman et al.
2001) while others had a potential error rate of around 5%
(Milner et al. 2000; Coltman et al. 2003). Such variation will,
without doubt, influence the heritability estimates: Milner
et al. (2000) present heritabilities estimated using a pedigree

constructed from paternities assigned with 95% confidence,
but also mention that estimates obtained using 80% con-
fidence, for which more paternities could be assigned, were
lower. In such cases, there is a trade-off between assigning
useful numbers of paternities to provide an interconnected
pedigree vs. their reliability.

Quantitative genetic analysis of reconstructed pedigrees.
Having derived maximal pedigree information from the
marker data, quantitative genetic parameters for given
phenotypic traits can then be estimated in different ways.
The most simple of these is to consider the phenotypic co-
variance between pairs of a given relationship: for example,
through a linear regression of parent–offspring values, or
an analysis of variance amongst sibling groups (Falconer
& Mackay 1996; Lynch & Walsh 1998). However, with a
complex pedigree in which information on more than one
type of relationship is available — e.g. on identities of both
parents and siblings of an individual, or parents, offspring
and grand-offspring — this is inevitably an inefficient use
of data. An alternative approach is to use a method that
exploits the entire relatedness matrix for a pedigree, so that
for each individual its phenotypic covariance with all its
relatives is considered. This is the approach taken by a form
of mixed model now routinely used in applied situations,
the ‘animal model’ (see Box 3). The animal model method
can also be applied to the partial pedigrees reconstructed
only from sibships as in the previous section (see Thomas
et al. 2002), or from pedigrees derived entirely independently
of molecular data, such as from behavioural observations
(see Réale et al. 1999).

Animal models are extensively used in animal breeding
but, for no obvious reason, their application within evolu-
tionary biology has only been relatively recent (see Kruuk
2004 for discussion). In addition to their efficient exploitation
of all available data, they possess several key advantages
over traditional techniques used to estimate heritabilities
from pedigree information. Specifically, they can incorporate
unbalanced data sets with missing observations or missing
pedigree links (both of which are common in studies of
natural populations). Furthermore, the estimates of variance
components they provide are unbiased by the occurrence
of selection, inbreeding or nonrandom mating in a study
population, because models correct for the flow of genetic
information across generations. A further key advantage is
their flexibility for the explicit modelling of additional
random effects such as maternal or common environment
effects which may otherwise be confounded with additive
genetic effects, biasing estimates of heritability. Another
benefit of this approach is that no assumptions are made
about the types of relatedness present in the population.

Applications. Animal models have been applied in combina-
tion with molecular data pedigree construction in systems
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in which it is not possible to assign parentage from observa-
tions alone (e.g. wild fish studies, see Garant et al. 2003).
Several mammalian studies have also used multigenerational
pedigrees comprised of known mother–offspring links
complemented by paternities assigned using molecular data
to fit animal models to estimate heritabilities and genetic
correlations (e.g. red deer: Kruuk et al. 2000; Soay sheep:
Milner et al. 2000).

Specifically, Coltman et al. (2003) used what we regard
as a very useful approach to the problem of reconstructing
missing pedigree links. As they already knew mother
identities from field observations, they first used a paternity
analysis to assign as many offspring to fathers as possible
and then performed sibships reconstruction to complement
their pedigree. Finally they used this pedigree with an
animal model in an analysis of the quantitative genetics of

horn size and body weight in bighorn sheep (Ovis canadensis).
In more detail, maternity was known for around 80% of
marked sheep since 1971. However, blood, hair and tissue
sampling in the later part of the study allowed genetic
analyses to be conducted at 20 microsatellite loci to assess
paternity and sibship links. Paternity of 241 individuals
was thus assigned using a likelihood-based approach at a
95% confidence level (Marshall et al. 1998). Thirty-one
clusters of 104 paternal half-sibs were then built among
the unassigned offspring, where a paternal half-sibship
consisted of all pairs of individuals of unassigned paternity
that were identified as having a significant likelihood
ratio for a paternal half-sib relationship vs. being unrelated
(Goodnight & Queller 1999; see also Coltman et al. 2003).
Members of reconstructed paternal half-sibships were then
assigned a common unknown paternal identity, which

Box 3 The ‘animal model’

