
Chapter 4

Sturm-Liouville Theory and Examples

4.1 Introduction

We deal here with a class of problems that occur over and over in the solution

of linear boundary value problems. The theory will be introduced followed by

some examples. The primary equation is

− d

dx

(
q(x)

d

dx
φn(x)

)
= λnρ(x)φn(x) (4.1)

where a ≤ x ≤ b, q, ρreal,≥ 0. The boundary conditions are homogeneous:

φ′n(a) = caφn(a) (4.2)

φ′n(b) = cbφn(b) (4.3)

1
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and the coefficients, ca, cb are given constants. A useful short hand notation is

(f, g) ≡
∫ b

a

f ∗(x)g(x) dx (4.4)

which is called the inner product. It is clear that (f, g)∗ = (g, f ).

4.2 Reality of Eigenvalues, Orthogonality

First write the opening equation with n and then again with the index m:

− d

dx

(
q
d

dx
φn

)
= λnρφn (4.5)

− d

dx

(
q
d

dx
φm

)
= λmρφm (4.6)

Now multiply the first of these equations through by φ∗m and integrate from a

to b, then do the corresponding thing to the second equation:∫ b

a

−φm
d

dx

(
q
d

dx
φn

)
dx = λn(φm, ρφn) (4.7)

∫ b

a

−φn
d

dx

(
q
d

dx
φm

)
dx = λm(φn, ρφm) (4.8)
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Next we integrate each of the integrals by parts.

−φ∗mqφ′n|ba −
∫
−φ′∗mqφ′n dx = λn(φm, ρφn) (4.9)

−φ∗nqφ′m|ba −
∫
−φ′∗nqφ′m dx = λm(φn, ρφm) (4.10)

The leftmost terms can be simplified with use of the boundary conditions:

−φ∗m(b)cbq(b)φn(b) + φ∗n(a)q(a)caφn(a) + (φ′m, qφ
′
n) = · · · (4.11)

and

−φ∗n(b)cbq(b)φm(b) + φ∗m(a)q(a)caφm(a) + (φ′n, qφ
′
m) = · · · (4.12)

We want to prove two important results. The first is to show that the λn are

real. It goes as follows. Let n = m and subtract the complex conjugate of the

second from the first of the pair of equations. The result is

(λn − λ∗n)(φn, ρφn) = 0 (4.13)

The second factor is strictly positive so we must have λn = λ∗n.

The second result we wish to prove is that the φn are orthogonal with the

weight function ρ(x). Just let n 6= m and subtract the complex conjugate of

the second of the pair from the first:

0 + 0 + 0 = (λn − λm)(φn, qφm) = 0 (4.14)
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which is the desired result. Notice that the scale or normalization of the φn(x)

is arbitrary. We can chose it such that the functions are not just orthogonal,

but orthonormal:

(φn, ρφm) = δnm (4.15)

4.3 Expanding Functions into Infinite Series of the φn(x)

Consider next a function f (x) defined on the same interval. Let f (x) be reason-

ably well behaved (we can actually tolerate discontinuities, but not divergences

that are not integrable). We want to expand f into an infinite series of the φn:

f (x) =

∞∑
n=1

anφn(x) (4.16)

How do we compute the coefficients in the series? Simply multiply through by

ρφ∗(x) and integrate over the interval:

(ρφm, f) =

∞∑
n=1

an(ρφn) (4.17)

=
∑
n

anδnm = am (4.18)

→ am = (φm, ρf) (4.19)
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4.3.1 Positivity of Eigenvalues in Some Cases

Return to Eq. 9 and let n = m. If the boundary conditions are such that

either of the boundary terms vanishes, we have∫
|φ′n|2q dx = λn

∫
|φn|2ρ dx (4.20)

The lhs is positive and the coefficient of λn on the rhs is positive, hence we

have

λn ≥ 0 (4.21)

There are some other cases where this can happen; for example, when φ∗nqφ
′
n at

a is equal to its value at b. This latter happens for periodic boundary conditions

(e.g., on a circle).

4.3.2 Things that are so, but not proven here

It is not obvious that the functions φn are a complete set. That is they might

not be sufficient to represent all functions. A good analogy is in the case of

expanding a vector in terms of unit vectors. It may be that we have found a set

of orthonormal basis vectors, say i and j. This does not mean we can expand all

vectors in terms of these two. Some vectors extend in the k direction. It turns
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out that in the case of Sturm-Louville functions, we are safe. The functions do

span the whole space.

The eigenvalues for well behaved q and ρ are discrete if a, b are finite. They

are countably infinite, running from some finite value up to infinity. If either a

or b is infinite, the spectrum of eigenvalues might be a mixture of discrete and

continuous values. If both are infinite, the spectrum is likely to be continuous.

