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Purpose of review

The hierarchical nature of the hematopoietic system provides

an ideal model system to illustrate the features of lineage

tracing. We have outlined the utility of lineage tracing methods

in establishing the origin and development of hematopoietic

cells.

Recent findings

Methods such as CRISPR/Cas9, Polylox barcoding, and

single-cell RNA-sequencing have improved our understanding

of hematopoiesis.

Summary

This review chronicles the fate of the hematopoietic cells

emerging from the mesoderm that subsequently develops into

the adult blood lineages. Specifically, we explain classic

techniques utilized in lineage tracing for the hematopoietic

system, as well as novel state-of-the-art methods to elucidate

clonal hematopoiesis and cell fate mapping at a single-cell

level.
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Introduction
Hematopoiesis, or the process of blood formation, occurs

in two waves. The primitive wave creates red blood cells

and myeloid cells [1]. The definitive wave begins with the

formation of hematopoietic stem cells (HSC), followed by

their development and differentiation into four adult

blood lineages: erythroid, myeloid, platelet, and lymphoid

cells [1,2]. Given the hierarchal nature of hematopoiesis, it

is an ideal process for establishing a foundation and then

testing state-of-the-art methods in cell fate mapping.

Lineage tracing, a process of marking a single cell and

following its progeny [3], establishes the origin, develop-

ment, and differentiation of a cell by elucidating the

identity, number, and location of its descendants [3].

While cell transplantation, time-lapse confocal imaging,

parabiosis, and genetic manipulation have established the

hierarchical nature of blood formation, the development

of quantitative processes and sequencing methods have

recently uncovered the clonal nature of hematopoiesis.

Here, we illustrate how past and current advances in

lineage tracing have uncovered the hierarchical and clonal

nature of hematopoiesis (Table 1).

Lineage tracing in hematopoiesis
Primitive and definitive hematopoiesis

The primitive wave of blood production in the yolk sac

produces red blood cells and macrophages [1]. This

primitive wave is rapidly replaced by adult-type definitive

hematopoiesis in the aorta-gonad-mesonephros (AGM)

region [2]. Here, a sheet of lateral mesoderm migrates

medially, touches the endoderm, and forms a single aorta

tube [4]. Later, the clusters of hematopoietic stem cells

emerge in the ventral wall of the dorsal aorta or the AGM

region. Next, hematopoietic cells, which are capable of

long-term reconstitution, colonize the fetal liver, thymus,

spleen, and ultimately the bone marrow [5].

Extraembryonic hematopoiesis

While the first hematopoietic progenitors develop at

embryonic day (E)7.0 in the yolk sac [6], the hematopoi-

etic activity also appears in umbilical arteries and the

allantois [7], umbilical veins lack hematopoietic potential.

This suggests that HSCs arise predominantly during

arterial specification. Although HSCs appear in the mouse
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placenta [8,9], it is unclear whether placental HSCs arise

de novo or through colonization upon circulation, or both.

Mesoderm to hemangioblast

In the mouse embryo, the process of gastrulation creates

the mesoderm at �E6.5 [10]. Here, the epiblast cells from

the posterior part of the embryo form a transient primitive

streak from which the mesoderm emerges. Next, the

mesoderm migrates away from the primitive streak, moves

laterally and anteriorly, and is patterned into various

populations with distinct developmental fates. Early

mesodermal cells from the posterior primitive streak are

the first source of blood islands in the embryo [11].

Brachyury, a transcription factor within the T-box complex

of genes, marks all nascent mesodermal cells. As Brachy-

ury+ cells undergo patterning and specification into the

skeletal muscle, cardiac muscle, connective tissues, blood,

and endothelium, its expression then diminishes [12–14].

The hemangioblast, a common precursor for endothelial

and hematopoietic cells, is proposed as a site of hemato-

poiesis based on observations of chick blastoderms cul-

tured in toto on coverslips [12] and explant cultures of the

caudal region of blastoderms during the gastrulation

stage. In both instances, hemangioblasts, which are aggre-

gates of morphologically identical cells, produced endo-

thelial cells and hematopoietic cells [12]. However, fate

mapping and chimera studies have failed to provide

substantial evidence indicating that there was a common

origin for endothelial and hematopoietic cells located in

the early mouse yolk sac.