The animal model is a form of mixed model, the term
used to describe linear regressions in which the explan-
atory terms are a mixture of both ‘fixed’ and ‘random’
effects. Each individual animal’s (or plant’s) phenotype
for a given trait is partitioned into a linear sum of different
effects, necessarily including as a random effect the addi-
tive genetic merit, or breeding value, of that individual.
In matrix form, for the population, this is represented as:

y = Xβ + Σi Ziui + e (eqn 1)

where y is the vector of observations of the given trait
across all individuals. Broadly speaking, equation 1
represents the decomposition of the phenotype into,
respectively, fixed and random effects and then an
error term. Specifically, X is a design matrix of 0s and 1s
relating each observation to corresponding fixed effects
(such as the population mean) given in the vector β; each
ui is a vector of random effects, one of which will be a
vector of individual additive genetic effects a; each Zi is
a design matrix for a corresponding vector of random
terms; and e is a vector of random error terms.

The pedigree information is then used to specify a
variance–covariance structure for the vector of additive
genetic effects a. These are not independent of each other,
because relatives will have correlated effects. For any
pair of individuals i, j, the additive genetic covariance
between them is , where Θij is the coefficient
of coancestry (the probability that an allele drawn at
random from individual i will be identical by descent to
an allele drawn at random from individual j ) and  is
the additive genetic variance for the trait. The variance–

covariance matrix G for the vector a is therefore given
by G = A , where A is the additive genetic relationship
matrix with individual elements Aij = 2Θij. Assuming
that the errors are independent of each other, the variance–
covariance matrix R for the vector e is simply R = I ,
where I is the identity matrix. For a simple model in
which no other random effects are fitted, and for which
there is only a single phenotypic observation for each
individual (so that the design matrix for the additive
genetic effects is just I):

y = Xβ + a + e (eqn 2)

the variance–covariance matrix for y is given by V = G +
R = A  + I .

Estimation of the unknown parameters in the model
can then proceed by maximum likelihood. Under an
assumption of multivariate normality for the random
effects (in practice, the techniques are relatively robust
to violation of this assumption), the likelihood of the
model in equation 1 is defined as a function of β and V,
given that X, the Zi and A are all known, and then solved
to generate maximum-likelihood estimators (MLEs). In
the simple model in eqn (2), these will be MLEs of β, 
and . More complex models may include other random
effects such as maternal effects or common environment
effects, for which corresponding variance components
will be estimated. In practice, a restricted version of the
likelihood is generally used, using estimates of the
variance after correction for the fixed effects, to avoid
bias introduced by estimating the latter. This method of
parameter estimation is known as restricted maximum
likelihood, or REML. For details see Lynch & Walsh
(1998) and references therein. 
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increased the proportion of individuals with some form
of paternal identity by more than 40% (345 paternity
identities in the final pedigree). An animal model was then
applied to the reconstructed pedigree for the estimation of
variance components and heritabilities.

Comparisons of methods

Given the flexibility, the power and the robustness of its
method, the animal model provides a true benchmark
to which other estimates can be compared to assess their
efficiency in obtaining quantitative genetics estimates.
However, only a few published studies have explicitly
compared the quantitative genetic results obtained with
either the regression approach, the likelihood method or
the reconstructed sibships, to the estimates obtained from
a pedigree or from known relationships (see Thomas et al.
2002; Wilson et al. 2003b). Here we briefly summarize the
main conclusions of these studies (see also Table 1).

Thomas et al. (2002) compared estimates of heritability for
body weight in a feral population of Soay sheep (Ovis aries)

obtained from the pedigree-free approaches (regression
and likelihood methods) to pedigree-based method (from
reconstructed sibships alone, from a combination of known
maternities and molecular-based paternities, and from a
combination of both). Using 12 microsatellite loci on a
subset of the 759 measurements obtained from the Soay
sheep database (see Milner et al. 2000), they found that the
regression approach gave unreliable results that were highly
sensitive to the fixed effects included in the analysis of body
weight (see Fig. 2). In general, low amounts of marker data
and low numbers of relatives in the sample resulted in
poor estimates of the actual variance of the relatedness,
which were greatly underestimated. As well, the likelihood
approach gave negative estimates of the heritability and
so estimates were fixed at the boundary of the parameter
space (Table 1). Again this was because of insufficient
amounts of marker data available to generate useful
relationship information, and low numbers of relatives in
the sample with which to partition the phenotypic variance.
Interestingly, the MCMC approach using only reconstructed
sibships also failed for similar reasons. Thomas et al. (2002)

