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ARTICLE INFO ABSTRACT

Keywords: Among John Saunders' many seminal contributions to developmental biology, his discovery of the limb ‘zone of
ZPA polarizing activity’ (ZPA) is arguably one of the most memorable and ground-breaking. This discovery
Sonic hedgehog introduced the limb as a premier model for understanding developmental patterning and promoted the

Limb development
Digit patterning

concept of patterning by a morphogen gradient. In the 50 years since the discovery of the ZPA, Sonic hedgehog
(Shh) has been identified as the ZPA factor and the basic components of the signaling pathway and many

aspects of its regulation have been elucidated. Although much has also been learned about how it regulates
growth, the mechanism by which Shh patterns the limb, how it acts to instruct digit ‘identity’, nevertheless
remains an enigma. This review focuses on what has been learned about Shh function in the limb and the
outstanding puzzles that remain to be solved.

1. Introduction

The limb has served as a major and enduring model for studying
developmental patterning and morphogenesis, partly owing to the
seminal contributions of John Saunders that identified early signaling
centers and highlighted its utility as a model amenable to experimental
manipulation in the chick. The paired limbs in tetrapod vertebrates
share a common basic blueprint, comprised of three major proximo-
distal (PD) components: single stylopod (upper arm humerus in
forelimb), paired zeugopod (radius and ulna in forearm), and multiple
autopod (hand plate) elements (Fig. 1). Much attention has focused on
the autopod elements, ranging from one to five digits in extant
tetrapods with distinct anterior-posterior (AP) morphologies from digit
1 (thumb) to digit 5 (pinky). AP patterning of distinct digit ‘identities’,
initiated by ZPA signaling, is a major target of evolutionary functional
adaptations and, being a bony structure readily appreciated in the fossil
record, the limb has consequently become a preeminent model for evo-
devo studies (Schneider and Shubin, 2013; Zuniga, 2015). With the
identification of Shh as the endogenous ZPA signaling molecule, digit
patterning has also become a model system for uncovering the normal
function of Hedgehog (Hh) signaling factors, which play key roles in
multiple developmental processes and in adult homeostasis and
disease, including neoplasia (Alman, 2015; Briscoe and Therond,
2013; Petrova and Joyner, 2014).

In the 20+ years since the identification of Shh, great strides have
been made in understanding the cellular mechanics of Hh transduction
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and transport, including the discovery of cilia (Goetz and Anderson,
2010; Huangfu and Anderson, 2006; Sasai and Briscoe, 2012) and long
filopodia for secretion that may obviate the need for diffusion in long-
range signaling (Sanders et al., 2013). Major advances in uncovering
the regulation of ZPA-selective Shh expression by remote enhancers
and the factors involved (Lettice et al., 2003, 2012) have also been
achieved. Yet, how Shh signaling acts to regulate digit identity is still
largely a mystery. This review focuses on recent insights and remaining
questions on how Shh instructs digit pattern.

2. Historical overview: from ZPA and the morphogen
concept to Shh

Among John Saunders' major contributions to the field of limb
development were the discovery and characterization of the two major
signaling centers that orchestrate early limb bud patterning and
growth: the apical ectodermal ridge (AER), a specialized columnar
ectoderm running along the distal limb bud margin and source of Fgf
signals critical for PD outgrowth (reviewed by Verheyden and Sun in
this special issue), and a functionally-defined region of mesoderm in
the posterior-distal limb bud that became known as the ZPA (Saunders,
1948; Saunders and Gasseling, 1968). In the course of grafting
experiments to investigate the basis for a posterior necrotic zone
(PNZ) present in mesoderm along the posterior margin of the chick
limb bud, John Saunders made the unexpected discovery that grafts of
the presumptive PNZ area under the AER could induce mirror-image
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Fig. 1. Morphologic features of basal pentadactyl limb and digit adaptations in chick, lizard and several mammalian species in which limb patterning has been examined. Diagram of
basal pentadactyl limb components showing digits 1 through 5, from anterior to posterior, having phalangeal formulas of 2-3-4-5-3. Schematics of autopod morphology for the different
species shown are not drawn to same scale. Numbers indicate digit type (d1-d5) and numbers in parentheses indicate phalangeal formulas. *indicates vestigial digits (dew claws).
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Fig. 2. Saunders' ZPA grafting experiment and models for Shh function in patterning. A. grafting ZPA region to the anterior margin of another limb bud results in mirror-image
duplicated digits. Note that digit types in chicken wing are traditionally assigned as 2, 3, 4 (as shown in A), while recent studies attribute them to 1, 2, 3 (Towers et al., 2011) (as used in
B). Color coding indicates specification of particular digit identity by exposure to either different levels or duration of Shh signals, as indicated in graphs in B. B. Graphs B1-B4 represent
different models for specification of AP digit types by Shh signaling. Blue area represents the concentration or temporal range of Shh (orange line) required to specify the most posterior
digit (digit 3 in these graphs), white the middle digit (digit 2), and red the most anterior digit (digit 1). B1. Spatial morphogen model: Digits are specified by different Shh signal levels
that decline with increasing distance from the source (ZPA). B2. Temporal integration/promotion model: Digits are specified by different durations of Shh exposure, determined by
growth and displacement away from short-range signaling near the source (ZPA). With increasing exposure duration to Shh, digit progenitors may be sequentially promoted (from digit
1 to 2 to 3 identity). B3. Biphasic model: Digit progenitors are specified early by very transient Shh exposure (early phase), possibly by a spatial Shh concentration gradient (shown), or
by a relay mechanism (as in B4). Expansion of these specified progenitor ‘zones’ requires sustained Shh exposure over the entire duration of its expression to produce all digits (late
phase). B4. Relay model: The relay graph shows one hypothetical example of a possible relay mechanism, in which high (P) or low (A) Shh levels in the early limb bud differentially
induce secondary target relay signals (e.g. signal “X”) that specify different digit types downstream of Shh, or may act in conjunction with Shh.

