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ABSTRACT

This report studies chaotic systems with particular emphasis on the recently developed method of E. Ott,

C. Grebogi and J. A. Yorke [Ott 1990] (the OGY method) for controlling such systems.

Concepts useful in understanding chaos in general are introduced. We can conceptualise chaotic systems

as arising from classes of differential equations having particularly intractable solutions sets. However,

in many applications the underlying equations are unknown, one works from observations of measurable

parameters of the system. The use of successive samples of a single variable (or few variables) to generate

an embedding with a view to reconstructing the details of an attractor for a higher dimensional dynamic

system was suggested in [Packard 1980] and a frequently quoted embedding theorem [Takens 1980]

establishes the existence of such models for homogeneous systems: if the underlying state space of a

system has d-dimensions then the embedding space needs to have at most (2d + 1) dimensions to capture

the dynamics of the system completely. These results were later generalised and improved by [Levin

1993]. It is a remarkable fact that much of the dynamics of a high dimensional system can be recovered

from a suitable embedding of a single variable, but in practice a critical factor in the accuracy of such

reconstructions is the sampling delay.

In this report a number of existing techniques for deriving delay time, sampling delays, suitable for

reconstruction are examined and improved methods for estimating jump time, the time between each

embedding space vector, and embedding dimension are elaborated. Combining a new technique (the Γ-test)

[Stefánsson 1995] with existing techniques leads to a new and effective automated framework for attractor

reconstruction. Choice of the jump time is critical in extracting an infinite number of nearly periodic

behaviours which exist within a reconstructed chaotic attractor. Study of techniques in choosing the jump

time led us to discover the creep phenomenon, where successive embedding space vectors remain nearby

and slowly cover the entire attractor in sections. Techniques which facilitate attractor reconstruction

become critical when one seeks to apply the OGY method in cases where the mathematical equations

which define the dynamic system are not available.

The original OGY method and a variation due to U. Dressler and G. Nitsche [Dressler 1992] are

consolidated into a single formal framework and comparative results are presented. One major

disadvantage of the OGY method is an inability to control complex system behaviour. The method is

extended to control complex behaviours which exists within the system.

The ability to control chaotic systems may possibly help us to understand some aspects of biological brain

function. It has been suggested by W. J. Freeman [Freeman 1991] that chaos is evident in the brain and

may play an important role in cognitive processes. According to this model the brain at rest is in a chaotic
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mode. Upon receiving a sensory input the response to the stimulus is more ordered, more nearly periodic

during perception, than at rest. In the language of nonlinear dynamics this may be interpreted as a shift

from a chaotic orbit to a periodic orbit. Thus there are possibilities that ideas based on the OGY method

could be used to simulate this aspect of brain function.
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CHAPTER I

INTRODUCTION

1.1 Introduction

About a century ago, Henri Poincaré observed that the motion of three bodies under gravity can be

extremely complicated. His discovery was the first mathematical evidence of chaos. Since that time there

have been many observations of chaos both in mathematical models and natural systems. For many years

chaos observed through the study of nonlinear dynamic systems was avoided, due to its complexity. In

practice such behaviour was often totally ignored being interpreted as either completely unpredictable or

ascribed to statistical noise. The theory of nonlinear dynamics founded by Poincaré describes and classifies

the behaviour of complex dynamical systems and the manner in which they evolve through time. Such

systems were extraordinarily difficult to study. The situation changed dramatically with the invention of

the modern computer. Scientists, especially mathematicians and physicists, who had previously

encountered chaos could pursue a more systematic study of the phenomenon using the new tool.

The crucial importance of chaos is that it provides an alternative explanation for apparent randomness, one

that depends on neither noise nor complexity. Chaotic behaviour shows up in systems that are essentially

free from noise and are also relatively simple, often with only a few degrees of freedom.

In fact, many natural systems exhibit chaos. In the early years of the study, it was common to assume that

such behaviour is unpredictable1 and therefore uncontrollable. Since the late 1980’s, a number of quite

different techniques have been proposed for controlling chaotic systems [Ott 1990], [Dracopoulos 1994],

[Ogorzalek 1993].

At about the same time, W. J. Freeman [Freeman 1991] observed that in the olfactory bulb of the rabbit

recognition of scent seems to utilise a shift in chaotic mode. He has also proposed that chaos is present

in other aspects of brain function such as visual perception. In the olfactory bulb chaotic behaviour is

evident when at rest. The response of the system to sensory input is to undergo a change of chaotic mode,

shifting into a still chaotic but more orderly state. Freeman believes that this new state corresponds to a

1 Unpredictable in the sense that, although completely deterministic the computational ‘cost’ of an
accurate prediction rapidly becomes prohibitive as the prediction interval increases - we shall return to this
point in Chapter II.
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recognition of the stimulus. The control of chaotic behaviour may thus play an important role in the recall

of some types of memories. This offers the intriguing possibility that methods for controlling chaotic

systems, such as the OGY method, might be used as a basis for a new type of simulation of cognitive

perception. It is this thought which has motivated the present work.

Unfortunately, before one can seek to construct such neural simulations it is first necessary to systematise

much of the extensive literature associated with chaotic systems and their control. It is to this end that the

present report is written, the reader will find much on chaos and the OGY method and very little on

chaotic neural simulations, such work being reserved for subsequent research.

This report will introduce some of the key theories which are helpful in understanding chaos. A number

of techniques used to study chaotic systems are described with a strong emphasis on embedding

techniques, which are used to reconstruct the high dimensional behaviour of a system from a single

variable time series. Four of the well known chaotic models are then described. The main theme of this

report is the study of the recently developed control technique, the OGY method [Ott 1990]. Validity of

the OGY method is examined and the control law is proved. We also propose some extensions of the

OGY method which may be more appropriate for high dimensional embeddings. Some classic chaotic

models are then used to illustrate the embedding techniques and the OGY method.

1.2 Chaos in biological systems

The modern picture of brain function, as described by Freeman [Freeman 1991], is that ‘thought’ (in

particular perception, prediction and control) consists of the flow (in the high dimensional state space of

vast assemblies of neurons) from one chaotic orbit to a periodic orbit. Freeman argues that chaos is

evident in the tendency of neural assemblies to shift abruptly from one complex activity pattern to a more

stable one in response to the smallest of inputs. This is a plausible model and if it stands the test of

experiment and scrutiny then chaos is an intrinsic feature of brain function.

Phase portraits made from EEGs (electroencephalographs) generated by computer models reflect the

overall activity of the olfactory bulb of a rabbit at rest and in response to a familiar scent (e.g. banana).

The resemblance of these portraits to irregularly shaped, but still structured, coils of wire reveals that brain

activity in both conditions is chaotic but that the response to the known stimulus is more ordered, more

nearly periodic during perception, than at rest.

The heart also provides interesting examples of chaotic behaviour in biological systems. It is clear that

the cardiac waveform is nonlinear. There is also evidence that the cardiac cycle can usefully be described

2
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in terms of chaos. A. Babloyantz and A. Destexhe [Babloyantz 1988] examined the ECGs

(electrocardiographs) of four normal human hearts, using qualitative and quantitative methods. With a

variety of processing algorithms, such as power spectrum, autocorrelation function, phase portrait, Poincaré

section, Lyapunov exponent etc, they demonstrated that the heart is not a perfect oscillator, but that cardiac

activity stems from deterministic dynamics of a chaotic nature. Numerous in-vivo and in-vitro experiments

have investigated cardiac oscillatory activity and found characteristic signatures of chaos [Choi 1983],

[Chay 1985], [Geuvara 1981], [Goldberg 1984], [Keener 1981].

1.3 Control of chaos in biological systems

The work in [Garfinkel 1992] shows that the OGY method has potential to control cardiac dynamics in

a chaotic regime. In eight out of eleven studies, the authors successfully stabilised cardiac arrhythmias

induced by the drug ouabain in rabbit ventical by administering electrical stimuli to the heart, at irregular

times determined by a variation of the OGY control law. This raises the possibility that to stabilise cardiac

arrhythmias more effectively, sophisticated models and control techniques from neural computing or the

OGY method might be used to, for example, improve pacemaker design.

[Schiff 1994] shows that a neural network prepared from a hippocampal slice of rat brain displays chaotic

behaviour. The chaos was controlled using the OGY method, moreover, periodic behaviour in certain

preparations were made to behave chaotically (anticontrol).

1.4 An overview of the report

Following this introductory chapter this report is divided into six chapters as follows.

II. Nonlinear dynamics

III. Chaotic models

IV. Embedding techniques

V. Control of chaotic systems

VI. Experimental results

VII. Future research

It should be noted that this report only covers those aspects of chaos theory important in understanding

the techniques used to control chaotic systems. Chaos is a large subject and a comprehensive survey would

be a very ambitious undertaking.
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In chapter II, key areas of nonlinear dynamics are briefly described with explanations of the basic terms

often used. The theory of chaos attempts to study the order and universality that underlies the visible

complexities. The key areas include stability of limit sets, Lyapunov exponents, Poincaré maps, fractal

dimension, routes to chaos, i.e. the progression of a dynamical system from order to a chaotic mode of

behaviour, and detecting chaos. Other areas of research and developments are introduced throughout the

report as required. Use of numerical integration algorithms are an important issue especially in studying

deterministic chaotic systems, and the simulation of chaotic systems utilising such algorithms are examined

carefully. At the end of the chapter, further readings are suggested so that interested readers may refer to

them for more detail.

In chapter III, conservative systems (referred to as Hamiltonian systems) are briefly described. This is

followed by studies of four well known dissipative systems which exhibit chaos. The first model is a

continuous time system known as the Lorenz model [Lorenz 1963]. The second system studied is a

discrete time system called the Hénon map [Hénon 1976] which is based on the Lorenz model. The other

two systems are also continuous time systems. They are the Rössler model [Rössler 1976] and the Duffing

oscillator [Parlitz 1985] model.

In chapter IV, methods known as embedding techniques are described. The objective is to construct

models of high dimensional dynamic systems from a single dynamic variable time series. These techniques

play an important role in what follows and are described in detail. We have described a method of

estimating the essential parameters of the embedding techniques. A chaotic system has an infinite number

of unstable periodic orbits within itself. A method of locating such orbits by using the embedding

techniques is described. This study has lead us to discover creep phenomenon. Also a method used to

study the stability of unstable orbits is discussed.

In chapter V, a number of recently developed techniques to suppress or control chaos are briefly described.

The developments in the control of chaotic systems proposed by E. Ott, C. Grebogi and J. A. Yorke in

1990, referred to as the OGY method, are discussed in detail. We have also included some variants of the

OGY method including the Dressler and Nitsche and newly developed high period control strategy.

In chapter VI, results of a number of experiments to control chaotic systems are reported. Using computer

simulations of three variations of the OGY method, two well known chaotic systems have been controlled

successfully. These systems were a variation of the Hénon iterative map and the Duffing oscillator model.

The chaotic iterative map was chosen as it is a low dimensional discrete time system and therefore forms

a simple test bed to examine the efficiencies of the control methods. The control methods examined are

the OGY, the Dressler and Nitsche and the high period control strategy. The oscillator model was chosen

4



Chapter 1 - Introduction

as the OGY method could be tested by utilising a stroboscopic return map for a continuous time system.

In chapter VII, a proposal is made for further studies and the final goal of this research. An immediate

goal is to implement a chaotic system modeled by an artificial neural network and control the system’s

behaviour by the high period control strategy. The final goal is to implement the whole system, both

models to be controlled and the control system using a number of artificial neural networks.
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CHAPTER II

NONLINEAR DYNAMICS

2.1 Introduction

It is interesting to observe from a modern standpoint that Newtonian physics already contained the seeds

of its own destruction. Quite apart from the later quantum mechanical caveat of the Heisenberg

Uncertainty Principle, the classicists overlooked the ‘computational cost’ of making deterministic

predictions an indeterminate time into the future. The fact is that for many deterministic systems, the

computational cost of making an accurate prediction a substantial time into the future becomes prohibitive.

Thus the classical view that if a system is deterministic then its future behaviour could be predicted for

all time contains a basic flaw. This flaw becomes particularly apparent when we consider chaotic systems.

Chaos is the word we use to describe deterministic behaviour for which nevertheless, in view of the

computational cost, even if the initial conditions were known to an arbitrary degree of precision, the long

term behaviour cannot be accurately predicted. This is certainly the case with many natural systems for

which in any case we cannot know the initial conditions to an arbitrary degree of precision. A classic

example, first considered by E. N. Lorenz, is the weather [Lorenz 1963].

Many mathematical models describing natural systems are just simplified cases of those systems and are

developed in such a way to be deterministic and predictable in the long run. These systems are often used

as rough approximations. In reality even the correct number of variables may be unknown and such

models can at best form only a localised approximation to the true dynamics. Models which yield better

results are often nonlinear and here even in what appears to be a very simple set of differential equations,

chaos can be present. It is usually not possible to integrate such models symbolically and most frequently

the best approach to modelling is to use multi-step adaptive numerical integration (refer to section 2.11

for detail). As we shall see, this fact plays an important role in studying systems with chaotic behaviour.

Another key observation is the fact that in the real world, we can never specify initial conditions exactly.

In this chapter, we first introduce some of the terms often used in the study of nonlinear dynamical

systems. This is followed by descriptions of a number of key ideas in chaos theory, which are important

in understanding the concepts introduced in later chapters. We shall discuss why chaos occurs and how

it can best be studied. Also a number of tests are suggested to detect chaos.

7
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The chapter concludes with a discussion of the numerical integration techniques used to simulate chaotic

systems.

2.2 Nonlinear dynamics - basic terminology.

Any nonlinear system which can be expressed by a set of mathematical equations includes two types of

variables - dynamic and static. Dynamic variables are the quantities which change with time whereas the

static variables, often referred to as the control or system parameters, remain constant until changed by

an outside force. When studying a nonlinear system, the control parameters are often changed so as to

learn how the behaviour of the system changes in response. The act of changing a control parameter to

change the system behaviour is known as perturbation.

State space, or phase space, is the space of the dynamic
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Figure 2.1 A limit cycle.

variables and might in some cases include their derivatives.

A point in the state space represents a state of the system at

a given time. As the system evolves with time, the state of

the system moves from point to point in the state space, thus

defining a trajectory. A trajectory therefore displays the

history of the states of the system. A limit set is the set of

points in state space that a trajectory repeatedly visits. It is

defined only for discrete or continuous autonomous systems.

A limit cycle is a periodic solution of the system. A limit set

is stable if all nearby trajectories remain nearby, it is

unstable if no nearby trajectories, except those lying on the limit set, remain nearby. In Figure 2.1, a stable

limit cycle is illustrated. The model used to obtain the diagram was the Duffing oscillator for d = 0.15,

f = 0.3 and ω = 1.0. The Duffing oscillator is studied in detail in section 3.3.4. A collection of several

trajectories with different initial conditions is called a phase portrait for the system, which is a graphical

representation of the global behaviour of the system.

In nonlinear dynamical theory, the number of degrees of freedom is usually defined as the number of

dynamic variables needed to specify the dynamical state of the system, or equivalently as the number of

independent initial conditions that can be specified for the system.

An nth order autonomous continuous time system is defined as

8
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where t is time, x = (x1, . . . , xn) is a vector in n-dimensional state space, i.e. xi are the dynamic variables,

(II.1)dxi

dt
gi(x1, . . . , xn, pi), (i 1, . . . , n)

g = (g1, . . . , gn) is a vector field in the state space, i.e. gi are functions of xi, and pi are the

corresponding vectors of control parameters. As the vector field does not depend on time, the initial time

may be taken as t0 = 0.

If t appears in fi, then such a system is said to be non-autonomous. If there exists T > 0 such that

g(x, p, t) = g(x, p, t + T) for all x and t, then the system is time periodic with period T. A dth order

non-autonomous system with period T can be written as a (d + 1)th order autonomous system by adding

an extra state θ = 2πt/T. Since g is time periodic with period T, the system is periodic in θ with period

2π. Since the vector field of an autonomous system is independent of time, the autonomous system can

be considered as a time periodic non-autonomous system with period T. For example the Duffing oscillator

is usually written as a non-autonomous system [Parlitz 1985] but for sufficiently large values of f the

periodic oscillation occurs in units of 2π/ω, where f and ω are the control parameters of the model.

Therefore it can be written as an autonomous system.

A non-autonomous system that is not time periodic can also be written as an autonomous system by

choosing any T > 0. However, the solution is unbounded i.e. θ → ∞ as t → ∞, thus the steady state

behaviour of autonomous systems does not apply.

We distinguish between conservative and dissipative dynamic systems. In conservative systems, described

in section 3.2, volume elements in the state space are conserved, whereas in a dissipative system the

volume elements contract as the system evolves.

The terms are best understood with examples. A well known nonlinear dissipative system called the

Lorenz model [Lorenz 1963], described in section 3.3.1, is used for this purpose.

The Lorenz model is defined by a set of differential equations as

(II.2)

ẋ σ (y x)

ẏ x (R z) y

ż x y b z

This system has three degrees of freedom as there are three dynamic variables x, y and z. The control

9
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parameters are σ, R and b. For R less than 1, all trajectories, no
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Figure 2.2 Stable attractor.

matter what their initial conditions, eventually end up approaching

the origin of the xyz state space. That is for R < 1, all of the xyz

space is the basin of attraction for the attractor at the origin.

Figure 2.2 illustrates a trajectory of the model with σ = 10.0,

R = 0.5, b = 8/3, x = 1.0, y = 2.0 and z = 3.0.

For dissipative systems, the effects of transients associated with

initial conditions disappear in time. The trajectory in state space

will head for some final attracting region, or regions, which might

be a point, curve, area, and so on. Such an object is called the

attractor for the system, since a number of distinct trajectories will

be attracted to this set of points in the state space. The properties

of the attractor determine the long term dynamical behaviour of the

system. For the Lorenz model (illustrated in Figure 2.2), the attractor is a point attractor and it is stable

once the trajectory reaches the origin.

The set of all initial conditions giving rise to trajectories that approach a given attractor is called the basin

of attraction for that attractor. If more than one attractor exists for a system with a given set of control

parameter values, there will be some initial conditions that lie on the border between the two or more

basins of attraction.

2.3 Stability of limit sets

Stability of a limit set is important in studying the behaviour

(a) (b)

(c) (d)

(e) (f)

Figure 2.3 Types of fixed points.

of an autonomous system. An equilibrium point xF, often

referred to as a critical point or a singular point, is a point

in the state space where stability exists. In Figure 2.3, the

equilibrium point xF is indicated by the dot in middle of

each diagram.

The set of points that approach a limit set is called the stable

manifold of the limit set. The set of points that repel from it

is called the unstable manifold.

The arrows pointing to the equilibrium point xF are the stable manifolds and the arrows pointing away are

10
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the unstable manifolds. The basic types of stability in a multi-dimensional state space are illustrated in

Figure 2.3 and are as follows:

(a) Asymptotically stable - The equilibrium point is called a spiral node. The trajectories

spiral around the node on a surface (submanifold) as they approach xF.

(b) Asymptotically unstable - The equilibrium point is called a spiral repeller.

Trajectories spiral around the repeller as they are repelled away from xF.

(c) Stable - The equilibrium point is called a node. All trajectories in the neighbourhood

of the node are attracted toward xF without looping.

(d) Unstable - The equilibrium point is called a repeller. All trajectories in the

neighbourhood of the repeller diverge away from xF.

(e) Non-stable type 1 - The equilibrium point is called a saddle point. Trajectories

approach xF on a surface and diverge from it along a curve, or the trajectories approach

xF on a curve and diverge from it on a surface.

(f) Non-stable type 2 - The equilibrium point is called a spiral saddle point. Trajectories

spiral around xF as they approach on a surface, or trajectories spiral around xF on a

surface as they diverge from xF.

The local behaviour near xF can be determined by linearising the equations describing the dynamic system

at xF. This is done by evaluating the eigenvalues of Jacobian matrix J, of partial derivatives at xF.

The Jacobian matrix J of an autonomous system described by d first-order differential equations, is a d x d

matrix with the elements defined as

If the determinant of the Jacobian matrix, det J, is one at all points the system is conservative. If the

(II.3)jl,m
∂gl

∂xm

(1 ≤ l, m ≤ d)

average of det J < 1 then the system is dissipative. If the average of det J > 1 then volumes in state

space expand with time.

11
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Suppose the Jacobian matrix at an equilibrium point xF has d eigenvalues λi, i, j, k ≤ d, i, j, k ∈ .

Table 2.1 summarises the type of the equilibrium point xF.

Table 2.1 Conditions on the types of equilibrium points.

Conditions on Re[λ] Conditions on Im[λ] Equilibrium point
type

Stability

Re[λi] < 0 for all i Im[λi] = 0 for all i Node Stable

Re[λi] < 0 for all i Im[λi] ≠ 0 for some i Spiral node Asymptotically stable

Re[λi] > 0 for all i Im[λi] = 0 for all i Repeller Unstable

Re[λi] > 0 for all i Im[λi] ≠ 0 for some i Spiral repeller Asymptotically
unstable

Re[λi] > 0 & Re[λj]
< 0 for some i & j

Im[λk] = 0 for all k Saddle point Non-stable type 1

Re[λi] > 0 & Re[λj]
< 0 for some i & j

Im[λk] ≠ 0 for some k Spiral saddle point Non-stable type 2

2.4 Chaos

There is currently great excitement and much speculation
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Figure 2.4 A periodic time series.

about chaos theory and its potential role in understanding the

world. A brief introduction to the history of the

mathematical foundations of the subject can be cited in

[Holmes 1990]. A chaotic system will remain apparently

noisy regardless of how well experimental conditions are

controlled.

For the Duffing oscillator model, different values of d, f and

ω exhibit completely different system behaviours. In

Figure 2.4, a time series of a periodic behaviour of the

model for d = 0.15, f = 0.3 and ω = 1.0 is shown. In Figure 2.5, a typical time series of the chaotic

behaviour of the model for d = 0.2, f = 36 and ω = 0.665 is illustrated. As can be seen, the chaotic time

series is more complicated in appearance, but there is a boundary within which the system stays.

If a system displays divergence of nearby trajectories or sensitive dependence on initial conditions for

some range of its control parameter, then the long term behaviour of that system becomes essentially
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unpredictable1, i.e. the long term future of a chaotic system is in practice indeterminable even though the

system is theoretically deterministic.

The effect of divergence of nearby trajectories on the

100 200 300 400 500 600
t

-4

-2

2

4

x(t)

Figure 2.5 A chaotic time series.

behaviour of nonlinear systems is known as the butterfly

effect. The term was introduced by Lorenz based on the

picturesque notion that if the atmosphere displays chaotic

behaviour with divergence of nearby trajectories, then even

the flapping of a butterfly’s wings would alter any long term

prediction of atmospheric dynamics. This phenomenon is

illustrated in Figure 2.6 for the x-coordinate of the Lorenz

model with one trajectory starting at x = 1.0, y = 2.0 and

z = 3.0 in black, and another at x = 1.01, y = 2.01 and

z = 3.01, in grey. Instead of R = 0.5, we have used R = 28.0

as the model exhibits a chaotic behaviour with this value.

For many nonlinear systems, we must integrate the equations

2.5 5 7.5 10 12.5 15 17.5 20
t
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Figure 2.6 The butterfly effect.

step by step to find future behaviour. Any small error in

specifying the initial conditions will be magnified, thus

leading to grossly different long term behaviour of the

system, therefore we cannot predict that long term behaviour

in practice. Thus, chaotic behaviour is characterised by the

divergence of nearby trajectories in state space. As a

function of time, the separation between two nearby

trajectories increases exponentially, at least for short time.

(For short time because the trajectories stay within some

bounded region of the state space.)

In three or more dimensions, initially nearby trajectories can continue to diverge by wrapping over and

under each other. The crucial feature of state space with three or more dimensions which permits chaotic

behaviour is that trajectories remain within some bounded region by intertwining and wrapping around

each other, without intersecting and without repeating themselves exactly. The geometry created by such

trajectories is strange. Such attractors are thus called strange attractors [Ruelle 1980], i.e. if nearby

trajectories on average diverge exponentially then we say the attractor is strange or chaotic.

1 In the sense previously discussed.
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2.5 Lyapunov exponent

The exponential divergence of nearby trajectories is calculated by the Lyapunov exponent. It is a measure

of the rate of attraction or repulsion.

If two nearby trajectories on a chaotic attractor start off with a separation d0 at time t = 0, then the

trajectories diverge so that their separation at time t, denoted by d(t) satisfies the expression

where µ is called the Lyapunov exponent for the trajectories.

(II.4)d(t) d0e µt

There are two aspects of the time evolution of a system which are of particular interest for continuous

time systems.

The first aspect relates to the evolution of volume elements in state space. For a continuous time system

described by a system of differential equations such as (II.1), an element of volume V will evolve over

time according to the divergence equation

see, for example [Hilborn 1994], page 100.

(II.5)1
V

dV
dt

n

i 1

∂gi

∂xi

≡ divg

We first note that div g = Trace J, where J is the Jacobian matrix of the system. Thus if the average over

time of Trace J < 0, then volume elements will contract and the system will be dissipative, whereas if the

average over time of Trace J = 0 the system is conservative.

Now

where the λi are the eigenvalues of J. Thus the dissipative or conservative properties of a system are

(II.6)Trace J
n

i 1
λi

determined by the average over time of the sum of the eigenvalues of J.

We are primarily interested in dissipative systems which are chaotic, so that the second aspect of time

14
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evolution which concerns us is whether nearby trajectories have a tendency to diverge exponentially on

average.

