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Preface

Partial differential equations are often used to construct models of the most
basic theories underlying physics and engineering. The goal of this book is to
develop the most basic ideas from the theory of partial differential equations,
and apply them to the simplest models arising from the above mentioned
fields.
It is not easy to master the theory of partial differential equations. Unlike
the theory of ordinary differential equations, which relies on the fundamental
existence and uniqueness theorem, there is no single theorem which is central
to the subject. Instead, there are separate theories used for each of the major
types of partial differential equations that commonly arise.
It is worth pointing out that the preponderance of differential equations aris-
ing in applications, in science, in engineering, and within mathematics itself,
are of either first or second order, with the latter being by far the most preva-
lent. We will mainly cover these two classes of PDEs.
This book is intended for a first course in partial differential equations at
the advanced undergraduate level for students in engineering and physical
sciences. It is assumed that the student has had the standard three semester
calculus sequence, and a course in ordinary differential equations.

Marcel B Finan
August 2009
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Preliminaries

In this chapter we include some results from calculus which we will use often
in the study of partial differential equations. Details and proof of these results
can be found in most calculus books.

1 Some Results of Calculus

The first result provides a mean of showing when a function is zero on an
interval.

Theorem 1.1
(a) Suppose that f is continuous on an interval I ⊂ R such that

∫ b
a
f(x)dx = 0

for all subintervals [a, b] ⊂ I. Then f(x) = 0 for all x ∈ I.
(b) Suppose that f : [a, b]→ R is continuous and non-negative. If

∫ b
a
f(x)dx =

0 then f(x) = 0 on [a, b].

(c) Suppose that f : [a, b] → R is continuous such that
∫ b
a
f(x)g(x)dx = 0

for all continuous functions g on [a, b]. Then f(x) = 0 on [a, b].

Proof.
(a) Fix a ∈ I. Let x ∈ I. By the Fundamental Theorem of Calculus we have

0 =
d

dx

∫ x

a

f(t)dt = f(x).

Since x was arbitrary, we have f(x) = 0 for all x ∈ I.
(b) Suppose the contrary. That is, suppose that x0 ∈ [a, b] such that f(x0) >
0. By the continuity of f(x) at x0, there is a δ > 0 such that |x − x0| < δ

implies |f(x)− f(x0)| < f(x0)
2
. That is, |x− x0| < δ implies f(x) > f(x0)

2
> 0.

7



8 PRELIMINARIES

In words, there exists an open interval I ⊂ [a, b] centered at x0 such that
f(x) > 0 for all x ∈ I. Hence, because f(x) ≥ 0 we must have∫ b

a

f(x)dx ≥
∫
I

f(x)dx > 0

which contradicts our assumption that the integral is zero. We conclude that
f(x) = 0 on [a, b].
(c) This follows from (b) by taking g(x) = f(x)

Remark 1.1
The above theorem remains valid for functions in two variables. For example,
if f(x, y) is defined for x in an interval I and y in an interval J such that∫ b

a

∫ d

c

f(x, y)dxdy = 0

for all [a, b] ⊂ J and [c, d] ⊂ I then f(x, y) = 0 over the rectangle I × J.

Example 1.1
Let f, g : [a, b] → R be continuous and such that f(x) ≤ g(x) for all x in

[a, b]. Show that if
∫ b
a
(g(x)− f(x))dx = 0 then f(x) ≡ g(x) on [a, b].

Solution.
Apply part (b) of previous theorem to the function h(x) = g(x)− f(x)

Partial Derivatives
For multivariable functions, there are two common notations for partial
derivatives, and we shall employ them interchangeably. The first is the Leib-
nitz notation that employs the symbol ∂ to denote partial derivative. The
second, a more compact notation, is to use subscripts to indicate partial
derivatives. For example, ut represents ∂u

∂t
, while uxx represents ∂2u

∂x2 , and uxxt
becomes ∂3u

∂2x∂t
.

An important formula of differentiation is the so-called chain rule. If
u = u(x, y) where x = x(s, t) and y = y(s, t) then

∂u

∂s
=
∂u

∂x

∂x

∂s
+
∂u

∂y

∂y

∂s
.
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Likewise,
∂u

∂t
=
∂u

∂x

∂x

∂t
+
∂u

∂y

∂y

∂t
.