digit duplications in the host limb bud (Fig. 2A) with inverted AP
polarity (posterior-most induced digits always nearest to the graft)
(Saunders and Gasseling, 1968). Because of these attributes, Saunders
named it the “Zone of Polarizing Activity” (Balcuns et al., 1970).
Interestingly, Saunders also noted that the AER immediately overlying
these ZPA grafts became attenuated, suggesting a negative regulatory
interaction between these signaling centers; an important point that

was not followed up on until much later (see Section 8 below).
Saunders' discovery was a major milestone in developmental
biology that fueled interest in digit AP patterning as a model for
morphogen function and the ZPA factor as a likely candidate to act as a
long-range signal in a graded distribution. Lewis Wolpert proposed
that ZPA signaling provides positional information to responding cells
in a concentration-dependent manner (Wolpert, 1969). Wolpert's
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morphogen gradient model became known as the French flag model,
with the 3 color zones representing different AP concentration-thresh-
olds of the diffusible posterior ZPA morphogen providing positional
information that patterns digit progenitors to form morphologically
distinct digits along the limb AP axis (Fig. 2B-1). This model gained
further support from work showing dosage-dependent effects by
grafting different ZPA cell numbers (Tickle, 1981; Tickle et al.,
1975). The identification of other embryonic tissues with ZPA-like
activity when grafted in the limb, including the node/organizer and
notochord, further suggested that a common morphogen signal might
polarize the primary embryo axis, the dorsoventral neural tube, and the
limb AP axis (Hornbruch and Wolpert, 1986; Saunders and Gasseling,
1983; Wagner et al., 1990), highlighting the utility of the limb as a
general model for understanding organ morphogenesis.

Early screens for small diffusible molecules that might act as the
ZPA signal led to the discovery of Retinoic acid (RA) as a promising
candidate able to induce mirror-image digit duplications in a concen-
tration-dependent manner (Tickle et al., 1982), but was later found to
act by inducing a new ZPA in host tissue (Noji et al., 1991; Wanek
et al., 1991). Subsequent efforts focused on identifying homologs of
Drosophila developmental control genes encoding secreted factors
involved in regulating cell fate and morphogenesis. Among Hh homo-
logs identified in several vertebrates (Chang et al., 1994; Echelard
et al., 1993; Krauss et al., 1993; Riddle et al., 1993; Roelink et al.,
1994), Shh was expressed in several tissues with organizer and ZPA-
like activity (including posterior limb bud), and was induced by RA.
Furthermore, Shh protein-loaded beads or Shh-expressing cell pellets
both recapitulated digit duplication phenotypes in a dosage-dependent
manner when placed in anterior limb bud (Chang et al., 1994; Riddle
et al., 1993; Yang et al., 1997), and substituted for endogenous ZPA
activity in place of posterior mesoderm in the chick limb (Ros et al.,
2003). Molecular genetic studies in mouse have likewise confirmed the
critical role of Shh in regulating digit number and pattern, and
uncovered a major role for downstream target de-repression in digit
formation discussed below (Chiang et al., 2001; Krauss et al., 1993;
Litingtung et al., 2002; te Welscher et al., 2002b).

3. Shh pathway and the role of the Gli3 effector in the limb

A large body of work in both Drosophila and several vertebrates has
illuminated the basic signal transduction components critical for Hh
pathway activation (reviewed by (Briscoe and Therond, 2013; Ingham
et al., 2011; Varjosalo and Taipale, 2008)). In brief, binding of Hh
ligands to Patched receptors (Ptchl is the major mouse receptor)
releases the transmembrane protein Smoothened (Smo) from tonic
inhibition by Ptch. Through a series of steps modulating several
kinases, Smo activation blocks the proteolysis of the nuclear Hh
transcriptional effectors Gli2 and Gli3, thereby preventing conversion
of full length Hh target activators (Gli2A, Gli3A) to truncated tran-
scriptional repressors (Gli2R, Gli3R). Since Shh activity blocks the
production of Gli3R, Shh and Gli3R form opposing gradients across the
limb bud AP axis (Wang et al., 2000). Although pathway components
and regulation are remarkably conserved between Drosophila and
vertebrates, in vertebrates the Shh-Ptchl receptor interaction and
downstream events including Gli2/3 processing all take place in
primary cilia (reviewed by Goetz and Anderson, (2010) and Huangfu
and Anderson (2006)).

Both the mouse Shh knockout (Chiang et al., 2001; Kraus et al.,
2001) and a chick Shh null mutant (Ros et al., 2003) display long-bone
limb abnormalities; strikingly, autopod formation is virtually absent in
the forelimb, and reduced to a single dysmorphic digit in the hindlimb,
which has been interpreted as digit 1 based on marker gene expression
(Chiang et al., 2001). Of the 2 nuclear Hh transducers, Gli3 has the
strongest repressor activity and Gli2 is the strongest activator (Bai and
Joyner, 2001; Sasaki et al., 1999). Glil is not regulated by proteolysis,
but is itself a direct transcriptional Hh target as well as a constitutive
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activator of Hh-targets (Bai et al., 2002; Sasaki et al., 1999). Glil is
largely dispensable for normal limb development, although subtle digit
phenotypes occur in Glil null mutants in the context of other pathway
mutations (Park et al., 2000). Mouse mutant analyses have demon-
strated that Gli3 plays the major role in the limb, whereas Gli2 plays a
minor role revealed in compound knock-outs (Bowers et al., 2012; Hui
and Joyner, 1993; Mo et al., 1997). Loss of Gli3 results in polydactyly
and a partial loss of distinctive AP pattern, suggesting that a Gli3R
gradient may both restrain digit number and regulate digit AP polarity,
corroborated by analysis of Gli3R protein levels across limb buds in
chick and mouse (Wang et al., 2000). Furthermore, Gli3 is epistatic to
Shh. The Shh;Gli3 compound knockout has a polydactylous limb
phenotype identical to the Gli3 mutant alone, indicating that the major
role of Shh in the autopod is to modulate Gli3R formation (Litingtung
et al., 2002; te Welscher et al., 2002b). Whether a GliR gradient alone
suffices to impart AP polarity, or graded GliA contributes as well,
remains an open question. To definitively settle this issue will require
the selective removal of Gli2A, Gli3A without perturbing graded GliR
production. The selective removal of all GliR, using a Glil (activator)
knock-in to replace Gli2 together with Gli3 deletion, does not restore
normal AP polarity (Bowers et al., 2012).

