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Chapter 1

Introduction

1.1 Review and Notation

Recall that a partial derivative is the derivative of a function (with more
than one independent variable) with respect to one of its variables. i.e.
Suppose that

u = f(x, y), (1.1)

then the partial derivative of u or f(x, y) with respect to x is

∂u

∂x
=

∂f

∂x
= lim

∆x→0

f(x + ∆x, y)− f(x, y)
∆x

, (1.2)

and with respect to y is

∂u

∂y
=

∂f

∂y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)
∆y

. (1.3)

I will occasionally use subscripts as shorthand notation for the partial
derivative. That is,

ux =
∂u

∂x
(1.4a)

uy =
∂u

∂y
(1.4b)

uxx =
∂2u

∂x2
(1.4c)

uxy =
∂2u

∂x∂y
(1.4d)

and so on.
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1.2 Definition: Partial Differential Equation

Recall that an ordinary differential equation is an equation relating the
derivatives of a function (and perhaps the function itself) when the func-
tion has only one independent variable. A partial differential equation is
an equation relating the partial derivatives of a function with perhaps the
function itself. For instance,

∂2u

∂x2
+

∂2u

∂y2
= 0 (1.5a)

∂u

∂t
+ a

∂u

∂x
= 0 (1.5b)

∂u

∂t
+ u

∂u

∂x
+

∂3u

∂x3
= 0 (1.5c)

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 (1.5d)

∂u

∂t
+ C(x)

∂2u

∂x2
+ Au = Be−t (1.5e)

are all partial differential equations. A solution to a partial differential
equation is of course a function u of multiple independent variables that
satisfies the PDE. From here on a partial differential equation will be referred
to as a PDE.

1.3 The Order of a PDE

The order of a PDE is simply the highest-ordered derivative that appears
in the equation. For example,

ut + ux = Aex−t (1.6a)

uxx + uyy = sin(x2 + y2) (1.6b)

ut + uux + uxxx = u4 (1.6c)
(1.6d)

are 1st, 2nd and 3rd order PDEs, respectively.
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1.4 Homogeneous and Nonhomogeneous PDEs

A homogeneous PDE is one where all of the summands in the equation
involve the dependent variable somehow. For instance,

ut + uux = −u (1.7a)

ut + c(x)uxx = −u2 (1.7b)

utt − c2uxx = 0 (1.7c)

are homogeneous PDEs. A nonhomogeneous PDE has terms (summands)
that do not involve the dependent variable, but are simply functions of the
independent variables. For instance,

ut + uux = Ae−t (1.8a)

utt − c2uxx + sin(x) = 0 (1.8b)

are nonhomogeneous PDEs. The terms that are only function of the inde-
pendent variables, are sometimes called source terms. For instance, the right
hand side of (1.8a) is a source term, as well as the sin(x) term in (1.8b).

1.5 Linear and Nonlinear PDEs

PDEs are either linear or nonlinear. Technically a linear PDE is one where
a linear combination of solutions is also a solution. That is, a PDE is linear
if and only if, given any two solutions to the PDE, u1(t, x, y) and u2(t, x, y),
the linear combination c1u1(t, x, y)+ c2u2(t, x, y), c1, c2 arbitrary constants,
is also a solution. Note that only a homogeneous PDE is linear by this
definition. However, a nonhomogeneous PDE will be referred to as linear if
the homogeneous part (the PDE neglecting any source terms) is linear. It
is easy to determine if a PDE is linear by simply looking at all of the terms
in the equation. The PDE is linear if and only if all of the terms are linear
functions of the dependent variable and its derivatives. That is,

∂u

∂t
+ c(x)

∂u

∂x
= −u (1.9a)

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 (1.9b)

∂u

∂t
+ D

∂2u

∂x2
= x2 (1.9c)
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are linear PDEs. The last PDE in (1.9) is linear only by this looser def-
inition where the source term is neglected. (Don’t worry—no ambiguous
test questions will be given about this. Typically we will only be concerned
about the homogeneous and nonhomogeneous distinction for linear PDEs.)
The following PDEs are nonlinear,

∂u

∂t
+ u

∂u

∂x
= 0 (1.10a)

ut + (
1
2
u2)x = 0 (1.10b)

ut + ux = u2 (1.10c)

since there are terms where the dependent variable and its derivatives are
multiplied. (Note that (1.10a) and (1.10b) are the same PDE. Why?).

1.6 Classification of General 2nd-Order Linear PDEs

In this course we will frequently be concerned with 2nd order, linear PDEs
(homogeneous and nonhomogeneous) with two independent variables. The
general PDE in such a case, where we will assume the independent variables
are x and y, can be written as

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu = G, (1.11)

where A,B, C, D, E, F and G are, in general, functions of x and y (of course
this includes constants as well). An equation of the form (1.11) is called

elliptic if AC −B2 > 0, (1.12a)

hyperbolic if AC −B2 < 0, (1.12b)

parabolic if AC −B2 = 0. (1.12c)

Although this may seem like arbitrary semantics, in fact, solutions to PDEs
of each class typically share certain qualitative properties, or occur in ap-
plications where the physics share some common properties. Note that in
the definitions (1.12), x and y enter symmetrically. Therefore, as should
be expected, the general class of a PDE does not depend on our choice of
coordinate system. Note also that either x or y in (1.11) could be replaced
by t if we wanted to consider a PDE with two independent variables—one
in space and one in time. That is, we simply consider

Auxx + 2Buxt + Cutt + Dux + Eut + Fu = G, (1.13)
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Example 1. The linear 2nd order wave equation can be written as

utt − c2uxx = 0. (1.14)

If we compare (1.14) with the general form (1.13), we see that A = −c2,
B = 0, and C = 1. This gives AC − B2 = −c2 < 0, and we see that the
wave equation is hyperbolic.

Why is (1.14) the “wave equation”? Consider an arbitrary function of
one variable f(·). The only requirement that we will make on f is that it
can be twice differentiable. Now consider the function u(x, t) = f(x − ct).
First note that (refresh you memory of the chain rule if you need to)

a
∂

∂t
f(x− ct) = f ′(x− ct)(−c) (1.15a)

∂2

∂t2
f(x− ct) =

∂

∂t

(
f ′(x− ct)(−c)

)
= c2f ′′(x− ct) (1.15b)

∂

∂x
f(x− ct) = f ′(x− ct) (1.15c)

∂2

∂x2
f(x− ct) =

∂

∂x

(
f ′(x− ct)

)
= f ′′(x− ct). (1.15d)

Now using these derivatives and plugging u(t, x) = f(x−ct) into (1.14) gives

∂2

∂t2
f(x− ct)− c2 ∂2

∂x2
f(x− ct)

=c2f ′′(x− ct)− c2f ′′(x− ct) = 0. (1.16)

Therefore, u(x, t) = f(x−ct) solves the PDE for any function of one variable
f(·) that is twice differentiable! It is easy to show that u(x, t) = f(x + ct)
does as well. What does a function f(x − ct) behave like? At time t = 0
the solution is simply f(x). As time progresses, the profile f(x) translates
to the right at a speed c. That is

u(x, t1) = f(x− ct1)
=f(x− ct1 + ct2 − ct2)
=f((x + c(t2 − t1))− ct2)
=u(x + c(t2 − t1), t2). (1.17)

Likewise, it is easy to show that if u(x, t) = f(x + ct), then u is the profile
of f(x) translating to the left at a speed of c.
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Chapter 2

Fourier Series

In this chapter Fourier series will be introduced. Although this is a bit of a
departure from PDEs, later we will see that Fourier series are an indispens-
able tool for solving many linear PDEs. Before describing Fourier series,
it is important to have a firm understanding of several concepts described
below.

2.1 Some Important Types of Functions

2.1.1 Continuous and Piecewise Continuous Functions

A continuous function can be rigorously defined mathematically, however,
you can think of a continuous function as one that you can draw the graph
of without lifting your pencil from the paper. It can have sharp kinks and
points but it must not “jump” from one value to another suddenly. For a
continuous function, given any point x = c, f(c−) = f(c) = f(c+) must
hold. The notation f(c−) is the value of limx→c f(x) when x < c and f(c+)
is the value of limx→c f(x) when x > c.

We will also frequently encounter piecewise continuous functions. A
piecewise continuous function is not necessarily continuous, however, it is
the next best thing—it is defined everywhere, and is only discontinuous at a
finite number of points on any finite interval. Furthermore, the limit of the
function exists as one of the points of discontinuity is approached from either
side. Intuitively, a piecewise continuous function is one that is continuous
except at points where the function simply jumps from one value to another.
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The following function is piecewise continuous

f(x) =


−1 if x < 0
10 if x = 0
20x if x > 0

. (2.1)

Note that (2.2) is defined everywhere (including x = 0), and is continuous
except at x = 0. Note also that the limits f(0−) and f(0+) both exist.
However, f(0−) 6= f(0) 6= f(0+). In practice we may not really care if the
function is defined at the points of discontinuity. Consider the function

f(x) =

{
−1 if x ≤ 0
1
x if x > 0

. (2.2)

The function is not piecewise continuous because the limit, limx→0+ , does
not exist.

2.1.2 Smooth and Piecewise Smooth Functions

A smooth function is one whose derivative exists (and is continuous) every-
where. A piecewise smooth function is simply a function whose derivative
is piecewise continuous. At the points of discontinuity in the derivative,
the derivative will be undefined. However, if the function is to be piecewise
smooth, the limits of the derivative will exist as a point of discontinuity is
approached from either side, since, by definition, the derivative is piecewise
continuous. Note that a piecewise continuous function may or may not be
piecewise smooth. The function f(x) = |x| is continuous, not smooth, but
piecewise smooth. The function f(x) =

√
x is continuous on [0,∞), but is

not piecewise smooth on [0,∞) because limx→0 f ′(x) does not exist.

2.1.3 Periodic Functions

A periodic function is one that satisfies the following condition:

f(x) = f(x + T ), (2.3)

for all x and for some fixed T which depends on the function. The value of T
is known as the period of the function. Specifically, T should be the smallest
positive value for which (2.3) holds. A periodic function with period T is
referred to as a T -periodic function. Since (2.3) must hold for all x, for any
given x we can add T to it, and so (2.3) must imply

f(x + T ) = f ((x + T ) + T ) = f(x + 2T ) = · · · = f(x + nT ), (2.4)
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for any positive integer n. We could have also subtracted T from any given
x, and so (2.4) really holds for any integer n, positive or negative. Now we
see why T must be the smallest positive value for which (2.3) holds. We
wouldn’t want to refer to a T -periodic function as 2T -periodic, even though
f(x) = f(x+nT ) holds for any integer n, because then we wouldn’t know if
the function is T -periodic. If we know the smallest T for which (2.3) holds,
we automatically know that (2.4) holds.

A periodic function is intuitively familiar—the function “repeats itself”
after every interval of length T . It is important to recognize that since (2.3)
holds for all x, there is no starting and ending point to a periodic function.
You can choose any point you like as a starting point. After an interval of
length T , the function is back to where you started.

Note that periodicity has nothing to do with continuity and smoothness.
However, if a periodic function is continuous, it must be that f(x+

0 ) =
f(x−0 ) = f(x−0 + T ) for all x0. That is, it must be true that the limits,
limx→x0 from above (x > x0) and limx→x0+T from below (x < x0 + T ), are
equal. Draw a picture of this if you need to.

2.1.4 Even and Odd Functions

Recall that an even function is a function f(x) that satisfies the following
property:

f(x) = f(−x). (2.5)

If you graph an even function it is symmetric about the origin. Conversely,
an odd function f(x) satisfies

f(x) = −f(−x). (2.6)

If you graph an odd function it is anti-symmetric—that is, it’s an inverted
mirror image on either side of the origin. Note that if an odd function is
continuous, it must be that f(0) = 0. It should be intuitively clear that if
we integrate an odd function over a symmetric interval about the origin, the
integral will vanish: ∫ L

−L
f(x) dx = 0. (2.7)

For an even function, it should be clear that the following relation holds:∫ L

−L
f(x) dx = 2

∫ L

0
f(x) dx. (2.8)
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It is easy to show that the product of two even functions is again an even
function. The product of two odd functions is an even function as well. The
product of an odd function and an even function is an odd function.

2.2 Properties of the Trigonometric functions

For Fourier series we will be interested in the trigonometric functions

1, cos(x), cos(2x), cos(3x), . . . , cos(mx), . . . , (2.9a)
sin(x), sin(2x), sin(3x), . . . , sin(nx), . . . , (2.9b)

Note that 1, cos(x) and sin(x) are 2π-periodic. The functions cos(nx) and
sin(nx) are 2π/n-periodic, but note that because of (2.4), this means that
all of the functions in (2.9) are 2π periodic. You should also know that all
of the sine functions in (2.9) are odd about the origin, and all of the cosine
functions are even about the origin.

2.2.1 Orthogonality

Two functions f(x) and g(x), are said to be orthogonal on an interval [a, b],
if ∫ b

a
f(x)g(x) dx = 0. (2.10)

Note that no non-trivial function (a trivial function is one that is identically
zero everywhere) is orthogonal to itself, since∫ b

a
f(x)f(x) dx =

∫ b

a
|f(x)|2 dx > 0. (2.11)

The trigonometric functions (2.9) are orthogonal on any 2π interval. (We
will mostly be interested in symmetrical intervals around the origin, such as
[−π, π].) Specifically, given any nonnegative integers m and n,∫ π

−π
cos mx cos nx dx = 0 if m 6= n (2.12a)∫ π

−π
cos mx sinnx dx = 0 for all m,n (2.12b)∫ π

−π
sinmx sinnx dx = 0 if m 6= n. (2.12c)
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The relations (2.12) are a fundamental aspect of Fourier series. You can
easily demonstrate (2.12) using simple trig. substitutions and integration.
Because of (2.11), we know that sinnx and cos mx are not orthogonal to
themselves. In fact∫ π

−π
cos2 mxdx =

∫ π

−π
sin2 nx dx = π, (2.13)

for all m,n 6= 0. If you want to perform these integrations, you should recall
the following trig. identities:

sinA sinB =
1
2

[cos(A−B)− cos(A + B)] (2.14a)

cos A cos B =
1
2

[cos(A−B) + cos(A + B)] (2.14b)

sin A cos B =
1
2

[sin(A−B) + sin(A + B)] . (2.14c)

2.3 Fourier Series

A Fourier series is an infinite series of the form:

f(x) =
∞∑

n=0

(an cos nx + bn sinnx) . (2.15)

Since sin 0x = 0 and cos 0x = 1, we may also write the series as

f(x) = a0 +
∞∑

n=1

(an cos nx + bn sinnx) . (2.16)

The first thing to note about a Fourier series is that the sum must be 2π-
periodic, since it is the sum of functions, all with the common period 2π. So
if the function f(x) equals the series, f(x) must also be 2π periodic. (The
fundamental period of a function f(x), if it equals a Fourier Series, must
be 2π/N for some N = 1, 2, 3, . . . . Because of (2.4), this means that the
function f(x) must have a period of 2π, even if it has a smaller fundamental
period 2π/N .)

As we will see, many useful functions can be represented as a Fourier
series.
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2.3.1 The Euler Formulas for the Coefficients

Suppose that the 2π periodic function f(x) has a Fourier series representa-
tion

f(x) = a0 +
∞∑

n=1

(an cos nx + bn sinnx) . (2.17)

Assuming that f(x) is some known function, the coefficients a0, an and bn

in the Fourier series (2.17) are given by the following formulas (known as
the Euler formulas):

a0 =
1
2π

∫ π

−π
f(x) dx (2.18a)

an =
1
π

∫ π

−π
f(x) cos nx dx (2.18b)

bn =
1
π

∫ π

−π
f(x) sinnx dx (2.18c)

Example 2. The 2π-periodic function

f(x) = |x| if − π ≤ x ≤ π, (2.19)

can be written as a Fourier series

f(x) = a0 +
∞∑

n=1

(an cos nx + bn sinnx) . (2.20)

The coefficients in (2.20) are determined by the formulas (2.18a). We de-
termine the coefficients by simply integrating:

a0 =
1
2π

∫ π

−π
|x| dx

=
1
π

∫ π

0
x dx =

1
π

[
1
2
x2

]π

0

⇒a0 =
π

2
. (2.21)

Now for the an:

an =
1
π

∫ π

−π
|x| cos nx dx

=
2
π

∫ π

0
x cos nx dx,
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then, using integration by parts, we have

2
π

∫ π

0
x cos nx dx =

2
π

[
x

sinnx

n

]π

0

− 2
π

∫ π

0

sinnx

n
dx

=
2
π

[cos nx

n2

]π

0

⇒an =
2
π

(−1)n

n2
− 2

πn2
(2.22)

Now, for the bn we immediately have:

bn =
1
π

∫ π

−π
|x| sinnx dx = 0. (2.23)

(2.24)

How do we know? Remember the properties of odd functions. We can now
write the Fourier series of f(x)

f(x) =
π

2
+

∞∑
n=1

[
2 ((−1)n − 1)

πn2

]
cos nx. (2.25)

The partial sums SN =
∑N

n=0 an cos nx of the Fourier series are shown
in Figure 2.1. Notice that even with 3 terms in the series (a2 = 0), the
partial sum S3 approximates |x| fairly well.

Where do the Euler formulas (2.18a) come from? We can derive them
easily by using the orthogonality properties of the trigonometric functions
on [−π, π]. Suppose that the function f(x) can be represented as a Fourier
series

f(x) = a0 +
∞∑

n=1

(an cos nx + bn sinnx) . (2.26)
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(a) (b)

(c) (d)

Figure 2.1: Partial sums (SN =
∑N

n=0 an cos nx) of the Fourier series of |x|
are shown in red. (a) 1 term S0 = π/2. (b) S1 (c) S3 (d) S50.

