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Introduction

The family Tephritidae (true fruit flies) encompasses

more than 5000 species of phytophagous insects

worldwide, approximately 1400 of which feed as

larvae on fleshy fruits. The four major genera of this

family, Ceratitis, Bactrocera, Anastrepha and Rhagoletis

include pest species of remarkable economic

importance (White and Elson-Harris 1992). Recently,

members of these genera have been reported outside

their respective home ranges as a result of the increas-

ing fruit trade and the expansion of the tourist

industry (Clarke et al. 2005; Malacrida et al. 2007).

Their invasive potential is mainly because of the wide

range of resource-exploitation strategies (Duyck et al.

2004), along with the high mobility, fecundity and

the dispersive powers which characterize many

tephritid species. During the last decades, researchers

have concentrated their attention on the development

and implementation of biological methods aimed at

controlling pest populations, bypassing the traditional

pesticide-based approaches.

The Sterile Insect Technique (SIT) is an environ-

ment-friendly method of pest control, which has

become increasingly important in the context of

area-wide integrated pest management (AW-IPM)

programmes. Originally designed in the 1950s for

the eradication of the New World screwworm in the

USA (Knipling 1955), the SIT is currently applied to

some major pests of plants and animals and human

disease vectors. It has proven successful in reducing,

controlling and eradicating economically important

pest species such as the Mediterranean fruit fly

(medfly), Ceratitis capitata (Wiedemann) (Krafsur

1998). This technology involves the release of mass-

reared and radiation-sterilized males into a wild pop-

ulation of the same species. The effectiveness of SIT

relies on the mating competitiveness of the released

sterile males, whose infertile matings lead to a

decrease in the female reproductive potential and

subsequently to a decline in population size.

Since its first application, the SIT has represented

a major subject for research and development in the

Joint FAO/IAEA Programme on Nuclear Techniques

in Food and Agriculture, involving both research

and the transfer of this technology to Member

States, so that they can accelerate their economic

development (Joint FAO/IAEA Division 1985).

Besides the applications against medfly, SIT is cur-

rently used for the control of the Queensland fruit
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Abstract

Tephritid fruit fly species cause major economical losses in crops

worldwide. Genetic transformation of insect pests, which are targets of

the Sterile Insect Technique (SIT), a key component of area-wide pest

management, has been achieved for several years. For the medfly Cerati-

tis capitata as well as several Bactrocera and Anastrepha species, germline

transformation can now be used to bioengineer strains that should

increase the efficacy and cost-effectiveness of the SIT. Novel transforma-

tion vectors, robust genetic markers and diverse promoters to drive

stage- and tissue-specific gene expression provide powerful tools to test

the contribution that these technologies can make to current SIT

programmes.
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fly, Bactrocera tryoni (Froggatt), which has been erad-

icated from Western Australia (Fisher 1994). Pilot

SIT projects aimed at the eradication of the Oriental

fruit fly, Bactrocera dorsalis (Hendel), and the guava

fruit fly, Bactrocera correcta (Bezzi), are underway in

Thailand (Orankanok et al. 2007), while an eradica-

tion programme against Bactrocera philippinensis

(Drew & Hancock) is ongoing in the Philippines

(Covacha et al. 2000). The Mexican fruit fly, Anastre-

pha ludens (Loew), was eradicated from north-wes-

tern Mexico (Reyes et al. 2000) and the melon fly,

Bactrocera cucurbitae (Coquillett) from Japan (Koyama

et al. 2004). In spite of its success and environmental

benefits, the SIT has been used for only a few target

species, because the sterilization by radiation and

a series of technical aspects produce several negative

loads on the treated males, resulting in reduced

fitness and/or lifespan.

