
1 Sturm-Liouville System

1.1 Sturm-Liouville Di�erential Equation

De�nition 1. A second ordered di�erential equation of the form

− d

dx

[
p(x)

d

dx

]
y + q(x)y = λω(x)y, x ∈ [a, b] (1)

with p, q and ω speci�ed such that p(x) > 0 and ω(x) > 0 for x ∈ (a, b), is called a Sturm-

Liouville(SL) di�erential equation.

Note that SL di�erential equation is essentially an eigenvalue problem since λ is not speci�ed.
While solving SL equation, both λ and y must be determined.

Example 2. The Schrodinger equation

− ~2

2m
ψ + V (x)ψ = Eψ

on an interval [a, b] is a SL di�erential equation.

1.2 Boundary Conditions

Boundary conditions for a solution y of a di�erential equation on interval [a, b] are classi�ed as
follows:

Mixed Boundary Conditions Boundary conditions of the form

cay(a) + day
′(a) = α

cby(b) + dby
′(b) = β (2)

where, ca, da, cb, db, α and β are constants, are called mixed Dirichlet-Neumann boundary
conditions. When both α = β = 0 the boundary conditions are said to be homogeneous.
Special cases are Dirichlet BC (da = db = 0) and Neumann BC (ca = cb = 0)

Periodic Boundary Conditions Boundary conditions of the form

y(a) = y(b)
y′(a) = y′(b) (3)

are called periodic boundary conditions.

Example 3. Some examples are

1. Stretched vibrating string clamped at two ends: Dirichlet BC

2. Electrostatic potential on the surface of a volume: Dirichlet BC

3. Electrostatic �eld on the surface of a volume: Neumann BC

4. A heat-conducting rod with two ends in heat baths: Dirichlet BC
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1.3 Sturm-Liouville System (Problem)

De�nition 4. The SL di�erential equation on a �nite interval [a, b] with homogeneous mixed
boundary conditions, that is,

− d

dx

[
p(x)

d

dx

]
y + q(x)y = λω(x)y, x ∈ [a, b]

cay(a) + day
′(a) = 0

cby(b) + dby
′(b) = 0

with p(x) > 0 and ω(x) > 0 for x ∈ [a, b] is called as regular Sturm-Liouville system (or problem).

Aim is to �nd all values λ for which a nontrivial solution yλ exists. It is implicitly assumed that
yλ and its derivative are continuous on [a, b], which also means these are bounded.

Example 5. Quantum particle in a 1D box: The Schrodinger equation and boundary conditions
are given by

− ~2

2m
ψ(x) = Eψ(x) x ∈ [0, L]

ψ(0) = 0
ψ(L) = 0.

This is a regular Sturm-Liouville system. The eigenvalues and eigenfunctions are

En =
~2π2n2

2mL2

ψn(x) =

√
2
L

sin
(nπx
L

)
with n = 1, 2, . . ..

De�nition 6. A SL di�erential equation on an interval [a, b] with periodic boundary conditions
and p(a) = p(b) is called as periodic Sturm-Liouville system.

Example 7. Quantum particle freely moving on a circle. The Schrodinger equation is

− ~2

2m
ψ(x) = Eψ(x) x ∈ [0, L]

ψ(0) = ψ(L)
ψ′(0) = ψ′(L)

This is an example of a periodic SL system. The eigenvalues and eigenfunctions are

En =
4π2~2n2

2mL2
n = 0, 1, . . .

and for each En (except n = 0) there are two linearly independant eigenfunctions

cos
(

2πnx
L

)
, sin

(
2πnx
L

)
.

De�nition 8. A SL di�erential equation on an interval [a, b] with any of the following conditions
will be called a singular Sturm-Liouville system.

1. p(a) = 0, BC at a is dropped, BC at b is homogenous mixed.

2. p(b) = 0, BC at b is dropped, BC at a is homogenous mixed.
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3. p(b) = p(a) = 0 and no BC.

4. Interval [a, b] is in�nite.

Note:

1. If p(a) = 0 and there is no BC at a, the y is considered a solution if y(a) <∞. Simillarly
for the other cases.

2. If the interval is in�nite, then y must be square integrable to be considered as a solution.

Example 9. Here are few examples.

1. Legendre Equation is given by(
1− x2

)
y′′ − 2xy′ + l(l + 1)y = 0 x ∈ [−1, 1]

This can be cast in the form

− d

dx

[(
1− x2

)
y′
]

= l(l + 1)y.

Here p(x) = 1− x2, q(x) = 0, ω(x) = 0 and λ = l(l+ 1). However since p(−1) = p(1) = 0,
this is a singular SL problem.

2. Chebyshev equation is given by(
1− x2

)
y′′ − xy′ + n2y = 0 x ∈ [−1, 1]

This can be converted to SL form by dividing by
√

1− x2:√
1− x2y′′ − x√

1− x2
y′ +

n2

√
1− x2

y = 0

− d

dx

[
1√

1− x2
y′
]

=
n2

√
1− x2

y

Here p(x) =
(
1− x2

)−1/2
, q(x) = 0, ω(x) =

(
1− x2

)−1/2
and λ = n2. This is a singular

SL System.