If we select and arbitrary integer m, we can then take the integral

∫ π

−π
f(x) cos mxdx =

∫ π

−π

[
a0 +

∞∑
n=1

(an cos nx + bn sinnx)

]
cos mxdx

=
∫ π

−π

[
a0 cos mx +

∞∑
n=1

(an cos nx cos mx + bn sinnx cos mx)

]
dx

=
∫ π

−π
a0 cos mxdx+

∞∑
n=1

(∫ π

−π
an cos nx cos mxdx +

∫ π

−π
bn sinnx cos mxdx

)

= a0

∫ π

−π
cos mxdx+

∞∑
n=1

(
an

∫ π

−π
cos nx cos mxdx + bn

∫ π

−π
sinnx cos mxdx

)
.

(2.27)

Now, because of the orthogonality of the trigonometric functions on [−π, π],
all of the terms in the above sum are zero except for one: am

∫ π
−π cos mx cos mxdx,
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which is the mth term in the series. Equation (2.27) therefore reduces to
simply ∫ π

−π
f(x) cos mxdx = am

∫ π

−π
cos mx cos mxdx = amπ. (2.28)

If we solve for am, we have

am =
1
π

∫ π

−π
f(x) cos mxdx. (2.29)

Since m was an arbitrary integer, (2.29) gives the Euler formula for the an

coefficients. The exact same procedure using 1 and sinmx, gives the formula
for a0 and the bn coefficients respectively. Note that when we integrate∫ π
−π f(x) dx to determine a0, we end up with the equation∫ π

−π
f(x) dx = a0

∫ π

−π
1 dx = a0(2π). (2.30)

Hence, the reason why the formula for a0 in (2.18a) has 1
2π as a constant in

front of the integral. In other words, the norm of 1:
∫ π
−π 1 dx = 2π is greater

than the norm of cos mx:
∫ π
−π cos2 mxdx = π, and the norm of sinmx:∫ π

−π sin2 mxdx = π.

2.3.2 Fourier Series of Piecewise Continuous Functions

Suppose that we wish to find the Fourier series of a piecewise continuous
function f(x), where f(c−) 6= f(c+). (In this section we will assume that
f(x) is piecewise smooth.) It turns out that regardless of what f(c) is (in
fact we don’t even need f(c) to be defined), the Fourier series will converge
to the average of f(c−) and f(c+). That is, if we use the Euler formulas for
the coefficients, the following formula holds for all x

f(x+) + f(x−)
2

= a0 +
∞∑

n=1

(an cos nx + bn sinnx) . (2.31)

Note that this is the same as (2.16) since for points of continuity 1
2(f(x+)+

f(x−)) = f(x). This is true even if c is one of the endpoints x = ±π.
So this means that we can take a function f(x) that is 2π periodic, where
f(−π) = f(π), yet f(π−) 6= f(−π+), compute the Fourier coefficients using
the Euler formulas, and the series will converge to 1

2(f(−π+) + f(π−)) at
the endpoints x = ±π. However, note that the value of f(−π) = f(π) (i.e.
the value right at the single points x = ±π) doesn’t really matter when
computing the Fourier coefficients from the Euler formulas.
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2.3.3 Fourier Series of Even and Odd functions

Suppose that we calculate the Fourier series of an odd function f(x). When
determining the coefficients from the Euler formulas, note that for a0 and an,
the integrals

∫ π
−π f(x) cos nx dx, n = 0, 1, . . . are all zero, since the integrands

are all odd. For bn, the integrands in
∫ π
−π f(x) sinnx dx are even functions

(odd*odd=even), so the Euler formula could be replaced by

bn =
1
π

∫ π

−π
f(x) sinnx dx =

2
π

∫ π

0
f(x) sinnx dx. (2.32)

For even functions f(x), the opposite is true: the bn are all zero, and the
formula for a0 and an could be replaced by

a0 =
1
2π

∫ π

−π
f(x) dx =

1
π

∫ π

0
f(x) dx (2.33a)

an =
1
π

∫ π

−π
f(x) cos nx dx =

2
π

∫ π

0
f(x) cos nx dx. (2.33b)

These consequences give rise to what are known as half-range expansions,
or sine and cosine series, instead of the more general Fourier Series. These
take the form

The Cosine Series for Functions on [0, π]

f(x) = a0 +
∞∑

n=1

an cos nx, (2.34a)

where

a0 =
1
π

∫ π

0
f(x) dx, (2.34b)

an =
2
π

∫ π

0
f(x) cos nx dx. (2.34c)

The Sine Series for Functions on [0, π]

f(x) =
∞∑

n=1

bn sinnx, (2.35a)

where

bn =
2
π

∫ π

0
f(x) sinnx dx. (2.35b)
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2.3.4 Fourier Series on Arbitrary Intervals

So far we have assumed that our functions are of interest on the interval
[−π, π], ( or perhaps [0, π] as found in the previous section). You probably
wonder, in the real world won’t we be interested in functions on arbitrary do-
mains? Of course the answer is yes. However, we can extend our definitions
to intervals of arbitrary length and position by a simple change of variables.
For instance, suppose we are interested in a function g(x), defined on the
interval x = [3.2, 7.2]. We can introduce a change of variables, X = π x−5.2

2 ,
and now you have a function f(X) = g(x(X)) defined on [−π, π].

However, occasionally it will be convenient to extend our concept of a
Fourier series directly to the more general case, without making use of a
change of variables. We will restrict this to scaling, and note that you can
always shift your domain by a change of variables if necessary.

Suppose that we are interested in a function f(x) on the interval [−L,L],
where L is some value depending on the problem. Consider the following
trigonometric functions{

1, cos(mπ
L x), sin(nπ

L x)
}

, ∀ m,n ∈ Z+. (2.36)

(Z+ is the set of all positive integers.) These are really the same as the
functions (2.9), except the factor of ( π

L), which scales the functions so that
they are 2L periodic instead of 2π periodic. You can easily show that (2.36)
are orthogonal on the interval [−L,L]. We can then express functions on
arbitrary intervals as a more general Fourier series, where the coefficients in
the series can determined, using the same method as before

Fourier Series on Arbitrary Intervals [−L,L]

f(x) = a0 +
∞∑

n=1

(
an cos(nπ

L x) + bn sin(nπ
L x)

)
. (2.37)

a0 =
1

2L

∫ L

−L
f(x) dx (2.38a)

an =
1
L

∫ L

−L
f(x) cos(nπ

L x) dx (2.38b)

bn =
1
L

∫ L

−L
f(x) sin(nπ

L x) dx. (2.38c)
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Of course, the sine and cosine series can be generalized to functions on [0, L],
and the formulas are changed accordingly.

The Cosine Series on Arbitrary Intervals [0, L]

f(x) = a0 +
∞∑

n=1

an cos(nπ
L x), (2.39a)

where

a0 =
1
L

∫ L

0
f(x) dx, (2.39b)

an =
2
L

∫ L

0
f(x) cos(nπ

L x) dx. (2.39c)

The Sine Series on Arbitrary Intervals [0, L]

f(x) =
∞∑

n=1

bn sin(nπ
L x), (2.40a)

where

bn =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (2.40b)

2.3.5 Convergence of Series Computed from Non-Periodic
Functions, and Half-Range Series of Non-Even or Non-
Odd Functions.

So far we have discussed the fact that we can take a periodic function (of
period 2π or later more generally of period 2L) and write the function as a
series—an infinite sum that converges to (equals) the function everywhere,
except where the function has a jump discontinuity, in which case the series
converges to the average value of the function on either side of the discon-
tinuity. When we compute the formula for the series, that is, determine the
coefficients in the series using the Euler formulas, we only needed to use the
formula for the function on one of the periodic intervals, say x = [−L,L]
(from now on I’ll only consider the more general series using L, realizing
that this includes the special case where L = π). So this begs the question:
does f(x) have to be periodic to have a Fourier series? The answer is no!
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We can use the formula for any function on an interval x = [−L,L] and com-
pute the series as if the function were periodic. The resulting Fourier series
itself will be 2L periodic, and on the interval (−L,L) the Fourier series will
converge to (equal) the function (or the average at a jump discontinuity).
The only caveat, is that the Fourier series converges to 1

2(f(−L+) + f(L−))
at x = ±L, as if the function were periodic and f(−L+) = f(L+), so that
the Fourier series converges to the average value at a jump discontinuity
occurring at an endpoint. This means that if we take the Fourier series of
a continuous but non-periodic function, where f(−L) 6= f(L), the Fourier
series will be only piecewise continuous, with jump discontinuities at the
endpoints of each interval [(2n− 1)L, (2n + 1)L], n ∈ Z. The Fourier series
of a non-periodic function therefore gives us the periodic extension of the
function. That is, if we take any function f(x) defined on [−L,L], we can
define the 2L periodic extension f̃(x) as

f̃(x) =

{
f(x) if − L ≤ x ≤ L,

f(x± 2L) otherwise .
(2.41a)

Don’t let this recursive mathematical definition get you confused. All it is
saying is, “the periodic extension of f(x), i.e. f̃(x), is the same as f(x) on the
interval [−L,L], and everywhere else f̃(x) is 2L-periodic regardless of what
f(x) looks like outside the interval [−L,L].” The Fourier series converges
to f̃(x) everywhere (or more generally 1

2(f̃(x+)+ f̃(x−)) at discontinuities).
(If you are having trouble visualizing this mathematical description, draw
some graphs as you go.)

Note that for the half range expansions, cosine and sine series, we really
only use f(x) on the interval [0, L], since for odd and even functions, we
know the value on [−L, 0] from the value on [0, L]. This begs the question:
can we take any function f(x) (whether it is even, odd, or neither) and
calculate its sine or cosine series. The answer is yes! It doesn’t matter what
the function is outside of [0, L], we can calculate its sine or cosine series as if
it was even or odd plus 2L periodic. Of course the cosine or sine series will
be even or odd respectively outside of the interval [0, L], and both will be
2L periodic. However, we may only care about the function on [0, L]. The
resulting sine series of such a function is known as an odd periodic extension,
and the resulting cosine series is known as an even periodic extension. We
will denote these as f̃o(x) and f̃e(x) respectively. The odd extension of a
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function defined on x ≥ 0 can be mathematically defined as

fo(x) =

{
f(x) if x ≥ 0
,−f(−x) otherwise,

(2.42a)

and the even periodic extension is defined by

fe(x) =

{
f(x) if x ≥ 0
, f(−x) otherwise.

(2.43a)

To define the even or odd periodic extension of f(x) we simply apply the
definition of a 2L periodic extension of fe(x) or fo(x) from [−L,L]. That
is,

f̃e(x) =

{
fe(x) if − L ≤ x ≤ L,

fe(x± 2L) otherwise,
(2.44a)

or

f̃o(x) =

{
fo(x) if − L ≤ x ≤ L,

fo(x± 2L) otherwise .
(2.45a)

You should convince yourself that an even periodic extension of a con-
tinuous function is still continuous, but an odd periodic extension of a con-
tinuous function is only continuous if f(0) = f(π) = 0.
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Chapter 3

The 1D Heat and Wave
Equations on Finite
Domains—Separation of
Variables

In this chapter we will investigate time-dependent PDEs in one spatial di-
mension with a finite domain. That is, the solutions will be functions of
x, on an interval of finite length that change with time. Our solution will
therefore be a function, u(x, t), defined on some interval. What u represents
will depend on the particular problem we are investigating. Our two most
important examples will be the heat equation and the wave equation. We
will learn about an important technique called separation of variables for
these types of problems.

3.1 The Heat Equation

Imagine that we have some heat conducting object that only varies in one
spatial dimension. For instance, suppose that we have a metal bar of length
L that is uniform in cross section. Assume further that the bar is insulated
completely from its surroundings on the sides, yet not necessarily at the
ends of the bar. If we use x to denote the coordinate along the length of
the bar, it can be shown that the temperature in the bar satisfies the heat
equation:

ut − γ2uxx = 0, (3.1)
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where γ2 is a positive constant that depends on the material properties of the
bar. Notice that if we add some constant to u, it still satisfies the equation,
so we can assume that u represent the difference in temperature from some
value that we choose. That is, we will define u(x, t) = T (x, t) − T0, where
T0 is some chosen temperature, perhaps the ambient temperature of the
room for instance. (In a moment we will derive (3.1), from some more basic
physical assumptions. For now, just take it for granted.)

Now, suppose that we have some way of fixing the temperature at the
ends of the bar—for instance, we might have some appliance with a thermo-
stat that can quickly heat or cool the ends of the bar, maintaining a certain
temperature at the ends for all time. If we define the left end of the bar to
be at x = 0, and the right end to be at x = L, we can write this condition
mathematically:

u(0, t) = g0, (3.2a)
u(L, t) = gL, (3.2b)

where g0 is the temperature we choose at the left end of the bar and gL is
the temperature we choose at the right end. The set of conditions (3.2) are
known as boundary conditions. They tell us what the solution u(x, t) must
be at the boundaries of the domain for all time. These conditions are not
required to be constant in time—in general g0 and gL might be functions of
time. If so, their dependence on t will be specified:

u(0, t) = g0(t), (3.3a)
u(L, t) = gL(t). (3.3b)

Now, suppose that at some starting time, say t = 0, we know the tem-
perature profile in the bar. For instance, suppose that we heated the bar
with a blowtorch before beginning our experiment, and we determined that
the bar has a temperature at t = 0,

u(x, 0) = f(x) for 0 ≤ x ≤ L. (3.4)
(3.5)

The condition (3.4) is an initial condition. It tells us the solution on the
entire domain at some starting time. Note that f(x) is some function that
we are assuming is known. You won’t always be given a familiar formula
for the initial condition, but you should realize that f(x) represents some
known function, not one that you are trying to find. We can summarize this
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as follows:

PDE : ut − γ2uxx = 0, 0 < x < L 0 < t < ∞ (3.6a)

BCs :

{
u(0, t) = g0,

u(L, t) = gL,
0 < t < ∞, (3.6b)

IC : u(x, 0) = f(x), 0 ≤ x ≤ L. (3.6c)

This set of conditions is known as an initial-boundary value problem, or
sometimes simply a boundary value problem. You should remember that it
contains three parts. First, the PDE or governing equation (in this case, the
heat equation) describes what physical law our system satisfies. The initial
condition describes how the system begins, and the boundary conditions
describe how the surroundings affect our system. The goal of the problem
is to determine u(x, t) on the domain 0 < x < L for all time 0 < t < ∞.

It turns out that the solution to (3.6a) exists and is unique! That means
that u(x, t) not only exists, but that there is only one possible answer.
Determining existence and uniqueness will often be beyond the scope of this
class, but realize that if existence and uniqueness are satisfied, finding a
solution is finding the solution. In general, existence and uniqueness depend
on the PDE, the boundary conditions, and the initial conditions. You can
usually assume that the problems posed in this class will satisfy existence
and uniqueness requirements.

3.1.1 Deriving the Heat Equation from Physical Principles

We can derive the heat equation for a metal bar, from assuming some basic
physical principles that we will take for granted—these are known from
theory and experiment, as mathematicians we will take them as our starting
point. The heat equation follows from conservation of energy. (Often, if
not always, PDEs in the real world come from conservation principles. i.e.
conservation of mass, conservation of momentum, conservation of energy,
etc.) The energy in a given length of a metal bar is known to be related to
the temperature in the bar, u(x, t), the cross-section of the bar A, the density
of the metal ρ and a constant c0, known as the thermal capacity—a constant
depending on the material properties of the bar and relating temperature to
energy. (Don’t worry too much about these constants—that’s not the main
point here.) If we integrate between two points in the bar, we get the total
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energy in that interval of the bar

Total Energy in [x1, x2] =
∫ x2

x1

Aρc0u(x, t) dx. (3.7)

As you know energy (heat) flows from hotter regions to colder ones. (This
should be intuitively very familiar). The larger the gradient in the temper-
ature, the faster the heat will flow. This flow of heat, or flow of anything
per unit time, per unit area, is known as a flux. If we denote the heat flux
φ, it turns out that the flux of heat in a metal bar obeys what is known as
Fourier’s law of heat conduction (he did more than come up with a series):

φ(x) = −K0
∂

∂x
u(x, t), (3.8)

where the constant K0 is known as the thermal conductivity. It relates how
fast heat can flow in a material. In an insulator K0 would be small, and in
a good conductor K0 would be large. Note that (3.8) says that heat flows
in the positive direction if the slope of temperature is negative, and in the
negative direction if the slope is positive. That should make sense.

Now, we consider the change in the amount of energy per unit time in
the interval [x1, x2]. The only way for the energy to change in this interval
of the bar, is by heat flowing past the endpoints. The change in the total
energy from in [x1, x2], per unit time, is therefore

Rate of Change in the Total Energy in [x1, x2] =
Aφ(x1)−Aφ(x2) = AK0 (ux(x2, t)− ux(x1, t)) . (3.9)

We can also express the change in the total energy per unit time as the time
derivative of (3.7), or:

Rate of Change in the Total Energy in [x1, x2] =
d

dt

∫ x2

x1

Aρc0u(x, t) dx. (3.10)

We can therefore equate (3.9) and (3.10), and drop the A from both sides,
giving:

d

dt

∫ x2

x1

u(x, t) dx = γ2 (ux(x2, t)− ux(x1, t)) , (3.11)
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where γ2 = ρc0/K0. The constant γ2 is always positive. Now, we just need
to use a little calculus. First, I can move the time derivative inside the
integral on the left hand side of (3.11)

d

dt

∫ x2

x1

u(x, t) dx =
∫ x2

x1

∂

∂t
u(x, t) dx. (3.12)

Second, by using the fundamental theorem of calculus, note that the right
hand side of (3.11) can be written

(ux(x2, t)− ux(x1, t)) =
∫ x2

x1

∂

∂x
ux(x, t) dx. (3.13)

Using these facts, (3.11) becomes∫ x2

x1

∂

∂t
u(x, t) dx = γ2

∫ x2

x1

∂

∂x
ux(x, t) dx (3.14a)

⇒
∫ x2

x1

[
ut(x, t)− γ2uxx(x, t)

]
= 0 (3.14b)

⇒ut(x, t)− γ2uxx(x, t) = 0. (3.14c)

Regarding the last equation in (3.14): if a definite integral is zero, obviously
that does not necessarily imply that an integrand is zero. However, we chose
x1 and x2 arbitrarily. Therefore, the integral in the second line of (3.14) is
zero on any and every interval we could have chosen. That does imply that
the integrand is zero.

