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Microarray technologies enable genome-scale expression
measurements. Already proved to be of value for the functional
analysis of individual genes and biological processes, the
application of expression profiling to disease gene discovery is
now growing in importance and practicality. 
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Abbreviations
CGH comparative genomic hybridization 
NF2 neurofibromatosis type 2
PARP poly(ADP-ribose) polymerase 
TD Tangier disease

Introduction
Positional cloning projects have been greatly facilitated by
the availability of increasingly precise maps and sequence
databases for diverse species. This same avalanche of
genomic data has inspired an intense effort to study
aspects of genome function in a high-throughput fashion.
The parallel analysis of gene expression has emerged as
one of the most productive embodiments of this approach. 

Practical technologies for large-scale gene-expression
analysis are now being widely implemented. Microarrays
comprising either oligonucleotides or cDNA fragments
representing thousands of genes are well suited to the
analysis of multiple samples [1,2]. To obtain genome-scale
expression data, mRNA from the source of interest is con-
verted to an appropriately labeled form and hybridized to
the microarray. Both radioactive and fluorescence-detec-
tion strategies are in use to measure the resulting
hybridization signal. The resulting raw data — an image
obtained from a fluorescence scanner or phorphorim-
ager — is processed with computer software to generate a
spreadsheet of gene-expression values. The application of
statistical techniques to microarray data allows classifica-
tion and class discovery within a group of samples, and
clustering of genes according to their pattern of expression.

Microarrays have been successfully applied to characterize
biological processes and to dissect pathways downstream of
a particular gene of interest. Studies in the yeast
Saccharomyces cerevesiae, with its relatively small genome and
highly tractable genetics, have led the way and continue
with recent reports on signal transduction [3], meiosis [4]
and transcript localization [5]. Despite the challenges posed
by their genome sizes, large-scale expression analysis in
mammals is also becoming increasingly productive.

As the technology for microarray analysis has matured and
disseminated, new applications continue to be developed.
One frequently discussed area is the potential use of
microarray expression analysis in projects to positionally
clone and discover disease genes. Although reviews of this
topic outnumber reports of concrete achievement, it is
appropriate to examine the state of the art and to consider
how microarray analysis might accelerate these types of
research. I discuss these points, together with recent
developments in microarray research, in this review. 

How might microarrays help find hereditary
disease genes?
Several major approaches to locating hereditary disease
genes might be imagined. In the simplest case, the target
gene of interest might be identified directly by characteristic
changes in expression level across a series of samples.
Alternatively, statistical analysis of microarray data might
aid gene discovery by revealing pathways related to the target
gene and facilitating identification of candidate genes. 

Microarrays can also be used to analyze genomic DNA
rather than mRNA. This is illustrated by the special case of
copy-number change in cancer, where it is possible to use
array-format comparative genomic hybridization (CGH) to
define genes associated with cancer progression [6••,7,8•].
In CGH, gene copy number is measured in a DNA sample
labeled with one fluorochrome by comparison to the signal
obtained by simultaneous hybridization of normal DNA
labeled with a second fluorochrome. In principle, copy-
number data can be linked to expression data to define a
list of candidate target genes associated with gain of chro-
mosomal regions [9•,10]. Although there is no example to
date, tumor suppressors might be mapped by linking loss of
gene expression to regions of deletion in tumors. 

Of course, microarrays can be used as sophisticated dot
blots to screen arrays of clones isolated with techniques
such as RDA [11]. (RDA [representational difference
analysis] is a PCR-based subtraction technique that can be
used to isolate DNA fragments that vary in abundance
between two sources.) Stephan et al. [12] have identified
exons of the Niemann–Pick Type C disease isolated from
arrayed genomic sequences using mRNA from cells differ-
entially expressing NPC1. Finally, genes might be linked
to specific phenotypes, particularly in yeast, through 
methods that allow genome-wide mutational screens using
microarrays as a readout [13]. 