The development of genetic sexing strains (GSS)

that permit the separation of males from females is

crucial for an effective application of the SIT against

tephritid pests (Robinson et al. 1999). By releasing

only sterile males, the efficiency of the technique

can be increased and fruit damage by sterile females

that retain their oviposition behaviour is avoided

(McInnis et al. 1994; Rendon et al. 2000). In order

to obtain sex separation, GSS were established in the

medfly using a classical genetic approach; these

strains carry reciprocal translocations between the Y

chromosome and an autosome carrying a recessive

selectable marker (Franz 2005). Insecticide resis-

tance, pupal colour (several pupal colour markers

have been identified and used in various tephritid

fruit flies; Robinson 2002a,b) and the medfly tem-

perature-sensitive lethal (tsl) system are the most

well-known selectable markers that have been used

(Rendon et al. 2004; Franz 2005; fig. 2a-1). The tsl

system is widely used and almost all sterile medfly-

rearing facilities have converted to this strain. Never-

theless, these classical genetic systems cannot be

transferred to other tephritid species by classical

genetics. Moreover, all currently used GSS are based

on Y-autosome translocations with the consequence

that, due to adjacent-1 segregation during male mei-

osis, genetically unbalanced gametes are generated

leading to significant levels of male sterility (Robin-

son et al. 1999), which impacts on the efficiency of

mass rearing. The recent progress of gene transfer

techniques is such that transgenic technology has

now the potential to be transferred to a wide range

of species. Furthermore, initial valuations of strains

in field cage tests and large-scale rearing conditions

are fundamental, especially in the light of the

possible use of transgenic strains for field applica-

tions. In this framework, major technical problems

concerning stability and safety of the transgenic

strains and their ability to express the transgene in a

reliable and predictable way have to be taken into

account.

Here, we review the current state of the art of

transgenic technology in tephritid species, focusing

on the technical advances that are already available

and those that will be necessary to improve further

for: (i) the implementation of current pest control

systems and (ii) widening our knowledge about

several economically important pest species. Finally,

as transgenic strains have already been generated for

practical application, risk assessment issues for their

use in laboratory studies and potential release in the

field represent a top priority that needs to be

addressed.

Available Tools for Genetic Transformation of

Tephritids

Transposons and insect transformation

Currently, insect germline transformation is typically

mediated by transposable elements (TEs). The first

successful genomic manipulation was achieved in

Drosophila melanogaster, taking advantage of the TE P

(Rubin and Spradling 1982). Several trials were per-

formed to transform pest insects by using P-element-

based vectors, but they all failed because of the

absence of specific host factors (Handler et al. 1993;

O’Brochta and Atkinson 1996) and the lack of effi-

cient transformation markers.

The genetic transformation of non-drosophilid

insects using non-autonomous versions of TEs is now

a routine procedure and mainly relies on five

transposon-based systems: mariner, Minos, Hermes,

hobo and piggyBac (Handler 2001; Handler and Harrell

2001a). The use of these elements allowed the

transformation of several tephritid species, such as C.

capitata (Loukeris et al. 1995; Handler et al. 1998;

Michel et al. 2001), B. dorsalis (Handler and McCombs

2000), Anastrepha suspensa (Handler and Harrell

2001b), A. ludens (Condon et al. 2007) and Bactrocera

oleae (Koukidou et al. 2006).

However, not all transposons have the same trans-

formation efficiency. For example, hobo vectors have

generally been limited to drosophilids (Handler

2001). On the contrary, piggyBac-based vectors have

been demonstrated to be widely applicable for gene

transfer in insects, enabling the transformation of

a considerable number of insect species (Handler
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2001, 2002). Similarly, the Minos vector is a highly

mobile vector that works in a wide range of verte-

brates and invertebrates and represents a powerful

tool for functional genetic and genomic applications

(Pavlopoulos et al. 2007).

General markers

To extend the use of these TE-based systems to a

broad range of insect species, the availability of

markers capable of allowing easy and clear identifi-

cation of transgenic individuals represents a key

point (Horn et al. 2002). Eye colour genes are useful

tools for the detection of transformants in several

species such as C. capitata and B. dorsalis (Zwiebel

et al. 1995; Sarkar and Collins 2000). Fluorescent

proteins like the enhanced green fluorescent protein

(EGFP) were then used as transformation reporters

as they are less affected by position effects because

of the random integration of the transgene into the

genome than the eye colour genes (Horn et al.