3.2 Solving the Heat Equation: Separation of Vari-
ables

3.2.1 A Metal Bar with the Temperature fixed at the ends

We are going to solve the following IBVP:

PDE : ut − γ2uxx = 0, 0 < x < L 0 < t < ∞ (3.15a)

BCs :

{
u(0, t) = 0
u(L, t) = 0

, 0 < t < ∞ (3.15b)

IC : u(x, 0) = f(x), 0 ≤ x ≤ L. (3.15c)
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We will use a technique called separation of variables, which is a standard
and fundamental technique for solving many PDEs. The key step in the
separation of variables technique, is to first look for solutions to the PDE
only (later we’ll consider the BCs and eventually the IC), of the special form

u(x, t) = X(x)T (t). (3.16)

Of course, not all functions of x and t are of the form (3.16), but that doesn’t
concern us yet—we just want to find a solution. If (3.16) is a solution to
the PDE, then we can plug it in:

∂

∂t
u− γ2 ∂2

∂x2
u = 0

⇒ ∂

∂t
X(x)T (t)− γ2 ∂2

∂x2
X(x)T (t) = 0

⇒X(x)T ′(t)− γ2X ′′(x)T (t) = 0

⇒ T ′(t)
γ2T (t)

− X ′′(x)
X(x)

= 0

⇒ T ′(t)
γ2T (t)

=
X ′′(x)
X(x)

. (3.17)

Now, notice that we have a function of t only equalling a function of x only.
Is this possible? If you think about it, that means that they both must
be fixed constants! For now, let’s call this constant k. It is known as the
separation constant. Any value of separation constant would work, and the
last equation of (3.17) would be satisfied. The following relationship

T ′(t)
γ2T (t)

=
X ′′(x)
X(x)

= k (3.18)

after rearranging, yields two equations:

T ′(t)− kγ2T (t) = 0 (3.19a)
and

X ′′(x)− kX(x) = 0. (3.19b)

These are two ODEs for the functions T (t) and X(x). If we solve them
both, we’ll have a solution u(x, t) = T (t)X(x) satisfying the PDE. First,
recall that the solution to (3.19a) is the exponential function

T (t) = Cekγ2t, (3.20)
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where C is some arbitrary constant. Now, there are no requirements on k
such that the PDE will be satisfied—any value would work. But let’s invoke
a restriction on k so that our solutions will at least make sense, physically. If
this solution is u(x, t) = T (t)X(x), then, if k is positive, then kγ2 is positive,
and T (t) would go to infinity as t →∞. This doesn’t make physical sense—
we know that the temperature in the bar is not going to keep increasing and
increasing. So, we’ll place our first restriction on k: we will only consider
nonpositive values of k. (If this line of reasoning troubles you, later we will
see that the boundary conditions will restrict k to nonpositive values.) In
order to remember this, let’s say k = −λ2. We have

T (t) = Ce−λ2γ2t. (3.21)

Now, lets solve (3.19b), which is now

X ′′(x) + λ2X(x) = 0. (3.22)

Recall that the solution to (3.70b) is

X(x) = A cos(λx) + B sin(λx), (3.23)

where A and B are arbitrary constants. We now have a solution to the PDE:

u(x, t) = T (t)X(x) = Ce−λ2γ2t (A cos(λx) + B sin(λx)) . (3.24)

This solution will satisfy the PDE, no matter what the value of λ is. You
can check this for yourself by plugging it into the PDE.

Now, we are free to choose any value of λ. Let’s try and pick values such
that (3.24) satisfies the boundary conditions. These require

u(0, t) = T (t)X(0) = 0, (3.25a)
u(L, t) = T (t)X(L) = 0. (3.25b)

Since T (t) does not depend on x, and we obviously don’t want trivial solu-
tions u(x, t) = 0, (3.25) is a requirement on X(x)

X(0) = 0, (3.26a)
X(L) = 0. (3.26b)

If we enforce the left boundary condition we have

X(0) = A cos(λ0) + B sin(λ0) = A = 0. (3.27)
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So we now have

X(x) = B sin(λx). (3.28)

Enforcing the right boundary condition gives

X(L) = B sin(λL) = 0. (3.29)

We certainly don’t want B = 0 or that would give us a trivial solution for
u(x, t) = T (t)X(x). We can satisfy (3.29) if we require that λ = nπ

L , for any
integer n. We have infinitely many possibilities, so let’s denote the constant
λn = nπ

L , and denote one of our solutions as

Xn(x) = Bn sin(λnx) = Bn sin(nπ
L x). (3.30)

We can now write our solution as

un(x, t) = Tn(t)Xn(x) = Cne−λ2
nγ2tBn sin(nπ

L x)

= bne−(
nπ
L )2γ2t sin(nπ

L x), (3.31)

where we combine CnBn = bn in the final equation. The subscript on the
un(x, t) just means that any integer can be chosen and the PDE is satisfied
by (3.31), and the boundary conditions are satisfied as well!

Now, the only thing not necessarily satisfied are the initial conditions.
But we still have the arbitrary constant bn to work with. Unless we have
very special initial conditions of the form (3.31) for some value of n, simply
picking one value for n and bn will not work. However, recall that the heat
equation is linear. So a linear combination of solutions is also a solution,
as we discussed in the beginning of the course. So we can add up as many
solutions of the form (3.31) as we need (we have one for every integer n). In
fact, we can form an infinite sum

u(x, t) =
∞∑

n=1

un(x, t) =
∞∑

n=1

bne−λ2
nγ2t sin(nπ

L x), (3.32)

and expect u(x, t) to be a solution to the PDE. The sum u(x, t) will also
satisfy the B.C’s, since each un(x, t) is zero at x = 0, L. (Later we will
discuss linear B.C’s in general, which are B.C’s that are satisfied by linear
combinations of functions that satisfy them.) If we now evaluate (3.33) at
t = 0, we have

u(x, 0) =
∞∑

n=1

un(x, 0) =
∞∑

n=1

bne−λ2
nγ20 sin(nπ

L x) =
∞∑

n=1

bn sin(nπ
L x). (3.33)
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If we can satisfy

f(x) = u(x, 0) =
∞∑

n=1

bn sin(nπ
L x), (3.34)

then we’d have a unique solution, and we’d be done! Is this possible? Yes—
it’s just a Fourier sine series. We only need to determine the coefficients bn.
We use the formulas for a sine series on [0, L]:

f(x) =
∞∑

n=1

bn sin(nπ
L x), (3.35a)

where

bn =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (3.35b)

So our solution is

u(x, t) =
∞∑

n=1

bne−(
nπ
L )2γ2t sin(nπ

L x), (3.36a)

where

bn =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (3.36b)

If we consider the solution (3.36a) (regardless of the form of the initial
condition and hence the values of the constants bn), we see that as time
progresses the value of each term

e−(
nπ
L )2γ2t

decreases in magnitude. (Recall that γ2 > 0.) In fact, as t →∞, the solution
decays to zero, the value of the temperature at the ends of the bar. So the
eventual solution is just u(x, t) ≡ 0. Note that if the energy is proportional
to the integral of the temperature

Energy ∝
∫ L

0
u(x, t) dx,

the energy in the bar goes to zero as t → ∞. The initial energy in the bar
was proportional to the integral of the initial condition

Initial Energy ∝
∫ L

0
f(x) dx.
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If this value was initially less than zero (corresponding to a bar that is
initially colder on average than our temperature defined to be 0), the energy
in the bar increases as t → ∞. If this value was initially greater than zero
(corresponding to a heated bar), then the energy in the bar increases as
t →∞. This should all be physically intuitive.

3.2.2 A Bar that is Insulated on the Ends

Now, suppose that we have a metal bar that, rather than having the tem-
perature at the ends of the bar held at a fixed temperature, suppose that
the bar is perfectly insulated on the ends. Recall that we found the heat
flux φ to be proportional to the slope of the temperature

φ = −K0
∂

∂x
u(x, t).

If a bar is perfectly insulated at the ends, that means that there is no heat
flux at the endpoints. Otherwise, energy would have to be entering the bar
or leaving the bar depending on the sign of ∂

∂xu(0, t) and ∂
∂xu(L, t). So the

appropriate boundary condition for a perfectly insulated bar, is that the
slope of the temperature must be zero at the ends. We therefore can cast
this problem as an IBVP

PDE : ut − γ2uxx = 0, 0 < x < L 0 < t < ∞ (3.37a)

BCs :

{
ux(0, t) = 0
ux(L, t) = 0

, 0 < t < ∞ (3.37b)

IC : u(x, 0) = f(x), 0 ≤ x ≤ L. (3.37c)

Now, we proceed just as before, using the technique of separation of vari-
ables. Eventually we end up with our solution for X(x) just as in (3.23)

X(x) = A cos(λx) + B sin(λx). (3.38)

Recall from above that we required that X(x) meet the boundary conditions
of our IBVP. We will do the same for this problem. First, since ux(0, t) = 0
and ux(L, t) = 0, we require that X ′(0) = X ′(L) = 0. Differentiating (3.38)
gives

X ′(x) = −Aλ sin(λx) + Bλ cos(λx). (3.39)
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First we enforce the left boundary condition

X ′(0) = −Aλ sin(λ0) + Bλ cos(λ0) = Bλ = 0. (3.40)

Since we don’t want to restrict our solutions to the case where λ = 0, we
must require B = 0. So our function X(x) is now

X(x) = A cos(λx) (3.41)

Now enforcing the right boundary condition using (3.39) gives

X ′(L) = −Aλ sin(λL) = 0. (3.42)

This looks very similar to what we found for the bar in the previous section.
We can enforce this condition by requiring

λL = nπ, (3.43)

where n is any positive integer or zero. Note that n = 0 works, but unlike
before that does not give the trivial solution X(x) = 0. We therefore denote
λn = nπ

L , and denote our solutions X(x) and T (t) with subscripts

Xn(x) = An cos(nπ
L x), (3.44a)

Tn(t) = Cne−(
nπ
L )2γ2t, (3.44b)

so that our separable solution to the PDE is of the form

un(x, t) = Tn(t)Xn(x) = ane−(
nπ
L )2γ2t cos(nπ

L x), (3.44c)

where we have combined the arbitrary constants An and Cn, into one new
one an = AnCn. Now, it is important to realize that (3.44c) is a solution
to the PDE, and boundary condition for any integer n = 0, 1, 2, . . . , and
any arbitrary constant an. Since the PDE is linear, (and the boundary
conditions are linear as explained later), any linear combination of solutions
still satisfies the PDE and boundary conditions. We’ll take this to the
extreme, and assume that an infinite linear combination works as well

u(x, t) =
∞∑

n=0

un(x, t) = a0 +
∞∑

n=1

ane−(
nπ
L )2γ2t cos(nπ

L x). (3.45)

Now as before, all we need to do is make sure that (3.45) satisfies the initial
condition and we’ve found our solution. Is this possible? Sure, we just look
at the initial solution

u(x, 0) = a0 +
∞∑

n=1

an cos(nπ
L x), (3.46)
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and note that we can define the coefficients an by a cosine series for f(x) on
0 ≤ x ≤ L. So the solution is

u(x, t) = a0 +
∞∑

n=1

ane−(
nπ
L )2γ2t cos(nπ

L x), (3.47a)

where

a0 =
1
L

∫ L

0
f(x) dx, (3.47b)

an =
2
L

∫ L

0
f(x) cos(nπ

L x) dx. (3.47c)

What happens to the solution as t → ∞? Well, as with the previous prob-
lem, all of the terms for n > 0 go to zero. However, this time the tempera-
ture approaches a single constant value a0 as t →∞. What does this mean?
Notice from the solution that a0 represents the average value of the initial
temperature. So the solution approaches that value. As for the energy, the
energy in the bar remains the same—it is equivalent to the starting energy.
You may object that, “we only have shown that the energy for t = 0 and
t = ∞ is the same. We don’t know that the energy is the same for all t”.
Technically you’d be right, but in fact, we can show that the energy is the
same for all time by integrating the solution from x = 0 to x = L. I’d do
that now, but I don’t want to spoil the fun. I know that you’ll enjoy doing
that on your own for homework. If you can’t handle the suspense—do it
now.

3.2.3 Steady-State Solutions

In both of the above examples, we found that the solution approached some
function that no longer changed in time. A solution to a PDE that does not
change with time is known as a steady-state solution. That is, the solution
is steady, or unchanging with respect to time. Such a solution is really only
a function of x, since it no longer depends on t. We can therefore write
a steady-state solution as u(x, t) = Ū(x). For the heat equation in the
above two examples, we found that the solution approaches the steady-state
solution as time progresses, or u(x, t) → Ū(x) as t → ∞. However, don’t
be under the impression that all solutions to all PDEs behave this way. As
we’ll find with the wave equation, some solutions to PDEs go on changing
forever.
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What can we say mathematically about a steady-state solution u(x, t) =
Ū(x) to the heat equation IBVP? Well, the steady-state solution certainly
still obeys the PDE, it’s just a special case of solution. If we plug the
steady-state solution into the PDE, we have

∂

∂t
Ū(x)− γ2 ∂2

∂x2
Ū(x) = 0

⇒ γ2 ∂2

∂x2
Ū(x) = 0

⇒ Ū ′′(x) = 0. (3.48)

That is, the second derivative of Ū is zero. Recall from basic calculus, that
means that Ū(x) has no concavity, or, it’s just a straight line. The solution
Ū(x) must also satisfy the boundary conditions, which apply for all t > 0.
In the first example we looked at, the boundary conditions would require
that Ū(0) = Ū(L) = 0. Since Ū(x) is a straight line, the only such straight
line is the constant 0. In the second example of an insulated bar, the slope
was zero at the ends. For this problem, the steady-state solution might be a
constant other than 0, since any constant (in x) has zero slope everywhere.

3.2.4 A More General Form of Linear Boundary Conditions

So far we’ve looked at homogeneous boundary conditions, of the form

u(0, t) = u(L, t) = 0,

and
ux(0, t) = ux(L, t) = 0.

The boundary conditions are homogeneous since they equal 0. These are
both a special case of a much more general set of linear boundary conditions
of the form

α1u(0, t) + β1ux(0, t) = g1(t), (3.49a)
α2u(L, t) + β2ux(L, t) = g2(t), (3.49b)

where it is assumed that not both of α1 and β1 are zero, and the same for
α2 and β2. If g1(t) = g2(t) = 0, the boundary conditions (3.49) are said to
be homogeneous. Otherwise, they are nonhomogeneous. You should verify
the following: these linear boundary conditions are satisfied by an arbitrary
linear combination of functions that satisfy the boundary conditions, if and
only if, they are homogeneous. This is not true in general if g1(t) or g2(t)
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is nonzero. When we used separation of variables, we needed the PDE and
BC’s to be linear and homogeneous. See if you can determine at what stage
this requirement was needed. (Hint: at some point we assumed that an
infinite sum of solutions was still a solution.)

3.2.5 Non-Homogeneous Boundary Conditions

If we require homogeneous boundary conditions in order to be able to use
separation of variables, then what do we do in the case of non-homogeneous
boundary conditions? In this section we’ll look at a few simple cases that
we can deal with given the tools that we have so far. Later we will see how
we can deal with the general problem of non-homogeneous BC’s of any kind
of the form (3.49). Consider the heat equation with nonzero Dirichlet BCs:

PDE : ut − γ2uxx = 0, 0 < x < L, 0 < t < ∞, (3.50a)

BCs :

{
u(0, t) = A,

u(L, t) = B,
0 < t < ∞, (3.50b)

IC : u(x, 0) = f(x), 0 ≤ x ≤ L, (3.50c)

where A and B are constants. Now, what we are going to try and do is
convert this nonhomogeneous problem for u(x, t) to a homogeneous problem
for a new variable that is related to u(x, t) in some known way. Here’s how
we will proceed: we will let u(x, t) be the sum of two functions

u(x, t) = ũ(x, t) + h(x), (3.51)

where h(x) is some known function that we are going to choose. Note that
in this step we are not assuming anything about the solution u(x, t), even
though we will specify what h(x) is. Think of it this way, we are really just
defining the new quantity ũ(x, t) by the equation

ũ(x, t) = u(x, t)− h(x). (3.52)

Now, we are going to choose h(x) to be the steady-state solution satisfying
the nonhomogeneous boundary conditions. Recall that Ū(x) is the steady-
state solution—a straight line satisfying the boundary conditions. Using a
general formula for a straight line, we write

Ū(x) = mx + b, (3.53)
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and we’ll determine m and b such that the boundary conditions are satisfied.
For the left boundary condition, we require

Ū(0) = b = A, (3.54)

which determines the value of b, and for the right boundary we require

Ū(L) = mL + A = B

⇒m =
B −A

L
, (3.55)

which just says that the slope is rise over run. So the steady-state solution
is

Ū(x) =
B −A

L
x + A. (3.56)

You might have been able to immediately write the equivalent formula for
Ū(x)

Ū(x) =
A(L− x)

L
+

Bx

L
, (3.57)

but to each their own. Now, we write the solution as

u(x, t) = ũ(x, t) + Ū(x), (3.58)

where Ū(x) is now known. Incidentally, the function ũ(x, t) is known as the
transient part of the solution. If u(x, t) approaches the steady-state solution,
then the transient solution must go to zero. Now, we use the IBVP (3.50)
to find another IBVP for ũ(x, t). First, if u(x, t) satisfies the PDE, then we
can plug it in

∂u(x, t)
∂t

− γ2 ∂2u(x, t)
∂x2

= 0,

⇒ ∂

∂t
(ũ(x, t) + Ū(x)) +−γ2 ∂2

∂x2
(ũ(x, t) + Ū(x)) = 0

⇒∂ũ(x, t)
∂t

+
∂Ū(x)

∂t
− γ2 ∂2ũ(x, t)

∂x2
− γ2 ∂2Ū(x)

∂x2
,

⇒∂ũ(x, t)
∂t

− γ2 ∂2ũ(x, t)
∂x2

= 0, (3.59)

so ũ(x, t) obeys the exact same PDE. (Note: we could have determined
this along another line of reasoning—the steady state solution Ū(x) and
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u(x, t) both satisfy the PDE, which is linear, and ũ(x, t) is just a linear
combination of Ū(x) and u(x, t).) Now, u(x, t), the solution we are looking
for, must satisfy the original boundary conditions. Of course Ū(x) satisfies
the boundary conditions—that’s how we determined it. So it should be clear
that ũ(x, t) must satisfy homogeneous boundary conditions, since ũ(x, t) =
u(x, t)− Ū(x). That is, at either boundary we have

ũ(0, t) = u(0, t)− Ū(0) = A−A = 0, (3.60a)
ũ(L, t) = u(L, t)− Ū(L) = B −B = 0. (3.60b)

Now, for the initial conditions we have

u(x, 0) = f(x), for 0 ≤ x ≤ L, (3.61)

so for the initial conditions for ũ(x) we have

ũ(x, 0) = u(x, 0)− Ū(x) = f(x)− Ū(x). (3.62)

Now, we can write the new IBVP as

PDE : ũt − γ2ũxx = 0, 0 < x < L, 0 < t < ∞, (3.63a)

BCs :

{
ũ(0, t) = 0,

ũ(L, t) = 0,
0 < t < ∞, (3.63b)

IC : ũ(x, 0) = g(x), 0 ≤ x ≤ L, (3.63c)

where

g(x) = f(x)− Ū(x) = f(x)− B −A

L
x−A. (3.64)

Once we solve this problem, using separation of variables, we can determine
u(x, t) immediately since it is just u(x, t) = ũ(x, t)+ Ū(x). In fact, this form
of the solution is quite nice since it shows us the steady state and transient
parts of the solution.