4. Models for Shh signal integration in limb patterning

Manipulation of Shh activity in the chick limb has produced results
strongly supportive of a morphogen model of action (Fig. 2B-1). An in-
depth examination varying the amount, duration, and range of Shh
exposure clearly demonstrated dosage-dependence of both digit num-
ber and polarity on each of these parameters (increased digit number
and more ‘posterior’ digit types induced by higher dosage, longer
exposure and/or shorter distance in chick (Yang et al., 1997)).
Surprisingly, however, implantation of cells expressing a membrane-
tethered Shh-CD4 fusion protein also displayed long-range patterning
effects, suggesting a possible relay mechanism, although several
alternate explanations are plausible, for example proteolysis to produce
free ligand, or long-range Shh-Ptch receptor interactions via filopodial
cell extensions (Sanders et al., 2013). Another report showing that
Bmps could potentiate the effects of Shh and reduce the effective Shh
dosage/duration required to induce digit duplications also suggested
the possibility of downstream relay signals (Drossopoulou et al., 2000).
But there has been little follow-up on this finding, in part because the
protean, overlapping, and context-dependent roles of multiple Bmp
family members complicates analysis (Pignatti et al., 2014; Salazar
et al., 2016). Furthermore, removal of Bmp2, the main Shh-induced
Bmp, doesn't alter digit patterning in mouse (Bandyopadhyay et al.,
2006).

Although Shh action as a spatial morphogen signal via graded
diffusion or filopodial delivery is a conceptually appealing model,
several aspects of morphogen gradients are problematic. The limb
bud expands and more than doubles in size during the period in which
Shh is active although Shh expression does not change appreciably,
raising the question of how a stable spatial gradient is maintained
during substantial growth. In addition, modeling of morphogen
gradients indicates that they are only transiently sustainable and tend
to resolve into bi-stable switches at steady state (Lander, 2011;
Nahmad and Lander, 2011).

Genetic lineage mapping experiments in mouse and pharmacologic
Shh inhibition in chick have suggested one potential alternative
mechanism in which temporal integration of Shh signals leads to a
graded response. Lineage tracing of the ZPA using a ShhCre knock-in
allele and RosaLacZ reporter to label Shh-expressing descendant cells
demonstrated that ZPA cells don’t only signal to limb digit-forming
cells, but give rise to all of digits 4 and 5 (Harfe et al., 2004). It was
proposed that a combination of autocrine signaling combined with cell
expansion (and cessation of Shh expression in cells displaced anteriorly
away from the ZPA) would lead to varying temporal exposure to Shh,
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with the anterior Shh-dependent digits (d2,3) specified primarily by
early paracrine signaling and posterior digits (d4,5) specified by
sustained autocrine signaling. Additional support for the idea that
signaling duration, rather than varying Shh concentration, is critical for
specifying positional information to pattern digits came from genetic
experiments in mouse. Deletion of a conditional Shh mutant allele
using ShhCre led to a low-level of residual sustained signaling (due to
the inherent delay in Shh deletion by ShhCre and homeostatic feedback
regulation to generate ZPA cells), and resulted in loss of only a single
anterior Shh-dependent digit (Scherz et al., 2007). Timed removal of
Shh signaling in chick using pharmacologic inhibition of Smo (cyclo-
pamine) results in a posterior-to-anterior order of digit loss, with
progressively earlier Shh pathway inhibition (Scherz et al., 2007;
Towers et al., 2008). In contrast, treatment with the deacetylase
inhibitor trichostatin A or colchicine to inhibit proliferation without
terminating Shh signaling also caused digit loss, but a remaining digit
of posterior-type identity formed (Pickering and Towers, 2016; Towers
et al., 2008). Based on these results, it was proposed that Shh
patterning and growth functions are integrated so that digit progenitors
are both expanded and ‘promoted’ to more posterior identities as the
duration of Shh exposure increases (Fig. 2B-2). Curtailing both
functions leads to anterior digit specification, whereas uncoupling
them by selectively inhibiting expansion leads to posterior specifica-
tion, again suggesting that temporal integration of signaling is required
to specify more posterior identities.

However, genetic analyses of Shh response and the temporal
requirements for Shh function in mouse have yielded results incompa-
tible with a temporal integration/promotion model. Evaluation of Shh-
response at different times in mouse limb buds using a tamoxifen-
inducible Glil1CreER and RosaLacZ to pulse-label responding cells and
their descendants, revealed that the posterior digit progenitors become
refractory to Shh signaling during the “specification” period (Ahn and
Joyner, 2004). Since Glil is a direct target of Shh activation (GliA), this
data is inconsistent with the concept that posterior digit progenitors
are specified by the longest duration of Shh exposure. Such a block to
autocrine signaling is similarly seen in Hh producing cells in
Drosophila wing disc, which are refractory to Hh pathway response
due to a lack of Ci (Gli) expression (Ramirez-Weber et al., 2000), and in
floorplate cells of vertebrate neural tube, which are only transiently Shh
responsive due to down-regulation of Gli2 (Ribes et al., 2010), and may
be a general characteristic of Hh-producing cells. An analogous
situation may exist in the vertebrate limb bud; both Gli2/3 expression
are repressed in the ZPA region (Mo et al., 1997). Indirect evidence in
chick and mouse also supports a Shh-refractory state in Hh producing
cells; ZPA cells and their descendants don't upregulate the mesodermal
Shh target Greml1 in response to Hh signaling (Nissim et al., 2006;
Scherz et al., 2004).