Fig. 2 Heritability values obtained from different studies that compared the Ritland’s method (grey bars) to values considered to be
benchmark estimates (black bars; see Table 1 and text). Bar charts represent heritability values for each trait analysed in each study (with
their standard errors when available). Dotted lines indicates the limits of the parameter space. A. Thomas et al. (2002) where (d,t) (y,d) (y,t)
are the different fixed effects included in models: year (y), day of measurement (d) and twin status (t); B. Wilson et al. (2003b); C. Frentiu
(2004); D. D. W. Coltman, unpublished.



1852 D .  G A R A N T  and L .  E .  B .  K R U U K

© 2005 Blackwell Publishing Ltd, Molecular Ecology, 14, 1843–1859

thus suggested that for these techniques to be successful
in a natural situation, a greater number of relatives are
required in the sample as well as a greater amount of marker
information. Finally, they also clearly showed that the
incorporation of known relationship information (such as
maternal identities) into the likelihood, combined with the
MCMC approach, allowed more reliable estimates of the
genetic variance to be determined. They concluded that in
their situation, reconstructing the most complete pedigree
possible and then using an animal model was preferable to
the ‘pedigree-free’ approaches.

In another comparative study, Wilson et al. (2003b) used
rainbow trout (Oncorhynchus mykiss) strains to estimate
heritability and genetic correlations of weight and spawn-
ing time. They used 71 parental fish to obtain a progeny
generation containing 595 individuals originating from both
intra- and interstrain crosses that were genotyped with at
least eight microsatellite loci. They compared the regression
approach and the MCMC sibship reconstruction procedure
to values obtained from their true pedigree obtained from
full parentage analysis (parentage exclusion approach,
where 97% of offspring were assigned to a single parental
pair). They found that both the regression and MCMC
methods were able to detect significant components of
genetic variance and covariance for the traits analysed.
However, while the genetic correlations were fairly close
to the values estimated with the pedigree, the regression
model provided estimates of heritability that were quanti-
tatively unreliable (Table 1, Fig. 2). Indeed, the regression
method had both a significant bias and a low precision,
apparently due to the poor performance of the estimator
of pairwise relatedness. In fact, estimates of heritability
were mostly outside the true parameter space (0 > h2 > 1).
In contrast, genetic parameters estimated from the recon-
structed pedigree showed close agreement with ideal
values obtained from the true pedigree (Table 1). However,
the parameters based on the reconstructed pedigree were
underestimated due to the complex structure of the true
pedigree. The true pedigree consisted of a high number of
half-sibling relationships, causing the partitioning of full-
sibships to be inaccurate and reducing the recognition of
relatedness between families (see Wilson et al. 2003b).

Finally, using data from a population of Capricorn
silvereyes (Zosterops lateralis chlorocephalus), Frentiu (2004)
presented a comparison of genetic variances and covariances
(and corresponding heritabilities and correlations), for six
morphological traits estimated from an analysis of variance
amongst full-siblings vs. estimates from regressions using
the Ritland method. The data set included 214 individuals
genotyped at 11 microsatellite loci, cross-fostered as chicks
so as to minimize common environment effects. Several
conclusions arise from the comparison. Figure 2 shows the
estimates of heritability for the only three traits for which
values could be estimated (remaining traits had negative

additive variance). First, there is little similarity between
the estimates of heritability from the two methods (see
Fig. 2). Similarly, estimates of the 15 additive genetic
covariances between the six traits, showed little obvious
correspondence between the two methods, in either relative
or absolute magnitude (not shown). This is notable given
that the estimates of genetic covariances or correlations do
not incorporate estimates of the variance in relatedness
(see Box 2), so the apparent lack of accuracy is not due
simply to problems with the latter. Thus, it seems that the
results here differ from those of Wilson et al. (2003b), where
genetic correlations were fairly accurate.