Example 1.2
Compute the partial derivatives indicated:
(a) ∂

∂y
(y2 sinxy)

(b) ∂2

∂x2 [ex+y]2

Solution.
(a) We have ∂

∂y
(y2 sinxy) = sin xy ∂

∂y
(y2)+y2 ∂

∂y
(sinxy) = 2y sinxy+xy2 cosxy.

(b) We have ∂
∂x

[ex+y]2 = ∂
∂x
e2(x+y) = 2e2(x+y). Thus, ∂2

∂x2 [ex+y]2 = ∂
∂x

2e2(x+y) =
4e2(x+y)

Example 1.3
Suppose u(x, y) = sin (x2 + y2), where x = tes and y = s+ t. Find us and ut.

Solution.
We have

us =uxxs + uyys = 2x cos (x2 + y2)tes + 2y cos (x2 + y2)

=[2tes + 2(s+ t)] cos [t2e2s + (s+ t)2]

Likewise,

ut =uxxt + uyyt = 2x cos (x2 + y2)es + 2y cos (x2 + y2)

=[2tes + 2(s+ t)] cos [t2e2s + (s+ t)2]

Often we must differentiate an integral with respect to a parameter which
may appear in the limits of integration, or in the integrand.
Let f(x, t) be a continuous function in the rectangle {a ≤ x ≤ b}× {c ≤ t ≤
d}. Assume that ∂f

∂t
is continuous on this rectangle. Define the function

J(t) =

∫ b(t)

a(t)

f(x, t)dx

where a(t) and b(t) are continuously differentiable functions of t such that
a ≤ a(t) ≤ b(t) ≤ b. Recall that a function f(x) is said to be continnu-
ously differentiable if the derivative f ′(x) exists, and is itself a continuous
function.
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Theorem 1.2

dJ

dt
=
d

dt

∫ b(t)

a(t)

f(x, t)dx

=f(b(t), t)b′(t)− f(a(t), t)a′(t) +

∫ b(t)

a(t)

∂f

∂t
(x, t)dx

Example 1.4
Consider the heat problem

ut = kuxx − αu, α > 0, k > 0, 0 < x < L, t > 0

with boundary conditions ux(0, t) = 0 = ux(L, t) and initial condition u(x, 0) =

f(x). Let E(t) = 1
2

∫ L
0
u2dx.

(a) Show that E ′(t) ≤ 0.

(b) Show that E(t) ≤
∫ L

0
1
2
|f(x)|2dx.

Solution.
(a) We have

dE

dt
=

1

2

∫ L

0

∂

∂t
u2(x, t)dx

=

∫ L

0

u(x, t)ut(x, t)dx = k

∫ L

0

u(x, t)uxx(x, t)dx− α
∫ L

0

u2(x, t)dx

= ku(x, t)ux(x, t)|L0 − k
∫ L

0

u2
x(x, t)dx− α

∫ L

0

u2(x, t)dx

=− k
∫ L

0

u2
x(x, t)dx− α

∫ L

0

u2(x, t)dx ≤ 0.

(b) From (a) we conclude that E(t) is a decreasing function of t > 0. Thus,

E(t) ≤ E(0) =
1

2

∫ L

0

u2(x, 0)dx =

∫ L

0

1

2
|f(x)|2dx

The Least Upper Bound
A function f : D → R is said to be bounded from above in D if there is a
constant M such that f(x) ≤ M for all x ∈ D. We call M an upper bound



1 SOME RESULTS OF CALCULUS 11

of f. Note that the numbers, M + 1,M + 2, · · · are also upper bounds of
f. The smallest upper bound of f is called the least upper bound or the
supremum. If M is the supremum of f in D we write

M = sup{f(x) : x ∈ D}.

Note that if N is any upper bound of f in D then M ≤ N.

Example 1.5
Find the supremum of f(x) = sinx.

Solution.
The graph of f is bounded between −1 and 1. Thus, sup{f(x) : x ∈ R} = 1

Example 1.6
Find

sup

{∣∣∣∣ε2 sin
(x
ε

)
sin

(
t

ε

)∣∣∣∣ : x ∈ R, t > 0

}
Solution.
The answer is

sup

{∣∣∣∣ε2 sin
(x
ε

)
sin

(
t

ε

)∣∣∣∣ : x ∈ R, t > 0

}
= ε2
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Practice Problems

Exercise 1.1
Compute the partial derivatives indicated:
(a) ∂

∂x
(y2 sinxy)

(b) ∂2

∂x2 (ex
2y)

(c) ∂4

∂x∂y2∂z

(
z ln

(
x2

y

))
.