Direct analysis of the temporal requirement for Shh signaling in
mouse limb buds by examining genetic removal of a Shh conditional
allele, using a tamoxifen-inducible Cre expressed prior to and inde-
pendent of Shh, likewise showed that the most posterior digits were not
the most sensitive to Shh removal after expression had initiated (Zhu
et al., 2008). Although progressively more digits were lost as Shh was
removed at earlier times, the order of digit loss reflected the normal
order in which their progenitor condensations form, rather than their
positional identity. These results were more consistent with a failure of
AP expansion when Shh expression was truncated, because the latest
forming condensations were the first lost, and correlated with both G1
cell cycle arrest and apoptosis. In particular, the posterior most digit
(digit 5) was not lost first, and marker analyses suggested that digit 4
required only the shortest Shh exposure to be specified (Zhu and
Mackem, 2011; Zhu et al., 2008). An alternate biphasic model was
proposed, in which early transient Shh exposure (~6 h) suffices to
provide positional information and specify digit progenitors, while
sustained exposure is required to expand the cell population to form
the normal complement of 5 digits (Fig. 2B-3). Additionally, compar-
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ison of mutants with altered Shh levels in which either posterior or
anterior digits were selectively lost revealed that posterior digit
specification required high transient Shh levels when expression first
initiates, whereas anterior digits were preferentially lost when Shh
levels declined after this transient period (Zhu and Mackem, 2011).

Although in principle compatible with a spatial morphogen gradient
operating over a very short time window, the biphasic model raises the
possibility of relay signaling as a mechanism for determining positional
differences at early stages (e.g. Fig. 2B-4). As mentioned above, such a
relay has been suggested by certain experiments in chick demonstrat-
ing potentiation of Shh by Bmp signaling (Drossopoulou et al., 2000).
In addition, work in both chick and mouse has provided clear evidence
for ongoing late regulation of digit identity that is non-autonomous but
occurs well after normal Shh expression has ceased (Dahn and Fallon,
2000; Huang et al., 2016; Suzuki et al., 2008), indicating the likelihood
of relay mechanisms involving a signal cascade, but the nature of the
factors involved remains contentious.

A recent report examining the surprising result that late removal of
Shh function in chick can produce a post-axial (posterior digit)
polydactyly, highlights negative feedback interactions between AER/
Fgfs and Shh/ZPA that restrain expansion to form more digits
(discussed in Section 8 below), and proposes a different explanation
to reconcile mouse and chick results: that positional signaling is
blunted in mouse by an apparent lack of Shh-responsiveness, allowing
expansion (of multiple digits with digit 2 identity) in the absence of
positional promotion (Pickering and Towers, 2016). This model
assumes that late read-outs of digit specification reflect the effects of
Shh, rather than other late-acting regulators — discussed below.

5. The problem of digit identity as a readout for ‘positional
information’ provided by Shh

To someone outside the field of limb development, it may seem
surprising that the mechanism by which Shh regulates digit identity is
still a matter of debate. The problem that has impeded resolving which
models accurately portray how Shh signaling directs AP patterning is
the nature of the reporter used as a definitive readout for digit identity.
Importantly, in the limb, in contrast to paraxial mesoderm and neural
tube patterning, the final read-out of signaling is a morphologic
‘identity’ of complex structures (digits) having similar tissue constitu-
ents (cartilage, tendons, joints), rather than simply changes in cell fate
per se. This distinction has complicated analysis and interpretation of
ZPA/Shh function despite its attractiveness as a model. The readout, of
necessity, is a late, very delayed assay of how Shh may function to
provide positional information that cannot be assessed until well after
Shh signaling has ceased (several days later in both mouse and chick),
and after late-stage regulatory signals have intervened to regulate final
identity (Dahn and Fallon, 2000; Huang et al., 2016; Sanz-Ezquerro
and Tickle, 2003; Suzuki et al., 2008). Any early reporter would require
the use of marker gene expression, since relying strictly on the position
of early condensations ignores potential transformations in identity.
However, there are currently no definitive markers for digit identity;
those used may correlate with digit identity in the wildtype, but are not
actually required to specify a particular identity, and may be unin-
formative or even misleading in a mutant scenario. For example,
Hoxd13 is expressed exclusively in digit 1 progenitors in the absence of
other 5’Hoxd expression in the wild type; however, Hoxd12 expression
can substitute in the absence of Hoxd13 (Kmita et al., 2002). It can also
be argued that because the morphologic identity of digits being assayed
is based on late emergent differences (number of phalanges, joints) in
structures that are all composed of the same tissue types, it is unlikely
that such early digit-specific marker genes even exist.

Further complicating the use of morphologic identity as a reporter
for early AP patterning, the reliance on such a late readout reflects
post-Shh regulation that may also include the differential regulatory
effects of evolutionary adaptive modifications in final digit morpholo-
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gies. Both of the mainstay embryologic and genetic models for limb
development (chick and mouse) have derived limbs that deviate
substantially from the ancestral pentadactyl “ground state” (see
Fig. 1). The mouse, although pentadactyl, has been criticized for a lack
of easily identified differences in digit morphologies since the non-digit
1 digits are all triphalangeal (carpal/tarsal elements at the wrist/ankle
are distinct). Although the chick hindlimb approximates the ancestral
digit formula, digit number is reduced to four and moreover, much of
the chick work on AP patterning has focused on the forelimb (wing),
which has both a reduced digit number and highly derived, truncated
digits with curtailed phalanx formation.

A complete understanding of the hierarchy of targets acting down-
stream of Shh signaling could provide a framework for unraveling
those that might respond to integration of signaling over time, or act as
tiers in signal relays. Defining their exact roles is also complicated by
the normally tight coupling between Shh roles in regulating mesoder-
mal patterning and growth. Some insights on Shh targets have been
gained, reviewed below, from genetic analyses modifying either signal-
ing levels or response, and genome-wide analysis of Gli3 targets, as well
as studies of evolutionary adaptation. But more such studies aimed at
parsing out the hierarchical cascade of targets are needed.