2002). Given that prolonged exposure to fluorescent

light during screening may negatively interfere with

the survival of the flies, a system that permits a fast

and clear identification of transformants is funda-

mental. Therefore, the use of strong promoters has

to be preferred. The constitutive promoter of the

polyubiquitin (PUb) gene from D. melanogaster was

successfully used to generate the transformation

marker PUbnlsEGFP and to identify transformants

not only of D. melanogaster (Handler and Harrell

1999), but also of C. capitata and A. suspensa (Handler

and Harrell 2001b). Subsequently, the red fluorescent

protein DsRed, and its variant DsRed1, driven by the

D. melanogaster PUb promoter, produced brighter and

more easily detectable fluorescence at lower magnifi-

cations than EGFP expression (Handler and Harrell

2001a). A universal transformation system, which

allows the analysis of the same transgenic construct in

different insect species, was generated using the artifi-

cial 3xP3 promoter, mediating fluorescent expression

in larval, pupal and adult insect eyes (Berghammer

et al. 1999; Horn and Wimmer 2000). Such a univer-

sal marker will make possible novel comparative

studies within the field of insect biology.

Site-specific recombination as a tool for stabilizing

transgenes

For the safe release of genetically modified insects

into the field it is necessary to generate systems inert

to any transposase source that could be present in

the environment, as TEs belong to families of

elements and cross-interactions may be possible.

Therefore, a fundamental requirement is the devel-

opment of non-autonomous transgenic insertions.

A technique involving the excision of one transpo-

son end in the genome of D. melanogaster transgenic

flies represented a first basic step towards this goal

(Handler et al. 2004) and a strategy based on the

use of composite piggyBac elements is now available

for post-integration removal of both transposon ends

from TE-mediated insertions in medfly (Dafa’alla

et al. 2006; fig. 1).

Another approach through which it might be pos-

sible to functionally modify the genomic situation

after random transposon-based transformation is

site-specific recombination. The different strategies

aimed at inserting transgenes into a single position

in the genome of Drosophila are based on site-specific

recombinases capable of catalysing crossover

between defined target sequences (Branda and Dym-

ecki 2004). The most popular of these enzymes are

FLP and Cre, which have been employed in numer-

ous applications (Golic and Lindquist 1989; Golic

1991; Siegal and Hartl 1996, 2000; Heidmann and

Lehner 2001); however, the efficiency of this

Fig. 1 Strategy available for post-integration removal of transposon

ends from transposon-mediated insertions. The integrated transgene

carries two pairs of opposed piggyBac transposon ends and three dif-

ferent markers (M1, M2 and M3). Exposure to the transposase results

in the removal of the transposon(s) marked with M1 and/or M3,

obtaining a stabilized transgenic insertion marked with M2. A further

exposure to transposase might be required to remove both flanking

transposons (adapted from Dafa’alla et al. 2006).
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method is limited by its reversible nature (Golic

et al. 1997). Another system that overcomes this

limitation employs the integrase from the phage

/C31 (Thorpe and Smith 1998; Groth et al. 2004),

which mediates unidirectional recombination

between two sequences: the phage attachment site

(attP) and the bacterial attachment site (attB). Their

recombination generates two new hybrid sequences,

attR and attL (Kuhstoss and Rao 1991; Rausch and

Lehmann 1991), which no longer represent sub-

strates for integrase (Thorpe et al. 2000). This strat-

egy has been proven to be highly efficient in

Drosophila (Groth et al. 2004) and even large DNA

fragments up to 140 kb could be inserted (Venken

et al. 2006). In the future it might be possible to

take advantage of site-specific integration systems to

perform functional studies at characterized genomic

positions in tephritids and rearrange, delete or insert

transgenic systems at favourable positions within the

genome (Wimmer 2005a).