Exercise 1.2
Find all the first partial derivatives of the functions:
(a) f(x, y) = x4 + 6

√
y

(b) f(x, y, z) = x2y − 10y2z3 + 43x− 7 tan (4y)
(c) f(s, t) = t7 ln (s2) + 9

t3
− 7
√
s4

(d) f(x, y) = cos
(

4
x

)
ex

2y−5y3

(e) f(u, v) = 9u
u2+5v

(f) f(x, y, z) = x sin y
z2

(g) f(x, y) =
√
x2 + ln (5x− 3y2)

Exercise 1.3
Let f(x, y) = e3x cos y. Compute fx(0, 2π).

Exercise 1.4
If z = ex sin y, x = st2, and y = s2t, find ∂z

∂s
and ∂z

∂t
.

Exercise 1.5
In the equation

∂u

∂x
− ∂u

∂y
= x− 2y

identify the independent variable(s) and the dependent variable.

Exercise 1.6
Let f be an odd function, that is, f(−x) = −f(x) for all x ∈ R. Show that
for all a ∈ R we have ∫ a

−a
f(x)dx = 0.
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Exercise 1.7
Let f be an even function, that is, f(−x) = f(x) for all x ∈ R. Show that
for all a ∈ R we have ∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx.

Exercise 1.8
Use the product rule of derivatives to derive the formula of integration by
parts ∫

uv′dx = uv −
∫
u′vdx.

Exercise 1.9
Let uε(x, t) = ε2 sin

(
x
ε

)
sin
(
t
ε

)
. Find utt and uxx.

Exercise 1.10
Let uε(x, t) = ε2 sin

(
x
ε

)
sinh

(
t
ε

)
, where

sinhx =
ex − e−x

2
.

Find utt and uxx.

Exercise 1.11
Find

sup

{∣∣∣∣ε2 sinh

(
t

ε

)
sin
(x
ε

)∣∣∣∣ : x ∈ R
}
.

Exercise 1.12
Let un(x, t) = 1 + en

2t

n
sinnx.

(a) Find sup{|un(x, 0)− 1| : x ∈ R}.
(b) Find sup{|un(x, t)− 1| : x ∈ R}.
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2 Sequences of Functions: Pointwise and Uni-

form Convergence

Later in this book we will be constructing solutions to PDEs involving infinite
sums of sines and cosines. These infinite sums or series are called Fourier
series. Fourier series are examples of series of functions. Convergence of
series of functions is defined in terms of convergence of a sequence of func-
tions. In this section we study the two types of convergence of sequences of
functions.
Recall that a sequence of numbers {an}∞n=1 is said to converge to a number
L if and only if for every given ε > 0 there is a positive integer N = N(ε)
such that for all n ≥ N we have|an − L| < ε.
What is the analogue concept of convergence when the terms of the sequence
are variables? Let D ⊂ R and for each n ∈ N consider a function fn : D → R.
Thus, we obtain a sequence of functions {fn}∞n=1. For such a sequence, there
are two types of convergenve that we consider in this section: pointwise con-
vergence and uniform convergence.
We say that {fn}∞n=1 converges pointwise on D to a function f : D → R if
and only if for a given a ∈ D and ε > 0 there is a positive integer N = N(a, ε)
such that if n ≥ N then |fn(a)− f(a)| < ε. In symbol, we write

lim
n→∞

fn(a) = f(a).

It is important to note that N is a function of both a and ε.

Example 2.1
Define fn : [0,∞) → R by fn(x) = nx

1+n2x2 . Show that the sequence {fn}∞n=1

converges pointwise to the function f(x) = 0 for all x ≥ 0.