6. Shh pathway targets in the limb — patterning, expansion,
and feedback circuits

Shh pathway targets in the limb have been identified both from
genome-wide analysis of direct Gli3 binding sites in mouse limb buds
by ChIP-Chip with a Gli3-flag tagged transgene (Vokes et al., 2008)
and from several gene expression analyses following Shh pathway
activation and inhibition (Lewandowski et al., 2015; Lopez-Rios et al.,
2012; McGlinn et al., 2005; Probst et al., 2011; Vokes et al., 2008). The
identification of in vivo limb Gli binding sites revealed over 200 target
genes with strong Gli Binding Sequence (GBS) domains as well as a
similarly large target set lacking GBS, that remain less well character-
ized (Vokes et al., 2008). Additional undiscovered target genes may
derive from binding regions too far removed (>100kbp) from
neighboring genes. The majority of the GBS+ target genes that are
expressed in a posterior Shh-responsive domain are regulated mainly
by de-repression (release from Gli3R). This characteristic of Shh
function in the limb adds an additional level of complexity in analyzing
the role of different target classes. The expression patterns of different
derepressed targets are dictated in part by the particular transcription
factors (TFs) that mediate their positive regulation, and these appear to
differ among targets; consequently, their regulation may occur by
divergent routes (examples shown in Fig. 3). This feature of dere-
pressed targets may also be relevant to patterning by graded Gli3R
activity.

Shh targets include three major functional classes: 1) targets
involved in ‘patterning’ that directly provide positional information
ultimately leading to specific digit identities and/or relays of positional
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cues (eg. AP zones) to other downstream signals; and 2) targets with
roles in limb bud expansion — which includes both direct targets acting
in the mesoderm and relays to the ectoderm to modulate AER/Fgf
function. Considerably more has been learned about the second than
the first group. Yet a third and sizable group are direct targets involved
in the transduction or regulation of the Hh pathway itself (Fig. 4A and
B), contributing to extensive, interconnected feedback circuits and
again, adding to the complexity of pathway functional analysis in the
limb. The elaborate cross- and feedback regulation between Shh itself,
Gli3 expression, and ‘downstream’ targets has made it difficult to neatly
separate the functional contributions of different inputs (Fig. 4B).
These targets include multiple regulators of Shh expression such as
Prdm1 (Robertson et al., 2007), Ets, Etv4,5 (Lettice et al., 2012), Alx4
(te Welscher et al., 2002b), Gata4,6 (Kozhemyakina et al., 2014);
regulators of Gli3 such as Irx3,5 (Li et al., 2014a), Sall4 (Akiyama et al.,
2015) and Tbx3 (Emechebe et al., 2016; Osterwalder et al., 2014); and
regulators of both Shh expression and Gli3R expression/function, such
as Hand2, Hoxd/Hoxa (Chen et al., 2004; Galli et al, 2010;
Osterwalder et al., 2014; te Welscher et al.,, 2002a; Zakany et al.,
2004) and also Gata6 (Hayashi et al., 2016); as well as the Hh pathway
components and modulators Ptch, Boc, Cdo, Gas1, Smo, Hhip (Fig. 4A)
(Allen et al., 2011; Holtz et al., 2013; Izzi et al., 2011; Tenzen et al.,
2006; Vokes et al., 2008).

7. Shh targets involved in patterning limb mesoderm

Of targets potentially regulating digit identity, the 5’Hoxd and
Hoxa genes have been the most highly implicated based on the digit
phenotypes of single and compound mutants (Davis and Capecchi,
1996; Davis et al., 1995; FromentalRamain et al., 1996; Zakany and
Duboule, 1996; Zakany et al., 1997). However, there is no ‘Hox code’;
their targets are as yet poorly understood and the mechanisms by
which they impart early positional cues remain unclear. The biphasic
model, if correct, would introduce an added constraint; the apparent
transient Shh requirement for digit patterning in mouse predicts that
the target class important for early positional information should
become rapidly Shh-independent (or be required only very transiently).
Based on Shh pathway inhibition studies in mouse limb buds cultured
with cyclopamine, very few targets have yet been identified that require
only transient Shh exposure for stable expression (Lewandowski et al.,
2015; Panman et al., 2006), and the 5’Hoxd genes are not among them,
instead requiring sustained Shh signaling. However, a recent analysis
of 5’Hoxd function using genetic manipulation in mouse indicates that
the 5’Hoxd role in patterning may occur relatively late, well after Shh
signaling has ceased, during a Shh-independent Hoxd expression phase
(Huang et al., 2016). This suggests that 5’Hoxd genes may act
indirectly to pattern digits downstream of a signal relay, even though
they are also direct Shh targets.

Bmps have been proposed as synergistic relay signals in patterning
based on manipulations in chick embryos showing that Shh exposure
Hand2 Grem1

Jaﬁg1 Bmp2

GliA & GliR

complex

Fig. 3. Shh activity range: derepression (GliR) vs activation (GliA) targets compared. Examples of Shh target gene RNAs expressed in E10.5 mouse forelimbs (anterior at top and distal
at right of each panel). Bmp2 expression is designated as ‘complex’ because the overall expression domain is determined by both Shh-dependent and independent inputs (Litingtung
et al., 2002; Vokes et al., 2008) and expression is also present in the AER. Images were provided courtesy of J. Lewandoski and S.A. Vokes and are adapted from Lewandowski et al.
(2015), Dev. Biol., 406, 92-103.
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Fig. 4. Shh pathway targets and regulatory networks. Interactions are based on both genetic data and on genome-wide transcriptional and chromatin binding analyses. Blue indicates
pathway inhibitory interactions, red indicates activating interactions, non-colored circle represents genes with complex activities; lines do not necessarily denote direct interactions and
may occur at the transcriptional or protein level; circle sizes have no significance. A. Shh pathway feedback regulation involving signal transduction components. B. Shh pathway
feedback regulation by target TFs. For simplicity, only interactions with Shh/GliA and Gli3R are shown and cross-regulation among targets are not indicated (for e.g. Hand2 also
regulates Irx3,5 and Tbx3). C. Ectodermal-mesodermal feedback loops operating in Shh pathway to regulate AP patterning and expansion. As noted in the text, expression levels are
highly dynamic and some of the regulatory interactions shown occur at different times (e.g. initiation, or termination of feedback loops).

times required to alter digit pattern could be shortened if followed by
Bmp2 exposure (Drossopoulou et al., 2000), and have also been
implicated in interdigit signaling that regulates final digit identity at
late stages (Dahn and Fallon, 2000; Suzuki et al., 2008). Interestingly,
the Bmp pathway is also highly enriched in GBS+ direct targets
identified by ChIP-Chip (Vokes et al., 2008). However, the role of
Bmps remains controversial, partly because of functional redundancy
and context-dependence, as well as confounding effects on both AER
induction and maintenance (discussed below), which both impact cell
survival (Pizette et al., 2001; Pizette and Niswander, 1999; Soshnikova
et al., 2003). Simultaneous genetic removal of several major Bmp
ligands in mouse has failed to alter digit identity, although in one study,
affects on chondrogenesis complicate interpretation of digit phenotypes
(Bandyopadhyay et al., 2006), and in another study the timing of Bmp
deletion may be too late (Kaltcheva et al., 2016). On the other hand,
genetic manipulation of Bmp pathway at late stages in mouse suggest
that the proper balance of Bmp activity may play a role in regulating
aspects of digit identity; albeit at a late stage more consistent with
action as an indirect relay target (Huang et al., 2016).