However, Frentiu also reports a comparison of the struc-
ture of the G-matrix, using Krzanowski’s (1979) method
based on the alignment of the principal components of the
subspaces defined by the two variance–covariance matrices.
This approach indicated significantly greater similarity
between the two subspaces than would be expected by
chance, implying a high similarity between the principal
components of the two matrix subspaces. This result is more
difficult to interpret, given the apparent lack of similarity
of the explicit values, but it suggests that estimates made
using the Ritland approach can detect similar patterns in
the genetic architecture, as can those from the conventional
analyses.

Thus, it seems that estimates of variance components
based on pedigree reconstruction are consistently more
accurate than the pedigree-free methods. In some cases, such
as the Capricorn silvereye study (Frentiu 2004), estimates
from the two methods differ by an order of magnitude
(Fig. 2). However, despite the scarcity of comparative
evidence, there are some indications that pedigree-free
methods could still provide useful indications of the genetic
architecture underlying multiple phenotypic traits (see
also unpublished data from D. W. Coltman in Table 1 and
Fig. 2). These few studies also suggest that the regression
method could still be used to some extent for comparison
of relative amounts of additive variance/h2 for different
traits within a population (see Fig. 2).

Methods available to estimate selection gradients 
in the wild

Overview

Secondly, we consider an alternative use of molecu-
lar marker data: estimating selection on phenotypic traits.
Evolutionary change is usually driven by natural selection,
and evolutionary biologists have devoted considerable
energy to classifying and quantifying patterns of selection
(see Lande & Arnold 1983; Kingsolver et al. 2001). As
discussed in the previous section, relatedness information
derived from marker data can be used in various ways
to generate estimates of quantitative genetic parameters.
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However, it can also be used to assess individual breed-
ing success or fitness and — from the ensuing relationship
between fitness and phenotype — to quantify selection on
phenotypic characteristics. To this end, molecular data
are most frequently used to categorically determine the
parentage of individual offspring (Jones & Ardren 2003),
and an estimate of the fitness of individuals is typically
defined as the total number of offspring assigned to each.
These fitness measures can then be regressed on measures
of phenotype to indicate selection on particular traits
(Endler 1986).

However, just as parentage can be assigned fractionally
rather than categorically (Jones & Ardren 2003), methodology
has now been derived for exploiting genetic markers to
infer selection using a fractional rather than categorical
approach to the estimation of fitness (see Box 4). As with
Ritland’s marker-based regression method, these techniques
were originally developed for the analysis of data from plant
systems, and despite their intuitive appeal, applications to
date have not to our knowledge included animal studies.
Here, we outline their methodology, briefly review the
published literature exploiting these techniques, and then

evaluate their merits relative to more traditional techniques.
We focus on the maximum-likelihood methodology
presented by Smouse et al. (1999), which builds on earlier
work by Meagher and Adams and colleagues (e.g. Meagher
1991; Adams et al. 1992; Smouse & Meagher 1994). See also
Morgan & Conner (2001) for an outline of techniques.

Methodology

As with traditional selection analyses (Lande & Arnold 1983;
Arnold & Wade 1984), marker-based estimates of selection
on a phenotypic trait quantify the statistical association
between an individual’s fitness and its phenotypic value.
However, fitness is now determined by an individual’s
probability of parentage of each offspring in the population,
rather than by categorical assignment of parentage of a set
number of offspring (see Jones & Ardren 2003 for discussion
of the distinction). The approach is based on maximum-
likelihood estimation: the likelihood of a given parent–
offspring pair is defined by the product of (i) that parent’s
phenotypic fitness, as determined by the selection on
its phenotypic traits, and (ii) the genetic probability of it

Box 4 Statistical approach behind the 
estimation of selection gradients

Consider a set of phenotypic traits, y1 … yn, such that the
value for the l-th trait measured on the j-th individual is
yl,j. The relative fertility of individual j, λj (or his proportion
of the total offspring sired), can be modelled by defining
his fertility wj as a function of his phenotypic traits relative
to the total fertility in the population:

λk = wj/Σk wk, where wj = exp(Σ l βlyl,j) (eqn 1)

and each βi represents the selection gradient on trait i,
and the λk sum to unity (Smouse et al. 1999). (Note that
this is not exactly analogous to the Lande-Arnold (1983)
approach, which assumes a linear, rather than log-linear,
relationship between fitness measure and trait values.)
Following the source references, we discuss the methods
as applied to a system where maternal identities are
known but the marker data provide the only information
available on paternity. In practice they could equally
be used to consider assignment of maternity and hence
selection through female fitness (or even, if required,
more distant relatives such as grandparents).

