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Preface

Partial differential equations are often used to construct models of the most
basic theories underlying physics and engineering. The goal of this book is to
develop the most basic ideas from the theory of partial differential equations,
and apply them to the simplest models arising from the above mentioned
fields.

It is not easy to master the theory of partial differential equations. Unlike
the theory of ordinary differential equations, which relies on the fundamental
existence and uniqueness theorem, there is no single theorem which is central
to the subject. Instead, there are separate theories used for each of the major
types of partial differential equations that commonly arise.

It is worth pointing out that the preponderance of differential equations aris-
ing in applications, in science, in engineering, and within mathematics itself,
are of either first or second order, with the latter being by far the most preva-
lent. We will mainly cover these two classes of PDEs.

This book is intended for a first course in partial differential equations at
the advanced undergraduate level for students in engineering and physical
sciences. It is assumed that the student has had the standard three semester
calculus sequence, and a course in ordinary differential equations.

Marcel B Finan
August 2009
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Preliminaries

In this chapter we include some results from calculus which we will use often
in the study of partial differential equations. Details and proof of these results
can be found in most calculus books.

1 Some Results of Calculus

The first result provides a mean of showing when a function is zero on an
interval.

Theorem 1.1

(a) Suppose that f is continuous on an interval I C R such that fab f(z)dz =0
for all subintervals [a,b] C I. Then f(z) =0 for all z € I.

(b) Suppose that f : [a,b] — R is continuous and non-negative. If fab f(z)dx =
0 then f(x) =0 on [a,b].

(c) Suppose that f : [a,b] — R is continuous such that fabf(x)g(x)dx =0
for all continuous functions g on [a, b]. Then f(x) =0 on [a, b].

Proof.
(a) Fix a € I. Let x € I. By the Fundamental Theorem of Calculus we have

0=+ / " ft)dt = £(x).

Since x was arbitrary, we have f(z) =0 for all z € I.
(b) Suppose the contrary. That is, suppose that xy € [a, b] such that f(zq) >
0. By the continuity of f(x) at xq, there is a § > 0 such that |z — xo| <

implies |f(z) — f(xo)| < @ That is, |z — x¢| < ¢ implies f(z) > @ > 0.

7



8 PRELIMINARIES

In words, there exists an open interval I C [a,b] centered at z, such that
f(z) > 0 for all z € I. Hence, because f(z) > 0 we must have

/ab f(x)dx > /If(:r)da: >0

which contradicts our assumption that the integral is zero. We conclude that
f(z) =0 on [a,b].
(c) This follows from (b) by taking g(x) = f(z)

Remark 1.1
The above theorem remains valid for functions in two variables. For example,
if f(z,y) is defined for x in an interval I and y in an interval J such that

/a b / " Jwy)dady = 0

for all [a,b] C J and [¢,d] C I then f(z,y) = 0 over the rectangle I x J.

Example 1.1
Let f,g : [a,b] — R be continuous and such that f(z) < g(x) for all z in

[a, b]. Show that if f;(g(x) — f(x))dz = 0 then f(z) = g(x) on [a,b].

Solution.
Apply part (b) of previous theorem to the function h(z) = g(z) — f(x) m

Partial Derivatives

For multivariable functions, there are two common notations for partial
derivatives, and we shall employ them interchangeably. The first is the Leib-
nitz notation that employs the symbol 0 to denote partial derivative. The
second, a more compact notation, is to use subscripts to indicate partial

. . . 2
derivatives. For example, u; represents %—7:, while wu,, represents %, and Uy
Bu
becomes 55—

An important formula of differentiation is the so-called chain rule. If
u = u(z,y) where v = x(s,t) and y = y(s,t) then
Ou _ Qudx  Oudy

9s 005  Oyos
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Likewise,

Ou_ Qudr  Oudy
ot 0z ot oyot

Example 1.2
Compute the partial derivatives indicated:
(a) 2 (y”sinay)

(b) Zler ]2

Solution.
(a) We have (%(gf sin xy) = sin a:ya% (yz)—i—yQa%(sin ry) = 2y sin zy+xy? cos 1y.
9

(b) We have & [eH]2 — £c2a0) — 962e). Thus, 25 [er1]2 — Lac2et) —

g2t g

Example 1.3
Suppose u(x,y) = sin (2 + y?), where z = te® and y = s+t. Find u, and u;.

Solution.
We have

Uy =U, Ty + uyys = 27 cos (27 + y?)te® + 2y cos (2* + y°)
=[2te® + 2(s + t)] cos [t?e* + (s + 1)?]

Likewise,

Uy =upTs + uyyr = 23 cos (2% + y?)e® + 2y cos (2% + y?)
=[2te® + 2(s +t)] cos [t?e* + (s +1)°] m

Often we must differentiate an integral with respect to a parameter which
may appear in the limits of integration, or in the integrand.

Let f(z,t) be a continuous function in the rectangle {a < x < b} x {c <t <
d}. Assume that g—{ is continuous on this rectangle. Define the function

(t)
J(t) = /; f(z, t)dx

where a(t) and b(t) are continuously differentiable functions of ¢ such that
a < a(t) < b(t) < b. Recall that a function f(z) is said to be continnu-
ously differentiable if the derivative f'(z) exists, and is itself a continuous
function.
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Theorem 1.2
dJ d [0
pr :E/(t) f(z, t)dx
) ) b(t) af
=f(b(¢),)b'(t) — f(a(?), t)a (t)+/a(t) 3¢ (@ t)dz

Example 1.4
Consider the heat problem

U = ktlyy —au, a>0, k>0, 0<ax<L,t>0

with boundary conditions u,(0,t) = 0 = wu,(L, t) and initial condition u(z,0) =
f(z). Let E(t) = 1 OL u?dz.

(a) Show that E’(t) < 0.

(b) Show that E(t) < [ L|f(z)[*da.

Solution.
(a) We have

dE 1 ("9 ,
L
dt 2/0 at“(x’)x
L L L
:/ u(x,t)ut(x,t)dx:k:/ u(:v,t)um(a:,t)dx—oz/ u?(z,t)dz
0 0
L L
—/{:u(:z:,t)ux(x,t)]é—k/ ui(m,t)dx—a/ u?(z,t)dz
0 0
L L
:—k/ ui(x,t)d:c—oz/ u?(z,t)dxr < 0.
0 0

(b) From (a) we conclude that E(t) is a decreasing function of ¢ > 0. Thus,

R A | )
E(t)<EQ0) =5 [ v(z,0de= [ S|f(x)drm
2 Jo 0 2
The Least Upper Bound
A function f: D — R is said to be bounded from above in D if there is a
constant M such that f(z) < M for all x € D. We call M an upper bound
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of f. Note that the numbers, M + 1, M + 2,--- are also upper bounds of
f. The smallest upper bound of f is called the least upper bound or the
supremum. If M is the supremum of f in D we write

M =sup{f(z) :z € D}.
Note that if N is any upper bound of f in D then M < N.

Example 1.5
Find the supremum of f(z) = sinz.

Solution.
The graph of f is bounded between —1 and 1. Thus, sup{f(z) :z € R} =1m

sup {

Example 1.6
Find

t
€% sin <§> sin (—)‘ cx € R, t>0}
€ €

Solution.
The answer is

sup {

t
€% sin <£> sin <—>’ :xGR,t>O} = n
€ €
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Practice Problems

Exercise 1.1

Compute the partial derivatives indicated:
(a) 4% (y*sinzy)

(b) 2= (e™)

9z

(c) #;az (zln (%)) .

Exercise 1.2

Find all the first partial derivatives of the functions:
(a) fz,y) =2+ 6y

f(z,y,2) = 2%y — 10y?2* + 43z — 7 tan (4y)
f(s,t) =t"In(s?) + 5 — Vs?
f

Exercise 1.3
Let f(x,y) = €3 cosy. Compute f,(0,27).

Exercise 1.4
_ : o2 _ 2 d el
If z=e"siny, v =st*, and y = s°¢, find FZ and 5.

Exercise 1.5
In the equation

ou Ou
or Oy

identify the independent variable(s) and the dependent variable.

Exercise 1.6
Let f be an odd function, that is, f(—z) = —f(z) for all z € R. Show that

for all @ € R we have
/ f(z)dx = 0.
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Exercise 1.7
Let f be an even function, that is, f(—z) = f(z) for all x € R. Show that

for all @ € R we have
/ f(z)dx = 2/ f(z)dz.
—a 0
Exercise 1.8

Use the product rule of derivatives to derive the formula of integration by

parts
/uv/dx = uv — /u'vdx.
Exercise 1.9

Let u(z,t) = e?sin (£) sin (). Find uy and ug,.

Exercise 1.10

Let u(z,t) = €?sin (£) sinh (%), where

e

. —e
sinhz =

2

Find vy and ug,.

Exercise 1.11
Find

sup {

ent

t
€2 sinh (—) sin (E)‘ T € R} .
€ €
Exercise 1.12

Let up(z,t) = 1 4+ S—sinnz.
(a) Find sup{|u,(z,0) — 1| : x € R}.
(b) Find sup{|u,(z,t) — 1| : x € R}.
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2 Sequences of Functions: Pointwise and Uni-
form Convergence

Later in this book we will be constructing solutions to PDEs involving infinite
sums of sines and cosines. These infinite sums or series are called Fourier
series. Fourier series are examples of series of functions. Convergence of
series of functions is defined in terms of convergence of a sequence of func-
tions. In this section we study the two types of convergence of sequences of
functions.

Recall that a sequence of numbers {a, }°°, is said to converge to a number
L if and only if for every given ¢ > 0 there is a positive integer N = N(¢)
such that for all n > N we have|a, — L| < e.

What is the analogue concept of convergence when the terms of the sequence
are variables? Let D C R and for each n € N consider a function f,, : D — R.
Thus, we obtain a sequence of functions {f,}22,. For such a sequence, there
are two types of convergenve that we consider in this section: pointwise con-
vergence and uniform convergence.

We say that {f,}>°, converges pointwise on D to a function f: D — R if
and only if for a given a € D and € > 0 there is a positive integer N = N (a, €)
such that if n > N then |f,(a) — f(a)| < €. In symbol, we write

lim f,(a) = f(a).

n—oo

It is important to note that N is a function of both a and e.

Example 2.1

Define f, : [0,00) — R by f.(z) = 775,z Show that the sequence {f,}7,

converges pointwise to the function f(x) = 0 for all x > 0.

Solution.
For all x > 0,
. ) nx
Mim fo(@) = lim =55 =0m
Example 2.2

For each positive integer n let f,, : (0,00) — R be given by f,,(z) = nz. Show
that {f,}5°, does not converge pointwise on D = (0, c0).
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Solution.
This follows from the fact that lim, .. nz =occforallz € D m

As pointed out above, for pointwise convergence, the positive integer N de-
pends on both the given z and e. A stronger convergence concept can be
defined where N depends only on e.

Let D be a subset of R and let { f,,}2°, be a sequence of functions defined on
D. We say that {f,,}>°; converges uniformly on D to a function f : D — R
if and only if for all € > 0 there is a positive integer N = N(¢) such that if
n > N then |f,(z) — f(x)| < e for all x € D.

This definition says that the integer N depends only on the given € so that
for n > N, the graph of f, () is bounded above by the graph of f(x)+ € and
below by the graph of f(x) —e.

Example 2.3
For each positive integer n let f, : [0,1] — R be given by f,(x) = £. Show
that {f,}5%, converges uniformly to the zero function.

Solution.
Let € > 0 be given. Let N be a positive integer such that N > % Then for

n > N we have
1

N

fule) — f@) = T <

— < <€
n

S|

for all z € [0,1] m

Clearly, uniform convergence implies pointwise convergence to the same limit
function. However, the converse is not true in general.

Example 2.4

Define f, : [0,00) — R by f.(z) = {757z. By Example 2.1, this sequence
converges pointwise to f(z) = 0. Let € = % Show that there is no positive
integer N with the property n > N implies |f,(z) — f(z)| < € for all x > 0.
Hence, the given sequence does not converge uniformly to f(z).

Solution.
For any positive integer N and for n > N we have

)1 )) -4
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Exercise 2.1 below shows a sequence of continuous functions converging point-
wise to a discontinuous function. That is, pointwise convergence does not
preserve the property of continuity. One of the interesting features of uniform
convergence is that it preserves continuity as shown in the next example.

Example 2.5

Suppose that for each n > 1 the function f,, : D — R is continuous in D.

Suppose that {f,}>°, converges uniformly to f. Let a € D.

(a) Let € > 0 be given. Show that there is a positive integer N such that if

n > N then |f,(z) — f(x)] < § forall z € D.

(b) Show that there is a § > 0 such that for all |z — a| < § we have | fy(z) —

fn(a)] < 5.

(c) Using (a) and (b) show that for |z — a| < § we have |f(z) — f(a)| < e.

Hence, f is continuous in D since a was arbitrary. Symbolically we write
P g, Fnl@) = i, ot Fale)

Solution.

(a) This follows from the definition of uniform convergence.

(b) This follows from the fact that fy is continuous at a € D.

(c) For |z —a| < & we have |f(z) — f(a)| = |f(a) = fn(a) + fn(a) = fn(z) +

fn(e)=f(@)] < |fn(a) = fla)[+]fn(a) = In (@) +[fn(@) = f2)] < 5+5+5 =

cnl

Does pointwise convergenvce preserve integration? In real analysis, it is
proven that pointwise convergence does not preserve integrability. That is,
the pointwise limit of a sequence of integrable functions need not be inte-
grable. Even when a sequence of functions converges pointwise, the process
of interchanging limits and integration is not true in general.

Contrary to pointwise convergence, uniform convergence preserves integra-
tion. Moreover, limits and integration can be interchanged. That is, if
{fn}>2, converges uniformly to f on a closed interval [a, b] then

b

b
lim fn(x)dx:/ lim fo(z)de.

n—oo
a

Now, what about differentiablility? Again, pointwise convergence fails in
general to conserve the differentiability property. See Exercise 2.1. Does
uniform convergence preserve differentiability? The answer is still no as
shown in the next example.
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Example 2.6
Consider the family of functions f, : [~1,1] given by f,(z) = /22 + L.

(a) Show that f, is differentiable for each n > 1.
(b) Show that for all x € [—1, 1] we have

o) — f(2)] < =

B

where f(z) = |z|. Hint: Note that /22 + & + Va2 > \/iﬁ
(c) Let € > 0 be given. Show that there is a positive integer N such that for
n > N we have

|fu(z) — f(x)] < € for all x € [—1,1].

Thus, {f,}5°, converges uniformly to the non-differentiable function f(z) =
|-

Solution.
(a) f, is the composition of two differentiable functions so it is differentiable
with derivative

fw =l 1] N
(b) We have
Ifn(x)—f(x)|:|m_@ |« x”%\}gﬁﬂ/ﬁ)

(c) Let € > 0 be given. Since lim,, ., \/Lﬁ = 0 we can find a positive integer
N such that for all n > N we have \/iﬁ < €. Now the answer to the question
follows from this and part (b) m

Even when uniform convergence occurs, the process of interchanging lim-
its and differentiation may fail as shown in the next example.
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Example 2.7
Consider the functions f, : R — R defined by f,(z) = 20z,

n

(a) Show that {f,}22, converges uniformly to the function f(z) = 0.
(b) Note that {f,}°°, and f are differentiable functions. Show that

/
lim f(x) # f/(2) = | lim fu()] -
That is, one cannot, in general, interchange limits and derivatives.
Solution.

(a) Let € > 0 be given. Let N be a positive integer such that N > 1. Then
for n > N we have

sin nx

1
— <€
n

[fu(z) = f(z)| =

n

and this is true for all z € R. Hence, {f,}>2, converges uniformly to the
function f(z) = 0.

(b) We have lim,, ., f! (7) = lim,,_,o cosnm = lim,,_,o,(—1)" which does not
converge. However, f'(7) =0 m

Pointwise convergence was not enough to preserve differentiability, and nei-
ther was uniform convergence by itself. Even with uniform convergence the
process of interchanging limits with derivatives is not true in general. How-
ever, if we combine pointwise convergence with uniform convergence we can
indeed preserve differentiability and also switch the limit process with the
process of differentiation.

Theorem 2.3

Let {f.}>>, be a sequence of differentiable functions on [a, b] that converges
pointwise to some function f defined on [a, b]. If { f]}2° ; converges uniformly
on [a, b] to a function g, then the function f is differentiable with derivative
equals to g. Thus,

lim f; () = g(x) = f'(x) = [1m ()] "

n—oo n—o0o

Finally, we conclude this section with the following important result that is
useful when a given sequence is bounded.
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Theorem 2.4
Consider a sequence f, : D — R. Then this sequence converges uniformly to
f:D — R if and only if

Jim sup{[fn(2) = f(z)]: 2 € D} = 0.

Example 2.8
Show that the sequence defined by f,(z) = “* converges uniformly to the
zero function.

Solution.

We have
COS X

1
0 < sup{| |z e R} < —.
n

n
Now apply the squeeze rule for sequences we find that

lim sup{\%] cxe€R}=0
n—oo n

which implies that the given sequence converges uniformly to the zero func-
tion on R m
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Practice Problems

Exercise 2.1
Define f, : [0,1] — R by f,(x) = ™. Define f : [0,1] — R by

0 if0<z<l1
f(x)_{ 1 ifz=1.

(a) Show that the sequence {f,}5°, converges pointwise to f.

(b) Show that the sequence {f,,}5°, does not converge uniformly to f. Hint:
Suppose otherwise. Let ¢ = 0.5 and get a contradiction by using a point
05)% <z < 1.

Exercise 2.2
Consider the sequence of functions

nx + 2

fn(ﬂf) ng
defined for all z in R. Show that this sequence converges pointwise to a
function f to be determined.

Exercise 2.3
Consider the sequence of functions

_sin(nz + 3)

defined for all = in R. Show that this sequence converges pointwise to a
function f to be determined.

Exercise 2.4
Consider the sequence of functions defined by f,(z) = n2x" forall 0 < z < 1.
Show that this sequence does not converge pointwise to any function.

Exercise 2.5

Consider the sequence of functions defined by f,(x) = (cosz)" for all —F <

r < 7. Show that this sequence converges pointwise to a noncontinuous

function to be determined.
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Exercise 2.6

Consider the sequence of functions f,(z) = x — £~ defined on [0, 1).

(a) Does {f,}>2, converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

(b) Does {f}}>2, converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

Exercise 2.7
Let fn(z) = 2= for x € [0,2].
(a) Find the pointwise limit f(z) = lim, . fn(x) on [0, 2].

(b) Does f, — f uniformly on [0, 2]?

Exercise 2.8
For each n € N define f,, : R — R by f,(z) = 2tz

2n+sin? z

(a) Show that f, — % uniformly.
(b) Find lim,, .o, [, fu(z)dz.

Exercise 2.9

Show that the sequence defined by f,(x) = (cosx)™ does not converge uni-
formly on [-7, 7].

Exercise 2.10

Let {f.}52, be a sequence of functions such that

n

n 2< e <ht < .
sup{|fu(e)| 2 S 0 <5} < o

(a) Show that this sequence converges uniformly to a function f to be found.

(b) What is the value of the limit lim,, f;’ fo(x)dx?
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Review of Some ODEs Results

Later on in this book, we will encounter problems where a given partial
differential is reduced to an ordinary differential function by means of a given
change of variables. Then techniques from the theory of ODE are required in
solving the transformed ODE. In this chapter, we include some of the results
from ODE theory that will be needed in our future discussions.

3 The Method of Integrating Factor

In this section, we discuss a technique for solving the first order linear non-
homogeneous equation

Y +p(t)y = g(t) (3.1)

where p(t) and g(t) are continuous on the open interval a < ¢ < b.

Since p(t) is continuous, it has an antiderivative namely [ p(¢)dt. Let u(t) =
e/ Pt Multiply Equation (3.1) by u(t) and notice that the left hand side of
the resulting equation is the derivative of a product. Indeed,

< (uty) = n(t)g(0)

Integrate both sides of the last equation with respect to ¢ to obtain
(o = [ utyg(oyit + ¢

Hence,
! ) [ g+

pu(t) 1(t)

y(t) = e~ TP / e 0t (1) gt + G I 0

y(t) =

or

23
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Notice that the second term of the previous expression is just the general
solution for the homogeneous equation

y +pt)y=0

whereas the first term is a solution to the nonhomogeneous equation. That
is, the general solution to Equation (3.1) is the sum of a particular solution of
the nonhomogeneous equation and the general solution of the homogeneous
equation.

Example 3.1
Solve the initial value problem

Solution.
We have p(t) = —% so that u(t) = % Multiplying the given equation by the
integrating factor and using the product rule we notice that

() -

Integrating with respect to ¢t and then solving for y we find that the general
solution is given by

y(t) = t/4dt+0t = 4* + Ct.

Since y(1) = 5, we find C' = 1 and hence the unique solution to the IVP is
y(t) =42 +t, 0 <t <oom

Example 3.2
Find the general solution to the equation

2
y’—i—;y:lnt, t>0.

Solution.
The integrating factor is p(t) = el 3t = 42, Multiplying the given equation
by #? to obtain

(t*y) = t*Int.
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Integrating with respect to t we find
t2y = /t2 Intdt + C.

The integral on the right-hand side is evaluated using integration by parts
3 ..
with u = Int, dv = t*dt,du = %,v = & obtaining

3 3
t2y=—Int— —+C
Y 311 9+

Thus,
tlt t—I—Cl
= —1ni — — —_
Y73 9"
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Practice Problems

Exercise 3.1
Solve the IVP: ¢/ + 2ty =t, y(0) = 0.

Exercise 3.2
Find the general solution: ' + 3y =t + e~ 2.

Exercise 3.3
Find the general solution: ¥’ + %y =3cost, t > 0.

Exercise 3.4
Find the general solution: y' 4 2y = cos (3t).

Exercise 3.5
Find the general solution: y’ + (cost)y = —3 cost.

Exercise 3.6
Given that the solution to the IVP ty’ + 4y = at?, y(1) = —% exists on the
interval —oo < ¢t < co. What is the value of the constant a?

Exercise 3.7
Suppose that y(t) = Ce % + ¢ + 1 is the general solution to the equation
y' + p(t)y = g(t). Determine the functions p(t) and g(t).

Exercise 3.8
Suppose that y(t) = —2e™" + €' + sint is the unique solution to the IVP
v +y=g(t), y(0) = yo. Determine the constant y, and the function g(t).

Exercise 3.9
Find the value (if any) of the unique solution to the IVP ¢/ 4+ (1 + cost)y =
1+ cost, y(0) = 3 in the long run?

Exercise 3.10
Solve
aug + bu, +cu =0

by using the change of variables s = ax + by and t = bx — ay.
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Sample Exam Questions

Exercise 3.11
Solve the initial value problem ty/ =y +t, y(1) =7.

Exercise 3.12
Show that if a and A\ are positive constants, and b is any real number, then
every solution of the equation

Y +ay =be M

has the property that y — 0 as t — oo. Hint: Consider the cases a = A and
a # X separately.

Exercise 3.13
Solve the initial-value problem v’ +y = e'y? y(0) = 1 using the substitution

_ 1
u(t) = 3
Exercise 3.14

Solve the initial-value problem ty' + 2y =t* —t + 1, y(1) = %

Exercise 3.15
Solve y — %y = sint, y(1) = 3. Express your answer in terms of the sine

integral, Si(t) = fg 3 s,
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4 The Method of Separation of Variables for
ODEs

The method of separation of variables that you have seen in the theory of
ordinary differential equations has an analogue in the theory of partial dif-
ferential equations (Section 17). In this section, we review the method for
ordinary differentiable equations.

A first order differential equation is separable if it can be written with one
variable only on the left and the other variable only on the right:

fw)y = g(t)

To solve this equation, we proceed as follows. Let F(t) be an antiderivative
of f(t) and G(t) be an antiderivative of g(t). Then by the Chain Rule

d dF dy ,
SF) = S 1)
Thus,
F0)y = o) = 5 () — 5.610) = T1P) — GOl =0
It follows that
Fly) - G(t) =

which is equivalent to

/f(y)y’dtz /g(t)dt+0

As you can see, the result is generally an implicit equation involving a func-
tion of y and a function of ¢. It may or may not be possible to solve this to
get y explicitly as a function of ¢. For an initial value problem, substitute the
values of ¢ and y by ty and yy to get the value of C.