The ability to remove the transposon ends is of

major importance, because it still needs to be clari-

fied whether the presence of potentially active TEs

could represent a risk for transgenesis applications.

First, transposase produced by endogenous elements

may destabilize integrated heterologous elements

and transgenes (Sundararajan et al. 1999). The

potential risk of cross-mobilization or non-homolo-

gous recombination resulting in the instability of

transgenes integrated into the genome have to be

carefully evaluated. For example, there is evidence

that the hobo element from D. melanogaster and the

Hermes element from Musca domestica can interact in

such a way as to cause vector destabilization (Sun-

dararajan et al. 1999). The isolation of a potentially

active hobo-like sequence in the medfly (Cchobo, Torti

et al. 2005) and the transformation of the medfly

using Hermes (Michel et al. 2001) raise questions

about the possibility of Cchobo/Hermes reciprocal

cross-mobilization and about the stability of such

transformation systems.

Secondly, the movements of endogenous TEs

might result in mutations or reduced viability. In

fact, several factors within the host genome might

interact with the transgene vector causing its remo-

bilization or inhibiting its movements, preventing,

for example, its spread through a population (Sun-

dararajan et al. 1999). Horizontal transfer of TEs has

been well documented (Kidwell 1992a,b; Simmons

1992; Robertson and Lampe 1995; Jordan et al.

1999). Because genetic barriers between species are

not completely impenetrable to gene flow, the ability

of a gene vector system to function also in non-tar-

get organisms is of great ecological concern (Atkin-

son et al. 2001; Handler 2002). Therefore, the

potential of transgene remobilization has to be

assessed and represents a priority for risk assessment.

Finally, transformation efficiency can be nega-

tively influenced by the interaction between the

transposase from an endogenous TE, with the trans-

posase associated with the vector system resulting in

the blocking of binding sites, or through the forma-

tion of non-functional transposase multimers.

To date, the medfly genome has been shown to

contain several TE from the mariner, Tc1, hAT and

gypsy/Ty3 families (Handler and Gomez 1996; Zhou

and Haymer 1998; Gomulski et al. 2004; Torti et al.

2005) displaying different levels of diversity, abun-

dance and distribution in the genome. The presence

of actively transposing elements in the medfly gen-

ome is revealed by hybrid dysgenesis phenomena,

insertion site polymorphisms and other genetic insta-

bilities (Torti et al. 1997).

As piggyBac-based systems are widely used for

transformation of tephritids, precise knowledge of

the host distribution of the piggyBac element has

important implications for transgene stability and

horizontal transmission. The presence of endogenous

piggyBac-like elements in B. dorsalis s.s. has to raise

caution on the stability of the transgene, even if

integrations have been shown to remain stable for

more than 20 generations in flies transformed using

a piggyBac-based vector system (Handler 2002). The

absence of piggyBac-like sequences in other tephritid

species, such as C. capitata, Anastrepha spp. and

B. oleae, is promising for the successful application of

such vectors (Bonizzoni et al. 2007).

In this background, it follows that exploration of

the genomes of tephritids will have a strong impact

on our knowledge of their biology, allowing the

development of novel tools to improve pest control

methods. For example, among the medfly expressed

sequence tags (ESTs), a total of 63 transcripts

showed significant homology to known TEs (Gomul-

ski et al. 2008). The medfly has been a target of

transformation studies involving the exogenous ele-

ments Minos, Hermes and piggyBac (Loukeris et al.

1995; Handler et al. 1998; Michel et al. 2001) and

the presence of active endogenous homologous ele-

ments can have important implications for the stabil-

ity of such transgenic lines. It is therefore evident

that functional genomics is gaining more and more

importance also in terms of improving control pro-

grammes. In addition, transgenic approaches might

allow us to functionally characterize the sequences

identified in genome projects, permitting direct
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correlation of sequence data with biological function

(Wimmer 2003).