3.3 The Wave Equation

We will now look at the one-dimensional wave equation on a finite interval.
Suppose that our physical system is an elastic string tied at two points, say
x = 0, and x = L. The string is taught, so that when in equilibrium the
string is a straight flat line. If the string is displaced from this flat line, we
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will refer to the vertical displacement at a given point 0 ≤ x ≤ L, and at a
given time, t > 0, as u(x, t). If we make some physical assumptions about
the string and it’s displacement profile, it can be shown (see the derivation
in the book), that the string obeys the PDE:

∂2

∂t2
u− c2 ∂2

∂x2
u = 0,

where c is a parameter that depends upon physical properties of the string.
As we will see, c is actually the wave speed of the system (the speed at which
wave profiles propagate.) We confine our system with boundary conditions,
just as we did for the heat equation. If we enforce that the string is tied
securely at the endpoints, we have the boundary conditions

(0, t) = 0, (3.65a)
u(L, t) = 0, for 0 < t, (3.65b)

since clearly the value at the endpoints is the equilibrium value, which we
have already chosen to be zero. Just as we did for the heat equation, we will
need initial conditions in order to determine a unique solution to our physical
problem. (The solution we are looking for is of course the displacement of the
string for all time, u(x, t)). For wave equation it turns out, though proving
this is beyond the scope of this class, that we need two initial conditions
rather than just one in order to have a IBVP with a unique solution. You
should find this believable since, for the heat equation we had only one
derivative of u with respect to time, and for the wave equation we have two—
utt rather than just ut in the PDE. (Recall that if you know the derivative
of a function f ′(t), then you can determine f(t) up to an arbitrary constant,
and if you know f(t) at some value, say f(0), then you can find f(t) for all t.
If you only know f ′′(t), then you need to know f(0) and f ′(0) to determine
f(t) for all t. You can think of the PDEs as being analogous to knowing
something about the derivatives of the function you are looking for. For the
heat equation you had a relationship for ut, but for the wave equation, you
only have a relationship for utt. So for the former you only needed u(x, 0),
but for the latter you will also need ut(x, 0).) So we will specify the initial
conditions as

u(x, 0) = f(x), ut(x, 0) = g(x). (3.66)

The function f(x) is the initial displacement of the string, or the initial
solution just as with the heat equation, and the function g(x) specifies the
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initial (vertical) velocity of the string at a given point x. So our initial
boundary value problem is

PDE : utt − c2uxx = 0, 0 < x < L 0 < t < ∞ (3.67a)

BCs :

{
u(0, t) = 0,

u(L, t) = 0,
0 < t < ∞ (3.67b)

ICs :

{
u(x, 0) = f(x),
ut(x, 0) = g(x),

0 ≤ x ≤ L. (3.67c)

The IBVP (3.67a) is guaranteed to have a unique solution (given reasonable
restrictions on f(x) and g(x)). Again, proving that is way beyond the scope
of this class, but you can just take my word for it.

We can solve (3.67a) by using separation of variables like we did for the
heat equation. Recall that we begin by looking for solutions, to the PDE
only, of the form

u(x, t) = X(x)T (t).

Then we plug that into the PDE since we are assuming that it is a solution
and just want to find its form

∂2

∂t2
u− c2 ∂2

∂x2
u = 0

⇒ ∂2

∂t2
X(x)T (t)− c2 ∂2

∂x2
X(x)T (t) = 0

⇒X(x)T ′′(t)− c2X ′′(x)T (t) = 0

⇒ T ′′(t)
c2T (t)

− X ′′(x)
X(x)

= 0

⇒ T ′′(t)
c2T (t)

=
X ′′(x)
X(x)

. (3.68)

We then note that a function of only t can equal a function of only x, only
if they are both just constants. So we denote this constant k, which gives

T ′′(t)
c2T (t)

=
X ′′(x)
X(x)

= k. (3.69)

After rearranging, this yields two equations:

T ′′(t)− kc2T (t) = 0 (3.70a)
and

X ′′(x)− kX(x) = 0. (3.70b)
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Now if we were to solve these two ODEs, using any value of k, we would
determine a solution to the PDE u(x, t) = T (t)X(x). However, we want
our solution to meet the boundary conditions. We note that if u(x, t) =
T (t)X(x) is to meet the boundary conditions, and not be the trivial solution
T (t)X(x) = 0, then X(x) must meet the boundary conditions. In your
homework you were asked to show that X(x) can only meet the boundary
conditions if k < 0. So we will denote k = −λ2, to remember that it is
negative. If we solve (3.70a) and (3.70b) after replacing k with −λ2, we
have

T (t) = A sin(cλt) + B cos(cλt), (3.71a)
X(x) = C sin(λx) + D cos(λx), (3.71b)

where A,B, C and D are arbitrary constants. We chose k to be negative in
order to meet the boundary conditions. Now we will enforce the boundary
conditions on X(x). The left boundary condition requires

X(0) = C sin(0) + D cos(0) = D = 0. (3.72)

So we now have that X(x) = C sin(λx), since the coefficient for the cosine,
D, must be zero in order to meet the left B.C. Now for the right B.C., we
have

X(L) = C sin(λL) = 0, (3.73)

which implies that either C = 0, or λL = nπ for any integer n. Since setting
C = 0 gives the trivial solution, X(x) = 0, we require that λ = nπ

L in order
to meet the boundary condition. One way to think about this is: you could
have picked any value of λ and you would have found a solution to the PDE.
If you pick a value λ = nπ

L , then you still found a solution to the PDE, plus
it meets the boundary conditions if you set D = 0. Since n can be any
integer, you in fact found infinitely many solutions to the PDE that meet
the boundary conditions. They are all of the form

un(x, t) = Tn(t)Xn(x) = [An sin(cλnt) + Bn cos(cλnt)]Cn sin(λnx), (3.74)

where λn = nπ
L , and An, Bn and Cn are arbitrary constants that you can

choose. Now, because the PDE is linear, and the boundary conditions are
linear and homogeneous, we can take an arbitrary linear combination of
solutions of the form (3.74) with different values of n, and that is still a
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solution to the PDE and meets the B.C.’s. If we take this to the limit
(literally), we have a solution as well

u(x, t) =
∞∑

n=1

[
An sin(cnπ

L t) + Bn cos(cnπ
L t)

]
Cn sin(nπ

L x). (3.75)

Now, these terms in the sum have arbitrary (they can be anything) constants
An, Bn and Cn. But, really there are only two arbitrary constants, since you
can distribute Cn into the terms in the brackets. So we might as well write
this sum as

u(x, t) =
∞∑

n=1

[
An sin(cnπ

L t) + Bn cos(cnπ
L t)

]
sin(nπ

L x). (3.76)

To put this another way, if you think you could have chosen three constants,
An, Bn and Cn, you really just chose two— AnCn and BnCn. So we just
redefined An and Bn to be AnCn and BnCn. (If this seems confusing you
are thinking too hard about it.) Okay, so we have a solution with arbitrary
constants that meets the B.C.’s. But we have two initial conditions that
we need to meet. With the heat equation we only had to meet one I.C.,
u(x, 0) = f(x), but we only had one arbitrary constant for each term in
the sum then. Now we have two, so we have more flexibility. If we try and
impose the first I.C., we arrive at the condition

u(x, 0) =
∞∑

n=1

[
An sin(cnπ

L 0) + Bn cos(cnπ
L 0)

]
sin(nπ

L x)

=
∞∑

n=1

Bn sin(nπ
L x) = f(x). (3.77)

This is just like before with the heat equation! The condition can be met
since we know that a sine series can equal a function if we define the coeffi-
cients right. So if we choose the arbitrary constants to be

Bn =
2
L

∫ L

0
f(x) sin(nπ

L x)dx, (3.78)

the condition is met. Now, we still have the other condition to meet. We
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need ut(x, 0) = 0. We differentiate u(x, t) with respect to t

∂

∂t
u(x, t) =

∂

∂t

∞∑
n=1

[
An sin(cnπ

L t) + Bn cos(cnπ
L t)

]
sin(nπ

L x)

=
∞∑

n=1

∂

∂t

[
An sin(cnπ

L t) + Bn cos(cnπ
L t)

]
sin(nπ

L x)

=
∞∑

n=1

[
Ancnπ

L cos(cnπ
L t)−Bncnπ

L sin(cnπ
L t)

]
sin(nπ

L x). (3.79)

Now we try and impose the other I.C., which requires that

∂

∂t
u(x, 0) =

∞∑
n=1

[
Ancnπ

L cos(cnπ
L 0)−Bncnπ

L sin(cnπ
L 0)

]
sin(nπ

L x)

=
∞∑

n=1

[
Ancnπ

L

]
sin(nπ

L x) = g(x). (3.80)

The cnπ
L is a given constant, but the An is completely arbitrary, so we can

meet this condition as well if we define the An appropriately. A sine series
for g(x)

g(x) =
∞∑

n=1

bn sin(nπ
L x), (3.81)

has coefficients

bn =
2
L

∫ L

0
g(x) sin(nπ

L x) dx. (3.82)

Therefore, we can enforce our I.C. if

Ancnπ
L =

2
L

∫ L

0
g(x) sin(nπ

L x) dx. (3.83)

Or, we define An by

An =
2

cnπ

∫ L

0
g(x) sin(nπ

L x) dx. (3.84)
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So now we write a final solution as

u(x, t) =
∞∑

n=1

[
An sin(cnπ

L t) + Bn cos(cnπ
L t)

]
sin(nπ

L x), (3.85a)

where now the coefficients are no longer arbitrary, but defined by

An =
2

cnπ

∫ L

0
g(x) sin(nπ

L x) dx, (3.85b)

and,

Bn =
2
L

∫ L

0
f(x) sin(nπ

L x)dx. (3.85c)

There is a very physically enlightening interpretation of this mathemati-
cal solution. Note that our solution is an infinite sum of all of the separable
solutions that we found

un(x, t) =
[
An sin(cnπ

L t) + Bn cos(cnπ
L t)

]
sin(nπ

L x). (3.86)

What do each of these separable solutions behave like? Well, before answer-
ing that question, note that un(x, t) is of the form

un(x, t) = Tn(t) sin(nπ
L x), (3.87)

where Tn(t) is just a function of t, not x. So at any given time, this is just
some constant multiplying sin(nπ

L x), which always has the same profile with
respect to x. So we might say that Tn(t) is the amplitude of sin(nπ

L x). In
fact it is a time dependent amplitude, but still just an amplitude. If we
note the form of Tn(t), we see that it oscillates in time. So our solution is
a sum of solutions, each of this form—a sine function of x that oscillates
in time. Each one of these separable solutions is a standing wave—a wave
with a fixed profile and time-dependent amplitude. (The sum of multiple
standing waves is NOT necessarily a standing wave, so our solution is not
necessarily a standing wave.) Each separable solution is in fact a special type
of standing wave, known as a mode. Note that each mode has a wavelength
of 2L/n. For n = 1, the mode is known as the fundamental mode. The first
four modes are shown in Figure 3.1. You should also contemplate the time
dependence of the amplitude of each mode. Do the modes oscillate at the
same frequency in time?
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Figure 3.1: The first four modes of the wave equation on [0, L]. The top
graph is the fundamental mode, A1 sin( π

Lx). The lower graphs are the second
(n = 2), third (n = 3) and fourth (n = 4) modes. These are sometimes
referred to as overtones of the fundamental mode. That is, for a given
length L, the functions An sin(nπ

L x) for all integers n > 1, are overtones of
A1 sin( π

Lx).
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Example 3. Let’s consider an example. Suppose that we solving problem
(3.67a) and we are given initial conditions

f(x) = 2 sin( π
Lx) +

1
2

sin(3π
L x) (3.88a)

g(x) = 0. (3.88b)

So we have started with a nonzero initial profile in the string, but the string
is initially motionless. Now, our solution is given by (3.85a), so all we need
to do is determine the arbitrary coefficients. Obviously An = 0,∀n, since
g(x) = 0. For the Bn we have

Bn =
2
L

∫ L

0
f(x) sin(nπ

L x) dx =
2
L

∫ L

0

[
2 sin( π

L) +
1
2

sin(3π
L x)

]
sin(nπ

L x) dx.

(3.89)

Now, before going on, you should recognize that we are trying to determine
the Fourier sine series of a function that is a few of the basis functions in
the series. Note that the sine series we are trying to find is

2 sin( π
L) +

1
2

sin(3π
L x) =

∞∑
n=1

Bn sin(nπ
L x). (3.90)

You should be able to look at this and determine what the coefficients are.
Convince yourself that they are B1 = 2, B3 = 1

2 and Bn = 0 for all other n.
Remember, anytime you are writing a Fourier series for a function that is a
simple finite linear combination of basis functions in the series, you should
immediately know the coefficients. But, for the skeptical, let’s integrate any-
way. We have

Bn =
2
L

∫ L

0
2 sin( π

L) sin(nπ
L x) dx +

2
L

∫ L

0

1
2

sin(3π
L x) sin(nπ

L x) dx

=
4
L

∫ L

0
sin( π

L) sin(nπ
L x) dx +

1
L

∫ L

0
sin(3π

L x) sin(nπ
L x) dx. (3.91)

Now, again, you should recognize that we can use orthogonality of our basis
functions to determine these integrals. We have two integrals, each one is an
integral of the form

∫ L
0 sin(mπ

L x) sin(nπ
L x) dx, which are zero unless m = n,

in which case we have integrals of (sin(nπ
L x))2 on over [0, L]. That integral

is always L
2 . So we have

B2 = 2, B3 =
1
2
, Bn = 0,∀n 6= 2, 3. (3.92)
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So our solution becomes a finite sum with only two terms:

u(x, t) = 2 cos( cπ
L t) sin( π

Lx) +
1
2

cos( c3π
L t) sin(3π

L x). (3.93)
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Chapter 4

The 2D Heat and Wave
Equations on Rectangular
Domains and 2D Fourier
Series

In this chapter we will look at the heat and wave equations in two dimen-
sions, on a fine domain. In one dimension there was only one type of finite
domain—an interval. But in 2D a finite domain could be any bounded con-
nected region. For simplicity of solution we will consider the domain to be
a rectangle—0 < x < L and 0 < y < H. For more complex domains, it
is not always possible to analytically solve even simple linear PDEs. Often
numerical methods on computers are needed if the domain is not a simple
geometric shape. However, even in designing the algorithms for these nu-
merical methods, it is important to understand the solution to PDEs on
simpler domains such as a rectangle. Therefore, you should realize the ma-
terial in this class is important for solving real world problems—even if these
simple examples do not seem realistic to you.