3. Hermite equation is given by

y′′ − 2xy′ + 2αy = 0 x ∈ (−∞,∞)

This equation can be cast in the SL form by multiplying it by e−x
2
. Then,

− d

dx

[
e−x

2
y′
]

= 2αe−x
2
y.

Here p(x) = e−x
2
, q(x) = 0, ω(x) = e−x

2
and λ = 2α. This is a singular SL System because

interval is in�nite.

4. Finally, Laguerre equation

xy′′ + (1− x)y′ + ay = 0 x ∈ [0,∞)

can be converted to SL form by multiplying e−x. Then,

− d

dx

[
xe−xy′

]
= ae−xy.

Here p(x) = xe−x, q(x) = 0, ω(x) = e−x and λ = a. This is a singular SL System because
interval is in�nite and also p(0) = 0.
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2 Properties of Sturm-Liouville System

It is interesting to note that a lot of information about the eigenvalues and eigenfunctions can
be obtained without actually solving the SL problem. Some properties are that the eigenvalues
are always real and bounded below but not above. If the interval [a, b] is �nite, then eigenvalues
are discrete. Eigenfunctions are oscillatory in nature, and so on. We will set to prove some of
these properties in the following sections.

2.1 Sturm-Liouville Operator

Consider a regular SL problem

− d

dx

[
p(x)

d

dx

]
y + q(x)y = λω(x)y, x ∈ [a, b]

cay(a) + day
′(a) = 0;

cby(b) + dby
′(b) = 0.

Let L2 ([a, b], ω(x), dx) be the Hilbert space of square integrable functions on [a, b] with inner
product

〈f, g〉 =
ˆ b

a
f(x)g(x)ω(x)dx

with ω(x) called weight function. Let H be the subspace of functions that satisfy the boundary
conditions of SL problem. Now, the di�erential operator of the form

L =
1

ω(x)

[
− d

dx

[
p(x)

d

dx

]
+ q(x)

]
on some domain in H, is called a Sturm-Liouville operator. Then the SL di�erential equation
becomes an eigenvalue equation in the space H

Ly = λy.

Theorem 10. Sturm-Liouville operator is self-adjoint operator on H.

Proof. Note

〈f, Lg〉 =
ˆ b

a
f(x) (Lg) (x)ω(x)dx

=
ˆ b

a
f(x)

[
− d

dx

[
p(x)g′(x)

]
+ q(x)g(x)

]
dx

=

Integrating the �rst term by parts

〈f, Lg〉 = −
[
p(x)f(x)g′(x)

]b
a

+
ˆ b

a

[
f ′(x)p(x)g′(x) + f(x)q(x)g(x)

]
dx

Simillary,

〈f, Lg〉 = −
[
p(x)f ′(x)g(x)

]b
a

+
ˆ b

a

[
f ′(x)p(x)g′(x) + f(x)q(x)g(x)

]
dx

Thus

〈f, Lg〉 − 〈Lf, g〉 = −
[
p(x)f(x)g′(x)

]b
a

+
[
p(x)f ′(x)g(x)

]b
a

= p(b)
(
f ′(b)g(b)− f(b)g′(b)

)
− p(a)

(
f ′(a)g(a)− f(a)g′(a)

)
(4)
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Now, since both f, and g obey same boundary conditions,

caf(a) + daf
′(a) = 0

=⇒ caf(a) + daf ′(a) = 0
and cag(a) + dag

′(a) = 0

it is easy to see that (
f ′(a)g(a)− f(a)g′(a)

)
= 0

if ca 6= 0 or da 6= 0. Simillary, (
f ′(b)g(b)− f(b)g′(b)

)
= 0

Hence
〈f, Lg〉 = 〈Lf, g〉

Now, this result can easily be extended to periodic and singular SL systems. The two changes
in the proof will be as follows:

� The subspace H will be appropriately de�ned by the BC.

� Note that rhs of the equation 4 will still be zero, if

� p(a) = p(b) and boundary conditions are periodic (equation 3) (That is if SL system
is periodic.);

� p(a) = 0 and boundary condition at b is homogeneous (Singular SL system);

� p(b) = 0 and boundary condition at a is homogeneous (Singular SL system);

� interval [a, b] is in�nite (since at in�nity functions will be vanishing) (Singular SL
systems).

2.2 Properties of SL systems

Theorem 11. Eigenvalues of Sturm-Liouville problem are real.

Proof. Let yλ be an eigenfunction corresponding to eigenvalue λ. Then

Lyλ(x) = λyλ(x).

Now,

〈Lyλ, yλ〉 = 〈yλ, Lyλ〉
∴ λ 〈yλ, yλ〉 = λ 〈yλ, yλ〉

Since 〈yλ, yλ〉 6= 0, λ = λ.

Theorem 12. If λm and λn are two distinct eigenvalues of a SL system, with corresponding

eigenfunctions ym and yn, then ym and yn are orthogonal.

Proof. Note

〈Lym, yn〉 = 〈ym, Lyn〉
∴ λm 〈ym, yn〉 = λn 〈ym, yn〉

∴ (λm − λn) 〈ym, yn〉 = 0.