Transgenesis and its Impact on Pest Control

Transgenic technology may enhance operational SIT

programmes at three levels: genetic sexing, steriliza-

tion and monitoring. First, transgenesis can optimize

male-only production through genetic sexing strate-

gies (fig. 2a-2). Molecular approaches can be used to

transform females into males as achieved by RNAi

against the C. capitata transformer gene (Pane et al.

2002), or to eliminate females. The release of insects

carrying a dominant lethal (RIDL) is a strategy that

combines both genetic sexing and ‘sterilization’ from

the same construct (Alphey 2002; Gong et al. 2005;

Wimmer 2005b). Transgene-based genetic sexing

mechanisms (GSMs) using conditional female-

specific lethality systems, based on the tetracycline-

repressible expression system of Gossen and Bujard

(1992), were successfully tested in Drosophila

(Heinrich and Scott 2000; Thomas et al. 2000).

Medfly strains expressing a tetracycline-repressible

transactivator (tTA) that causes lethality in late

developmental stages of heterozygous progeny have

been produced (Gong et al. 2005; fig. 2b-1).

Recently, medfly embryonic genes have been iso-

lated to transfer the principle of reproductive sterility

based on embryonic lethality (Horn and Wimmer

2003) to tephritid pest species (Schetelig et al. 2007,

2008; fig. 2b-2). Sex-specific alternative splicing to

engineer female-specific autocidal genetic systems

was also exploited in the medfly (Fu et al. 2007)

and demonstrated the potential of controlling gene

expression specifically in female embryos.

The release of transgenically marked sterile males

as part of ongoing SIT programmes might have

a role in short-term releases for agricultural pest

suppression. As the presence of transgenes in the

environment is limited to the sterilized flies carrying

harmless fluorescent protein-based markers, there

will be no vertical transmission, thus favouring their

use in field test feasibility studies. The introduction

of transgenic strains may also be useful in improving

the effectiveness of monitoring procedures, overcom-

ing the disadvantages of the present systems. To

date, sterilized insects reared in laboratories are

marked at the pupal stage with fluorescent powders,

allowing them to be distinguished from wild flies

when recaptured in traps within the release area.

Although dust marking is the most commonly used

system, dusts have been reported to inhibit normal

dispersal behaviour (Chang 1946), to decrease insect

longevity (Sheppard et al. 1969; Reinecke 1990;

Messing and Seiler 1993), to be non-persistent for

long-term studies, expensive, difficult to handle,

dangerous for human health and error-prone

(Hagler and Jackson 2001). Moreover, fluorescent

powder usage represents an additional step during

mass rearing. Therefore, it would represent a great

improvement to have a marker that (i) is retained

on the insect for a sufficient period of time

(corresponding to the interval between two succes-

sive trap controls); (ii) does not interfere with

normal insect behaviour, growth, reproduction or

life span; (iii) is inexpensive; (iv) is non-toxic to

insect and environment; (v) is easy to handle; and

(vi) is clearly identifiable (Hagler and Jackson 2001).

Specific markers

The availability of sex-specific fluorescent markers

represents a powerful tool for the improvement of

the monitoring procedures, because such markers

have all the necessary features for practical use in

the field. Moreover, if expressed early enough, they

can be useful for sexing, as already proven for the

mosquitoes Anopheles stephensi (Catteruccia et al.

2005) and Aedes aegypti (Smith et al. 2007).

In Scolari et al. (2008), two testes-specific markers

for C. capitata were generated by fusing the promoter

of the spermatogenesis-specific medfly b2-tubulin

gene with the reporter genes encoding a red or

green fluorescent protein, respectively (fig. 3a).

Besides improving SIT monitoring, these markers

will enable studies of medfly mating behaviour at

several levels, such as sperm transfer, sperm storage,

sperm use, sperm precedence and sperm competition

(Bonizzoni et al. 2006; Yuval et al. 1996; fig. 3b).