Solution.
For all x ≥ 0,

lim
n→∞

fn(x) = lim
n→∞

nx

1 + n2x2
= 0

Example 2.2
For each positive integer n let fn : (0,∞)→ R be given by fn(x) = nx. Show
that {fn}∞n=1 does not converge pointwise on D = (0,∞).
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Solution.
This follows from the fact that limn→∞ nx =∞ for all x ∈ D

As pointed out above, for pointwise convergence, the positive integer N de-
pends on both the given x and ε. A stronger convergence concept can be
defined where N depends only on ε.
Let D be a subset of R and let {fn}∞n=1 be a sequence of functions defined on
D. We say that {fn}∞n=1 converges uniformly on D to a function f : D → R
if and only if for all ε > 0 there is a positive integer N = N(ε) such that if
n ≥ N then |fn(x)− f(x)| < ε for all x ∈ D.
This definition says that the integer N depends only on the given ε so that
for n ≥ N , the graph of fn(x) is bounded above by the graph of f(x) + ε and
below by the graph of f(x)− ε.

Example 2.3
For each positive integer n let fn : [0, 1] → R be given by fn(x) = x

n
. Show

that {fn}∞n=1 converges uniformly to the zero function.

Solution.
Let ε > 0 be given. Let N be a positive integer such that N > 1

ε
. Then for

n ≥ N we have

|fn(x)− f(x)| = |x|
n
≤ 1

n
≤ 1

N
< ε

for all x ∈ [0, 1]

Clearly, uniform convergence implies pointwise convergence to the same limit
function. However, the converse is not true in general.

Example 2.4
Define fn : [0,∞) → R by fn(x) = nx

1+n2x2 . By Example 2.1, this sequence

converges pointwise to f(x) = 0. Let ε = 1
3
. Show that there is no positive

integer N with the property n ≥ N implies |fn(x)− f(x)| < ε for all x ≥ 0.
Hence, the given sequence does not converge uniformly to f(x).

Solution.
For any positive integer N and for n ≥ N we have∣∣∣∣fn( 1

n

)
− f

(
1

n

)∣∣∣∣ =
1

2
> ε
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Exercise 2.1 below shows a sequence of continuous functions converging point-
wise to a discontinuous function. That is, pointwise convergence does not
preserve the property of continuity. One of the interesting features of uniform
convergence is that it preserves continuity as shown in the next example.

Example 2.5
Suppose that for each n ≥ 1 the function fn : D → R is continuous in D.
Suppose that {fn}∞n=1 converges uniformly to f. Let a ∈ D.
(a) Let ε > 0 be given. Show that there is a positive integer N such that if
n ≥ N then |fn(x)− f(x)| < ε

3
for all x ∈ D.

(b) Show that there is a δ > 0 such that for all |x− a| < δ we have |fN(x)−
fN(a)| < ε

3
.

(c) Using (a) and (b) show that for |x − a| < δ we have |f(x) − f(a)| < ε.
Hence, f is continuous in D since a was arbitrary. Symbolically we write

lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x).

Solution.
(a) This follows from the definition of uniform convergence.
(b) This follows from the fact that fN is continuous at a ∈ D.
(c) For |x− a| < δ we have |f(x)− f(a)| = |f(a)− fN(a) + fN(a)− fN(x) +
fN(x)−f(x)| ≤ |fN(a)−f(a)|+|fN(a)−fN(x)|+|fN(x)−f(x)| < ε

3
+ ε

3
+ ε

3
=

ε

Does pointwise convergenvce preserve integration? In real analysis, it is
proven that pointwise convergence does not preserve integrability. That is,
the pointwise limit of a sequence of integrable functions need not be inte-
grable. Even when a sequence of functions converges pointwise, the process
of interchanging limits and integration is not true in general.
Contrary to pointwise convergence, uniform convergence preserves integra-
tion. Moreover, limits and integration can be interchanged. That is, if
{fn}∞n=1 converges uniformly to f on a closed interval [a, b] then

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx.

Now, what about differentiablility? Again, pointwise convergence fails in
general to conserve the differentiability property. See Exercise 2.1. Does
uniform convergence preserve differentiability? The answer is still no as
shown in the next example.
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Example 2.6

Consider the family of functions fn : [−1, 1] given by fn(x) =
√
x2 + 1

n
.

(a) Show that fn is differentiable for each n ≥ 1.
(b) Show that for all x ∈ [−1, 1] we have

|fn(x)− f(x)| ≤ 1√
n

where f(x) = |x|. Hint: Note that
√
x2 + 1

n
+
√
x2 ≥ 1√

n
.