Finding the best candidate
It is enticing to hope that analysis of microarray data might
lead to the direct identification of disease genes. Ideally, one
would compare a group of samples of varying genotype and
identify good candidate genes by their pattern of gene
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expression. The expected signature of a mutant gene is
reduced expression level in samples with the abnormal
allele. For this strategy to work, the mutant allele would have
to be either deleted or result in a poorly expressed transcript.

Fortunately, the phenomenon of nonsense-mediated
decay of mRNA gives some reason to hope that this result
might actually be achieved. Nonsense-mediated decay
(reviewed in [14]) results in the degradation of certain
mRNAs containing premature termination codons. This
phenomenon has been observed in a number of disease
genes [15,16]. 

In addition, abnormalities in 3′-untranslated region struc-
ture that interfere with normal polyadenylation may also
lead to reduced survival of transcripts [17]. A reduction in
steady-state mRNA levels of disease genes cannot be
assumed, however, because the competence of a transcript
to undergo nonsense-mediated decay is variable and some
mutations may result in exon skipping [18,19], as has been
shown by Liu et al. [20] for the BRCA1 gene. This strategy
also requires a sufficient number of samples from cells or
tissues affected by the disease to help optimize the down-
stream data analysis. 

Although obvious, an additional requirement of expres-
sion-based strategies is that the target gene is actually
represented on the microarrays used. Although arrays of
more than 10,000 genes are commonplace and complete
genome microarrays can be anticipated, they are not yet
routinely available. It is also probably unrealistic to assume
that only a single gene or a few genes will stand out from
the crowd with sufficient clarity to allow easy candidate
selection. More likely, a strategy combining positional
information with expression information will be necessary.

This combination of approaches has been used by Lawn
et al. [21••] in the discovery of the Tangier disease (TD)
gene ABC1. Microarray analysis led to the generation of a list
of 175 cDNAs underexpressed by 2.5-fold or more in the
fibroblasts of an affected individual. By combining this data
with linkage information that localized the disease gene to
chromosome 9q between the markers WI-14706 and
WI-4062, the candidate list was narrowed sufficiently to
identify the gene ABC1, which did indeed carry mutations. 

Notably, Lawn et al. [21••] used commercial cDNA arrays
containing 58,800 cDNAs, which presumably provided a
reasonably thorough genome scan. One might imagine that
regional searches could be made by constructing targeted
microarrays covering a particular candidate region. This
has been done for the X chromosome and for chromosome
17q [9•,22••].

It is important to bear in mind that almost all research
employing microarray expression analysis depends heavily
on statistical analysis to extract the most useful information
from the huge number of data points generated. This means

that any investigator attempting to use microarrays for 
disease gene discovery will also seek to go beyond this direct
type of search and also examine the broader effects of muta-
tion on gene expression in samples from affected individuals. 

If one were not able to identify easily a candidate gene by
virtue of its underexpression, perhaps the recognition of
pathways altered consistently across a set of specimens might
lead to the identification of good candidate genes or, at the
very least, might illuminate some aspects of pathogenesis. 

Finding the disease pathway affected by
known genes
The complexity of microarray data is illustrated by anoth-
er interesting feature of the TD data — the overexpression
of 375 cDNAs by 2.5-fold or more. This result, revealing a
total of 550 cDNAs with altered expression, is probably
typical of what might be expected in most projects. In
addition to innumerable technical factors, variations in
gene expression across samples might be due to random
fluctuations or confuting variables such as age, sex, site of
sample and irrelevant genetic variations. Still, it would
seem reasonable to suppose that the presence of a muta-
tion in a pathway might frequently lead to secondary
events affecting the level of expression of many other
genes functionally connected to the disease gene. 