Remark 4.2
If F is a differentiable function of y and y is a differentiable function of ¢t and
both F and y are given then the chain rule allows us to find Cfl—f given by

dF dF dy
dt  dy dt
For separable equations, we are given f(y)y = % and we are asked to find

F(y). This process is referred to as “reversing the chain rule.”
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Example 4.1
1

Solve the initial value problem y’ = 6ty?, y(1) = 5.

Solution.
Separating the variables and integrating both sides we obtain

/
/%dt_ /6tdt

or d |
—/—(—)dt:/6tdt
dt \y
Thus,
1
——=3*+C
y(t)

Since y(1) = %, we find C = —28. The unique solution to the IVP is then

given explicitly by
1

vt = 53

Example 4.2
Solve the IVP yy’ = 4sin (2¢), y(0) = 1.

Solution.
This is a separable differential equation. Integrating both sides we find

‘/%(g)ﬁ:4/$M%Mt

y* = —4cos (2t) + C

Thus,

Since y(0) = 1, we find C' = 5. Now, solving explicitly for y(¢) we find

y(t) = v/ —4cost +5

Since y(0) = 1, we have y(t) = v/—4cost + 5. The interval of existence of
the solution is the interval —oo <t < oo m
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Practice Problems

Exercise 4.1
Solve the (separable) differential equation

Exercise 4.2
Solve the (separable) differential equation

) = t*y — 4y
t+2

Exercise 4.3
Solve the (separable) differential equation

ty' =2(y — 4).

Exercise 4.4
Solve the (separable) differential equation

Y =2y(2—y).

Exercise 4.5

Solve the IVP
,  4sin (2t)

T y(0) = 1.

Y

Exercise 4.6
Solve the IVP:

yy' = sint, y(g) = —2.

Exercise 4.7
Solve the IVP:
y+y+1=0, y(1)=0.

Exercise 4.8
Solve the IVP:

y —ty* =0, y(0)=2.
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Exercise 4.9

Solve the IVP: -
y=1+y" y(3)=-1

Exercise 4.10

Solve the IVP:
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Sample Exam Questions

Exercise 4.11
For what values of the constants «, y, and integer n is the function y(t) =
(44 t)"2 a solution of the initial value problem?

Y +ay” =0, y(0)=yo.

Exercise 4.12
Solve the equation 3u, + u,, = 0 by using the substitution v = w,,.

Exercise 4.13
Solve the IVP
(2y —siny)y =sint — ¢, y(0) = 0.

Exercise 4.14
State an initial value problem, with initial condition imposed at t5 = 2,
having implicit solution y3 + ¢? + siny = 4.

Exercise 4.15
Can the differential equation

@:xQ—xy
dx

be solved by the method of separation of variables? Explain.
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5 Second Order Linear ODEs

When solving second order partial differential equations such as the heat,
wave, and Laplace’s equations using the method of separation of variables
for PDEs one ends up confronting second order linear ODEs. Thus, it is
deemed necessary to review some of the techniques used in solving second
order linear ordinary differential equations which we do in this section.

We start first by considering the second order linear ODE with constant
coefficients given by

ay” +by +cy=0 (5.1)

where a,b and ¢ are constants with a # 0.

Notice first that for b = 0 and ¢ # 0 the function 3" is a constant multiple
of y. So it makes sense to look for a function with such property. One such
function is y(t) = €. Substituting this function into (5.1) leads to

ay’ + by +cy = ar*e™ 4+ bre™ 4 ce™ = (ar® + br +c)e™ =0
Since e > 0 for all ¢, the previous equation leads to
ar’* +br+c=0 (5.2)

Thus, a function y(t) = €™ is a solution to (5.1) when r satisfies equation
(5.2). We call (5.2) the characteristic equation for (5.1) and the polyno-
mial C(r) = ar? 4+ br + c is called the characteristic polynomial.

The characteristic equation is a quadratic equation. Thus, this equation can
have two distinct real solutions, two equal solutions, or two conjugate com-
plex solutions depending on the sign of the expression b*> — 4ac. Hence, we
consider the following three cases:

Case 1: b? — 4ac > 0.

In this case, equation (5.2) have two distinct real roots r =
—b+vb2—4dac
4a

b2 —
b \/4ba 4ac and

ry = . The general solution to (5.1) is given by
y(t) = cre™ + coe™
where ¢; and ¢y are arbitrary constants.

Example 5.1
Solve the initial value problem

y' —y —6y =0, y(0)=1, y'(0) =2.

Describe the behavior of the solution y(t) as t — —oo and t — oo.
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Solution.

The characteristic polynomial is C'(r) = r? —r—6 = (r—3)(r +2) so that the
characteristic equation 72> — r — 6 = 0 has the solutions r; = 3 and r, = —2.
The general solution is then given by

y(t) = cre® + e

Taking the derivative to obtain
Y (t) = 3cre® — 2ce™ .
The conditions y(0) = 1 and 4'(0) = 2 lead to the system

c1+ ¢ = 1
3c1 —2¢c9 = 2.

Solving this system by the method of elimination we find ¢; = % and ¢y = %
Hence, the unique solution to the initial value problem is

1 _
y(t) = (4" + )

3t t

Ast — —o0, €% — 0 and e2

ast — ool

— 00. Thus, y(t) — oco. Similarly, y(t) — oo

Case 2: b> — 4ac = 0.
In this case, the characteristic equation has the single root r = —%. The
general solution to (5.1) is given by

y(t) = cle*%t + cﬂe’it

where ¢; and ¢y are arbitrary constants.

Example 5.2

Solve the initial value problem: y"” + 2y’ +y =0, y(0) =1, y1(0) = —1.
Solution.

The characteristic equation r2+2r+1 = 0 has a repeated root: 1, = ry = —1.

Thus, the general solution is given by

y(t) = cre™" + cote™".
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The two conditions y(0) = (0) —1lead to ¢; = 1 and ¢, = 0.
Hence, the unique solution is y( ) Bl |

Case 3: b? — 4ac < 0.
In this case, the complex roots of equation (5.1) are given by

—b+ iv4ac — b?

2a

o =

where ¢+ = /—1. The general solution is given by

y(t) = e*(c; cos Bt + cy sin (t)

6 V4ac—b? 4ac b2

where @ = — - , and ¢; and ¢y are real numbers.

2a’

Example 5.3
Solve the initial value problem

y" — 10y +29y = 0, y(0) = 1, ¥'(0) = 3.

Solution.
The characteristic equation r? — 10r + 29 = 0 has the complex roots ry o =
5 £ 2¢. Thus, the general solution is given by the expression

y(t) = € (cy cos 2t + ¢ sin 2t).
Finding 3" we obtain
Y (t) = e™[(5¢1 + 2¢2) cos 2t + (5cy — 2¢y) sin 2t].

The initial conditions yield ¢; = 1 and ¢; = —1. Thus, the unique solution
to the initial value problem is

y(t) = e’ (cos 2t —sin2t) m

An Eigenvalue Problem
Consider the question of finding a nontrivial twice differentiable function u
satisfying the ordinary differential equation

d*u

T
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subject to the boundary conditions u(0) = u(1) = 0. This problem is referred
to as the eigenvalue problem for the following reason: Define the function
L = %. Then the given equation can be written as Lu = Au. In linear
algebra, A is called an eigenvalue of L with corresponding eigenvector u.
Different solutions to the eigenvalue problem are obtained depending on the
sign of . Suppose first that A = 0. Then u(z) = Cyz 4+ Cy for arbitrary
constants C and Cs. Using the boundary conditions we find C; = Cy = 0.
Hence, u = 0.

Suppose that A > 0. Then u(x) = AeV® 4 Be=V @ Again, the boundary
conditions imply that u = 0.

Now, suppose that A < 0. Then u(x) = Acosv—Az + Bsiny/—Mz. Using
the condition u(0) = 0 to obtain A = 0. Using the condition u(1l) = 0
and assuming we are looking for non-trivial solution u we expect to have
sin v/=\ = 0. This happens when A = )\, = —(n7)? where n € N. We call ),
an eigenvalue with corresponding eigenfunction u,(z) = sinnrz.

Finally, using the principle of superposition we find that the general solution
to the eigenvalue problem is given by

[0.9]
u(z) = Z A, sinnmx
n=1

where the convergence is pointwise convergence (See Section 2).

Euler Equations
A second order linear differential equations of the form

az*y" +bxy +cy=0

where a, b, ¢ are constants is called an Euler equation.

To solve Euler equation, one starts with solutions of the form y = 2" (with
x > 0) where r is to be determined. Plugging this into the differential
equation to get

ax®r(r —1)z" % + bxra™ ' + ca” =0
(ar? —ar + br + ¢)z" =0
ar® — (a — b)r + ¢ =0

This last equation is a quadratic equation in r and so we will have three cases
to look at : Real distinct roots, double roots, and complex conjugate roots.
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If the quadratic equation has two distinct real roots 1 and 5 then the general

solution is given by
y(x) = Ax™ + Ba™.

If the quadratic equation has two equal roots r; = ro = r then the general

solution is given by
y(r) =2"(A+ Blnx).

If the quadratic equation has two complex conjugate solutions r; o = a £¢3
then the general solution is given by

y(xr) = x%(Acos (Blnz) + Bsin(flnx)).

Example 5.4
Solve the initial value problem

22%y" + 3xy’ — 15y =0
y(1)=0, ¥'(1) =1.

Solution.
Letting y = 2" we obtain the quadratic equation 2r* +r — 15 = 0 whose

roots are r; = g and ro = —3. Hence, the general solution is given by

y(z) = Az? + Ba~®,

The condition y(1) = 0 implies A + B = 0. The condition 3'(1) = 1 implies

gA — 3B = 1. Solving this system of two unknowns we find A = % and
B = —%. Hence, the unique solution is given by
y — 3:};% — El’_?’ ]
11 11

Second Order Linear nonhomogeneous ODE: The Method of Un-
determined Coefficients
We consider the nonhomogeneous second order

ay” + by +cy=g(t), a<t<b.
We know that the general solution has the structure

y(t) = cryi(t) + coya(t) + yp(t)
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where y,(t) is a particular solution to the nonhomogeneous equation. We
will write y(t) = yn(t) + yp(t) where yu(t) = c1y1(t) + coya(t).

One way to finding y, is by using the method of undetermined coefficients.
The idea behind the method of undetermined coefficients is to look for y,(t)
which is of a form like that of g(¢). This is possible only for special functions
g(t), but these special cases arise quite frequently in applications.

We will assume that g(t) being simple means it is some combination of terms
like ™, cos (kt), sin (kt), and polynomials a,t™ +a, 1t" ' +- - - a1t +ay. Based
on those terms we will put together a candidate y, that has some constants in
it we need to solve for: Those are the undetermined coefficients this method
is named for.

In the following table we list examples of g(t) along with the corresponding
form of the particular solution.

Form of ¢(t) Form of y,(t)

ant™ + ap_1t" T+ +ait + ag A" + Ay 1 t" L At + A

[ant™ + an_1t" "1+ -+ art + agle® At 4 Ay 1t - Agt 4 Agle
[ant™ + an_1t"" 1 + - + ait + ag) cos at t[(Apt™ + Ap 1t + o+ At + Ag) cosat
or +(Bpt™ + By _1t" "t + .- + Bit + By) sin at]

[ant™ + an_1t"" L+ - 4+ art + ag] sin at
eant™ + an 11" P+ - 4 art +aglsin Bt | t7[(Apt™ + Ap 1t 4o+ Art + Ag)e™ cos Bt
or +(Bnt™ + Bp—1t""t + -+ + Byt + Bp)e“ sin 3t]
eant™ + an_1t" "1 + - + ayt + ag] cos Bt

The number r is chosen to be the smallest nonnegative integer such that
no term in the assumed form is a solution of the homogeneous equation
ay” + by + cy = 0. The value of r will be 0, 1, or 2.

Example 5.5

List an appropriate form for a particular solution of
(a) y' + 4y = t2e™.

(b) v + 4y = te* cost.

(c) " + 4y = 2t* + 5sin 2t + 3.

(d) v + 4y = t* cos 2t.

Solution.

The general solution to the homogeneous equation is y(t) = c¢jcos2t +
Co Sin 2t.

(a) For g(t) = t?¢*, an appropriate particular solution has the form y,(¢) =
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t"(Aqt? + At + Ag)e®t. We take r = 0 since no term in the assumed form for
Yy, is present in the expression of y;(t). Thus

yp(t) = (AQtQ + Alt + A0)63t
(b) An appropriate form is
yp(t) = t"[(Art + Ag)e* cost + (Byt + By)e* sint]

We take r = 0 since no term in the assumed form for y, is present in the
expression of y;(¢). Thus

yp(t) = (At + Ag)e* cost + (Bit + By)e* sint

()

yp(t) = Agt® + Ayt + Ag + Byt cos 2t + Ct sin 2t + Dye™
(d)
y,(t) = t(Agt? + Ayt + Ag) cos 2t + t(Bat® + Byt + By)sin 2t m

Example 5.6
Find the general solution of

y" — 2y — 3y = 4t — 5 + 6te*

Solution.
The characteristic equation of the homogeneous equation is 2 — 2r — 3 = 0
with roots r; = —1 and ro = 3. Thus,

yn(t) = cre”t + o€

A guess for the particular solution is y,(t) = At + B+ Cte* + De*. Inserting
this into the differential equation leads to

—3At —2A — 3B — 3Cte* + (2C — 3D)e* = 4t — 5 + 6te*

From this identity we obtain —3A = 4 so that A = —%. Also, —2A—-3B = -5
so that B = %. Since —3C = 6 we find C' = —2. From 2C — 3D = 0 we find
D = —%. It follows that

23 4

4
£ = cret Bt _ 2y 20 [op g T 2t
y(t) = cre™" + cpe 3 + 5 ( +3)e u
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Practice Problems

Exercise 5.1
Solve the initial value problem

y' =4y +3y =0, y(0) = -1, y'(0) =1
Describe the behavior of the solution y(t) as t — —oo and ¢ — oc.

Exercise 5.2
Solve the initial value problem

y'+4y +2y =0, y(0) =0, y(0) =4
Describe the behavior of the solution y(t) as t — —oo and t — 0.

Exercise 5.3
Solve the initial value problem

2y" =y =0, y(0) = -2, y(0) = V2
Describe the behavior of the solution y(t) as t — —oo and t — oc.

Exercise 5.4
Find a homogeneous second-order linear ordinary differential equation whose

general solution is y(t) = c;e® + cye ™.

Exercise 5.5
Solve the IVP

5
9y" — 6y +y =0, y(3) =—-2, y¥(3) = ~3
Exercise 5.6
Solve the IVP
3
254" + 20y + 4y =0, y(5) = 4e™?, ¢/(5) = —ze?

Exercise 5.7
The graph of a solution y(¢) of the differential equation 4y” + 4y’ +y = 0
passes through the points (1,e~2) and (2,0). Determine y(0) and 3/(0).
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Exercise 5.8
Find the general solution of 3" — 6y’ + 9y = 0.

Exercise 5.9
Solve the IVP

Yy +2y +2y=0, y(0) =3, y'(0)=-1

Exercise 5.10
Solve the IVP

20 =2y +y=0, y(-7) =1, y(—7) = -1

Exercise 5.11
Find the general solution of

y' —y' +y=2sin3t

Exercise 5.12
Find the general solution of

Y +4y — 2y =2t> -3t +6

41
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Sample Exam Questions

Exercise 5.13
Find the general solution to the following differential equation.

z2y" — Tay’ + 16y = 0.

Exercise 5.14
Find the general solution to the following differential equation.
z*y" + 3y + 4y = 0.
Exercise 5.15
Consider the differential equation
d?y
— + Ay =0.
dx? tAY
Determine the eigenvalues A and the corresponding eigenfunctions if y satis-
fies the following boundary conditions:
(a) y(0) = y(r) =0
(b) y(0) =y'(L) =0
(c) ¥'(0) =y(1) = 0.

Exercise 5.16
Show by direct computation that the eigenvalue problems

(ky'(2))" + Ay(z) =0, k >0
with the following boundary conditions have no negative eigenvalues \ :
(a) y(0) =y(L) =0
(b) 4'(0) =¢'(L) =0
(c) y(L) =y(=L), y(L)=y(-L).
Exercise 5.17
Solve the initial-value problem: 2y” + 5y — 3y = 0, y(0) =2, 3/(0) = 1.
Exercise 5.18
Find the general solution of

y" — 1y = be' — sin 2t

Exercise 5.19

Solve using undetermined coefficients:

' +y —2y=t+sin2ty0)=1,4'(0) =0



Introduction to PDEs

Many fields in engineering and the physical sciences require the study of ODE
and PDE. Examples of those fields are acoustics, aerodynamics, elasticity,
electrodynamics, fluid dynamics, geophysics (seismic wave propagation), heat
transfer, meteorology, oceanography, optics, petroleum engineering, plasma
physics (ionized liquids and gases), quantum mechanics.

So the study of partial differential equation is of great importance to the
above mentioned fields. The purpose of this chapter is to introduce the
reader to the basic terms of partial differential equations.

6 The Basic Concepts

The goal of this section is to introduce the reader to the basic concepts and
notations that will be used in the remainder of this book.

A differential equation is an equation that involves an unknown scalar
function (the dependent variable) and one or more of its derivatives. For
example,

Py _dy
_ %y _ 1
T2 de + 3y 3 (6.1)
o ou Oy O
u u u
ou OJw ow . 2
ot oz o 47 (6:2)

If the unknown function is a function in one single variable then the differ-
ential equation is called an ordinary differential equation. An example
of an ordinary differential equation is Equation (6.1). In contrast, when the
unknown function is a function of two or more independent variables then
the differential equation is called a partial differential equation, in short
PDE. Equation (6.2) is an example of a partial differential equation. In this
book we will be focusing on partial differential equations.

43
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Example 6.1

Identify which variables are dependent variable or independent variable(s)
for the followmg differential equations.

(a) 4 — 2% +y =0

(b) Ut ‘I— LUty = 0
dr __
(c) 2% = 4.
(d) %—4% =u+ 3y
Solution

(a) Independent variable is z and the dependent variable is y.

(b) Independent variables are x and ¢ and the dependent variable is w.
(c) Independent variable is ¢ and the dependent variable is z.

(d) Independent variables are u and v and the dependent variable is y m

Example 6.2

Classify the following as either ODE or PDE.
(a) Uy = Cligg.

(b) y" — 4y’ + 5y = 0.

(¢) ug + cuy = 5.

Solution.
(a) PDE (b) ODE (c) PDE m

The order of a partial differential equation is the highest order derivative
occurring in the equation. Thus, (6.2) is a second order partial differential
equation.

Example 6.3

Find the order of each of the following partial differential equations:
(a) zu, + yu, = 2? + y?

(b) uuy, + u, =2

(€) ug — gy = f(x,1)

(d) uy + vty + Uggy =0

(e) Ut + Ugzze = 0.

Solution.
(a) First order (b) First order (c¢) Second order (d) Third order (e) Fourth
order m
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A partial differential equation is called linear if it is linear in the unknown
function and all its derivatives with coefficients depend only on the indepen-
dent variables. For example, a first order linear partial differential equation
has the form

Az, y)uz + B(z,y)uy + C(z,y)u = D(z,y)
whereas a second order linear partial differential equation has the form
A(x, y)ua:a: + B(SC, y)umy + C(wv y)uyy + D(CE7 y)ua: + E($a y)uy + F(.CC, y)u = G(a:, y)'

A partial differential equation is called quasi-linear if the highest-order
derivatives which appear in the equation are of degree 1(regardless of the
manner in which lower-order derivatives and unknown functions occur in the
equation). For example, a first order quasi-linear partial differential equation
has the form

A(l’, y7 U’)ux + B(l’, y’ U’)uy = C({E, ya U)

whereas a second order quasi-linear partial differential equation has the form
A(ZL‘, Y, U, Ug, uy)ua:ac+B($a Y, U, Uy, uy)uzy+0($7 Y, u, Ug, uy)uyy = D({L‘, Y, U, Uy, uy)-

A partial differential equation is semi-linear if it is quasi-linear and the
coefficients of the highest-order derivatives are functions of independent vari-
ables only. For example, a first order semi-linear partial differential equation
has the form

A(z,y)u, + B(z,y)u, = C(z,y,u)

whereas a second order semi-linear partial differential equation has the form
Az, y)ugy + B(x, y) gy + C(x, y)uyy = D(x,y, u, Uy, uy).

Note that linear and semi-linear partial differential equations are special cases
of quasi-linear equations.

A partial differential equation that is not linear is called nonlinear. For
example, uZ + 2u,, = 0.

As for ODEs, linear PDEs are usually simpler to analyze/solve than nonlinear
PDEs.
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Example 6.4

Determine whether the given PDE is linear, quasilinear, semilinear, or non-
linear:

(a) zu, + yu, = 2* + y?

(b) wuy + uy =2

(€) wg — gy = f(x,1)

(d) wy 4+ utty + Ugze = 0

(€) u? + Upger = 0.

a) Linear, quasilinear, semilinear.
b) Quasilinear, nonlinear.

¢) Linear, quasilinear, semilinear.

d) Quasilinear, semilinear, nonlinear.
e) Quasilinear, semilinear, nonlinear

A more precise definition of a linear differential equation begins with the
concept of a linear differential operator L. The operator L is assembled
by summing the basic partial derivative operators, with coefficients depend-
ing on the independent variables. The operator acts on sufficiently smooth
functions depending on the relevant independent variables. Linearity im-
poses two key requirements:

L{u+v] = L[u] + L[v] and L]ou] = aL[u],
for any two (sufficiently smooth) functions u, v and any constant a.

Example 6.5
Define a linear differential operator for the PDE

Up = Uy

Solution.
Let L[u] = u; — c*uy,. Then one can easily check that L[u + v] = L[u] + L[v]
and L[au] = aL[u] B

A linear partial differential equation is called homogeneous if every term
of the equation involves the unknown function or its partial derivatives. A
linear partial differential equation that is not homogeneous is called nonho-
mogeneous. In this case, there is a term in the equation that involves only
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the independent variables.
A homogeneous linear partial differential equation has the form

Liu] =0
where L is a linear differential operator.

Example 6.6

Determine whether the equation is homogeneous or nonhomogeneous:

(a) zu, + yu, = 2% + y*.
(b) Uy = gy,
(€) Ugy + uyy = 0.

Solution.

(a) Nonhomogeneous because of 2% + 3.
(b) Homogeneous.

(c) Homogeneous m

47

Finally, we shall be employing a few basic notational conventions regard-
ing the variables that appear in our differential equations. We always use
t to denote time, while x,y, z will represent (Cartesian) space coordinates.
Polar coordinates r, # will also be used when needed, and our notational con-

ventions appear at the appropriate places in the exposition.

An equilibrium equation models an unchanging physical system, and so
only involves the space variables. The time variable ¢ appears when mod-
eling dynamical , meaning time-varying, processes. Both time and space

coordinates are independent variables.
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Practice Problems

Exercise 6.1
Classify the following equations as either ODE or PDE.

2
(@) (¥")' + Gz =0

ou ou __ y—=x
(b) 5 + 45 = 1=

(c)y"—4y =0

Exercise 6.2
Write the equation
Uy + 2Ugy + Uyy = 0

in the coordinates s =z, t =z — .

Exercise 6.3
Write the equation
Ugpy — 2Ugy + dUyy = 0

in the coordinates s =z +y, t = 2x.

Exercise 6.4

For each of the following PDEs, state its order and whether it is linear or
nonlinear. If it is linear, also state whether it is homogeneous or nonhomo-
geneous:

(a) uu, + x%uyy, +sinz =0

(b) u, + € u, =0

(¢) ug + (siny)uy, — e’ cosy = 0.

Exercise 6.5

For each of the following PDEs, determine its order and whether it is linear
or not. For linear PDEs, state also whether the equation is homogeneous or
not. For nonlinear PDEs, circle all term(s) that are not linear.

(a) 22Uy + €7U = Ty,

(b) €Yuyyy + €*u = —siny + 10zu,

(¢) YPUgy + €"uu, = 20U, + u

(d) uptigey + €“uu, = 5x’u,

() up = k*(ugy + uyy) + f(z,y,1).