(c) Let ε > 0 be given. Show that there is a positive integer N such that for
n ≥ N we have

|fn(x)− f(x)| < ε for all x ∈ [−1, 1].

Thus, {fn}∞n=1 converges uniformly to the non-differentiable function f(x) =
|x|.

Solution.
(a) fn is the composition of two differentiable functions so it is differentiable
with derivative

f ′n(x) = x

[
x2 +

1

n

]− 1
2

.

(b) We have

|fn(x)− f(x)| =

∣∣∣∣∣
√
x2 +

1

n
−
√
x2

∣∣∣∣∣ =

∣∣∣∣∣∣
(
√
x2 + 1

n
−
√
x2)(

√
x2 + 1

n
+
√
x2)√

x2 + 1
n

+
√
x2

∣∣∣∣∣∣
=

1
n√

x2 + 1
n

+
√
x2

≤
1
n
1√
n

=
1√
n

(c) Let ε > 0 be given. Since limn→∞
1√
n

= 0 we can find a positive integer

N such that for all n ≥ N we have 1√
n
< ε. Now the answer to the question

follows from this and part (b)

Even when uniform convergence occurs, the process of interchanging lim-
its and differentiation may fail as shown in the next example.
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Example 2.7
Consider the functions fn : R→ R defined by fn(x) = sinnx

n
.

(a) Show that {fn}∞n=1 converges uniformly to the function f(x) = 0.
(b) Note that {fn}∞n=1 and f are differentiable functions. Show that

lim
n→∞

f ′n(x) 6= f ′(x) =
[

lim
n→∞

fn(x)
]′
.

That is, one cannot, in general, interchange limits and derivatives.

Solution.
(a) Let ε > 0 be given. Let N be a positive integer such that N > 1

ε
. Then

for n ≥ N we have

|fn(x)− f(x)| =
∣∣∣∣sinnxn

∣∣∣∣ ≤ 1

n
< ε

and this is true for all x ∈ R. Hence, {fn}∞n=1 converges uniformly to the
function f(x) = 0.
(b) We have limn→∞ f

′
n(π) = limn→∞ cosnπ = limn→∞(−1)n which does not

converge. However, f ′(π) = 0

Pointwise convergence was not enough to preserve differentiability, and nei-
ther was uniform convergence by itself. Even with uniform convergence the
process of interchanging limits with derivatives is not true in general. How-
ever, if we combine pointwise convergence with uniform convergence we can
indeed preserve differentiability and also switch the limit process with the
process of differentiation.

Theorem 2.3
Let {fn}∞n=1 be a sequence of differentiable functions on [a, b] that converges
pointwise to some function f defined on [a, b]. If {f ′n}∞n=1 converges uniformly
on [a, b] to a function g, then the function f is differentiable with derivative
equals to g. Thus,

lim
n→∞

f ′n(x) = g(x) = f ′(x) =
[

lim
n→∞

fn(x)
]′
.

Finally, we conclude this section with the following important result that is
useful when a given sequence is bounded.



2 SEQUENCES OF FUNCTIONS: POINTWISE AND UNIFORM CONVERGENCE19

Theorem 2.4
Consider a sequence fn : D → R. Then this sequence converges uniformly to
f : D → R if and only if

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ D} = 0.

Example 2.8
Show that the sequence defined by fn(x) = cosx

n
converges uniformly to the

zero function.

Solution.
We have

0 ≤ sup{|cosx

n
| : x ∈ R} ≤ 1

n
.

Now apply the squeeze rule for sequences we find that

lim
n→∞

sup{|cosx

n
| : x ∈ R} = 0

which implies that the given sequence converges uniformly to the zero func-
tion on R
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Practice Problems

Exercise 2.1
Define fn : [0, 1]→ R by fn(x) = xn. Define f : [0, 1]→ R by

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1.

(a) Show that the sequence {fn}∞n=1 converges pointwise to f.
(b) Show that the sequence {fn}∞n=1 does not converge uniformly to f. Hint:
Suppose otherwise. Let ε = 0.5 and get a contradiction by using a point
(0.5)

1
N < x < 1.

Exercise 2.2
Consider the sequence of functions

fn(x) =
nx+ x2

n2

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.