For a particular offspring, the probability that a
particular male is the father is then defined as the product
of his relative fertility (based on his phenotypic values),
and his genetic probability of paternity of that offspring,

based on their respective genotypes at marker loci. So
assuming genotypes {Oi, Mi and Fj} for an offspring i, for
the known mother of i and for the candidate father j,
respectively, from the rules of Mendelian inheritance
we can calculate

xij = Probability(genotype Oi | genotypes Mi and Fj) 
(eqn 2)

The probability that male j is the father of offspring i is
therefore xijλj. The likelihood for each offspring i as a
function of the selection parameters is then the sum of
the probabilities across all fathers, giving Li = Σj xijλj. From
this the likelihood of the entire data set is

 (eqn 3)

Maximum-likelihood solutions for the estimates of
selection on each trait, the respective β parameters, can
then be found by maximizing equation 3. Smouse et al.
(1999) used an iterative technique to find a solution,
starting by setting all βi except β1 to zero, finding an MLE
for β1, then setting β1 to its MLE and all other βi except
β2 to zero, finding an MLE for β2, and so forth. Alternatively,
and probably more efficiently, Morgan & Conner (2001)
used an iterative technique based on a Newton–Raphson
iteration.
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producing the particular offspring, given their respective
genotypes (see Box 4).

Because of the flexibility of the maximum-likelihood
approach, the framework can be easily extended to consider
quadratic (e.g. Morgan & Conner 2001) or other selection
terms. Smouse et al. (1999) demonstrate the inclusion of
measures of distance between males and prospective female
parents (a key predictor of mating success in several plant
systems), so that the fitness of a given male is determined by
its distance from all possible mates. In theory, the technique
could also be usefully extended to test for temporal and
spatial heterogeneity in selection estimates.

Methodological issues

The statistical significance of each parameter is assessed by
comparing the superiority of a model in which it is set to its
maximum-likelihood value to one in which it is constrained
to be zero. As in any such analysis, different models are
easily compared within the maximum-likelihood framework
under the assumption of an asymptotic χ2 distribution for
the likelihood ratio of nested models. In practice, however,
unease with this assumption has led most authors to report
significance based on randomization tests such as boot-
strapping (Smouse et al. 1999; Elle & Meagher 2000; Morgan
& Conner 2001). Even here, the choice of exactly which
model to bootstrap becomes critical. For example, when con-
sidering multiple correlated traits, tests of the significance
of a particular βi (selection gradient on trait i; see Box 4) in
a model in which all other βs are set to zero (analogous to
tests of type I errors in a linear model) are inevitably far
less conservative than those in a model in which all other
parameters are set to their maximum-likelihood estimates.
Interpretation of very different P values based on χ2 statistics
or bootstrapping of different models therefore becomes
complicated (Elle & Meagher 2000). As with any such analysis,
one would ideally hope to arrive at the most parsimonious
model containing only significant selection gradients.

Examples of applications

Use of the marker-based selection estimates to date appears
to have been restricted to plant systems. In their application
of the techniques they develop, Smouse et al. (1999) found
no significant effect of floral morphology on reproductive
success in the dioecious lily Chamaelirium luteum, in accord-
ance with previous studies of the same system. In contrast,
Morgan & Conner (2001) overturned previous conclusions
regarding selection on the wild radish Raphanus raphanistrum,
finding evidence of both directional and stabilizing on male
floral characters. Elle & Meagher (2000) also estimated con-
tributions of floral phenotype to variation in male mating
success in the andromonoecious perennial Solanum carolinense,
and reported significant selection via male fertility on the

proportion of male flowers on a plant. In an analysis of
mating success in the dioecious plant Silene latifolia, Wright
& Meagher (2004) found no evidence for directional selec-
tion, but stabilizing selection in one of the two years for
calyx diameter. Finally, despite sampling only 10% of the
potential paternal plants, Van Kleunen & Ritland (2004)
still found significant negative paternal selection gradient
for anther–stigma separation on fertilization success in
Mimulus guttatus.