6 THE BASIC CONCEPTS 49

Exercise 6.6

Which of the following PDEs are linear?

(a) Laplace’s equation: u,, + u,, = 0.

(b) Convection (transport) equation: u; + cu, = 0.

(¢) Minimal surface equation: (1+Z7)Zy, =22, 2y Zpy+ (1+ Z2) Zy, = 0.
(d) Korteweg-Vries equation: u; + 6ut, = Ugzyy.

Exercise 6.7

Classify the following differential equations as ODEs or PDEs, linear or
nonlinear, and determine their order. For the linear equations, determine
whether or not they are homogeneous.

(a) The diffusion equation for u(z,t) :

U = Klgy.
(b) The wave equation for w(z,t) :

Wit = Wy
(c) The thin film equation for h(zx,t) :

hy = =(hhrae)a-
(d) The forced harmonic oscillator for y(¢) :
Y + w’y = F cos (wt).
(e) The Poisson Equation for the electric potential ®(z,y, 2) :
Q0 + Dy + D, = dmp(a, vy, 2).

where p(z,y, z) is a known charge density.
(f) Burger’s equation for h(x,t) :

hy + hh, = vh,,.

Exercise 6.8
Write down the general form of a linear second order differential equation of
a function in three variables.



20 INTRODUCTION TO PDES

Exercise 6.9

Give the orders of the following PDEs, and classify them as linear or nonlin-
ear. If the PDE is linear, specify whether it is homogeneous or nonhomoge-
neous.

(a) x2umy + y*uy, —log (1 + y*)u =0

(b) up +u’ =1

(c )uwwyy+€ Uz =Y

(d) uttyy +uyy —u =0

(€) Uze + up = 3u.

Exercise 6.10

Consider the second-order PDE

Ugg + 4Ugy + 4y, = 0.

Use the change of variables v(z,y) = y — 2z and w(x,y) = x to show that
w = 0.
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Sample Exam Questions

Exercise 6.11
Write the one dimensional wave equation wuy; = c?ug, in the coordinates
v=x+ct and w =z — ct.

Exercise 6.12
Write the PDE
Ugg + 2Uzy — Uy, = 0

in the coordinates v(x,y) =y — 3z and w(x,y) = x + y.
Exercise 6.13

Write the PDE
auy + bu, =0

in the coordinates s(x,y) = ax+by and t(x,y) = bx —ay. Assume a*+b* > 0.
Exercise 6.14

Write the PDE

Uy + Uy =1

in the coordinates s =z +y and t =z — .

Exercise 6.15
Write the PDE
au; + bu, =u, a,b#0

in the coordinates v = ax — bt and w = let'
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7 Solutions and Related Topics

By a classical solution or strong solution to a partial differential equation
we mean a function that satisfies the equation. To solve a PDE is to find all
its classical solutions. In the case of only two independent variables x and v,
a solution u(z,y) is visualized geometrically as a surface, called a solution
surface or an integral surface in the (x,y, u) space.

A formula that expresses all the solutions of a PDE is called the general
solution of the equation.

Example 7.1

Show that u(x,t) = e **"*(cos \z — sin Az) is a solution to the equation
Up — QP Ugy = 0.

Solution.

Since

32,2
Uy — 0Py = — N2a?e™ ! (cos A\x

—sin \z) — a?e N (=2 cos Az + A2 sin Az) = 0
the given function is a solution to the given equation m

Example 7.2
Find the general solution of wu,, = 0.

Solution.

Integrating first we respect to y we find u,(z,y) = f(x), where f is an
arbitrary differentiable function. Integrating w, with respect to z we find
u(z,y) = [ f(x)dz + g(y), where g is an arbitrary differentiable function m

Note that the general solution in the previous example involves two arbitrary
functions. In general, the general solution of a partial differential equation
is an expression that involves arbitrary functions. This is in contrast to the
general solution of an ordinary differential equation which involves arbitrary
constants.

Usually, a classical solution enjoys properties such as smootheness (i.e. a
function that has continuous derivatives up to some desired order over some
domain.) and continuity. However, in the theory of nonlinear pdes, there are
solutions that do not require the smoothness property. Such solutions are
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called weak solutions or generalized solutions. We illustrate this con-
cept using equations rather than pdes. Consider the equation x? — y? = 0.
The function y = z is a classical solution of this equation. This solution is
infinitely differentiable function. On the other hand, the function y = |z| is
also a solution to the given equation. However, this solution is not differen-
tiable at 0. We call such a solution a weak solution. In this book, the word
solution will refer to a classical solution.

Example 7.3
Show that u(z,t) =t + 2% is a classical solution to the PDE

Up = Ugy. (7.1)

Solution.

Assume that the domain of definition of u is D C R2. Since u, u, Uy, Uty, Ugy
exist and are continuous in D(i.e., u is smooth in D) and u satisfies equation
(7.1), we conclude that u is a classical solution to the given PDE m

Now, consider the linear differential operator L as defined in the previous
section. The defining properties of linearity immediately imply the key facts
concerning homogeneous linear (differential) equations.

Theorem 7.1
The sum of two solutions to a homogeneous linear differential equation is
again a solution, as is the product of a solution by any constant.

Proof.
Let uy, us be solutions, meaning that L]u;] = 0 and L[ug] = 0. Then, thanks
to linearity,

Lluy + us] = L{uy] + L[ug] = 0,

and hence their sum wu; + us is a solution. Similarly, if « is any constant, and
u any solution, then
Llou] = aLju] = a0 =0,

and so the scalar multiple awu is also a solution m

The following result is known as the superposition principle for homo-
geneous linear equations.
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Theorem 7.2

If uy, -+, u, are solutions to a common homogeneous linear partial differen-
tial equation L[u] = 0, then the linear combination u = cju; + - - + ¢y, is
a solution for any choice of constants cy,--- ,c,.

Proof.

The key fact is that, thanks to the linearity of L, for any sufficiently smooth
functions uq, - -+ ,u, and any constants cq, - - , ¢,

Llu] =L[ciuy + -+ - + cyun] = Llciug + -+ - + ¢p_1tn_1] + Licpuy]
=--- = Lleyw] + -+ + L{caun] = erLug] + -+ - + ¢ Lluy].

In particular, if the functions are solutions, so L[u;] =0, -+, L[u,] = 0, then
the right hand side of the above equation vanishes, proving that u is also a
solution to the homogeneous equation Lju] =0 m

In physical applications, homogeneous linear equations model unforced sys-
tems that are subject to their own internal constraints. External forcing
is represented by an additional term that does not involve the dependent
variable. This results in the nonhomogeneous equation

Llu] = f

where L is a linear partial differential operator, u is the dependent variable,
and f is a given non-zero function of the independent variables alone.

You already learned the basic philosophy for solving of nonhomogeneous
linear equations in your study of elementary ordinary differential equations.
Step one is to determine the general solution to the homogeneous equation.
Step two is to find a particular solution to the nonhomogeneous version. The
general solution to the nonhomogeneous equation is then obtained by adding
the two together. Here is the general version of this procedure:

Theorem 7.3

Let u; be a particular solution to the nonhomogeneous linear equation L{u] =
f. Then the general solution to L{u] = f is given by u = w; + uy,, where wuy, is
the general solution to the corresponding homogeneous equation L[u] = 0.

Proof.
Let us first show that u = u; + uy, is also a solution to L{u] = f. By linearity,

Llu] = L[u; + up] = Llw;] + Llup] = f +0 = f.
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To show that every solution to the nonhomogeneous equation can be ex-
pressed in this manner, suppose u satisfies L{u| = f. Set u, = v — u;. Then,
by linearity,

Llup| = Lju —w;] = L[u] — Lu;] =0,

and hence uy, is a solution to the homogeneous differential equation. Thus,
u = u; + up, has the required form m

In physical applications, one can interpret the particular solution u; as a
response of the system to the external forcing function, while the solution
up, to the homogeneous equation represents the system’s internal, unforced
motion. The general solution to a linear nonhomogeneous equation is thus a
combination of the external and internal responses.

As you have noticed by now, one solution of a linear PDE leads to the cre-
ation of lots of solutions. In contrast, nonlinear equations are much tougher
to deal with, for example, knowledge of several solutions does not necessarily
help in constructing others. Indeed, even finding one solution to a nonlinear
partial differential equation can be quite a challenge.

In this introductory course, we will primarily — but not exclusively — con-
centrate on analyzing the most basic linear partial differential equations. But
we will have occasion to briefly foray into the nonlinear realm, to appreciate
some recent developments in this fascinating area of contemporary research
and applications.

As observed above, a general solution of a partial differential equation has
infinitely many solutions. In almost all cases, this general solution is of little
use since it has to satisfy other supplementary conditions, usually called ini-
tial or boundary conditions. These conditions determine the unique solution
of interest.

A boundary value problem is a partial differential equation where either
the unknown function or its derivatives have values assigned on the physical
boundary of the domain in which the problem is specified. These conditions
are called boundary conditions. For example,

Ugg + Uyy =0 fo0<zy<l1
u(z,0) = u(x,1) =0 if0<zx<l1
uz(0,y) = u,(1,y) =0 if0<y<l.
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There are three types of boundary conditions which arise frequently in for-
mulating physical problems:

1. Dirichlet Boundary Conditions: In this case, the dependent function
u is prescribed on the boundary of the bounded domain. For example, if the
bounded domain is the rectangular plate 0 < x < L; and 0 < y < Lo, the
boundary conditions u(0,y), u(L1,y),u(x,0), and u(z, Ly) are prescribed.
The boundary conditions are called homogeneous if the dependent variable
is zero at any point on the boundary, otherwise the boundary conditions are
called nonhomogeneous.

2. Neumann Boundary Conditions: In this case, first partial derivatives
are prescribed on the boundary of the bounded domain. For example, the
Neuman boundary conditions for a rod of length L, where 0 < xz < L, are of
the form wu,(0,t) = o and u,(L,t) = [, where o and /3 are constants.

3. Robin or mixed Boundary Conditions: This occurs when the depen-
dent variable and its first partial derivatives are prescribed on the boundary
of the bounded domain.

An initial valur problem (or Cauchy problem) is a partial differential
equation together with a set of additional conditions on the solution or its
derivatives at either a given point or a given curve in the domain of the so-
lution. These conditions are called initial value conditions. For example,
the transport equation

u(x,t) + cug(x,t) =0
u(z,0) =f(z)

is a Cauchy problem.

It can be shown that initial conditions for a PDE are necessary and sufficient
for the existence of a unique solution.

We say that an initial and/or boundary value problem associated with a PDE
is well-posed if it has a solution which is unique and depends continuously
on the data given in the problem. The last condition, namely the continuous
dependence is important in physical problems. This condition means that
the solution changes by a small amount when the conditions change a little.
Such solutions are said to be stable.

Example 7.4
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For x € R and t > 0 we consider the initial value problem

Upg — Uge =0
u(z,0) = u(x,0) =0

Clearly, u(z,t) = 0 is a solution to this problem.
(a) Let 0 < € << 1 be a very small number. Show that the function u.(z,t) =
¢?sin (£) sin (%) is a solution to the problem

Ut — Ugg =0

u(z,0) =0
. /X
u(z,0) =esin (E)
(b) Show that sup{|uc(z,t) — u(z,t)| : * € R,t > 0} = ¢2. Thus, a small

change in the initial data leads to a small change in the solution. Hence, the
initial value problem is well-posed.

Solution.
(a) We have

% =csin <%) cos (E
%2;6 = —sin (%) sin <
% =€ CoS (%) sin (E
%2;; = —sin <§> sin ( )

Thus, L4 — 24 — 0. Moreover, u,(z,0) = 0 and Su(z,0) = esin (2).

o ot? 0x%
t
sin (£> sin (—)' cx e Rt >0}
€ €

(b) We have

sup{|uc(z,t) — u(z,t)| : 2 € R,t > 0} = sup{

A problem that is not well-posed is referred to as an ill-posed problem. We
illustrate this concept in the next example.
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Example 7.5
For x € R and t > 0 we consider the initial value problem

Ugt + Uz =0
u(z,0) = u(x,0) =0

Clearly, u(x,t) = 0 is a solution to this problem.
(a) Let 0 < € << 1 be a very small number. Show that the function u.(z,t) =

e’sin (Z) sinh (%), where

x —x

e —e

smnax 5

is a solution to the problem

Ugp + Ugy =0

u(z,0) =0
us(x,0) =esin (%)

(b) Show that sup{|guc(z,0) — w(z,0)| : = € R} = € and sup{|uc(z,t) —
u(z,t)| : v € R} = ¢ [sinh ().
(¢) Find limy;_, o sup{|uc(z,t) — u(z,t)| : x € R}.

Solution.
(a) We have

% =e€sin (%) cosh (
5;1;6 =sin <§> sinh (é

Jue

o =€ oS <%> sinh (
%2;; = —sin (%) sinh ( )

Thus, a;;ﬁf + %2;; = 0. Moreover, u(z,0) = 0 and Zu(z,0) = esin (£).

(b) We have

0
SUP{|§U6($,O) —u(x,0)| : x € R} zsup{‘esin (%)‘ :r € R}

:esup{‘sin (E)‘ cx €R}=e¢
€
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and

sup{ [ue(x,t) — u(z,t)| : © € R} =€ sup{

sinh (é) sin (%)‘ .z € R}
(1))

tlim sup{|uc(x,t) —u(x,t)| : . € R} = tlim €

(¢) We have

sinh (é) ‘ = 0.
€

Thus, a small change in the initial data leads to a catastrophically change in
the solution. Hence, the given problem is ill-posed m
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Practice Problems

Exercise 7.1
Determine a and b so that u(z,y) = e** ™ is a solution to the equation

Ugzre + Uyyyy + 2umcyy =0.

Exercise 7.2
Consider the following differential equation

tug, —us = 0.

Suppose u(t,z) = X(x)T(t). Show that there is a constant A such that
X" =AX and T" = MT.

Exercise 7.3
Consider the initial value problem

zuy + (x + 1)yu, =0, z,y>1

u(1,1) =e.
Show that u(x,y) = % is the solution to this problem.

Exercise 7.4
Show that u(x,y) = e ?sin (z — y) is the solution to the initial value prob-
lem
Uy +uy +2u=0 forz,y>0
{ u(z,0) =sinz

Exercise 7.5

Solve each of the following differential equations:
(a) % = 0 where u = u(z).

b) 8
(b) 5% = 0 where u = u(x,y).

Exercise 7.6

Solve each of the following differential equations:
(a) % = 0 where u = u(x).

(b) B{fgy = 0 where u = u(z,y).
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Exercise 7.7
Show that u(x,y) = f(y+2z) +zg(y + 2x), where f and g are two arbitrary
twice differentiable functions, satisfy the equation

Ugg — gy + 4ty = 0.

Exercise 7.8

Find the differential equation whose general solution is given by wu(z,t) =
f(z—ct)+g(x+ct), where f and g are arbitrary twice differentiable functions
in one variable.

Exercise 7.9
Let p: R — R be a differentiable function in one variable. Prove that

ur = p(u)u,

has a solution satisfying w(x,t) = f(x + p(u)t), where f is an arbitrary
differentiable function. Then find the general solution to u; = (sinu)u,.

Exercise 7.10
Find the general solution to the pde

Ugg + 2Uzy + Uyy = 0.

Hint: See Exercise 6.2.
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Sample Exam Questions

Exercise 7.11
Let u(z,t) be a function such that wu,, exists and u(0,t) = u(L,t) = 0 for all
t € R. Prove that

L
/ Uz (2, t)u(z, t)dz < 0.
0

Exercise 7.12
Consider the initial value problem

U+ Uy =0, x€R, t>0

u(z,0) = 1.
(a) Show that u(x,t) =1 is a solution to this problem.

(b) Show that w,(z,t) = 1+ et
problem

— sinnx is a solution to the initial value

U+ Uy =0, x€R, >0

(@, 0) = 1+ SIn AT
n

(¢) Find sup{|u,(z,0) — 1] : z € R}.
(d) Find sup{|u,(z,t) — 1| : z € R}.
(e) Show that the problem is ill-posed.

Exercise 7.13

Find the general solution of each of the following PDEs by means of direct
integration.

(a) uy = 322 +y?, u=u(z,y).

(b) 1ty = 32y, 1 = ulz,y).

(€) Uy, =0, u=u(z,y, 2).

(d) Upy = €213 u = u(x,t).

Exercise 7.14
Consider the second-order PDE

Ugy + 4Uyy + 4uy, = 0.

(a) Use the change of variables v(z,y) = y — 2z and w(z,y) = = to show
that ,, = 0.
(b) Find the general solution to the given PDE.
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Exercise 7.15
Derive the general solution to the PDE

2
U = C Ugg

by using the change of variables v = x 4 ¢t and w = x — ct.
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First Order Partial Differential
Equations

Many problems in the mathematical, physical, and engineering sciences deal
with the formulation and the solution of first order partial differential equa-
tions. Our first task is to understand simple first order equations. In ap-
plications, first order partial differential equations are most commonly used
to describe dynamical processes, and so time, ¢, is one of the independent
variables. Most of our discussion will focus on dynamical models in a single
space dimension, bearing in mind that most of the methods can be readily
extended to higher dimensional situations. First order partial differential
equations and systems model a wide variety of wave phenomena, including
transport of solvents in fluids, flood waves, acoustics, gas dynamics, glacier
motion, traffic flow, and also a variety of biological and ecological systems.
From a mathematical point of view, first order partial differential equations
have the advantage of providing conceptual basis that can be utilized in the
study of higher order partial differential equations.

In this chapter we introduce the basic definitions of first order partial dif-
ferential equations. We then derive the one dimensional spatial transport
eqution and discuss some methods of solutions. One general method of solv-
ability for quasilinear first order partial differential equation, known as the
method of characteristics, is analyzed.

8 Classification of First Order PDEs

In this section, we present the basic definitions pertained to first order PDE.
By a first order differential equation in two variables x and y we mean

65
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any equation of the form
F(x,y,u,uz,u,) = 0. (8.1)

In what follows the functions a,b, and ¢ are assumed to be continuously
differentiable functions. If Equation (8.1) can be written in the form

a(x,y, u)u, + bz, y, u)u, = c(z,y,u) (8.2)

then we say that the equation is quasilinear. The following are examples
of quasilinear equations:

Uty 4 uy + cu® =0

z(y? + uw)u, — y(a® +u)u, = (22 — y*)u.

If Equation (8.1) can be written in the form
a(, y)ua + b(z, y)uy = c(x,y, u) (83)

then we say that the equation is semilinear. The following are examples of
semilinear equations:
TUg + YUy = u? 4 22

(z 4+ 1)*us + (y — 1)%uy = (z + y)u’.
If Equation (8.1) can be written in the form
a(w,y)us + b(x,y)uy + c(z,y)u = d(z,y) (8.4)
then we say that the equation is linear. Examples of linear equations are:
TUy + YUy = CU

(y — 2)ys + (2 — 2)uy + (. — y)u, = 0.
A first order pde that is not linear is said to be nonlinear. Examples of
nonlinear equations are:
Uy + cul =y
uZ +ul = c.

First order partial differential equations are classified as either linear or non-
linear. Clearly, linear equations are a special kind of quasilinear equation
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(8.2) if @ and b are functions of  and y only and c¢ is a linear function of w.
Likewise, semilinear equations are quasilinear equations if a and b are func-
tions of x and y only. Also, semilinear equations (8.4) reduces to a linear
equation if ¢ is linear in wu.

A linear equation is called homogeneous if d(x,y) = 0 and nonhomoge-
neous if d(x,y) # 0. Examples of linear homogeneous equations are:

TUy + YUy = CU

(y — 2)uy + (2 — 2)uy + (x — y)u, = 0.

Examples of nonhomogeneous equations are:
Uy + (z+y)uy, —u=e"

YUy + TUy = TY.

Recall that for an ordinary linear differential equation, the general solution
depends mainly on arbitrary constants. Unlike ODEs, in linear partial dif-
ferential equations, the general solution depends on arbitrary functions.

Example 8.1
Solve the equation u.(z,t) = 0.

Solution.
The general solution is given by u(x,t) = f(x) where f is an arbitrary dif-
ferentiable function of = m

Example 8.2
Consider the transport equation

au(z,t) + buy(z,t) =0

where a and b are constants. Show that u(x,t) = f(bt — az) is a solution
to the given equation, where f is an arbitrary differentiable function in one
variable.

Solution.
Let v(x,t) = bt — ax. Using the chain rule we see that u.(x,t) = bf,(v) and
uz(z,t) = —af,(v). Hence, awy(z,t) + buy(z,t) = abf,(v) — abf,(v) =0m
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Practice Problems

Exercise 8.1

Classify each of the following PDE as linear, quasilinear, semi-linear, or non-
linear.

(a) xuy, + yu, = sin (zy).

(b) ut + uu, =0

(c) ul + u’uy, = 0.

(d) (z + 3)uy + xyuy, = u.

Exercise 8.2
Show that u(x,y) = e”f(2z — y), where f is a differentiable function of one
variable, is a solution to the equation

Uy + 2uy —u = 0.

Exercise 8.3
Show that u(z,y) = x,/zy satisfies the equation

TUy — YUy = U

subject to
u(y,y) =y y > 0.

Exercise 8.4
Show that u(x,y) = cos (z* + y?) satisfies the equation

—Yuy + xUy =0

subject to
u(0,y) = cosy?.

Exercise 8.5
Show that u(z,y) =y — 3(2* — y?) satisfies the equation

1 +1
—Ugy + —Uy = —
x Yoy

subject to u(z,1) = (3 — z?).
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Exercise 8.6
Find a relationship between a and b if u(x,y) = f(ax + by) is a solution to
the equation 3u, — 7u, = 0 for any differentiable function f.

Exercise 8.7
Suppose L is a linear operator, that is, L(au+(v) = aL(u)+(L(v). Consider
the homogeneous and nonhomogeneous linear equations

Lu=20

Lu=f

where f is some function. Suppose v is a solution to the homogeneous equa-
tion, and w is a solution to the nonhomogeneous equation. Show v = av +w
is a solution to the nonhomogeneous equation for any constant a.

Exercise 8.8
Reduce the partial differential equation

auy + buy +cu =0

to a first order ODE by introducing the change of variables s = ax 4 by and
t = bxr — ay.

Exercise 8.9
Solve the partial differential equation

Uy + Uy =1

by introducing the change of variables s =z +y and t = x — .
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Sample Exam Questions

Exercise 8.10
Show that u(z,y) = e~4* f(2z — 3y) is a solution to the first-order PDE

3y + 2uy + 120 = 0.

Exercise 8.11
Derive the general solution of the PDE

aus +bu, =u, a,b#0
by using the change of variables v = ax — bt and w = %t.

Exercise 8.12
Derive the general solution of the PDE

aux+buy:(), avb#o

by using the change of variables s(z,y) = ax + by and t(z,y) = bxr — ay.
Assume a? + b? > 0.

Exercise 8.13
Write the equation
ut+cux+)\u: f(xvy)

in the coordinates v =x — ct, w =t.

Exercise 8.14
Suppose that u(z,t) = w(z — ct) is a solution to the PDE

TU, + tuy = Au

where A and ¢ are constants. Let v = x — ct. Write the differential equation
with unknown function w(v).
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9 The One Dimensional Spatial Transport Equa-
tions

Modeling is the process of writing a differential equation to describe a physi-
cal situation. In this section we discuss the one-dimensional transport equa-
tion and discuss an analytical method for solving it.

Linear Transport Equation for Fluid Flows

We shall describe the transport of a dissolved chemical by water that is trav-
eling with uniform velocity ¢ through a long thin tube G with uniform cross
section A. (The very same discussion applies to the description of the trans-
port of gas by air moving through a pipe.) We identify G with the open
interval (a,b), and the velocity ¢ > 0 is in the (rightward) positive direction
of the r—axis. We will assume that the concentration of the chemical is con-
stant across the cross section A at each point x so that the chemical changes
in the xr—direction and thus the term one-dimensional spatial equation. See
Figure 9.1

G
X 7\
) ]

\/ W,
a X - b

Direction of water flow

Figure 9.1

Let u(z,t) be a continuously differentiable function denoting the concentra-
tion of the chemical (i.e. amount of chemical/area) at position z at time
t. Then at time ¢, the amount of chemical stored in a section of the tube
between positions a and x is given by the definite integral

/ Au(s,t)ds.
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Since the water is flowing at a speed ¢, so at time h + ¢ the same quantity of
chemical will be

T x+ch
/ Au(s, t)ds = / Au(s,t+ h)ds.