The Lyapunov exponents provide a coordinate-independent measure of the asymptotic local stability of

properties of a trajectory. The concept is very geometrical. Imagine a small infinitesimal ball of radius ε(0)

centred on a point Φ(0) in state space. Under the action of the dynamics the centre of the ball may move,

and the ball become distorted. Since the ball is infinitesimal, this distortion is governed by the linear part

of the flow. The ball thus remains an ellipsoid. Suppose the principal axes of the ellipsoid at time t are

of length εi(t). The spectrum of Lyapunov exponents for the trajectory Φ(t) is defined as

Note the Lyapunov exponents depend on the trajectory Φ(t). Their values are the same for any state on

(II.7)µi lim
t → ∞

lim
ε(0) → 0

1
t

log
εi(t)

ε(0)
(for 1 ≤ i ≤ n)

the same trajectory, but may be different for states on different trajectories. The trajectories of an

n-dimensional state space have n Lyapunov exponents. This is often called the Lyapunov spectrum. It is

conventional to order them according to size. The qualitative features of the asymptotic local stability

properties can be summarised by the sign of each Lyapunov exponent; a positive Lyapunov exponent

indicating an unstable direction, and a negative exponent indicating a stable direction. The motion will be

dissipative if

and chaotic if at least one µi > 0.

(II.8)
n

i 1
µi < 0

Trajectory divergence properties can also be expressed in terms of the eigenvalues of J, since the

eigenvalues will determine the form of the solution to the locally linear differential equations which

determine the trajectory at any particular point of the state space. In general terms these locally linear

solutions for the xi will be of the form

(II.9)A1e
λ1t

A2e
λ2t

... Ade
λdt

If for a particular trajectory we write the time average
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one might conjecture that this provides an alternative route to the Lyapunov exponents.

(II.10)lim
T →∞

1
T ⌡

⌠
T

t 0

ln e
λi(t) dt (1 ≤ i ≤ d)

The geometrical meaning of the positive Lyapunov exponents is that there exist directions in which the

motion on average is unstable such that nearby trajectories in these directions will diverge from the

original orbit. Although the orbit is unstable, its stable directions provide sufficient volume contraction

so that the orbit is confined to some bounded region in state space. At least one Lyapunov exponent must

be zero for any limit set other than an equilibrium point. It follows that the number of zero Lyapunov

exponents of a non-chaotic attractor indicates the dimension of the attractor. An equilibrium point has

dimension 0, a limit cycle has dimension 1 and a K-torus has dimension K.

To produce a strange attractor the system must be dissipative and hence must have at least one negative

Lyapunov exponent. Furthermore, at least one Lyapunov exponent must be zero for any limit set other

than an equilibrium point. Also for a chaotic system, at least one Lyapunov exponent must be positive.

It follows that a strange attractor must have at least three Lyapunov exponents. Hence, chaos can only

occur in third-order autonomous, second-order non-autonomous or higher order continuous time systems.

2.6 The Poincaré map

When studying a continuous nonlinear dynamic system, it is often desirable to reduce it to a discrete time

system. The Poincaré map is a technique which models a continuous time system as a discrete system.

A specified submanifold of the state space, called the Poincaré section, is selected. As the system evolves

through time the trajectory repeatedly intersects the Poincaré section. Plotting the points of intersection

Xn creates a lower dimensional portrait of the system behaviour. Successive crossing points are determined

by integrating the time evolution equations describing the system. This determines a function

F: Xn → Xn + 1. A detailed knowledge of the function F can prove a useful tool in the study of the

dynamic system.

In general, we write

To analyze the nature of the attractor, one can analyze the nature of the function F and its derivatives.

(II.11)Xn 1 F(Xn), F (F1,...., Fm)

This technique reduces an m-dimensional problem to a (m-1)-dimensional one and also states an iterative

relation rather than a differential one. The time interval between the two points is roughly the time to go
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around the attractor once, which is a relatively big jump in time. As such, the location of successive

iterates generated by the trajectories on the section is generally unpredictable. Note that finding such a

function F is equivalent to solving the original set of equations and that may be impossible in actual

practice.

A Poincaré section can be obtained by plotting the points generated by the Poincaré map (II.11). The

section simplifies the geometric description of the dynamics by removing one of the state space

dimensions. The important point is that this simplified geometry contains much essential information about

the system behaviour.

In practice the Poincaré section can be generated by choosing a

x(
t -

π
/ϖ

)
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Figure 2.7 A surface of section.

Poincaré plane and when a trajectory crosses that plane, that

crossing point is recorded. One of the easiest method for

choosing the plane is to set one of the dynamic variable as a

constant. The plane should be chosen so that the trajectories cut

the surface transversely, that is the trajectories do not run

parallel to the surface as they pass through.

A chaotic attractor is an indecomposable (ergodic), invariant

and closed set which attracts all orbits starting at points in some

neighbourhood. Indecomposable means that every point in the

set will be visited at some time, therefore no points in the set

can be omitted without it ceasing to be the attractor. The

existence of a dense orbit, typically a horseshoe shape, in a Poincaré section, usually implies

indecomposability. Invariant means that the orbits starting in the set remain in it for all forward and

backward time. The consequence of indecomposability and invariance is that typical orbits attracted to the

set continually wander about, exploring its entirety, and not settling down to some simpler subset.

If the system has a natural periodic forcing associated with it, as for the Duffing oscillator, then the

Poincaré plane could be a surface corresponding to a definite phase of the forcing. In such a case the

Poincaré section is same as a stroboscopic portrait or a stroboscopic map e.g. in the case of a mechanical

system recorded with a flash lamp fired once every period of the motion.

A return map is a plot of pairs of points (xn, xn+1) where xn is the nth point in the Poincaré map or, in

the case of embedding technique described in chapter four, the pairs of the points are separated by one

unit of delay time. Any plot of a Poincaré section, a stroboscopic map or a return map is often referred
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to as a surface of section. In Figure 2.7, a surface of section of the Duffing oscillator is illustrated. The

plot was obtained by the conditions x(t) = 1, y(t) > 1 and x(t - π/2ω) < 0, and plotting x(t - π/2ω) versus

x(t - π/ω).

A fixed point in a surface of section say ξF, is a point of a map F, where ξF = F(ξF). The nature of a

fixed point is determined by the eigenvalues of Jacobian matrix at ξF. An eigenvalue of the Jacobian

matrix at a fixed point is called a characteristic multiplier or a Floquet multiplier. The stability type of

a fixed point of a Poincaré map corresponds to the stability type of the underlying equilibrium point.

Suppose the Jacobian matrix at a fixed point ξF has m real eigenvalues λ1, ..., λd.

The point ξF is:

Stable if λi < 1 for all 1 ≤ i ≤ m.

Unstable if λi > 1 for all 1 ≤ i ≤ m.

Non-stable if λi > 1 and λj < 1 for some 1 ≤ i, j ≤ m.

For an iterative map function of the form (II.11) with Jacobian

volume elements will locally contract or diverge according as det J is less than or greater than 1,

(II.12)J










∂Fi

∂Xi

(1 ≤ i, j ≤ m)

respectively. Thus in this case the condition for a dissipative system depends on the average of det J ,

rather than Trace J as in the continuous case.

We can still speak of an average rate of divergence: if the system is allowed to evolve from two slightly

differing initial states X and X + ε after n iterations the divergence of the two points may be characterised

as

where the Lyapunov exponents µi give the average rate of divergence/convergence over a large number

(II.13)ε(n) (ε(0) e
nµ1, ... , ε(0) e

nµd)

of iterations. For small ε we can express this as

which is analogous to (II.10) for a continuous system.

(II.14)µi lim
n →∞

lim
ε(n) →0

1
n

n

k 1
ln

∂Fi

∂xi X Xk

(1 ≤ i ≤ m)
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2.7 Fractal dimension

There are several different techniques for quantifying the dimension of point sets which are not Lebesque

measurable, or have Lebesque measure zero. For example, the dimension of a dynamical system is the

number of state variables that are required to describe the dynamics of the system. What is the dimension

of a strange attractor? Since the volume (Lebesque measure) of the attractor is zero, its dimension must

be smaller than the dimension of the state space. The generic term for a dimension that allows non-integer

values is Hausdorff or fractal dimension (actually a special case of the Hausdorff dimension) and it is

widely used to define the dimension of an attractor. Strange attractors have non-integer dimension while

the dimension of a non-strange attractor is always an integer.

There are a number of ways in which the fractal dimension can be estimated. We will introduce three such

methods.

2.7.1 Capacity dimension

Strange attractors are often characterised by capacity dimensionality DCa which is smaller than the number

of degrees of freedom d, DCa < d. A formula to calculate the capacity dimension using a box-counting

algorithm, which stems from the definition of the dimensionality was presented [Russel 1980] as

where n(α) is the number of m-dimensional cubes of side α needed to cover the attractor.

(II.15)DCa lim
α → ∞

ln n(α)
ln α

The capacity dimension is calculated by successively dividing the state space into equal hypercubes. We

then calculate the n(α) hypercubes required to contain all the points of the geometric object. n(α) is

expected to increase as α is decreased.

The number of computations required for this method increases exponentially with the state space

dimension. The method requires the state space to be partitioned with hypercubes and then to locate the

trajectory points within them. This is a time consuming process.

2.7.2 Lyapunov dimension

To calculate the fractal dimension using the box counting method is more time and much more memory
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consuming than to calculate the average Lyapunov exponents.

Another method of approximating the dimension of the attractor has been proposed by J. Kaplan and

J. A. Yorke [Kaplan 1979]. They suggested that the dimension of an attractor in a multi-dimensional state

space can be defined in terms of the average Lyapunov exponents in the space. First rank the Lyapunov

exponents from the largest µ1 to the smallest µd for a d-dimensional space, where µ1 ≥ µ2 ≥ . . . ≥ µd and

then choosing j as the largest integer such that µ1 + µ2 + . . . + µj ≥ 0. The Lyapunov dimension DL is

defined as

If no such j exists, DL is defined to be zero, which means the system is not chaotic.

(II.16)
DL j

j

i 1
µi

µj 1

There is some evidence [Russell 1980] that DL is numerically close to the correlation dimension (defined

below) and thus it can be used as an estimate for the dimension of the attractor [Lathrop 1989], [Sano

1985].

2.7.3 Correlation dimension

A major drawback of the box counting algorithm based on (II.15) is that it is very difficult to compute

whenever DCa > 2 [Greenside 1982]. Most recent work to estimate the dimension of the attracor has

focused on the evaluation of the correlation dimension DC [Grassberger 1982], described in more detail

in section 4.5.1.

In this method, a new data point is taken with each pass through the data, and a hyperdimensional sphere

of embedding dimension m and radius r is centred on that point. The fraction of subsequent data points

in which fall within the sphere is then calculated for various values of r, and a plot is made of the

logarithm of this number versus the logarithm of the radius. The correlation dimension is taken as the

average slope of the cumulative curve over the middle one-quarter of the vertical scale, and the error is

taken as half the difference of the maximum and minimum slope over the same range.

In a plot of the correlation dimension versus the embedding dimension, as the embedding dimension

increases the correlation dimension should initially increase but eventually saturate at the correct value.

The correlation dimension is found to be more reliable than the capacity dimension for high dimensional

systems.
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2.8 Routes to chaos

It is important to know how system behaviour changes from order to chaos. For some nonlinear systems,

a small change in a control parameter could lead to sudden and dramatic changes in both the qualitative

and quantitative behaviour of the system. This is demonstrated by the Duffing oscillator model in section

3.3.4. Due to the effect of a perturbation, the trajectories may undergo various changes. For one value,

the behaviour might be periodic, for a slightly different value, the behaviour might be chaotic.

Some nonlinear models behave quite differently, depending on both the parameter values and initial

conditions. These complications arise since a nonlinear system may have several attractors that coexist for

a given range of control parameter values. The system changes its behaviour as the attractors change their

characters or the basins of attraction interact in such a way as to give rise to chaotic dynamics.

Bifurcation is the word used to describe any sudden change in the nature of the system as a control

parameter is varied. It refers to a splitting of the behaviour of the system into two regions, one above the

particular parameter value at which the change occurs and the other below. The value of a control

parameter at which a bifurcation occurs is called a bifurcation value. A bifurcation value of a control

parameter is necessarily a value for which the system is structurally unstable. Therefore, at least one of

the Lyapunov exponents is zero at a bifurcation value. The bifurcation diagram is a plot of the position

of the fixed points versus the control parameter and an example of which is in Figure 2.8.

When a control parameter of a system is changed, chaotic behaviour may appear and disappear in several

Table 2.2 Routes to chaos.

Local bifurcation Global bifurcation

Period-doubling (Flip)
Quasi-periodicity (Hopf)

Intermittency
Crisis
Chaotic transient

different ways, thus there are several routes to chaos. Well known routes to chaos are listed in Table 2.2.

These routes can be divided into two categories, with several subdivisions within each of them. One

category includes sequences of bifurcations involving limit cycles, which are called local bifurcations. The

other category involves changes in trajectories associated with several limit cycles. Since these changes

involve the properties of trajectories ranging over a significant volume of state space, they are called

global bifurcations. Sudden changes from regular to chaotic behaviour are characteristic of these global
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bifurcations.

The period doubling route to chaos, also known as the Feigenbaum scenario, begins with a limit cycle.

As a control parameter changes, the limit cycle becomes unstable. If the limit cycle becomes unstable by

having one of its eigenvalues become smaller than minus one, then in many situations, the new motion

remains periodic but has a period twice as long as the period of the original motion. In the Poincaré

section, this new limit cycle becomes two points, one on each side of the original Poincaré section point.

The trajectory’s map points are repelled by the original map point. The minus sign signifies that they

alternate from one side to the other. Thus, this type of bifurcation is also called a flip bifurcation. As the

control parameter is changed further, this period-two limit cycle may become unstable again and give birth

to a period-four cycle. This process may continue until the period becomes infinite, thus becoming a

chaotic system.

The route to chaos via an infinite sequence of period doubling bifurcations has the universal property that

the bifurcation parameters are related to each other by the Feigenbaum constant. The Feigenbaum constant

4.669201609... is the ratio of successive differences between bifurcation values of a period doubling

sequence.

Consider a one-dimensional discrete time system in the form of the Logistic map, which is defined as

For 0 ≤ r ≤ 1, the function maps the unit interval to itself.

(II.17)xn 1 4rxn(1 xn)

The bifurcation diagram of the logistic

Figure 2.8 Bifurcation diagram - Logistic map.

map is illustrated in Figure 2.8. For

r < 0.7494, the system has only one fixed

point. At r ≈ 0.7494, a period doubling

bifurcation occurs so that the system

becomes a periodic system of period two.

At r ≈ 0.8621 another period doubling

bifurcation occurs so that the periodicity

doubles again. The subsequent bifurcation

values are approximately 0.8858, 0.8910,

0.8921 and so on. There are regions of periodic behaviour between regions of chaotic behaviour for

0.8921 ≤ r ≤ 1.0000, such periodic windows occur frequently in chaotic systems.
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In quasi-periodicity or Hopf bifurcation, the system begins again with a limit cycle trajectory. As a control

parameter is changed, a second periodicity appears in the behaviour of the system. If two periodic motions

whose periods have a common measure are combined, the resulting motion is still periodic. However, if

the ratio of the period of the second type of motion to the period of the first is not a rational number, then

the resulting motion is said to be quasiperiodic as the motion never repeats exactly but almost repeats

itself. Under some circumstances, if the control parameter is changed further, the motion becomes chaotic.

The intermittency route to chaos is characterised by dynamics with irregularly occurring bursts of chaotic

behaviour with intervals of apparently periodic behaviour [Grebogi 1987]. As a control parameter is

varied, the chaotic bursts become longer and occur more frequently until the whole system becomes

chaotic.

A crisis [Grebogi 1982] is a bifurcation event in which a chaotic attractor and its basin of attraction

suddenly disappear or reduce in size as a control parameter is changed. If the control parameter is changed

in opposite direction, the chaotic attractor suddenly appears or the size of the attractor increases.

Although the nature of an attractor changes suddenly as a parameter is varied, these sudden changes are

often hidden by chaotic transients. In a chaotic transient, the system’s trajectory wanders through state

space, in an apparently chaotic fashion [Grebogi 1986]. Eventually the trajectory approaches a regular,

periodic attractor. As the control parameter is changed, the chaotic transient lasts longer and longer until

finally the motion becomes chaotic.

2.9 Other key areas of chaos theory.

Embedding techniques are widely used to model chaotic systems in experiments when mathematical

descriptions are unavailable. These techniques are used to reconstruct the attractor, estimate fractal

dimension, estimate Lyapunov exponents, locate fixed points and so on. This is one of the most important

techniques in chaos theory and is described fully in chapter four.

Control of chaotic systems is the main theme of this report and it is discussed in chapter five.

There are a number of key aspects of chaos theory which are out of the scope of this report. Some of the

most well studied questions concern entropy, universality, Quantum chaos, Hamiltonian chaos and fractals.

Readers interested in these theories may refer to section 2.13.

23



Research Report - Version 15 February 2002

2.10 Detecting chaos

How can we know a system is exhibiting chaotic behaviour? A detection of chaos subjects the system

output to several tests, each of which determines some characteristic signature of chaos. W. R. Derrick

[Derrick 1993] provides a good basis for detecting chaos. He describes the main tests involving: time

series, Poincaré section, return and stroboscopic maps, fractal dimension, Lyapunov exponents, power

spectra and autocorrelation.

2.10.1 Test 1: Time series

Chaotic time series appear noisy and random as in Figure 2.5, but systems with a high periodicity may

also offer a similar appearance to the external observer. It is therefore ill advised to look for chaos only

in a time series plot, though it is almost always the initial test to be carried out. A time series plot

illustrates the system behaviour to some extent, but is difficult to interpret if a long time period is chosen,

as the fine detail cannot be observed. However, for a system displaying intermittency we need to plot the

time series for a long period. This dilemma is another reason why a simple time series test is often

unreliable.

If a mathematical description of the system is available, it is useful to plot trajectories starting at nearby

initial conditions and compare the resulting time series. Chaos is probably present if these trajectories

diverge.

2.10.2 Test 2: Poincaré section

A state space plot generally does not distinguish between noisy and chaotic data. For this purpose it is

useful to take some sort of cross section of the state space in order to reduce its dimension by one. After

such an operation, chaotic data will often appear in the form of a strange attractor having a fractal

structure with a fractal dimension.

If the Poincaré section consists of just a few points, it is a good indication that the orbit is periodic with

period equal to the number of points. When the section describes a locus such as a closed curve or a line,

it gives evidence of quasi-periodicity and possibly of chaos. Quasi-periodicity means a periodic orbit with

a very high period. When the section fills a region containing a strange object, there is a good evidence

of chaos.

It is often useful to look for horseshoe shapes in the Poincaré section, as these can be indications of chaos.
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Any folding should be carefully analyzed as this flow mixing is the principle that leads to chaos in some

systems, an example of which is the Lorenz model. Random data will fill the dimensional volume,

whereas chaotic data may yield a structure with less than the state space dimension. With random data

dominated by noise, no discernible pattern emerges.

2.10.3 Test 3: Return and stroboscopic maps

The return map and the stroboscopic map can also be used to detect chaos. In these maps, points which

fall on the line of identity signify periodic orbits of period one. By increasing the time between successive

coordinates of the plot, it is possible to locate periodic orbits of higher order. For example, by increasing

the time by twice, the points which fall on the line of identity signify periodic orbits of two.

It should be noted that increasing the delay time will make the points in the map spread, thus making them

less easy to interpret. Again, if the map consist of a strange object, this is good evidence of chaos.

2.10.4 Test 4: Fractal dimension

When the fractal dimension of the system is not an integer, this is an indication that the system is chaotic,

as the attractor of the system is strange. However, periodic systems could also yield non-integer fractal

dimensions if the signal to noise ratio is high, for example in the measurements obtained from a physical

system.

2.10.5 Test 5: Lyapunov exponents

This test measures sensitivity of the system to changes in initial conditions. The Lyapunov exponent is

a measure of the rate at which nearby trajectories in state space diverge. If at least one of the Lyapounov

exponents is positive, it means that the system is chaotic. (Recall that the fundamental mathematical

definition of a chaotic system is that it has at least one positive Lyapunov exponent.) For periodic systems,

all Lyapunov exponents are negative or equal to zero. Unlike test 4, this test is fairly robust in the face

of noise, as a periodic system always exhibits periodicity even when the measurements have a high noise

level. Such systems will not, of course, display the butterfly effect.

2.10.6 Test 6: Power spectra

The power spectrum of a time series is calculated by the fast Fourier transformation, FFT. The result of

applying a one dimensional FFT consists of a sequence of frequencies with associated intensities. This set
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of pairs of numbers is best presented graphically,
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Figure 2.9 A power spectrum for Sun spot data.

displaying intensity versus frequency. Such a

diagram is referred to as a power spectrum or

Fourier spectrum. Construction of power spectra

has been utilised as a standard means for

characterising chaos.

The power spectra for a periodic systems with

small periods usually produce a few sharp peaks,

for a chaotic system it is broad. A power

spectrum of the Sun spot data is illustrated in Figure 2.9. As the signal to noise ratio increases, the plateau

of the spectrum rises and the peaks begins to vanish. A difficulty in detecting chaos using the power

spectrum is that noisy experimental data for quasi-periodic systems may also appear as chaotic. In

[Crutchfield 1980], the relationship between the spectra and the associated attractor topology are discussed.

2.10.7 Test 7: Autocorrelation

The autocorrelation function measures the linear
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Figure 2.10 Autocorrelation of a chaotic
system.

dependence of a variable separated in time. It is defined

as

g(l) compares a data point in a time series with a data

(II.18)g(l) k
xk τ x(l k)τ

k
xk τ

2

point located l units of time away. If, on the average,

they are uncorrelated then g(l) = 0. If they are the same,

then g(l) = 1. For data sets from chaotic systems, initially

the autocorrelation function is expected to fall off

exponentially with l, g(l) = ae-lβ where β is called the

autocorrelation time. β is estimated as the slope of the graph ln g(l) vs l.

The autocorrelation function is very simply calculated but may be misleading if the data is noisy. If chaos

is present, the autocorrelation function is expected to reach zero. As the signal to noise ratio increases,

some quasi-periodic systems may also reach zero. This could lead to a false conclusion regarding the

system under study.
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In Figure 2.10, the autocorrelation function for the Duffing oscillator is plotted as a function of delay time.

As can be seen, initially the curve almost fits ae-lβ for g(l) > 0. The autocorrelation function reaches zero

at 23τ, and the local minimum occurs at 47τ. Subsequently, g(l) oscillates between 1 and -1.

2.10.8 Conclusion

At least some of the tests mentioned in this section should be used to detect chaos when the class of a

system is unknown. In experiments, noise is always present either in the form of instrumental or truncation

error. The effect of noise is significant and some of the issues are addressed in [Crutchfield 1981],

[Belmonte 1988] and [Provenzale 1992]. It is therefore necessary for experimental data to make sure that

the noise level is kept as low as possible, possibly by use of a noise reduction method [Pfister 1992].

In many experiments, the mathematical models are not available. In such situations, the embedding

techniques described in chapter four should be used.

Tests one, four and five are conclusive when a mathematical description of the system is used. Where a

mathematical description is not available and real data is used, one should apply as many of the tests as

possible in an attempt to counteract the effects of noise.

2.11 Numerical integration

Since digital computers work in discrete time, a numerical integration algorithm models a continuous time

system by a discrete time system. Integration algorithms differ in that they model the same differential

equation into different discrete time systems.

When we study chaotic models, we need to use a numerical integration algorithm. Therefore it is desirable

to choose an algorithm which is as accurate as possible with respect to computational expense. It is quite

common for end users to treat an integration algorithm as a black box, so that given the initial conditions,

the final time and the error tolerance, out comes the final state. We must be satisfied that the results of

the integration represents the true nature of the model.

In this section we will introduce different types of numerical integration algorithms, the associated types

of errors and justify the use of the particular numerical integration algorithms employed in the simulations

of chaotic models.
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2.11.1 Types of integration algorithms

Perhaps the most important numerical task in simulations of continuous time systems is the calculation

of trajectories. The effect of integration algorithm used is often overlooked. There are several types of

integration algorithms to choose from. Commonly used numerical integration algorithms can be divided

into two types, single-step and multi-step.

The single-step algorithms include Forward Euler, Backward Euler, Trapezoidal and k th-order Runge-

Kutta. These algorithms require only one input point at each step. Higher order single-step algorithms are

used to increase accuracy but tend to be computationally inefficient. For example k th-order Runge-Kutta

requires k evaluations of the function per step. Furthermore, the function evaluation performed during a

step is not used in any of the succeeding steps.

The multi-step algorithms include Adams-Bashforth, Adams-Moulton and Gear’s algorithm. An m-step

algorithm uses the m previous points and the value of the function at these points to estimate the next

point.

There are many books [Atkinson 1978], [Pearson 1986], [Smith 1986] with detailed analyses of these

algorithms and the interested reader may refer to them.

2.11.2 Integration error

The output of a continuous time system is a time waveform and the output of an integration algorithm is

a sequence of points. There are two types of integration error: local and global errors. The local error is

the error introduced by a single step of the integration algorithm. The global error is the accumulation of

the local errors. The errors can further be divided into two categories : round-off and truncation errors.

2.11.2.1 Round-off error

The local round off error is the inevitable error that results from performing ‘real’ fixed length precision

arithmetic on a digital computer. The error depends on the fixed length precision and the number and type

of arithmetic operations per step, and is independent of the integration step size.