Comparisons with other methods

Given the paucity of applications to date of the selection
methodology, direct comparisons of marker-based estimates
of selection against those made from discrete paternity
assignment are unfortunately as scarce as quantitative
genetic parameter estimates. Morgan & Conner (2001) report
analysis of the same data set analysed in Conner et al. (1996).
Selection estimates are markedly concordant (r = 0.82), but
the marker-based tests appear considerably more powerful,
detecting significant selection in 56% of traits compared,
whereas only 25% were significant using traditional selection
gradients (see Fig. 3).

In a second case, two different studies (Meagher 1991;
Smouse et al. 1999) estimated selection on the same characters
in the same system (Chamaelirium luteum) but using slightly
different data sets and a principal components analysis
in one but not the other. Despite the increased power of an
extended data set and the apparently more powerful

Fig. 3 Comparison of standardized selection gradients for floral
traits in Raphanus raphanistrum through male fitness. Estimates for
each of 1991, 1992 and 1993 for: flower size, anther exsertion (plus
quadratic term for each), flower production, and pollen number
per flower (1993 only). x-axis: estimates from traditional selection
gradients, redrawn from Table 2 of Conner et al. (1996). y-axis: estim-
ates from marker-based selection gradients, redrawn from Table 1,
Morgan & Conner (2001). Selection estimates are concordant
(r = 0.82).
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techniques used for the marker-based selection estimates
(Smouse et al. 1999), both studies reached the same, albeit
somewhat surprising, conclusion of no evidence of signi-
ficant selection on plant size through male fertility.

Discussion points

It has been suggested that marker-based methods offer a
‘much more refined’ means of quantifying selection than
those based on categorical assignment (Morgan & Conner
2001). All the arguments relevant to the categorical vs.
fractional assignment of paternity (see Jones & Ardren 2003
for a clear summary) become relevant to the use of fitness
measures in estimating selection: for example, categorical
assignment will overestimate variance in reproductive
success (and hence potentially bias selection estimates)
relative to fractional assignment. Certainly, they circumvent
one stage of the traditional analyses of using the marker
data to first derive individual male fertilities, and then,
ignoring the error variance in these fertility measures (Devlin
et al. 1988), using them to derive selection gradients. The
number of parameters estimated (and hence ultimately
degrees of freedom used) is only the number of phenotypic
traits potentially under selection, rather than the total number
of males (Morgan & Conner 2001), generating what should
be a more powerful analysis.

Furthermore, the marker-based approaches should also
be more powerful in exploiting all genetic information
available on all individuals in a population, in comparison
to categorical paternity assignment, which will necessarily
be left with missing paternities in cases where there is no
sufficient evidence to identify the father amongst candidate
males. Simulation results indicate that with moderate
sample sizes (< 200 males), marker-based selection estimates
have sufficient power to detect weak selection pressures
even with relatively uninformative marker data (e.g. an
exclusion probability of approximately 80%, as might be
typical of allozyme data) (Morgan & Conner 2001), and
studies with access to more polymorphic loci such as
microsatellites will have even greater power. However,
both categorical and fractional approaches will be affected
by incomplete sampling of candidate males. With marker-
based selection, this will hopefully be represented in low
genetic probabilities for the sampled males, such that that
offspring makes little contribution to the overall likelihood;
with categorical paternity assignment, the offspring will
hopefully simply not be counted. In both situations, male
reproductive success can only be assessed relative to
sampled males, and so there is an implicit assumption that
this is representative of relative fitness across all males.

Conceptually, marker-based selection estimates require
more of a leap of faith than the estimation methods for
quantitative genetic parameters considered in previous
sections. The genetic and the phenotypic similarities

between two individuals are both continuous variables, and
we are ultimately only using pedigree-based relatedness as
a measure of the expected similarity at the loci determining
the phenotypic trait. Therefore, their correlation is biologi-
cally meaningful. However parentage in reality is discrete,
and so representing it by its likelihood, or by the probability
of paternity, will only ever be an artificial approximation.