A preliminary set of laboratory competitiveness tests

on these testis-specific marked flies was performed

to estimate the mating ability of transgenic homozy-

gous males. The copulation latency of transgenic and

wild-type (WT) males was recorded to check

whether transgenic males differed from WT males in

the time required to gain copulations. As an addi-

tional assessment of the overall fitness of the testes-

marked homozygous medfly lines, the effect of

transgenic marking on the reproductive capacity and

the proportion of progeny sired by transgenic or WT

males in competitive conditions were tested. As pre-

viously stated, the efficiency of a transformation

event depends not only on the chosen vector, but

also on the markers used to verify the transforma-

tion event itself. In both systems, a double marking

approach was followed, in which the PUb promoter
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of D. melanogaster drives the expression of EGFP or

DsRed and the newly isolated b2-tubulin putative

promoter drives the expression of tGFP (turboGFP)

or DsRedEx (DsRedExpress), respectively. The effi-

ciency of the piggyBac transformation system

together with fluorescent markers permitted the

selection of many transgenic lines and represented

the fundamental background for in vivo verification

of the expression of the medfly b2-tubulin putative

promoter. Stable marking in testes and sperm

Fig. 2 Transgenic approaches to improve the SIT. (a) Sex-specific lethality systems. (1) The tsl system aims to produce only male progeny: it relies

on a translocation on the Y chromosome carrying a dominant tsl+ gene that causes male resistance to heat treatment (adapted from Franz 2005).

(2) Female-specific lethality system which combines the principle of RIDL and the properties of the Cctra gene intron. The dominant lethal gene

encodes for the tetracycline-repressible transcription factor (tTA) which is lethal at high concentrations and is inactivated by the presence of tetra-

cycline. The tTA expression is under the control of the tetracycline operator (tetO), which, in the absence of tetracycline, is bound and activated

by the tTA protein itself. An engineered tTA gene, whose coding sequence is interrupted by the insertion of the Cctra intron, expresses a full-

length protein only in females, because the Cctra intron which carries STOP codons is maintained in males but spliced in females. Therefore, in

the absence of tetracycline, the concentration of the tTA causes female-specific lethality (adapted from Fu et al. 2007). (b) Lethality systems. (1) In

the one-component system, the RIDL basic principles are applied to obtain larval, pupal and/or adult lethality, irrespective of the sex of embryos

(adapted from Gong et al. 2005). (2) The two-component system represents an embryonic lethality system based on the expression of a dominant

lethal gene (hidAla5) during the first steps of embryogenesis. In embryos, in absence of tetracycline, tTA, whose expression is under the control of

cellu E/P (enhancer–promoters of cellularization genes), binds the tRE (tetracycline-responder element) and induces the expression of the dominant

lethal gene (adapted from Schetelig et al. 2007).
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depends on the availability of specific promoters and

of intensely fluorescent molecules. As in D. melanog-

aster, the medfly b2-tubulin promoter was shown to

control gene expression at testes level and during

spermatogenesis. This promoter is also able to direct

the expression of DsRedEx and tGFP, which permit

clear marking of the testes and single sperm. The

b2t-DsRedEx/tGFP vector provides a selective and

potent marking system for the analysis of medfly

reproductive biology.

DsRed and DsRedEx expression were detectable in

adult individuals up to 3 months after death; tGFP

showed a comparable longlife, while the EGFP body

marker lost its intensity after 2–3 days in live flies.

These results are particularly important for the use

of such transgenic flies in SIT monitoring proce-

dures, because it will be possible to detect fluores-

cence in flies captured in traps long after their

death. In addition, sperm marking will facilitate the

assessment of the mating status of trapped females,

which in turn, will allow the mating efficiency of

the released sterile males to be monitored (fig. 3c).