The only way to reduce round off error is to choose superior hardware or increase the precision of the

floating point representation. For each calculation, a typical single precision representation uses 32 bits

and is accurate to about seven decimal places. Most double precision representations use 64 bits and are
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accurate to about fifteen decimal places for each integration step.

Global round-off error is the accumulation of the local round-off errors. Therefore, a larger step size leads

to a smaller global round-off error.

Some packages such as Mathematica™ by Wolfram research, allow the user to specify the number of

digits of precision of the final numerical integration result (Mathematica will then compute to the requisite

precision length) or to set the number of digits of precision to use in internal computations. These features

are useful in minimising the local and global round-off errors. Of course, the price that the user must pay

for the enhanced accuracy is in increased memory requirement and actual computing time.

2.11.2.2 Truncation error

Truncation error is the error which occurs assuming there is no round-off error. This error depends only

on the algorithm and is therefore hardware independent.

For an algorithm of a given order, the truncation error decreases with the step size. This is expected as

a discrete time system approximates a continuous one more closely as the sampling time is decreased.

However, decreasing the step size increases both global round-off error and the computation time.

For a given step size the higher order algorithms are more accurate than the lower order algorithms. Most

multi-step routines, including those used in Mathematica™, automatically adjust both their step size and

the order to achieve the desired accuracy with the largest possible step size.

2.11.3 Integration routines

Any useful integration routine should automatically adjusts the step size to use the largest step size which

satisfies the error tolerance, also it should adjust the order of the integration algorithm as well to reduce

the computation time. Since we are interested in the reduction of integration error and not of the step size

when simulating chaotic systems, an ideal routine should take an error tolerance as an input. Typically

such an algorithm (variable step size routine) works as follows. The user supplies an integration error

tolerance E. The routine chooses a step size, calculates xk + 1 and then estimates the error. If the error

exceeds E, the step size is reduced and new xk + 1 is calculated. The process is repeated until the error is

less then E. If the error is much less than E, the step size is increased for the next step.

Suppose the current time is tk and the current step size is sk. The next point a variable step size routine
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calculates is xk + 1 at time tk + 1 = tk + sk, assuming that the error was less than E. Suppose the user

requests an output point at time t´ where tk < t´ < tk + 1. There are two common ways to estimate the

output point. The first approach is to set tk + 1 = t´. Routines of this type are called extrapolating routines.

The second is to calculate the solution at time tk + 1 and then use an interpolation formula to calculate the

solution at time t´. Routines of this type are called interpolating routines. Most routines which use multi-

step algorithms such as Adam-Moulton are interpolating routines. Routines which use single-step

algorithms such as Runge-Kutta are extrapolating routines.

Extrapolating routines are not suitable for applications which require closely spaced output points.

Consider that sk = 0.1 and the user requests output points at intervals of 0.01. An interpolating routine

takes an integration step with the natural step-size of 0.1, and then uses interpolation nine times to

calculate the output points requested. An extrapolating routine takes ten integration step of 0.01 instead,

therefore the extra computation for the integration takes ten times as long. The accuracy of the output

point is increased, however since the larger step-size of 0.1 meets the error tolerance, the additional

accuracy is not required.

2.11.4 Integration of chaotic systems

The integration of a chaotic system poses a special difficulties, as the butterfly effect implies that an

arbitrarily small error eventually affects the global behaviour of the system, and error is inherent in any

integration algorithm. Therefore the simulations of chaotic systems require careful interpretation and

should always be verified. Ideally, two or more different routines should be used to integrate the same

system so as to validate the calculations.

An integration routine cannot estimate the state of a chaotic system with any accuracy after a long period

of integration. So how can we be confident in simulations of chaotic systems?

If the local error is reasonably small, then the output points xi of the integration routine may not lie on

the trajectory, but they do still approach the attractor. When stepping from xn to xn + 1, the effect of the

error is to switch from the trajectory Φt(xn) passing through xn to the trajectory Φt(xn + 1) passing through

xn + 1. If the error is small, xn + 1 will still be in the same basin of attraction and the new trajectory

approaches the attractor. This is known as a trajectory hopping and is illustrated in Figure 2.11. In any

strange attractor, the contraction outweighs the expansion and it follows that the sequence of integration

points approaches the attractor.

In simulations of chaotic systems we are mostly concerned with the long-term behaviour and not in the
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exact location of a trajectory. Therefore applications that do not

φ(xn + 1)

xn + 1

φ(xn)

xn

Figure 2.11 Trajectory Hopping.

require one specific trajectory to be followed, but only the points

which lie on the attractor, are possible by numerical integration.

Even when estimating the Lyapunov exponents, though it may

appear that precisely one trajectory should be followed, the

trajectory hopping caused by the local error in most cases does not

significantly affect the final result as the trajectories in a same basin

of attraction have same Lyapunov exponents.

2.12 Chapter summary

In this chapter we have first described commonly used terms in nonlinear dynamics. These were dynamic

and static variables, state space, trajectory, limit set, limit cycle, stable and unstable manifolds, phase

portrait, degrees of freedom, and dissipative and conservative systems.

The stability of limit sets were described by using the Jacobian matrix and the associated eigenvalues. The

types of equilibrium points in a multi-dimensional system were defined as node, spiral node, repeller,

spiral repeller, saddle point and spiral saddle point.

Descriptions of chaotic systems were given using these properties. We have seen that a chaotic system

is sensitive to initial conditions, has at least one positive Lyapunov exponent, has a non-integer fractal

dimension and that a Poincaré section could be used to study chaos. The stability of fixed points in a

surface of section were defined.

Three different methods of estimating the fractal dimension were presented in the forms of capacity,

Lyapunov and correlation dimensions.

We saw that there are a number of ways in which a periodic system can change into a chaotic system.

The routes to chaos introduced were period-doubling bifurcation, quasi-periodicity bifurcation,

intermittency, crisis and chaotic transient. Some routes to chaos were defined as local since changes

involve bifurcations of limit cycles and others were defined as global as changes involve a considerably

larger fraction of the attractor.

The usefulness of the tests was discussed in order to distinguish chaotic from non-chaotic systems. The

tests suggested to detect chaos were: time series, Poincaré section, return and stroboscopic maps, fractal

dimension, Lyapnouv exponents, power spectra and autocorrelation.
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Some of the issues involved in using a numerical integration algorithm were discussed. These included

the types of the algorithms, integration error and integration of chaotic systems. Use of a numerical

integration algorithm for most simulations of chaotic systems was justified.

2.13 Further reading

We have introduced only a few aspects of the fast growing science of nonlinear dynamics and chaos. In

this section interested readers are pointed to various books and papers.

For readers new to nonlinear dynamics and chaos, following books give good account of the subject.

[Gleick 1987] is a well publicised book which became a best seller, and is a nice introductory book

including a history of chaos. Books by Ian Stewart [Stewart 1989], [Stewart 1996] are also best sellers.

The first book is easy to read yet covers most of the key topics of chaos. [Hall 1992] is a collection of

easy to read introductory papers to different areas of research in chaos. For readers who wish to study the

behaviours of nonlinear dynamics (including chaos) geometrically, a series of visual mathematics books

by Abraham and Shaw [Abraham 1982], [Abraham 1983], [Abraham 1985] are good starting points with

many pictures which describe the concepts in dynamical systems well. The first book is on periodic

behaviour, the second is on chaotic behaviour and the third is on global behaviour. Edward N. Lorenz is

one of the leading figure of chaos theory. His book [Lorenz 1993] is a good survey of chaos which

includes a brief list of the terminology of dynamical systems and chaos.

There are a number of books which cover most key topics. [Hilborn 1994] is a highly recommended book

which covers most of the theory in depth. [Peinke 1992] was partly written by O. E. Rössler (see chapter

III) with a good mixture of theory and experimental results.

[Cvitanovic 1989], [Hao 1990] are collections of the significant papers along the road towards

understanding chaos. [Eckmann 1985] is a classic paper which summarised the main mathematical ideas

and analysis of experimental data which are still useful today. Contemporary chaos research areas with

strong emphasis on experiments are described well in [Kim 1992], [Ott 1994], [Thompson 1994].

For readers who are interested in implementing the algorithms often used in nonlinear dynamics and chaos,

[Parker 1989] is particularly good with its easy to follow pseudo-code descriptions of the algorithms with

appropriate theoretical justifications. This books come with a collection of IBM PC programs.
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CHAPTER III

CHAOTIC MODELS

3.1 Introduction

In this chapter we will briefly introduce Hamiltonian systems and move onto studies of four dissipative

systems: the Lorenz model, the Hénon map, the Rössler model and the Duffing oscillator model.

These models exhibit chaotic behaviour for some range and combinations of the control parameters. Our

aim is to define the range and the combination so that the systems behave chaotically. We will use some

of these systems in chaotic modes to demonstrate the embedding techniques and the control method

described in Chapter IV and Chapter VI, respectively.

3.2 Hamiltonian systems

The important feature of a dissipative system from the state space point of view is the collapse of a

volume of initial conditions in state space. That is, we need to consider only the attractors to understand

the long-term dynamics of the system.

If the rate of dissipation is small it takes longer for a volume of initial conditions to collapse onto the

attractor. When there is no dissipation at all, we would expect a volume of initial conditions to remain

constant for all time and there then exist no attractors for the trajectories.

Systems with no dissipation are called conservative or Hamiltonian systems. The term conservative means

that certain physical properties of the system remain constant in time. These quantities are called

conserved quantities. Unlike a dissipative system, a Hamiltonian system does not settle down to an

attractor, although they may exhibit chaotic behaviour in the sense that the set of points visited is

everywhere dense in the state space.

In practice, many real systems are nearly conservative. The most famous almost conservative system is

the solar system. Over the time periods of concern we can neglect most aspects of dissipation. To a high

degree of approximation these dissipative effects can be neglected if we limit ourselves to time periods

of a few millions years. Based on these assumptions, we can model the dynamics of the solar system with
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a Hamiltonian model.

Further discussions of Hamiltonian systems is out of scope of this report. In the remaining chapters we

will consider only dissipative systems.

3.3 Dissipative systems

In comparison with Hamiltonian systems the structure of state space is much richer and the dynamics more

diverse in dissipative systems. One of the distinctive features of dissipative systems is the existence of

attractors and repellers.

In this section, we study four classic models which are known to exhibit chaos. These models are used

in later chapters for demonstration purposes.

The numerical integrations were performed by using the Mathematica™ running under Windows™ 3.1.

3.3.1 The Lorenz model

The Lorenz model [Lorenz 1963] is based on a simplification of the fundamental Navier-Stokes equations

for fluids in the context of weather prediction. The fluid motion and resulting temperature differences can

be expressed in terms of three variables x, y and z, where x is related to the time dependence of the fluid

stream function. Taking the derivatives of the stream function with respect to the spatial variables gives

the components of the fluid flow velocity. In the model, the spatial dependence of the stream function is

chosen to match the simple pattern of convective rolls. Thus the model cannot apply to fluids that develop

more complex spatial patterns. The variables y and z are related to the time dependence of temperature

deviations away from the assumed linear temperature drop from bottom to top, which obtains for the

nonconvective steady-state situation. The variable y is proportional to the temperature difference between

the rising and falling parts of the fluid at a given height, while z is proportional to the deviation from

temperature linearity as a function of vertical position.

The Lorenz model does not have any external periodic forcing to determine the fundamental period.

Although the Lorenz model is based on a simple set of differential equations, it exhibits very complex

behaviour, including period-doubling bifurcation and intermittency.
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Recall from Chapter 2 that the Lorenz equations are defined as

where σ, R and b are the control parameters. The

(III.1)

ẋ σ (y x)
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Figure 3.1 Lorenz attractor : x vs y.

parameter σ is defined to be the ratio of the kinetic

viscosity (friction) of the fluid to its thermal diffusion

coefficient. It roughly compares the rate of energy loss

from a small packet of fluid due to viscosity to the rate

of energy loss from the packet due to thermal

conduction. The parameter R is proportional to the

Rayleigh number, which is a measure of the temperature

difference between the bottom and top of the fluid layer.

Finally, b is related to the ratio of the vertical height of

the fluid layer to the horizontal size of the convection

rolls. It turns out that for b = 8/3, the convection begins

for the smallest value of R. This is the value usually chosen for the study of the Lorenz model. The

parameter σ is then chosen for the particular fluid under study. E. N. Lorenz [Lorenz 1963] used the value

σ = 10, which corresponds roughly to cold water and R was chosen to be the adjustable control parameter

which is varied to study different behaviours of the model.

For small values of R, the model predicts that the
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Figure 3.2 Lorenz attractor : x vs z.

nonconvecting state is stable. This state is described by

x = 0, y = 0 and z = 0. For values of R just greater than

1, steady convection sets in. There are two possible

convective states, one corresponding to clockwise

rotation, the other to anticlockwise for a given convective

roll. Some initial conditions lead to one state, other

conditions to the other state. If σ > b + 1, then this

steady convection becomes unstable for large R and gives

way to more complex behaviour. As R increases, the

behaviour has regions of chaotic behaviour intermixed

with regions of periodicity and regions of intermittency,

which cycle back and forth, apparently randomly, between chaotic and periodic behaviour.
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The behaviour of the system for values of R = 0.5 is illustrated in Figure 2.2, page 10. The system settles

into the steady nonconvective state at the origin of the state space.

For R > 1, there are three fixed points. The one at the
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Figure 3.3 Lorenz attractor : y vs z.

origin becomes a repeller. A slightest deviation from the

conditions x = 0, y = 0 and z = 0 repels the state space

trajectory away from the origin. The other two fixed

points are spiral nodes if R is not too large. Some initial

conditions give rise to trajectories that approach one of

the fixed points, other initial conditions give rise to

trajectories that approach the other fixed point. For R just

greater than 1, the other two fixed points become the

attractors in the state space. Thus R = 1 is a bifurcation

value for the model.

When R is close to 144 the period-doubling route to

Figure 3.4 Chaotic Lorenz attractor

chaos occurs. The behaviour is not simple harmonic, but

it is aperiodic. We can understand the physical nature of

the system’s behaviour by looking at the graphs of x and

y as functions of time in Figure 3.1. We see that x and y

oscillate nearly symmetrically around the values x = 0

and y = 0, respectively. This tells us that the fluid is

convecting first in the clockwise direction, then

anticlockwise, continually reversing as time goes on. The

temperature difference between up flow and down flow

y, also oscillates symmetrically around y = 0. However,

z oscillates around a nonzero value, see Figure 3.2 and

Figure 3.3.

The three dimensional Lorenz attractor can be seen in Figure 3.4. This graph synthesises the information

of Figure 3.1, Figure 3.2 and Figure 3.3. The control parameters used for these plots were R = 144,

b = 8/3 and σ = 10.

In [Sano 1985] the average Lyapunov exponents for these trajectories were found to be µ1 = 1.37,

µ2 = 0.00 and µ3 = -22.37. The dimension of the attractor can be estimated by the Lyapunov dimension

DL, equation (II.16) in section 2.7.2, page 20.
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As µ1 + µ2 ≥ 0, it follows that

This estimate compares favourably with the correlation dimension of 2.05 [Grassberger 1983].

(III.2)DL 2
µ1 µ2

µ3
2 1.37 0.00

( 22.37)
2 0.06 2.06

3.3.2 The Hénon map: A two-dimensional Iterated Map

The motivation for studying iterated maps stems from the description of intersections of state space

trajectories with Poincaré sections described in section 2.6.

In many cases, we can use the maps as models for physical systems even if we do not know the

underlying differential equation models, so that this approach to modelling can give us useful insights for

the dynamics of complex systems.

A one-dimensional iterated map is based on a function of a single variable and takes the form

The mathematical theory of one-dimensional iterated maps has played an important role both historically

(III.3)Xn 1 f(Xn)

and conceptually in the development of chaos theory, and these maps can be studied in depth. An example

of such a map, the Logistic map, was introduced in section 2.8.

Increasing the number of dimensions for iterated maps greatly increases the range of possible dynamic

behaviours. At present very few systematic studies of two or more dimensional iterated map functions

have been reported in depth.

To illustrate the behaviour of a two-dimensional map, let us consider the Hénon map [Hénon 1976]. This

function is a simplified model of the Poincaré map for the Lorenz model, which exhibits the same

essential properties. The Hénon map function is a two-dimensional extension of the one-dimensional

quadratic map

The Hénon map is an invertible map function, so that if we are given Xn and Yn, we can find the unique

(III.4)
Xn 1 1 Yn aX

2
n

Yn 1 bXn

pair of values Xn - l and Yn - l, which gave rise to these values. Thus, we can follow both the forward and
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backward iterations of the Hénon map. When b = 0, it becomes a quadratic map function.

b should be small enough for the folding to occur,
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Figure 3.5 The Hénon attractor.

but not too small to observe the fine structure of

the attractor. The standard values used are a = 1.4

and b = 0.3. For these values the system is well

studied in the literature [Hénon 1976], [Cvitanovic

1988], thus we have used them for our study.

Depending on the initial condition, the sequence

of points obtained by iteration of the equations

either diverges to infinity or tends to a strange

attractor. The Hénon attractor is illustrated in

Figure 3.5.

Given a suitable set of initial conditions, e.g. X0 = 1.4 and Y0 = 0, the iterations of the Hénon map

collapse the attractor in the Y direction. Once a point is in the attractor, the succeeding points will stay

in the horseshoe like cluster for all time. If a section of the attractor is magnified, the structure will be

that of a fractal, as in a Poincaré section of a continuous time system.

Recall that although we can be sure that the next point will fall in the attractor in a return map, we cannot

predict the location. The only exception is if a point lies on the line of identify, we can then predict with

some confidence that the next point could be located nearby. The reason is that as the attractor plots are

essentially a stroboscopic maps in discrete time systems, any points which fall near the line of identity

are saddle points. We know they are saddle points as the attractor is strange.

In [Sano 1985] the average Lyapunov exponents for these trajectories were found to be µ1 = 0.42 and

µ2 = -1.58. Repeating a similar procedure to (III.2), we estimate DL ≈ 1.27, which compares reasonably

well with the reported correlation dimension of 1.25 [Grassberger 1983] and the capacity dimension of

1.26 [Russell 1980].

3.3.3 The Rössler model

Chemistry provides some very well known examples of chaos [Field 1993]. The dynamics of chemical

reactions can display the same kind of periodic and chaotic behaviour that appears in other sciences but

the transition from order to chaos is easier to study as the conditions of the experiments can be readily

controlled.
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Chapter 3 - Chaotic Models

The Rössler model [Rössler 1976] is based on abstract

Figure 3.6 Chaotic Rössler attractor.

chemical kinetics. The equations are similar in appearance to

that of the Lorenz model but the system behaviour is quite

different, as can be seen from the three dimensional attractor

in Figure 3.6.

The model is defined as

(III.5)

ẋ z y

ẏ x a y

ż b z (x c)

For x < c - a, any volume element shrinks continually as it flows through space. The model has a limit

cycle for some choice of the parameters, for example a = 0.2, b = 0.2, and c = 2.6. As c is varied period

doubling bifurcations occur and finally when c = 5.7, the model becomes chaotic.
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Figure 3.7 Two dimensional chaotic Rössler attractors.

For b = 0.4, the model also behaves chaotically. In Figure 3.7, the
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Figure 3.8 Autocorrelation of the
Rössler model.

chaotic Rössler attractor is illustrated as three two-dimensional plots

for a = 0.2, b = 0.4 and c = 5.7.

Let us now look at the plot of the autocorrelation function against

the delay time, illustrated in Figure 3.8. The autocorrelation

functions were calculated using 500 data points of the x-coordinate

after the transients have disappeared, with the sampling time of

τ = 0.1. We observe from the plot that the function drops to zero

when the delay time is 14τ and reaches the minimum value at 30τ.

We can say with some confidence that the model exhibits a chaotic behaviour as described in section

2.10.7.
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In [Sano 1985] the average Lyapunov exponents for these trajectories were found to be µ1 = 0.007,

µ2 = 0.00 and µ3 = -4.98. Repeating the same procedure as (III.2) once again, we estimate DL ≈ 2.01.

3.3.4 The Duffing oscillator model

Duffing’s model discussed in [Parlitz 1985] is based

10601040102010000

2

-2

4

-4

x(t)

t

Figure 3.9 The Duffing oscillator time series
displaying the secondary resonances.

on a nonlinear electronic oscillator. Its solutions have

a wide range of dynamical behaviour as the

parameters are varied. The model is a nonlinear

oscillator displaying secondary resonances. The

secondary resonances signify the existence of a

number of higher order periodicities of the nonlinear

oscillations within the main periodic oscillation. This

is illustrated in Figure 3.9 in the form of a time series

plot of the x-coordinate.

The Duffing equations are defined as

where ω is the excitation frequency and f is the excitation amplitude. If f is sufficiently large the periodic

(III.6)

ẋ y

ẏ d y x x 3 f cos(2π z)

ż ω/2π

oscillation occurs in units of 2π/ω.

The nonlinear term x3 in the equation makes the model chaotic. Without this term the model is a harmonic

oscillator. The Duffing oscillator has been successfully used to model a variety of physical processes such

as stiffening springs, beam buckling, nonlinear electronic circuits, ionisation waves in plasma etc.

In order to study the behaviour, we have study the model by fixing d = 0.2 and ω = 0.665. The amplitude

f was taken to be 35, 35.28, 36, 37 and 38. For each value of f in ascending order, a stroboscopic map

was created by using the values from x-coordinate sampled at 2π/ω. These maps are illustrated in

Figure 3.10 (a) - (e), respectively.

It is interesting to observe that the regions visited by the trajectories expands between f = 35 and f = 36.

At f = 37, the attractor retains similar shape but at f = 38, there are only three regions visited. That is, for
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Chapter 3 - Chaotic Models

this value of f, the system is almost periodic. What we are observing is the period-doubling route to chaos.

The attractor gradually expands from f = 35 to f = 37 exhibiting complex behaviour but when f = 38, the

system enters a periodic window.

It should be noted that the Duffing oscillator exhibits extremely rich dynamical behaviour and research

(d) f = 37 (e) f = 38

(c) f = 36(b) f = 35.28(a) f = 35
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Figure 3.10 Stroboscopic maps of the Duffing oscillator for different value of f.

on this model continues. A complete understanding of the system for all values of the control parameters

has not yet been achieved. The best studied case is ω = 1. The model is often referred to as the Ueda

oscillator.

3.4 Chapter summary

In this chapter we have briefly introduced Hamiltonian systems followed by studies of four well known

dissipative systems exhibiting chaos. These were the Lorenz model, the Hénon map, the Rössler model

and the Duffing oscillator model. Higher dimensional systems were not studied as such systems are out

of scope of this report, also there is a difficulty in understanding graphical representations of the attractors.
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The combinations of values of the control parameters, which make the models studied in this chapter

Table 3.1 The control parameter combinations for chaotic behaviours.

Model Control parameters Sampling period

Lorenz R = 144, b = 8/3 & σ = 10 0.01

Hénon map a = 1.4 & b = 0.3 -

Rössler a = 0.2, b = 0.4 & c = 5.7 0.1

Duffing’s oscillator d = 0.2, ω = 0.665 & f = 36 0.1

chaotic are summarised in Table 3.1, Table 4.2. The sampling period was the time difference from a data

point to the next.
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CHAPTER IV

EMBEDDING TECHNIQUES

4.1 Introduction

We have seen that chaotic systems relax to regions of the state space which have very complex structure

and zero measure. Often, such objects are fractal, and have structure on ever smaller length scales. Strange

attractors are characterised by metric invariants (which do not change under smooth transformations), such

as fractal dimension, and Lyapunov exponents. However, such measures do not yield enough information

on how to model the dynamics. In real applications, mathematical models of the systems are rarely known.

In such situations, the idea of embedding, using successive values of a time series to construct a vector

whose evolution through time better reflects the high dimension dynamics of the system as a whole, was

first developed in 1980, and is extremely useful.

The use of successive samples of a single variable (or few variables) to generate an embedding with a

view to reconstructing the details of an attractor for a higher dimensional dynamic system was suggested

in [Packard 1980] and a frequently quoted embedding theorem [Takens 1980] establishes the existence

of such models for homogeneous systems: if the underlying state space of a system has d dimensions then

the embedding space needs to have at most 2d + 1 dimensions to capture the dynamics of the system

completely. These results were later generalised and improved by [Levin 1993]. It is a remarkable fact

that much of the dynamics of a high dimensional system can be recovered from a suitable embedding of

a single variable, but in practice a critical factor in the accuracy of such reconstructions is the sampling

delay. A comprehensive survey of various methods to estimate the optimum time delay can be found in

[Casdagli 1991], see also [Buzung 1992] and [Rosenstein 1994]. Practical examples of constructing one-

step predictive neural networks based on these ideas can be found in [Dracopoulos 1993].

Methods employing this technique are often referred to as time delay, delay coordinates, embedded time

series or embedding techniques.

We shall show how to extract a multi-dimensional description of state space dynamics from the time series

data of a single dynamical variable. The embedding techniques, which enables this process, is one of the

most important technical contributions to the study of nonlinear dynamics. This technique is ideal to use

when a mathematical model of the dynamic system under study is not available, as is the case in most real
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world applications. The idea is to use the time series data of a single variable to create a multi-dimensional

embedding space, although G. P. King and I. Stewart [King 1992] proposed a technique which makes the

use of multiple variables for better attractor reconstruction. The idea behind Takens’ theorem is that if the

dynamics of the system is governed by dth-order differential equations then to numerically calculate the

derivatives with respect to a single variable, we need two time samples for each derivative. In addition,

we need the current value of the variable. Hence, we need a total of 2d + 1 values. This is an upper limit

for the dimension of the required embedding space.