+ch
Taking the derivative of both sides with respect to x we find
u(x,t) = u(x + ch,t+ h).
Now taking the derivative of this last equation with respect to h we find
0 =w(x+ ch,t + h) + cu(x + ch,t + h).
Taking the limit of this last equation as h approaches 0 we find

ur(z,t) + cuy(z,t) =0 (9.1)

for all (z, t). This equation is called the transport equation in one-dimensional
space. It is a linear, homogeneous first order partial differential equation.

Example 9.1
Show that u(x,t) = f(x — ct) is a solution to (9.1), where f is an arbitrary
differentiable function in one variable.

Solution.
Using the chain rule we find

u = —cf'(x — ct) and u, = f'(x — ct).
Hence, by substituting these results into the equation we find
g+ cuy = —cf'(x — ct) + cf'(x — ct) = 0.

The solution u(z,t) = f(x — ct) is called the right traveling wave, since
the graph of the function f(x — ct) at a given time ¢ is the graph of f(x)
shifted to the right by the value ct. Thus, with growing time, the function
f(z) is moving without changes to the right at the speed ¢ B

An initial value condition determines a unique solution to the transport equa-
tion as stated in the next theorem.
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Theorem 9.4
Let g be a continuously differentiable function. Then there is a unique con-
tinuously differentiable solution u(x,t) to the IVP

aug(z,t) + bu(x,t) =0
u(z,0) = g(z).
Indeed, u is given explicitly by the formula

Method of Solutions: The Coordinate Method
We will solve (9.1) by solving the more general equation

auy + bu, =0 (9.2)

where a® + b* > 0.
We introduce a new rectangular system by the substitution

s=ar+by, t=br—ay

According to the chain rule for the derivative of a composite function, we
have

Uy =UgSy + Uty = allg + buy

Uy =UsSy + Usty = Dus — auy
Substituting these into (9.2) to obtain
a’ug + abuy + b*us — abu; =0

or
(a®> +b*)us =0

and since a? + b* > 0 we obtain
ug = 0.
Solving this equation, we find
u(s, t) = f(t)

where f is an arbitrary differentiable function of one variable. Now, in terms
of z and y we find
u(z,y) = f(br — ay).
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Example 9.2
Use the coordinate method to find the solution to u;—3u, = 0, u(x,0) = e™*".

Solution.

Let v = —-3x 4+t and w = x + 3t. Then u, = —3u, + 1, and u; = u, + 3uy,.
Substituting these into the given equation we find 10u, = 0 or u, = 0.
Hence, u(v,w) = f(w) or u(x,t) = f(x + 3t) where f is a differentiable
function in one variable. Since u(x,0) = ¢™*", we find e=** = f(z). Hence,
u(z,t) = e~ (@3 @

Transport Equation with Decay: The Method of Characteristic
Coordinates
A transport equation with decay is an equation given by

U + cuy + Au = f(x,t)

where A and ¢ are constants and f is a given function representing external
resources. Note that the decay is characterized by the term Au.
To solve this equation, we introduce the characteristic coordinates given
by

v=x—ct, w="1t.

Using the chain rule, we find

U =UyVp + Uy Wt = —ClUy + Uy

Uy =UyUsp + Uy Wy = Uy,.
Substituting these into the original equation we obtain the equation
Uy + Au = f(v+ cw,w)

which can be solved by the method of integrating factor. We illustrate this
approach in the next example.

Example 9.3
Find the general solution of the transport equation

U+ Uy —u =1.
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Solution.
The characteristic coordinates are

v=x—t, w==*t.
These transform the original equation to the first order ODE
Uy — U = W.

Using the method of integrating factor, we find

d
%(e’wu) = we~
and solving this equation we find

u(v,w) = —(1+w)+e”f(v)
and in terms of  and ¢ we find

uw(x,t) = flx —t)e' —(1+t)m

A more general method for solving quasilinear first order partial differential
equations, known as the method of characteristics, will be discussed in the
next section.
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Practice Problems

Exercise 9.1
Use the coordinate method to find the solution to w; + 3u, = 0, u(z,0) =
sin .

Exercise 9.2
Use the coordinate method, solve the equation au, + bu, + cu = 0.

Exercise 9.3
Use the coordinate method, solve the equation u, + 2u, = cos (y — 2x) with
the initial condition u(0,y) = f(y), where f : R — R is a given function.

Exercise 9.4
Show that the initial value problem u; 4+ u, = z, u(z,z) = 1 has no solution.

Exercise 9.5

Solve the transport equation u; + 2u, = —3u with initial condition u(z,0) =
1
1422

Exercise 9.6
Solve u; + u, — 3u = ¢ with initial condition u(z,0) = z*.

Exercise 9.7
Show that the decay term Au in the transport equation with decay

U + cugy + Au =10

can be eliminated by the substitution w = ue.

Exercise 9.8
Use the coordinate method to solve

u:,;—i—uy:u2

u(z,0) = h(x)
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Exercise 9.9 (Well-Posed)
Let u be the unique solution to the IVP

us +cuy, =0

u(x,0) = f(x)

and v be the unique solution to the IVP
us +cuy, =0

u(z,0) = g()

where f and g are continuously differentiable functions.
(a) Show that w(z,t) = u(z,t) — v(x,t) is the unique solution to the IVP

us +cu, =0

u(z,0) = f(z) — g(z)

(b) Write an explicit formula for w in terms of f and g.
(c) Use (b) to conclude that the transport problem is well-posed. That is, a
small change in the initial data leads to a small change in the solution.

Exercise 9.10
Solve the initial boundary value problem

U+ cuy, =—Au, t>0,1t>0

u(z,0) =0, u(0,t) =g(t), t > 0.
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Sample Exam Questions

Exercise 9.11
Solve the first-order equation 2u;+3u, = 0 with the initial condition u(z,0) =
sin .

Exercise 9.12
Solve the PDE
Uy +uy =1

using the coordinate method.

Exercise 9.13
Consider the first order linear homogeneous PDE

Aug + Buy +Cu =0

where A, B, and C are constants with A # 0.

(a) Determine a, b, ¢, d in terms of A, B, C such that ad — bc # 0 and so that
the change of variables v = ax + by and w = cx + dy will reduce the given
PDE to a first order PDE of the form au, + fu = 0.

(b) Use (a) to find the general solution of the given PDE.

Exercise 9.14
Use the result of the previous problem to solve the PDE

Uy + Uy +u = 0.
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10 The Method of Characteristics

In this section we develop a method for finding the general solution of a
quasilinear first order partial differential equation. This method is called
the method of characteristics or Lagrange’s method. This method of
solution can be described by the following result.

Theorem 10.1
The general solution of the quasilinear first order PDE

CL(ZE, y7 u)uax + b(fL’, yv u)uy = C(‘/Ea y7 U) (101)

is given by
fv,w) =0 (10.2)

where f is an arbitrary differentiable function of v(x,y, u) and w(z,y,u) and
v =constant= c¢;, w =constant= ¢y are solutions to the ODE system

dx

by _du
a b ¢

(10.3)

Equations (10.3) are called the characteristic equations in non-parametric
forms. The corresponding parametric forms are given by the system of ODEs

ds
dy
—Z =b
ds

ds

Remark 10.1
Sometimes (10.2) is written explicitly as v = g(w) or w = g(v) where ¢ is an
arbitrary differentiable function.

Example 10.1
Find the general solution of the PDE z2u, + y*u, = (z + y)u.

Solution.

The characteristic equations for this PDE are % = % = (If;)u. Using the
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first two fractions, we have f dz _ f 4y and this implies =L = a. Also,
we can solve for x obtaining * = < - and x +y = Cly + 9. Usmg the
Yy
i dy _ _du__ 1 du
last two fractions we find 2T ) T <1 m—" —i—y) dy = ¢ =

1 1 _ du l—c1y 1 _ du
(i) dv=t= (g ) == S (3 m)dy—
[& = 2Injyl —In|l -yl = Injul + ¢ = 3 LU=y =
U = Y7 _101 = cu = xy = cu. Hence, the general solution is
Yy

() =0
Yy U

where f is an arbitrary differentiable function m

Example 10.2
Find the general solution of the PDE yuu, + zuu, = zy.

Solution.
de _ dy __

The characteristic equations are & = % — du [Jging the first two fractions
Yyu TUu Ty

we find 22 — y? = ¢;. Using the last two fractions we find u? — y? = ¢,. Hence,
the general solution is f(z% — y?, u® — y?) = 0 or u? = y* + g(2? — y*), where
f and g are arbitrary differentiable functions m

Example 10.3
Find the general solution of the PDE z(y* —u?)u, —y(u*+2?)y, = (2*+y°)u.

Solution.
The characteristic equations are x(ygfu2) = _y($y+x2) = @ +y . Using a

property of proportions we can write

xdr + ydy + udu B du
w2y —u?) — y2(u? + 2?) +u(2? +y2) (22 +yP)u
That is
rdr + ydy + udu du
0 (224 y?)u
or

xdx + ydy + udu = 0.
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Hence, we find 2% + y* + u? = ¢;. Also,

de _ dy
p » du

Y2 —u? 4+ u? + a2 - (22 4+ y?)u

or

dr dy du

x Y u

Hence, we find In ‘%! =constant or £* = ¢,. The general solution is given by
U
f(a;2+y2+u2,y—> =0
x

or .
u= gg(x2 +y° +u?)

where f and g are arbitrary differentiable functions m

Example 10.4
Solve the transport equation using the method of characteristics

uy + cu, = 0.

Solution.
The characteristic equations are given by

dt _dr _du

1 c 0"

Solving the first two fractions we find x — ¢t = k. The last fraction implies
u = k’. The general solution is given by f(x — ct,u) =0 or u = g(z —ct) m

Solution curves to the ODE
dy b
dr  a
are called characteristic curves or simply characteristics. These are
curves in the zy—plane.

Example 10.5
Find the characteristics of cos yu, + u, + zu = 0.
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Solution.
Solving the equation g—g = @ by the separation of variable method we find
siny —z=kn

Example 10.6
Find the characteristics of u, + 2u, —u = 0.

Solution.
We have a = 1 and b = 2. Thus, % = 2 so that the characteristics are given
by 2z —y=Fkn
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Practice Problem

Exercise 10.1
Find the characteristics of the PDE

TUy — YUy = U.

Exercise 10.2
Find the characteristics of the PDE

—Yuy + xuy = 0.

Exercise 10.3
Find the characteristics of the PDE

(x +y)(uy +uy) =u— 1

Exercise 10.4
Find the general solution of the PDE xu, + yu, = 1 + u?.

Exercise 10.5
Find the general solution of the PDE In (y + u)u, + u, = —1.

Exercise 10.6
Find the general solution of the PDE zu, + yu, = u.

Exercise 10.7
Find the general solution of the PDE zu, + yu, = nu.

Exercise 10.8
Find the general solution of the PDE z(y — w)u, + y(u — z)u, = u(x —y).

Exercise 10.9
Find the general solution of the PDE w(u? + zy)(zu, — yu,) = z*.

Exercise 10.10
Find the general solution of the PDE (y + azu)u, — (z + yu)u, = 2? — y*.

Exercise 10.11
Find the general solution of the PDE (y* 4+ u?)u, — xyu, + zu = 0.
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Exercise 10.12
Find the general form of solutions to

Uy +2uy = u

and sketch some of the characteristics. Hint: define a new variable v = e *u.
What equation does v satisfy?

Exercise 10.13
Find the general form of solutions to

(1+2%)uy +u, =0

and sketch some of the characteristics.
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Sample Exam Questions

Exercise 10.14
Find the general solution of the equation

Uy + YUy = U.

Exercise 10.15
Find the characteristics associated with the PDE

Uy + TUy + 3u = 2.

Exercise 10.16
Find the general solution of the first order PDE

Up + YUy + zu = 0.
Exercise 10.17
Find the characteristics of the PDE
1 1

—Uy + —u, = 0.
x y !

Exercise 10.18
Find the characteristics of the PDE
1 1

—Ug + —Uy = —.
T Yy
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11 The Cauchy Problem for First Order Quasi-
linear Equations

When solving a partial differential equation, it is seldom the case that one
tries to study the properties of the general solution of such equations. In
general, one deals with those partial differential equations whose solutions
satisfy certain supplementary conditions. In the case of a first order partial
differential equation, we determine the particular solution by formulating an
initial value porblem also known as a Cauchy problem.

In this section, we discuss the Cauchy problem for the first order quasilinear
partial differential equation

a(z,y, u)u, + b(z,y, w)u, = c(x,y,u). (11.1)

Recall that the initial value problem of a first order ordinary differential
equation asks for a solution of the equation which has a given value at a
given point in R. The Cauchy problem for the PDE (11.1) asks for a solution
of (11.1) which has given values on a given curve in R?. A precise statement
of the problem is given next.

Initial Value Problem or Cauchy Problem
Let C be a given curve in R? defined parametrically by the equations

x=x0(t), y=1yo(t)

where x, o are continuously differentiable functions on some interval I. Let
up(t) be a given continuously differentiable function on I. The Cauchy prob-
lem for (11.1) asks for a continuously differentiable function v = wu(z,y)
defined in a domain 2 C R? containing the curve C' and such that:

(1) u = u(z,y) is a solution of (11.1) in .

(2) On the curve C| u equals the given function wug(t), i.e.

u(zo(t), yo(t)) = ue(t), t € I. (11.2)

We call C' the initial curve of the problem, uy(t) the initial data, and
(11.2) the initial condition of the problem. See Figure 11.1.
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Figure 11.1

If we view a solution u = u(x,y) of (11.1) as an integral surface of (11.1),
we can give a simple geometrical statement of the problem: Find a solu-
tion surface of (11.1) containing the curve I" described parametrically by the
equations

Uiz =uxt), y=yo(t), u=up(t), tel.

Note that the projection of this curve in the xy—plane is just the curve C.
The following theorem asserts that under certain conditions the Cauchy prob-
lem (11.1) - (11.2) has a unique solution.

Theorem 11.1

Suppose that xo(t), yo(t), and ug(t) are continuously differentiable functions
of t in an interval I, and that a,b, and ¢ are functions of z,y, and u with
continuous first order partial derivatives with respect to their argument in
some domain D of (x,y,u)—space containing the initial curve

[z =ux0(t), y=1o(t), u=un(t)

where ¢t € I. Then for each point (zo(t),yo(t),uo(t)) on I' that satisfies the
condition

ao(0). 9o, w0 (1)) 22 () — blaa(t), wolt) o) T2 (6) £ 0. (11.3)

there exists a unique solution u = u(z,y) of (11.1) in a neighborhood U of
(zo(t),yo(t)) such that the initial condition (11.2) is satisfied for every point
on C' contained in U. See Figure 11.2.
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Tl

Figure 11.2

Note that condition (11.3) implies that

dyO(t) 7& b<x07y07u0)
dzo(t) * alzo, Yo, uo)

which means that the vector (a(zo,yo,uo),b(xo, Yo, o), c(To, Yo, ug)) is not

tangent to I'. (Recall that the normal vector to C' has components (dyg—t(t), — dx‘f”)

so that a vector (a,b) is tangent to C' if ady;’—t(t) — b% = 0.) It follows that
the Cauchy problem has a unique solution if C' is nowhere characteristic.
We construct the desired solution using the method of characteristics as fol-
lows: Pick a point (x¢(t),yo(t),uo(t)) € I'. Using this as the initial value
we solve the system of ODEs consisting of the characteristic equations in
parametric form

% =a(x(s),y(s), u(s))

% =b(z(s),y(s), u(s))

% =c(x(s),y(s), u(s))

satisfying the initial condition

(.Z'(O), y(())? u(O)) = (xO (t)v yO(t)> Uo(t))-
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The solution depends on the parameter s so it consists of a triples of functions
x=ux(s,t), y=uy(s,t), u=us,t). (11.4)

This system represents the parametric representation of the integral surface
of the problem in which the curve I' corresponds to s = 0. The solution u is
recovered by solving the first two equations in (11.4) for

t=t(x,y), s=s(x,y)
and substituting these into the third equation to obtain u(x,y) = u(s(z,y), t(x,y)).

Example 11.1
Solve the Cauchy problem

Uy +uy =1

u(x,0) =f(z).

Solution.
The initial curve in R? can be given parametrically as

I':xo(t) =t, yo(t) =0, ue(t) = f(2).
We have

dZEQ

a(%(t)ayo(t)auo(t))g(t) — b(l’o(t),yo(t)?uo(t))ﬁ(t) =140

so by the above theorem the given Cauchy problem has a unique solution.
To find this solution, we solve the system of ODEs

dx
i
ds
dy
71
ds
du _1
ds

Solving this system we find

2(s,t) = s+ a(t), y(s,t) =s+0@1), uls)=s+(1).
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But x(0,t) = t so that «(t) = t. Similarly, y(0,¢) = 0 so that 3(t) = 0
and u(0,t) = f(t) implies y(t) = f(t). Hence, the unique solution is given
parametrically by the equations

(s, t) =t+s, y(s,t)=s, u(s,t)=s+ f(t).

Solving the first two equations for s and ¢ we find

and substituting these into the third equation we find

u(z,y) =y + flx —y).

Alternative Computation
We can apply the results of the previous section to find the unique solution.
If we solve the characteristic equations in non-parametric form

dv _ dy _ du
11 1

we find x — y = ¢; and u — x = ¢3. Thus, the general solution of the PDE
is given by u = z + F(z — y). Using the Cauchy data u(z,0) = f(x) we find
f(x) = 4+ F(x) which implies that F(z) = f(z) — z. Hence, the unique
solution is given by

u(z,y) =z + flr—y)—(r—y)=y+ flz—y)n

If condition (11.3) is not satisfied than C is a characteristic curve. If the
curve I' satisfies the characteristic equations than the problem has infinitely
many solutions. To see this, pick an arbitrary point Py = (o, Yo, uo) on I
Pick a new initial curve I passing through P, which is not tangent to I" at
Py. In this case, condition (11.3) is satisfied and the new Cauchy problem has
a unique solution. Since there are infinitely many ways of selecting I, we
obtain infinitely many solutions. We illustrate this case in the next example.

Example 11.2
Solve the Cauchy problem

Uy + Uy =1

u(z, x) =x.
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Solution.
The initial curve in R3 can be given parametrically as

[:xo(t) =t, yo(t) =t, up(t) =t.

We have

(1) = blo(t), 3o(?). UO(t))%(t) = 0.

As in Example 11.1, the general solution of the PDE is u(x,y) =y + f(z —
y) where f is an arbitrary differentiable function. Using the Cauchy data
u(z,z) = x we find f(0) = 0. Thus, the solution is given by

a(xo(t), yo(t), uo(t))

u(z,y) =y + flz —y)

where f is an arbitrary function such that f(0) = 0. There are infinitely
many choices for f. Hence, the problem has infinitely many solutions. Note
that IT" satisfies the characteristic equations m

If condition (11.3) is not satisfied and if I' does not satisfy the characteristic
equations then it can be shown that the Cauchy problem has no solutions.
We illustrate this case next.

Example 11.3
Solve the Cauchy problem

Uy +uy =1

u(z, x) =1.

Solution.
The initial curve in R3 can be given parametrically as

[:ao(t) =t, yo(t) =t, ug(t) = 1.

We have

dl‘o

a(zo(t), yo(t), uo(t))—(t) — b(xo(t),yo(t)vuo(t))g(t) =0.

dt
Solving the characteristic equations in parametric form we find

x(s,t) =s+alt), y(s,t)=s+p(t), u(s,t)=s+~7(t).
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Clearly, I' does not satisfy the characteristic equations. Now, the general
solution to the PDE is given by u = y + f(z — y). Using the Cauchy data
u(z,z) = 1 we find f(0) = 1 — z, which is not possible since the LHS is a
fixed number whereas the RHS is a variable expression. Hence, the problem
has no solutions m

Example 11.4
Solve the Cauchy problem
Uy — Uy =1
u(z,0) =z°. (11.5)

Solution.
The initial curve is given parametrically by

L: oao(t) =t, yolt) =0, ue(t) =1t

We have

dIL’O

aro(t), o), uo(1)) 22 () — blaa(t), wo(t) wo(1) 2 (1) = 1 0

so the Cauchy problem has a unique solution.
The characteristic equations are

dx

1 -1 1

dy  du

Using the first two fractions we find  +y = ¢;. Using the first and the third
fractions we find u — x = c¢y. Thus, the general solution can be represented
by
u=x+ f(r+vy)
where f is an arbitrary differentiable function. Using the Cauchy data
u(x,0) = 2% we find 22 — x = f(x). Hence, the unique solution is given
by
u=z+(@+y)’—(r+y)=(r+y)’-ym

Example 11.5
Solve the initial value problem

ur + uu, =z, u(x,0) = 1.
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Solution.
The initial curve is given parametrically by

I': JTO(t) = t, yo(t) = 0, Uo(t) =1.

We have

(1) (1) ua 1) 2 1) — b (1) v (1) o)

dl’o
—()=-1#£0
o () #
so the Cauchy problem has a unique solution.

The characteristic equations are

d_de_du

1 u oz
Since

dt _ d(z+u)

1 z+4u

we find that (z + u)e™® = ¢;. Now, using the last two fractions we find
u? — 22 = ¢y. Hence, the general solution is given by

f((x+u)etu? —2?) =0

where f is an arbitrary differentiable function. Using the Cauchy data we
findey=1+zand co =1—2>=2(1+2) — (1 +2)? =2¢; — c}. Thus,

u? —2* =2(x +u)e ! — (v +u)le

or
u—1x=2e"— (z+u)e .
2t

This can be reduced further as follows: u + ue % = x + 2e~t — ze 2 =

2t + (1l — e) = u = {25 + w1255 = sech(t) + ztanh(t) m

Example 11.6
Solve the initial value problem

Uy + Uy = 1
with the initial curve

[ :ag(t) =22, yo(t) = 2t, up(t) =0, t>0.
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Solution.
We have
dyo dig
aliro(0), 1o(8) o) 22 (8) = bo(t) wo(t), uo(6) T2 (6) = —41 £ 0, 1> 0

so the Cauchy problem has a unique solution.

The characteristic equations in parametric form are given by the system of
ODEs

dx B
ds Y
dy

— =1
ds

du _1
ds

Thus, the solution of this system depends on two parameters s and ¢. Solving
the last two equations we find

y(s,t) = s+ p(t), u(s,t)=s+~(t).
Solving the first equation with u being replaced by s + 7(t) we find

1
x(s,t) = 532 +v(t)s + aft).
Using the initial conditions
2(0,t) = 2, y(0,t) = 2t, u(0,t) =0

we find .
x(s,t) = 552 +2t%, y(s,t) =s+2t, u(s,t)=s.

Eliminating s and ¢ we find
(u—1y)?* +u® =2z,

Solving this quadratic equation in u to find
2u =y =+ (4o — yQ)%.

The solution surface satisfying u = 0 on y? = 2x is given by
2u =y — (4x — yQ)%.

This represents a solution surface only when 3? < 4x. The solution does not
exist for y?> > 4 m
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Practice Problems

Exercise 11.1
Solve
(y - W, + (u— 2)u, =z — y

with the condition u(z, 1) = 0.
Exercise 11.2

Solve the linear equation
YUz + TUy = U

with the Cauchy data u(zx,0) = 3.
Exercise 11.3

Solve
o(y? + u)u, — y(o? + u)u, = (2 — y*)u

with the Cauchy data u(z, —z) = 1.

Exercise 11.4

Solve

XUy + YU, = ve "

with the Cauchy data u(zx,z?) = 0.

Exercise 11.5
Solve the initial value problem

Tuy +u, =0, u(z,0)= f(z)
using the characteristic equations in parametric form.

Exercise 11.6
Solve the initial value problem

ur +aug, =0, u(x,0) = f(x).

Exercise 11.7
Solve the initial value problem

auy +u, = u?, u(r,0) = cosx
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Exercise 11.8

Solve the initial value problem
uy + zu, = u, u(l,y) = h(y).