Exercise 2.3
Consider the sequence of functions

fn(x) =
sin (nx+ 3)√

n+ 1

defined for all x in R. Show that this sequence converges pointwise to a
function f to be determined.

Exercise 2.4
Consider the sequence of functions defined by fn(x) = n2xn for all 0 ≤ x ≤ 1.
Show that this sequence does not converge pointwise to any function.

Exercise 2.5
Consider the sequence of functions defined by fn(x) = (cosx)n for all −π

2
≤

x ≤ π
2
. Show that this sequence converges pointwise to a noncontinuous

function to be determined.
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Exercise 2.6
Consider the sequence of functions fn(x) = x− xn

n
defined on [0, 1).

(a) Does {fn}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.
(b) Does {f ′n}∞n=1 converge to some limit function? If so, find the limit func-
tion and show whether the convergence is pointwise or uniform.

Exercise 2.7
Let fn(x) = xn

1+xn
for x ∈ [0, 2].

(a) Find the pointwise limit f(x) = limn→∞ fn(x) on [0, 2].
(b) Does fn → f uniformly on [0, 2]?

Exercise 2.8
For each n ∈ N define fn : R→ R by fn(x) = n+cosx

2n+sin2 x
.

(a) Show that fn → 1
2

uniformly.

(b) Find limn→∞
∫ 7

2
fn(x)dx.

Exercise 2.9
Show that the sequence defined by fn(x) = (cosx)n does not converge uni-
formly on [−π

2
, π

2
].

Exercise 2.10
Let {fn}∞n=1 be a sequence of functions such that

sup{|fn(x)| : 2 ≤ x ≤ 5} ≤ 2n

1 + 4n
.

(a) Show that this sequence converges uniformly to a function f to be found.

(b) What is the value of the limit limn→∞
∫ 5

2
fn(x)dx?
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Review of Some ODEs Results

Later on in this book, we will encounter problems where a given partial
differential is reduced to an ordinary differential function by means of a given
change of variables. Then techniques from the theory of ODE are required in
solving the transformed ODE. In this chapter, we include some of the results
from ODE theory that will be needed in our future discussions.

3 The Method of Integrating Factor

In this section, we discuss a technique for solving the first order linear non-
homogeneous equation

y′ + p(t)y = g(t) (3.1)

where p(t) and g(t) are continuous on the open interval a < t < b.
Since p(t) is continuous, it has an antiderivative namely

∫
p(t)dt. Let µ(t) =

e
∫
p(t)dt. Multiply Equation (3.1) by µ(t) and notice that the left hand side of

the resulting equation is the derivative of a product. Indeed,

d

dt
(µ(t)y) = µ(t)g(t).

Integrate both sides of the last equation with respect to t to obtain

µ(t)y =

∫
µ(t)g(t)dt+ C

Hence,

y(t) =
1

µ(t)

∫
µ(t)g(t)dt+

C

µ(t)
or

y(t) = e−
∫
p(t)dt

∫
e
∫
p(t)dtg(t)dt+ Ce−

∫
p(t)dt

23
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Notice that the second term of the previous expression is just the general
solution for the homogeneous equation

y′ + p(t)y = 0

whereas the first term is a solution to the nonhomogeneous equation. That
is, the general solution to Equation (3.1) is the sum of a particular solution of
the nonhomogeneous equation and the general solution of the homogeneous
equation.

Example 3.1
Solve the initial value problem

y′ − y

t
= 4t, y(1) = 5.

Solution.
We have p(t) = −1

t
so that µ(t) = 1

t
. Multiplying the given equation by the

integrating factor and using the product rule we notice that(
1

t
y

)′
= 4.

Integrating with respect to t and then solving for y we find that the general
solution is given by

y(t) = t

∫
4dt+ Ct = 4t2 + Ct.

Since y(1) = 5, we find C = 1 and hence the unique solution to the IVP is
y(t) = 4t2 + t, 0 < t <∞

Example 3.2
Find the general solution to the equation

y′ +
2

t
y = ln t, t > 0.

Solution.
The integrating factor is µ(t) = e

∫
2
t
dt = t2. Multiplying the given equation

by t2 to obtain
(t2y)′ = t2 ln t.
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Integrating with respect to t we find

t2y =

∫
t2 ln tdt+ C.