Most published examples attempting to place genes from
microarray data on samples carrying mutations into coherent
pathways are in the setting of model systems for which the
mutation is already known. McNeish et al. [23•] have exam-
ined a mouse model of TD with microarrays containing
11,000 genes and have identified 131 genes with greater
than 1.8-fold differential regulation, many of which can be
grouped into a few function-related categories. Their study
demonstrates how studies of a relatively tractable experi-
mental model can enhance the value of data obtained from
human samples.

Likewise, Soukas et al. [24•] examined gene expression in
white adipose tissue from mice expressing varying levels of
the leptin gene. Seventy-seven genes were dysregulated by
threefold or more in these ob/ob mice, including a number of
key genes in fat metabolism. One cluster of genes was coor-
dinately regulated by SREBP-1/ADD1, but the regulating
mechanisms linking genes in several other clusters remain
unknown. Although the complete pattern of changes
observed cannot be explained as yet, the relevance of the
leptin gene to fat metabolism is amply demonstrated.

Simbulan-Rosenthal et al. [25•] examined fibroblasts from
mice deficient in poly(ADP-ribose) polymerase (PARP)
with microarrays covering 11,000 genes and identified 91
genes differentially regulated by at least twofold relative to
wild-type fibroblasts. About 40% of these could be related
to either the cell cycle or remodeling of the cytoskeleton or
extracellular matrix — processes known to be associated
with PARP function. 
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Callow et al. [26] examined livers from apolipoprotein AI
knockout mice, scavenger receptor B1 transgenic mice and
wild-type mice on microarrays containing 5600 cDNAs.
They used t-test statistics to identify a small number of
genes that differed significantly across these conditions.

For disease gene discovery, the interpretation of expres-
sion data in terms of pathways is more difficult because
there is no a priori knowledge of the disease gene function.
This leads to a consideration of the process of grouping dif-
ferentially expressed genes into pathways.

Placing genes in pathways to gain clues about
unknown genes
Can pathways actually be discerned from microarray data?
It is worthwhile considering some of the individual steps in
the process of deducing pathway information from these
data. Clustering of genes into co-regulated groups is com-
putationally straightforward and readily generates this type
of information [27]. Similarly, there has been great success
in classifying biological samples from microarray data, 
particularly for cancer specimens [28•,29••–31••,32]. These
studies are promising in identifying critical genes for can-
cer progression at the expression level, although these are
not necessarily ‘disease genes’ in the genetic sense [33••]. 

Nonetheless, Hedenfalk et al. [34••] have even shown that it
is possible to sort breast cancer specimens according to the
presence of hereditary mutations in BRCA1 or BRCA2. One
of the most striking results in their study was the demon-
stration that a sample that clustered with those from patients
carrying mutations in BRCA1 lacked a BRCA1 mutation but
was highly methylated at the BRCA1 promoter.

It might be hoped that this approach could aid complex
disease gene discovery by sorting samples into groups that
share a common genetic defect. When combined with
positional data from linkage analysis, such an approach
might be expected to take on a significant role in the study
of complex disease. 

In contrast to clustering samples and genes, the interpreta-
tion of expression data to infer the pathway affected by a
disease gene mutation is much more problematic. The ini-
tial problem one faces in this type of analysis is the limited
annotation of the genome. When examining an expression
database, one immediately encounters difficulty in placing
genes into functional categories. This is beset with a num-
ber of obstacles, the first of which are the numerous aliases
that confuse gene nomenclature.

The introduction of two on-line resources, LocusLink and
Refseq, have gone a long way towards overcoming this prob-
lem by providing a unique identifier and curated sequence
for each gene [35]. This is absolutely critical to the next
phase of analysis, which is the cross-reference to other data-
bases of gene function including, most importantly, literature
databases. Frequently, different functions or interpretations

of gene function are linked to distinct aliases for a given
gene. Only by thoroughly combing the literature, can the
most comprehensive picture of gene function be obtained.
Substantial efforts are being made to organize the genes of
known function into meaningful categories.