To determine the hematopoietic potential of individual

cells in the mouse epiblast, primitive streak, and early

yolk sac, Padrón-Barthe et al. [13] used an in vivo clonal

analysis to demonstrate: (I) Early yolk sac blood and

endothelial lineages derive from independent epiblast

populations, specified before gastrulation. (II) A subpop-

ulation of the yolk sac endothelium has hemogenic activ-

ity similar to that found later in the embryonic hemogenic

endothelium (HE). (III) HE appears in the yolk sac and

produces hematopoietic precursors with markers related

to definitive hematopoiesis.

Hemangioblast to hemogenic endothelium

As hemangioblasts and HE develop near each other within

the embryo, one hypothesis is that the hemangioblast

generates HSCs through the formation of an HE interme-

diate [14]. This is further supported by observations from

single-cell-derived colonies that can produce both hemato-

poietic and endothelial cells in vitro. Utilizing the single-

cell-resolution fate maps of the zebrafish late blastula and

gastrula, Vogeli and colleagues [15] demonstrated that

bipotential progenitors, which can give rise to both hemato-

poietic and endothelial cells, emerge along the entire lining

of the ventral mesoderm. Their results provide in vivo
evidence to support the existence of the hemangioblast.
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Based on ES cell differentiation studies, the hemangioblast

to hemogenic endothelium transition occurs in two stages.

First, from 36 to 48 hours post-culture, a tight adherent

structure arises from the hemangioblast. This is followed by

the appearance of non-adherent round cells that proliferate

to generate a mature blast colony then. However, it is

unknown which mechanisms, if any, regulate or support

the emergence of HE from hemangioblasts [14].

A morphological examination demonstrated that the AGM

forms HE cells in the ventral wall of the aorta, instead of

hemangioblasts that bud off to become HSCs. The pro-

gram of HE cell development is regulated differently from

that of presumptive hemangioblasts, as Runx1 is critical for

HSC formation from the hemogenic endothelium but not

HSC formation from yolk sac hemangioblasts [16,17].

Hemogenic endothelium to erythroid/myeloid

progenitors (EMP) or hematopoietic stem cells

The AGM is the first site of mammalian intra-embryonic

hematopoiesis [18,19]. During E10.5-11.5, hematopoietic

cells attached to the aorta bud off from this region [20].

Imaging and lineage tracing studies in zebrafish embryos

have established that the first HSCs emerge directly from

hemogenic endothelium lining the ventral wall of the

dorsal aorta (DA) [21,22��]. These results complement

previous studies in the avian, amphibian [21], and mam-

malian embryo [23,24], which suggests that the cellular

mechanisms of HSC generation are conserved across

vertebrates.

Zovein et al. established that HSCs were generated from

Cadherin 5 (Cdh5) precursors, suggesting that HSCs arise

from the endothelium, and that AGM-derived endothelial

cells contain the majority of HSC potential. The condi-

tional deletion of Runx1 in Cdh5+ cells led to the loss of

HSCs, showing that Runx1 is crucial in the transition from

endothelium to HSC [25]. However, Anderson et al.
recently used state-of-the-art parabiosis and mouse

chimera studies to establish that Cdh5 is dispensable

for the formation, development, and differentiation of

HSCs [22��].

Before HSCs appear, committed erythroid/myeloid pro-

genitors (EMPs) emerge from the yolk sac and the HE.

The HE is located at sites of EMP and HSC emergence,

such as the dorsal aorta, vitelline and umbilical arteries,

yolk sac, and placenta. The HE is differentiated from all

other endothelial cells by the presence of Runx1 [16].

Runx1 is expressed in hemogenic endothelial cells before

the formation of clusters, in the clusters themselves, and

in all functional EMPs and HSCs [16,17]. Embryos lack-

ing Runx1 have no EMPs, HSCs, or intra-arterial clusters

[16,17,26]. The utility of core binding factor b (CBFb) for

EMP and HSC formation is temporally and spatially

distinct, and Ly6a explicitly marks the HSC-generating

hemogenic endothelium [25].
Current Opinion in Cell Biology 2017, 49:108–115
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HSC development and differentiation

HSCs differentiate into hematopoietic stem-progenitor

cells (HSPC), which differentiate into multipotent pro-

genitors (MPP). These multipotent progenitors lose their

self-renewal capacity, but can still differentiate into all

four adult hematopoietic lineages. The ability for HSCs

to differentiate into progenitor cells, while also maintain-

ing an adequate pool of HSCs via balancing self-renewal

and differentiation, is essential for maintaining the short

lifespan of blood cells [27].