The integral on the right-hand side is evaluated using integration by parts
with u = ln t, dv = t2dt, du = dt

t
, v = t3

3
obtaining

t2y =
t3

3
ln t− t3

9
+ C

Thus,

y =
t

3
ln t− t

9
+
C

t2
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Practice Problems

Exercise 3.1
Solve the IVP: y′ + 2ty = t, y(0) = 0.

Exercise 3.2
Find the general solution: y′ + 3y = t+ e−2t.

Exercise 3.3
Find the general solution: y′ + 1

t
y = 3 cos t, t > 0.

Exercise 3.4
Find the general solution: y′ + 2y = cos (3t).

Exercise 3.5
Find the general solution: y′ + (cos t)y = −3 cos t.

Exercise 3.6
Given that the solution to the IVP ty′ + 4y = αt2, y(1) = −1

3
exists on the

interval −∞ < t <∞. What is the value of the constant α?

Exercise 3.7
Suppose that y(t) = Ce−2t + t + 1 is the general solution to the equation
y′ + p(t)y = g(t). Determine the functions p(t) and g(t).

Exercise 3.8
Suppose that y(t) = −2e−t + et + sin t is the unique solution to the IVP
y′ + y = g(t), y(0) = y0. Determine the constant y0 and the function g(t).

Exercise 3.9
Find the value (if any) of the unique solution to the IVP y′ + (1 + cos t)y =
1 + cos t, y(0) = 3 in the long run?

Exercise 3.10
Solve

aux + buy + cu = 0

by using the change of variables s = ax+ by and t = bx− ay.
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Sample Exam Questions

Exercise 3.11
Solve the initial value problem ty′ = y + t, y(1) = 7.

Exercise 3.12
Show that if a and λ are positive constants, and b is any real number, then
every solution of the equation

y′ + ay = be−λt

has the property that y → 0 as t→∞. Hint: Consider the cases a = λ and
a 6= λ separately.

Exercise 3.13
Solve the initial-value problem y′ + y = ety2, y(0) = 1 using the substitution
u(t) = 1

y(t)

Exercise 3.14
Solve the initial-value problem ty′ + 2y = t2 − t+ 1, y(1) = 1

2

Exercise 3.15
Solve y′ − 1

t
y = sin t, y(1) = 3. Express your answer in terms of the sine

integral, Si(t) =
∫ t

0
sin s
s
ds.
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4 The Method of Separation of Variables for

ODEs

The method of separation of variables that you have seen in the theory of
ordinary differential equations has an analogue in the theory of partial dif-
ferential equations (Section 17). In this section, we review the method for
ordinary differentiable equations.
A first order differential equation is separable if it can be written with one
variable only on the left and the other variable only on the right:

f(y)y′ = g(t)

To solve this equation, we proceed as follows. Let F (t) be an antiderivative
of f(t) and G(t) be an antiderivative of g(t). Then by the Chain Rule

d

dt
F (y) =

dF

dy

dy

dt
= f(y)y′

Thus,

f(y)y′ − g(t) =
d

dt
F (y)− d

dt
G(t) =

d

dt
[F (y)−G(t)] = 0

It follows that
F (y)−G(t) = C

which is equivalent to ∫
f(y)y′dt =

∫
g(t)dt+ C

As you can see, the result is generally an implicit equation involving a func-
tion of y and a function of t. It may or may not be possible to solve this to
get y explicitly as a function of t. For an initial value problem, substitute the
values of t and y by t0 and y0 to get the value of C.

Remark 4.2
If F is a differentiable function of y and y is a differentiable function of t and
both F and y are given then the chain rule allows us to find dF

dt
given by

dF

dt
=
dF

dy
· dy
dt

For separable equations, we are given f(y)y′ = dF
dt

and we are asked to find
F (y). This process is referred to as “reversing the chain rule.”
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Example 4.1
Solve the initial value problem y′ = 6ty2, y(1) = 1

25
.

Solution.
Separating the variables and integrating both sides we obtain∫

y′

y2
dt =

∫
6tdt

or

−
∫

d

dt

(
1

y

)
dt =

∫
6tdt

Thus,

− 1

y(t)
= 3t2 + C

Since y(1) = 1
25
, we find C = −28. The unique solution to the IVP is then

given explicitly by

y(t) =
1

28− 3t2

Example 4.2
Solve the IVP yy′ = 4 sin (2t), y(0) = 1.