Exercise 11.9
Solve the initial value problem

uuy +uy, =0, u(z,0) = f(z).

Exercise 11.10
Solve the initial value problem

V1—2%u, +u, =0, u(0,y)=y.
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Sample Exam Questions

Exercise 11.11
Consider

TUuy + 2yuy = 0.

(i) Find and sketch the characteristics.

(ii) Find the solution with u(1,y) = €Y.

(iii) What happens if you try to find the solution satisfying either u(0,y) =
g(y) or u(x,0) = h(x) for given functions g and h?

iv) Explain, using your picture of the characteristics, what goes wrong at

(
(z,9) = (0,0),

Exercise 11.12
Solve the equation u, + u, = u subject to the condition u(x,0) = cosz.

Exercise 11.13
(a) Find the general solution of the equation

Uy + YUy = U.

(b) Find the solution satisfying the Cauchy data u(z,3e”) = 2.
(c) Find the solution satisfying the Cauchy data u(z,e”) = e*.

Exercise 11.14
Solve the Cauchy problem

Uy + 4uy = z(u+1)
u(z,5z) = 1.

Exercise 11.15
Solve the Cauchy problem

Uy — Uy = U

u(x, —z) = sinz.
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Exercise 11.16
(a) Find the characteristics of the equation

Yug + 2y = 0.

(b) Sketch some of the characteristics.
(¢) Find the solution satisfying the boundary condition u(0,y) = e .
(d) In which region of the plane is the solution uniquely determined?

Exercise 11.17

Consider the equation u, + yu, = 0. Is there a solution satisfying the extra
condition

(a) u(z,0) =1

(b) u(x,0) = z?

If yes, give a formula; if no, explain why.



Second Order Linear Partial
Differential Equations

In this chapter we consider the three fundamental second order linear partial
differential equations of parabolic, hyperbolic, and elliptic type. These types
arise in many applications such as the wave equation, the heat equation
and the Laplace’s equation. We will study the solvability of each of these
equations.

12 Second Order PDEs in Two Variables

In this section we will briefly review second order partial differential equa-
tions.

A second order partial differential equation in the variables x and y
is an equation of the form

F(xayauaumyuyaul’x)uyy»uxy) = 0. (121)
If Equation (12.1) can be written in the form

A(x7 Y, U, Ug, uy)uxx+B(~T7 Y, U, Uy, uy)umy+c(m7 Y, U, Uy, uy)uyy = D(x, Y, U, Uy, uy)

(12.2)
then we say that the equation is quasilinear.
If Equation (12.1) can be written in the form
Az, y) Uy + B(x, y)usy + C(x, y)uy, = D(z,y,u, uy, uy) (12.3)

then we say that the equation is semilinear.
If Equation (12.1) can be written in the form

Az, y)uge+B(x, y)uyy+C (2, y)uyy+D(z, y)us+E(x, y)u,+F(z, y)u = G(x,y)
(12.4)

99
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then we say that the equation is linear.

A linear equation is said to be homogeneous when G(z,y) = 0 and non-
homogeneous otherwise.

Equation (12.4) resembles the general equation of a conic section

Az? + By +Cy* +Dx + Ey+ F =0

which is classified as either parabolic, hyperbolic, or elliptic based on the sign
of the discriminant B? — 4AC. We do the same for a second order linear
partial differential equation:

e Hyperbolic: This occurs if B2 —4AC > 0 at a given point in the domain

of w.

e Parabolic: This occurs if B> — 4AC = 0 at a given point in the domain
of u.

e Elliptic: This occurs if B> — 4AC < 0 at a given point in the domain of
u.

Example 12.1
Determine whether the equation u,, + zu,, = 0 is hyperbolic, parabolic or
elliptic.

Solution.
Here we are given A = 1,B = 0, and C = z. Since B? — 4AC = —4x, the
given equation is hyperbolic if x < 0, parabolic if x = 0 and ellipticif x > 0m

Second order partial differential equations arise in many areas of scientific
applications. In what follows we list some of the well-known models that are
of great interest:

1. The heat equation in one-dimensional space is given by

U = kg,

where k is a constant.
2. The wave equation in one-dimensional space is given by

2
Ut = C Uy

where c is a constant.
3. The Laplace equation is given by

AU = Uyy + Uy, = 0.
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Practice Problems

Exercise 12.1

Classify each of the following equation as hyperbolic, parabolic, or elliptic:
(a) Wave propagation: uy = *ug,, ¢ > 0.

(b) Heat conduction: u; = cug,, ¢ > 0.

(c) Laplace’s equation: Au = uy, + u,, = 0.

Exercise 12.2

Classify the following linear scalar PDE with constant coefficents as hyper-
bolic, parabolic or elliptic.

(8) Upy + dUyy + DUy, + uy + 2u, = 0.

(b) Uy — duyy + duy, + 3u, + 4u = 0.

(€) Ugy + 2Ugy — 3ty + 2uy, + 6u, = 0.

Exercise 12.3
Find the region(s) in the zy—plane where the equation

(14 )ty + 22yuy, — y2uyy =0
is elliptic, hyperbolic, or parabolic. Sketch these regions.

Exercise 12.4
Show that u(x,t) = coszsint is a solution to the problem

Uyt Ugx
u(z,0) 0
u(x,0) = cosz
u(0,8) = 0

for all z,t > 0.

Exercise 12.5

Classify each of the following PDE as linear, quasilinear, semi-linear, or non-
linear.

(a) uy + uuy = Uiy,

(b) Tuy + tug, +vdu: =t +1

(€) Uy = Py

(d) uZ, + u, = 0.
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Exercise 12.6
Show that, for all (x,y) # (0,0), u(x,y) = In (22 + y?) is a solution of

Uy + Uyy = 07

and that, for all (x,vy,2) # (0,0,0), u(r,y, 2) = ———— is a solution of

/$2+y2+z2
Ugg + Uyy + Uz, = 0.

Exercise 12.7
Consider the eigenvalue problem

Upe = A, 0< <L

uz(0) = kou(0)
uz(L) = —kpu(L)
with Robin boundary conditions, where ky and kj, are given positive numbers

and u = u(z). Can this system have a nontrivial solution u # 0 for A > 07
Hint: Multiply the first equation by u and integrate over z € [0, L].

Exercise 12.8
Show that u(z,y) = f(z)g(y), where f and g are arbitrary differentiable
functions, is a solution to the PDE

Ullgy = Ugylly.

Exercise 12.9
Show that for any n € N, the function u,(x,y) = sin nx sinh ny is a solution
to the Laplace equation

AU = Uyy + Uy, = 0.

Exercise 12.10
Solve

Ugy = TY.
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Sample Exam Questions

Exercise 12.11

Classify each of the following second-oder PDEs according to whether they
are hyperbolic, parabolic, or elliptic:

(a) 2upy — 4Uyy + Tuyy —u = 0.

(b) Uy — 2 €OS TUy, — sin® zuy, = 0.

(¢) Yugs + 2(x — D)ugy — (y + 2)uy, = 0.

Exercise 12.12

Let ¢ > 0. By computing u,, Uz, u;, and u; show that

1 1 x+ct
u(z,t) = §(f($~|—ct)+f(x—ct))+2—c/ g(s)ds
x—ct
is a solution to the PDE
Uy = Py

where f is twice differentiable function and ¢ is a differentiable function.
Then compute and simplify u(z,0) and w,(z,0).

Exercise 12.13
Counsider the second-order PDE

2
YUy + Ugy — T Uyy — Uy — u = 0.

Determine the region D in R?, if such a region exists, that makes this PDE:
(a) hyperbolic, (b) parabolic, (c) elliptic.

Exercise 12.14
Consider the second-order hyperbolic PDE

Ugy + 2Upy — 3y = 0.

Use the change of variables v(x,y) = y — 3z and w(z,y) = z + y to solve the
given equation.

Exercise 12.15
Solve the Cauchy problem

Ugg + 2Upy — 3y = 0.

u(z,2x) =1, uy(z,2x) = x.
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13 Hyperbolic Type: The Wave equation

The wave equation has many physical applications from sound waves in air
to magnetic waves in the Sun’s atmosphere. However, the simplest systems
to visualize and describe are waves on a stretched elastic string.

Initially the string is horizontal with two fixed ends say a left end L and a
right end R. Then from end L we shake the string and we notice a wave
propogate through the string. The aim is to try and determine the vertical
displacement from the x—axis of the string, u(z,t), as a function of position
x and time t. A displacement of a tiny piece of the string between points P
and @ is shown in Figure 13.1.

T(x+ Az, t

string // e Y

\ Q_A10(z + Axz,t)

Au
P ;H(J.' t)
Azx
T(z,t) u(x, t)
5
Figure 13.1

where

e f(z,t) is the angle between the string and a horizontal line at position x
and time t;

e T'(z,t) is the tension in the string at position = and time ¢;

e p(x) is the mass density of the string at position z.

To derive the wave equation we need to make some simplifying assumptions:
(1) The density of the string, p, is constant so that the mass of the string
between P and (@ is simply p times the length of the string between P and
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@, where the length of the string is As given by

As = /(Az)?2 + (Au)? = Azy |1+ au 2NA£L’ 1+ Ou 2
B B Az) ~ Ox

(2) The displacement, u(x,t), and its derivatives are assumed small so that
As ~ Az
and the mass of the portion of the string is
pAx.

(3) The only forces acting on this portion of the string are the tensions
T(x,t) at P and T'(z + Ax,t) at Q. (In physics, tension is the magnitude of
the pulling force exerted by a string). The gravitational force is neglected.
(4) Our tiny string element moves only vertically. Then the net horizontal
force on it must be zero.

Next, we consider the forces acting on the typical string portion shown in
Figure 13.1. These forces are:

(i) tension pulling to the right, which has magnitude T'(z + Az, t), and acts
at an angle 0(x + Az, t) above the horizontal.

(ii) tension pulling to the left, which has magnitude T'(z,t), and acts at an
angle 6(z,t) above the horizontal.

Now we resolve the forces into their horizontal and vertical components.

e Horizontal: The net horizontal force of the tiny string is T'(x+Ax, t) cos 0(z + Az, t)—
T'(x,t)cosf(x,t). Since there is no horizontal motion, we must have

T(xz,t)cosb(x,t) =T (x+ Ax,t)cosb(x + Az, t) =T. (13.1)

e Vertical: At P the tension force is —7'(x,t)sinf(x,t) whereas at @) the
force is T'(xz + Az, t) sinf(x + Az, t). Then Newton’s Law of motion

mass X acceleration = Applied Forces
gives

2
pA;p% =T(x+ Ax,t)sinf(x + Az, t) — T(x,t)sinO(x, t).
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Dividing by T" and using (13.1) we obtain

EAx('?Qu T+ Az, t)sinf(x + Az,t)  T(x,t)sinf(z, )
T 02 T(x+ Ax,t)cosO(x + Ax,t)  T(x,t)cosf(z,t)

=tanf(z + Az, t) — tanf(z, t).

But

A
tanf(z,t) = Alim0 A_u = u,(x,t).
Tr— €T

Likewise,
tan0(z + Az, t) = u, (v + Az, t).

Hence, we get
%Amutt(x, t) = u.(z + Az, t) — uy(z,t).
Dividing by Az and letting Az — 0 we obtain

%utt(x, t) = Uge (2, 1)

or
U (7,1) = gy (T, 1) (13.2)

where ¢ = %. We call ¢ the wave speed.

D’Alembert Solution of (13.2)
Let v = x + ¢t and w = x — ct. Then by application of the chain rule we find

up =c(Uy — Uy)
Uy =Uy + Uqy
U :Cz(uvv - 2uvw + uww)

Ugy =Upy + 2Upyy + Uy -
Substituting into (13.2) we obtain
 (Uy + 2y + Upy) = € (U — Uy + U
and this simplifies to

AUy = 0 OF Uyy = 0.
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It follows that

w(v,w) = f(v) + g(w)
where f and g are arbitrary differentiable functions. Now, writing u in terms
of z and y we find the general solution

u(z,y) = fz+ct) + gz —ct).

D’Alembert’s solution involves two arbitrary functions that are determined
(normally) by two initial conditions.

Example 13.1
Find the solution to the Cauchy problem

Uy =C* Uy
u(z,0) =v(z)
u(z,0) =w(x).
Solution.
We have
u(z,0) = f(x) + g(z) = v(z)
and

u(x,0) = cf'(z) = cg'(z) = w(x)
which implies that

Therefore,

() = 5 (0(z) — W (2))
Hence,

F(a) = (o) + - W(a)
Finally,

(W(x+ct) —W(x —ct))]
x+ct
/ w(s)ds] m

—ct

u(z,t) :%[v(x —ct) +v(x+ct)+

Ol Ol

:%[U(I —ct) +v(x+ct)+
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Practice Problems

Exercise 13.1
Show that if v(z,t) and w(zx,t) satisfy equation (13.2) then av + fw is also
a solution to (13.2), where a and 3 are constants.

Exercise 13.2
Show that any linear time independent function u(z,t) = ax + b is a solution
to equation (13.2).

Exercise 13.3
Find a solution to (13.2) that satisfies the homogeneous conditions u(z,0) =
u(0,t) = u(L,t) = 0.

Exercise 13.4
Solve the initial value problem

Ugp =gy
u(zx,0) =cosz
u(z,0) =0.

Exercise 13.5
Solve the initial value problem

Utt =Ugy
1
ule0) =137
u(z,0) =0.
Exercise 13.6
Solve the initial value problem
Utt :4uxa:
u(z,0) =1

u(z,0) = cos (2mz).
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Exercise 13.7
Solve the initial value problem

Ut =2DUgy
u(z,0) =v(z)
u(z,0) =0

where

Exercise 13.8
Solve the initial value problem

Uy =CUgy
u(z,0) =

ug(x,0) = cos® .

Exercise 13.9

109

Prove that the wave equation, uy = c*u,, satisfies the following properties,

which are known as invariance properties. If u(z,t) is a solution, then

(i) Any translate, u(x — y,t) where y is a fixed constant, is also a solution.

(ii) Any derivative, say u,(z,t), is also a solution.

(iii) Any dilation, u(ax, at), is a solution, for any fixed constant a.

Exercise 13.10

Find v(r) if u(r,t) = 22 cosnt is a solution to the PDE

r

2
Upp + ;ur = Utt.
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Sample Exam Questions

Exercise 13.11
Find the solution of the wave equation on the real line (—oo < & < +00)
with the initial conditions

u(z,0) =", w(z,0) =sinuz.

Exercise 13.12
The total energy of the string (the sum of the kinetic and potential energies)
is defined as

1 L
E(t) = —/ (u? + *u2)dz.
2 Jo
(a) Using the wave equation derive the equation of conservation of energy
dE(t
# = A (ug(L, )ug (L, t) — u (0, t)uy (0,1)).

(b) Assuming fixed ends boundary conditions, that is the ends of the string
are fixed so that u(0,t) = u(L,t) = 0, for all ¢ > 0, show that the energy is
constant.

(¢) Assuming free ends boundary conditions for both x = 0 and = = L, that
is both w(0,¢) and u(L,t) vary with ¢, show that the energy is constant.

Exercise 13.13
For a wave equation with damping

Uy — Clgy +du, =0, d>0, 0<z<L
with the fixed ends boundary conditions show that the total energy decreases.

Exercise 13.14
(a) Verify that for any twice differentiable R(z) the function

u(z,t) = R(z — ct)

is a solution of the wave equation uy = c*u,,. Such solutions are called
traveling waves.

(b) Show that the potential and kinetic energies (see Exercise 13.12) are
equal for the traveling wave solution in (a).
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Exercise 13.15
Find the solution of the Cauchy wave equation

Uyt = 4u:m:

u(z,0) = 2

Simplify your answer as much as possible.

, uy(x,0) = sin 2z.

111
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14 Parabolic Type: The Heat Equation in One-
Dimensional Space

In this section, We will look at a model for describing the distribution of
temperature in a solid material as a function of time and space.

Before we begin our discussion of the mathematics of the heat equation, we
must first determine what is meant by the term heat? Heat is type of energy
known as thermal energy. Heat travels in waves like other forms of energy,
and can change the matter it touches. It can heat it up and cause chemical
reactions like burning to occur.

Heat can be released through a chemical reaction (such as the nuclear re-
actions that make the Sun “burn”) or can be trapped for a limited time by
insulators. It is often released along with other kinds of energy such as light
waves or sound waves. For example, a burning candle releases light and heat
waves. On the other hand, an explosion releases light, heat, and sound waves.
The most common units of heat are BTU (British Thermal Unit), Calorie
and Joule.

Consider now a rod made of homogeneous heat conducting material (i.e. it
is composed of the exact same material and no foreign bodies are in it) of
uniform density p and constant cross section A, placed along the x—axis from
x =0 to x = L as shown in Figure 14.1.

L

Figure 14.1

Assume the heat flows only in the x—direction, with the lateral sides well
insulated, and the only way heat can enter or leave the rod is at either end.
Also we assume that the temperature of the rod is constant at any point of
the cross section. In other words, temperature will only vary in x and we
can hence consider the rod to be a one spatial dimensional rod. We will also
assume that heat energy in any piece of the rod is conserved.

Let u(x,t) be the temperature of the cross section at the point x and the
time t. Consider a portion U of the rod from x to x + Ax of length Ax as



14 PARABOLIC TYPE: THE HEAT EQUATION IN ONE-DIMENSIONAL SPACE113

shown in Figure 14.2.
/ S

U

0 x As x +Ax L

Figure 14.2

Consider the portion .S of U of height As. From the theory of heat conduction,
the quantity of heat AQ from z to z + As at time ¢ is given by

AQ = cpu(z, t)AV

where AV is the volume of S and c is the specific heat, that is, the amount
of heat energy that it takes to raise one unit of mass of the material by one
unit of temperature.
But S is a cylinder of height As and area of base A so that AV = AAs.
Hence,

AQ = cpAu(z,t)As.

The quantity of heat in the portion U is given by

z+Ax
Q(t):/ : cpAu(s, t)ds.

By differentiating we take the partial of u to find the change in heat with
respect to time.

d r+Ax
d—cf = cpAuy(s, t)ds.

Assuming that v is continuously differentiable, we can apply the mean value
theorem for integrals and find z < £ < x + Ax such that

z+Ax
/ u(s,t)ds = Azug (€, ).

Thus, the rate of change of heat in U is given by

d
d_Cf = cpAAzuy (&, t).



114SECOND ORDER LINEAR PARTIAL DIFFERENTIAL EQUATIONS

On the other hand, by Fourier (or Fick’s) law of heat conduction, the rate
of heat flow through any cross section is proportional to the area A and
the negative gradient of the temperature normal to the cross section, and
heat flows in the direction of decreasing temperature. Thus, the rate of heat
flowing in U through the cross section at x is —K Au,(x,t) and the rate of
heat flowing out of U through the cross section at x+Ax is — K Au,(x+Ax, t),
where K is the thermal conductivity of the rod.

Now, the conservation of energy law states

rate of change of heat in U = rate of heat flowing in — rate of heat flowing
out

or mathematically written as,
cpAAzu (€, t) = —K Aug(z,t) + KAu,(z + Az, t)
or
cpAAzu(€,t) = KA[ug(x + Az, t) — ug(z,t)].
Dividing this last equation by cApAz and letting Ax — 0 we obtain

(2, 1) = kg (x, 1) (14.1)

where k = g is called the diffusivity constant.

Equation (14.1) is the one dimensional heat equation which is second order,
linear, homogeneous, and of parabolic type.

The non-homogeneous heat equation

up = kg, + f(x)

is known as the heat equation with an external heat source f(x). An ex-
ample of an exterenal heat source is the heat generated from a candle placed
under the bar.

The function

L
E(t) = / cpu(x, t)dx
0
is called the total thermal energy at time ¢ of the entire rod.

Example 14.1
The two ends of a uniform rod of length L are insulated. There is a con-
stant source of thermal energy ¢y # 0 and the temperature is initially
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u(z,0) = f(z).
(a) erte the equation and the boundary conditions for this model.
(b) Calculate the total thermal energy of the entire rod.

Solution.
(a) The model is given by the PDE

Cput(xa t) = Kug, + qo
with boundary conditions
uz(0,t) = u,(L,t) = 0.

(b) First note that

L

d L L L
— | cpu(x,t)dx —/ cpuy(x,t)dr = Kug,dx —i—/ qodz
dt 0 0 0 0

= Kugly + qoL = oL
since u,(0,t) = u,(L,t) = 0. Integrating in time from 0 to ¢ we find

But C = F(0) = fOL cpu(x,0)dx = fOL cpf(x)dz. Hence, the total thermal
energy is given by

E@t) = /0 cpf(z)dr + qoLt m

Initial Boundary Value Problems

In order to solve the heat equation we must give the problem some initial
conditions. If you recall from the theory of ODE, the number of conditions
required for solving initial value problems always matched the highest order
of the derivative in the equation.

In partial differential equations the same idea holds except now we have to
pay attention to the variable we are differentiating with respect to as well.
So, for the heat equation we have got a first order time derivative and so we
will need one initial condition and a second order spatial derivative and so
we will need two boundary conditions.
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For the initial condition, we define the temperature of every point along the
rod at time £ = 0 by

u(z,0) = f(z)
where f is a given (prescribed) function of z. This function is known as the
initial temperature distribution.
The boundary conditions will tell us something about what the temperature
is doing at the ends of the bar. The conditions are given by

u(0,t) = Ty and u(L,t) = T7.

and they are called as the Dirichlet conditions. In this case, the general
form of the heat equation initial boundary value problem is to find u(z,t)
satisfying

up(z,t) =kug,(x,t), 0<x <L, t>0
u(z,0) =f(z), 0<z<L
w(0,t) =Ty, u(L,t) =Ty, t>0.

In the case of insulated endpoints, i.e. there is no heat flow out of them, we
use the boundary conditions

uz(0,t) = uy(L,t) =0,

These conditions are examples of what is known as Neumann boundary
conditions. In this case, the general form of the heat equation initial bound-
ary value problem is to find u(z,t) satisfying

ur(z,t) =kug(x,t), 0<x <L t>0
u(z,0) =f(z), 0<a<L
uz(0,t) =u,(L,t) =0, t>0.
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Practice Problems

Exercise 14.1
Show that if u(z,t) and v(x,t) satisfy equation (14.1) then au + Bv is also a
solution to (14.1), where o and [ are constants.

Exercise 14.2
Show that any linear time independent function u(z,t) = ax + b is a solution
to equation (14.1).

Exercise 14.3
Find a linear time independent solution u to (14.1) that satisfies u(0,t) = Tj
and u(L,T) =T}.

Exercise 14.4

Show that to solve (14.1) with the boundary conditions u(0,t) = T, and
u(L,t) = Ty, it suffices to solve (14.1) with the homogeneous boundary
conditions u(0,t) = u(L,t) = 0.

Exercise 14.5
Find a solution to (14.1) that satisfies the conditions u(z,0) = w(0,t) =
u(L,t) = 0.

Exercise 14.6

Let (I) denote equation (14.1) together with intial condition u(x,0) = f(x),
where f is not the zero function, and the homogeneous boundary conditions
u(0,t) = u(L,t) = 0. Suppose a nontrivial solution to (I) can be written in
the form u(z,t) = X (2)T'(t). Show that X and T satisfy the ODE

X'—2X=0and T' - AT =0
for some constant \.

Exercise 14.7

Consider again the solution u(x,t) = X(x)T(t). Clearly, T'(t) = T(0)eM.
Suppose that A > 0.

(a) Show that X(z) = Ae"™V® 4+ Be™*V®, where o = # and A and B are
arbitrary constants.

(b) Show that A and B satisfy the two equations A + B = 0 and A(e/V® —
e Ve) = 0.

(c) Show that A = 0 leads to a contradiction.

(d) Using (b) and (c) show that e/vV® = ¢~Eve Show that this equality leads
to a contradiction. We conclude that A < 0.
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Exercise 14.8
Consider the results of the previous exercise.

(a) Show that X (z) = ¢; cos Bz + ¢y sin Sz where § = /2.

(b) Show that A = \, = — 2"

where n is an integer.

Exercise 14.9 )

kn®m
Show that u(z,t) = Y_p_, uk(z,t), where u,(z,t) = c,e” 22 'sin (%F) z sat-
isfies (14.1) and the homogeneous boundary conditions.