If the embedding space is generated properly, the behaviour of trajectories in it will have the same

geometric and dynamical properties which characterise the actual trajectories in the full multi-dimensional

state space, so that the evolution of the trajectories in the embedding space mimics the behaviour of the

actual trajectories. As we have observed, it is remarkable that the original attractor can be reconstructed

from observing a single coordinate of a dynamic system. However, there are a number of pitfalls. For a

start we do not know the optimal sampling time to used for the time series. Also we do not know the

optimal dimension to be used for the embedding space. These issues are addressed in later sections.

Once a suitable model is created by the embedding techniques, it is possible to use it to estimate the

average Lyapunov exponents, the fractal dimension, locate fixed points, and study questions such as

stability.

4.2 Delay coordinates method

For a multi-dimensional system, as the number of state space dimensions increases so does the number

of values to be recorded. However, for many systems we may not know the required number of variables

in advance. Also in practical terms, some variables are much easier to measure accurately than others.

Both of these difficulties are bypassed by the delay coordinates method as the time series record of a

single variable is often sufficient to determine many of the properties of the full dynamics of the system.

If data is gathered from measurements of a physical system, only one state variable needs to be measured,

thereby cutting instrumental and data storage costs. It is interesting to note that even when most of the

sensors used to read measurements are not working, a faithful system behaviour might be reconstructed

using only one working sensor reading.

The variable used to reconstruct the attractor should be easily accessible and as accurate as possible. In

any experiment, there is a certain amount of noise. G. Pfister [Pfister 1992] suggests a method of reducing

the effect of noise in experimental data to improve the accuracy of the estimation of dynamical variables.
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Generally, we wish to have the time between successive samples to be much less than the time to go

around the attractor once, so as to have samples over nearly the complete range of the attractor. However,

in some cases, the sampling time has been fixed by some experimental or computational criterion. Let us

denote the minimum sampling interval between successive samples by τ.

A state space attractor is reconstructed by using the experimental data consisting of a scalar time series

of values xτ, x2τ, x3τ, . . . This is done by grouping the values to form a set of vectors. For example,

suppose we decide to use an m-dimensional reconstruction, that is to use an embedding dimension of dE.

We then group together dE values. Such a vector gives the coordinates of a single point in the

dE-dimensional space.

A dE-dimensional embedding space vector has the form

where tD is the delay time and tJ is the jump time. The reconstructed attractor is then described by the set

(IV.1)ξi xitJ
, xitJ tD

, ....., xitJ (dE 1)tD

of vectors in the form (IV.1).

The method has a nice property that the signal to noise ratio on each component is the same. However,

in practice it has the unpleasant property that in order to use it, it is first necessary to choose the correct

embedding dimension, the delay time, and the jump time all of which can be difficult and time consuming.

4.3 Delay time

Delay time is the time period between successive components of each of the embedding space vectors.

It is written as a multiple of the sampling time, tD = nτ where n ∈ . This time is also known as time lag,

time delay and lag. There are various methods to find a suitable value of tD, none of which are universal.

The problem of choosing an appropriate time between samples is a delicate one. If an infinite amount of

noise free data is available, then almost any set of time intervals will do. However, with a finite amount

of data contaminated by some noise, we must proceed very cautiously.

Although, Takens’ theorem [Takens 1981] is important, as it gives a rigorous justification for state space

reconstruction, the assumptions are that we have an infinite amount of noise free data. There is no

guidance about practical considerations for choosing the right delay time. In practice, there is always some

noise in the data. Also with a finite amount of data the approximation of the dynamics in the reconstructed
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state space is never perfect. Therefore, it is important to choose a suitable delay time, preferably with a

minimum computational cost. However, it is more important to choose the delay time which will

reconstruct the original state space faithfully, as it is clear through experiments that the choice of delay

time can make a big difference to the quality of the reconstructed attractor. Thus it is often necessary to

compromise between the computation time and the quality of the reconstruction.

If tD is too large, in the presence of chaos and noise, the dynamics at one time can become effectively
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Figure 4.1 Irrelevance, tD = 0.82.
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Figure 4.2 Redundance, tD = 0.05.

causally disconnected from the dynamics at a later time, so that even simple geometric objects look

extremely complicated. This is called irrelevance [Casdagli 1991]. The component of the embedding space

vectors may be completely decorrelated, resulting in an essentially random distribution of points in the

embedding space, leading to an attractor dimension close to the dimension of the embedding space

[Albano 1988]. Also, if tD is close to some periodicity in the system, the component at that period will

be under represented in the reconstruction.

On the other hand if delay time is too small, each component in the embedding space vector will be

indistinguishable and all trajectories will lie near the main diagonal line of the embedding space, leading

to a reconstructed attractor with a dimension close to one. This is called redundance. To avoid this, tD

should make each component in the vector independent.

The algorithms for estimating the dimension of an attractor, which are described in next section, usually

require a large number of data points as input, typically a few thousand for systems exhibiting low

dimensional dynamics, but the number increases exponentially with the embedding dimension. However,

the number of points can be reduced if the set of data points is chosen to maximise the amount of

information it contains. This idea leads to algorithms which estimates tD in a variety of ways.

Irrelevance and redundance are illustrated using the Lorenz model in the previous chapter. In Figure 4.2,

the delay time (tD = 0.05) is taken to be too small, so that the reconstructed attractor is squashed near to
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the line of identity. In Figure 4.1, the delay time is taken to be much larger (tD = 0.82). This has caused

the reconstructed attractor to bear little resemblance to the original attractor, by introducing irrelevant

information, see section 3.3.1 for detail. There must be an optimum delay time to use for the system

reconstruction lying between tD = 0.05 and tD = 0.82. An important question is how to find such a delay

time.

Practical criteria for selecting a method to estimate the delay time are that it should be computationally

efficient, work well with noisy data and lead to consistent, accurate estimates of key descriptors of the

original attractor.

It is also important to choose the right overall time span, or reconstruction window, covered by the m-

dimensional embedding space vector which is given by tw = (m - 1)tD [Broomhead 1986]. This is the

length of the internal spanned by the first and last delay coordinates.

An embedding space vector is a point in the reconstruction space, therefore we wish a set of such vectors

to represent a reconstructed attractor which exhibits a similar behaviour to the original attractor. If the

delay time is fixed for any embedding dimension, we expect the time span to increase with the dimension.

As an embedding space vector is a vector of points on a trajectory of a chosen dynamic variable, an

increase in the time span means an increase in the length of the trajectory covered by each vector. This

could cause an excessive expansion of the attractor (irrelevance) if the dimension is high. However, if we

fix the time span with an appropriate delay time, we could limit the rate of expansion of the attractor.

A number of techniques have been developed with this goal in mind. The key techniques are described

in subsequent sections.

4.3.1 Autocorrelation based methods

Recall from chapter two that the autocorrelation function measures the similarity between a variable xt and

xt + l. It was defined as g(l) in (II.18), page 26.

A common choice for tD is to use the autocorrelation function, which should provide a reasonable measure

of the transition from redundance to irrelevance. The autocorrelation based methods have the advantage

of short computation times. However, these methods tend to produce inconsistent results, although there

is some evidence [Albano 1991] that autocorrelation methods can provide a good initial estimate for the

delay time.
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In [Zeng 1991] tD was chosen as the time at which the autocorrelation function first falls to e-1. Similarly,

S. J. Schiff and T. Chang [Schiff 1992] have chosen tD when g(l) was not significantly different from zero

for the first time. Yet another method [King 1987] is to choose tD by locating the first inflection point of

g(l). Similarly in [Holzfuss 1986], tD is chosen to be the time taken for g(l) to reach the local minimum.

Using the method suggested by [Holzfuss 1986] and [King 1987], 0.82 was calculated to be the time to

reach the first local minimum of autocorrelation function for the Lorenz model. As illustrated in

Figure 4.1, this choice of tD was found to be inadequate.

Most of the autocorrelation based methods do not make use of the reconstruction window, so that once

found the delay time is fixed. This may cause the reconstructed attractor to be inaccurate in a multi-

dimensional reconstruction. Therefore we must search for more satisfactory techniques.

4.3.2 Mutual information

Another more theoretically sound method to estimate the optimal value of tD for state space reconstruction

has been proposed by A. M. Fraser and H. L. Swinney [Fraser 1986]. They have developed a recursive

algorithm to calculate the mutual information, which measures the general dependence of two variables,

rather than the linear dependence calculated by the autocorrelation function. This in practical terms

estimates the accuracy of predicting xt + l given a measure of xt. Successive delay coordinates are relatively

independent when the mutual information is small. Fraser and Swinney suggested that the value of tD

which produces the first local minimum of mutual information should be used for state space

reconstruction, as this leads to the least redundance.

The major drawback of this method is that it requires an enormous computational cost to estimate the first

minimum of mutual information. For each value of tD, the method requires four to five orders of

magnitude more computation than the autocorrelation method [Rosenstein 1994]. Furthermore, this

method was found to give inconsistent results in identifying the optimal value of delay time in some cases

[Martinerie 1992].

4.3.3 Average displacement

One recent technique to estimate the optimal time delay has been proposed by M. T. Rosenstein and his

colleagues [Rosenstein 1994]. The method is known as the average displacement method and it estimates

the optimal expansion of the reconstructed attractor from the line of identity in the reconstruction space.

This is achieved by an appropriate reduction in redundance error.
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For small delays, redundance is high as the
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Figure 4.3 Reconstruction error.

measurement error is comparatively large. That is

in the presence of noise, the coordinates are

almost indistinguishable. The measurement error

in reconstruction is referred to as the redundance

error. As the delay increases, the relative impact

of the redundance error decreases, since the signal

to noise ratio is assumed to remain constant.

Irrelevance error is a term used for the error that grows exponentially due to a small differences in

location of the trajectory due to noise. This error starts off low but increases due to the exponential growth

of error as a function of delay time. The total error is calculated to be sum of the two errors.

The idea is illustrated in Figure 4.3. Both
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Figure 4.4 Average displacement.

redundance and irrelevance errors reach plateaus

as the attractors are bounded. When redundance

error reaches a plateau, we cannot hope to find a

better time delay by increasing the delay any

further. The optimal delay time is estimated to be

the time when the total error is at its minimum.

The average displacement function is a measure of an attractor’s expansion as a function of delay in

m-dimensional space. Using the scalar time series it is defined as

where N is the number of data points used for the estimate and tD = nτ. Maximising the average

(IV.2)Sm(nτ) 1
N

N

i 1

m 1

j 1
(xi jn xi)

2

displacement is equivalent to minimising the redundance error. As the delay time increases from zero, the

reconstructed trajectory expands from the diagonal and the average displacement increases accordingly

until it reaches a plateau. With larger values of m, reconstruction expansion reaches a plateau at a smaller

value of the delay time. This maintains the time span tw = (m - 1)tD approximately constant.

In Figure 4.4, the Lorenz model with embedding dimension of 5 was used. The graph of average

displacement versus delay time was created using the x-coordinate and 500 data points. The point where

the slope first decreased to less than 40% of its initial value was found to yield a satisfactory delay time

[Rosenstein 1994]. Using such a method the optimal delay time was found to be 0.09. When m = 2, tD

was found to be 0.28. The reconstructed attractor using this value is shown in Figure 4.5. This resembles
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the original attractor of the Lorenz model in chapter three
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Figure 4.5 Reconstruction by average
displacement, tD = 0.28.

more closely than those depicted in Figure 4.1 or Figure 4.2.

4.3.4 Other methods

Delay time is usually fixed once an appropriate value is

found but J. L. Breedon and N. H. Packard [Breedon 1992]

have developed a so called fuzzy delay coordinate

reconstruction technique which employs variable time

sampling to improve the quality of the reconstructed attractor.

The fill factor method [Buzug 1992] quantifies an attractor’s utilisation of embedding space as a function

of delay time. The optimal tD is chosen as the one that leads to the most voluminous reconstruction. The

essence of this method is to estimate the value of delay time when it yields the most space filling

reconstruction. A drawback is that it cannot account for the over folding of the attractor once the

reconstruction has expanded from the main diagonal.

J. C. Roux [Roux 1993] has suggested that there is an optimum choice of tD, typically one tenth to a half

of the mean orbital period over the entire recorded data.

Strategies for the choice of tD have also been discussed in [Pi 1994]. The method establishes functional

dependencies given a sequence of measurements. These dependencies are used to choose an optimal tD.

4.3.5 Summary of methods for delay time

A comprehensive survey of various methods to estimate the
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Figure 4.6 Reconstruction by trial and
error, tD = 0.15.

optimum time delay can be cited in [Casdagli 1991],

[Buzung 1992], [Rosenstein 1994]. It should be noted that

none of the algorithms mentioned above or elsewhere are

universal, and the estimated tD usually requires some

refinements which are proceeded by trial and error.

When we know the original attractor it is fairly easy to

search for a delay time which can be used to reconstruct the

attractor by using the delay time estimate obtained by one of the methods described. Figure 4.6 illustrates

the reconstructed Lorenz attractor using a delay time of 0.15. This time was found by trial and error. By
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comparing the reconstructed attractor to that of the original xy attractor of the Lorenz model in Figure 3.1

(page 37), we can see a very good resemblance. It is ideal to recalculate the delay time once the

embedding dimension is decided, as the embedding works better if we consider the time span of the

vectors rather than just the delay time.

Table 4.1 The delay times estimated by the average displacement and the autocorrelation based methods
for the three continuous time chaotic systems.

Model τ
Average

displacement
Autocorrelation
to reach zero

Autocorrelation
to reach local

minimum point

Lorenz

0.01 dim = 2, 0.28
dim = 3, 0.14
dim = 4, 0.11
dim = 5, 0.09
dim = 6, 0.07
dim = 7, 0.06

0.48 0.82

Rössler

0.1 dim = 2, 2.2
dim = 3, 1.4
dim = 4, 1.0
dim = 5, 0.8
dim = 6, 0.7
dim = 7, 0.6

1.4 2.9

Duffing
oscillator

0.1 dim = 2, 0.7
dim = 3, 0.5
dim = 4, 0.4
dim = 5, 0.3

2.3 4.7

Table 4.1 contains different delay times calculated by three different methods for the three chaotic models

studied in chapter three. τ is the sampling time as before. The average displacement method were

calculated for a number of different dimensions.

4.4 Jump time

The jump time tJ, is the time interval between successive vectors. We want to have it small enough so that

we map out the trajectory as it proceeds around the attractor, but if we make it too small the total number

of data points required becomes very large. Furthermore, if the vectors used are closer in time than

roughly the time for which the autocorrelation function first drops to zero, say β, then we learn nothing

new by comparing the vectors, as they are nearly identical. Thus, we generally choose tJ, to be several

times larger than β. The topology of the reconstructed attractor is independent of tJ, however the sequence

of points generated for the attractor and the number of embedding space vectors required to obtain the
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attractor plot are affected by the choice of tJ. For smaller value of tJ we expect the sequence of points to

define the trajectory well, but the number of the vectors required to cover the attractor increases with

respect to the reduction in tJ.

If we wish to use the embedded space vectors to reconstruct attractor with a reasonable number of

‘almost’ periodic points, it is ideal to set the jump time as the average time for the system to go around

the original state space once. When we try to reconstruct the attractor from a time series of a physical

experiment, in most cases we do not know if there is a forcing frequency or the average time for the

system to go around the original state space once. In such a situation, estimation of the jump time can be

difficult. Our approach to find a suitable value of tJ to reconstruct such an attractor is described in section

4.7.

When the system is driven by an external periodic force, the period of the external drive establishes a

natural period for sampling the dynamics of the system. In such a case, we sample some variable of the

system at a particular phase of the external force to form a surface of section. In this case the sampling

time τ is the period of the external force. It is then reasonable to use τ as both the delay time and jump

time since the variable samples are already reasonably separated in time.

4.5 Embedding dimension

Another difficulty with the reconstruction is the estimation of the dimension to use for the embedding

space vectors. For many systems, we have a little knowledge of the fractal dimension.

In order to successfully implement the delay coordinates method, we must choose the number of

dimensions dE, to use in the embedding space. This dimension is called the embedding dimension.

As mentioned before, it has been shown by Takens [Takens 1981] that a faithful reconstruction can be

achieved by at most 2d + 1 embedding dimension for a d-dimensional system. However, for a dissipative

system the effective dimensionality for the long term behaviour is that of the attractor. This dimensionality

may be considerably smaller than that of the original state space. Thus, we could use the dimension of

the attractor, say D, instead of d to reconstruct the original dynamics of the attractor by the delay

coordinates method.

Once the dimension of the attractor is estimated, the minimal requirement for the embedding dimension

is dE ≥ D [Farmer 1987]. Combining this result with that of Takens’ theorem, we have

54



Chapter 4 - Embedding techniques

Almost all strange attractors have fractal dimension and we may need to estimate this in order to choose

(IV.3)D ≤ dE ≤ 2D 1

the embedding dimension.

4.5.1 Correlation dimension

The correlation dimension was introduced in section 2.7.3.

The discrete correlation integral is defined as

where θ(y) is the Heaviside function, defined as θ(y) = 1 for y > 0 and θ(y) = 0 for y ≤ 0. The correlation

(IV.4)C (m)(R) lim
N → ∞

1

N 2

N

i, j 1
θ( R Xi Xj )

integral is obtained by considering correlations between points of a time series on the attractor. It tells us

the relative number of pairs of points that are located within the distance R of each other in the space. In

(IV.4) the superscript to C indicates that the correlation integral may depend on m, and X are the

embedding space vectors.

The length of the difference between two vectors is usually taken to be the Euclidean length

However, to save some computation time (IV.5) could be replaced by the max-norm in which the distance

(IV.5)Xi Xj

d 1

k 0
(xi ktD

xj ktD
)2

between two points is the largest of all the component differences

We define DC(m) to be the number which satisfies

(IV.6)Xi Xj Max
0 ≤ k ≤ d 1

xi ktD
xj ktD

for some range of R, which we call the scaling region, where m indicates that DC may also depend upon

(IV.7)C (m)(R) kR
DC(m)

the embedding dimension and k is a constant.

We should choose the total number of data points to be used in calculating the correlation dimension.

Usually more data points we have the better, but the computation time increases rapidly. Therefore we
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may need to compromise. We want to have enough data so that in the neighbourhood of each vector in

an m-dimensional embedding space, there will be a sufficient number of vectors to get an accurate

estimate of the correlation dimension. We also want those vectors to consist of data points reasonably

separated in time so as to compare trajectory points which have passed through a particular section of state

space at different times.

In practice, data sets of a few thousand data points seem to be sufficient for reasonable estimates of the

correlation dimension [Abraham 1986] for systems exhibiting low-dimensional dynamics.

If there are N scalar time series values, dE is used with delay time tD and jump time tJ to reconstruct the

dynamics by (Nτ/tJ) dE-dimensional embedding space vectors.

What we do in practice is to compute DC(m) for m = 1, 2,

ln R

DC(m)

Scaling Region

1

l
n
 
C
(
R
)

Figure 4.7 Natural logarithms of the
correlation integral versus R.

3, . . . In order to estimate the correlation dimension, we

need to examine the graph of ln C(R) versus ln R for each

m. For each graph, we locate the scaling region where the

gradient is almost constant for the range of R. The gradient

is then taken to be DC(m). This is illustrated in Figure 4.7.

Estimated values of the correlation dimension in embedding

m

D
C
(
m
)

c

Figure 4.8 Correlation dimension versus
m.

space typically increase with the embedding dimension and

eventually reach a plateau, on which the correlation

dimension estimate is relatively constant, whose value is

commonly taken as an estimate of the correlation dimension

of the underlying chaotic attractor. [Ding 1993] reports a

rigorous result which implies that, for long enough data sets,

the plateau begins when m first exceeds DC. They have also

discussed how lack of sufficient data delays the plateau

onset.

A plot of DC as a function of m is illustrated in Figure 4.8. We expect DC to vary with m until m ≥ c. The

correlation dimension is taken as the value of DC at c, and c can be used as the embedding dimension.

4.5.2 Lyapunov dimension
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Estimates of average Lyapunov exponents from a time series have been demonstrated by [Sano 1985],

[Auerbach 1987], [Lathrop 1989], [Zeng 1991]. X. Zeng and his colleagues [Zeng 1991] have suggested

a method to estimate the Lyapunov exponents from limited experimental data of only 5,000 data points

with a precision of 10-1 or 10-2 in three or four dimensional state space, and 10,000 data points in five

dimensional state space.

Once the Lyapunov exponents are found, the computation required to estimate the dimension of the

attractor by the Lyapunov dimension described in section 2.7.2 is minimal as can be seen from the

calculations in sections 3.3.1, 3.3.2 and 3.3.3.

4.5.3 Γ-test

Another recently developed method called the Γ-test [Stefánsson 1995] can also be used to find the

embedding dimension, but without estimating the dimension of the attractor. It can be very effective and

less computationally expensive when compared to the use of correlation dimension. The algorithm runs

in O(M log M), where M is the number of sample data points.

Using the condition in (IV.3), we could limit the range of the embedding dimension once the fractal

dimension is estimated. A problem arise as the search area increases with the fractal dimension. For

example, if a given model has a fractal dimension of say 3.6, (IV.3) predicts that there is an optimal

embedding dimension in the range, 3.6 ≤ dE ≤ 2(3.6) + 1. As dE must be a natural number, the range can

be interpreted as 4 ≤ dE ≤ 9. Once this range is known, we must examine the set of embedding space

vectors for each embedding dimension within the range which yields the best result. This is a time

consuming process. Using the Γ-test, we can predict the embedding dimension without defining the search

area.

On the assumption of a continuous or smooth underlying input/output model, given the input/output data

set, the Γ-test estimates the best mean squared output error that can be achieved without overfitting.

Applied in the correct context, in effect the Γ-test estimates that part of the output variance which cannot

be attributed to variations due to a continuous or smooth model, i.e. it estimates that part of the output

variance due to noise. If the Γ-test result is close to zero, this signifies that the model is deterministic. We

denote the input vector by x = (x1, ..., xn) and the scalar output by y. In cases where there is more than

one output the Γ-test can be applied to each separately with very little extra computational cost.

Suppose the samples are generated by a continuous function f: m → and let y be defined as

where r represents an indeterminable part, which may be due to noise or lack of functional determination
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in the input/output relationship.

(IV.8)y f(x1, ..., xm) r

The variance of r, Var(r) provides a lower bound for the mean squared error of the output y. If f is

continuous and there is no noise then Var(r) is zero. The Γ-test is a method for estimating Var(r).

Suppose (x, y) is a data sample. Let (x´, y´) be a data sample such that x´ - x > 0 is minimal. Here

. denotes Euclidean distance and the minimum is taken over the set of all sample points different from

(x, y). Thus x´ is the nearest neighbour to x (in any ambiguous case we just pick one of the several

equidistant points arbitrarily).

It is well to observe that y´ may well not be the nearest neighbour of y in output space. The dash notation

is not ideal but it leads to less complicated expressions than many alternatives.

The Γ-test is based on the statistic

Given data samples (x(i), y(i)), where x(i) = (x1(i), ..., xn(i)), 1 ≤ i ≤ M, let x(N(i, p)) be the p th nearest

(IV.9)γ 1
2M

M

i 1
(y (i) y(i))2 1

2
(y y)2

neighbour to x(i). It can be shown that lim γ = Var(r) as nearest neighbours tend to zero, and even the

crude measure provided by (IV.9) often proves useful. However, if one is prepared to assume that f is

smooth with bounded first partial derivatives we can improve this estimate by making a first order

approximation to f(x´) based on Taylor’s theorem. By computing a regression line based on some 20 or

30 nearest neighbours one can estimate the intercept Γ = lim Γ by extrapolating the regression line to

∆ = 0.

Thus we write

(IV.10)δ(p) 1
M

M

i 1
x(N(i, p)) x(i) 2

and
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and form the cumulative averages

(IV.11)γ(p) 1
2M

M

i 1
(y(N(i, p)) y(i))2

and

(IV.12)∆(p) 1
p

p

h 1
δ(h)

Then ∆(p) is the mean square distance of the h ≤ p nearest neighbours and Γ(p) is an estimate for the

(IV.13)Γ(p) 1
p

p

h 1
γ(h)

statistic γ (defined in (IV.9)) based on the h ≤ p nearest neighbours. We perform least squares fit on

coordinates (∆(p), Γ(p)) to obtain a regression line in the form of y = Ax + Γ. A simple implementation

of the Γ-test is given in Algorithm 4.1.

If the inputs used, say xt, are the past history values of an observable system output sampled with the

delay time tD we can apply the Γ-test to the problem of estimating the embedding dimension.

Let an input vector be defined as

Typically as the embedding dimension is increased, Γ first

(IV.14)X (xtD
, ..., xntD

)

4 5 6 7
Dimension

0.04

0.06

0.08

0.1

0.12

Gammabar

Figure 4.9 Γ versus embedding
dimension using the average
displacement method.

decreases, reaches a minimum, and then increases. To find the

optimal embedding dimension, we start with n = 2 in (IV.14). n

is increased by one until the minimum of Γ is attained, say at n

= nm. The embedding dimension is estimated as nm.