Sterile male fitness assessment for successful

SIT programmes

As successful applications of SIT programmes depend

on the mating competitiveness of the transgenic

males, the transgenes should impose a minimal fit-

ness load on their hosts. Fitness assessment studies

Fig. 3 Fluorescent sperm marking as a tool

for the improvement of medfly mating behav-

iour studies and SIT monitoring. (a) Transgenic

males with green or red fluorescent testes. (b)

The availability of transgenic males with fluo-

rescent testes and sperm will allow novel

studies on reproductive biology related to the

mating behaviour of this polyandrous species.

(c) The field release of such transgenic steril-

ized males will enable the assessment of the

efficacy of SIT programmes; data collected

from traps located within the release area will

give information on the number and mating

success of sterilized males and on the mating

status of WT females.
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are of major importance because they will permit

the selection of competitive genetically modified

insects for use in control programmes (Irvin et al.

2004). Fitness, which can be defined as the relative

success with which a genotype transmits its genes to

the next generation, encompasses different compo-

nents such as survival, reproduction and develop-

ment (Marrelli et al. 2006). Therefore, several

parameters have to be analysed: fertility, fecundity,

larval biomass productivity, developmental rate,

adult emergence, sex ratio, mating competitiveness,

etc.

Transgenic technologies may impact fitness for

two main reasons: (i) fluorescent proteins which act

as the transformation marker might accumulate in

large amounts causing a fitness load (Liu et al.

1999); (ii) as transformation through microinjection

into the germline occurs randomly, the transgene

might get inserted in transcriptionally active areas of

the genome (Spradling et al. 1995, 1999; Thibault

et al. 2004). In order to limit the negative effects

caused by insertional mutagenesis, it is essential to

generate multiple transgenic lines, compare them

and select the fittest (Marrelli et al. 2006). More-

over, the strength of transgene expression can be

influenced by chromatin surrounding the insertion

site (position effect); when the strength of expres-

sion is important, the availability of several indepen-

dently obtained lines of the same construct is

fundamental. Alternatively, the use of insulator ele-

ments could be considered (Sarkar et al. 2006).

The measurement of fitness is difficult as it

depends on numerous environmental or genetic

variables. Furthermore, when testing fitness in the

laboratory, it is important that the experimental-

design allows male–male competition, permitting

direct comparison between transgenic and wild-type

insects. Mating success is determined by both inter-

sexual and intrasexual selection between males in

the limited space inside the cages. Intrasexual selec-

tion may involve aggressive interactions which

reduce the time available to interact with the female,

directly influencing the final fitness result (Calcagno

et al. 2002). Moreover, laboratory rearing conditions

are characterized by a dramatic reduction of space

and absence of natural constraints (lek formation,

fruits, daylight, etc.). Mass rearing conditions proba-

bly favour shortened courtship and fast mating

(Calcagno et al. 1999), and most probably increased

male aggressiveness.

For all these reasons, three phases of cage

competition experiments are needed: first of all, a

series of tests performed in the laboratory; then it is

important to perform competition experiments

between transgenic and endemic, locally sampled,

wild-type flies within cages at the proposed release

site; finally large field enclosures tests are necessary

(Scott et al. 2005).

Conclusions

In conclusion, the proposed transgenic applications

demonstrate two additional advances besides the dis-

cussed improvement of the SIT: (i) ecological

insights into the impact of transgenic insects in the

natural environment; (ii) support for discussion of

the safe use of biotechnology in insect pest control.

Transgenes should be used critically, always taking

into account that risk assessment surveys are essen-

tial for any field application. This is particularly

important for insects, which have enormous repro-

ductive and dispersal potentials. Furthermore,

releases of transgenic insects are likely to involve

large areas of land and it will be extremely difficult

to control or eradicate transgenic strains after their

release into the environment (Atkinson et al. 2001).

Currently medfly SIT applications are based on

two major components: (a) male-only production

and release through the use of GSS and (b) the use

of radiation for sterilizing the males. The medfly SIT

programmes could therefore be a good starting point

for implementing and testing transgenic technology,

especially given their efficient quality control sys-

tems which will ensure their safe use.
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