Exercise 14.10

Suppose that a wire is stretched between 0 and a. Describe the boundary
conditions for the temperature u(x,t) when

(i) the left end is kept at 0 degrees and the right end is kept at 100 degrees;
and

(ii) when both ends are insulated.

Exercise 14.11

Let uy = g, for 0 < x < m and t > 0 with boundary conditions u(0,t) =
0 = u(m,t) and initial condition u(x,0) = f(z). Let E(t) = [ (uf + u2)dx.
Show that E'(t) < 0.

Exercise 14.12
Suppose

U = gy +4, ug(0,8) =5, ux(L,1) =6, u(z,0) = f(z).

Calculate the total thermal energy of the one-dimensional rod (as a function
of time).
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Sample Exam Questions

Exercise 14.13
Consider the heat equation
Uy = kumﬁ

for z € (0,1) and ¢ > 0, with boundary conditions u(0,¢) = 2 and u(1,t) =3
for ¢ > 0 and initial conditions u(z,0) = z for x € (0,1). A function v(x)
that satisfies the equation v”(x) = 0, with conditions v(0) = 2 and v(1) = 3
is called a steady-state solution. That is, the steady-state solutions of the
heat equation are those solutions that don’t depend on time. Find v(z).

Exercise 14.14
Consider the equation for the one-dimensional rod of length L with given
heat energy source:

Up = Ugy + q().
Assume that the initial temperature distribution is given by u(z,0) = f(x).
Find the equilibrium (steady state) temperature distribution in the following
cases.
(a) g(z) = 0,u(0) = 0,u(L) = T
(b) q(x) = 0,u(0) = 0,u(L) =
(¢) q(x) = 0,u(0) = T, us(L) =

Exercise 14.15
Consider the equation for the one-dimensional rod of length L with insulated
ends:

cpuy = Kugy, u,(0,t) =u,(L,t) =0.

(a) Give the expression for the total thermal energy of the rod.
(b) Show using the equation and the boundary conditions that the total
thermal energy is constant.

Exercise 14.16
Suppose

Ut = Uge + 2, u(z,0) = f(2), u(0,8) =B, u,(L,t)=7.

(a) Calculate the total thermal energy of the one-dimensional rod (as a func-
tion of time).

(b) From part (a) find the value of § for which a steady-state solution exist.
(c) For the above value of /3 find the steady state solution.
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15 An Introduction to Fourier Series

In this and the next section we will have a brief look to the subject of Fourier
series. The point here is to do just enough to allow us to do some basic so-
lutions to partial differential equations later in the book.

Motivation: In Calculus we have seen that certain functions may be repre-
sented as power series by means of the Taylor expansions. These functions
must have infinitely many derivatives, and the series provide a good approx-
imation only in some (often small) vicinity of a reference point.

Fourier series constructed of trigonometric rather than power functions, and
can be used for functions not only not differentiable, but even discontinuous
at some points. The main limitation of Fourier series is that the underlying
function should be periodic.

Recall from calculus that a function series is a series where the summands
are functions. Examples of function series include power series, Laurent se-
ries, Fourier series, etc.

Unlike series of numbers, there exist many types of convergence of series of
functions, namely, pointwise, uniform, etc. We say that a series of functions
Yoo, [n(z) converges pointwise to a function f if and only if the sequence
of partial sums

Su(x) = fi(@) + fa(z) + -+ fulz)

converges pointwise to f. We write

n—oo

an(:v) = lim S,(x) = f(x).

Likewise, we say that a series of functions Y > | f,(z) converges uniformly

to a function f if and only if the sequence of partial sums {5, }°°; converges
uniformly to f.

In this section we introduce a type of series of functions known as Fourier
series. They are given by

NE

f(z) :%—l— [ancos <%x> + b, sin (%x)} , —L<z<L (15.1)

n=1

where a,, and b,, are called the Fourier coefficients. The expression on the
right is called a trigonometric series. Note that we begin the series with
% as opposed to simply ag to simplify the coefficient formula for a, that we
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will derive later in this section.

The main questions we want to consider next are the questions of determin-
ing which functions can be represented by Fourier series and if so how to
compute the coefficients a,, and b,,.

Before answering these questions, we look at some of the properties of Fourier
series.

Periodicity Property

Recall that a function f is said to be periodic with period 7" > 0 if
fle +T) = f(z) for all x,z + T in the domain of f. The smallest value
of T" for which f is periodic is called the fundamental period. A graph of
a T'—periodic function is shown in Figure 15.1.

VAN

Figure 15.1

-~

¥ T

For a T'—periodic function we have
F@) = fl@+T) = flo+27) = -

Note that the definite integral of a T'—periodic function is the same over any
interval of length T. By Exercise 15.1 below, if f and g are two periodic func-
tions with common period 7T, then the product fg and an arbitrary linear
combination ¢; f + cog are also periodic with period 7' It is an easy exercise
to show that the Fourier series (15.1) is periodic with fundamental period 2L.

Orthogonality Property

Recall from Calculus that for each pair of vectors @ and v we associate a
scalar quantity @ - ¢ called the dot product of @ and . We say that « and v
are orthogonal if and only if 4 - 7= 0. We want to define a similar concept
for functions.

Let f and g be two functions with domain the closed interval [a, b]. We define
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a function that takes a pair of functions to a scalar. Symbolically, we write

< fig>= / f(2)g(x)d.

We call < f,g > the inner product of f and g. We say that f and ¢
are orthogonal if and only if < f,g >= 0. A set of functions is said to
be mutually orthogonal if each distinct pair of functions in the set is
orthogonal.

Example 15.1
Show that the set {1, cos ("—L’Tx) , sin (”T”x) 'n e N} is mutually orthogonal in
[—L, L.

Solution.
We have

L nm L nm L

o (o= o () -
/_L CoS La: T — sin Lx » 0
L I I
/Ll - sin (%x)dx = [cos (n—gxﬂ% = 0.

Now, for n # m we have
L mm nm 1 [t (m+n)m (m—n)m

/_L Ccos <_L :c) cos (Tx) dx =3 /_L [cos (—L a:‘) + cos (—L x)} dx

1 L . ((m+n)r

— | ———sin | ————=

2 |[(m+n)m L

e ()], =0

where we used the trigonometric identity

and

1
cosacosb = §[COS (a+0b) + cos (a —b)].

In the exercises below, we show that

/L ) <m7r ) ) (mr )d 0
sin | —a ) sin (| —x |dx =
) L L
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and
[ cos (B s () 0
cos | —z)sin | —z |dz =
_I L L

The reason we care about these functions being orthogonal is because we will
exploit this fact to develop a formula for the coefficients in our Fourier series.

Now, in order to answer the first question mentioned earlier, that is, which
functions can be expressed as a Fourier series expansion, we need to intro-
duce some mathematical concepts.

A function f(x) is said to be piecewise continuous on [a, b] if it is contin-
uous in [a, b] execept possibly at finitely many points of discontinuity within
the interval [a,b], and at each point of discontinuity, the right- and left-
handed limits of f exist. An example of a piecewise continuous function is
the function

fz) =

We will say that f is piecewise smooth in [a,b] if and only if f(z) as well
as its derivatives are piecewise continuous.

The following theorem, proven in more advanced books, ensures that a
Fourier decomposition can be found for any function which is piecewise
smooth.

T 0<z<l1
- 1<x<2.

Theorem 15.1
Let f be a 2L-periodic function. If f is a piecewise smooth on [—L, L] then
for all points of discontinuity x € (—L, L) we have

flx™)+ f(z) _ % + go; [an cos <%$> + by sin (n%xﬂ '

2

where as for points of continuity x € (—L, L) we have

flz) = % + i [an Ccos (n%.r) + b, sin <n%x>} :

Remark 15.1

(1) Almost all functions occurring in practice are piecewise smooth functions.
(2) Given a non-periodic function f on [—L, L]. The above theorem applies
to the periodic extension F' of f where F(x 4+ 2nL) = f(x) (n € Z) and
F(x) = f(x) on [—L, L].
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Convergence Results of Fourier Series

We list few of the results regarding the convergence of Fourier series:

(1) The type of convergence in the above theorem is pointwise convergence.
(2) The convergence is uniform for a continuous function f on [—L, L] such
that f(—L) = f(L).

(3) The convergence is uniform whenever Y > (|a,|* + |b,|?) is convergent.
(4) If f(x) is periodic, continuous, and has a piecewise continuous derivative,
then the Fourier Series corresponding to f converges uniformly to f(z) for
the entire real line.

(5) The convergence is uniform on any closed interval that does not contain
a point of discontinuity.

Euler-Fourier Formulas

Next, we will answer the second question mentioned earlier, that is, the ques-
tion of finding formulas for the coefficients a,, and b,,. These formulas for a,,
and b,, are called Euler-Fourier formulas which we derive next. We will as-
sume that the RHS in (15.1) converges uniformly to f(z) on the interval
[—L, L]. Integrating both sides of (15.1) we obtain

/LL f(x)dr = /LL %dx + /LLniO:l [an cos <n%:p> + b, sin (n_gxﬂ dz.

Since the trigonometric series is assumed to be uniformly convergent, from
Section 2, we can interchange the order of integration and summation to
obtain

/LL f(x)dr = /LL %dx + g:l/LL [an Cos (%x) + b, sin (%rx)] dz.

But .
L
/ cos (nlx>d$ = £ sin (n—wxﬂ =0
7 L nmw L L

and likewise

Thus,
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To find the other Fourier coefficients, we recall the results of Exercises 15.2

- 15.3 below.
L .
(n_ﬂ > <m7r )d L ifm=n
_Lcos 7 T ) cos T T |dx 0 ifm£n
' sin (TJC> sin (—mﬂx) dr = L ifm=n
L nmw mm
/ sin (—x) coS (—x) dx =0, Vm,n.
_I L L

Now, to find the formula for the Fourier coefficients a,, for m > 0, we multiply
both sides of (15.1) by cos (“Zz) and integrate from —L to L to otbain

/_LL f(z) cos <%9€> = /_LL % coS <%x> dr + ni:; {an /_LL cos (%x) cos (%x) dx
+ b, /_LL sin (%x) cos <%x>] dx.

L

Hence,

(x) cos (%x) dr = a, L

and therefore

1 /L
U = 7 - (x) cos (%x) dx.

Likewise, we can show that

by, = %/_LL f(z)sin (%m)dm

Example 15.2
Find the Fourier series expansion of

ro={ 0 v

z, x>0

on the interval [—m, 7].
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Solution.
We have
1 [ 1 T
agp ——/ flz)der = — = E
T ) . T 0
L[ 1 [xsin ng _ cosna (=)™ -1
an, =— zcosnxdr = — 2 = 5
T Jo s 0 ™
by, :l /Wxsmnxdx = 1 [ reosne Sm;m} = (=)
T Jo 70 n 0 n
Hence,

o -1 -1 n+1

=—+Z[ L cos (na) + & X sin(mr)] .

Example 15.3
Apply Theorem 15.1 to the function in Example 15.2.

Solution.

Let F be a periodic extension of f of period 27. Thus, f(z) = F(x) on the
interval [—m, 7. Clearly, F' is a piecewise smooth function so that by the
previous thereom we can write

%t/ 1m \nil 5 ifr=—n
%—1—2 F?Tl cos (nx) + ( 173 sin (m:)} = fgrx), if o <_:p <7
n—=1 5 ifr=mn

Taking x = m we have the identity

s

n=1

N

which can be simplified to

2

S -
L~ (2n—1)2 8’

This provides a method for computing an approximate value of 7 m
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Remark 15.2

An example of a function that does not have a Fourier series representation
is the function f(z) = 2 on [—L, L]. For example, the coefficient aq for this
function does not exist. Thus, not every function can be written as a Fourier
series expansion.

The final topic of discussion here is the topic of differentiation and integration
of Fourier series. In particular we want to know if we can differentiate a
Fourier series term by term and have the result be the Fourier series of the
derivative of the function. Likewise we want to know if we can integrate a
Fourier series term by term and arrive at the Fourier series of the integral of
the function. Answers to these questions are provided next.

Theorem 15.2

A Fourier series of a piecewise smooth function f can always be integrated
term by term and the result is a convergent infinite series that always con-
verges to f_LL f(z)dz even if the original series has jumps.

Theorem 15.3

A Fourier series of a continuous function f(x) can be differentiated term by
term if f'(x) is piecewise smooth. The result of the differentiation is the
Fourier series of f'(z).
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Practice Problems

Exercise 15.1

Let f and g be two functions with common domain D and common period
T. Show that

(a) fg is periodic of period T.

(b) e1f + cag is periodic of period T, where ¢; and ¢y are real numbers.

Exercise 15.2
Show that for m # n we have
a) f_LL sin (2%2) sin (%£2)dz = 0 and

b) f_LL cos (™2 z) sin (%z)dz = 0.

Exercise 15.3
Compute the following integrals:

f Lcos 2 (%) dw.

f | sin ( )dx
leCOS(%§$)SH1(1?x)dx.

Exercise 15.4
Find the Fourier coefficients of

on the interval [—m, 7].

Exercise 15.5

Find the Fourier series of f(z) = 2® — 3 on the interval [—1, 1].
Exercise 15.6

Find the Fourier series of the function

-1, “2r<ex<—7
flx) = 0, —-nm<z<m
1, T <x<2m.



15 AN INTRODUCTION TO FOURIER SERIES 129

Exercise 15.7
Find the Fourier series of the function

142, —2<2<0
f@)_{ l—z, 0<z<2.

Exercise 15.8
1

Show that f(z) = - is not piecewise continuous on [—1,1].

Exercise 15.9
Assume that f(z) is continuous and has period 2L. Prove that

[

is independent of a € R. In particular, it does not matter over which interval
the Fourier coefficients are computed as long as the interval length is 2L.
[Remark: This result is also true for piecewise continuous functions].

Exercise 15.10
Consider the function f(z) defined by

1 0<z<1

f(f”):{2 1<z<3

and extended periodically with period 3 to R so that f(z +3) = f(z) for all
.

(i) Find the Fourier series of f(z).

(ii) Discuss its limit: In particular, does the Fourier series converge pointwise
or uniformly to its limit, and what is this limit?

(iii) Plot the graph of f(z) and the limit of the Fourier series.
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Sample Exam Questions

Exercise 15.11
For the following functions f(x) on the interval —L < x < L, determine the
coefficients a,, n =0,1,2,--- and b,,n € N of the Fourier series expansion.

Exercise 15.12
Let f(t) be the function with period 27 defined as

]2 ingxgg
f(t>_{0 if%<x§27r

f(t) has a Fourier series and that series is equal to
a o)
0 :
— + a, cosnt + b, sinnt).
: ;( )
Find 2.

Exercise 15.13
Let f(z) = 2% on [—m, 7|, extended periodically to all of R. Find the Fourier
coefficients a,,, n =1,2,3,--- .

Exercise 15.14
Let f(z) be the square wave function

fz) =

- —r<z<0
T 0<z<nm

extended periodically to all of R. To what value does the Fourier series of
f(z) converge when z = 07

Exercise 15.15
(a) Find the Fourier series of

1 —7<2<0

f(x):{2 0<z<m
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extended periodically to all of R. Simplify your coefficients as much as pos-

sible.
(b) Use (a) to evaluate the series > -, % Hint: Evaluate the Fourier
series at x = 7.
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16 Fourier Sines Series and Fourier Cosines Se-
ries

In this section we discuss some important properties of Fourier series when
the underlying function f is either even or odd.

A function f is odd if it satisfies f(—z) = —f(z) for all z in the domain of
f whereas f is even if it satisfies f(—z) = f(z) for all z in the domain of f.
Now, we recall from Exercises (1.6)-(1.7) the following facts about even and
odd functions. If f(z) is even then

/if@mm::gALﬂxmx

/if@ﬂmz&

Using just these basic facts we can figure out some important properties of
the Fourier series we get for odd or even functions.

If f is odd then

Example 16.1

Show the following

(a) If f and g are either both even or both odd then fg is even.
(b) If f is odd and g is even then fg is odd.

Solution.

(a) Suppose that both f and g are even. Then (fg)(—z) = f(—z)g(—z) =
f(x)g(x) = (fg)(x). That is, fg is even. Now, suppose that both f and g
are odd. Then (fg)(—z) = f(—2)g(~z) = [~f(@)]|—g(x)] = (fg)(x). That
is, fg is even.

(b) fis odd and g is even. Then (fg)(—z) = f(—x)g(—z) = —f(x)g(z) =
—(fg)(x). That is, fg is odd m

Example 16.2
(a) Find the value of the integral ffL f(z)sin (2Zz)dz when f is even.

T
(b) Find the value of the integral f_LL f(x) cos (%EFx)dx when f is odd.
Solution.

nm

7 x) is odd and f is even, we have that f(x)sin (Mx)

(a) Since the function sin ( 7
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is odd so that .
. /nr
/_L f(z)sin <fx>dm =0

(b) Since the function cos (“*x) is even and f is odd, we have that f(z) cos (%)

is odd so that .
/ f(x) cos (Ex> dr=0m
. L

Even and Odd Extensions
Let f : [0,L] — R be a piecewise smooth function. We define the odd
extension of this function on the interval —L < x < L by

f(x) 0<a<L
foaa(x) = § —f(=z) —L<z<0
0 xz = 0.

This function will be odd on the interval [—L, L], and will be equal to f(x)
on the interval (0, L]. We can then further extend this function to the entire
real line by defining it to be 2L periodic. Let f,,, denote this extension. We
note that f,,, is an odd function and piecewise smooth so that by Theorem
15.1 it possesses a Fourier series expansion, and from the fact that it is odd
all of the a/ s are zero. Moreover, in the interval [0, L] we have

flz) = Z by, sin <Tx> (16.1)

We call (16.1) the Fourier sine series of f.
The coefficients b,, are given by the formula

/ oda s1n dI = / Fodd sm >
/ f(z)sin —x) dx

since f, 4, sin (“Zz) is an even function.
Likewise, we can define the even extension of f on the interval —L <z < L
by
_f fl@) 0<z<L
feven(x> - { f(_m) —L S r < 0.
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We can then further extend this function to the entire real line by defining
it to be 2L periodic. Let f,,., denote this extension. Again, we note that
Foven 18 equal to the original function f(x) on the interval upon which f(z)
is defined. Since f,,., is piecewise smooth, by Theorem 15.1 it possesses a
Fourier series expansion, and from the fact that it is even all of the ¥/ s are
zero. Moreover, in the interval [0, L] we have

flz) = % + ; ay, COS <%x> (16.2)
We call (16.2) the Fourier cosine series of f. The coefficients a,, are given

by .
2
an:z/o fl)cos (“Fa)dw, n =012,

Example 16.3
Graph the odd and even extensions of the function f(z) =z, 0 <z < 1.

Solution.
We have fouq(x) = x for —1 < x < 1. The odd extension of f is shown in
Figure 16.1(a). Likewise,

T 0<z<1
fe”en<x>_{ —x —1<x<0.

The even extension is shown in Figure 16.1(b) m

(a) (b)

Figure 16.1
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Example 16.4
Find the Fourier sine series of the function

x o<z
— ) - — 2
f(z) {ﬂ—x, 5 <z <.
Solution.
We have

2| 12 T
b, = — [/ x sinnxdzx +/ (m — x)sin nxdx] :
s 0 s

2

Using integration by parts we find

. T z 1 [z
rsinnzdr = |——cosnx| + — cosnxdx
0 n 0 n 0

weos(nm/2) 1
=
2n n?

mweos (nm/2)  sin(nw/2)
= — +
2n n?

us
[sin nz|d

while

™ . ™ 1 ™
/ (m — z)sinnzdr = [— (r —2) cos nx} - — / cos nxdx
T n n T

1
n2

WP

_ mcos (nm/2)
B 2n
meos (nm/2)  sin(nw/2)
= +
2n n?

[sin nz|x
2

Thus,
_ 4sin (n7/2)

2 Y

bn
™

and the Fourier sine series of f(z) is

f(z) = Zwsinnx = Zﬁsin@n— Dz m

2 —1)2
— ™m “~ m(2n—1)

135
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Practice Problems

Exercise 16.1
Give an example of a function that is both even and odd.

Exercise 16.2
Graph the odd and even extensions of the function f(z) =1, 0 <x < 1.

Exercise 16.3
Graph the odd and even extensions of the function f(z) = L—a for 0 <z <
L.

Exercise 16.4
Graph the odd and even extensions of the function f(z) = 1+ 2? for 0 <
z < L.

Exercise 16.5
Find the Fourier cosine series of the function
T 0<zxz<ZI
— ) - — 2
f(z) {W—x, %Sxﬁw

Exercise 16.6
Find the Fourier cosine series of f(z) =z on the interval [0, 7].

Exercise 16.7
Find the Fourier sine series of f(z) =1 on the interval [0, 7].

Exercise 16.8
Find the Fourier sine series of f(x) = cosz on the interval [0, 7].

Exercise 16.9
Find the Fourier cosine series of f(z) = €?® on the interval [0, 1].
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Sample Exam Questions

Exercise 16.10

For the following functions on the interval [0, L], find the coefficients b,, of
the Fourier sine expansion.

(a) f(z) = sin (¥z).

(b) f(z) =1

(c) f(z) = cos (Fz).

Exercise 16.11

For the following functions on the interval [0, L], find the coefficients a,, of
the Fourier cosine expansion.

(a) f(z) =5+ cos (Fz).

(b) f(x) =

()

v~ O
AAN
SR
IAIA
ol

f(rc)={(1)

Exercise 16.12

Consider a function f(z), defined on 0 < z < L, which is even (symmetric)
around z = % Show that the even coefficients (n even) of the Fourier sine
series are zero.

Exercise 16.13
Consider a function f(z), defined on 0 < x < L, which is odd around z = %
Show that the even coefficients (n even) of the Fourier cosine series are zero.

Exercise 16.14
The Fourier sine series of f(z) = cos (”—I“:”’) for 0 < x < L is given by

cos (%) :;bnsm (%), neN

where 5
n

by=0, b,=-——|1 —1)".

1 ) (n2—1>71'[+< )]

Using term-by-term integration, find the Fourier cosine series of sin (%)
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Exercise 16.15
Consider the function

1 0<a<1
f(x)_{z 1<z<?2

a) Sketch the even extension of f.

b) Find ag in the Fourier series for the even extension of f.

¢) Find a,, (n =1,2,--+) in the Fourier series for the even extension of f.
d) Find b, in the Fourier series for the even extension of f.

e) Write the Fourier series for the even extension of f.
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17 Separation of Variables for PDEs

Finding analytic solutions to PDEs is essentially impossible. Most of the
PDE techniques involve a mixture of analytic, qualitative and numeric ap-
proaches. Of course, there are some easy PDEs too. If you are lucky your
PDE has a solution with separable variables. In this section we discuss the
application of the method of separation of variables in the solution of PDEs.
In developing a solution to a partial differential equation by separation of
variables, one assumes that it is possible to separate the contributions of
the independent variables into separate functions that each involve only one
independent variable. Thus, the method consists of the following steps

1. Factorize the (unknown) dependent variable of the PDE into a product of
functions, each of the factors being a function of one independent variable.
That is,

u(r,y) = X(z)Y(y).

2. Substitute into the PDE, and divide the resulting equation by X (z)Y (y).
3. Then the problem turns into a set of separated ODEs (one for X (x) and
one for Y(y).)

4. The general solution of the ODEs is found, and boundary initial condi-
tions are imposed.

5. u(z,y) is formed by multiplying together X (z) and Y (y).

We illustrate these steps in the next two examples.

Example 17.1
Find all the solutions of the form w(z,t) = X (x)T(t) of the equation

Ugy — Uy = Uy

Solution.
It is very easy to find the derivatives of a separable function:

uy = X'(2)T(t),uy = X(2)T"(t) and uy, = X" (x)T(t)

this is basically a consequence of the fact that differentiation with respect
to = sees t as a constant, and vice versa. Now the equation u,, — u, = u;
becomes

X"(2)T(t) — X'(2)T(t) = X (2)T'(¢).
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We can separate variables further. Division by X (x)7'(t) gives

X"(z) = X'(x)  T'(t)
X(z) T(t)

The expression on the LHS is a function of  whereas the one on the RHS is
a function of ¢ only. They both have to be constant. That is,

X'@) - X'() T

X(x) STl

Thus, we have the following ODEs:
X'"—X'—AX =0and T" = \T.