In the two systems where comparisons have been made,
marker-based estimates of selection seem generally similar
in magnitude to estimates based on categorical paternity
assignment, but potentially with greater statistical power
(Fig. 3). However there is no doubt that further compari-
sons from a range of systems are necessary. Ultimately, an
invaluable assessment of the marker-based selection esti-
mates’ potential would comprise a three-way comparison
of selection estimates for a single system derived from the
following: (i) estimates of fitness when parentage is known
from means other than genetic markers (for example
through reliable behavioural estimates, or using realistic
simulated data); (ii) estimates of fitness when parentage
is assigned categorically to individuals using molecular
markers, equivalent to the pedigree-reconstruction estimates
above; and (iii) the marker-based estimates of selection.
Conclusions may vary depending on parameters such as
the assignment power of the markers and in particular the
genetic similarities between candidate males, and so forth.
However such comparisons would address the as yet
unanswered question facing researchers with molecular
marker data on their hands: whether to measure selection
using a categorical or fractional approach. In summary,
marker-based selection methods offer an intuitively appeal-
ing use of molecular data, and may well turn out to be of
considerable value for the field ecologist faced with no other
means of assessing fitness in a population, but at present
we know too little about their performance and properties
to conclude that they are superior to traditional techniques.

General concerns

Genotyping errors

Genotyping error and mutation problems have been
highlighted in DNA marker-based studies of relatedness
(see Blouin et al. 1996; O’Reilly et al. 1998) and solutions
to deal with them have been integrated into parentage
analyses (see Sancristobal & Chevalet 1997; Marshall et al.
1998; Duchesne et al. 2002; Jones & Ardren 2003; for a
review). It is therefore surprising to note that none of the
reviewed approaches for estimating either QG parameters
or selection gradients explicitly takes into account geno-
typing errors and mutations. Marker-based measures will
be downwardly biased due to genotyping errors, which will
in turn underestimate the covariance between relatedness
and phenotypic similarity, and also underestimate the
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variance in relatedness. These genotyping errors will also
obviously impact parentage assignment used either for
animal models or selection analyses.

Some recent results obtained from simulation work done
on sibships reconstruction underline the fact that genotyping
errors and mutations are worrying issues. Painter (1997)
showed that the presence of mutations could alter the assign-
ment results, increasing the number of potential relation-
ships by up to six times. Recent simulations conducted by
Butler et al. (2004) explored the performance of different
algorithms (see section 3) given the occurrence of different
types of errors (null alleles, genotyping errors and mutations).
They concluded that while all methods were quite robust to
the presence of null alleles, they were very sensitive to both
genotyping errors (allele-designation errors and single-
locus inversion between individuals) and mutations in the
data set. Depending on the type of errors (excluding null
alleles) and algorithm used, on average between 70%
and 98% of individuals (initially correctly classified and
randomly affected by a given type of error) were classified
incorrectly (Butler et al. 2004).

However, solutions may be emerging, as recent algorithms
are aimed at tackling the typing error problem. Specifically,
Wang (2004) recently presented the first algorithm per-
forming sibship reconstruction from genetic data using a
likelihood method that allows for common microsatellite
typing errors. This method can be used to infer full- and
half-sibships accurately from marker data with a high error
rate and to identify typing errors at each locus in each recon-
structed sib family. Wang (2004) suggests that this algorithm
can also be modified to be used with dominant markers such
as amplified fragment length polymorphism (AFLP), sep-
arately or with codominant markers in sibship inference.

Environmental effects

All the QG parameter estimates in the studies described
above are derived from analysing the phenotypic covariance
between individuals of differing degrees of relatedness.
These estimates will therefore be upwardly biased by any
nongenetic source of similarity between relatives, such as
maternal effects or common environment effects. The problem
applies to all approaches, and the different methods have
their respective ways of dealing with it. Typically these are
based on the inclusion of additional terms in the model
to account for the environmental effects. For example, to
quantify the additional covariance that may result between
groups of full-siblings sharing a common environment, an
additional term of group identity can be added to Ritland’s
regression equations (see Frentiu 2004), or an additional
random effect of group identity can be added to an animal
model (Kruuk 2004).

Similarly, estimates of selection based on either explicit
parentage assignment or on the likelihood methods may

be equally biased by environmental covariance with fitness:
if some aspect of environmental conditions affects both
the phenotypic traits of interest and also, independently,
affects breeding success, this generates a statistical associ-
ation between phenotype and trait that overestimates the
potential of the trait to respond to selection (note that
traditional estimates of selection based on fitness determined
without the use of molecular tools are also prone to such
bias — see Rausher 1992; Stinchcombe et al. 2002).