Figure 4.9 illustrates a plot of Γ versus the number of past values

in (IV.14), i.e. the embedding dimension. Figure 4.9 was obtained

by using a time series of the x-coordinate for the Lorenz model,

with the delay times calculated by the average displacement

method. nm was found to be five with Γ ≈ 0.021.
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If Γ is not close to zero, the data set is non-deterministic, therefore we cannot hope to reconstruct the

attractor accurately. This may happen if the signal-to-noise ratio is high, or the choice of delay time is

poor. It is interesting to note that smaller the signal-to-noise ratio the less embedding dimension is

required. However, the reduction of noise is less when compared to a model with a higher signal-to-noise

ratio requiring a higher embedding dimension.

It is very important to use a suitable value of delay time, as the

3 4 5 6 7
Dimension

25

30

35

40

Gammabar

Figure 4.10 Γ versus embedding
dimension using the autocorrelation
method.

test is sensitive to the delay time. For a deterministic continuous

time system, a poor choice of delay time could mean very high

values of Γ. With a suitable choice of delay time we would expect

Γ to be small and initially decrease with increasing dimension. For

the Lorenz model, the smallest Γ was found to be approximately

21.52 when the delay time was estimated as the time for the

autocorrelation function to reach zero, which was 0.48.

Furthermore, Γ did not decrease at all. This is illustrated in

Figure 4.10. This figure of 21.52 should be contrasted with the

significantly improved Γ of 0.021. The large difference between

the numbers highlights the importance of choosing a correct delay time.

Using an estimation of the embedding dimension provided by the

3 4 5 6 7
Dimension

0.1

0.2

0.3

0.4

Gammabar

Figure 4.11 Γ versus the dimension
for the Rössler model.

Γ-test for the Lorenz model, the Rössler model and the Duffing

oscillator, the delay times found by the autocorrelation method

always performed poorly when compared to ones found by the

average displacement method. A reason for this is that the delay

time is independent of the dimension, i.e. the delay time is fixed,

for the autocorrelation method. Using the average displacement

method, delay times were calculated for each dimension as the

delay times depended on the dimension.

The embedding dimensions estimated by the Γ-test using the delay

times calculated by the average displacement method, satisfy the condition of (IV.3), i.e. for the Lorenz

model, 2.06 ≤ 5 ≤ 5.12 and for the Rössler model, 2.01 ≤ 4 ≤ 5.02.

For smaller values of a, we expect to require fewer data points to reconstruct the state space. For the

Rössler model, the same embedding dimension was predicted by the autocorrelation and the average

displacement methods. This is illustrated in Figure 4.11. The plot obtained for the average displacement
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method is in black and the autocorrelation in grey. Notice that Γ values are consistently lower for the

average displacement method for dimensions of greater than three.

The plot of the slope versus the dimension reveals that the slopes

3 4 5 6 7
Dimension

0.1

0.2

0.3

0.4

0.5

0.6

Slope

Figure 4.12 The slope versus the
dimension for the Rössler model.

are also consistently lower for the average displacement method

for the dimensions. This is illustrated in Figure 4.12. This means

that the choice of delay time chosen by the average displacement

method is superior to that found by the autocorrelation method.

We could also use the Γ-test to validate the delay time. If Γ never

reaches zero, or does not decrease for increasing dimension

initially for a deterministic system, the choice of delay time must

be changed. For continuous time systems with no noise, we expect

Γ to be close to zero if a suitable dimension is used and the delay

time is very small. Therefore decreasing the delay time may assist Γ to be smaller. Of course, we should

be careful not to make the delay time too small as this may introduce a high redundance error.

Algorithm 4.1 The Γ-test.

Procedure Γ-test (data)

(* data is an array of points (x(i), y(i)), (1 ≤ i ≤ M), in which x is a real vector of dimension
m and y is a real scalar *)

For i = 1 to M (* compute x-nearest neighbour list for each data point *)
For p = 1 to pmax

N(i, p) = t where x(t) is the p th nearest neighbour to x(i).
endfor p

endfor i

For p = 1 to pmax
compute δ(p) as in (IV.10)
compute γ(p) as in (IV.11)

endfor p

For p = 1 to pmax
compute ∆(p) as in (IV.12)
compute Γ(p) as in (IV.13)

endfor p

Perform least squares fit on coordinates (∆(p), Γ(p)) (4 ≤ p ≤ pmax) obtaining (say) y = Ax + Γ

Return (Γ, A)
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If the time series is obtained from a physical experiment where the underlying mathematical model is not

known, we should at first check if the system is chaotic by the tests described in section 2.10. A chaotic

dissipative system has an attractor and thus the Γ-test should yield Γ close to zero.

4.5.4 Conclusion

If the reason for finding the dimension of the attractor is to estimate the minimum number of elements

in the embedding space vectors, there seems no theoretical reason for choosing one type of fractal

dimension over another.

Criteria are the ease of implementation and computation. The capacity dimension is the one we should

avoid as it is computationally intensive. The Lyapunov dimension is good to use if the average Lyapunov

exponents can be computed easily. The correlation dimension has an advantage over the other dimensions,

as the embedding dimension can be estimated at the same time as the fractal dimension.

The Γ-test utilises a quite different approach to estimate the embedding dimension. This technique does

not require an estimate of the fractal dimension but finds the embedding dimension by locating the least

variance of an unknown stochastic variable r.

When we try to estimate the embedding dimension by any of the above methods, it is necessary to first

choose a reasonable estimate of the delay time.

In a graph of two-dimensional embedding space, the value of xtJ is plotted as a function of xtJ + tD. In a

graph of embedding space of dimension three, xtJ is plotted along one axis, xtJ + tD along the second and

xtJ + 2 tD along the third. These plots illustrate how a multidimensional state space can be constructed

from a single time series without the necessity of taking derivatives of the data. A periodic system will

exhibit a closed loop. A fuzzy loop signifies the system is quasiperiodic. For a dimension of more than

three, we have difficulties in representing the models graphically. In such a case, we could plot (d - 1)

two dimensional graphs of xtJ versus xtJ + ktD, where d is the embedding dimension and k = 2, 3, ..., d.

We expect the plot of the attractor to expand with increasing d. Note that we need to plot only (d - 1)

graphs as for example plots of xtJ versus xtJ + 2tD, xtJ + 2tD versus xtJ + 3 tD, xtJ + (d - 1) tD versus xtJ + dtD

etc are the same.

4.6 Automated embedding method

As we have discussed throughout this chapter, implementations of the delay coordinates method can be
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difficult due to uncertainties involved with the choices of delay and jump times, and embedding

dimension. In studying various techniques, we have devised an automated embedding method, to obtain

a reasonable set of embedding space vectors for the state space reconstruction.

The preferred method uses a single coordinate time series of the model to be reconstructed. We set the

initial embedding dimension to one. The dimension is increased by one and the delay time is estimated

by the average displacement method for that dimension. The time series of a few hundred data points is

usually sufficient for the average displacement method, typically 500 data points for a low dimensional

models. We then create the set of input pairs using the dimension and the delay time. The statistic Γ is

estimated by the Γ-test using the input pairs. The estimations of the delay time and the statistic Γ are

repeated for a number of dimensions until a local minima of Γ (which hopefully is close to zero) is found.

We choose the optimal embedding dimension dE, and delay time tD, as the dimension and the

corresponding delay time which gave the local minima of Γ, respectively.

Algorithm 4.2 The automated embedding method.

Procedure Automated embedding (X)

(* X is a set of successive real vectors of the dynamic variable *)

dim = 1

Repeat
dim = dim + 1
Create a set of dim-dimensional vectors ξ from X
delaydim = Estimate the delay time by the average displacement method (IV.1), using ξ
Create a time series DTS sampled at delaydim, using X
Create an input data set GammaData for the Γ-test, using DTS
GammaValuedim = Estimate Γ by the Γ-test (Algorithm 4.1), using GammaData

Until GammaValuedim - 1 < GammaValuedim AND GammaValuedim - 1 ≈ 0

tD = delaydim - 1
tJ = tD
dE = dim - 1

Return (tD, tJ, dE)

In order to reconstruct the state space we could set the jump time to almost any value. The effect of jump

time is such that for small values, typically the jump time several times smaller than the delay time, the

successive embedding space vectors will be similar and thus the trajectory is well defined. The

disadvantage in taking the jump time small is that we need to make significantly more embedding space
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vectors to construct the attractor. If the jump time is large, typically several times larger than the delay

time, we need fewer embedding space vectors to reconstruct the attractor, but it will not be well defined.

Also the time taken to obtain each embedding space vector increases proportionally to the jump time in

a physical experiment. We have chosen the jump time to be same as the delay time for the reconstruction,

i.e. tJ = tD. The automated embedding procedure is summarised in Algorithm 4.2.

Table 4.2 The delay times and the embedding dimensions estimated for the three chaotic models.

Model Delay time Embedding
dimension

Γ A Fractal
dimension D

Lorenz 0.09 5 0.021393 0.283369 2.06

Rössler 1.00 4 0.011508 0.209624 2.01

Duffing’s
oscillator

0.40 4 0.010151 0.410428 -

Table 4.2 contains the delay times and the embedding dimensions found to be suitable by automated

embedding method for the three chaotic systems.

4.7 Unstable periodic orbits

A strange attractor is the set of points of the state space visited by the orbit after the transients have settled

down. This means that the motion on it is ergodic, thus the orbit of any point p on the strange attractor

will make arbitrarily close returns to p. It has been suggested [Gunaratne 1989] that nearly periodic orbits

are dense on the strange attractor and that since the motion on the attractor is chaotic, these orbits must

be unstable. As a periodic behaviour can be interpreted as a regular behaviour, a chaotic system can be

thought as a collection of many different regular behaviours. On the surface of section, an unstable orbit

of period k (nearly periodic orbit of period k) appears as k points. A point belonging to such a set is

referred to as an unstable periodic point of period k.

4.7.1 Extraction of unstable periodic points and orbits

We are interested in extracting the sets of points of the unstable periodic orbits of a strange attractor.

Unstable periodic orbits have been successfully extracted from experimental time series [Auerbach 1987],

[Belmonte 1988], [Lathrop 1989], [Gunaratne 1989]. It is important to extract many unstable periodic
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orbits, including the orbits of sufficiently high periods, so as to have a variety of behaviours which can

Algorithm 4.3 Locate close returning points.

Procedure Locate close returns (ξ)

(* ξ is a set of embedding space vectors *)
Set N = Length of ξ
Set N1 = 50 (* the maximum periodicity *)
Set r1 = two to three orders of magnitude smaller than the signal

(* Locate all close returning points of periods up to N1 *)
M = {} (* Create a new list. Stores the sets of close return points and their periodicities *)
For i = 1 to N - N1

k = 1
Repeat

If | ξi - ξi + k | < r1
then
vec1 = ξi
vec2 = ξi + 1

:
:

veck = ξi + k - 1
Append (k, vec1, vec2, ...., veck) to M
k = k + 1

endif
Until k > N1 OR | ξi - ξi + k | < r1

endfor i
(* M = {(k, vec1, vec2, ...., veck)1, (k, vec1, vec2, ...., veck)2, ........ } *)

(* Group the points collected in M by the period *)
L = {} (* Create a new list *)
For n = 1 to N1

TL={} (* Create a new list TL *)
For m = 1 to Length of M

If n = (km in M)
then Append (vec1m, vec2m, ...., veckm) to TL (* Append (Take[M[m], -n]) to TL *)

endif
endfor m
Append TL to L

endfor n
(* L = {TL1, TL2, TL3, .....} *)
(* TLk = {(vec1, vec2, ...., veck)1, (vec1, vec2, ...., veck)2, ......} *)

Return (L, N1, r1)

be used to study the system. An experimental point is nearly a k-cycle (periodic) if it makes a close return
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after k time steps. A close return implies the existence of a nearby cycle. This means there is an unstable

periodic point of the underlying map in the neighbourhood of any close return of the experimental data.

The unstable periodic orbits are estimated from a time series as follows. Let r1 and r2 > 0, ξi be a point

on the reconstructed attractor in the form of an embedding space vector, N1 is the maximum period of the

orbits we wish to extract and N is the total number of embedding space vectors.

Starting with i = 1, we follow the observed images ξi + 1, ξi + 2,.... until we find the smallest index k,

1 ≤ k ≤ N1 such that ξi + k - ξi < r1. If such a k exists, the orbit represented by (k, ξi, ξi + 1, ..,

ξi + k - 1) is stored in a list. We repeat the process for each i < N - N1. We have typically set N1 to 50.

When the run is completed, we locate all orbits in the list with the same value of k and group them into

a set of unstable orbits of period k. A procedure to locate and group the close returning orbits by the

period is in Algorithm 4.2.

In practice, it is impossible to locate an exact periodic orbits in a chaotic attractor so instead, we find

x(tj )

x(tj + td)

x(tj )

(b) Periodic orbit of period k.
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Figure 4.13 Unstable periodic and periodic orbits.

nearly periodic orbit (unstable periodic orbit) and then represent it by a corresponding periodic orbit. In

Figure 4.13 (a), an unstable orbit of period 5 is illustrated. In (b), a corresponding periodic orbit of period

5 is illustrated.

Throughout the length of the run of Algorithm 4.2., the vicinity of a particular unstable periodic orbit may

have been visited many times. Therefore we must distinguish each orbit, remove any cyclic permutations

and average the orbits extracted for improved approximations. In order to decide whether two sets of

points of length k correspond to same unstable orbit of period k, their positions relative to each other are

checked. The method we use is to sort each set into an ascending order to obtain two new sets and use
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them for the comparison. If the distances of all the corresponding points of the two new sets are less than

Algorithm 4.4 Distinguish and average the unstable periodic points.

Procedure Distinguish clusters (L, N1, r1)

(* L is a list of lists containing the sets of points of orbits sorted in order of periodicity *)
(* L = {TL1, TL2, TL3, .....} *)
(* TLk = {(vec1, vec2, ...., veck)1, (vec1, vec2, ...., veck)2, .....} *)
(* N1 and r1 as in Algorithm 4.2 *)

Set r2 = 2r1
UPO = {} (* Create a new list. Stores the distinguished and averaged unstable periodic orbits
*)
For k = 1 to N1

While TLn is NOT empty
TempTL = {} (* Create a new list *)
anupo = (vec1, vec2, ...., veck)1 in TLk (* anupo = TLk[1] *)
theupo = Sort (anupo) (* in ascending order of first element of vecs *)
Append (vec1, vec2, ...., veck)1 in TLk to TempTL (* Append TLk[1] to TempTL *)
Remove (vec1, vec2, ...., veck)1 from TLk (* Remove first element from TLk *)
For m = 1 to Length of TLk

currentupo = (vec1, vec2, ...., veck)m in TLk (* currentupo = TLk[m] *)
currentupo = Sort (currentupo) (* in ascending order of first element of vecs *)
For i = 1 to k
If | theupoi - currentupoi | < r2 for all i

then
Append currentupo to TempTL
Remove (vec1, vec2, ...., veck)m from TLk (* Remove mth element from TLk *)
m = m - 1

endif
endfor m

endwhile
averagedupo = Average of TempTL
(ξF

(1), ξF
(2), ...., ξF

(k)) = Sort (averagedupo) in the same order as upo
Append (k, (ξF

(1), ξF
(2), ...., ξF

(k))) to UPO
endfor n
(* UPO = {(k, (ξF

(1), ξF
(2), ...., ξF

(k)))1, (k, (ξF
(1), ξF

(2), ...., ξF
(k)))2, .....} *)

Return (UPO)

r2, then they are grouped into the same unstable periodic orbit cluster. Otherwise, they are considered to

be distinct clusters. The centres of the each sets of points in the cluster are then used as estimations of

an unstable orbit of period k. It follows from the central limit theorem that such averaging reduces the

effective noise by a factor √Nb where Nb is the number of sets in a cluster [Belmonte 1988]. A procedure
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to distinguish and average the close returning points to estimate the unstable periodic orbits is in

Algorithm 4.3.

The two parameters r1 and r2 are chosen by the following criteria [Lathrop 1989]. r1 is chosen large

enough to include several sequences corresponding to a particular periodic point, typically two to three

orders of magnitude smaller than the signal. The distance between the points, r2, is set small enough to

to distinguish between distinct periodic points under the condition that r2 > r1, typically r2 = 2r1.

Finally we have to remove orbits made of repetitions of lower orbits. For example a period four orbit may

Algorithm 4.5 Remove repeated unstable periodic orbits.

Procedure Remove repeated orbits (UPO, r1)

(* UPO is a list of lists containing the distinguished and averaged unstable periodic orbits*)
(* UPO = {(k, (ξF

(1), ξF
(2), ...., ξF

(k)))1, (k, (ξF
(1), ξF

(2), ...., ξF
(k)))2, .....} *)

(*r1 as in Algorithm 4.2 *)

Set r2 = 2r1
For i = 1 to Length of UPO

A = (k, (ξF
(1), ξF

(2), ...., ξF
(k)))i (*A = UPO[i] *)

k1 = k in A (* k1 = A[1] *)
A’ = {} (* Create a new list *)
For j = 1 to Length of UPO

k1 = kj in UPO (* k1 = UPO[j, 1] *)
If (k2 < k1) AND (k1 MOD k2) = 0

then
Append (k, (ξF

(1), ξF
(2), ...., ξF

(k)))j to A’ (* Append UPO[j] to A’ *)
endfor j
l = 1
While (l ≤ k1 ) AND (stop = FALSE)

ξa = ξF
(l) in A (* ξa = A[2,1] *)

For m = 1 to Length of A’
B = (k, (ξF

(1), ξF
(2), ...., ξF

(k)))m in A’ (* B = A’[m] *)
ξb = ξF

(l) in B (* ξb = B[2,1] *)
If | ξa - ξb | < r2

then
Remove (k, (ξF

(1), ξF
(2), ...., ξF

(k)))i from UPO (* Remove ith element from UPO *)
stop = TRUE
i = i - 1

endif
endfor m
l = l + 1

endwhile
endfor i

Return (UPO)
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be made up of two iterations of a period two orbit. For each unstable orbit of period k located, say A, we

select the set of unstable orbits of periods less than k, say A´. For each orbit in A´, say B, we compare the

distances between the points in A and B. If ∃ .(a, b) such that ξa - ξb < r2, where ξa ∈ A and ξb ∈ B,

and the periodicity of B is a factor of k, the orbit A is removed. A procedure to remove orbits made of

repeated lower orbit is in Algorithm 4.5.

In order to increase the accuracy of the unstable periodic orbits, we increase the number of embedding

space vectors used for the estimation. This has two effects. The first is to increase the number of unstable

periodic orbits collected before the averaging process. The second is to locate orbits which were not

included in the smaller set of vectors. Another approach to increase the accuracy is to decrease the sizes

of r1 and r2. We must be careful not to decrease the sizes too excessively as doing so will reduce the

number of orbits extracted significantly. Generally we need to increase the number of vectors and decrease

the sizes of r1 and r2 and hit a right balance by trial and error.

4.7.2 Stability of an unstable periodic point

An unstable periodic point of period k can be extracted from an unstable orbit of period k. The stability

of each unstable periodic point in units of k iterations is estimated from a linear approximation of the

dynamics at points on nearby trajectories. Let ξF be an unstable periodic point of period k, and let

(ξj, ξj + k) be a collection of pairs of points in a circle with radius of nr1 centred at ξF, where n is

typically set to be 6. We assume that the dynamics in this neighbourhood is nearly linear, so we write the

map f which takes ξj to ξj + k as f(ξ) = Jξ + b for some dE x dE Jacobian matrix J and a dE-dimensional

vector b. b is almost a null vector when the points are very close to ξF. A least squares fit method is used

to calculate J and b. The absolute value of the largest eigenvalue of J provides an estimate of the stability

of the unstable periodic point near ξF. The accuracy of the eigenvalues associated with a given unstable

periodic point depends on the number of trajectories that lie nearby. Therefore, unstable periodic orbits

in densely populated regions of the attractor are easier to characterise than those in regions which are

rarely visited.

Recent developments suggest that the dimension of a chaotic attractor can be estimated by extracting

enough unstable periodic orbits. In [Grebogi 1988], the relationship between the fractal dimension and the

unstable orbits is discussed in detail.

4.7.3 Choice of the jump time : The creep phenomenon

When using embedding techniques to model a chaotic system, we must be careful in choosing a suitable
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value of the jump time tJ, so that there are a
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Figure 4.14 Reconstructed Rössler attractor with a
set of suitable embedding parameters.

reasonable proportion of successive vectors which

are close to each other.

One could estimate a reasonable jump time by

comparing successive embedding space vectors,

say ξi and ξi + 1, for increasing values of tJ (in

steps of τ, the sampling period) for tJ > tW, where

tW is the time span as described in section 4.3. If

there are many vectors such that

ξi- ξi + 1 < r1, the jump time used to create

the set of embedding space vectors should be

used. This is because any faithful reconstruction

of the attractor should contain many close

returning orbits. In the attractor, the embedding

space vectors near an unstable periodic point of period one should stay nearby for a number of iterations.

Therefore we should observe a good proportion of vectors say 10%, satisfying the condition

ξi - ξi + 1 < r1, assuming the set of the vectors used is large. We have typically used 500 vectors for

this estimation. If the system has a natural forcing frequency, we should be able to estimate it by the

method explained above and successive vectors should remain nearby.

In Figure 4.14 the Rössler attractor is
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Figure 4.15 Reconstructed Duffing attractor with a
set of suitable embedding parameters.

reconstructed by a set of 2,500 embedding space

vectors with embedding dimension of 4, the delay

time of 1.00 (as found suitable by the automated

embedding method in section 4.6) and the jump

time of 17.9. The plot is a two-dimensional

representation of the four-dimensional state space

(xtJ versus xtJ + tD). The dark region in the forth

quadrant of the plot represents 50 successive

points falling on the attractor. The iterates of

points move clockwise and after 500 points, reach

the dark region in the first quadrant of the plot,

represented by another 50 successive points. As

can be seen, the successive points remain nearby.

We have named this effect the creep phenomenon.
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In Figure 4.15, the Duffing attractor is reconstructed by a set of 5,000 embedding space vectors with

embedding dimension of 2, the delay time of 0.7 and the jump time of 9.4. As mentioned in section 3.3.4,

the model has natural oscillations in units of 2π/ω. Using the set of parameters as in Table 3.1, Table 4.2,

the forcing frequency occurs at every 9.449. units. Our method successfully predicted the jump time very

close to this time. The method could have estimated a more accurate jump time if we had used a smaller

sampling time, for example 0.01 instead of 0.1. The same can be said for the case of the Rössler attractor.

The creep phenomenon is also observed in Figure 4.15. Here, the first 50 successive points are in the third

quadrant. After 100 points, the second set of 50 points moved to the first quadrant of the plot.

These are particularly interesting observations in that a relatively long term prediction, 17.9 for the Rössler

model and 9.4 for the Duffing oscillator, can be made quite accurately with a good choice of the jump

time. Generally, with a poor choice we cannot predict where the next point falls. Furthermore, we may

not be able to locate any unstable periodic points.

Algorithm 4.6 The jump time for close returns.

Procedure Jump time (X, tD, dE )

(* X is a real vectors of the dynamic variable *)
(* tD and dE are estimated by the automated embedding - Algorithm 4.2 *)

Choose r = two to three orders of magnitude smaller than the values in X
tW = (dE - 1)tD
tJ = tW - τ

Repeat
tJ = tJ + τ
Create a set of embedding space vectors ξ from X using tD, tJ and dE as in (IV.1)
counter = 0
N = Length of ξ
For n = 1 to N-1

If | ξn - ξn + 1 | < r
then counter = counter + 1

endfor n
Until counter/N > 0.1
(* at least 10% of the successive embedding space vectors are close returns *)

Return (tJ)

A procedure to estimate a value of jump time which yields sufficient number of close returns is

summarised in Algorithm 4.6.
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Using the Rössler model we have created two sets of 10,000 and 2,500 embedding space vectors with the

embedding dimension of 4, the delay time of 1.00 and the jump time of 17.9 to extract unstable periodic

orbits of periods up to 10. r1 was set to be 0.1 and r2 = 2r1. The number of distinct unstable periodic

orbits extracted are given in Table 4.3.

Table 4.3 Distinct unstable periodic orbits of orders up to 10 extracted - the Rössler model.

Period Number of orbits extracted
using 10,000 embedding space

vectors

Number of orbits extracted
using 2,500 embedding space

vectors

1 0 0

2 36 9

3 44 11

4 46 14

5 16 6

6 13 5

7 14 3

8 6 3

9 4 4

10 3 1

Total 182 56

4.8 Chapter summary

In this chapter we have described the delay coordinates method, which is one of the most important and

useful development of chaos theory. The technique is widely used to model a physical system where the

mathematical description is unknown.

We have seen that it is possible to reconstruct the original attractor from a time series of one observable

system output, if the choices of embedding dimension, delay time and jump time are appropriate. It is not

an easy task to estimate these values, therefore a number of techniques were explored.

Delay time is the time between successive components of the embedding space vector. It the amount of

data is infinite and is noise free, then any choice of the delay time could reproduce the dynamics.

However, in real applications we are limited both in the amount and accuracy of the data. The choice of
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delay time is important, as a good choice can reduce both the amount of data needed and the effect of

noise. Different techniques described were autocorrelation based methods, mutual information and average

displacement.

Jump time is the time difference between successive embedding vectors. The trajectory of the

reconstructed attractor is well defined for a small jump time but more vectors are required for the

reconstruction. If the choice of the jump time is such that it equals approximately the average time for the

original trajectory to go around the attractor once, the plot of the successive vectors are confined in a

small region of the reconstructed space. A method to estimate a reasonable jump time to reconstruct an

attractor with a good proportion of close return points was also discussed.