HSCs were purified from mouse bone marrow using cell

surface marker Thy-1low Lin (Lineage-markers)� Sca-1+

using multi-color fluorescence-activated cell sorting

(FACS) and monoclonal antibodies [28,29], with the

representation of about 0.05% of C57BL/Ka-Thy-1.1

mouse bone marrow. Then, Morrison et al. showed that

the Lin� population of cells included at least three multi-

potent populations: long-term HSCs, short-term HSCs,

and multipotent progenitors [30]. Subsequently, Boyer

et al. established a lineage tracing mouse model that

allowed for direct assessment of HSC differentiation

pathways in vivo [31].

Using clonogenic B and T cell assays and in vitro ery-

throid potential assays, Lai and colleagues showed that

different subsets of MPPs give rise to common lymphoid

progenitors (CLP) and common myeloid progenitors

(CMP). They demonstrated that lymphoid-committed

CLPs do not emerge from the same MPP that gives rise

to CMPs [32]. Using in vivo differentiation, Adolfsson

et al. have also shown that MPPs lose myeloid lineage

differentiation potential during lymphoid lineage differ-

entiation [33]. Injection of lin�CD44+CD25�Sca-
1+CD117c-kit+ (LSK), Flt3+ cells into lethally irradiated

mice, demonstrated that LSK Flt3+ cells loose MegE

differentiation potential before lymphoid lineage com-

mitment, followed by a loss of GM differentiation poten-

tial [32].
Table 1

Lineage tracing methods in the study of hematopoiesis

Approach 

Mass cytometry (CyTOF) Allows for simultan

blood

Matrix-assisted laser desorption ionization-time of

flight (MALDI-TOF)

Analyzes protein c

Single-cell RNA sequencing Investigates cell-to

CRISPR/Cas9-based genome editing Used to knock out 

for multiple genetic

Polylox barcoding To study origin and

Multiplexed fluorescent labeling and sequencing The single-cell tran

different cells to re

repopulation poten

Tissue engineering & 3D scaffold development Recreates 3D micr

and differentiation.
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Common lymphoid progenitors have two CLP subsets:

CLP-1 (lin�Sca-1+CD117+/loCD127+CD135+) and CLP-

2 (lin�Sca-1+CD117�CD127+CD135+B220+). Clono-

genic assays demonstrated that CLP-2 are the most

differentiated population with T cell potential before B

cell commitment [34]. These CLPs develop into imma-

ture early T-lineage progenitors (ETP), characterized as

LSK with only low CD127 (IL-7Ra) expression, high T

potential, and limited B potential. Using in vitro GFP

tracing, Pui et al. showed that T lymphopoiesis is under

the control of Notch signaling. Such ETPs then develop

into immature T cells, which migrate to the thymus,

where they mature [35].

Using flow cytometry, Loder et al. marked each step of B

cell development from the CLP by unique gene expres-

sion patterns, as well as immunoglobulin H chain and L

chain gene loci rearrangements. The rearrangements are

in part due to the B cells undergoing V(D)J recombination

[36]. Bone marrow-derived immature B cells then migrate

to the spleen. Using flow cytometry, Allman et al. showed

that immature B cells pass through T1 and T2 transitional

stages and finally differentiate to a T3 stage [37].

Using single-cell RT-PCR analysis, Hu et al. observed that

both erythroid and myeloid gene expression programs are

initiated by the same progenitor cells (MEPs) before

exclusive commitment toward the myeloid or erythroid

lineages [38]. Although many of CD34+lin� primary bone

marrow cells shared a specific phenotype, their gene

expression varied, as �50% of the cells expressed mRNA

for both b-globin as seen with RBC differentiation and

myeloperoxidase as seen with myeloid differentiation.