4.1 The Wave Equation on a Rectangle

Consider a system that is governed by the wave equation in 2D. The solution
we are looking for is a time dependent surface z = u(x, y, t). At any given
time, it is just a surface (more specifically a function of x and y). However, it
moves with time. At any given point (x0, y0), u(x0, y0, t) is the displacement
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of the surface from some value defined to be zero, ut(x0, y0, t) is the velocity
in the z direction at that point, and utt(x0, y0, t) is the acceleration and so
on. If this surface obeys the wave equation on some domain (say a rectangle)
then we have

utt − c2(uxx + uyy) = 0. (4.1)

An example might be a rectangular drum. The surface u is the displacement
of the drum skin from the equilibrium value defined to be zero. To have a
unique solution we need boundary conditions (on all four boundaries) and
two initial conditions just like in 1D. So the IBVP takes the form

PDE: utt − c2(uxx + uyy) = 0, t > 0, 0 < x < L, 0 < y < H, (4.2a)

BC’s

{
u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < h,

u(x, 0, t) = 0, u(x,H, t) = 0, t > 0, 0 < x < L,
(4.2b)

IC’s

{
u(x, y, 0) = f(x, y), 0 < x < L, 0 < y < H,

ut(x, y, 0) = g(x, y), 0 < x < L, 0 < y < H.
(4.2c)

Now, it turns out that we can use separation of variables to solve this IBVP
just as we did in 1D. This time, our separable solution will be the product
of three functions

u(x, y, t) = T (t)X(x)Y (y). (4.3)

We plug it into the PDE to determine conditions on T (t)X(x)Y (y) so that
it will indeed be a solution. This gives (dropping independent variables)

T ′′XY − c2TX ′′Y − c2TXY ′′ = 0. (4.4)

Dividing by c2TXY and rearranging gives

T ′′

c2T
=

X ′′

X
+

Y ′′

Y
. (4.5)

So we have a function only of t equalling a function of only x and y. So this
must be a constant. We’ll denote it −k2, giving

T ′′

c2T
=

X ′′

X
+

Y ′′

Y
= −k2. (4.6)

You might argue, ”how do we know it’s negative?” It doesn’t need to be to
satisfy the PDE. However, later we’d find that it must be in order to satisfy
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BCs. So I’ll spare you the suspense. Now, if we take the last of the two
equations and rearrange it we have

X ′′

X
= −k2 − Y ′′

Y
. (4.7)

Again, we have a function only of x equalling a function only of y. So we
can set both sides equal to a constant

X ′′

X
= −k2

x, (4.8)

Y ′′

Y
+ k2 = k2

x. (4.9)

We could follow the same procedure for Y (y) and we’d have

Y ′′

Y
= −k2

y, (4.10)

X ′′

X
+ k2 = k2

y. (4.11)

So note that we now have an ODE for each of T , X and Y . The negative
constants are arbitrary, but they must be related by k2 = k2

x + k2
y. If we

solve each of these ODEs, we have

T (t) = A sin(kct) + B cos(kct), (4.12a)
X(x) = C sin(kxx) + D cos(kyy), (4.12b)
Y (y) = E sin(kyy) + F cos(kyy). (4.12c)

The separable solution is then

u(x, y, t) = T (t)X(x)Y (y), (4.13)

using the formulas (4.12). Now, we try and meet the BCs. We have

u(0, y, t) = T (t)X(0)Y (y) = 0, 0 < y < h, (4.14a)
u(L, y, t) = T (t)X(L)Y (y) = 0, 0 < y < h, (4.14b)
u(x, 0, t) = T (t)X(x)Y (0) = 0, 0 < x < L, (4.14c)
u(x,H, t) = T (t)X(x)Y (H) = 0, 0 < x < L. (4.14d)

Note that in each case, if we avoid the trivial solution, the BCs must be met
by only one of the three functions—the one evaluated at the boundary. So
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(4.14) will be satisfied by nontrivial solutions if

u(0, y, t) = X(0) = 0, 0 < y < h, (4.15a)
u(L, y, t) = X(L) = 0, 0 < y < h, (4.15b)
u(x, 0, t) = Y (0) = 0, 0 < x < L, (4.15c)
u(x,H, t) = Y (H) = 0, 0 < x < L. (4.15d)

For X(x) and Y (y) we have a two-point homogeneous boundary conditions.
So it follows that

Xn(x) = Cn sin(nπ
L x), (4.16)

Ym(y) = Em sin(mπ
H y), (4.17)

where m and n are arbitrary integers. Note that for each one of these func-
tions, the boundary conditions were used just as they were in one dimension.
Note also that ky = mπ

H and kx = nπ
L for arbitrary integers n and m. The

only requirement is that for each separable solution, the value of k, used in
the solution for T (t), must be k =

√
(nπ

L )2 + (mπ
H )2. We can denote this k

with two indices, kmn =
√

(nπ
L )2 + (mπ

H )2. So our separable solution, which
we will denote with two indices is

umn(x, y, t) = Tmn(t)Xn(x)Ym(y) (4.18)
= [Amn sin(kmnct) + cos(kmnct)] sin(nπ

L x) sin(mπ
H y), (4.19)

where kmn =
√

(nπ
L )2 + (mπ

H )2. Now, like always, we can form a linear
combination of these solutions and expect it to still satisfy the linear PDE
and the homogeneous BCs. But this time we have two indices that can
be chosen arbitrarily. That is, for each value of n we have infinitely many
values of m to choose from, and vice versa. So we can express this infinite
sum as a sum over two indices, m and n. So we have

u(x, y, t) =
∞∑

n=1

∞∑
m=1

[Amn sin(kmnct) + Bmn cos(kmnct)] sin(nπ
L x) sin(mπ

H y).

(4.20)

Now, the only thing left to do is try and satisfy the initial conditions. Let’s
just plug in t = 0 and set it equal to f(x, y) see what happens

u(x, y, 0) = f(x, y) =
∞∑

n=1

∞∑
m=1

Bmn sin(nπ
L x) sin(mπ

H y). (4.21)
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Is this possible? Well, it looks a little like a sine series, but it has two
functions. First, I’ll just make the claim that something called a 2D sine
series exists. That is, we can write an arbitrary function f(x, y) as an infinite
sum of products of sin(nπ

L x) and sin(mπ
H y) That is,

f(x, y) =
∞∑

n=1

∞∑
m=1

Bmn sin(nπ
L x) sin(mπ

H y), (4.22)

if we define the coefficients by

Bmn =
4

LH

∫ H

0

∫ L

0
f(x, y) sin(mπ

H y) sin(nπ
L x) dx dy. (4.23)

It turns out that this is indeed true, as long as f(x, y) is a suitable function
(it has to be continuous with continuous partial derivatives—but we won’t
worry about those details.)

We can show this using 1D Fourier sine series as well. Suppose that

f(x, y) =
∞∑

n=1

∞∑
m=1

Bmn sin(nπ
L x) sin(mπ

H y). (4.24)

Let’s write a few terms in the inner sum to get a feel for this double sum

f(x, y) =
∞∑

n=1

[
B1n sin( π

H y) + B2n sin(2π
H y) + B3n sin(3π

H y) + · · ·+
]
sin(nπ

L x).

(4.25)

Now, think of this inner sum as a single coefficient in a sine series in x.
You can think of the inner sum as a function of y, or you can just imagine
evaluating f(x, y) at some point y0 for the time being. That is

f(x, y0) =
∞∑

n=1

cn(y0) sin(nπ
L x), (4.26)

where cn(y0) =
∑∞

m=1 Bmn sin(mπ
H y0). This should work just like a 1D sine

series, so we need

cn(y0) =
2
L

∫ L

0
f(x, y0) sin(nπ

L x) dx. (4.27)

That is, for each value of y = y0, f(x, y0) is just a function of x, and cn(y0) is
just a constant. However, we know that for any value of y0 equation (4.26)
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will be satisfied. So we might as well allow y to vary. Since cn(y) is actually
a series we have

∞∑
m=1

Bmn sin(mπ
H y) =

2
L

f(x, y) sin(nπ
L x) dx. (4.28)

Can we isolate Bmn for a specific value of m and n? We can use orthogonality
of sin(mπ

H y) for different values of m. If we multiply both sides of (4.28) by
sin( jπ

H y), where j is some integer, and then integrate (and multiply by 2
H )

we have

2
H

∫ H

0
sin( jπ

H y)

[ ∞∑
m=1

Bmn sin(mπ
H y)

]
dy

=
2
H

∫ H

0
sin( jπ

H y)
[

2
L

∫ L

0
f(x, y) sin(nπ

L x) dx

]
dy. (4.29)

This can be rearranged to yield

∞∑
m=1

Bmn

[
2
H

∫ H

0
sin( jπ

H y) sin(mπ
H y) dy

]
=

4
LH

∫ H

0

∫ L

0
f(x, y) sin( jπ

H y) sin(nπ
L x) dx dy. (4.30)

Now, by orthogonality the integrals in the sum on the left are zero, unless
j = m. So only one term remains in the infinite sum, and we have

Bjn
2
H

∫ H

0
sin2( jπ

H y) dy

=
4

LH

∫ H

0

∫ L

0
f(x, y) sin( jπ

H y) sin(nπ
L x) dx dy. (4.31)

Now, the integral on the left is equal to H
2 . So we are left with

Bjn =
4

LH

∫ H

0

∫ L

0
f(x, y) sin( jπ

H y) sin(nπ
L x) dx dy. (4.32)

Since j was an arbitrary integer, and now we have a formula for Bjn for
any integers j and n, let’s rename j by m since that what we had originally.
This gives

Bmn =
4

LH

∫ H

0

∫ L

0
f(x, y) sin(mπ

H y) sin(nπ
L x) dx dy. (4.33)
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Note that this is the same as (4.23), so we’ve proved it essentially (given
a few assumptions about iterated integrals and convergence that we won’t
worry about).

Now, we still have the Amn to determine, but we also have the other
initial condition to meet. If we differentiate (4.20) with respect to time, we
have

∂

∂t
u(x, y, t)

=
∞∑

n=1

∞∑
m=1

[kmncAmn cos(kmnct)− kmncBmn sin(kmnct)]

sin(nπ
L x) sin(mπ

H y). (4.34)

Evaluating this at t = 0 and setting it equal to g(x, y) gives

g(x, y) =
∂

∂t
u(x, y, 0) =

∞∑
n=1

∞∑
m=1

kmncAmn sin(nπ
L x) sin(mπ

H y). (4.35)

Now that we believe in 2D Fourier sine series, we recognize this as a 2D sine
series with coefficients

kmncAmn =
4

LH

∫ H

0

∫ L

0
g(x, y) sin(mπ

H y) sin(nπ
L x) dx dy. (4.36)

Rearranging gives

Amn =
4

LHkmnc

∫ H

0

∫ L

0
g(x, y) sin(mπ

H y) sin(nπ
L x) dx dy. (4.37)
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So we have our solution

u(x, y, t) =
∞∑

n=1

∞∑
m=1

[Amn sin(kmnct) + Bmn cos(kmnct)] sin(nπ
L x) sin(mπ

H y),

(4.38a)

where,

kmn =
√

(nπ
L )2 + (mπ

H )2, (4.38b)

and,

Bmn =
4

LH

∫ H

0

∫ L

0
f(x, y) sin(mπ

H y) sin(nπ
L x) dx dy, (4.38c)

and,

Amn =
4

LHkmnc

∫ H

0

∫ L

0
g(x, y) sin(mπ

H y) sin(nπ
L x) dx dy (4.38d)
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Chapter 5

Elliptic Equations on
Rectangles

In this chapter we will look at the two classic elliptic PDEs—Laplace’s equa-
tion and Poisson’s equation. These equations arise in many applications,
such as fluid dynamics, electrostatics, and just about any other topic in
physics. However, we won’t always talk about a specific application the
way we did for the heat and wave equation. Partly because arriving at these
equations often requires some theory from the science of the application that
is beyond the scope of this class.

So, for this chapter we will just assume that there is some function
u(x, y) that we are interested in. In case you are curious of some examples,
in electrostatics this function might be the electric potential (the voltage)—
a scalar function in space. The gradient of this function is the electric
field. In fluid dynamics this function might be something known as the fluid
potential—a scalar function the gradient of which is the fluid velocity vector
field. Don’t worry about it if you aren’t familiar with these things.

5.1 Laplace’s Equation

The first elliptic PDE we will look at is Laplace’s equation. It has the form

∂2u

∂x2
+

∂2u

∂y2
= 0. (5.1)

Note that this PDE has no time variable—it is time independent. The
solution u(x, y) is not a function of time—it does not vary in time, it is just
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a surface that we are looking for. You can think of lots of functions that
satisfy this PDE—any function that is linear since both second derivatives
would be zero. However, there are lots of functions that are not linear that
satisfy (5.1). If ∂2u

∂y2 is equal and opposite to ∂2u
∂x2 then u satisfies (5.1). Like

before, conditions will narrow down the possible solutions so that there is
only one unique solution. Of course, since there is no time variable, there will
be no initial conditions. There are only boundary conditions. The form of
the boundary conditions will depend on the application and the domain that
the application dictates. In real world applications Laplace’s equation arises
in all sorts of geometries—in semiconductors, blood vessels, underground oil
reservoirs, around airplane wings...you name it. But for now, we’ll just look
at Laplace’s equation on a rectangle. That is, suppose we are interested in
a system that is governed by Laplace’s equation on a rectangle. That is,

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < L, 0 < y < L. (5.2)

In order to complete this system and ensure a unique solution we need
boundary conditions on u(x, y) along the boundaries of our domain. That
is, the function u(x, y) must be specified on the boundaries of the rectangle{

u(0, y) = g1(y), u(L, y) = g2(y),
u(x, 0) = f1(x), u(x,H) = f2(x)

(5.3)

Together with the PDE these BCs constitute our boundary value problem,
or BVP, which has a unique solution

PDE:
∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < L, 0 < y < L, (5.4a)

BC’s:

{
u(0, y) = g1(y), u(L, y) = g2(y),
u(x, 0) = f1(x), u(x,H) = f2(x).

(5.4b)

This is the equivalent of our IBVP from before.
Let’s digress briefly to discuss some common notation. Laplace’s equa-

tion is commonly written as

∇2u = 0. (5.5)

This differential operator ∇2 is known as the Laplacian. Where does this
notation come from? Consider the gradient of u

∇u = i
∂u

∂x
+ j

∂u

∂y
. (5.6)
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Now consider the divergence of this vector

∇ · (∇u) = (i
∂

∂x
+ j

∂

∂y
) · (i∂u

∂x
+ j

∂u

∂y
) (5.7)

=
∂2u

∂x2
+

∂2u

∂y2
. (5.8)

The gradient followed by the divergence is kind of like the same operator
acting twice, so notationally it makes sense to write (∇·∇ = ∇2). We’ll use
this notation since it is commonplace (and it saves me a lot of typing).

\laplace u=0

vs.

\frac{\partial^2 u}{\partial x ^2} + \frac{\partial^2 u}{\partial y ^2} =0

Sometimes, especially in the mathematics community, you will see the Lapla-
cian written as ∆ rather than ∇2. However, I don’t like that notation since
it might be confused with delta for a change in something. Plus, the “2”
reminds me that second derivatives are involved.

Now, before we get to solving our BVP (5.4) in general, we must consider
one with very simple BCs. Consider the BVP

PDE: ∇2u = 0, 0 < x < L, 0 < y < H, (5.9a)

BC’s:

{
u(0, y) = 0, u(L, y) = 0,

u(x, 0) = 0, u(x,H) = f2(x).
(5.9b)

All of the BCs are zero, except along the edge y = L, where the solution
equals some specified function of x. How are we going to solve this BVP?
You guessed it—separation of variables. We assume solutions of the form

u(x, y) = X(x)Y (y), (5.10)

and then plug that into the PDE to establish conditions on X(x) and Y (y).
We have

X ′′(x)Y (y) + X(x)Y ′′(y) = 0. (5.11)

We then divide by X(x)Y (y) to separate the functions, which lead to

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

= 0, (5.12)
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which means that each ratio must equal a constant. So we have

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= k. (5.13)

Now, note that whatever sign k has, the solutions to the resulting ODEs for
X(x) and Y (y) will be different. In one case X(x) will be oscillatory and
Y (y) will be exponential, or vice versa. So what do we chose? Consider
the BCs. We need X(x) to meet two homogeneous BCs.—that is X(0) =
X(L) = 0. But Y (y) is only zero at y = H. We’ll worry about Y (y) later,
but for now, we know (from previous homework) that the only way X(x)
can be nontrivial and meet the BCs is if k < 0. So we replace k with −λ2,
which gives the two ODEs

X ′′(x) + λ2X(x) = 0, (5.14a)

Y ′′(y)− λ2Y (y) = 0. (5.14b)

By now you should know the two solutions

X(x) = A sinλx + B cos λx, (5.15a)
Y (y) = C sinhλy + D coshλy. (5.15b)

Now, we need our product solution u(x, y) = X(x)Y (y) to meet the homo-
geneous boundary conditions. So we have

u(0, y) = X(0)Y (y) = 0, (5.16)
u(L, y) = X(L)Y (y) = 0. (5.17)

We don’t want to set Y (y) = 0, as that would produce the trivial solution.
So we insist that X(0) = X(L) = 0. This should be familiar and you should
recognize that in order to meet the BCs, D = 0 and λ = nπ

L for some integer
n. So for X(x) we have infinitely many solutions, one for each integer n
(each denoted with a subscript)

Xn(x) = An sin(nπ
L x). (5.18)

This also means that

Yn(y) = Cn sinh nπ
L y + Dn cosh nπ

L y (5.19)

Now, since the Laplace equation is linear, and the boundary conditions on
Xn(x) are homogeneous, we can form a linear combination of the solutions
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un(x, t) = XnYn. If we take this idea to the limit, we have a series solution

u(x, y) =
∞∑

n=1

[
Cn sinh nπ

L y + Dn cosh nπ
L y

]
sin(nπ

L x), (5.20)

that satisfies the PDE and the boundary conditions in x, or

u(0, y) = 0, (5.21a)
u(L, y) = 0. (5.21b)

Now, we try and meet the boundary conditions in y. First, lets look at the
lower boundary by plugging y = 0 into the solution (5.20). We have

0 = u(x, 0) =
∞∑

n=1

[
Cn sinh nπ

L 0 + Dn cosh nπ
L 0

]
sin(nπ

L x) =
∞∑

n=1

[Dn1] sin(nπ
L x).

(5.22)

So we must have Dn = 0 for all integers n. Now for the other BC at y = H.
We have (using what we now know about the Dn)

f2(x) = u(x,H) =
∞∑

n=1

Cn sinh nπ
L H sin(nπ

L x). (5.23)

This should look familiar. The series on the right is a sine series with
coefficients Cn sinh plnH. So if we define the Cn, such that Cn sinh plnH
are the coefficients of a sine series of f(x), then the condition (5.23) will be
satisfied. So we need

Cn sinh nπ
L H =

2
L

∫ L

0
f2(x) sin(nπ

L x) dx, (5.24)

or

Cn =
2

L sinh nπ
L H

∫ L

0
f2(x) sin(nπ

L x) dx. (5.25)

This gives us our solution

u(x, y) =
∞∑

n=1

An sinh(nπ
L y) sin(nπ

L x), (5.26)

where

An =
2

L sinh nπ
L H

∫ L

0
f2(x) sin(nπ

L x) dx. (5.27)
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I’ve switched the Cn to an An, for reasons that will be clear below.
Now, again consider Laplace’s equation with nonzero boundary condi-

tions on only one of the 4 boundaries, but this time let’s say we want to
solve

PDE: ∇2u = 0, 0 < x < L, 0 < y < H, (5.28a)

BC’s:

{
u(0, y) = 0, u(L, y) = 0,

u(x, 0) = f1(x), u(x,H) = 0.
(5.28b)

We would of course proceed in exactly the same manner as above—with
separation of variables. Eventually we’d reach the point of (5.20)

u(x, y) =
∞∑

n=1

[
Cn sinh nπ

L y + Dn cosh nπ
L y

]
sin(nπ

L x). (5.29)

Last time we found that in order to meet the boundary condition u(x, 0) = 0
we set Dn = 0, since the sinh is zero at y = 0. This time, it’s not quite
that easy since we now need u(x, H) = 0. In general, we need to form a
relationship between Cn and Dn such that Cn sinh nπ

L H +Dn cosh nπ
L H = 0.