The embedding dimension is also an important parameter to choose, as no matter what delay or jump time

we choose, if the embedding dimension is too small we will not be able to reproduce the full system

behaviour. Different techniques discussed in estimating the embedding dimension were the use of

correlation and Lyapunov dimensions, and the Γ-test.

The automated embedding method we have developed was described as a new approach to estimate a

reasonable set of the delay and jump times, and the embedding dimension for a reconstruction of the

attractor.

This chapter concluded with discussions on how to locate unstable periodic orbits from a set of embedding

space vectors, and a method to study the stability of such points. In order to locate unstable periodic orbits

from a set of embedding space vectors, a suitable jump time should be used. This was discussed in detail

and studies to estimate a suitable jump time lead to the discovery of the creep phenomenon. The extraction

method was used to locate unstable periodic orbits of periods up to 10 of the Rössler model from two sets

of embedding space vectors and the result was presented in Table 4.3.

Chapter references

[Abraham 1986] N. B. Abraham, A. M. Albano, B. Das, G. De Guzman, S. Yong, R. S. Gioggia, G. P.
Puccioni, and J. R. Tredicce. Calculating the Dimension of Attractors from Small Data Sets, Physics
Letters A 114, 217-221, 1986.

[Albano 1988] A. M. Albano, J. Muench, C. Schwartz, A. I. Mees and P. E. Rapp. Singular-Value
Decomposition and the Grassberger-Procaccia Algorithm, Physical Review A 38, 3017-3026, 1988.

[Albano 1991] A. M. Albano, A. Passamante and M. E. Farrell. Using higher-order correlation to define
an embedding window, Physica D 54, 85-97, 1991.

[Auerbach 1987] Ditza Auerbach, Predrag Cvitanovic, Jean-Pierre Eckmann, Gemunu Gunaratne and

73



Research Report - Version 15 February 2002

Itamar Procaccia. Exploring Chaotic Motion Through Periodic Orbits, Physical Review Letters 58, 23,
2387-2389, 1987.

[Belmonte 1988] A. L. Belmonte, M. J. Vision, J. A. Glazier, G. H. Gunaratne and B. G. Kenny.
Trajectory Scaling Functions at the Onset of Chaos: Experimental Results, Physics Review letters 61, 5,
539-542, 1988.

[Breedon 1992] J. L. Breedon and N. H. Packard. Nonlinear analysis of data sampled nonuniform in time,
Physica D 58, 273-283, 1992.

[Broomhead 1986] D. S. Broomhead and G. P. King. Extracting qualitative dynamics from experimental
data, Physica D 20, 217, 1986.

[Buzung 1992] Th. Buzung and G. Pfister. Comparison of algorithms calculating optimal embedding
parameters for delay time coordinates, Physica D 58, 127-137, 1992.

[Casdagli 1991] M. Casdagli, S. Eubank, J. D. Farmer and J. Gibson. State space reconstruction in the
presence of noise, Physica D 51, 52-98, 1991.

[Dracopoulos 1993] D. C. Dracopoulos and Antonia J. Jones. Neuromodels of analytic Dynamic Systems.
Neural Computing & Applications, 1, 4, 268-279, 1993.

[Ding 1993] Mingzhou Ding, Celso Grebogi, Edward Ott, Tim Sauer and James A. Yorke. Plateau Onset
for Correlation Dimension: When Does it Occur?, Physical Review Letters 70, 25, 3872 -3875, 1993.

[Farmer 1987] J. D. Farmer and J. J. Sidorowich. Predicting Chaotic Time Series, Physical Review Letters
59, 8, 845-848, 1987.

[Fraser 1986] Andrew M. Fraser and Harry L. Swinney, Independent coordinates for strange attractors
from mutual information, Physical Review A 33, 2, 1134-1140, 1986.

[Grebogi 1988] C. Grebogi, E. Ott, J. A. Yorke. Unstable periodic orbits and the dimensions of
multifractal chaotic attractors, Physical Review A 37, 1711-1723, 1988.

[Gunaratne 1989] G. H. Gunaratne, P. S. Linsay and M. J. Vision. Chaos beyond Onset: A Comparison
of Theory and Experiment, Physics Review Letters 63, 1, 1-4, 1989.

[Holzfuss 1986] J. Holzfuss and G. Mayer-Kress. An approach to error estimation in the application of
dimension algorithms, in Dimensions and Entropies in Chaotic Systems, editor G. Mayer-Kress, Springer-
Verlag, New York, 114-122, 1986.

[King 1987] G. P. King, R. Jones, D. S. Broomhead. Phase portraits from a time series: a singular system
approach, Nuclear Physics B 2, 379, 1987.

[King 1992] G. P. King and I. Stewart. Phase space reconstruction for symmetric dynamical systems,
Physica D 58, 216-228, 1992.

[Lathrop 1989] Daniel P. Lathrop and Eric J. Kostelich. Characterization of an experimental strange
attractor by periodic orbits, Physical Review A 40, 7, 4028-4031, 1989.

[Levin 1993] A. U. Levin. Recursive Identification Using Feedforward networks. Department of Computer
Science and Engineering, Oregon Graduate Institute, 2000 NW Walker Road. PO Box 91000, Portland,
Oregon OR 97291-1000.

74



Chapter 4 - Embedding techniques

[Martinerie 1992] J. M. Martinerie, A. M. Albano, A. I. Mees, P. E. Rapp. Mutual information, strange
attractors, and the optimal estimation of dimension, Physical Review A 45, 7085, 1992.

[Packard 1980] N. H. Packard, J. P. Crutchfield, J. D. Farmer and R. S. Shaw. Geometry from a time
series, Physics Review Letters 45, 9, 712-16, 1980.

[Pfister 1992] G. Pfister, Th. Buzung and N. Enge. Characterization of experimental time series from
Taylor-Couette flow, Physica D 58, 441-454, 1992.

[Pi 1994] H. Pi and C. Peterson. Finding the embedding dimension and variable dependencies in time
series. Neural Computation 6, 509-520, 1994.

[Provenzale 1992] A. Provenzale, L. A. Smith, R. Vio and G. Murante. Distinguishing between low-
dimensional dynamics and randomness in measured time series, Physica D 58, 31-49, 1992.

[Rosenstein 1994] M. T. Rosenstein, J. J. Colins, C. J. De Luca. Reconstruction expansion as a geometry-
based framework for choosing proper delay times, Physica D 73, 82-98, 1994.

[Roux 1993] J. -C. Roux. Dynamical Systems Theory Illustrated: Chaotic Behavior in the Belousov-
Zhabotinsky Reaction, in Chaos in Chemistry and Biochemistry, R. J. Field and L.Györgyi eds, 21-46,
World Scientific Publishing, 1993.

[Russell 1980] D. A. Russell, J. D. Hansen, and E. Ott. Dimensions of Strange Attractors, Physical Review
Letters 45, 1175-1178, 1980.

[Sano 1985] M. Sano and Y. Sawada. Measurement of the Lyapunov Spectrum from a Chaotic Time
Series, Physical Review Letters 55, 10, 1082-1085, 1985.

[Schiff 1992] S. J. Schiff and T. Chang. Differentiation of linearly correlated noise from chaos in a
biologic system using surrogate data, Biological Cybernetics 67, 387-393, 1992.

[Stefánsson 1995] Aðalbjörn Stefánsson, N. Koncar and Antonia J. Jones, The Gamma test: a simple
estimate for the best possible performance of a continuous or smooth data model, report, Dept. Comp.
Maths, University of Wales, 1995.

[Takens 1980] F. Takens. Detecting strange attractors in turbulence. In A. Dold and B. Eckmann, editors,
Dynamical Systems and Turbulence, pages 366-381. Springer-Verlag, 1980.

[Takens 1981] F. Takens. Dynamical Systems and Turbulence. Lecture Notes in Mathematics 898, D. A.
Rand and L. S. Young, eds, Springer-Verlag, 1981.

[Zeng 1991] X. Zeng, R. Eykholt and R. A. Pielke. Estimating the Lyapunov-Exponent Spectrum from
Short Time Series of Low Precision, Physical Review Letters 66, 25, 3229-3232, 1991.

75



76



CHAPTER V

CONTROL OF CHAOTIC SYSTEMS

5.1 Introduction

The extreme sensitivity to initial conditions displayed by chaotic systems makes them unstable and

unpredictable. Yet the same sensitivity also makes them highly susceptible to control, provided that the

chaotic system can be analyzed and the analysis is then used to make small effective control interventions.

By perturbing the system in the right way, it is possible to encourage it to follow one of its many unstable

but natural behaviours. In such situations, it may be possible to use chaos to advantage, as chaotic

systems, once under control, are very flexible. Such systems can rapidly switch among many different

behaviours. Incorporating chaos deliberately into practical systems therefore offers the possibility of

achieving greater flexibility in their performance.

In the context of chaos, control could mean a number of things. It could mean the elimination of multiple

basins of attraction, stabilisation of the fixed points or stabilisation of the unstable periodic orbits. Control

of chaos is still in its infancy but the potential it offers is enormous.

There are four main categories of chaos control methodologies. They are low energy, high energy, non-

feedback and feedback methods.

Low energy control methods require very small changes in the control parameter. In contrast, high energy

control methods require large changes. It is always desirable to have a control method which is of the low

energy type, as in physical systems control parameter may be fixed or can be changed by only a very

small amount. When large changes are required, a physical system may need to be redesigned defeating

the ‘control of chaos’ concept, as such an approach is closer to avoiding chaos.

In feedback methods, a control parameter is changed during the control. In non-feedback methods, a

control parameter is changed at the beginning of the control only, and untouched during the control phase.

Perhaps the simplest method to control a chaotic system is to avoid the regions of chaos by studying the

bifurcation diagram and thereby choosing appropriate control parameter values, for which the desired

periodic behaviour is achieved. A control method which involves a detail study of the bifurcation diagrams

77



Research Report - Version 15 February 2002

is often referred to as a bifurcation diagram approach. Such methods are high energy and non-feedback,

and require good mathematical descriptions of the models, as the bifurcation behaviour in real physical

system is difficult to learn, due to the requirement of large changes in the control parameter.

Another method is to add supplementary dynamical systems whose role is to create stable orbits in the

original chaotic attractor. The difficulty here is that creation of an ideal supplementary system may require

the whole system to be redesigned and the goal behaviour has to be chosen by trial and error. This method

is also non-feedback.

5.2 The OGY method

The control methods mentioned above share a disadvantage, they do not use the chaotic nature of the

system to its best advantage. One of the beauties of controlling a chaotic system is the possibility of

producing many quite different behaviours from the same system.

The motion on the strange attractor is ergodic, as the attractor is the set of points of the state space visited

by the orbit, after the transients have settled down. Thus the orbit of any point P on the attractor will

make arbitrarily close returns to P. Due to the smoothness and nonlinearity of the dynamics, one should

in general be able to move P by a small amount so that the close return becomes exact. That is, there is

a nearly periodic point arbitrarily close to P. This leads to the key observation that the set of chaotic orbits

is the closure of the set of unstable periodic orbits [Grebogi 1988] and is thus dense on the strange

attractor [Gunaratne 1989]. Thus the behaviour of a chaotic system can be viewed as a collection of many

orderly behaviours, none of which dominate under ordinary circumstances. Since the motion on the

attractor is chaotic, these orbits have to be unstable.

In chaotic dissipative systems, the unstable periodic points have associated directions along which the

trajectories converge and diverge, the stable and unstable manifolds. The unstable periodic points on the

attractor possess at least one stable and one unstable manifold [Kaplan 1979], i.e. they are saddle points.

The local dynamics is approximated by the Jacobian matrix, the derivative of the locally linear map. The

eigenvalues of the Jacobian give the local scaling amplitudes, and the eigenvectors determine the directions

of the manifolds.

If we can extract the unstable periodic points of a chaotic attractor and learn the local dynamics around

the corresponding points in the surface of a section, we may be able to stabilise any one of the different

orbits. Of course, we are free to choose the point which best achieves the desired system performance.

If the attractor is periodic then small control parameter perturbations change the orbit only slightly. In such
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a case we cannot hope to improve the system performance by a low energy method. Furthermore, we may

wish to use a system for different purposes under different conditions at different times. Thus, depending

on the use, different requirements are made of the system. If the system is chaotic, this type of multiple

use situation might be possible with a low energy method.

In 1989 Edward Ott, Celso Grebogi and James A.Yorke, abbreviated
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Figure 5.1 OGY control.

as OGY, at the University of Mayland introduced a general method by

which to control a chaotic system [Ott 1990]. The term ‘control’ here

is used to describe a means to encourage the system to remain at the

fixed point of choice in the surface of section. OGY first demonstrated

the method to control a dissipative chaotic system, using a variation of

the Hénon map as in chapter 6. The system was forced to follow an

unstable periodic orbit of period one, using only small time dependent

perturbations in an accessible control parameter. Their work had a

significant impact in the society of researchers working with chaotic

systems, since the method does not require a mathematical description

of the system to be controlled, and it is a low energy feedback method.

More importantly the OGY method could be used to control the system

at many different fixed points, in the same control parameter range,

thereby encouraging the system to behave quite differently.

The OGY method has two phases the first of which is learning followed by the second, control. The

learning phase is broken down into three stages. The first stage is to model the given chaotic system by

using embedding techniques.

In the second stage, the embedding space vectors are used to locate the control point. A control point is

an unstable periodic point which, when controlled, gives the most desirable system behaviour. Once a

control point has been selected, a reconstructed surface of section is used to obtain a local linearisation

about this point, i.e. construct an approximation to the Jacobian. The OGY method exploits the fact that

unstable periodic orbits are dense in a typical strange attractor. The structure of the strange attractor in

the neighbourhood of a periodic point, and the motion of points in this neighbourhood, are determined by

the tangent space of the periodic point. In particular, the eigenvalues give the local scaling observed in

the strange attractor. Thus the nonlinear attractor can be considered as a collection of linear

neighbourhoods about the periodic points.

In the third stage a sensitivity analysis is performed, this determines the effects of small perturbations of
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the control parameter on the dynamics around the control point.

In the control phase, a perturbation

(b) With OGY control

ξn + 2

ξn + 2

ξn + 1

ξn + 1

ξn

ξF

ξn

ξF

(a) Without OGY control

Figure 5.2 Control using a surface of section.

required to control the system is

calculated and applied when the system

is near the control point. To control

chaotic systems, we attempt to confine

the iterates of the surface of section to

a small neighbourhood of the control

point. When an iterate falls nearby, the

accessible control parameter p is

changed from its nominal value p0 by

an amount δp, thereby changing the location of the control point and its stable manifold. The OGY method

feeds the new control parameter value to the chaotic system and the output is returned to estimate the next

value of the control parameter as illustrated in Figure 5.1. The perturbation δp is chosen such that the next

iterate will be forced back toward the stable manifold of the original control point when p = p0. The

method forces the points to stay in the neighbourhood of an unstable periodic point in the attractor and

this makes it quite different from any other previous methods. In Figure 5.2, ξi is the ith iterates of the

surface of section. ξF is the point at which we wish to stabilise the system, i.e. the control point. The

circle indicates the region in which the control could be achieved by the OGY method. In (a), ξn falls in

the region but the subsequent iterates diverge away from the point in the absence of control. In (b), the

iterates are confined within the region due to the effects of perturbations calculated by the OGY control

law.

Let the system be described by a function f: d -> d. Suppose xτ is some scalar variable which can be

experimentally measured. We define an embedding of the system using the delay coordinates method

described in Chapter 4 by

If dE, tJ and tD are chosen suitably the essential features of the system f can be recovered by studying the

(V.1)ξi xitJ
, xitJ tD

, ....., xitJ (dE 1)tD

embedding space vectors. For i ≥ 1. We are interested in points ξi where ξi ≈ ξi+r for small r ≥ 1. If r = 1

these will be unstable orbits of period 1 in ξ(t), if r = 2 period 2, and so on. The aim of the OGY method

is to stabilise the system into such a natural (but unstable) orbit. In the case of the Poincaré section we

would stabilise ξ(t) on the section, in the case of equispaced sample points we would stabilise ξ(t) on a

return map.
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Suppose p is some scalar control parameter which is
ξiξi ξi+1

ξi+2

t
Time

ti+1 ti+2

pi-1

pi

pi+1

Figure 5.3 Intervals for which the variables are
defined.

to be varied at times ti, say p = pi over the interval

(ti, ti + 1), see Figure 5.3. Suppose that the nominal

value of p is p0. Our aim is to vary p by small

amounts about p0 so as to stabilise ξ(t) about a

suitable control point ξF. Discussion on how to locate

unstable periodic points can be found in section 4.7.

The original OGY method considered the successor to ξi and attempted to choose δpi so that ξi + 1 was

close to the control point.

5.3 The original OGY control law

For all i ≥ 1 let

Suppose that the iteration is described by the map ξi + 1 = F(ξi, p). The locally linear behaviour of F in

(V.2)δp p p0 and δξi 1(pi) ξi 1(pi) ξF(p0)

the vicinity of a control point ξF is described by the dE x dE Jacobian matrix

and in what follows we assume det J 0.

(V.3)J DξF(ξ, p)
ξ ξF, p p0

This yields the first order approximation

where u is a vector which reflects the direction of the local gradient with respect to p.

(V.4)δξi 1(pi) ≈ Jδξi(pi 1) uδpi

Now suppose that an eigenvector of J, say eu, has a real eigenvalue whose absolute value is greater than

1. This means that points ξi such that δξi lies in the direction of eu will, if p = p0 in the intervening time

period, be such that on the next iteration ξi + 1 will lie further away from ξF(p0). We refer to this as an

unstable direction. Stable directions are characterised by eigenvectors of J which have absolute value less

than 1.

The basic idea of the OGY method is to choose δpi so as to eliminate the component of δξi + 1 in the

unstable direction(s). We are now almost ready to derive the appropriate control strategy. However, we
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first observe the following lemma.

Lemma 5.1. Suppose the d x d matrix J has d linearly independent eigenvectors e1, ..., ed, with real

eigenvalues λ1, ..., λd. Thus we assume the eigenvectors form a basis in d. Construct the dual basis

f1, ..., fd defined by

Then for any x ∈ d

(V.5)ei . fj




1 if i j
0 if i ≠ j

Proof. Express x in terms of the eigenvectors, writing

(V.6)fu .Jx λu fu .x

where the αi are suitable scalars depending on x. Thus from (V.5)

(V.7)x α1e1 α2e2 ... αde d

The effect of J on x is (from the definition of eigenvectors and eigenvalues)

(V.8)f u .x αu

Taking the inner product with fu yields fu.Jx = αu λu and the conclusion now follows from (V.8).

(V.9)Jx α1λ1e1 ... αdλded

We can now prove

Theorem 5.1 (OGY). The constraint fu.δξi+1 = 0 leads to the first order control law:

where for ξi near ξF, the sensitivity vector u is defined as

(V.10)δpi ≈ λu

fu.δξi(pi 1)

fu.u

(V.11)u










∂
∂pi

δξi 1(pi) Jδξi(pi 1)
p0

lim
pi → p0

ξi 1(pi) Jξi(pi 1)

pi p0
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Proof. Dotting (V.4) with fu using Lemma 1 we have

Using the constraint fu.δξi+1 = 0 we obtain from (V.12)

(V.12)f u.δξi 1(pi) ≈ λu fu.δξi(pi 1) fu.uδpi

which on solving for δpi yields (V.10).

(V.13)λu fu.δξi(pi 1) fu.uδpi ≈ 0

The following conditions are required to control a chaotic system with the original OGY method.

• Experimental time series of some scalar-dependent variable xt can be measured and a suitable

embedding technique can be applied, or the mathematical model describing the system is

available.

• The dynamics of the system can be represented as a low-dimensional surface of section and the

system has at least two linearly independent real eigenvectors.

• There is a specific periodic orbit of the map which lies in the attractor and around which one

wishes to stabilise and the corresponding unstable periodic point can be located.

• A parameter p is available for external adjustment which can be used to slightly modify the

system dynamics. Let the range in which p is allowed to vary pMAX > p > pMIN. There is

maximum perturbation δp* in the parameter p by which it is acceptable to vary p from the

nominal value p0.

• The position of the periodic orbit is a function of p, but the local dynamics about it do not vary

much with small changes in p.

5.4 Variations and use of the OGY method

Before we look at some variations of the OGY method, let us define the advantages and disadvantages.

Since the introduction of the method, a number of improvements have been published to overcome some

of the disadvantages.

The advantages:

• No mathematical model of the dynamics is required.

• The computations required at each iterate to calculate the perturbation to be applied are

minimal.

• The required changes in the control parameter to obtain effective control are small.

• Different control points could be stabilised for the same system in the same parameter range.
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• Control can be achieved even with imprecise measurements of the eigenvectors and eigenvalues.

• The method extends to any smooth chaotic system whose dynamics can be characterised by a

nonlinear map.

• The method is relatively robust to small noise levels (for control of low period orbits).

• Different control parameters can be used to control a given system.

• If the system is intrinsically chaotic and fulfils these requirements then there is no need to

redesign the system in any way. This may be particularly relevant to large natural systems to

which high-energy control methods cannot possibly be applied (e.g. the ionosphere and the HARP

project).

The disadvantages:

• One needs to locate a control point which gives a satisfactory system behaviour when control

is applied.

• Only unstable periodic orbits which exist in the original attractor can be stabilised.

• A long time may be taken for the system to approach the control point.

• There is a requirement for a system wide control parameter which can be readily manipulated.

• Use of different control parameters may give different performances.

• High dimensional control might be difficult, especially when there is more than one unstable

manifold.

• Control of high periodicity orbits is difficult.

• The original method does not take previous perturbations into account; arguably these are

relevant (refer to next section).

• The method will not work for systems with complex eigenvectors.

• When a mathematical model of the system is not available, choosing a suitable embedding

technique may be difficult and time consuming.

One of the practical difficulties of the OGY method using embedding techniques is that the learning phase

can take a long time. This means the time taken before any control can be applied to the system may be

significant. This could be a major problem if the method were to be applied to a real time control system,

especially when adaptive control is required. This appears to be one of the worst disadvantages of the

method, and as far as we are aware has not been addressed in the literature.

A number of analyses and surveys of the OGY method have been published including [Romeiras 1992],

[Ditto 1993], [Shinbrot 1993], [Ott 1994]. Control of well known mathematical systems using the method

includes the Lorenz model [Singer 1991], [Shinbrot 1992b], a variation of the Hénon map [Ott 1990], and

the Duffing oscillator [Dressler 1992].
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Many practical applications have been demonstrated using the OGY method and several different

formalisms have been used in the literature to describe the method along with some improvements.

The improvements include control of higher periodic orbits [Hunt 1991], [Roy 1992], [Romeiras 1992],

[Lai 1993], control of high dimensional systems [Auerbach 1992], control of Hamiltonian chaotic systems

[Lai 1993], use of the previous values of the control parameter [Dressler 1992], creations of nonexisting

periodic orbits [Hunt 1991], tracking of unstable orbits [Gills 1992], [Carroll 1992], and control

spatiotemporal systems [Schwartz 1994].

First control of a physical system using the OGY method, in the form of chaotically buckling

magnetostrictive ribbon, was reported in [Ditto 1990]. Other control of physical systems includes a

thermal convection loop [Singer 1991], spin-wave instabilities [Azevedo 1991], a diode resonator with up

to 23 drive cycles [Hunt 1991], a chaotic multimode laser [Roy 1992], [Gills 1992], a Duffing like circuit

[Carroll 1992] and an oscillatory chemical system: the Belousov-Zhabotinsky reaction [Petrov 1993].

The OGY method has also been used to control biological systems such as the control of cardiac

arrhythmias in rabbit ventricle [Garfinkel 1992] and chaos in rat brain [Moss 1994], [Schiff 1994] .

Variations of the OGY method have been used for synchronisation of chaos [Carroll 1993], [Roy 1994],

[Lai 1994]. In a similar manner, the method was varied slightly to allow for use of chaos to encode and

decode transmitted data [Hayes 1993].

The sensitivity of a chaotic system to small perturbations was used to rapidly direct orbits from an

arbitrary initial state to an arbitrary but accessible desired state [Shinbrot 1990], [Shinbrot 1992a],

[Shinbrot 1992b]. This technique can be used to significantly reduce the time taken for the trajectory to

approach the desired point in the surface of section.

The original OGY procedure for a given dynamic system is summarised in Algorithm 4.31.
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Algorithm 5.1 OGY chaos control method.

(* Reconstruction of the attractor - Embedding technique *)
Refer to Algorithm 4.2 and Algorithm 4.6
ξ = A set of embedding space vectors as in (IV.1)

(* Extraction, grouping and averaging of the unstable periodic points *)
Refer to Algorithm 4.2, Algorithm 4.3 and Algorithm 4.5
UPO = A set of unstable periodic orbits with the periods

(* Study of local dynamics of the control points *)
For each (k, (ξF

(1), ξF
(2), ...., ξF

(k))) in UPO
C = {} (* Create a new list C - Stores pairs of points falling near ξF

(1) *)
(* Perform local linearisation *)
Collect sufficient number of pair points (ξi, ξi + k) near ξF

(1) and append them to C
Using these pair points approximate the Jacobian matrix J by a least squares fit,
where δξi + k ≈ J δξi
Compute eigenvectors and eigenvalues of J
Note the stable and unstable eigenvectors es, eu and their associated eigenvalues
λs and λu
(* assume there is only one unstable direction *)
Compute the dual basis of the eigenvectors and select fu as in (V.5)
(* Perform sensitivity analysis *)
For each (ξi, ξi + k) in C

For l = 1 to 50
Randomly generate p’ ∈ [pMIN, pMAX]
Compute ξ´i + k = ξi + k(p’)
ul = (δξ´i + k - Jδξi)/δp’ as in (V.11)

endfor l
set u equal to the mean of all ul

endfor
endfor
Choose the desired control point ξF and the associated parameters (λu, fu, u)
Repeat

Obtain the current point ξi
Set δp’ by using the OGY control law as in (V.10)
p’ = p0 + δp’
If pMIN ≤ δp’ ≤ pMAX

then
control with p’
else no control

endif
Until instructed to STOP
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5.5 The Dressler and Nitsche control law

The OGY method has a number of disadvantages, one of which is a lack of use of the previous value of

the control parameter. This problem was addressed by U. Dressler and G. Nitsche [Dressler 1992]. Their

method is based on the OGY method, but the control law takes the previous value of the control parameter

into consideration, thereby theoretically and realistically offering a better possibility of effective control.