Recent advances in lineage tracing in
hematopoiesis
Here we illustrate state-of-the-art methods in current use

for following HSC origin and development (Table 1).
Utility in hematopoietic development

eous identification of multiple cell types from heterogeneous sample of

ontents in samples and elucidates glycosylation patterns

-cell variation at transcription level

hematopoietic genes and the b-globin gene in human HSCs and allows

 modifications

 clonal composition of HSCs

splant data are coupled with single-cell gene expression analysis on

solve subpopulations with corresponding gene expression and

tial

oenvironment conducive for HSC formation, expansion, development,

www.sciencedirect.com
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CyTOF and MALDI-TOF

While flow cytometry remains vital in HSC research, the

technology to identify and quantify cells on a single-cell

basis is continually improving.

CyTOF, or mass cytometry, is a quantitative alternative

to flow cytometry. Instead of labeling antibodies with

fluorochromes, CyTOF uses antibodies labeled with

heavy metal ion tags, which are then analyzed by a mass

spectroscopic readout [39]. This technique allows for the

simultaneous identification of multiple cell types from

the same heterogeneous samples of blood.

To examine the interplay between normal human

hematopoietic and immunological signaling in the human

bone marrow, Bendall et al. recently used CyTOF to

measure 34 cellular parameters simultaneously at a sin-

gle-cell level. To analyze intracellular pathways as well as

lineage-specific consequences of telomere erosion and the

restoration of telomere length in rare HSPC populations,

Raval et al. simultaneously measured 19 surface markers

and 13 intracellular markers [40]. To analyze how growth

factors regulate human HSCs, Knapp et al. recently mea-

sured 43 different surface markers, transcription factors,

active signaling molecules, viability, and cell-cycle signals

in individual CD34+ cord blood-derived cells [41�].

Matrix-assisted laser desorption ionization-time of flight

(MALDI-TOF) has now been adapted to analyze protein

contents in samples [42]. Fuchs et al. used matrix-assisted

laser desorption and ionization time-of-flight mass spec-

trometry under standard, nutrient-rich culture conditions,

followed by low oxygen and low glucose concentrations to

monitor changes in the composition and saturation degree

of choline phospholipids of hematopoietic progenitor

cells [43].

MALDI-TOF is used to elucidate glycosylation patterns,

as well as to determine variations of different proteins.

While Reinke et al. analyzed N-glycans of membrane

proteins of hematopoietic cell lines to assess the various

glycosylation patterns [44], Liu et al. identified the prote-

omic changes in myeloid dendritic cells in cases of severe

aplastic anemia [45].

Single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is a robust

method to investigate cell-to-cell variation at the tran-

scriptome level in hematopoiesis [46]. Using scRNA-seq,

cell purification and functional clonal assays have pro-

vided a revised model of hematopoietic development,

especially for the T, B, and NK lineages.

Recent single cell studies suggest that oligopotent

progenitors contain only a small portion of the hemato-

poietic hierarchy. Instead, multipotent cells differentiate

into unipotent cells of the myeloid (My)-erythroid
www.sciencedirect.com 
(Er)-megakaryocyte (Mk) lineages, which suggests two

tiers of the human blood hierarchy: one with multipotent

cells, and another with cells committed to My, Er, or Mk

lineages. However, Mk branching differs in fetal liver and

bone marrow. While in the fetal liver, Mk progenitors are

enriched, but not restricted, to the stem cell compart-

ment. However, in the bone marrow, Mk fate is coupled

to multipotent cells. This result corraborates the two-tier

model of adult hematopoiesis, where branching of Mk

occurs at the level of HSC/MPPs.

To examine the molecular basis for the two-tier hierarchy,

Dick et al. have performed low cell-input RNA sequencing,

enhanced reduced representation bisulfite sequencing,

and ATAC-seq to provide a comprehensive transcriptional

and epigenetic roadmap of human HSPCs across develop-

ment. Additionally, Nestorowa et al. used single-cell

RNA sequencing to profile more than 1600 single

HSPCs to reconstruct differentiation trajectories and

dynamic expression changes associated with early lym-

phoid, erythroid, and granulocyte-macrophage differenti-

ation [47].

CRISPR/Cas9-based genome editing

The CRISPR/Cas9-based, genome editing system, tar-

gets specific sequences in the genome for the generation

of mouse lines with point mutations, deletions, condi-

tional deletions, or reporter expression [48]. It has exten-

sively been used to knockout hematopoietic genes and

the b-globin gene in human HSCs [49��]. Since the

CRISPR/Cas9 system can be multiplexed for manipula-

tions of multiple genes at once [50], it allows for multiple

genetic modifications in a single mouse line for the

investigation of multiple hematopoietic genes within

the same organism [51].