Although a detailed discussion of the problem of gene anno-
tation is beyond the scope of this review, the public
availability of certain resources should be noted. In particu-
lar, the Gene Ontology consortium uses a common language
to organize functional information in all species [36].
Currently, the Gene Ontology database contains database
links for Drosophila, S. cerevesiae, mouse and Caenorhabditis
elegans. Genes are categorized in three hierarchical schemes
according to molecular function, biological process and 
cellular component. 

Methods to process groups of genes with respect to 
literature databases are also under development [37–39].
One system, High-density Array Pattern Interpreter
(HAPI; http://array.ucsd.edu/hapi/), is publicly available.
It is anticipated that search engines that can carry out
these computations with the output of expression data-
bases will significantly accelerate the process of organizing
data from microarrays. 

Although it is relatively straightforward to identify lists of
genes that are co-regulated across a set of samples, this
may not be a sufficiently sensitive method to extract func-
tionally related genes. Intensive efforts to establish
alternate computational methods are continuing. 

Seungchan et al. [40] have described a multivariate tech-
nique that has the potential to identify relationships
among genes that are refractory to methods based on linear
correlation. Akutsu et al. [41] have proposed a method for
modeling gene expression in terms of Boolean networks,
whereas Friedman et al. [42] have proposed a Bayesian
method. Hastie et al. [43] have described a method termed
‘gene shaving’, which differs from hierarchical clustering in
that genes may belong to more than one cluster. Brown
et al. [44] have advocated the use of method based on the
theory of ‘support vector machines’, a computer learning
method that they have adapted to the functional catego-
rization of expression data. 

Finding regulatory motifs
One great challenge remaining in the analysis of mam-
malian expression data will be to link this information to
regulatory elements in the genome sequence. Promising
results in yeast continue to appear. Iyer et al. [45••] have
taken advantage of the small size of the yeast genome to
array non-coding DNA and identify the genes regulated
by the cell-cycle transcription factors SBF and MBF. Ren
et al. [46••] have achieved similar results for Gal4 and
Ste12, and Livesey et al. [47] have identified the response
element configuration and genes responsive to the mouse
homeobox gene Crx.
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The development of progressively more sophisticated
computational methods increases optimism that genes
related to a phenotype can be accurately extracted and
placed in functionally related groups to help generate
new hypotheses. Even with this goal accomplished, one
would expect that the effects of mutation on one bio-
chemical pathway will radiate to affect numerous other
pathways. Identifying the pathway primarily affected will
be a significant challenge. 

Using microarrays to map genomic DNA
Although using microarrays to identify regions of copy-
number change in cancers has received the most
attention, array format CGH might also be useful for
mapping hereditary disease genes. Bruder et al. [48••]
have used microarrays tiled across a 7-Mb region includ-
ing the neurofibromatosis type 2 gene (NF2) to analyze
DNA from 116 NF2 patients. Using this exquisitely accu-
rate system, they were able to identify 24 patients with
gene deletions and show that there was no correlation
with disease severity. 

In principle, this type of approach could be applied to a
region containing an unknown disease gene. Because posi-
tional cloners frequently assemble contigs covering regions
of linkage, the availability of genomic clones may not be
problematic. However, the technology for arraying and
accurately determining copy number in this setting is still
confined to a few laboratories. 

Conclusions
Unquestionably, large-scale expression analysis is now
established in the study of genome function. The power of
this approach continues to be enhanced by technical
advances and, importantly, by the development of very
large coherent expression databases from samples collect-
ed across a broad range of conditions [49••]. The recent
report from Shoemaker et al. [50] points to the future with
microarrays composed of over one million oligonucleotides
representing 442,785 exons predicted from the draft
human genome sequence. These developments suggest
that microarray analysis will increasingly merit considera-
tion as an ancillary technique to facilitate hereditary
disease gene discovery. 

Update
Loftus and Pavan have recently used melanocyte-specific
microarrays to identify a mouse coat color gene (S Loftus,
W Pavan, personal communication).
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