The second equation is easy to solve: T'(t) = Ce*. The first equation is
solved via the characteristic equation w? —w — XA = 0, whose solutions are

1E£v1+4M
w=———.

IfTA> —% then

In this case,

1+V/IF4N 1—/I+4X

u(z,t) = De e+ FEe 2z e

If = —% then
and in this case

If A< —% then

X(z) = Ae? cos (ﬂx> + Be? sin (Mx>
5 : :

2

In this case,

o —(1 44X z —(1 44X
u(z,t) = D'e>™ cos (%x) + B'e>™gin <(+)x> N
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Example 17.2
Solve Laplace’s equation using the separation of variables method

AU = Uy + Uyy = 0.

Solution.
We look for a solution of the form wu(z,y) = X (x)Y (y). Substituting in the
Laplace’s equation, we obtain

X" (@)Y (y) + X (2)Y"(y) = 0.

Y// (y)
Y(y)

Assuming X (z)Y (y) is nonzero, dividing for X (z)Y (y) and subtracting
from both sides, we find:

X”(l‘) B Y”(y)

X(x) Yy)

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X”(w) B _Y”(y)

X))~ Y

where A is a constant. This results in the following two ODEs
X"—AX =0and Y4+ \Y =0.

The solutions of these equations depend on the sign of .
e If A > 0 then the solutions are given

X(x) =AeYN 4 Bem VW
Y (y) =C cos (VAy) + Dsin (VAy)
where A, B, C, and D are constants. In this case,
w(z, t) =k1e¥™ cos (VAy) + kee¥™ sin (VAy)
+hse ™V cos (VAy) + kae™  sin (V).
o If A =0 then

X(z) =Ax+ B
Y(y) =Cy+ D
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where A, B, and C' are arbitrary constants. In this case,
u(z,y) = kivy + kow + ksy + ky.

o If A <0 then

X(x) =Acos (vV—\z) + Bsin (V—=Az)

Y (y) =CeV= 4 De™ V=M
where A, B, C, and D are arbitrary constants. In this case,

w(z,y) =k cos (V=Az)e¥ ™ + ky cos (V—Az)e VW
+kysin (V=Az)eV™V + kysin (V=Az)e VNV o

Example 17.3
Solve using the separation of variables method.

YUy — xuy = 0.

Solution.
Substitute u(x,y) = X(x)Y (y) into the given equation we find

yX'Y —zXY' = 0.
This can be separated into
X' Y’
X yY
The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,
X' Y’
X y_Y B

where A is a constant. This results in the following two ODEs
X' —XxX =0and Y — \yY =0.

Solving these equations using the method of separation of variable for ODEs

22 2
we find X (z) = Ae’ and Y (y) = Be ¥ . Thus, the general solution is given
by
Ma® +y%)
2

u(z,y) = Ce |
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Practice Problems

Exercise 17.1
Solve using the separation of variables method

Au 4+ u = 0.

Exercise 17.2
Solve using the separation of variables method

U = klgy.

Exercise 17.3
Derive the system of ordinary differential equations for R(r) and ©(6) that
is satisfied by solutions to

1
Upy + —Up + —2’21,99 =0.
r T

Exercise 17.4
Derive the system of ordinary differential equations and boundary conditions
for X (x) and T'(t) that is satisfied by solutions to

Uy = Uge —2u, O0< <1, t>0

w(0,t) =0=wu(l,t) t>0

of the form u(x,t) = X (z)7T'(t). (Note: you do not need to solve for X and
T.)

Exercise 17.5
Derive the system of ordinary differential equations and boundary conditions
for X (z) and T'(t) that is satisfied by solutions to

U = kUye, 0<axz<L,t>0

u(z,0) = f(z), u(0,t) =0=wu,(L,t) t>0
z,t) = X(z)T'(t). (Note: you do not need to solve for X and

of the form u(
T.)

Exercise 17.6
Find all product solutions of the PDE u, + u; = 0.
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Exercise 17.7
Derive the system of ordinary differential equations for X (x) and Y (y) that
is satisfied by solutions to

Uy — HUgray + TUggy = 0.
of the form u(z,y) = X (2)Y (y).

Exercise 17.8
Find the general solution by the method of separation of variables.

Ugy +u = 0.

Exercise 17.9
Find the general solution by the method of separation of variables.

Uy — YUy = 0.
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Sample Exam Questions

Exercise 17.10
Find the general solution by the method of separation of variables.

Ut — Ugpy — 0

Exercise 17.11

For the following PDEs find the ODEs implied by the method of separation
of variables.

(a) uy = kr(ru,),

b) u; = kg, — au

¢

Exercise 17.12
Find all solutions to the following partial differential equation that can be
obtained via the separation of variables.

Uy — Uy = 0.

Exercise 17.13
Separate the PDE wu,, — u, + u,,, = u into two ODEs with a parameter. You
do not need to solve the ODEs.
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18 Solutions of the Heat Equation by the Sep-
aration of Variables Method

In this section we apply the method of separation of variables in solving the
one spatial dimension of the heat equation.

The Heat Equation with Dirichlet Boundary Conditions
Consider the problem of finding all nontrivial solutions to the heat equation
u; = ku,, that satisfies the initial time condition u(z,0) = f(x) and the
Dirichlet boundary conditions «(0,t) = Ty and u(L,t) = T7.
From Exercise 14.4, it suffices to solve the problem with the Dirichlet bound-
ary conditions being replaced by the homogeneous boundary conditions u(0,t) =
u(L,t) = 0 (that is, the endpoints are assumed to be at zero temperature)
with « not the trivial solution. Let’s assume that the solution can be writ-
ten in the form w(z,t) = X (2)T'(t). Substituting into the heat equation we
obtain <

X kT
Since the LHS only depends on x and the RHS only depends on ¢, there must
be a constant A such that

Xl/_ L’—
v = Aand 7 = A\

This gives the two ordinary differential equations
X"— XX =0and TV — kAT = 0.
As far as the boundary conditions, we have

w(0,) = 0 = X(0)T(t) = X(0) =0

and
u(L,t) =0=X(L)T(t) = X (L) =0.

Note that 7" is not the zero function for otherwise u© = 0 and this contradicts
our assumption that u is the non-trivial solution.
Next, we consider the three cases of the sign of \.
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Case 1: A =0

In this case, X” = 0. Solving this equation we find X (z) = ax + b. Since
X (0) =0 we find b = 0. Since X(L) = 0 we find a = 0. Hence, X = 0 and
u(z,t) = 0. That is, u is the trivial solution.

Case 2: A >0
In this case, X (z) = Ae¥>* + Be=V2*_ Again, the conditions X (0) = X (L) =
0 imply A = B = 0 and hence the solution is the trivial solution.

Case 3: A <0

In this case, X(z) = Acosv—Az + Bsiny/—\z. The condition X (0) = 0
implies A = 0. The condition X (L) = 0 implies Bsinv/~AL = 0. We must
have B # 0 otherwise X (z) = 0 and this leads to the trivial solution. Since
B # 0, we obtain sin vV—AL = 0 or v/—AL = nr where n € N. Solving for A

we find A = —";’52. Thus, we obtain infinitely many solutions given by

Xp(x) = A, sin %x, n € N.

Now, solving the equation
T — X\kT =0

by the method of separation of variables we obtain
7L27r2
T.(t) = Bye 22 " neN.

Hence, the functions

_n?n?

up(z,t) = Cy sin (%x)e iz " neN
satisfy u; = ku,, and the boundary conditions u(0,t) = u(L,t) = 0.

Now, in order for these solutions to satisfy the initial value condition u(z, 0) =
f(z), we invoke the superposition principle of linear PDE to write

u(z,t) = i C,, sin (%x) e (18.1)

To determine the unknown constants C,, we use the initial condition u(z,0) =
f(z) in (18.1) to obtain
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Since the right-hand side is the Fourier sine series of f on the interval [0, L],
the coefficients C), are given by

Cn = %/OL f(z)sin (%x) dr. (18.2)

Thus, the solution to the heat equation is given by (18.1) with the C/s
calculated from (18.2).

Remark 18.1
According to Exercise 14.4, the solution to the heat equation with non-
homogeneous condition u(0,t) = Ty and u(L,t) = T}, is given by

e n272 T, — T
u(e,t) = 3 Cusin (e 4 4 Ty + =2
n=1

X.

The Heat Equation with Neumann Boundary Conditions
When both ends of the bar are insulated, that is, there is no heat flow out
of them, we use the boundary conditions

uz(0,t) = u, (L, t) = 0.

In this case, the general form of the heat equation initial boundary value
problem is to find wu(z,t) satisfying

wg(z,t) =kuge(x,t), 0<x <L, t>0
u(z,0) =f(z), 0<xz<L
uz(0,t) =u,(L,t) =0, t>0.
Since 0 = u,(0,t) = X'(0)7'(t) we obtain X'(0) = 0. Likewise, 0 = u,(L,t) =

X'(L)T'(t) implies X'(L) = 0. Now, differentiating X (x) = Acosv—A\x +
B sin v/— Az with respect to x we find

X'(x) = —vV—=MAsinvV—\x + V—AB cos V—\z.

The conditions X'(0) = X’(L2 = 0imply v—AB = 0and v—AAsin V—AL =
0. Hence, B=0and A = -2 ™ and

L2

Xn(z) = A, cos (%x), n=0,1,2,---
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and
2_2

nﬂ- n-m
up(z,t) = C, cos (Tx> e h

By the superposition principle, the required solution to the heat equation
with Neumann boundary conditions is given by

[e.o]

2_2
0 _nm
= — E cos( )e Rl
2

=1

where

2 [F nmw
Cn_z/o f(z) cos (fx>dx, n € N.
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Practice Problems

Exercise 18.1
Find the temperature in a bar of length 2 whose ends are kept at zero
and lateral surface insulated if the initial temperature is f(z) = sin (Zz) +

3 sin (%”x)

Exercise 18.2

Find the temperature in a homogeneous bar of heat conducting material of
length L with its end points kept at zero and initial temperature distribution
given by f(z) = % (L —z), 0 <z < L.

Exercise 18.3

Find the temperature in a thin metal rod of length L, with both ends insu-
lated (so that there is no passage of heat through the ends) and with initial

temperature in the rod f(x) = sin (%m)

Exercise 18.4
Solve the following heat equation with Dirichlet boundary conditions

ut:kumy
u(0,t) =u(L,t) =0
1 0<z<i
u(x,O)—{ - 2
2 £<z<L

Exercise 18.5
Solve
Uy = kuxx

w(0,4) = u(L, ) = 0
u(, 0) = 6 sin (9%%)

Exercise 18.6
Solve

subject to
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Exercise 18.7

Solve
Uy = kuww
subject to
uz(0,t) = u, (L, t) =0
3
u(z,0) =6 + 4 cos (%x)

Exercise 18.8

Solve
Uy = KUz,
subject to
Uz (0,t) = uy (L, t) =0
u(z,0) = —3cos (8%95

Exercise 18.9
Find the general solution wu(z,t) of

Up = Upy —u, 0<ax <L, t>0

uz(0,8) =0 = u,(L,t), t>0.

Briefly describe its behavior as t — oc.
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Sample Exam Questions

Exercise 18.10 (Energy method)
Let u; and uy be two solutions to the Robin boundary value problem

Up = Upe — U, O<x <1, >0
uz(0,t) = u,(1,¢) =0, t>0
u(z,0) =g(z), 0<z<1

Define w(z,t) = uy(z,t) — ug(z,t).
(a) Show that w satisfies the initial value problem

W =Wee —w, 0<x <1, t>0

w(z,0)=0, 0<x<1

2(z,t)dr > 0 for all t > 0. Show that E'(t) < 0.
0) for all ¢ > 0.
0, w(z,t) = 0. Hence, conclude that u; = us.

(b) Define E(t) =
Hence, 0 < E( ) <

Jy v
o
(c) Show that E(t) =

Exercise 18.11

Consider the heat induction in a bar where the left end temperature is main-
tained at 0, and the right end is perfectly insulated. We assume & = 1 and
L=1.

(a) Derive the boundary conditions of the temperature at the endpoints.
(b) Following the separation of variables approach, derive the ODEs for X
and T

(c) Consider the equation in X (z). What are the values of X (0) and X (1)?
Show that solutions of the form X (z) = sin/— Az satisfy the ODE and one
of the boundary conditions. Can you choose a value of A\ so that the other
boundary condition is also satisfied?

Exercise 18.12
Using the method of separation of variables find the solution of the heat
equation

Ur = Ky,

satisfying the following boundary and initial conditions:
(a) u(0,¢) = u(L,t) =0, u(z,0) = 6sin (42)
(b) u(0,t) = u(L,t) =0, u(z,0) = 3sin (%) — sin (272)
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Exercise 18.13
Using the method of separation of variables find the solution of the heat
equation

Up = Ky,

satisfying the following boundary and initial conditions:
(a) uz(0,8) = uy(L,t) =0, u(x,0) = cos (Z£) + 4 cos (2£).
(b) uz(0,t) = uy(L,t) =0, u(z,0) = 5.

Exercise 18.14
Find the solution of the following heat conduction partial differential equation

Up = SUgr, O0<x<4m, t>0

u(0,t) = u(dm, t) =0, t>0

u(z,0) =6sinz, 0<x <d4m.
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19 Elliptic Type: Laplace’s Equations in Rect-
angular Domains

Boundary value problems are of great importance in physical applications.
Mathematically, a boundary-value problem consists of finding a function
which satisfies a given partial differential equation and particular bound-
ary conditions. Physically speaking, the problem is independent of time,
involving only space coordinates.

Just as initial-value problems are associated with hyperbolic PDE, bound-
ary value problems are associated with PDE of elliptic type. In contrast to
initial-value problems, boundary-value problems are considerably more diffi-
cult to solve.

The main model example of an elliptic type PDE is the Laplace equation

AU = Uy + Uy, =0 (19.1)

where the symbol A is referred to as the Laplacian. Solutions of this equa-
tion are called harmonic functions.

Example 19.1
Show that, for all (z,y) # (0,0), u(z,y) = In (2? + y?) is a harmonic function.

Solution.
We have

2z
T
_2y2 — 272
ST
Uy = 2
Y _x2+y2
222 — 2y°

Uy

Plugging these expressions into the equation we find wu,, + u,, = 0. Hence,
u(z,y) is harmonic m

The Laplace equation is arguably the most important differential equation in
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all of applied mathematics. It arises in an astonishing variety of mathemati-
cal and physical systems, ranging through fluid mechanics, electromagnetism,
potential theory, solid mechanics, heat conduction, geometry, probability,
number theory, and on and on.

There are two main modifications of the Laplace equation: the Poisson
equation (a non-homogeneous Laplace equation):

Au = f<x7y)

and the eigenvalue problem (the Helmholtz equation):
Au= Mu, \€R.

Solving Laplace’s Equation (19.1)
Note first that both independent variables are spatial variables and each
variable occurs in a 2nd order derivative and so we will need two boundary
conditions for each variable a total of four boundary conditions.
Consider (19.1) in the rectangle

Q={(z,y):0<2<4a,0<y<b}

with the Dirichlet boundary conditions

u(0,y) = fi(y), ula,y) = f2(y), u(x,0) = gi(x), u(w,b) = ga()

where 0 <z <aand 0 <y <b.

The separation of variables method is most successful when the boundary
conditions are homogeneous. Thus, solving the Laplace’s equation in €2 re-
quires solving four initial boundary conditions problems, where in each prob-
lem three of the four conditions are homogeneous. The four problems to be
solved are

Ugz + Uyy = 0 Ugg + Uyy = 0
(1) u(0,9) = f1(y), (1) u(a,y) = f2(y),
u(a,y) = u(z,0) = u(z,b) =0 u(0,y) = u(z,0) = u(xz,b) =0
Ugz + Uyy = 0 Uz + Uyy = 0
(II1) u(z,0) = g1(x), (IV) u(z,b) = ga(x),

u(0> y) = u(aa y) = u('x: b) =0 U(O, y) = u(aa y) = u(x, 0) =0
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If we let w;(z,y), i = 1,2,3,4, denote the solution of each of the above
problems, then the solution to our original system will be

u(@,y) = ui(@,y) + uz (2, y) + us(, y) + ua(z, y).

In each of the above problems, we will apply separation of variables to (19.1)
and find a product solution that will satisfy the differential equation and the
three homogeneous boundary conditions. Using the Principle of Superposi-
tion we will find a solution to the problem and then apply the final boundary
condition to determine the value of the constant(s) that are left in the prob-
lem. The process is nearly identical in many ways to what we did when we
were solving the heat equation.

We will illustrate how to find u(x,y) = us(x,y). So let’s assume that the so-
lution can be written in the form u(x,y) = X (2)Y (y). Substituting in (19.1),
we obtain

X" (@)Y (y) + X (@)Y"(y) = 0.

Y"(y)
Y(y)

Assuming X (z)Y (y) is nonzero, dividing for X (z)Y (y) and subtracting
from both sides, we find:

X'x) _ Y'(y)

X(x) Y(y)

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,
X"x) _ Y"(y)
X@) Y

=A

where A is a constant. This results in the following two ODEs
X"—AX =0and Y+ Y =0.

As far as the boundary conditions, we have for all 0 < x <aand 0 <y <b
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Note that X and Y are not the zero functions for otherwise v = 0 and this
contradicts our assumption that w is the non-trivial solution.

Consider the first equation: since X” — AX = 0 the solution depends on the
sign of A\. If A = 0 then X (z) = Az+B. Now, the conditions X (0) = X (a) =0
imply A = B = 0 and so v = 0. So assume that A # 0. If A > 0 then
X(z) = Ae¥V™ + Be V. Now, the conditions X (0) = X(a) = 0, A # 0
imply A = B = 0 and hence the solution is the trivial solution. Hence, in
order to have a nontrivial solution we must have A < 0. In this case,

X(z) = AcosV—Az + BsinV—A\z.
The condition X (0) = 0 implies A = 0. The condition X (a) = 0 implies
Bsinv/—Aa = 0. We must have B # 0 otherwise X (z) = 0 and this leads to
the trivial solution. Since B # 0, we obtain siny/—Aa = 0 or v/—Aa = n7

where n € N. Solving for A we find A, = —*3-. Thus, we obtain infinitely
many solutions given by

X, (x) = sin T:c, n € N.
a
Now, solving the equation
Y"+AY =0
we obtain
Y (y) = ape¥ Y 4 bpe™V M = A, cosh /=My + B, sinhy/—\,y, n € N.
Using the boundary condition Y (0) = 0 we obtain A, = 0 for all n € N.
Hence, the functions
up(z,y) = By sin <T:c) sinh (Ty), neN
a a

satisfy (19.1) and the boundary conditions u(0,y) = u(a,y) = u(x,0) = 0.
Now, in order for these solutions to satisfy the boundary value condition
u(z,b) = go(x), we invoke the superposition principle of linear PDE to write

u(z,y) = i B, sin (nlx> sinh <%Ty>. (19.2)

a

To determine the unknown constants B, we use the boundary condition
u(z,b) = go(z) in (19.2) to obtain

g2(x) = Z (Bn sinh (%b)) sin (%x)

n=1
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Since the right-hand side is the Fourier sine series of g2 on the interval [0, a],
the coefficients B,, are given by

B, = F /Oag2(q;) sin (%x)dm} [sinh (%b)]‘l. (19.3)

a

Thus, the solution to the Laplace’s equation is given by (19.1) with the B!s
calculated from (19.3).

Example 19.2

Solve
Ugg + Uyy = 0
u(0,y) = fi(y),
u(a,y) = u(z,0) = u(z,b) =0
Solution.

Assume that the solution can be written in the form u(z,y) = X (z)Y (y).
Substituting in (19.1), we obtain

X"(2)Y (y) + X(2)Y"(y) = 0.

Y"(y)
Y(y)

Assuming X (z)Y (y) is nonzero, dividing for X (z)Y (y) and subtracting
from both sides, we find:

X"(z) _ Y"(y)
X))~ Y0

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,
X"x) _ Y"(y)

X))~ Yy

where A is a constant. This results in the following two ODEs
X"=AX =0and Y4+ Y =0.
As far as the boundary conditions, we have for all 0 <z <aand 0 <y <b
u(0,y) = fily) = X(0)Y (y)

u(a,y) =0=X(a)Y(y) = X(a) =0
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u(@,0) = 0= X(2)Y(0) = Y(0) =0
w(a,b) = 0= X(2)Y(b) = Y(b) =0

Note that X and Y are not the zero functions for otherwise v = 0 and this
contradicts our assumption that w is the non-trivial solution.

Consider the second equation: since Y”+\Y = 0 the solution depends on the
sign of A. If A = 0 then Y (y) = Ay+ B. Now, the conditions Y (0) = Y (b) =0
imply A = B = 0 and so u = 0. So assume that A # 0. If A < 0 then
Y(y) = AeV= 4+ Be V. Now, the condition Y (0) = Y(b) = 0 imply
A = B =0 and hence the solution is the trivial solution. Hence, in order to
have a nontrivial solution we must have A > 0. In this case,

Y(y) = Acos V Ay + Bsin V.

The condition Y (0) = 0 implies A = 0. The condition Y (b) = 0 implies
BsinvAb = 0. We must have B # 0 otherwise Y (y) = 0 and this leads to
the trivial solution. Since B # 0, we obtain sin v/Ab = 0 or v/Ab = n1 where
n € N. Solving for A we find A, = "zf. Thus, we obtain infinitely many
solutions given by

Y, (y) = sin (%y), n € N.

Now, solving the equation
X"-2AX =0, A>0

we obtain

nm

b

nm
—X

X, (2) = apeV™” + be VAT = A, cosh ( ;

x>+aninh< >,nEN.

However, this is not really suited for dealing with the boundary condition
X(a) = 0. So, let’s also notice that the following is also a solution.

X, (x) = A, cosh (n%(a: - a)) + B, sinh (n%(x - a)), n € N.

Now, using the boundary condition X (a) = 0 we obtain A,, = 0 for all n € N.
Hence, the functions

nmw

un(z,y) = By, sin (%y) sinh <T($ — a)), neN
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satisfy (19.1) and the boundary conditions u(a,y) = u(x,0) = u(z,b) = 0.
Now, in order for these solutions to satisfy the boundary value condition
u(0,y) = f1(y), we invoke the superposition principle of linear PDE to write

u(z,y) = f: B, sin (%y) sinh (T%T(x - a)). (19.4)

To determine the unknown constants B, we use the boundary condition
u(0,y) = fi(y) in (19.4) to obtain

fily) = f: (Bn sinh (—%a)) sin (%y)

n=

Since the right-hand side is the Fourier sine series of f; on the interval [0, b],
the coefficients B,, are given by

Bo=[3 [ nwsin (S)ao] fson (-250)] a0

Thus, the solution to the Laplace’s equation is given by (19.4) with the B/s
calculated from (19.5) m

Example 19.3

Solve
Upe + Uy =0, O0<o <L, 0<y<H
u(0,y) =u(L,y) =0, 0<y<H
w(z,0) = uy(z,0), u(z,H)=f(x), 0<z<L.

Solution.
Using separation of variables we find

Xl/ Y//

— =——=\

X Y

We first solve
X" AX =0 O<z<L
X

(0)=X(L)=0
We find A\, = 21 and

L2

X, (z) = sin n%x, n € N.
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Next we need to solve

Y'+AY =0 O0O<y<H
Y (0) — Y'(0) = 0
The solution of the ODE is
Y, (y) = A, cosh (%y) + B, sinh (%y), n € N.
The boundary condition Y (0) — Y'(0) = 0 implies
nm

A, —B,— =0.
L

Hence,

nm nmw ) nm
Y, = an cosh (Ty> + B,, sinh <Ty), n € N.