We could solve this, and then eliminate one of Cn or Dn from (5.29). This
would leave one arbitrary degree of freedom—one constant. However, if we
did this, and then used the exponential definitions of the sinh and cosh to
simplify such an expression, we could actually reduce this to[

Cn sinh nπ
L y + Dn cosh nπ

L y
]

= Bn sinh(nπ
L (H − y)). (5.30)

Feel free to do this to convince yourself. So for our solution we now have

u(x, y) =
∞∑

n=1

Bn sinh(nπ
L (H − y)) sin(nπ

L x). (5.31)

Like before, we only have one last boundary condition to meet. This time

u(x, 0) = f1(x). (5.32)

Again, we simply plug y = 0 into (5.31) and set it equal to f1(x), which
gives

u(x, 0) =
∞∑

n=1

Bn sinh(nπ
L H) sin(nπ

L x) = f1(x). (5.33)
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We then recognize this as a sine series with coefficients Bn sinh(nπ
L H). These

are still just constants, and we set them equal to

Bn sinh(nπ
L H) =

2
L

∫ L

0
f1(x) sin(nπ

L x) dx, (5.34)

or

Bn =
2

L sinh(nπ
L H)

∫ L

0
f1(x) sin(nπ

L x) dx. (5.35)

This defines our Bn, and we have a solution

u(x, y) =
∞∑

n=1

Bn sinh(nπ
L (H − y)) sin(nπ

L x), (5.36a)

where,

Bn =
2

L sinh(nπ
L H)

∫ L

0
f1(x) sin(nπ

L x) dx. (5.36b)

Now, suppose that we have a nonzero boundary condition at one of the
vertical sides x = 0. That is, we wish to solve

PDE: ∇2u = 0, 0 < x < L, 0 < y < H, (5.37a)

BC’s:

{
u(0, y) = 0, u(L, y) = g2(y),
u(x, 0) = 0, u(x,H) = 0.

. (5.37b)

Note that this is exactly the same a problem we’ve already done, except
that the roles of x and y are reversed. If we went through the process of
separation of variables, we’d eventually arrive at (5.13)

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

= k. (5.38)

However, this time we have two homogeneous boundary conditions at two
different y points, y = 0 and y = H. So this time, we need to choose the
separation constant differently so that we get sines and cosines in y and
cosh’s and sinh’s in x. So we set k = λ2 rather than −λ2 as before. Solving
those ODE’s for X(x) and Y (y) gives

Y (y) = A cos(λy) + B sin(λy), (5.39)
X(x) = C sinh(λx) + D cosh(λx). (5.40)
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The boundary conditions at y = 0 and y = H now imply that Y (0) =
Y (H) = 0, since otherwise we’d have to set X(x) = 0. This time that
implies that A = 0 and λ = nπ

H for some integer n. So we have, using
subscripts to denote the different choices of n

Yn(y) = Bn sin(nπ
H y), (5.41)

Xn(x) = Cn sinh(nπ
H x) + Dn cosh(nπ

H x). (5.42)

Again we we form an infinite sum of these solutions un(x, y) = Xn(x)Yn(y),

u(x, y) =
∞∑

n=1

[
Cn sinh(nπ

H x) + Dn cosh(nπ
H x)

]
sin(nπ

H y), (5.43)

(where we’ve absorbed the definition of Bn into Cn and Dn). Now, we first
enforce the condition u(0, y) = 0, which gives

0 = u(0, y) =
∞∑

n=1

[Dn1] sin(nπ
H y). (5.44)

So we have that all the Dn are zero. The last boundary condition gives

u(L, y) = g2(y) =
∞∑

n=1

Cn sinh(nπ
H L) sin(nπ

H y). (5.45)

This is just a sine series on 0 ≤ y ≤ H, for g2(y) with coefficients Cn sinh(nπ
H L).

So we set them equal to

Cn sinh(nπ
H L) =

2
H

∫ H

0
g2(y) sin(nπ

H y) dy, (5.46)

or

Cn =
2

H sinh(nπ
H L)

∫ H

0
g2(y) sin(nπ

H y) dy. (5.47)

This gives the solution

u(x, y) =
∞∑

n=1

Cn sinh(nπ
H x) sin(nπ

H y), (5.48)

where,

Cn =
2

H sinh(nπ
H L)

∫ H

0
g2(y) sin(nπ

H y) dy (5.49)
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Now, suppose we have

PDE: ∇2u = 0, 0 < x < L, 0 < y < H, (5.50a)

BC’s:

{
u(0, y) = g1(y), u(L, y) = 0,

u(x, 0) = 0, u(x,H) = 0.
. (5.50b)

If you follow similar procedures to those above, you should be able to deter-
mine the solution to be

u(x, y) =
∞∑

n=1

Dn sinh(nπ
H (L− x)) sin(nπ

H y), (5.51)

where,

Dn =
2

H sinh(nπ
H L)

∫ H

0
g1(y) sin(nπ

H y) dy (5.52)

Now, lets consider the full Laplace problem—that is, say we have non-
homogeneous Dirichlet BC’s on all four boundaries:

PDE: ∇2u = 0, 0 < x < L, 0 < y < H, (5.53a)

BC’s:

{
u(0, y) = g1(y), u(L, y) = g2(y),
u(x, 0) = f1(x), u(x,H) = f2(x).

(5.53b)

How can we solve this? We simply turn it into four separate problems. That
is, we assume that

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y). (5.54)

Then we find the four solutions as follows. For u1(x, y) we solve

PDE: ∇2u1 = 0, 0 < x < L, 0 < y < H, (5.55a)

BC’s:

{
u1(0, y) = 0, u1(L, y) = 0,

u1(x, 0) = 0, u1(x,H) = f2(x).
(5.55b)

For u2(x, y) we choose one of the other boundaries to be nonzero, and the
other three boundaries to be zero and so on. It is easy to verify that the sum
of all four of these solutions is the solution to the full problem. It satisfies
the PDE since

∇2(u) = ∇2(u1 + u2 + u3 + u4) = ∇2u1 +∇2u2 +∇2u3 +∇2u4 = 0.

Further, the sum u = u1+u2+u3+u4 satisfies all four boundary conditions,
since at each boundary only one of the four solutions is nonzero, and it equals
the specified nonzero boundary condition on that boundary.
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5.2 Poisson’s Equation

Poisson’s Equation is the same as Laplace’s equation accept that there is a
nonhomogeneous term on the right hand side. That is

∇2u = f(x, y), (5.56)

where f(x, y) is some known forcing function. Systems that obey Poisson’s
equation are essentially the same as those that obey Laplace’s equation,
except that some external force acts on the system. For the example of a
drumskin, or a stretched membrane, the function f(x, y) would represent a
force acting vertically on the membrane as a function of x and y. Another
example is of an electrostatic system—the potential or voltage is governed
by Laplace’s equation in a vacuum. However, in the presence of a charge
density distribution f(x, y), the voltage or potential is governed by Poisson’s
equation. Typically Poisson’s equation comes with boundary conditions just
like Laplace’s equation. For instance, for a system on a rectangle we might
have the BVP

∇2u = f(x, y), 0 < x < L, 0 < y < H, (5.57a)

BCs:


u(x, 0) = f1(x), 0 < x < L,

u(x,H) = f2(x), 0 < x < L,

u(0, y) = g1(y), 0 < y < H,

u(L, y) = g2(y), 0 < y < H.

(5.57b)

To solve (5.57), we separate the problem into two separate problems. That
is, we assume the solution is the sum of two parts

u(x, y) = u1(x, y) + u2(x, y). (5.58)

For u1(x, y) we solve Laplace’s equation with nonhomogeneous BCs and
for u2(x, y) we solve Poisson’s equation with homogeneous BCs. That is,
u1(x, y) is the solution to the BVP

∇2u = 0, 0 < x < L, 0 < y < H, (5.59a)

BCs


u(x, 0) = f1(x), 0 < x < L,

u(x,H) = f2(x), 0 < x < L,

u(0, y) = g1(y), 0 < y < H,

u(L, y) = g2(y), 0 < y < H,

(5.59b)
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and u2(x, y) is the solution to the BVP

∇2u = f(x, y), 0 < x < L, 0 < y < H, (5.60a)

BCs


u(x, 0) = 0, 0 < x < L,

u(x,H) = 0, 0 < x < L,

u(0, y) = 0, 0 < y < H,

u(L, y) = 0, 0 < y < H.

(5.60b)

(You should convince yourself that the sum u = u1 +u2 will solve the IBVP
(5.57). Note that it will have the correct values on the boundaries since
u1 + u2 = u1 on the boundaries, and u1 satisfies the BCs. Also, note that
∇2u = ∇2u1 +∇2u2 = 0 +∇2u2 = f(x, y).) We saw how to solve (5.59) in
the last section. Now we will see how to solve (5.60). Note that the solution
needs to be zero on all four boundaries. Note that the solution to Laplace’s
equation with such BCs is merely the trivial solution—u(x, y) = 0. However,
the forcing function for Poisson’s equation will produce a nontrivial solution.
We will just assume that the solution is of the form

u2(x, y) =
∞∑

n=1

∞∑
m=1

Anm sin(nπ
L x) sin(mπ

H y), (5.61)

for arbitrary constants Anm. Why? Well, there are a couple of ways to
answer this. First, we know from experience with the 2D wave and heat
equations that this sum will be zero on all of boundaries x = 0, L and
y = 0,H. But why will it be a solution to Poisson’s equation? Well, let’s
just try it and see. If we take the Laplacian of our proposed solution, we
have

∇2u2 = ∇2
∞∑

n=1

∞∑
m=1

Anm sin(nπ
L x) sin(mπ

H y) (5.62)

=
∞∑

n=1

∞∑
m=1

Anm∇2 sin(nπ
L x) sin(mπ

H y) (5.63)

= −
∞∑

n=1

∞∑
m=1

Anm

[
(nπ

L )2 sin(nπ
L x) sin(mπ

H y) + (mπ
H )2 sin(nπ

L x) sin(mπ
H y)

]
(5.64)

= −
∞∑

n=1

∞∑
m=1

Anm

(
(nπ

L )2 + (mπ
H )2

)
sin(nπ

L x) sin(mπ
H y). (5.65)
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Our proposed solution then satisfies the PDE if

−
∞∑

n=1

∞∑
m=1

Anm

(
(nπ

L )2 + (mπ
H )2

)
sin(nπ

L x) sin(mπ
H y) = f(x, y). (5.66)

Is this possible? We can choose Anm any way we like. Since we’ve seen
double Fourier series, we know that we can represent any function f(x, y)
on a rectangle by

f(x, y) =
∞∑

n=1

∞∑
m=1

Bnm sin(nπ
L x) sin(mπ

H ), (5.67)

where

Bnm =
4

LH

∫ L

0

∫ H

0
f(x, y) sin(nπ

L x) sin(mπ
H y) dy dx. (5.68)

So looking at (5.66), we see that we have a solution to (5.60) if we define

−Anm

(
(nπ

L )2 + (mπ
H )2

)
=

4
LH

∫ L

0

∫ H

0
f(x, y) sin(nπ

L x) sin(mπ
H y) dy dx

(5.69)

⇒Anm =
−4

LH
(
(nπ

L )2 + (mπ
H )2

) ∫ L

0

∫ H

0
f(x, y) sin(nπ

L x) sin(mπ
H y) dy dx.

(5.70)

So now we have our full solution to (5.57)

u(x, y) = u1(x, y) + u2(x, y), (5.71a)

where u1(x, y) satisfies Laplace’s equation with the nonhomogeneous BCs
and

u2(x, y) =
∞∑

n=1

∞∑
m=1

Anm sin(nπ
L x) sin(mπ

H y), (5.71b)

where

Anm =
−4

LH
(
(nπ

L )2 + (mπ
H )2

) ∫ L

0

∫ H

0
f(x, y) sin(nπ

L x) sin(mπ
H y) dy dx.

(5.71c)
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It turns out that there is another method for solving Poisson’s equation
called the method of eigenfunction expansion. However, for Poisson’s equa-
tion it is more difficult than what was just shown. The advantage is that
the method of eigenfunction expansion is just a single series in either x or
y. See you book for details.

We will cover the method of eigenfunction expansion in the next chapter
in a more general setting since it is useful for many problems, not just
Poisson’s equation.
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Chapter 6

The Method of
Eigenfunction Expansion

In this chapter we will consider a new method called eigenfunction expan-
sion. The name may seem foreign until you learn what an eigenfunction is.
As we will see, this method is easy if you understand separation of variables.
If you recall the steps of separation of variables, the method of eigenfunc-
tion expansion is quite easy. Furthermore, as we will see, the method of
eigenfunction expansion can be used for all of the problems we’ve done so
far, as well as for nonhomogeneous PDEs. Before considering the method,
let’s introduce an eigenvalue problem in differential equations.

6.1 Eigenvalue Problems in Differential Equations

Eigenvalue problems occur in many areas of mathematics, particularly prob-
lems in linear algebra and linear differential equations. Both of these areas
of mathematics involve linear operators, and those operators have what are
called eigenvalues. Don’t worry too much about the theory, but in case you
are curious, this might help explain what these are.

Recall form linear algebra, that if you have a square matrix A, it can
have scalars called eigenvalues associated with it. These eigenvalues have
corresponding vectors called eigenvectors. If we denote a vector v, the eigen-
values and eigenvectors satisfy

Av = λv, (6.1)

where λ is a scalar called an eigenvalue of A. A given m×m matrix A can
have at most m distinct eigenvectors and eigenvalues. We do not consider

67



v = 0 to be an eigenvector, even though Av = λv whenever v = 0. However,
it is possible to have an eigenvalue λ = 0, for v 6= 0. If you know A and
you want to find the eigenvalues and eigenvectors of A, that is known as an
eigenvalue problem in linear algebra.

There are also eigenvalue problems in differential equations. For in-
stance, if you want to find functions y(x) and scalars µ, such that

Eigenvalue Problem in Differential Equations

∂2

∂x2
y(x) = µy(x), (6.2a)

subject to (6.2b)
y(0) = y(L) = 0, (6.2c)

that is called an eigenvalue problem also. Note that ∂2

∂x2 is analogous to
the matrix A in the linear algebra case —both are called linear operators.
Note that y(x) is analogous to the eigenvectors v in (6.1). In this case
y(x) is not a vector, it is a function, so it is called an eigenfunction. The
scalar constants µ are called eigenvalues. In the differential equations case
(6.2a) we have boundary conditions on y(x). There was nothing analogous
in the linear algebra case—at least nothing on the surface. In fact, there
is something analogous. In the linear algebra case, the vectors v had to
be of the right size. If A is m × m, then v had to have m components.
That is v ∈ lRm. So for a given matrix A, v had to belong to a certain
space. In the differential equations case, we don’t allow y(x) to be any old
function. If we did, then we could solve the ODE in (6.2a) for any eigenvalue
µ. However, the boundary conditions restrict the eigenvalues by restricting
the eigenfunctions to functions y(x) that satisfy y(0) = y(L) = 0. These
functions belong to a certain space, just like the vectors in the linear algebra
case.

The system (6.2a) should look familiar. We’ve encountered eigenvalue
problems whenever we used separation of variables. For any of the PDEs
we’ve discussed, anytime homogeneous boundary conditions arise at two dis-
tinct points—sometimes called a two-point boundary value problem—we’ve
had to solve an eigenvalue problem. If the two homogeneous boundary con-
ditions were at two distinct points x, we’ve usually called the function X(x).
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The boundary value problem looked like this

X ′′(x) = kX(x), (6.3a)
X(0) = X(L) = 0. (6.3b)

Note that this is an eigenvalue problem exactly the same as (6.2a). You’ve
found for this problem, many times, that k ≤ 0 in order to meet the
BCs. So we’ve called it −λ2. Later we found that λ = nπ

L in order to
meet the BCs, and X(x) = A sin(nπ

L x). What we were doing is solving
an eigenvalue problem—we just didn’t call it that. In fact, the eigenvalues
of the problem are k = −λ2 = −(nπ

L )2 and the associated eigenfunctions
are X(x) = A sin(nπ

L x). For solving PDEs, we really don’t care about the
eigenvalues so much, we just need the eigenfunctions which depend on the
eigenvalues. Note that this problem has infinitely many eigenvalues and
eigenfunctions—one for every positive integer. For this problem we do not
consider A = sin(0π

L x) = 0 to be an eigenfunction. For different boundary
conditions, k = 0 might in fact be an eigenvalue. For instance, consider the
problem

X ′′(x) = kX(x), (6.4a)
X ′(0) = X ′(L) = 0. (6.4b)

This is also an eigenvalue problem with different boundary conditions. For
this problem, we found that the eigenvalues were again k = −λ2 = −(nπ

L )2

and the eigenfunctions were X(x) = cos(nπ
L x). However this time, k = 0 is

an eigenvalue. Why? Because the eigenfunction for n = 0, A cos(0π
L x) = A

is not equal to zero. So we consider it an eigenfunction with eigenvalue
k = 0, since in this case X ′′(x) = 0X(x) = 0, even though X(x) = A 6= 0.