Theorem 5.1 differs slightly from the original version of the OGY control law. However, this difference

is purely notational as we now show. To see that (V.10) is equivalent to the original control law proposed

by OGY [Ott 1990] we shall need the following trivial.

Lemma 5.2. Suppose the d x d matrix J has d linearly independent eigenvectors e1, ..., ed, with real

eigenvalues λ1, ..., λd, none of which is equal to 1, and that f1, ..., fd are the contravariant vectors as in

(V.5), then the matrix I - J, where I is the d x d identity matrix, has eigenvalues (1 - λ1), ...,(1 - λd) and

the dual bases for the eigenvectors are the same for both J and I - J.

Proof. Let e be an eigenvector of J and λ its eigenvalue, hence Je = λe, so that

Thus, provided λ 1, e is also an eigenvector of I - J and 1 - λ is its eigenvalue. Moreover, the dual basis

(V.14)(I J)e (1 λ)e

is the same in both cases.

The original formulation of Theorem 5.1 was

Theorem 5.2 (OGY). The constraint fu.δξi+1 = 0 leads to the first order control law

where the sensitivity vector g is defined by

(V.15)δpi

λu

λu 1

f u.δξi(p)

f u.g

Note. The sensitivity vector g is defined in terms of the shift of the fixed point ξF with respect to a change

(V.16)g










∂ξF

∂p p0

lim
p → p0

ξF(p) ξF(p0)

p p0

in p, whereas in the Dressler and Nitsche paper, u is defined as the shift in ξi + 1 with respect to a change

in p. When a sensitivity vector is estimated from real data, u requires far less data than g. The estimation
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of g requires us to observe the system for a long enough time after changing the control parameter for the

transient to vanish and then to locate the newly shifted fixed point. However, we only need to estimate

the changes in the positions of next iterates to estimate u.

To show that (V.10) is equivalent to (V.15) we must examine the relationship between the sensitivity

vectors g and u, see Figure 5.4.

No change in p

With change in p

δpu

δpg

ξF(p)

ξF(p0) ξi

ξi+1(p)

ξi+1(p0)

δξi+1(p)

J δξi

Figure 5.4 Comparison of the sensitivity vectors g and u.

The OGY paper also uses the Jacobian matrix J but applied to changes in ξi relative to the shifted fixed

point, i.e.

where from (V.16)

(V.17)ξi 1(p) ξF(p) ≈ J ξi(p) ξF(p)

We note

(V.18)ξF(p) ≈ ξF(p0) (p p0)g

Lemma 5.3. From (V.17) and (V.18) it follows that

Proof. From (V.17) and (V.18) we have in the OGY notation

(V.19)u (I J)g

(V.20)ξi 1(p) ξF(p0) ≈ J ξi(p) ξF(p0) (p p0) (I J) g
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The corresponding equation in the Dressler and Nitsche notation is

Direct comparison of the two equations (which are first order identities in p) yields the result.

(V.21)ξi 1(p) ξF(p0) ≈ J ξi(p) ξF(p0) (p p0)u

Proof of Theorem 5.2. From Theorem 5.1 and Lemmas 5.3, 5.2 and 5.1 we have

which is the original OGY control law.

(V.22)δpi λu

f u.δξi(p)

f u.u
λu

f u.δξi(p)

f u.(I J)g

λu

(λu 1)

f u.δξi

f u.g

5.6 Derivation of the Dressler and Nitsche control law.

Here we consider an extension of the OGY method, due to Dressler and Nitsche [Dressler 1992], which

considers ξi + 1 and ξi + 2 and defines a control strategy with the goal of making ξi + 2 close to the fixed

point and returning pi + 1 to its nominal value. This generalisation contains the original method as a special

case.

We replace (V.2) by

If ξi is given then we can model the effects on ξi + 1 of two successive parameter choices pi - 1, pi by

(V.23)δp p p0 and δξi 1(pi 1, pi) ξi 1(pi 1, pi) ξF(p0, p0)

considering them as independent variables. We first calculate the directional derivatives:

Next, using Taylor’s theorem to obtain a first order approximation, we can write

(V.24)

v










∂
∂pi 1

δξi 1(pi 1, pi) Jδξi(pi 2, pi 1)
(p0, p0)

u










∂
∂pi

δξi 1(pi 1, pi) Jδξi(pi 2, pi 1)
(p0, p0)

as θ → 0, where θ = Max{√(δp2
i-1 + δp2

i), δξi } and o(g(θ)) denotes any function f(θ) such that

(V.25)δξi 1(pi 1, pi) Jδξi(pi 2, pi 1) vδpi 1 uδpi o(θ)

f(θ)/g(θ) → 0 as θ → 0. Here J accounts for that part of the transformation when p is held constant at

p0. The terms in v and u account for that part due to two successive variations in the control parameter,
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see Figure 5.5. Numerical approximations to v and u can be determined from observations of the effects

of independent changes in the control parameters pi - 1 and pi. From (V.25) we obtain

and from these equations we shall derive the recurrence relation which constitutes the control law.

(V.26)

ξi 1(pi 1, pi) ξF(p0, p0) J ξi(pi 2, pi 1) ξF(p0, p0) vδpi 1 uδpi o(θ)

ξi 2(pi, pi 1) ξF(p0, p0) J ξi 1(pi 1, pi) ξF(p0, p0) vδpi uδpi 1 o(θ)

δξi

ξF

ξi(pi-2, pi-1)

ξi+1(pi-1, pi)

Jδξi(pi-2, pi-1)

δξi+1

δpiu
δpi-1v

Figure 5.5 The combined effects of J in combination
with δpi - 1 and δpi.

Theorem 5.3 (Dressler and Nitsche). The constraints

imply the first order control law

(V.27)f u .δξi 2 0 and δpi 1 0

where the sensitivity vectors v and u are defined in (V.24).

(V.28)δpi ≈
λ2

u f u.δξi(pi 2, pi 1)

f u.v λu f u.u

λu f u.v

f u.v λu f u.u
δpi 1

Note. The first condition of (V.27) is designed to place ξi + 2 onto a stable manifold. The second condition

is designed to prevent δp from becoming large. Taking the two previous values of δp into account should

give better control than the original OGY control law.
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Proof. From (V.23) and (V.26) we have:

Dotting the two equations in (V.29) by fu and using Lemma 1 we obtain

(V.29)
δξi 1(pi 1, pi) Jδξi(pi 2, pi 1) vδpi 1 uδpi o(θ)

δξi 2(pi, pi 1) Jδξi 1(pi 1, pi) vδpi uδpi 1 o(θ)

Using the conditions in (V.27), the second equation in (V.30) reduces to

(V.30)
f u.δξi 1(pi 1, pi) λu fu.δξi(pi 2, pi 1) fu.vδpi 1 f u.uδpi o(θ)

f u.δξi 2(pi, pi 1) λu f u.δξi 1(pi 1, pi) fu.vδpi fu.uδpi 1 o(θ)

which can be written as

(V.31)λu f u.δξi 1(pi 1, pi) f u.vδpi ≈ 0

From the first equation in (V.30), and from (V.32), we obtain

(V.32)f u.vδpi ≈ λu f u.δξi 1(pi 1, pi)

Which, upon collecting terms in δpi and δpi - 1, can be rearranged as

(V.33)f u.vδpi ≈ λu λu f u.δξi(pi 2, pi 1) f u.vδpi 1 f u.uδpi

Solving this for δpi finally yields the Dressler and Nitsche control law in (V.28).

(V.34)(f u.v λu f u.u)δpi ≈ λ2
u f u.δξi(pi 2, pi 1) λu f u.vδpi 1

Suppose the sensitivity with respect to δpi - 1 is ignored. Then, on taking v to be the null vector, (V.28)

reduces to (V.10). In this sense the Dressler and Nitsche control law is a generalisation of Theorem 5.1.

5.7 High period control strategy

In ordinary periodic systems, the number of different system behaviours is limited. On the other hand,

chaotic systems contain an infinite number of nearly regular behaviours which are quite different from

each other. Such systems offer an enormous potential if one could select a desired behaviour and persuade

the system to behave as desired. As discussed in section 4.7, an unstable periodic orbit of a chaotic system

can be thought as a nearly regular system behaviour.
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Both the original OGY and the Dressler and Nitsche control laws suffer when confronted with control of

unstable orbit of period more than one. Extensions to the OGY method to control unstable orbits of period

greater than 1 have been reported in [Hunt 1991], [Roy 1992], [Romeiras 1992], [Auerbach 1992], [Lai

1993].

In the original OGY and the Dressler and

ξF

(k)

≅ ξ F

(k + 1)

ξF

(3)

ξF

(4)

ξF

(2)

Xn

Xn + 1

ξF

(1)

Figure 5.6 A periodic orbit of period k on the return
map.

Nitsche control laws, control signal is applied

to the system at a kth iterate of the surface of

section for control of an unstable orbit of

period k. As k increases the number of signals

applied decreases. Since the orbit is chaotic it

diverges from the desired trajectory with time.

In k iterations the orbit may change its

behaviour so much that we often cannot

reactivate control. In an effort to overcome

this hurdle we have developed a new method

based on the OGY strategy which is similar to

the method independently reported in [Lai

1993], the high period control strategy. Here

an appropriate signal is applied to the system

at every iterate of the map independent of k.

The effect of noise is thus reduced. The conditions required for our method is same as that of the OGY

method stated at the end of section 5.3.

An unstable periodic orbit of a chaotic system can be thought as a periodic behaviour of the system for

a short time. Our control method works well with unstable orbits of any period provided that the orbit

exists within the original chaotic attractor and can be extracted accurately (refer to section 4.7.1). Let us

assume that a periodic orbit of period k, say Φ, is an approximation to an existing unstable orbit of period

k which we wish to control.

On the surface of section, Φ consists of k points. Each point is regarded as the control point at that iterate.

Let the sequence of points be denoted as ξF
(1), ξF

(2), ...., ξF
(k). Starting at ξF

(1), the next iterate point

is ξF
(2), the one after is ξF

(3) and so on. When ξF
(k) is reached, the next control point returns back to

ξF
(1). Such a periodic orbit is illustrated in Figure 5.6.

We seek to derive a general control law for any k. Given a point ξi near ξF
(n) we wish to force the next
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iterate point ξi + 1 to be near ξF
(n + 1), where n ≤ k, n ∈ . When n + 1 > k, we replace (n + 1) with 1.

The method requires k sets of the transformation matrix A(n) which translates (ξi - ξF
(n)) to

(ξi + 1 - ξF
(n + 1)) and the sensitivity vector s(n). The matrix A(n) is described by the dE x dE transformation

matrix and s(n) as a dE-dimensional vector, where dE is the dimension of the embedding space vectors.

We assume det A(n) 0. The linear relation of a map ξi + 1 = F(ξi, p) is illustrated in Figure 5.7 (a) and

the effect of the sensitivity vector in Figure 5.7 (b). In the diagrams ξ´i + 1 are the images of next iterate

point relative to ξF
(n).

This yields the first order approximation

where for ξi near ξF
(n), the sensitivity vector s(n) is defined as

(V.35)ξi 1(pi) ξ(n 1)
F (p0) ≈ A (n)(ξi(pi 1) ξ(n)

F (p0)) s (n)δpi

Suppose that an unstable direction (an eigenvector) of A(n), say eu
(n), has a real length (an eigenvalue),

(V.36)s (n) lim
p → p0

(ξi 1(p ) ξ(n 1)
F (p0)) A (n)(ξi(p0) ξ(n)

F (p0))

p p0

ξ‘i + 1(p0)

ξ‘i + 1(p0)

ξ‘i + 1(p’)

A(n) (ξ i - ξF

(n))

(b) The effect of the sensitivity vector s.(a) The linear relation.

A(n) (ξ i - ξF

(n))

(ξ i - ξF

(n))
ξ i

ξF

(n)

(ξF

(n + 1) - ξF

(n))

A(n) (ξ i - ξF

(n) )(ξ i + 1 - ξF

(n + 1)) ≅

ξF

(n + 1)
A(n) (ξ i - ξF

(n)) + δps(n)ξ i + 1(p0)

(ξ i - ξF

(n))
ξ i

δps(n)

ξF

(n)

Figure 5.7 The transformation matrix and the sensitivity vector.

say λu
(n), whose absolute value is greater than 1 as in sections 5.3 and 5.6. This means that a point ξi

which lies in the direction of eu
(n) will be such that on the next iteration ξi+1 will lie further away from

ξF
(n + 1). As with the OGY method, the idea of our method is to choose δpi to eliminate the component

of (ξi + 1 - ξF
(n + 1)) in the unstable direction. This yields a constraint fu

(n).(ξi + 1 - ξF
(n + 1)) = 0, where

fu
(n) is the dual basis vector of eu

(n).
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Theorem 5.4 (High period control). The constraint fu
(n).(ξi + 1 - ξF

(n + 1)) = 0 leads to the first order

control law:

Proof. Dotting (V.35) with fu
(n) and using the constraint fu

(n).(ξi + 1 - ξF
(n + 1)) = 0 and Lemma 1 we

(V.37)δpi ≈ λ(n)
u

f
(n)
u .(ξi(pi 1) ξ(n)

F (p0))

f
(n)
u .s (n)

have

which on solving for δpi yields (V.37).

(V.38)λ(n)
u f

(n)
u .(ξi(pi 1) ξ(n)

F (p0)) f
(n)
u .s (n)δpi ≈ 0

We observe that the original OGY control law is a subset of ours. For k = 1, there is only one control

point ξF, where ξF
(n ) and ξF

(n + 1) are the same. Starting the control at ξF
(n ) where n = 1 the next control

point is at ξF
(n + 1), however n + 1 > k so n is set back to 1, i.e. ξF = ξF

(n ) = ξF
(n + 1). Consequently

there is only one transformation matrix A which is equivalent to J and the sensitivity vector s is equivalent

to u. As the result the control law becomes same as (V.10).

During the learning phase of our method, the experimental time series of some scalar variable is used first

to create a set of embedding space vectors to reconstruct the attractor. Using the embedding space vectors,

a number of unstable periodic orbits of sufficiently high period are extracted. We then select an unstable

periodic orbit Φ which is similar to the desired system behaviour. Such orbit of order k consists of a

sequence of k control points on the return map. For each of k control point, we observe the difference

between (ξi - ξF
(n)) and (ξi + 1 - ξF

(n + 1)) for a sufficient number of (ξi , ξi + 1) where |ξi - ξF
(n)| < ε and

estimate the transformation matrix A(n) as in (V.35) by the least squares fit method. The sensitivity vector

is s(n) is then estimated by the least squares fit method again by fitting s(n) as in (V.36) for a number of

different p´ for pMAX > p´ > pMIN.

In practice, it is difficult to extract a true set of control points. It is therefore also difficult to approximate

A(n) accurately. In some situations we may not be able to estimate the matrices which have both unstable

and stable eigenvectors. In such cases, we do not attempt control for those successive pairs of control

points, i.e. the control for the interval between ξF
(n) and ξF

(n + 1). There are two ways to increase the

accuracy of the transformation matrices. The first is to estimate the unstable periodic orbit more accurately

(refer to section 4.7). The second is to increase the number of embedding space vectors and reduce the
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distance used in the least squares fit method during the estimation of the matrices.

During the control phase, we wait until ξi is near one of the control points of Φ. When applying the

control formula (V.37), pi must satisfy pMAX > pi > pMIN. If the condition is not satisfied pi is set to be

p0. The control parameter is replaced by pi to force ξi + 1 to be close to the next control point. As with

the original OGY method, the time before realisation of the control increases as the maximum allowed

perturbation approaches zero.

A drawback of the method is the necessity to estimate k sets of the transformation matrices and the

sensitivity vectors for control of an unstable orbit of period k. The estimations are a time consuming part

of the learning phase, especially when the set of embedding space vectors is large or the distance used

for the least squares fit method small. Another drawback of the method is that it is sensitive to the

estimation of the set of control points. When the extraction of Φ is poor, the estimation of the matrices

and the vectors suffers and the method may not work.

The obvious advantage of our method is the ability to control much higher unstable periodic orbits under

the same condition as the OGY method. There is no theoretical limit to the order of the periodicity of the

unstable orbit. Using a variation of the Hénon map, we have successfully controlled 205 orbits of periods

up to fifty. In contrast, we were only able to control a period one and a period two orbits using either the

OGY or the Dressler and Nitsche control methods. The experiments are reported in chapter VI.

A significant difference between our approach compared to that of [Lai 1993] is that, they have estimated

the unstable and stable directions (they have used a two dimensional chaotic Hamiltonian system) by

applying the Poincaré mapping forward for the stable direction and backward for the unstable directions

a number of times. For more detail refer to [Lai 1993], [Shinbrot 1993]. They have devised this method

as most of the eigenvectors were found to be complex.

Another approach to estimate the stable and unstable directions when the eigenvectors are complex is to

use the singular value decomposition. When a dE by dE matrix is applied to a dE-dimensional sphere, the

transformation yields a dE-dimensional ellipsoid. The singular value decomposition estimates the direction

vectors and the lengths of the principal axes of the ellipsoid. Comparisons of the control method using

the principal axes and the eigenvectors are reported in chapter VI for an iterative map (dissipative system).

5.8 Chapter summary

In this chapter we have introduced a number of ways in which a chaotic system may be controlled. The
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simplest method was to study the bifurcation diagram of the system to be controlled and select the control

parameter value which would give desired system behaviour. Another was to add a supplementary

dynamic system to the system to be controlled in order to create stable orbits within the existing chaotic

attractor.

Both of the above mentioned control methods are far from ideal, as a full mathematical description is not

always available. The OGY method was introduced as a better control technique which overcomes many

of the problems inherent in the previous control strategies.

The OGY strategy inspired many practitioners in the field. The method and its variants were used to

control many physical chaotic systems. The original OGY method had a number of disadvantages and

many of these were rectified by the researchers.

The Dressler and Nitsche control law was described in detail, since this is a significant improvement upon

the original OGY method. Their method utilises the previous value of the control parameter. Detailed

proofs were given for both the OGY and the Dressler and Nitsche methods.

One of the major disadvantage of the OGY and the Dressler and Nitsche methods is the poor performance

when confronted with control of unstable orbits of high periods. In an attempt to overcome this problem

we have presented our method, the high period control strategy. This is an extension of the OGY method

and works under the same condition. A very similar approach has been reported in [Lai 1993]. The

difference lies in the way to estimate the stable and unstable direction near the control points.
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CHAPTER VI

CONTROL EXPERIMENTS

6.1 Introduction

In this chapter, results of the OGY control method [Ott 1990] on two chaotic systems described in chapter

III are presented. The systems controlled were a Hénon [Hénon 1976] like iterated map and the Duffing

oscillator [Parlitz 1985]. The first of these systems is a discrete and the other a continuous time system.

The aims of these experiments were to put the OGY theory into practice, to examine how well the method

works with noise and inaccurate measurements of parameters required for the control, the sensitivity to

use of alternative control parameters and the performance of higher periodic control.

The high period control strategy introduced in section 5.7 was also tested along with the Lai et al. method

[Lai 1993] by using the iterated map. Unstable orbits of periods up to fifty were located and used as the

control points.

6.2 Control experiment : A variation of the Hénon Map

The Hénon-like function is defined as

This map is identical to the Hénon map equations in (III.4)

(VI.1)
Xn 1 a bYn X

2
n

Yn 1 Xn

Time

X

20 40 60 80

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.1 Uncontrolled time series

page 39, except for the position of the control parameter a.

The dynamics are also very similar to the Hénon map, but

the attractor is not stretched horizontally (as the return map

was created by using only the values of the X-coordinate).

This iterated map was chosen as it has been controlled by

the OGY method [Ott 1990] and we wished to replicate their

result.
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The map was iterated 10,000 times to obtain a time series, with a = 1.4, b = 0.3, X0 = 1.4 and Y0 = 0. As

this is a discrete time system, we did not need to choose delay and jump times. A part of the time series

of the X-coordinate is illustrated in Figure 6.1.

From the time series, a return map of Xn versus Xn - 1 was plotted. A fixed point ξF at (0.883, 0.883) was

then located by noting points on the diagonal line in the return map are saddle points. This is illustrated

in Figure 6.2. The fixed point was then chosen as the control point.

The local dynamics of the control point as described by the

Xn-2 -1 1 2

-2

-1

1

2

Xn - 1

Figure 6.2 The return map plot with the
diagonal line.

Jacobian matrix can then be directly calculated from the

known dynamics. Using (VI.1) and the definition of the

Jacobian matrix, the matrix can be written as

This matrix has eigenvalues of -1.923 and 0.156 and the

(VI.2)J










2XF b

1 0











1.766 0.300

1.000 0.000

corresponding eigenvectors are [-0.887, 0.461] and

[-0.154, -0.988].

Knowing an exact form for the Jacobian matrix we can then

examine the efficiency of the least squares fit method, using the time series data. A total of 712 point pairs

nearby the control point were collected and used to estimate the matrix. The point pairs were grouped into

stable and unstable pairs by noting that a pair with the first data point closer to the control point than the

second one must be an unstable pair, otherwise the pair is a stable pair. The number of stable pairs found

was 562 and the unstable pairs was 150. The matrix obtained was

As can be seen, this matrix is a good approximation to the true Jacobian. The unstable/stable manifolds

(VI.3)










1.633 0.277

1.000 0.000

and the associated divergence/convergence rates were calculated from the matrix. They were found to be

eu = [-0.873, 0.488], es = [-0.153, -0.988], λu = -1.788 and λs = 0.155.

The sensitivity vector u was estimated by starting the system sufficiently close to the fixed point and then

the control parameter, p, was changed from p0 to the maximum allowed value pMAX, where p0 = 1.4 and

pMAX =1.428. The vector was estimated to be the difference between the starting and the next data points
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as in (V.11) page 82. Using this method we estimated u to be [1.011, 0.009]. Using the relation between

u and g as in (V.19) page 88, we have estimated g to be [0.411, 0.420].We recommend the use of the

vector u instead of g as it is much easier to estimate from the experimental time series.

The OGY control law in (V.10) page 82, was then used to control the system whenever

pMIN ≤ pi ≤ pMAX, otherwise pi was set to be p0.

We decided to perform two sets of experiments. The first set was to replicate the results achieved by OGY

[Ott 1990]. The second set was to attempt to control the system with a higher periodic behaviour and

switch between different control points.

The aims of the first set of experiments were as follows.

• To stabilise an unstable orbit of period one of a two-dimensional chaotic iterative map using

the return map.

• To control the system with added noise.

• To study the effect of using different parameter as the control parameter. In the Hénon map like

equations there are two possible parameters, a and b. The aim was to control the system by using

either a or b.

First, the chaotic map was controlled without noise. This was performed to study the efficiency of the

(b) Changes in the control parameter a.

Control Parameter

140120100

1.5

Time
140120100

0

-1.5

80

X

1.38

1.40

(a) Controlled time series without noise.

Time

1.42

Figure 6.3 Control of the map using a as the control parameter (without noise).

OGY method using the approximation matrix and to examine any differences which may exist in using

alternative parameters for control. We have first chosen to use a as the control parameter with

pMAX = 1.428, pMIN = 1.372 and p0 = 1.4. In Figure 6.3 (a), the time series controlled using a is

illustrated. The changes in a after the control began are illustrated in Figure 6.3 (b).

In the second experiment, illustrated in Figure 6.4, noise of up to 0.013 was added to both training and

control data. The system was stabilised without any problem, although it took longer for the data point

101



Research Report - Version 15 February 2002

to fall into the region where the control could be achieved. This is not surprising as the dynamics of the

Time

X

360 400380360 400

(b) Changes in the control parameter a.

Control Parameter
1.5

380
0

-1.5

Time

1.38

1.40

(a) Controlled time series with noise for all data.

1.42

Figure 6.4 Control of the map using a as the control parameter (with noise for whole data).

learned and controlled systems are the same.

In the third experiment, illustrated in Figure 6.5, the same amount of noise was added to the control data

20 70908070 Time

X

60

(b) Changes in the control parameter a.

Control Parameter
1.5

0

-1.5

Time

1.38

1.40

(a) Controlled time series with noise for control data
only: enlarged between 50 and 100.

1.42

Figure 6.5 Control of the map using a as the control parameter (with noise for control data only).

only. Figure 6.5 (a) illustrates in close detail that part of the time series where control was achieved and

then lost. The initial conditions were chosen to be the fixed point at (0.883, 0.833). The system was

initially stabilised but control was lost after some iterations. This was expected as due to the added noise,

the learned system was slightly different from the system to be controlled. Many adjustments to the control

parameter were required in order to keep the system in the desired region.

Next b was used as the control parameter, with pMAX = 0.306, pMIN = 0.294 and p0 = 0.3. A new

sensitivity vector u was estimated with respect to small changes in b.