Since (λm − λn) 6= 0, 〈ym, yn〉 = 0
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Theorem 13. Eigenvalues of a regular SL system are non-degenerate (that is, there is a unique

eigenfunction upto a constant).

Proof. Let y1 and y2 are eigenfunctions corresponding to the given eigenvalue λ. Then,

Ly1 = λy1

Ly2 = λy2.

Now,

y2(x)Ly1(x)− y1(x)Ly2(x) = 0

−y2(x)
d

dx

[
p(x)y′1

]
+ y1(x)

d

dx

[
p(x)y′2

]
= 0

d

dx

[
p(x)

(
y1(x)y′2(x)− y′1(x)y2(x)

)]
= 0

That is
p(x)W (y1, y2) (x) = constant = c

for all x ∈ [a, b]. However, the Wronskian of these functions

W (y1, y2)(a) = y1(a)y′2(a)− y′1(a)y2(a) = 0

because y1 and y2 satisfy the same boundary conditions at a. Thus,

W (y1, y2)(x) = 0

for all x. Then the two functions must be linearly dependent. That is y1 ∝ y2.

There is an additional bene�t in the proof. This gives us a way of calculating the second LI
solution if we know one solution. Let y1 be one of the known solution of the di�erential equation
Ly = λy. Then, for another solution y2, which is linearly independent of y1,

p(x)
(
y1(x)y′2(x)− y′1(x)y2(x)

)
= c

holds true. Then

p(x) (y1(x))
2 d

dx

(
y2(x)
y1(x)

)
= c

or,

y2(x) = y1(x)
ˆ x

x0

dt

p(t) (y1(t))
2 .

Note:

� The previous theorem is not valid for periodic SL system, because in periodic system
W (y1, y2)(a) is not necessarily zero. See example 7.

� The thorem will hold for singular system with at least one homogeneous boundary condi-
tion.

Theorem 14. Let λ1 and λ2(> λ1) be the two eigenvalues of a regular SL system with corre-

sponding eigenfunctions y1 and y2. There is a zero of y2 between two successive zeros of y1. In

general, there are more zeros of y2 than that of y1.
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a

y1

Ξ1

y2

b

y1

y2

x1 x2

Figure 1: Case 1

Proof. Then

− d

dx

[
p(x)y′1(x)

]
+ qy1(x) = λ1y1(x)w(x)

− d

dx

[
p(x)y′2(x)

]
+ qy2(x) = λ2y2(x)w(x).

Multiplying the �rst equation by y2 and the second by y2 and subtract. Then

d

dx

[
p(x)

(
y1(x)y′2(x)− y′1(x)y2(x)

)]
= (λ1 − λ2) y1(x)y2(x)w(x).

If ξ1 and ξ2 are two points in [a, b],

[
p(x)

(
y1(x)y′2(x)− y′1(x)y2(x)

)]ξ2
ξ1

= (λ1 − λ2)
ˆ ξ2

ξ1

y1(x)y2(x)w(x)dx (5)

Case 1: Now, consider a situation as shown in the �g . Without loss of genrality, let y1(a) > 0.
Let ζ be the �rst root of y1 from a. Then y1(ζ) = 0 and y′1(ζ) < 0. Let ξ1 = a and ξ2 = ζ in the
equation 5:

−p(ζ)y′1(ζ)y2(ζ) = (λ1 − λ2)
ˆ ξ2

ξ1

y1(x)y2(x)w(x)dx

Now if we assume that y2(x) > 0 for x ∈ [a, ζ], that is there is no zero of y2 between a and ζ,
the RHS of previous equation is negative, whereas the LHS is positive. This is a contradiction,
which implies that y2 must have a zero between a and ζ.

Case 2: Consider the second situation as shown in the �g. Let ξ1 and ξ2 be two successive zeroes
of y1, that is y1(ξ1) = y1(ξ2) = 0 and y′1(ξ1) < 0 and y′1(ξ2) > 0. Then the equation 5 becomes

−p(ξ2)y′1(ξ2)y2(ξ2) + p(ξ1)y′1(ξ1)y2(ξ1) = (λ1 − λ2)
ˆ ξ2

ξ1

y1(x)y2(x)w(x)dx

Then if we assume that y2(x) > 0 for x ∈ [ξ1, ξ2], that is there is no zero of y2 between ξ1 and
ξ2, then the RHS is positive and the LHS is negative. Thus y2 must have a zero between ξ1 and
ξ2.

2.3 Completeness of the set of eigenfunctions of SL System

In previous sections, we have de�ned the Hilbert space H as a subspace of L2 ([a, b] , w(x), dx)
with functions satisfying the boundary conditions of a SL system de�ned on [a, b]. Claim is that
the set of eigenfunctions of SL system forms a complete orthogonal basis of H.
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Let {yn|n = 1, 2, . . .} be the set of normalized eigenfunctions of the SL system. If f is a function
in H, then

lim
n→∞

∥∥∥∥∥f −
n∑
k=1

ckyk

∥∥∥∥∥ = 0

where,

ck =
ˆ b

a
yk(x)f(x)w(x)dx.
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