An example of the continuous spectrum is the Fourier Integral representation:

φ′′ω(t) = −ω2φω, −∞ ≤ t ≤ ∞ (4.22)

Then the eigenfunctions are

φω(t) =
1√
2π
eiωt (4.23)

If we want to represent a function with these eigenfunctions we must use an

integral representation rather than a sum over all eigenfunctions. For example,

to represent f (t) we would write

f (t) =
1√
2π

∫ ∞

−∞
fωφω(t) dω (4.24)

and the coefficients fω are given by the inverse Fourier Transformation

fω =
1√
2π

∫ ∞

−∞
f (t)φ∗ω(t) dt (4.25)
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4.4 The Dirac Delta Function

This thing is not a function, but for many practical purposes we can consider

it to be one. One suitable definition is

δ(x) = lim
h→0

1

h
for− 1

2h
≤ x ≤ 1

2h
; 0 otherwise (4.26)

The delta function is then a skinny box whose height is approaching a very

large number, but at the same time its width is becoming vanishingly small.

The area under the box is unity. The delta function is useful in representing

a density of a mass which is concentrated in a point at the origin. The power

of the delta function is in doing integrals over it. Consider a function that is

defined and continuous at the origin, f (x). It is easy to show that∫ b

a

f (x)δ(x) dx = f (0), a ≤ 0 ≤ b (4.27)

If the point mass is located away from the origin at say x0, we simply write

δ(x − x0). Besides the box representation there are many others that are

equivalent, such as a gaussian whose standard deviation is approaching zero.

There are a number of other useful properties such as the derivative of the delta

function: ∫ b

a

f (x)δ′(x− x0) dx = −f ′(x0) (4.28)
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This last can be proven by integrating by parts.

4.5 Examples

4.5.1 Waves on a String

We consider a string stretching from x = 0 to x = L. The vertical displacement

of the string at location x and time t is given by ψ(x, t). The string is clamped

at each end so that the boundary conditions are ψ(0, t) = ψ(L, t) = 0. The

equation of motion of the string (Newton’s Second Law) is given by:

∂2ψ

∂t2
= c2

∂2ψ

∂x2
(4.29)

where c is the speed of the waves (c2=horizontal tension/linear density). Apolo-

gies for not deriving the equation here, but there is no time. The identical

equation governs longitudinal sound waves in a cavity with walls at x = 0, L.

In that case c2 = γT/R where γ is the ratio of specific heats, T is Kelvin

temperature, and R is the gas constant for dry air.

The standard approach to this class of problems is to write the solution in

factored form:

ψ = T (t)X(x) (4.30)
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and insert it into the governing partial differential equation:

T ′′X = c2TX ′′ (4.31)

After dividing through by TX :

T ′′

T
= c2

X ′′

X
(4.32)

The left hand side is a function only of t, the rhs a function only of x, so each

must be constant, say −λ2:

T ′′ = −λ2c2T, X ′′ = −λ2X (4.33)

The solution for X is A1 sinλx + A2 cosλx. The only way this can satisfy

X(0) = 0 is for A2 = 0. Then we have:

X(x) = A1 sinλx (4.34)

But we must have X(L) = 0 as well. The only way this can be accomplished

is for λ = nπ/L where n = 1, 2, . . .. Finally, then

X(x) = An sin
nπx

L
(4.35)

and we have made note of the fact that the coefficient may depend on n. We

can now return to the equation for T (t) and construct a solution:

ψn(x, t) = sin
nπx

L

{
Bn exp

(
i
ncπt

L

)
+ Cn exp

(
−incπt

L

)}
(4.36)
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We have found a solution; in fact we have found infinitely many. How are

the coefficients Bn and Cn determined (note that the An were absorbed into

the Bn and Cn). As in all Newton Second Law problems, we have to specify the

initial position and velocity of the mass (distribution) in question: ψ(x, 0) and
∂ψ
∂t |t=0. For the string there are several interesting initial conditions to consider:

1. Plucked guitar string at x = x0. In this case the initial velocity (ψt(x, 0))

is zero and the initial profile is tent shaped: ψ(x, 0) = ψ0x/x0, for x ≤
x0, ψ0(L − x)/(L − x0) for x0 ≤ x ≤ L. ψ0 is the displacement at the

point of the pluck.

2. A piano hammer hits the string at x = x0. In this case ψ(x, 0) = 0,

ψt(x, 0) = v0δ(x− x0)

4.5.2 The Violin (Slightly Advanced)

Another amusing case is that of the violin being excited by a bow being drawn

across the string at x = x0. In this case we would add a force f (x, t) =

f0δ(x− x0)n(t). The force is applied only at x = x0, and the time dependence

is random, presumably white noise. Let’s consider this case.
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We write our forced wave equation as

∂2ψ

∂t2
= c2

∂2ψ

∂x2
+ f0δ(x− x0)n(t) (4.37)

First expand the forcing into the natural modes of the unforced string:

f (x, t) = f0

∞∑
m=−∞,n=1

An,m sin
nπx

L
sin

nπx0

L
exp iωmt (4.38)

The ωm are a set of discrete (angular) frequencies running from very large neg-

ative to very large positive; their connection to real frequencies is ωn = πn/T

where T is the length of the (long!) time interval. The lowest (magnitude

of) frequency is ω1 = π/T . The coefficients An are random numbers, nor-

mally distributed, with mean zero, and variance constant (independent of n for

white noise forcing and proportional to the noise amplitude squared). An is

statistically uncorrelated with Am, n 6= m.