8. Shh signaling effects on the AER and limb expansion

There is greater agreement from chick and mouse studies that limb
bud expansion in response to Shh, not surprisingly, requires sustained
signaling over time. Cell cycle analyses in both models have shown that
Shh inhibition causes a G1 arrest and reduced proliferation (Towers
et al., 2008; Zhu et al., 2008), and conversely Gli3 removal has the
opposite effect, because of the predominant role of Gli3R (Lopez-Rios
et al., 2012). Gli3 target analyses have identified Cdk6 and MycN as
direct, and the cyclin Cendl as indirect mesodermal Shh targets
(Lopez-Rios et al., 2012; Vokes et al., 2008). Sustained Shh signaling
also plays an important role in regulating cell survival, particularly via
effects on the AER.

Fgf signaling from the AER plays a critical role is sustaining limb
mesoderm outgrowth and the interplay between Shh/ZPA and AER/
Fgf in regulating cell survival and expansion has been the focus of
much study dating back to Saunders’ original work characterizing both
signaling centers (Saunders, 1948; Saunders and Gasseling, 1968). Shh
modulates AER function both indirectly via target relay signals to AER,
and directly (Fig. 4C). Experiments in chick manipulating the AER in
conjunction with exposure to exogenous Shh or Fgf4 established that
the AER is necessary to induce Shh expression and can be substituted
for by Fgf4 (Laufer et al., 1994; Niswander et al., 1994). Shh, in turn,
induces Fgf4 expression in posterior AER, forming a positive feedback
loop between ZPA and AER. Deletion of both Fgf4;Fgf8 in mouse
definitively showed that AER/Fgfs are essential for initiation of Shh
expression in the limb (Sun et al., 2002), and in fact Ets family TFs,
nuclear effectors of Fgf signals, are key regulators of the Shh limb
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enhancer (Lettice et al., 2012). Genetic studies in mouse revealed that
the Shh mesodermal target Gremlin (Grem1), a secreted BMP antago-
nist initially characterized through the limb deformity mutation that
disrupts the function of a long-range Greml limb enhancer (Zuniga
et al.,, 2004), relays the Shh signal to the AER by modulating the
negative effects of Bmps on AER maintenance (Zuniga et al., 1999).
Greml enhancer characterization has uncovered complex regulation by
the Shh pathway, involving a potential role for GliA in addition to a
major effect of Gli3R derepression, as well as induction by Shh targets
Bmp2,4 (Benazet et al., 2009; Li et al., 2014b; Nissim et al., 2006;
Vokes et al., 2008; Zuniga et al., 2012). The balance between Gli3R,
Bmps and Greml governs AER activity to constrain normal digit
number. Genetic manipulation of Fgf activity levels in mouse indicates
that high-level Fgf signaling at late stages also acts itself as a negative
feedback input on AER maintenance, by repressing Grem1 expression
in the underlying mesoderm (Verheyden and Sun, 2008). It is
important to note that many of these regulatory effects are highly
dynamic, dependent on expression levels and the context of other
inputs, both of which change over developmental time. For example, in
the early limb bud, mesodermal Bmps induce Grem1 expression prior
to Shh activation. At the protein level, accumulating Grem1 antag-
onizes Bmp function, thereby promoting AER/Fgf maintenance and
Shh activation as effective Bmp activity declines, and initiating a
mesodermal-ectodermal Grem1-Fgf-Shh feedback loop (Benazet
et al., 2009). At late stages, the accumulation of high Fgf levels act to
terminate the feedback loop by repressing Grem1, and thereby extin-
guish AER and ZPA function.

In addition to indirect effects on AER/Fgf activity via Grem1-Bmp
modulation, the ZPA/Shh also signals directly to the overlying ecto-
derm in a negative feedback circuit to regulate the posterior extent of
the functional AER and thereby modulate ZPA activity (Bouldin et al.,
2010). Selective genetic removal of Shh response in the AER (by
conditional inactivation of Smo) resulted in increased AER/Fgf8
expansion along the posterior limb bud margin. In contrast, exogenous
Shh application in chick limb inhibited AER/Fgf8 expression and
reduced AER extent. Notably, a similar observation was made by John
Saunders in the context of ZPA grafting experiments; finding that a
thickened AER was not maintained immediately overlying ZPA grafts
(Saunders and Gasseling, 1968). Recently, pharmacologic inhibition of
Shh response in chick with cyclopamine treatment at different times
confirmed this negative feedback circuit (Pickering and Towers, 2016).
The time course of inhibition revealed that, in contrast to digit loss
caused by early Shh pathway inhibition, late inhibition of Shh signaling
resulted in postaxial polydactyly associated with extended Fgf8 ex-
pression and AER along the posterior marginal ectoderm to overlie the
ZPA region (Pickering and Towers, 2016). In the chick wing, lineage
tracing has shown that the ZPA normally does not give rise to any digits
and digit 4,5 progenitors regress, due to extensive apoptosis (Towers
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et al.,, 2011). Late Shh inhibition and AER expansion enables these
progenitors to persist, but they adopt digit 2 positional values owing to
the interrupted Shh exposure. In mouse, the ZPA underlies the AER
and gives rise to posterior digits, leading the authors to speculate that
mouse digit progenitors become refractory to Shh patterning function
once they have acquired a positional value of digit 2, but proliferate to
produce several digit 2 copies via a Turing mechanism later on. This
interpretation assumes that phalanx number can be used as an
indicator of earlier Shh effect on positional values across species,
despite adaptive morphologic changes (see Section 5 above).
Nevertheless, these studies indicate that ZPA-AER interactions also
act to restrain posterior digit number. In fact, recent work has provided
evidence for the regulation of digit number by a Turing type self-
organizing mechanism in which antagonistic Bmp—Wnt interactions
specify periodic Sox9 (digit progenitor) expression in a Substrate
(Sox9)—Depletion model (Raspopovic et al., 2014). Intriguingly,
Gli3R levels have been shown to modulate the periodicity with which
digit condensations arise, and thereby total digit number (Sheth et al.,
2012), possibly acting to regulate Bmp expression and set the net Bmp
activity level (Lopez-Rios et al., 2012). However, since Sox9 expression
and digit condensation appearance commence at a time when Shh
expression has already ceased, the extent to which Shh signaling
regulates digit number by impacting the Gli3R level at this self-
organizing stage is unclear.