Polylox barcoding

Polylox barcoding is a recombinase-based approach that

enables fate mapping in the hematopoietic system under

physiological conditions [52��]. The Polylox locus con-

sists of an array of unique DNA sequences interspersed

with loxP sites. Barcodes get created in vivo through Cre-

dependent recombination [52��].

The Polylox system shares some features with the

CRISPR/Cas9-based lineage-tracing approaches, allow-

ing the barcode generation in vivo [52��]. However, in the

Polylox system, each of the individual DNA blocks is

about 170 base pairs long, and it is necessary to sequence

across the whole locus to obtain the full barcode informa-

tion [52��]. Therefore, CRISPR–Cas9-based systems

where barcodes can differ by just single nucleotides

may be more prone to PCR and sequencing artifacts than

the Polylox system.

To study the origin and clonal composition of HSCs in the

adult bone marrow after embryonic barcode induction,
Current Opinion in Cell Biology 2017, 49:108–115
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Pei et al. recently treated embryos containing the Polylox

locus at E9.5 by administering the mother a single dose of

tamoxifen. They then could determine the barcodes

of sorted single HSCs [52��]. Such high-resolution fate

mapping by Polylox barcoding of embryonic HSC pro-

genitors and adult HSCs supports a bifurcating tree model

of hematopoiesis, which was proposed in the 1980s [53]

but has not yet been tested under physiological

conditions.

Multiplexed fluorescent labeling and sequencing

Heterogeneity among cells within tissues is recognized

in both normal and malignant blood development

[46,54–56]. The hematopoietic system contains popula-

tions of cells with divergent properties and distinctive

behaviors, such as cell production and lineage bias

[57,58]. HSCs exhibit a bias toward myeloid, lymphoid,

or megakaryocytic lineage upon transplantation of single

cells [57,59,60] with ex vivo barcoding, transplantation of

populations of cells [55,61–65,66��,67], or by retrotran-

sposon tagging of endogenous cells [68].

The single-cell transplant data are coupled with single-

cell gene expression analysis on different cells to resolve

subpopulations with corresponding gene expression and

repopulation potential [69�]. Overlaying in vivo functional

behavior of endogenous HSC clones with their gene

expression and epigenetic characteristics has coupled

the function of gene expression and chromatin state at

the clonal resolution and established the cell-autonomous

epigenetic constraints bound the HSC function.

Tissue engineering and 3D scaffold development

The fate and development of HSCs is dependent on their

tissue microenvironment during fetal and adult develop-

ment, such as AGM, fetal liver, and bone marrow reg-

ulates HSC formation, expansion, and maintenance.

Therefore, it is prudent to recreate a 3D microenviron-

ment using biomaterials-based 3D bioprinted scaffold.

Wagner et al. demonstrated that the self-renewal capacity

of HSCs was higher in 2D co-culture with bone-marrow-

derived adherent cells [70]. Then, Taqvi et al. and Fer-

reiera et al. used biocompatible materials to culture

umbilical cord blood-derived CD34+ HSPCs on con-

structs with a variety of pore size and topology [71,72].

Recently, microfluidics-based organ-on-a-chip approach

has been utilized to investigate the roles on wall shear

stress of hematopoietic development [73].

To accurately mimic tissue architecture and components,

we are analyzing the composition of scaffolding proteins,

matrix-bound soluble factors, 3D structure, topography,

nanoroughness, stiffness, and biophysical properties of

hematopoietic tissue microenvironment. Given the

recent advances in tissue engineering and 3D bioprinting,

we are hopeful that 3D bioprinted AGM, fetal liver, and
Current Opinion in Cell Biology 2017, 49:108–115 
bone marrow will be developed for HSC formation,

expansion, and development.

Conclusion
Lineage tracing has established a family tree of hemato-

poiesis from the mesoderm to adult hematopoietic

lineages. While recent advances in quantitative

approaches to cell fate mapping have found clonality of

HSCs, it is unclear when and where HSCs become

lineage-biased during their development. We have illus-

trated how classical and state-of-the-art methods have

resolved the hierarchy in hematopoiesis.
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