Before getting to the violin consider the forcing to be simply

F (x, t) = Fn,ω sin
nπx

L
exp iωt (4.39)

Next take ψ(x, t) to be

ψ(x, t) = ψn,ω(x, t) sin
nπx

L
exp iωt (4.40)
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Insert this in the forced wave equation and get

−
{
ω2 − c2

(nπ
L

)2
}
ψn,ω = Fn,ω (4.41)

The response of this mode is

ψn,ω =
Fn,ω{

c2
(
nπ
L

)2 − ω2
} (4.42)

This leads to a finite response unless ω, the driving frequency, is equal to one

of the natural frequencies of the string, in this case mode n. Notice that if

the forcing is only of the shape of mode n , then only mode n will be excited.

This is a basic property of a linear system with time independent coefficients.

If there is friction in the string, the response will be finite at ω = ωn. Also the

response curve around resonance will tend to be broader.

Returning to the bow forcing the string, we will find that all modes of the

system are excited with random phase for each one. The fact that the nat-

ural frequencies of the string are multiples of the fundamental leads us to a

harmonious sound. Unfortunately, this is boring.

The real violin is a coupled system with the sound cavity and the vibrating

wooden structure all participating in the process. Subtle nonlinearities com-

bined with the different frequencies of the cavity and the wooden structure in
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the coupled system will lead to a sound (timbre) that is not boring. It will

sound like a violin!

4.5.3 Heat Conduction on a Disk

Next consider a disk of radius a. The disk has a thermal conductivity K and

on its boundary (r = a) it is to be held at a fixed temperature, say 0◦ C:

T (r = a, θ, t) = 0. The partial differential equation governing the process is

K

r

∂

∂r

(
r
∂T
∂r

)
+
K

r2

∂2T
∂θ2

=
∂T
∂t

(4.43)

where we have employed standard polar coordinates. The leftmost term is the

expression of K∇2T in polar coordinates. We proceed in the now familiar way,

let: T = T (t)R(r)Θ(θ), and insert it in the governing equation.

(rR′)′

rR
+

1

r2

Θ′′

Θ
=

1

K

T ′

T
= −λ2 (4.44)

We are quickly led to

T (t) = T0 exp(−λ2Kt) (4.45)

After multiplying through by r our equation reduces to:

r
(rR′)′

R
+ λ2r2 = −Θ′′

Θ
= −ν2 (4.46)
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where we have set the next separation constant, −ν2 on the rhs.

Now we can find out the constraint on Θ(θ). We have

Θ(θ) = Θ0 exp(iνθ) (4.47)

To preserve the periodicity, Θ(θ + 2π) = Θ(θ), we must choose ν to be an

integer (positive or negative). For the radial equation we obtain

1

r
(rR′)′ +

(
λ2 − ν2

r2

)
R = 0 (4.48)

where ν is an integer and λ is to be determined by the boundary conditions.

The last equation is known as Bessel’s Equation; it occurs in numerous problems

involving polar or cylindrical coordinates or geometries. The solutions are of

course the Bessel Functions:

R(r) = AJν(λr) +BYν(λr) (4.49)

The integer ν is the order of the Bessel Function. The Jν(x) is the regular

solution, and the Yν(x) is the irregular solution. The functional form of Jν(x)

is found by a power series method. We need not look into the details here.

But the shapes of the functions are interesting and the first few are shown in

Figs. 1 and 2. Note that the Yν diverge at x = 0. In the present problem, we

can eliminate the Yν(λr) from further consideration, since an implicit part of

specifying the boundary conditions is that the solution be finite.
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The boundary condition at the rim of the disk can be satisfied by forcing

Jν(λna) = 0 (4.50)

where λna = the n−th root of Jν(xn) = 0. These roots are given in tables, and

are generated in some programs such as Mathematica. You can see the first

few in the figure. For J0 the first three are 2.4048, 5.5201, 8.6537, . . ..

We can then state that a genreral solution to the homogeneous (i.e., no

heating, just dissipation) problem is

T (r, θ, t) =
∑
ν,n

Aν,n exp(iνθ)Jν(λnr) exp(−λ2
nKt) (4.51)

And the Aν,n are to be determined from the initial conditions T (r, θ, 0). We

can find these coefficients by fitting to this function. Note that the Jν(λnr) are

orthogonal on the interval (0, a):∫ a

0

rJν(λnr)Jν(λmr) dr = 0 if n 6= m, otherwise a number (4.52)

So the Bessel Functions Jν(λnr) form the modal shapes of the thermal decay

modes. The angular part is formed by the sines and cosines of νθ.
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Figure 4.1: The Bessel Functions Jν(x) for ν = 0, 1, 2, 3.
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Figure 4.2: The Bessel Functions Yν(x) for ν = 0, 1, 2, 3.