Conclusions and recommendations

The current review underlines the fact that pedigree-free
methods might not be as useful as previously thought for
QG parameters estimations, despite the development and
availability of sufficiently powerful genetic markers in
many systems. Indeed, given the comparative unreliability
of marker-based direct assessment methods for estimating
such parameters (see Thomas et al. 2002; Wilson et al. 2003b),
the determination of a reliable pedigree is likely to be more
useful in a typical population characterized by low levels
of average relatedness.

MCMC procedures to reconstruct sibships seem to pro-
vide an improved way of estimating variance components
compared to pedigree-free techniques. However, it is
surprising that all of the techniques to reconstruct groups
of related individuals reviewed here (see section 3) only
attempt to identify groups of siblings, rather than parent–
offspring relationships, or more distant relatedness (but
see Thomas & Hill 2002 who have extended their first
algorithm to detect full-sib families nested within half-sib
families). Potential problems could arise, for example, if a pair
of individuals are identified as full-sibs, but could instead
be parent and offspring. Maximum-likelihood approaches
should be readily extendable to incorporate prior informa-
tion that may be relevant to assigning relatedness such as
the date of birth, the sex of individuals, or information about
mating behaviour. Other algorithms designed for specific
situations are available which could, given the appropriate
circumstances, be used for a pedigree reconstruction prior
to quantitative genetics analyses. For example, Nürnberger
et al. (2005) present a method for identifying parents and
full-sib groups amongst samples of adults and offspring in
hybrid populations characterized by high linkage disequi-
librium; their motivation was to quantify assortative
mating amongst the adults, but the methods could equally
be used for estimating QG parameters for phenotypic traits
measured in the populations.

In cases with sufficient pedigree knowledge or effi-
cient sibship reconstruction, the animal model provides a
powerful approach for the estimation of quantitative genetics
parameters. As such, important advances in the field of
assessment of parentage confidence of assignments have
recently been made (see Jones & Ardren 2003). However,
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there is still a need to develop a user-friendly program that
includes both parentage and sibships assignments. Recent
work on the available sibship reconstruction algorithms
also suggests that a combination of some approaches
could provide the best method for the future, especially if
methods to incorporate genotyping errors can be imple-
mented into new or existing software.

Recommendations about which methodology to use are
therefore highly dependent on what kind of complementary
information exists. In any case, it would be recommended
to make maximum use of independent non-marker-based
pedigree information, as for example when including
known maternal identities in pedigree reconstruction. It
should also be noted that to date, most studies have opted
for either parentage assignment or sibship reconstruction
to estimate quantitative parameters. However, recent works
reviewed here (see Thomas et al. 2002; Coltman et al. 2003)
suggest that a hierarchical application of different techniques
in pedigree reconstruction could be profitable: (i) use
parentage analysis and other available information to
reconstruct pedigree links as much as possible, and then
(ii) apply sibships reconstruction to complement this infor-
mation. There are, however, practical issues that will still
need to be addressed with such approach though, such as
how to integrate potentially conflicting results obtained from
the parentage analysis and the sibships reconstruction
procedures. For example, what to do if a group of full-sibs
that was identified among individuals with unresolved
paternity but the parentage analysis suggested that some
members of that group have different mothers? Such an
issue should be addressed by a program that would include
both parentage and sibships assignment procedures.

The methods discussed for estimating selection raise
interesting opportunities, even if their evaluation would
greatly benefit from attempts to apply these techniques in
systems other than plants (though these would at the same
time provide necessary comparative results). It is interesting
to note that there is a similarity between choices for
estimating quantitative genetic parameters and selection
gradients. In both cases one has the choice between assign-
ing either sibships or parentage to provide explicit pedigree
information or a discrete measure of fitness, or alternatively
using an approach with no reliance on explicit assignment of
relationships or pedigree reconstruction. While the explicit
pedigree reconstruction seems to be a better approach for
estimating quantitative genetic parameters, it is too early
to judge the relative merits of these two options for the
estimation of natural selection.
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