In Figure 6.5 (a), the time series controlled using b is illustrated. The changes in b after the control began

are illustrated in (b). It is interesting to note that quicker stabilisation was achieved using a as the control

parameter. Stabilisation was achieved at around t = 100. Using b it was not until t = 1040. Also fewer
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parameter adjustments were required when using a. The initial condition used for all experiments except

the third one was (1.4, 0).

In the second set of experiments, the aim was to control unstable orbits of periods more than one.

1040 1060 1080 1100 1040 1060 1080 Time

X

1100

(b) Changes in the control parameter b.

Control Parameter1.5

0

-1.5

Time

0.294

0.300

(a) Controlled time series without noise.

0.306

Figure 6.6 Control of the map using b as the control parameter (without noise).

Therefore a number of new unstable periodic points were located from the time series. Using the data set

and the techniques described in section 4.7.1, we were able to extract 111 unstable periodic points but only

36 of them were found to be useful. i.e. a reasonable Jacobian matrix could be estimated with stable and

unstable manifolds. However, we were successful in controlling the map with only one of the unstable

periodic point of period two. The next lowest period which could be located was four. This control point

was found to be too difficult for the OGY method.

The period two control point was located at (-0.662, 1.363) and the matrix was approximated by collecting

-1.5

-0.5

(a) Controlled time series of period two.

Time50 100 150 200

(b) Changes in the control parameter a.

-1

0.5

1

1.5

X

25 50 75 100 125 150 175 Time

Control Parameter

1.38

1.39

1.41

1.42

Figure 6.7 Control of the map for period two and one orbits using a as the control parameter.

the local pair points which were separated in time by two, as described in section 4.7.2. The number of

stable pairs was 290 and there were 198 unstable pairs. The parameters estimated from the matrix were

λu = -3.179, λs = -0.043, eu = [-0.931, 0.364] and es = [0.268, -0.963]. The sensitivity vector u was

estimated as [-2.346, 1.291]. The control parameter used was a as before with pMAX = 1.428,

pMIN = 1.372 and p0 = 1.4. The starting condition was (1.4, 0).
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The control method was same as before except that the perturbations were applied to the system every

two iterations rather than one. The results of two period control are illustrated in Figure 6.7. The Dressler

and Nitsche control [Dressler 1992], described in section 5.5, using the two sensitivity vectors v and u was

used to attempt to control unstable orbits of periods higher than two, but similarly was unsuccessful in

effecting control. Again the highest period controlled was two.

Next we attempted to switch between the two control points using the same control parameter. The first

control point chosen was the period two point, with the starting condition the same as before.

Control was achieved at t ≈ 150 as before. The control point was then switched to the period one point,

-1

-1.5

-0.5

(a) Controlled time series of period two then one.

Time

(b) Changes in the control parameter a.

1

0.5

1.5

X

Time

Control Parameter

1.38

1.39

1.41

1.42

100 200 300 400 500100 200 300 400 500 600

Figure 6.8 Controlled time series of periods two and one.

i.e. the control point of the first sets of experiments, at t = 250. The new control was achieved at t ≈ 345,

roughly 135 iterations after initiation. Control was released again at t = 450, and the map behaved

chaotically in absence of the control. The results are illustrated in Figure 6.8. The same range of control

parameter a was used to switch between the control points.

Through the experiments, we have seen that the OGY and the Dressler and Nitsche methods could only

control unstable orbits of periods up to two. We next tested the high period control strategy presented in

section 5.8 to control unstable orbits of periods up to 50.

Before controlling the system, it was necessary to locate unstable periodic orbits of the system. The

techniques used were as discussed in section 4.7.1 with the maximum period set to 50. We extracted 237

unstable periodic orbits, excluding cyclic permutations and repetitions of lower orbits, from a time series

of the iterated map of length 5,000 with r1 = 0.025 and r2 = 0.05. The number and accuracy of the orbits

can be increased by using more data points with smaller r1 and r2. We opted to use only 5,000 data points

with relatively large r1 and r2 so as to simulate a situation where a rapid achievement of control is

required.
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[Auerbach 1987] reports using 100,000 data points with r1 of 10-5 and r2 of 10-4, 278 unstable orbits of

periods up to ten were located in the map. We have extracted 20 such orbits from the much shorter data

set (only 5% in length) with much larger r1 and r2. Both data sets were obtained using a = 1.4 and

b = 0.3. The comparison is presented in Table 6.1.

Table 6.1 Number of unstable periodic orbits of orders up to 10 which were extracted.

Period Number of orbits extracted
[Auerbach 1987]

100,000 data points

Number of orbits extracted
(Our result)

5,000 data points

1 1 1

2 3 1

3 1 0

4 7 1

5 1 0

6 15 1

7 29 4

8 63 4

9 55 2

10 103 6

Total 278 20

For each unstable orbit of period k, we have estimated a set of k transformation matrices A as described

in section 5.8. Here 2,500 data points were used to estimate the matrices by the least squares fit method

with the maximum distance of 0.25 to collect pairs of data points which fall close to the two successive

control points. The sensitivity vectors s were estimated, using the least squares fit method, as in (V.36)

page 93 using a sufficient number of varying p for pMAX < p < pMIN, where pMAX = 1.428 and

pMIN = 1.372.

Sometimes we were unable to estimate the transformation matrices which have both real unstable and

stable vectors. These occur due to inaccuracies in the unstable periodic orbits estimated, insufficient

amounts of data, or an unsuitable distance used to estimate the matrices. In such cases, we do not attempt

control for those intervals. This strategy works well if the control is applied to the orbit again before it

diverges.
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The high periodic control strategy was applied to each of 237 orbits. Using eigenvectors 205 of the orbits

were successfully controlled, using principal axes approach 155 were successfully controlled. The first

result represents over 86% of the orbits extracted. Some of the orbits were not controlled due to

inaccuracy of the set of control points extracted. The accuracy can be increased by using more data points

with smaller r1 and r2 (refer to section 4.7.1).

The five tables below summarise the number of unstable periodic orbits extracted grouped by the

periodicity and the number of orbits controlled successfully by using principal axes and eigenvectors for

the estimations of the stable and unstable directions. Whenever the number of controlled orbits differ from

the number of orbits extracted, they are highlighted.

Table 6.2 Control of unstable orbits of periods between 1 and 10.

Period Number of orbits extracted Number
successfully
controlled

Principal axes

Number
successfully
controlled

Eigenvectors

1 1 1 1

2 1 1 1

3 0 0 0

4 1 1 1

5 0 0 0

6 1 1 1

7 4 4 4

8 4 3 4

9 2 1 1

10 6 5 5

Sub-total 20 17 18

106



Chapter 6 - Experimental results

Table 6.3 Control of unstable orbits of periods between 11 and 20.

Period Number of orbits extracted Number
successfully
controlled

Principal axes

Number
successfully
controlled

Eigenvectors

11 7 7 7

12 6 4 4

13 7 2 7

14 3 2 1

15 6 4 6

16 6 5 6

17 4 4 4

18 5 4 5

19 7 5 6

20 7 5 6

Sub-total 58 42 52

Table 6.4 Control of unstable orbits of periods between 21 and 30.

Period Number of orbits extracted Number
successfully
controlled

Principal axes

Number
successfully
controlled

Eigenvectors

21 5 5 5

22 1 1 1

23 7 4 7

24 3 2 3

25 6 4 6

26 7 6 7

27 9 8 9

28 5 4 4

29 7 3 4

30 6 4 6

Sub-total 56 41 52
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Table 6.5 Control of unstable orbits of periods between 31 and 40.

Period Number of orbits extracted Number
successfully
controlled

Principal axes

Number
successfully
controlled

Eigenvectors

31 6 4 6

32 6 3 6

33 5 3 4

34 5 3 3

35 3 2 2

36 1 0 1

37 5 4 4

38 4 2 3

39 3 2 2

40 6 1 4

Sub-total 44 24 35

Table 6.6 Control of unstable orbits of periods between 41 and 50.

Period Number of orbits extracted Number
successfully
controlled

Principal axes

Number
successfully
controlled

Eigenvectors

41 5 2 5

42 9 7 9

43 4 4 4

44 4 1 4

45 8 3 5

46 6 4 5

47 5 4 5

48 5 1 2

49 5 2 5

50 8 3 4

Sub-total 59 31 48
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Two of the highest periodic orbits controlled successfully are illustrated in Figure 6.9 and Figure 6.10. The
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Figure 6.9 Control of unstable orbit of period 50, orbit 1.

diagrams include the return maps, time series and the changes in the control parameter. Both orbits belong

to the class of unstable orbits of period 50 but their behaviour is quite different.

We have observed that a periodic behaviour of period k emerges in the changes of control parameter

whenever successful control of an unstable orbit of period k is achieved. This fact may hold a significant

importance and further experiments were conducted and are discussed in section 6.4.
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Figure 6.10 Control of unstable orbit of period 50, orbit 2.
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6.3 Control experiment : The Duffing’s oscillator model

In this experiment, the OGY method was used to control the

3.6 3.8 4.2 4.4
X(n)

3.6

3.8

4.2

4.4

X(n+1)

Figure 6.11 Return map of the
oscillator model.

Duffing oscillator, described in section 3.3.4. As mentioned in the

section, the model has a forcing frequency of 2π/ω. This was used

to determine the delay and jump times. An embedding dimension

dE = 2 was chosen to create a two-dimensional stroboscopic return

map using the x-coordinate. The return map is illustrated in

Figure 6.11. The parameters used were d = 0.2, ω = 0.665 and

f = 36. Plots of the time series of the x-coordinate sampled at 2π/ω

(roughly 9.45 seconds) and 0.1 second are illustrated in Figure 6.13

and Figure 6.12, respectively.
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Figure 6.12 The time series sampled at 0.1
second.
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Figure 6.13 The time series sampled at 2π/ω.

The sensitivity vector u was estimated to be (0.281, 0.002) using

3.7851 3.7852
X(n)3.785

3.7851

3.7852

X(n+1)

Figure 6.14 The controlled map.

(V.11) on page 82. The control point was chosen by finding a point

(3.785, 3.785) on the line of identity which is an unstable periodic

point of period one, as in the previous section. Using f as p with

pMAX = 34.2, pMIN = 37.8 and p0 = 36.0, i.e. the allowed

perturbation of ±5% of the nominal value of 36.0, the model was

controlled successfully by the OGY control law in (V.10) page 82.

The initial conditions used were x0 = 4.2, y0 = 1.2 and z0 = ω/2π.
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Iterates of the map near the control point when the control was achieved are shown in Figure 6.14. In the

diagram, the points seem to be sparse, but they are actually very close to each other as the global range

of the section is roughly between 3.45 and 4.55.

5 10 15 20 25 30
n

34.5

35

35.5

36

36.5

37

37.5

f

Figure 6.15 Changes in the control parameter.
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Figure 6.16 Difference between the controlled
and uncontrolled time series sampled at 2π/ω.

The control of the model was achieved within 20 iterations (roughly 190 seconds) of the return map. The

changes in p are in Figure 6.15. The controlled time series (in black) sampled at 2π/ω intervals is

superimposed on the uncontrolled one (in grey) in Figure 6.16.

Let us finally look at the controlled time series
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Figure 6.17 The controlled time series sampled
at 0.1 second.

sampled at 0.1 second. In Figure 6.17, the same

oscillation is repeated every 2π/ω. The trend

continued until control was stopped. Each oscillation

is equivalent to an iterate of the return map.

Although the graphical results are not presented, the

model was successfully controlled by using d with the

allowed perturbation of ±5% of the nominal value of

0.2. However, the number of iterations required

before the realisation of control was around 85.

Using ω as the control parameter with the allowed

perturbation of ±5% of the nominal value of 0.665,
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the model was stabilised at a different point, (0.728, 0.728), in the return map which was not visited by

the original model. This is because the model is extremely sensitive to small changes in ω. As such we

could not achieve the desired behaviour by using ω. Initial conditions used were the same for all

experiments.

The fact that this chaotic oscillator could not be controlled using small variations in the forcing frequency

is disappointing in the context of the analogy with neural systems. However, at this stage the analogy is

very crude and we note that many other chaotic oscillator have been controlled using small variations in

the forcing frequency.

6.4 Investigation : Periodic forcing to gain control

In controlling an unstable orbit of period k, we have noticed that changes required in the control parameter

is also periodic with period k. When a point in the surface of section comes close to one of the control

point the control signal applied to the system forces the next point to be close to the next control point.

To control an unstable orbit of period k requires k changes in the control signal before the point comes

back to near the first control point. This set of changes in the control signal seems to repeat itself, i.e. the

subsequent sequence of control signals is very similar. This was an interesting phenomenon from at least

two stand points. The Hénon-like iterative map was used again for this set of experiments.

The first question was ‘What would happen if we pick and apply a set of k random values within the

permitted range of the changes in the control parameter, in an attempt to produce an orbit of period k?’

We generated a number of such sets of various k, 2 ≤ k ≤ 50, then proceeded to apply a set of values to

the system. The result was that we could not produce a periodic behaviour for any of the sets generated.

The second question was ‘Can we gain control of an unstable orbit of period k by applying the changes

required in the control parameter previously calculated by the high periodic control strategy?’

Surprisingly we could not gain control. Our initial speculation was that if the changes in the control

parameter is in a right phase, we might be able to gain control.

In a set of experiments we have taken a number of successfully controlled period k control signals

previously estimated by the high period control strategy. For each set of control signals we have iterated

the map for 10,000 iterations before we changed phase. Here, the phase is referred to as a shift in timing

of applying each control signal by one. Suppose for a control signal set of period k, p1, p2, ... pk,

application of signals p1, p2, ... pk to the system is different in phase by one to application of signals pk,

p1, ... pk - 1. The process was repeated for all possible phasing. We could not gain control using any of
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the control signal sets.

Our assumption was that the periodic changes in the control signals were same during the whole duration

of the control. However, close examinations revealed that the initial set of changes in the control

parameter were not the same (though similar) as the set of changes later. Once the orbit is completely

controlled, the changes in the control signal became same, but until complete control was gained the

changes were slightly different from the subsequent sets. It seems that the combination of initial set of

control perturbations and subsequent periodic perturbations play a key role in controlling the system.

Therefore it may not be possible to control a chaotic system with a simple periodic forcing in one of the

accessible control parameters.

6.5 Conclusion

In this chapter we have demonstrated the OGY based control method by using two chaotic systems. The

first model used for control was a variation of the Hénon map and the second model was the Duffing

oscillator.

The first model was easier to control than the second as it is a discrete time system. As such, we did not

need to estimate the delay or the jump time usually required by the delay coordinates method. We have

also successfully controlled a period one control point using the original control law (V.15) proposed in

[Ott 1990] by estimating the g vector. The result obtained was same as the result presented.

The second model could have been controlled by using all of the three dynamic variable x, y and z (refer

to section 3.3.4 for detail) but we have chosen to use only the x-coordinate values sampled at every 2π/ω

to implement the delay coordinates method. As the model has the periodic oscillation in units of 2π/ω,

the delay and the jump times were chosen as 2π/ω. The embedding dimension of 2 was used to construct

the return map.

We have tested the method by finding an approximation to the Jacobian matrices using the least squares

fit method as described in section 4.7.

The aims of the experiments were as follows.

• To put the OGY theory into practice.

• To examine how well the method works with noise and inaccurate measurements of parameters

required for the control.
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• To study the effect of using different parameter as the control parameter.

• To study the performance of control in high unstable periodic orbits.

The OGY method works well with chaotic systems with an accessible control parameter which can be

modelled by a set of two dimensional vectors. For systems which require higher dimensional vectors, the

presented theory does not perform well due to the increased number of the manifolds. The method

controlled the two models by using different control parameters. However, it seems that some control

parameters are more suited for the control since the time delay before the realisation of control were quite

different for exactly the same initial conditions.

Perhaps the major drawback of the OGY method is the inability to control orbits with high periods. This

is because the nature of chaotic systems is such that, left alone, two nearby trajectories diverge with time.

Since for control points of period k the method does not apply a control for k iterations of the surface of

section, the butterfly effect becomes more apparent as k increases. As a result we were unable to control

the first model for periods higher than two by either the OGY or the Dressler and Nitsche control

methods.

However, the high period control strategy developed in section 5.7 was successful in controlling unstable

orbits of periods up to fifty for the first model (the iterative map). Out of 237 such orbits located, 205 of

them were controlled using the eigenvectors of the transformation matrices. The use of principal axes

instead of the eigenvectors was also examined but its performance was significantly poorer. This indicates

that the principal axes method may be more sensitive to the accuracy of the orbits extracted and of the

transformation matrices describing the orbits behaviours, alternatively they do not represent the stable and

unstable directions as accurately.

The price we pay for the high period control method is that the number of parameters required increases

with the period of the orbit. We feel this is a small price to pay, as the ability to achieve a variety of

behaviours from the model, within a small range of the control parameter, far exceeds the initial

computation required. In our experiments the maximum period was chosen to be fifty but there is no

theoretical reason not to choose a higher period. Control of unstable orbits of periods of several thousand

should be possible provided that such high unstable periodic orbits exist and can be extracted accurately.
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CHAPTER VII

FUTURE RESEARCH

7.1 Introduction

It has been proposed by W. J. Freeman [Freeman 1991] that some functional units of biological brains
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Figure 7.1 Proposed computer simulator model.

in mammals are usually in a chaotic mode at rest. He suggests that when a memory is recalled, the activity

within the brain orbits a memory-characteristic

attractor. More specifically he has observed

that in the olfactory bulb of rabbits, an act of

perception-recognition consists of an explosive

leap from a chaotic to a stable attractor. He

postulates that the olfactory bulb and cortex

maintain many stable attractors, one for each

distinguishable scent. When a new scent is

presented an explosive leap still occurs but the

state settles down to a new attractor. He also

reports that recognition of visual images may

derive from a similar mechanism. As a result

he has concluded that the control of chaotic

states in the brain could be a significant property that makes the brain different from other, more

conventional, artificial intelligence paradigms.

This is an interesting observation, particularly because it raises the questions of the precise mechanism

which enables the brain to switch from one unstable mode to another. In [Freeman 1991], Freeman does

not propose a mechanism, he merely observes that the brain exhibits such behaviour.

7.2 Alternatives to OGY

Since the original OGY method was developed there have been a number of different alternative methods

proposed. It is by no means clear which of these methods might be best suited to applications in neural

networks. The general problem of controlling high dimensional systems about unstable high period

behaviours will certainly require much further research. However, we have one proposal which we plan
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to explore.

The Otani-Jones control law.

One of the principal disadvantages of the OGY control law is the requirement to estimate the Jacobian

J. Such estimates can be both time consuming and inaccurate. Inaccuracies in estimating J are reflected

in several facets of the control computation. First the d x d Jacobian J is used to estimate δξi+1, i.e. the

state of the system at the next iteration if no variation of the control parameter(s) are effected. Second,

the estimate of the Jacobian is used to derive the unstable manifold vector fu and the associated

eigenvector λu as both these quantities are required in computing δp = p - p0. Finally, the effect of

iteration without control δξi+1 = Jδξi has to be subtracted from the effect with control in order to estimate

the sensitivity vector(s). Thus the cummulative consequences of errors in J can have a significant impact

on the effectiveness of the OGY control law.

The Otani-Jones control law attempts to overcome some of these shortcomings. In many situations it is

possible to create an effective short term (fast) predicting function ξi+1 = P(ξi) for the system which is

accurate over the whole (or a large part) of the phase space. For example, if we were seeking to control

an iterated feedforward neural network there would be very little point in attempting to approximate the

Jacobian about a particular fixed point, since the neural network can be iterated without control to give

an exact prediction of the next system state very rapidly (the network is its own Jacobian at every point

of state space). For other smooth dynamic systems it has been shown, see for example [Dracopoulos 1993]

that a feedforward neural network trained on a single trajectory of the system can form an accurate short

term predictor capable of generalising to other trajectories of the system.

In situations where such a short term predictor function P is available the Otani-Jones method can be

employed to effect control and it does not require the computation of either fu or λu, although it is still

necessary to estimate the sensitivity vectors.

The method proceeds as follows. We assume an accurate short term predictor function ξi+1 = P(ξi) is

available. Suppose that control parameter(s) p = (p1, ..., pl) are available, with nominal value p0 and that

it is required to control the system about a fixed point ξF. We can describe the situation by the equation

where s1, ..., sl are the sensitivity vectors with respect to each control parameter.

(VII.1)δξi 1(p) P ξi(p0) ξF δp1s1 ... δplsl
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We first estimate s1, ..., sl by collecting statistics from observations of the system state near ξF under small

parameter variations. Since P is known, if sufficient observations are available, s1, ..., sl can be estimated

from (VII.1) using a least squares fit method, or equivalently a fast pseudo-inverse algorithm. We assume

that the choice of control parameters is such that s1, ..., sl are linearly independent, since there would seem

to be no advantage in having a linearly dependent set of sensitivity vectors.

Once s1, ..., sl are known, for any point ξi near ξF the control law then chooses p = (p1, ..., pl) so as to

minimise the squared Euclidean distance

i.e. we choose p so as to minimise

(VII.2)ξi 1(p) ξF(p0) 2

(VII.3)P ξi(p0) ξF(p0) δp1s1 ... δplsl
2

Let S be the matrix whose column vectors are s1, ..., sl the the solution to this minimisation problem is

given by

where S-1 is the inverse matrix of S if l = d and the pseudo-inverse otherwise.

(VII.4)δp S 1 P ξi(p0) ξF(p0)

The underlying philosophy of the OGY method is rather subtle, the idea is to attempt to nudge the next

system iteration back onto the stable manifold. In contrast the Otani-Jones method is brutally direct; it

seeks only to minimise the distance of the next iteration from the target unstable fixed point, and therefore

we can expect to have to apply the control perturbation at every step.

How practical is the pseudo-inverse calculation in real time at every step? The systems being controlled

are likely to have lwo dimensional embeddings and so computing the pseudo-inverse in customised

hardware or on a fast PC is quite feasible, provided the time interval is not exceedingly small. For high

dimensional embeddings completing the computation within the available time frame becomes more

conjectural. However, for high dimensional embeddings the OGY method is also very likely to fail since

there may well be many unstable directions.

Thus in low dimensional embedding space (e.g. d = 2 or 3) we might expect the OGY method to be more

robust than the method proposed here, but in higher dimensional embedding space (e.g. d = 6 or 7) there
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is a possibility that for systems where it is applicable the Otani-Jones method may be more effective.

7.2 Future research

Freeman’s notion is a plausible one both intuitively and biologically. We hope to pursue the idea one step

further by implementing a computer simulation model. The immediate future plan is to make use of a

chaotic artificial neural network and to control it’s behaviour by a strategy based on the OGY method [Ott

1990]. Thereby investigating one possible mechanism by which biological brain may effect such control.

It seems unlikely that mechanisms precisely analogous to the OGY method are the means by which

biological brains exhibit such behaviour. However, apart from possible practical applications (such as

increased memory capacity for certain types of artificial neural circuitry) the ability to control the

dynamics of a high dimensional neural circuit is likely to increase our understanding of many similar

biological phenomena.

The proposed simulator is illustrated in Figure 7.1. The chaotic controller is an implementation of a

variation of the OGY method. The chaotic Neural Network produces the output as a function of time, and

its behaviour is chaotic when running freely. We assume that the network will be of a recurrent type and

has at least one system wide control parameter which can be altered readily. The input to the simulator

could be a noun such as a ‘banana’ or an ‘orange’. The output is the stable attractor corresponding to the

input.

The model should work as follows. Given an input such as a ‘banana’ the control point corresponding to

the attractor, an unstable periodic orbit in this case, is selected and the chaotic controller calculates the

perturbations required to force the output of the chaotic neural network to stay in a stable orbit. The output

of the model will be the stable attractor corresponding to the input. After a while the controller suspends

the control and the output will be the chaotic attractor. If and when another input is presented, say

‘orange’, the controller forces the output of the chaotic neural network to be in a different stable attractor

which corresponds to ‘orange’, in the same manner as before.

A biological brain has an enormous memory capacity when compared to a computer system and operates

with very slow individual components, yet recall time for a fuzzy piece of memory is marginally quicker

than that of any so called artificial intelligence computer systems. Here, a fuzzy piece of memory means

a memory which cannot be described precisely, such as a human face or smell of a perfume. Does chaos

play a role in this perception-recognition? If so precisely how is this done?

Freeman’s observations imply that the brain has an enormous number of attractors. Do all of them exists
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within a larger chaotic attractor? If so, the memory capacity may depend upon the complexity of the

chaotic attractor, rather than just the number of neurons. We seek to create an artificial neural network,

made up of a small number of neurons, which produces a complex chaotic attractor in which the number

of unstable periodic orbits exceeds the number of patterns which can normally be stored by such a

network using more conventional approaches using similar networks, e..g. the Hopfield model [Hopfield

1982].

One possible approach to creating a chaotic neural network is to train a feed-forward neural network on

data generated by a chaotic system such as the Lorenz model, described in section 3.3.1. After the training

phase, the output of the trained network is fed back to itself as input. Another possible approach is to

create a neural network which intrinsically displays chaotic behaviour. For example, a variation of the

Hoppensteadt’s voltage controlled oscillator neuron model [Hoppensteadt 1989] could be used.

We are hoping to perform the control of chaotic systems via a neural network so that given an input, the

neural network calculates the required change in the control parameter to stabilise the system.

The ultimate aim is to implement a simulated neural model with the chaos controller itself consisting of

a neural network, so that the whole simulation model is created by a collection of artificial neurons.
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