6.2 The Method of Eigenfunction Expansion

The idea behind the method of eigenfunction expansion, is to first consider
only the boundary value problem that arises given a PDE and boundary
conditions, ignoring any nonhomogeneous terms in the PDE. That is, given
any of the PDEs we’ve seen so far, you consider the eigenvalue problem that
would arise if you performed separation of variables on the PDE. Typically,
you will already know what eigenvalue problem arises, and the solution
to that eigenvalue problem, simply because you have done separation of
variables already on the problem. This is best understood by an example.
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Suppose we are given the following IBVP for the heat equation

ut − γ2uxx = 0, (6.5a)
u(0, t) = u(L, t) = 0, (6.5b)
u(x, 0) = f(x). (6.5c)

We know from experience from using separation of variables, that we will
arrive at two problems, one for X(x) and one for T (t). The problem for
X(x) looks like

X ′′(x) = kX(x), (6.6)
X(0) = X(L) = 0. (6.7)

This is an eigenvalue problem. The problem for T (t) looked like this

T ′(t) = kγ2T (t). (6.8)

This is not an eigenvalue problem. Why? Because there are no boundary
conditions on T (t) that would restrict k to certain values. In this class the
only kind of eigenvalue problem we will encounter are two-point homoge-
neous boundary value problems.

Now the central idea behind eigenfunction expansion is to assume that
the solution is an infinite sum of the eigenfunctions of the problem. That is,
for the heat equation, the eigenfunctions—the solutions to (6.6) are Xn(x) =
An sin(nπ

L x). You assume that the solution to (6.5) is

u(x, t) =
∞∑

n=1

cn(t) sin(nπ
L x). (6.9)

Note that since the eigenfunctions X(x) = sin(nπ
L x) are merely functions of

x, the t dependence on u(x, t) must be in the coefficients of (6.9). Now, we
just need to figure out what the functions cn(t) are so that (6.9) satisfies
the PDE and initial conditions in (6.5). We plug our solution (6.9) into the
PDE to see if we can derive a condition on cn(t). Plugging in gives

∂

∂t

∞∑
n=1

cn(t) sin(nπ
L x)− γ2 ∂2

∂x2

∞∑
n=1

cn(t) sin(nπ
L x)

=
∞∑

n=1

c′n(t) sin(nπ
L x)− γ2

∞∑
n=1

cn(t)
∂2

∂x2
sin(nπ

L x)

=
∞∑

n=1

c′n(t) sin(nπ
L x) + γ2(nπ

L )2
∞∑

n=1

cn(t)
∂2

∂x2
sin(nπ

L x)

=0. (6.10)
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This isn’t very revealing yet, but if group the terms in the two sums we have
∞∑

n=1

[
c′n(t) + (γ nπ

L )2cn(t)
]
sin(nπ

L x) = 0. (6.11)

Note that this is a sine series that equals zero. All of the junk in the brackets
are the coefficients of the series. If the series equals 0 then all of the junk in
brackets must equal 0 for all integers n. Setting this equal to zero gives

c′n(t) + (γ nπ
L )2cn(t) = 0, (6.12)

for every positive integer n. Note that this is an ODE for every function
cn(t). If we could solve the ODE, then we’d have a solution given by (6.9).
First, recall from ODEs, that in order to uniquely solve an ODE like (6.12),
we need to know an initial condition on cn(t). That is we need to know
cn(0) for all n. How do we get that? Naturally, you should suspect the
initial conditions on u(x, t). If we plug t = 0 into (6.9), we have

(x, 0) =
∞∑

n=1

= cn(0) sin(nπ
L x) = f(x). (6.13)

This is a sine series with coefficients cn(0). So in order to meet the initial
conditions on u(x, t), we require that

cn(0) =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (6.14)

This gives us our initial conditions for the ODEs for cn(t). So we solve

c′n(t) + (γ nπ
L )2cn(t) = 0, (6.15a)

with, cn(0) =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (6.15b)

The solution is

cn(t) = Ane−(γ
nπ
L )2t, (6.16)

for some arbitrary constant A. By plugging in t = 0, we note that A = cn(0)
(plus you should remember that from ODEs). So our solution is given by

u(x, t) =
∞∑

n=1

cn(t) sin(nπ
L x) =

∞∑
n=1

Ane−(γ
nπ
L )2t sin(nπ

L x), (6.17a)

where, (6.17b)

An = cn(0) =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (6.17c)

71



Note that this is exactly the solution we found when using separation of
variables.

The real beauty of the method of eigenfunction expansion is that we can
use it to solve nonhomogeneous PDEs. Suppose that our heat equation has
a nonhomogeneous term. That is, we wish to solve

ut − γ2uxx = p(x, y), (6.18a)
u(0, t) = u(L, t) = 0, (6.18b)
u(x, 0) = f(x). (6.18c)

We use the method of eigenfunction expansion to solve (6.18) as follows. We
consider the eigenvalue problem of the associated homogeneous problem—
the IBVP (6.5). So again we propose a solution that is a sum of the eigen-
functions

u(x, t) =
∞∑

n=1

cn(t) sin(nπ
L x). (6.19)

Like before, we plug this into the PDE to see what conditions cn(t) must
satisfy. Plugging in gives

∂

∂t

∞∑
n=1

cn(t) sin(nπ
L x)− γ2 ∂2

∂x2

∞∑
n=1

cn(t) sin(nπ
L x)

=
∞∑

n=1

c′n(t) sin(nπ
L x)− γ2

∞∑
n=1

cn(t)
∂2

∂x2
sin(nπ

L x)

=
∞∑

n=1

c′n(t) sin(nπ
L x) + γ2(nπ

L )2
∞∑

n=1

cn(t)
∂2

∂x2
sin(nπ

L x)

=p(x, y). (6.20)

Now regrouping terms gives

∞∑
n=1

[
c′n(t) + (γ nπ

L )2cn(t)
]
sin(nπ

L x) = p(x, y). (6.21)

This doesn’t really tell us anything yet. But, if we expand the function
p(x, y) in a sine series we have

p(x, y) =
∞∑

n=1

ρn(t) sin(nπ
L x), (6.22)
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and
∞∑

n=1

[
c′n(t) + (γ nπ

L )2cn(t)
]
sin(nπ

L x) =
∞∑

n=1

ρn(t) sin(nπ
L x). (6.23)

Now we can regroup terms and we have

∞∑
n=1

[
c′n(t) + (γ nπ

L )2cn(t)− ρn(t)
]
sin(nπ

L x) = 0. (6.24)

Now, we have a sine series that equals zero. Like before, this implies that
the coefficients are equal to zero. This gives

c′n(t) + (γ nπ
L )2cn(t) = ρn(t). (6.25)

So the only difference when we have a nonhomogeneous PDE, is that the
resulting ODEs for the cn(t) are nonhomogeneous. To solve (6.25) you
should review the use of an integrating factor. For the nonhomogeneous
system we would determine the initial conditions on cn(t) exactly as before.
That is, we still have

cn(0) =
2
L

∫ L

0
f(x) sin(nπ

L x) dx. (6.26)

73



Chapter 7

Fourier Transforms

In this chapter we will look at Fourier transforms. These are related in
some ways to Fourier series. First we will look at what a Fourier transform
is generally, and finally we will see how these can be used to solve PDEs on
infinite domains.

7.1 Fourier Transforms

A Fourier transform is a type of integral transform. If we take a function
f(x) defined on −∞ < x < ∞, we define its Fourier transform f̂(k) by the
integral

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx. (7.1)

There are a couple of things to note here. First, the function f(x) must have
certain properties in order for its Fourier transform f̂(k) to exist. This is
because the integral (7.1) may not exist because it goes to infinity. We will
not concern ourselves too much with this—we will only deal with functions
f(x) that do have Fourier transforms. For the curious, it is sufficient for
f(x) to belong to the L1 or L2 spaces, though not always necessary. That
means that the following integrals exist respectively∫ ∞

−∞
|f(x)| dx, (7.2)∫ ∞

−∞
|f(x)|2 dx. (7.3)
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For the not so curious, don’t worry about this, just always assume that
the Fourier transform of f(x) exists. Make sure that you understand—
what we do when we Fourier transform a function f(x) is we remove the
dependence on x by integrating it out, and we recover a new function of k.
We simply use the notation f̂(k), to remind us that f̂(k) is the transform of
f(x). It is in general a totally different function. The function f(x) must
be defined for all x, and the Fourier transform f̂(k) is defined for all real
values of k. It turns out that if we know the Fourier transform f̂(k) of a
function f(x), we can recover the original function f(x). This is known as the
inverse Fourier transform—so named because it inverts the transformation
giving the original function back again. Therefore, we consider the Fourier
transform pairs

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx (7.4a)

f(x) =
1√
2π

∫ ∞

−∞
f̂(k)eikx dk. (7.4b)

The second integral is the inverse Fourier transform. The factors of 1√
2π

are
merely convention. We could multiply either integral by a constant, as long
as we multiply the other by the inverse of that constant. There are several
conventions commonly used. If you use a table of integral transforms, make
sure that you note the convention used in that table, which will typically be
given at the top of the table. If it differs from the convention you want to
use, simply multiply the transform or inverse transform appropriately.

7.2 Relationship to Fourier Series

Fourier transforms may seem a bit abstract and unrelated to anything we’ve
done so far. In fact, they are related to Fourier series in some ways. Recall
the complex form of Fourier series for functions defined on −L < x < L

f(x) =
∞∑

n=−∞
cnei

nπ
L x, (7.5a)

cn =
1

2L

∫ L

−L
f(x)e−i

nπ
L x dx. (7.5b)

You may note that the integral which gives cn is exactly analogous to the
Fourier transform in (7.4) which gives f̂(k). In fact, you can think if the
coefficients in a Fourier series as being analogous to a Fourier transform.
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For the coefficients, we had one for every integer n. You can think of the
coefficients as being functions in a sense of the integers n. When a set is
indexed by discrete values, we usually put the dependence on the index as
a subscript. That is, we write cn not c(n), since n is only allowed to be an
integer. But you could think of the coefficients in the Fourier series as a
“function” of n. To recover the function f(x) from the Fourier coefficients
we add up all of the discrete modes ei

nπ
L x multiplied by the corresponding

coefficients cn.
Now, the following is a heuristic exercise intended to help you understand

the relationship between Fourier series and Fourier transforms. This is not
intended to be a rigorous derivation of Fourier transforms so you do not
need to worry too much if you don’t follow these steps. But try to get the
general idea. Suppose that a function f(x) is defined on −L < x < L. We
use an infinite, yet discrete, number of different modes ei

nπ
L x in the Fourier

series (7.5) to represent f(x). (Recall that ei
nπ
L x is a sine and cosine.) The

term nπ
L is known as the wave number—it is like a frequency in space. The

wave number of a sinusoidal function represents the number of radians per
unit length. So, the wave number divided by 2π is the number of cycles per
unit length. The wave number is often denoted with a k. (For sinusoidal
functions in time, the frequency is analogous to k, but is usually denoted
with an ω.) Now, note that two adjacent modes, i.e. n and n + 1, differ
in wave number by π

L . So the larger the domain, the larger the value of L
and the closer adjacent modes are in wave number. Suppose that L gets
very very large. Then, for any real value you choose you will be able to find
an integer n such that nπ

L is very close to that number. So if L approaches
infinity, their are modes with wave numbers nπ

L that are close to every real
number. Suppose that we denote these wave numbers nπ

L = kn. We can
then denote the sum in (7.5) as

f(x) =
∞∑

n=−∞
ĉ(kn)eiknx, (7.6)

where ĉ(kn) = cn. Now, note that ∆nπ
L = π

L∆n, where ∆ means the dif-
ference in two adjacent wave numbers. Of course ∆n = n + 1 − n = 1. So
L
π ∆kn = L

π ∆nπ
L = 1. We multiply (7.6) by this factor which equals unity

f(x) =
L

π

∞∑
n=−∞

ĉ(kn)eiknx∆kn. (7.7)
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Now, we define f̂(kn) = L
π ĉ(kn). Using these new definitions in (7.5) gives

f(x) =
∞∑

n=−∞
f̂(kn)eiknx∆kn, (7.8a)

f̂(kn) =
L

π

1
2L

∫ L

−L
f(x)e−iknx dx =

1
2π

∫ L

−L
f(x)e−iknx dx. (7.8b)

Now, if we take the limit as L →∞, then the sum should become an integral
over all real values of kn. So we drop the subscript on k, think of it as a real
variable, and we have

f(x) =
∫ ∞

−∞
f̂(k)eikx dk, (7.9a)

f̂(k) =
L

π

1
2L

∫ L

−L
f(x)e−ikx dx =

1
2π

∫ ∞

−∞
f(x)e−ikx dx. (7.9b)

This is actually a Fourier transform pair. The constants are just a different
convention from that introduced in (??). If we multiply the bottom integral
by
√

2π and divide the top integral by
√

2π we have

f(x) = 1√
2π

∫ ∞

−∞
f̂(k)eikx dk, (7.10a)

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx. (7.10b)

So this means that you can think of Fourier transforms as Fourier se-
ries for functions defined on the entire real axis, not just −L < x < L.
Accordingly, for Fourier transforms, there aren’t coefficients defined for dis-
crete modes, the coefficients become a function of a continuous variable k
representing the wave numbers which have every real value. Rather than
summing up discrete wave modes, you must integrate all of the modes.

7.3 Properties of Fourier Transforms

It is the properties of Fourier Transforms that makes then useful for solving
PDEs. In this section some of those properties are described. First, note
that “Fourier transform” has been used as a noun and a verb. The Fourier
transform of a function f(x) is another function ˆf(k). The Fourier transform
can also be thought of as the act of transforming f(x). This action can be
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thought of as an operator acting on f(x). This operator we can denote
F [·] = 1√

2π

∫∞
−∞[·]e−ikx dx. That is,

F [f(x)] = f̂(k). (7.11)

Likewise, we can think of the inverse Fourier transform as the original func-
tion or as an operator that returns the original function. We can denote the
operator as F−1[·]. That is,

F−1[ ˆf(k)] = f(x). (7.12)

7.3.1 Transforms of Derivatives

The first property that is important is the relationship between Fourier
transforms of functions and Fourier transforms of the derivatives of those
functions. That is, how is the Fourier transform of f(x) related to the
transform of f ′(x) and f ′′(x) etc. Note that if we differentiate

f(x) =
1√
2π

∫ ∞

−∞
f̂(k)eikx dk (7.13)

we have

d

dx
f(x) =

d

dx

1√
2π

∫ ∞

−∞
f̂(k)eikx dk =

1√
2π

∫ ∞

−∞
f̂(k)

d

dx
eikx dk =

1√
2π

∫ ∞

−∞
f̂(k)ikeikx dk.

(7.14)

If we denote ikf̂(k) = ĝ(k), we have

f ′(x) =
1√
2π

∫ ∞

−∞
ĝ(k)eikx dx. (7.15)

So, it must be that ĝ(k) = (ik)f̂(k) is the Fourier transform of f ′(x). We
could make the same argument about f ′′(x), that is, that the Fourier trans-
form of f ′′(x) = (ik)ĝ(k) = (ik)2f̂(k). We could continue recursively for
dnf(x)

dxn , giving the result that

F [
dnf(x)

dxn
] = (ik)nf̂(k). (7.16)

For instance, you should note that F [f ′′(x)] = −k2f̂(k).
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7.3.2 Linearity

The Fourier transform is linear. This just means that

F [af(x) + bg(x)] = aF [f(x)] + bF [g(x)] = af̂(k) + bĝ(k). (7.17)

This is easy to see by simply considering the integrals that define the trans-
form

F [af(x) + bg(x)] =
1√
2π

∫ ∞

−∞
[af(x) + bg(x)]e−ikx dx (7.18)

=a
1√
2π

∫ ∞

−∞
f(x)e−ikx dx + b

1√
2π

∫ ∞

−∞
g(x)eikx dx

(7.19)

=af̂(k) + bĝ(k). (7.20)

7.3.3 Non-transformed Variables

The transform of f(x) is a function f̂(k). What if we take the transform,
with respect to x, of the function f(x, t)? The result is a transform that
is a function of k and t. The variable t is unaffected. Just think of it this
way—at any given time the function f(x, t) is just a function of x with a
given transform. At another time the function f(x, t) is different and so the
transform is different. So the function and the transform are both functions
of time. This is easy to see mathematically:

f̂(k, t) =
1√
2π

∫ ∞

−∞
f(x, t)e−ikx dx. (7.21)

At any given time we could invert the transform f̂(k, t) to recover f(x, t).
So we still have

f(x, t) =
1√
2π

∫ ∞

−∞
f̂(k, t)eikx dk. (7.22)

Now, what about derivatives with respect to time? If we differentiate (7.22)
with respect to time we have

∂

∂t
f(x, t) =

∂

∂t

1√
2π

∫ ∞

−∞
f̂(k, t)eikx dk (7.23)

=
1√
2π

∫ ∞

−∞
f̂t(k, t)eikx dx. (7.24)
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So note that the transform of the derivative of a function with respect to a
variable other than x is just the corresponding derivative of the transform.
That is,

F [ft(x, t)] = f̂t(k, t). (7.25)

7.3.4 Products of Transforms and Convolutions

Suppose that we have two functions f(x) and g(x). Suppose that the trans-
form of each is f̂(k) and ĝ(k) respectively. Now, suppose we consider the
function that is the product of the two transforms f̂(k)ĝ(k). Is is true that
the inverse transform of F−1[f̂(k)ĝ(k)] is f(x)g(x)? The answer is no in
general. If we consider the transform of h(x) = f(x)g(x), we have

F [h(x)] = ĥ(k) =
1√
2π

∫ ∞

−∞
f(x)g(x)e−ikx dx. (7.26)

But the product f̂(k)ĝ(k) is

f̂(k)ĝ(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx

1√
2π

∫ ∞

−∞
g(x)e−ikx dx (7.27)

6= 1√
2π

∫ ∞

−∞
f(x)g(x)e−ikx dx = ĥ(k). (7.28)

So in general

F [f(x)g(x)] 6= F [f(x)]F [g(x)], (7.29)

and therefore, in general

F−1[f̂(k)ĝ(k)] 6= F−1[f̂(k)]F−1[ĝ(k)]. (7.30)