Using the superposition principle and the results above we have
- nw [nm nm nm
)= 30 Busin o [ cosh (o) +sinh ()|
u(z,y) ; sin —~ | =~ cosh ( + sin 7Y
Substituting in the condition u(x, H) = f(x) we find

flx) = Z B, sin L [n—ﬂ cosh <7%TH> + sinh (%Hﬂ :

where

Thus, the general solution is given by
u(z,y) = nz_:l B, sin n%m [n%r cosh (%y) + sinh (%y)] .
with the B, satisfying

B, [n%r cosh <nf7rH> + sinh (%Hﬂ = %/L f(x)sin (%x)dm [ ]
0
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Practice Problems

Exercise 19.1

Solve
Ugy + Uyy =0

u(a, y) = fa(y),
u(0,y) = u(z,0) = u(z,b) = 0.

Exercise 19.2

Solve
Ugg + Uyy = 0

u(z,0) = gi(x),
u(0,y) = u(a,y) = u(z,b) = 0.
Exercise 19.3

Solve
Ugg + Uyy =0
u(z,0) = u(0,y) =0,
u(l,y) =2y, u(z,1) = 3sinmx + 2z

where 0 <z <1 and 0 <y < 1. Hint: Define U(z,y) = u(z,y) — 2zy.

Exercise 19.4
Show that u(z,y) = 2% — y* and u(z, y) = 2zy are harmonic functions.

Exercise 19.5

Solve
H H
Upg + Uy =0, 0< <L _§§y§§
subject to
H H
U(O,y):U(L7y)—O7 E<y<5
H H
u(w, =) = fil), ulr,5)=fo@), 0<z <L

Exercise 19.6

Consider a complex valued function f(2) = u(x,y)+iv(z,y) where i = /—1.
We say that f is holomorphic or analytic if and only if f can be expressed
as a power series in z, i.e.

u(z,y) + vz, y) = Zan

(a) By differentiating with respect to x and y show that
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Uy = vy and u, = —v,
These are known as the Cauchy-Riemann equations.

(b) Show that Au = 0 and Av = 0.

Exercise 19.7
Show that Laplace’s equation in polar coordinates is given by

1
Upp + —Up + oo = 0.
r r

Exercise 19.8
Solve
ng;—l—uyy:O, O§$§2, OSySS

subject to

u(z,0) =0, u(z,3)= g

u(0,y) = sin (%ry) w(2,y) =T.

Exercise 19.9

Solve
Upy T Uyy =0, 0<2<L, 0<y<H
subject to
uy(z,0) =0, u(z,H)=0
Y
0,y) = u(L,y) = dcos ().
u(0,y) = u(L,y) = dcos ( 5
Exercise 19.10
Solve
Ugg +Uyy =0, >0, 0<y<H
subject to

u(0,y) = f(y), lu(z,0)] < o0
uy(x,0) = uy(z, H) = 0.
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Sample Exam Questions

Exercise 19.11
Consider Laplace’s equation inside a rectangle

Upg +Uyy =0, 0< 2 <L, 0<y<H

subject to the boundary conditions

u(0,y) =0, u(L,y) =0, u(x,0)—u,(z,0) =0, u(zr, H) = 20sin (7;_1:) —5sin <37TTI>

Find the solution u(x,y).

Exercise 19.12
Solve Laplace’e equation g, + uy, = 0 in the rectangle 0 < z,y < 1 subject
to the conditions

u(0,y) =u(l,y) =0, 0<y<1

u(z,0) = sin (27z), uy(z,0) = —27wsin (27z), 0 <z < 1.
Exercise 19.13

Find the solution to Laplace’s equation on the rectangle 0 < x < 1,0 <y < 1
with boundary conditions

u(z,0) =0, u(x,1)=1

Exercise 19.14
Solve Laplace’s equation on the rectangle 0 < x < a, 0 < y < b with the
boundary conditions

u(0,y) = —a, ug(a,y) =0
uy(z,0) =b, wuy,(z,b) =0.
Exercise 19.15

Solve Laplace’s equation on the rectangle 0 < x < 7, 0 < y < 2 with the
boundary conditions

u(0,y) = u(m,y) =0
uy(x,0) =0, uy(x,2)=2sin3z — 5sin 10z.
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20 Laplace’s Equations in Circular Regions

In the previous section we solved the Dirichlet problem for Laplace’s equation
on a rectangular region. However, if the domain of the solution is a disc,
an annulus, or a circular wedge, it is useful to study the two-dimensional
Laplace’s equation in polar coordinates.

It is well known in calculus that the cartesian coordinates (z,y) and the polar
coordinates (r,0) of a point are related by the formulas

x=rcosf and y = rsinf
where 7 = (22 + 32)2 and tanf = 4. Using the chain rule we obtain

sin 6

Uy =UpTy + Upl, = cosOu, — U

Ugy =UgrTz + u:ceex

sin 0 sin 0
= { cosOu,, + Uy — Upg | COSO
r

r2
i cos sin 6 sin @
+ | —sin Ou, + cos Ou,g — Uy — Ugg -
r r r
i cos
Uy =UyTy + Ul = sin Ou, + Ug
Uyy =Uyr Ty + Uyply
i cos cos )
= ( sin Ou,, — o Ug + Upg | SN O
r r
. sin 0 cos 6 cos
+ ( cos Ou,. + sin Qu,g — Uy + Ugo
r r r
Substituting these equations into Au = 0 we obtain
1 1
Upp + —Ur + —ugg = 0. (20.1)
r r

Example 20.1
Find the solution to

Au=0, 2 +9°<a’
subject to
(i) Boundary condition: u(a,0) = f(0), —w <60 <m.
(ii) Boundedness at the origin: |u(0,0)| < occ.
(iii) Periodicity: u(r,8 +27) = u(r,0), —nw <6 <.
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Solution.

First, note that (iii) implies that u(r, —7) = u(r, 7) and uy(r, —7) = ug(r, 7).
Next, we will apply the method of separation of variables to (21.1). Suppose
that a solution u(r, 0) of (21.1) can be written in the form u(r, 0) = R(r)©(0).
Substituting in (21.1) we obtain

R'(r)0(0) + %R’(r)@(@) + T%R(r)@”(@) —0.

Dividing by RO (under the assumption that RO # 0) we obtain
©"(0) _ LR'(r) R(r)

o) ' R R

The left-hand side is independent of r whereas the right-hand side is inde-
pendent of # so that there is a constant A such that

00 LRG) | R()
60) " R "R ™

This results in the following ODEs

0" (0) + A\O(A) = 0 (20.2)

and
r?R"(r) +rR'(r) — AR(r) = 0. (20.3)

The second equation is known as Euler’s equation. Both of these equations
are easily solvable. To solve (20.2), we only have to add the appropriate
boundary conditions. From (iii), we have O(—7) = O(7) and ©'(—7) =
©'(m). If X > 0 then ©(0) = Acos (v/A0) + B cos (v/A0). Using the condition
O(—7) = O(n) we obtain 2B sin (v/Ar) = 0. Using the condition ©'(—n) =
©'(m) we obtain 2v/AAsin (v Ar) = 0. If sin (v Ar) # 0 then A = B = 0
and we get the trivial solution. Therefore, we require sin (v A7) = 0 and this
leads to A\, = n? forn = 1,2, --- . Note that we start with n = 1 since A\ > 0.
Hence,
0,(0) = A, cosnb + B, sinnf.

If A = 0 then ©(f) = A+ B6 and the conditions O(—7) = O(7) and O'(—7) =
©'(m) leads to ©(F) = A. If A <0 then

O(h) = Acosh (vV/—\0) + Bsinh (vV/—\9)
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and applying the conditions ©(—7n) = O(7) and ©'(—7) = O'(7) we find
A = B = 0. In summary, we have

©,(0) = Al cosnf + B, sinnf,n =0,1,2---

The equation in R is of Euler type and its solution must be of the form
R(r) = r®. Substituting into (20.3) and using A = n?, we find

ala — Dr* + ar® —n’r* = 0.
Solving this equation we find a = £n. Hence, we let
R.(r)=Cuyr" + D,r~",n € N.

For n = 0, R = 1 is a solution. To find a second solution, we solve the
equation
r*R" +rR =0.

This can be done by dividing through by r and using the substitution S = R’
to obtain S’ + .S = 0. Solving this by noting that the left-hand side is just
(rS)" we find S = ¢. Hence, R = ¢ and this implies R(r) = C'lnr. Thus,
R =1and R = Inr form a couple of linearly independent solutions of (20.3)
and so a general solution is given by

R()(?") = C() + DO Inr.

By assumption (ii), u(r, ) must be bounded near r» = 0, and so does R,,.
Since r~™ and Inr are unbounded near r = 0, we must set Dy = D,, = 0. In
this case, the solutions to Euler’s equation are given by

R.(r)=Cur", n=10,1,2,---.
Using the superposition principle, and combining the results obtained above,

we find

u(r,0) = Cy + Z r" (A, cosnb + B, sinnd).

n=1

Now, using the boundary condition u(a, ) = f(f) we can write

f()=Co+ Z(a"An cosnf + a" By, sinnf)

n=1
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which is usually written in a more convenient equivalent form by
a oo
f(0) = 50 + ;(an cosnf + b, sinnd).

It is obvious that a,, and b, are the Fourier coefficients, and therefore can be
determined by the formulas

1 ™
Ap = — f(Q)COSTLHdG, n:0,1,~~~
T J—=

and

bn:l/ f(@)sinnddd, n=1,2,---.
™ —T

Finally, the general solution to our problem is given by

u(r,0) = Co + Z " (A, cosnb + B, sinnh)
n=1

where
ag 1 "
-V _ - 0)do

Co= =5 [ 10)
apn L[

A, =2 = / f(0)cosnbdf, n=1,2,---
am am J_.
b, 1 [T .

B, = = / f(0)sinnddf, n=1,2,---
am am J_.

Example 20.2
Find a 2w —periodic function solution

Au=0, —n<f0<m 1<r<2

subject to
u(1,0) =u(2,0) =sinf, —7 <6 <.

Solution.

Use separation of variables. First, solving for ©(f)), we see that in order
to ensure that the solution is 2r—periodic in 6, the eigenvalues are A = n?.
When solving the equation for R(r), we do NOT need to throw out solutions
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which are not bounded as » — 0. This is because we are working in the
annulus where r is bounded away from 0 and oo. Therefore, we obtain the
general solution

u(r,0) = (Co+Cilnr)+ Z (Cpr™ +Dypr™™) cosnd+ (Apr™ + B,r™ ") sinnd)].

n=1
But -
Co + Z[(Cn + D,,) cosnb + (A,, + B,,) sinnf] = sin 6

n=1

and

Co+CiIn2+ Z[(C’nQ" + D,27") cosnf + (A,2" + B,27") sinnf] = sinf

n=1

Hence, comparing coefficients we must have

Cy =0
C, + D, =0
A+ B, =0 n#1
A+ B =1

C.,2" + D,27" =0
A 2"+ B2 =0 n#1
24, +27'B; =1

Solving these equations we find Cy = C,, = D,, = 0,4, = %,31 = %; and

A, = B, =0 for n # 1. Hence, the solution to the problem is
1 2
u(r,0) = 3 (r—i— ;) sinf m

Example 20.3

Solve Laplace’s equation inside a 60° wedge of radius a subject to the bound-
ary conditions:

(1) u(a,0) = 3 cos 90 — 5 cos 36.

(2) ug(r,0) =0, up(r,3) = 0.

(3) |u(0,0)] < oo.
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Solution.
Letting u(r, ) = R(r)©(0) and separating the variables we obtain the eigen-

value problem
Q"(6) + A\6(0) = 0.

As above, one can easily see that the solution is of the form
0(0) = Acos VN + Bsin V.

The condition ©/(0) = 0 implies B = 0. The condition ©' (3) = 0 implies
A= (3n)%, n=0,1,2,--- . Thus, the angular solution is

©,(0) = A cos3nf, n=0,1,2,---
The corresponding solutions of the radial problem are
Ru(r) = A + Bor ™", n=0,1,--- .
To obtain a solution that remains bounded as » — 0 we take B,, = 0. Hence,
up(r,0) = Z C,r®cos3nf, n=0,1,2,---
n=0

Using the boundary condition

1 1
u(a,0) = 3 cos 96 — g oos 36

we obtain Ca® = —3 and C3a® = 3 and 0 otherwise. Thus,

u(a,d) = % <—>gcos 90 — % (Z)gcos 30m

r
a a
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Practice Problems

Exercise 20.1
Solve the Laplace’s equation in the unit disk with u(1,60) = 3sin 56.

Exercise 20.2
Solve the Laplace’s equation in the upper half of the unit disk with u(1,6) =
T —0.

Exercise 20.3
Solve the Laplace’s equation in the unit disk with w,.(1,6) = 2 cos 26.

Exercise 20.4

Consider .
u(r,0) = Co+ Y 1" (A, cosnb + B, sinnd)
n=1
with
o= =5 [ oo
72 Ton )
. 1 T
A== [ p@)cosndo. n=1.2-,
am am J_,
b, 1 " .
By =—"7 = / f(¢)sinngd, n=1,2,---
am” am J_,

Using the trigonometric identity
cosacosb + sinasinb = cos (a — b)

show that

utr,0) =5 [ 10

2 ),

1+ Qi (g)ncos n(f — gb)] do.

n=1

Exercise 20.5
(a) Using Euler’s formula from complex analysis e = cos ¢+ sin ¢ show that

1 . )
cost = E(e’t +e),
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where 1 = /—1.
(b) Show that

1—|—22<>cosn9 ¢_1+Z(> 9¢>+Z<> o—in(0—9)

(c) Let ¢, = e'=9) and g, = Ze~%=%) It is defined in complex analysis that

the absolute Value of a complex number z = x+iy is given by |z| = (22 +y ) .
Using these concepts, show that |¢;| < 1 and |go| < 1.

Exercise 20.6
(a)Show that

<£> n 6in(9—¢) _ rei(0_¢)
a a — rei0=9)

NE

1

n

and 4
Tefl(equ)

3 (C)” pimn(o-9) — ¢ T 7
— \a a — re=i0-9¢)

Hint: Each sum is a geoemtric series with a ratio less than 1 in absolute

value so that these series converges.
(b) Show that

a2 — 2
1+22< ) cosn(f —¢) = a? — 2arcos (0 — ¢) +r?’

Exercise 20.7

Show that
a7 f(9)
u(r,0) = or / a? — 2ar cos (6 — @) + r? do.

This is known as the Poisson formula in polar coordinates.

Exercise 20.8
Solve
Upy + Uy =0, 2°+y*> <1

subject to
u(l,0) =0, —7<60<m.
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Exercise 20.9

The vibrations of a symmetric circular membrane where the displacement
u(r,t) depends on r and ¢ only can be describe by the one-dimensional wave
equation in polar coordinates

1
Uy = (U +~u,), 0<r<a, t>0

r

with initial condition
u(a,t) =0, t>0
and boundary conditions
u(r,0) = f(r), w(r,0)=g(r), 0<r<a

(a) Show that the assumption u(r,t) = R(r)T(t) leads to the equation

1™ 1., 1R
il LS T
(b) Show that A < 0.

Exercise 20.10
Cartesian coordinates and cylindrical coordinates are shown in Figure 20.1
below.

z
[x,y,z:l = [r,é?,z:l
*
2
g et |
x e

Figure 20.1
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(a) Show that x = rcosf, y =rsinf, z=z.
(b) Show that

Ugz + Uy + Uy = Upyp + ;ur + ﬁu%' + Uy,
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Sample Exam Questions

Exercise 20.11

An important result about harmonic functions is the so-called the maximum
principle which states: Any harmonic function u(z,y) defined in a domain
() satisfies the inequality

min u(z,y) <wu(zr,y) < max u(x,y), V(r,y) € QUIN
i (z,y) < u( y)_(w)ggﬂ (z,y), V(z,y)

where 0f) denotes the boundary of €.
Let u be harmonic in Q = {(z,y) : 2* + y* < 1} and satisfies u(z,y) =2 — =z
for all (x,y) € 09Q. Show that u(z,y) > 0 for all (z,y) € .

Exercise 20.12

Let u be harmonic in Q = {(z,y) : 22+ y* < 1} and satisfies u(x,y) = 1+ 3z
for all (z,y) € 0. Determine

(i) max( yyeo u(w,y)

(i) mingy)eou(z,y)

without solving Au = 0.

Exercise 20.13
Let uy(z,y) and uy(x,y) be harmonic functions on a smooth domain 2 such
that

Uﬂag = 91(37,?!) and U2|aQ = 93(3779)

where ¢g; and g, are continuous functions satisfying

a ,Y) < i ,Y).
Jnax g1(z,y) in g1(z,y)

Prove that u;(z,y) < ug(z,y) for all (z,y) € QU Q.

Exercise 20.14
Show that ™ cos (nf#) and " sin (n#) satisfy Laplace’s equation in polar co-
ordinates.

Exercise 20.15
Solve the Dirichlet problem

Au=0, 0<r<a, —n7<60<m

u(a,d) = sin?6.
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Exercise 20.16
Solve Laplace’s equation
Ugg + Uyy =0

outside a circular disk (r > a) subject to the boundary condition
u(a,d) =1n2+ 4cos 36.

You may assume that the solution remains bounded as r — oo.



The Laplace Transform
Solutions for PDEs

If in a partial differential equation the time ¢ is one of the independent vari-
ables of the searched-for function, we say that the PDE is an evolution
equation. Examples of evolutions equations are the heat equation and the
wave equation. In contrast, when the equation involves only spatial indepen-
dent variables then the equation is called a stationary equation. Examples
of stationary equations are the Laplace’s equations and Poisson equations.
There are classes of methods that can be used for solving the initial value or
initial boundary problems for evolution equations. We refer to these meth-
ods as the methods of integral transforms. The fundamental ones are the
Laplace and the Fourier transforms. In this chapter we will just consider the
Laplace transform.

21 Essentials of the Laplace Transform

Laplace transform has been introduced in an ODE course, and is used espe-
cially to solve linear ODEs with constant coefficients, where the equations
are transformed to algebraic equations. This idea can be easily extended
to PDESs, where the transformation leads to the decrease of the number of
independent variables. PDEs in two variables are thus reduced to ODEs. In
this section we review the Laplace transform and its properties.

Laplace transform is yet another operational tool for solving constant coeffi-
cients linear differential equations. The process of solution consists of three
main steps:

e The given “hard” problem is transformed into a “simple” equation.

e This simple equation is solved by purely algebraic manipulations.

e The solution of the simple equation is transformed back to obtain the so-

177
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lution of the given problem.

In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.

The above procedure can be summarized by Figure 21.1

LE to be Dieterming Solve Cietermine Solution
solved | mf| aplace | Algebraic  |—m| Inverse ®iothe DE
Transform Eguation Transform
Figure 21.1

The Laplace transform is defined in the following way. Let f(¢) be defined
for ¢ > 0. Then the Laplace transform of f, which is denoted by L[f(?)]
or by F(s), is defined by the following equation

T o0
LIft)] = F(s)= lim / f(t)e *tdt = / f(t)e *tdt
—>Jo 0
The integral which defines a Laplace transform is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral is convergent then we say that the function f(t)
possesses a Laplace transform. So what types of functions possess Laplace
transforms, that is, what type of functions guarantees a convergent improper
integral.

Example 21.1
Find the Laplace transform, if it exists, of each of the following functions

(@) f(&) = e (b)) f()=1 (o) f(t) =t (d) f(t) =¢"

Solution.
(a) Using the definition of Laplace transform we see that

o0 T
Le™] :/ e~ TVt = lim e~ 5=t
0

T—o00 0

T ~(s—a)t gy _ T ifs=a
0 € T =T gpg + a.

sS—a

But
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For the improper integral to converge we need s > a. In this case,

1
E[e“t]:F(s):S_a, s> a.

(b) In a similar way to what was done in part (a), we find

o0 T 1
L[1] = / e *'dt = lim e tdt = —, s> 0.
0 S

T—o00 0

S 52

00 t —st —st] 1
E[t] = / te_Stdt = |:— € — € :| —_ —27 S > 0
0 0 S

(d) Again using the definition of Laplace transform we find

Lle"] :/ e st
0

If s < 0 then t2—st > 0 so that e~ > 1 and this implies that IR et st t >
fooo dt. Since the integral on the right is divergent, by the comparison theorem
of improper integrals (see Theorem 23.1 below) the integral on the left is also
divergent. Now, if s > 0 then [;°e'""*)d¢t > [>dt. By the same reasoning
the integral on the left is divergent. This shows that the function f(t) = e’
does not possess a Laplace transform m

The above example raises the question of what class or classes of functions
possess a Laplace transform. To answer this question we introduce few math-
ematical concepts.

A function f that satisfies

[f()] < Me™, t>C (21.1)

is said to be a function with an exponential order a. If C' = 0 in
(21.1) then the function is said to be exponentially bounded. Clearly,
if limy oo e~ f(t) = 0 for some a > 0 then f is of exponential order a.

A function f is called piecewise continuous on an interval if the interval
can be broken into a finite number of subintervals on which the function is
continuous on each open subinterval (i.e. the subinterval without its end-
points) and has a finite limit at the endpoints (jump discontinuities and
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no vertical asymptotes) of each subinterval. Below is a sketch of a piecewise
continuous function.

Note that a piecewise continuous function is a function that has a finite
number of breaks in it and doesn’t blow up to infinity anywhere. A function
defined for ¢t > 0 is said to be piecewise continuous on the infinite in-
terval if it is piecewise continuous on 0 < ¢ < T for all T > 0. Also, note
that a bounded continuous function is piecewise continuous.

Example 21.2
Show that the following functions are piecewise continuous and exponentially
bounded for ¢t > 0.

(a) f(t)=t" (b) f(t) =t"sinat

Solution.

(a) Since ' = >~ 7;—", > %, t" < nlet for all t > 0. Hence, t" is continuous
(and hence piecewise consitnuous) and exponentially bounded.

(b) Since |t" sin at| < nle’, " sin at is piecewise continuous and exponentially

bounded m

The following is an existence result of Laplace transform.

Theorem 21.1
Suppose that f(t) is piecewise continuous on ¢ > 0 and has an exponential
order a. Then the Laplace transform

F(s) = /000 f(t)e *tdt

exists as long as s > a. Note that the two conditions above are sufficient, but
not necessary, for F'(s) to exist.
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In what follows, we will denote the class of all piecewise continuous functions
with an exponential order by PE. The next theorem shows that any linear
combination of functions in P& is also in PE. The same is true for the product
of two functions in PE.

Theorem 21.2
Suppose that f(t) and g(t) are two elements of PE with

lf(t)] < Myent, t>C; and |g(t)] < Mae™t, > (.

(i) For any constants a and 3 the function af(t) 4+ Bg(t) is also a member of
PE. Moreover

Llaf@t) + By(1)] = aLf ()] + BLIg([)]-

(ii) The function h(t) = f(t)g(t) is an element of PE.

We next discuss the problem of how to determine the function f(t) if F(s)
is given. That is, how do we invert the transform. The following result on
uniqueness provides a possible answer. This result establishes a one-to-one
correspondence between the set PE and its Laplace transforms. Alterna-
tively, the following theorem asserts that the Laplace transform of a member
in P& is unique.

Theorem 21.3

Let f(t) and g(t) be two elements in PE with Laplace transforms F'(s) and
G(s) such that F'(s) = G(s) for some s > a. Then f(t) = g(¢t) for all t > 0
where both functions are continuous.

With the above theorem, we can now officially define the inverse Laplace
transform as follows: For a function f € PE whose Laplace transform is F)
we call f the inverse Laplace transform of F and write f = L71[F(s)].
Symbolically

f(t) = L7F(s)] <= F(s) = L[f(t)].

Example 21.3
Find £7 (&), s> 1.
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Solution.
From Example 23.1(a), we have that L£[e®] = ﬁ, s > a. In particular, for
a =1 we find that L[e'] = 15, s> 1. Hence, L7! (X5) =€/, t >0 m.

The above theorem states that if f(¢) is continuous and has a Laplace trans-
form F'(s), then there is no other function that has the same Laplace trans-
form. To find L7'[F(s)], we can inspect tables of Laplace transforms of
known functions to find a particular f(¢) that yields the given F'(s).

When the function f(¢) is not continuous, the uniqueness of the inverse
Laplace transform is not assured. The following example addresses the
uniqueness issue.

Example 21.4
Consider the two functions f(t) = H(t)H (3 —1t) and g(t) = H(t) — H(t — 3),
where H is the Heaviside function defined by
1, t>0
H(t) = { 0, t<0

(a) Are the two functions