Shh activity also plays a supporting role in P-D progression of limb
outgrowth, which is governed by antagonistic interactions between RA
proximally and AER/Fgfs distally (Cooper et al., 2011; Mercader et al.,
2000; Rosello-Diez et al., 2011). Both genome-wide expression analysis
in Shh pathway mutants and GBS-site analysis suggest that Shh activity
may down-regulate levels of the RA synthetic enzyme Aldhla2 as well
as the proximalizing RA target gene Meisl (Lewandowski et al., 2015;
Probst et al., 2011; Vokes et al., 2008). Induction of the degradative
enzyme Cyp26al, which is initially regulated by Fgfs independent of
Shh, also becomes reduced in the distal domain of Shh mutant limb
buds due to the indirect effects of reduced AER/Fgf activity. In this
manner, Shh also helps to promote the distal progression of limb
development.

9. Requirement for “polarized” Shh activity

Although Shh pathway activation is frequently linked to polydactyly
in mutants in several species, precocious pathway activation in the
early limb bud by genetic removal of Ptchl prior to establishment of
polarized gene expression (AER and ZPA centers) results in a severe
outgrowth defect with fewer and symmetrical, truncated digits
(Butterfield et al., 2009). An extensive analysis of several mutants with
different levels of precocious pathway activation (Ptchl, Kif7, SuFu;
together with Gli3R removal) revealed that the level of GliA relative to
Gli3R is a critical factor in producing this phenotype (Zhulyn et al.,
2014). With Gli3 loss alone (primarily GliR), which results in poly-
dactyly, polarized Shh expression is still maintained. In contrast, in
single and compound mutants with high levels of GliA (primarily Gli2
activation), Shh expression becomes apical, diffuse and symmetric, and
failure to establish normal AER/Fgf8 and ZPA formation ensues.
Precocious pathway activation by the Hh agonist SAG in chick produces
similar effects. Although the mechanism by which nonpolarized and
precocious GliA inhibits normal AER and ZPA formation is as yet not
entirely clear, reduced Shh ligand levels (either by a Shh +/- allele, or
the normally lower endogenous Shh level in forelimb compared to
hindlimb) mitigates the phenotype. This suggests the possibility that
early mis-localized, apical Shh may inhibit normal AER formation by
direct signaling to the ectoderm, and consequently cause failure of
distal limb expansion. In less severe cases of precocious and non-
polarized pathway activation (with lower GliA level) in which AER/Fgf
signaling is still initiated (eg. Ptchl mutant), another possibility is that
too high an initial level of Fgf expression may prematurely inhibit the
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Greml feedback loop and terminate AER maintenance prematurely
(Verheyden and Sun, 2008).

These results indicate a requirement to induce Shh in a polarized
manner, which is ensured by high anterior Gli3 expression (Gli3R
level) and mutual cross-repression with Hand2 expressed in the
posterior limb bud (Osterwalder et al., 2014; te Welscher et al.,
2002a; Vokes et al., 2008). Recent analysis of Irx3,5 gene function in
mouse identified an essential role in specifying anterior limb elements
that normally form independent of Shh activity (eg. femur, tibia, digit 1
in hindlimb) (Li et al., 2014a). Irx3,5 are expressed in the anterior limb
bud and act genetically upstream to regulate Gli3 expression prior to
Shh induction. Establishment of an anterior zone is essential for
formation of anterior elements and for the timely induction of
polarized Shh/ZPA in the posterior limb bud, after the AER/Fgf8
signaling center, to initiate specification of posterior elements and
digits, and limb bud expansion.

10. Insights from evolutionary adaptation

Modifications of both digit number and identity across different
vertebrate taxa, and even among closely related species, are frequent in
the course of evolutionary adaptation. Early tetrapod ancestors (eg.
acanthostega) were polydactylous, having up to 8 digits with little AP
distinction (Schneider and Shubin, 2013). These were probably more
akin to the bony rays of fish fins, which are homologous structures that
employ regulatory networks highly conserved across fish and tetrapods
in their development (Gehrke and Shubin, 2016; Nakamura et al.,
2016). In the course of tetrapod evolution, it has been proposed that
digit number became restrained to what is referred to as the “penta-
dactyl ground state” (see Fig. 1) (Laurin, 1998). The acquisition of a
bona fide autopod and constrained digit number has been partly
attributed to the evolutionary expansion of late phase 5’Hox expression
into the distal fin/limb bud, producing fewer and larger, more
distinctive digits (Freitas et al., 2012; Sheth et al., 2012; Woltering
et al., 2014; Zakany et al., 1997). The appearance of polarized Gli3-Shh
may also have played a role; the ancestral digit ‘rays’ in tetrapod
forebears, such as acanthostega, are reminiscent of the GIi3 null mouse
phenotype. Consistent with this view, the fin rays of cartilaginous fish,
such as the catshark, lack robust Shh expression and an anteriorized
Gli3R gradient (Onimaru et al., 2015; Tanaka, 2016). The requirement
to express Shh in a polarized manner also indicates that modulation of
both Shh expression timing and domains can act to constrain digit
number.