In other words, if you want to invert a transform that is a product of two
functions, unfortunately you can’t simply invert each function separately
and expect the product of the inverses to be the inverse of the products.
However, there is hope. If we denote F−1[f̂(k)ĝ(k)] = p(x), can we relate
p(x) to f(x) and g(x), even though p(x) 6= f(x)g(x)? The answer is yes!
We will see that p(x) is something called the convolution of f(x) and g(x).
If we look at F [f(x)]F [g(x)], we have(

1√
2π

∫ ∞

−∞
f(x)e−ikx dx

) (
1√
2π

∫ ∞

−∞
g(x)e−ikx dx

)
. (7.31)
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So far this is just the product of two functions of k. Each integral must
be performed over all x before multiplying the other one. It is permissable
to turn this into an iterated integral, as long as we relabel one of the x
variables—since the two x’s in (7.31) are not a single variable in an iterated
integral. To avoid confusion we rewrite (7.31) as

F [f(x)]F [g(x)] =
(

1√
2π

∫ ∞

−∞
f(s)e−iks ds

) (
1√
2π

∫ ∞

−∞
g(u)e−iku du

)
=

1√
2π

∫ ∞

−∞
f(s)e−iks

(
1√
2π

∫ ∞

−∞
g(u)e−iku du

)
ds. (7.32)

Now, the inner integral in (7.32) is over all u at every given value of s in the
outer integral. So we can make the change of variables u = x− s, where s is
fixed and x varies over all real values. So therefore x− s will still vary over
all values and du = dx. This gives

F [f(x)]F [g(x)] =
1√
2π

∫ ∞

−∞
f(s)e−iks

(
1√
2π

∫ ∞

−∞
g(x− s)e−ik(x−s) ds

)
dx

=
1√
2π

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞
f(s)g(x− s) ds

)
e−ikx dx (7.33)

=
1√
2π

∫ ∞

−∞
p(x)e−ikx dx (7.34)

. (7.35)

This is actually the result we are looking for. Note that the inner integral is
a function of x since the s is integrated out. Therefore (7.33) is the Fourier
transform of the function

p(x) =
1√
2π

∫ ∞

−∞
f(s)g(x− s) ds. (7.36)

This function p(x) is called the convolution of f and g. It is denoted by
f ∗ g(x). It is important to note that f ∗ g(x) is just another function of x.
So note we have shown that the product of two Fourier transforms is the
same as the Fourier transform of the convolution of the two functions. In
other words, we have shown that

F [f(x)]F [g(x)] = F [f ∗ g(x)]. (7.37)

Since we are assuming that all of the transforms and inverse transforms exist,
this also means that the inverse transform of F [f(x)]F [g(x)] is the inverse
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transform of F [f ∗g(x)], which is of course f ∗g(x). Stated another way, the
inverse transform of a product of transforms, f̂(k)ĝ(k), is the convolution of
the original functions, not the product of the functions. This is known as
the convolution theorem of Fourier transforms

Convolution Theorem of Fourier Transforms

F−1[f̂(k)ĝ(k)] = f ∗ g(x), (7.38a)
or more explicitly,

1√
2π

∫ ∞

−∞
f̂(k)ĝ(k)eikx dk =

1√
2π

∫ ∞

−∞
f(s)g(x− s) ds. (7.38b)

You might have noticed something perplexing. The product of trans-
forms doesn’t matter on the order, that is, products obviously commute

f̂(k)ĝ(k) = ĝ(k)f̂(k). (7.39)

So how do we know if the inverse transform of f̂(k)ĝ(k) is f ∗g(x) or g∗f(x)?
The answer is obviously that they are the same. That is,

1√
2π

∫ ∞

−∞
f(s)g(x− s) ds =

1√
2π

∫ ∞

−∞
g(s)f(x− s) ds. (7.40)

We could easily show this explicitly by a change of variables in either integral.
This should be remembered even outside of PDEs—the convolution of two
functions commutes in the sense that f ∗ g(x) = g ∗ f(x).

7.3.5 The Transforms of Gaussian Functions

Often Fourier transform pairs can be either calculated directly via integra-
tion, or perhaps looked up in a table. That is, given f(x) what is f̂(k) or
vice versa. There are some functions where it is worth memorizing what
the pairs are. One example of an important transform pair is that of the

Gaussian function f(x) = e−
ax2

2 . Recall that this function is the normal
curve—the bell-shaped curve important in statistics and elsewhere. (It’s
important in PDEs too.) It turns out that the transform of a Gaussian is
again another Gaussian. (This is not usually the case—for a given f(x), the
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transform f̂(k) is usually a completely different function.) The pairs are

The Gaussian Function and Transform

f(x) = e−
ax2

2 ⇔ f̂(k) =
1√
a
e−

k2

2a (7.41)

The book has a simple and nice proof of (7.41) on page 406, using ODEs.
We are assuming that a > 0, otherwise the transform wouldn’t exist as the
function would blow-up at infinity. The constant a > 0, which indicates
the spread of f(x) (related to the standard deviation in statistics lingo) is
inversely related to the spread of the transform. That is, if the function
is a very broadly spread then the transform will be peaked around k = 0
and vice-versa. (In fact, if we allowed f(x) to be a delta function by letting
a → ∞, then the transform would be a constant. We wouldn’t be able to
invert this transform, but it is theoretically important nevertheless. You
might want to read about generalized functions or distributions described
in chapter 7.)

7.4 Using Transforms to Solve PDEs

7.4.1 The Heat Equation

We now know enough about Fourier transforms to be able to use them to
solve PDEs on infinite domains. Here is the basic idea. Suppose that you
are given a PDE on an infinite domain. Let’s first look at the heat equation

ut − γ2uxx = 0, −∞ < x < ∞, t > 0, (7.42)
u(x, 0) = f(x), −∞ < x < ∞. (7.43)

(Digression: Since we are on an infinite domain, we often don’t write bound-
ary conditions explicitly since there aren’t any real boundaries. However,
when using Fourier transforms, we have to assume that the solution ap-
proaches zero at infinity so that it’s transform exists. This is a type of
boundary condition, but it usually isn’t stated explicitly. In the real world,
you have to know from context whether this assumption is valid given your
system. If it is not, you must use some other solution technique. Most
of time in applications, it is the correct assumption.) Now, the function
ut(x, t) is just a function of x and t, so it can be transformed with respect
to x. The same goes for uxx(x, t). The sum ut(x, t) − γ2uxx(x, t) is just a
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function too. So we can transform the whole thing—both sides of the PDE.
The transform of 0 is of course just 0. So we have

F [ut − γ2uxx] = 0. (7.44)

Now, using the linearity property we have

F [ut]− γ2F [uxx] = 0. (7.45)

Then, using what we know about the properties of derivatives of transforms
gives

∂

∂t
F [u]− γ2(ik)2F [u] = 0. (7.46)

Denoting the transforms as functions of k, and noting that (ik)2 = −k2,
gives

∂

∂t
û(k, t) + (kγ)2û(k, t) = 0. (7.47)

Why did we do this? Well, consider this: if we can find the transform û(k, t),
then we essentially know the solution since all we’d have to do is invert the
transform. That is, knowing û(k, t) is almost as good as knowing u(x, t)
since we are only an integral away from u(x, t). If finding û(k, t) is a lot
easier than finding u(x, t), then we might as well solve for the transform
and invert it. Note that we have an ODE with respect to t for the function
û(x, t) which we can easily solve. What we have in effect done, is convert a
problem that is a PDE for u(x, t) into a problem that is an ODE for û(k, t).
Solving (7.47) gives

û(k, t) = Ae−(kγ)2t. (7.48)

Now, we just need to find the arbitrary coefficient A. However, you should
note the following: A is not a function of t, but it could be a function of k!
So really, we should write the solution as

û(k, t) = A(k)e−(kγ)2t, (7.49)

and note that we need to find the function A(k). Note that plugging in t = 0
isolates A(k)

û(k, 0) = A(k). (7.50)
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So we see that A(k) corresponds to the transform of the solution—evaluated
at t = 0. Is this just the transform—of the solution evaluated at t = 0? Of
course it is, as you can see by plugging in t = 0 into

û(k, t) =
1√
2π

∫ ∞

−∞
u(x, t)e−ikx dx. (7.51)

So A(k) must be the transform of the initial conditions:

A(k) = f̂(k). (7.52)

We now know completely the transform of the solution, assuming that we
can calculate f̂(k)

û(k, t) = f̂(k)e−(kγ)2t. (7.53)

Now, the solution is only an integral away. That is

u(x, t) =
1√
2π

∫ ∞

−∞
û(k, t)eikx dk =

1√
2π

∫ ∞

−∞
f̂(k)e−(kγ)2teikx dk. (7.54)

However, in practice you should note something about this: f̂(k)e−(kγ)2t will
typically be a more complex function that f̂(k) and e−(kγ)2t individually. So,
it might be easier to invert them separately rather than as a product. Not
to mention, you already know the inverse of f̂(k)—it is just f(x)! So it is
much less work to use the convolution formula

u(x, t) = F−1[f̂(k)e−(kγ)2t] =
1√
2π

∫ ∞

−∞
f(s)g(s− x) ds, (7.55)

where f(x) is the initial condition, and g(x) is F−1[e−(kγ)2t]. Note that
we never even needed to compute f̂(k). Also, it should be easy to find
F−1[e−(kγ)2t], since it is a Gaussian. We use (7.41), letting

1
2a

= γ2t,

⇒ a =
1

2γ2t
, (7.56)

and noting that ĝ(k) =
√

a( 1√
a
e−

k2

2a ). This gives the result

g(x) =
√

ae−
ax2

2 =
√

1
2γ2t

e−
1

2γ2t
x2

2 =
1

γ
√

2t
e
− x2

4γ2t . (7.57)
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Now we have our solution in terms of a single convolution

u(x, t) =
1√
2π

∫ ∞

−∞
f(s)g(x− s) ds, (7.58)

where g(x) is given by (7.57). The function (7.57) is known as the heat
kernel, since it provides the solution to the heat equation by simply con-
volving it with the initial conditions. This is an example of what is known
as Duhamel’s principle. For the curious, this is similar to, and in fact can be
shown to be equivalent to, the use of Green’s functions for nonhomogeneous
PDEs. If these names sound familiar and you are curious of what they are,
I encourage you to read about them in your book. Depending on f(x), the
integral (7.58) can be easy...or difficult. Occasionally it must be done nu-
merically, but solving a PDE numerically by simply performing an integral
is still typically preferable to other methods. Integrals can also often be an-
alyzed by what are called asymptotic methods—a way to approximate the
integral as close as one likes.

7.4.2 The Wave Equation

Let’s look at one more example of the use of Fourier transforms—the wave
equation on an infinite domain

utt − c2uxx = 0, −∞ < x < ∞, t > 0, (7.59)
u(x, 0) = f(x), −∞ < x < ∞, (7.60)
ut(x, 0) = g(x), −∞ < x < ∞. (7.61)

As on a finite domain, we now need two initial conditions since we have two
time derivatives. Taking the same approach as for the heat equation, we
transform the entire PDE

F [utt − c2uxx] = 0, (7.62)

which gives an ODE for the transform of the solution

∂2

∂t2
û(k, t)− c2(ik)2û(k, t) = 0, (7.63)

or

∂2

∂t2
û(k, t) + (ck)2û(k, t) = 0. (7.64)
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As you might have expected, we now have a second order ODE rather than
a first order ODE as with the heat equation. We solve it with ease

û(k, t) = A sin(ckt) + B cos(ckt). (7.65)

Again, the arbitrary coefficients may be functions of k, since the derivative
in the ODE was with respect to t. We therefore have

û(k, t) = A(k) sin(ckt) + B(k) cos(ckt). (7.66)

Now we just need to determine the functions A(k) and B(k). If we consider
the inverse transform of û(k, t) (that is, the solution) we have

u(x, t) =
1√
2π

∫ ∞

−∞
û(k, t)eikx dk =

1√
2π

∫ ∞

−∞
[A(k) sin(ckt) + B(k) cos(ckt)] eikx dk.

(7.67)

Now, plugging in t = 0 gives

u(x, 0) =
1√
2π

∫ ∞

−∞
û(k, 0)eikx dk =

1√
2π

∫ ∞

−∞
B(k)eikx dk. (7.68)

So we see that B(k) is just the transform of the initial function, or B(k) =
f̂(k). Differentiating (7.70) with respect to t gives

ut(x, t) =
1√
2π

∫ ∞

−∞
ût(k, t)eikx dk =

1√
2π

∫ ∞

−∞
[A(k)ck cos(ckt)−B(k)ck sin(ckt)] eikx dk.

(7.69)

Evaluating this at t = 0 gives

ut(x, 0) =
1√
2π

∫ ∞

−∞
ût(k, 0)eikx dk =

1√
2π

∫ ∞

−∞
A(k)ckeikx dk. (7.70)

We see that the function A(k)ck is just the transform of ut(x, 0) = g(x).
So we write A(k)ck = ĝ(k), or A(k) = 1

ck ĝ(k). Now, we could write the
solution as

u(x, t) =
1√
2π

∫ ∞

−∞

[
ĝ(k)
ck

sin(ckt) + f̂(k) cos(ckt)
]

eikx dk

=
1√
2π

∫ ∞

−∞

[
ĝ(k)

sin(ckt)
ck

]
eikx dk +

1√
2π

∫ ∞

−∞

[
f̂(k) cos(ckt)

]
eikx dk.

(7.71)
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We have two integrals, but again, we should make use of the convolution
formula, since then we won’t even need to transform f(x) or g(x). For the
first integral, we think of it as the product of ĝ(k) with the function sin(ckt)

ck ,
since the former we know the inverse transform to be simply g(x). Now, we
just need to figure out the inverse transforms of sin(ckt)

ck and cos(ckt), and
then we can write the solution in terms of two convolution integrals. (By
inverse transform, we mean the functions of x, that when transformed give
sin(ckt)

ck and cos(ckt).) You are not responsible for the understanding
the following material regarding determining the final result—
except you should memorize the final result.

First, you might think that you could simply integrate the functions
sin(ckt)

ck and cos(ckt) using the definition of the inverse transform. However,
it turns out that those integrals don’t exist in the classic sense! That is, we
can not recover the functions of x from there transforms, by integrating! If
you find this confusing, it is. This is a bit beyond the scope of this class,
but rest assured, all we need in order to use the convolution formula, is
to find functions of x, that when transformed give us sin(ckt)

ck and cos(ckt).
Furthermore, by “functions” we’ll be a bit flexible and consider things like
the delta function. First, consider the Fourier transform

1√
2π

∫ ∞

−∞

1
2

[δ(x− a) + δ(x + a)] e−ikx dx, (7.72)

where a > 0 is an arbitrary constant. Integrating gives

1√
2π

(
1
2

[
eika + e−ika

])
=

1√
2π

cos(ka). (7.73)

So it must be that the inverse Fourier transform of 1√
2π

cos ka is the sum

of two delta functions 1
2 [δ(x− a) + δ(x + a)]! Or, the inverse transform

of cos(ka) is just
√

2π
2 [δ(x− a) + δ(x + a)] So, noting that a = ct in our

transform of interest, gives the function we are looking for, whose transform
is cos(ckt). Let’s denote the function v(x) and note that

v(x) =
√

2π

2
[δ(x− ct) + δ(x + ct)] . (7.74)

Now, consider the step function that is equal to one on a symmetric interval
around the origin and zero elsewhere

h(x) =

{
1, if |x| < a,

0, if |x| > a.
(7.75)
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Now, if we consider the Fourier transform of such a function we have

F [h(x)] =
1√
2π

∫ ∞

−∞
h(x)e−ikx dx

=
∫ a

−a
e−ikx dx

=
1√
2π

[
e−ikx

−ik

]∣∣∣∣a
−a

=
2√
2π

(
1
k

(eika − e−ika)
2i

)
=

2√
2π

sin(ka)
k

= ĥ(k)

So, if we recognize that sin(ctk)
ck is

√
2π
2c ĥ(k), where a = ct, then the inverse

transform of sin(ctk)
ck must be

√
2π
2 h(x), with a = ct. Let’s denote it H(x),

where

H(x) =

{√
2π
2c , if |x| < ct,

0, if |x| > ct.
(7.76)

Now, we just use the convolution formula to determine the inverse transform
of ĝ(k) sin(ckt)

ck and f̂(k) cos(ckt), noting that the inverse transform of ĝ(k)
is of course g(x), inverse transform of sin(ckt)

ck is H(x), the inverse transform
of f̂(k) is of course f(x) and the inverse transform of cos(ckt) is v(x). We
therefore have

u(x, t) =
1√
2π

∫ ∞

−∞
f(x− s)v(s) ds +

1√
2π

∫ ∞

−∞
g(s)H(x− s) ds. (7.77)

Now, if we plug in the formulas for v(s) and H(s) we have

u(x, t) =
1
2

[f(x + ct) + f(x− ct)] +
1
2c

∫ x−s=−ct

x−s=ct
g(s) ds. (7.78)

Note the upper and lower limits on the integral. Those arise because H(x−s)
is zero when x − s > ct and x − s < −ct. Of course the limits are really
on the integration variable, s, but I’ve written it this way first, so it is clear
where they arise from. If we solve the integration limits for s, we have

u(x, t) =
1
2

[f(x + ct) + f(x− ct)] +
1
2c

∫ x+ct

x−ct
g(s) ds. (7.79)
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You may be unimpressed by this formula if you have never seen it before.
However, this is known as D’Alembert’s formula. It arises is several different
derivations of the solution to the wave equation. It actually tells us a lot
about the solution physically. Note what it implies: the solution u(x, t) at
any given x and t can be entirely determined by the initial displacement at
two points, x1 = x + ct and x2 = x− ct, as well as the integral of the initial
velocity between those two points. The interval between these two points at
t = 0 is known as the domain of dependence for the solution u at the point
x and time t. We will draw a few pictures in class that will help clarify this.
You need only commit to memory (or your notecard) the formula (7.79),
and know how to use it.
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