Although experimental manipulation of Shh levels in chick at later
stages (Dahn and Fallon, 2000; Sanz-Ezquerro and Tickle, 2003) can
produce apparent changes in digit identity (hyperphalangy and digit
lengthening), the normal late stage re-expression of Shh that occurs in
bat wing interdigits is associated with lengthened phalanges but
without increases in phalangeal number and may be linked to a role
in extending Fgf8 duration and sustaining cell survival of the extensive
interdigital webbing of the bat wing (Hockman et al., 2008;
Weatherbee et al., 2006). In taxa that do display hyperphalangy (such
as marine mammals), the molecular mechanisms have not been
explored (Fedak and Hall, 2004; Richardson et al., 2004), although a
recent dolphin Shh enhancer analysis in transgenic mice suggests a
potential Shh role (Kvon et al., 2016).

Most adaptations in modern extant species, for specialized func-
tions such as running or burrowing, usually trend toward digit loss
from the pentadactyl state (Fig. 1). Two major mechanisms that
accomplish this are enhanced apoptosis to reduce autopod extent and
changes in the timing of Shh expression — either duration or onset
(Cooper et al., 2014; Lopez-Rios et al., 2014). Digit loss in skink species
has been shown to correlate directly with reduced duration in Shh
expression (Shapiro et al., 2003). Although the digit pattern is very
different, the observed reduction in digit number without substantial
changes in the morphology of remaining digits that occurs in skink
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species is analogous to the phenotypes observed in mice when Shh
expression is curtailed by genetic removal. The biphasic model
provides a framework for uncoupling digit identity from number and
preserving relatively normal digit morphologies while reducing number
(Zhu et al., 2008).

In other examples of adaptive evolution, particularly those highly
specialized for cursorial locomotion, substantial change in morpholo-
gies occur coincident with reduction in the number of both digits and
phalanges. The requirement to express Shh in a polarized manner
indicates that inappropriate pathway activation across the limb,
paradoxically, can lead to digit reduction phenotypes by interfering
with normal ZPA and AER formation or maintenance. In fact, this
mechanism may be fine-tuned to reduce digit number and generate the
small, symmetrical digits adapted for land locomotion/running in
certain ungulates (hooved mammals). In cows, it was shown that
reduced Ptchl expression is associated with depolarized Shh pathway
activity and broader spread of Shh protein across the distal limb bud
margin (Lopez-Rios et al., 2014). Since Ptch1 negatively regulates Shh
signaling, both by virtue of tonically inhibiting Smo activation and by
sequestering Shh ligand, reduced Ptchl causes expansion of Shh
activity, leading to loss of limb asymmetry and premature AER
regression and digit reduction (e.g. Fig. 1) that phenocopies the genetic
removal of Ptchl in mouse limb buds. Functional transgenic analysis of
the bovine compared to murine Ptchl limb-regulatory module revealed
a loss of responsiveness to induction by Shh, implicating reduced Ptch1
as the primary basis for digit loss in cows.

In snakes with the most extreme adaptation for trunk-based
locomotion (extensive to complete loss of limb elements), recent
comparative genomic analyses, transgenic reporter analyses and gene
editing to test snake sequence alterations in mouse, have revealed that
the limb-specific loss of Shh function is the most frequent cause of limb
reduction phenotypes in different snake species (Kvon et al., 2016; Leal
and Cohn, 2016). This occurs via alterations leading to the progressive
loss of Hoxd and/or Etsl transcription factor binding sites, resulting in
loss of Shh limb enhancer function in modern snakes. However,
particularly in advanced snake species, other evolutionary changes
must come into play as well, since complete limblessness is more severe
than the phenotype due to complete absence of Shh function in limbed
vertebrates (Chiang et al., 2001; Ros et al., 2003). Altogether, these
studies reveal that both gain and loss of function changes in the Shh
pathway can lead to evolutionary digit reduction and adaptive mod-
ifications.

11. Questions and future directions

With his discovery of the ZPA, Saunders opened up a vibrant and
stimulating area of research that has made the developing limb an
enduring model for studying patterning and morphogenesis, ultimately
leading to the identification of key Shh roles in limb patterning and
growth, the discovery of filopodia as a physical mechanism for
extending spatial signaling range, and the elucidation of a robust and
complex regulatory network centered on maintaining and restraining
ZPA activity, among many other discoveries. At the same time, it is a
model for morphogenesis still filled with many puzzles for future work.

Because the morphogenesis of the appendicular skeleton involves a
number of processes and steps to realize final digit identities down-
stream of Shh signaling, how Shh regulates positional information
remains a matter of debate. Complete elucidation of targets together
with their temporal order of activation (or derepression), and of
potential relay steps will be required to organize targets into a
hierarchical network that may provide insights on the validity of
different models which are testable using molecular genetic strategies.

Shh signaling to both mesoderm and directly and indirectly to
ectoderm to regulate limb AP expansion as well as patterning also
obscures/complicates dissecting out different roles. The indirect effects
of Shh certainly promote AER maintenance at early stages. To what
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extent this also impacts the later progenitor pool for forming phalanges
in digit tips is unclear (Suzuki et al., 2008). However, the size of the
pool and duration of late AER/Fgf function likely affect final phalanx
number and digit identity (Sanz-Ezquerro and Tickle, 2003). An
intriguing possibility, yet to be examined, is whether polarized Shh
may lead to AP polarized AER function that contributes to patterning
as well as growth by modulating the formation of late digit tip
progenitor pools.

Genetic studies and manipulation of Bmp-Wnt levels in cultured
mouse limb buds support a Turing type reaction-diffusion mechanism
in the formation of digits (Raspopovic et al., 2014; Sheth et al., 2012),
and recent analysis of formation of cartilaginous fish fin rays raises the
possibility that such a mechanism played an ancestral role preceding
the regulation of AP polarity (Onimaru et al., 2015, 2016). If digit
formation does proceed via a Turing mechanism, how is this integrated
with early Shh-regulated positional information to produce distinct
digit types?

The ZPA has been the foundation for a large body of work that has
increased our understanding of how morphogenesis is orchestrated to
produce a complex structure, but there are still many important
fundamental questions to tackle in deciphering how Shh patterns the
limb.
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