Solution.
This is a separable differential equation. Integrating both sides we find∫

d

dt

(
y2

2

)
dt = 4

∫
sin (2t)dt

Thus,
y2 = −4 cos (2t) + C

Since y(0) = 1, we find C = 5. Now, solving explicitly for y(t) we find

y(t) = ±
√
−4 cos t+ 5

Since y(0) = 1, we have y(t) =
√
−4 cos t+ 5. The interval of existence of

the solution is the interval −∞ < t <∞
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Practice Problems

Exercise 4.1
Solve the (separable) differential equation

y′ = tet
2−ln y2 .

Exercise 4.2
Solve the (separable) differential equation

y′ =
t2y − 4y

t+ 2
.

Exercise 4.3
Solve the (separable) differential equation

ty′ = 2(y − 4).

Exercise 4.4
Solve the (separable) differential equation

y′ = 2y(2− y).

Exercise 4.5
Solve the IVP

y′ =
4 sin (2t)

y
, y(0) = 1.

Exercise 4.6
Solve the IVP:

yy′ = sin t, y(
π

2
) = −2.

Exercise 4.7
Solve the IVP:

y′ + y + 1 = 0, y(1) = 0.

Exercise 4.8
Solve the IVP:

y′ − ty3 = 0, y(0) = 2.
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Exercise 4.9
Solve the IVP:

y′ = 1 + y2, y(
π

4
) = −1.

Exercise 4.10
Solve the IVP:

y′ = t− ty2, y(0) =
1

2
.



32 REVIEW OF SOME ODES RESULTS

Sample Exam Questions

Exercise 4.11
For what values of the constants α, y0, and integer n is the function y(t) =

(4 + t)−
1
2 a solution of the initial value problem?

y′ + αyn = 0, y(0) = y0.

Exercise 4.12
Solve the equation 3uy + uxy = 0 by using the substitution v = uy.

Exercise 4.13
Solve the IVP

(2y − sin y)y′ = sin t− t, y(0) = 0.

Exercise 4.14
State an initial value problem, with initial condition imposed at t0 = 2,
having implicit solution y3 + t2 + sin y = 4.

Exercise 4.15
Can the differential equation

dy

dx
= x2 − xy

be solved by the method of separation of variables? Explain.
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5 Second Order Linear ODEs

When solving second order partial differential equations such as the heat,
wave, and Laplace’s equations using the method of separation of variables
for PDEs one ends up confronting second order linear ODEs. Thus, it is
deemed necessary to review some of the techniques used in solving second
order linear ordinary differential equations which we do in this section.
We start first by considering the second order linear ODE with constant
coefficients given by

ay′′ + by′ + cy = 0 (5.1)

where a, b and c are constants with a 6= 0.
Notice first that for b = 0 and c 6= 0 the function y′′ is a constant multiple
of y. So it makes sense to look for a function with such property. One such
function is y(t) = ert. Substituting this function into (5.1) leads to

ay′′ + by′ + cy = ar2ert + brert + cert = (ar2 + br + c)ert = 0

Since ert > 0 for all t, the previous equation leads to

ar2 + br + c = 0 (5.2)

Thus, a function y(t) = ert is a solution to (5.1) when r satisfies equation
(5.2). We call (5.2) the characteristic equation for (5.1) and the polyno-
mial C(r) = ar2 + br + c is called the characteristic polynomial.
The characteristic equation is a quadratic equation. Thus, this equation can
have two distinct real solutions, two equal solutions, or two conjugate com-
plex solutions depending on the sign of the expression b2 − 4ac. Hence, we
consider the following three cases:
Case 1: b2 − 4ac > 0.
In this case, equation (5.2) have two distinct real roots r1 = −b−

√
b2−4ac

4a
and

r2 = −b+
√
b2−4ac

4a
. The general solution to (5.1) is given by

y(t) = c1e
r1t + c2e

r2t

where c1 and c2 are arbitrary constants.

Example 5.1
Solve the initial value problem

y′′ − y′ − 6y = 0, y(0) = 1, y′(0) = 2.

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.
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Solution.
The characteristic polynomial is C(r) = r2−r−6 = (r−3)(r+2) so that the
characteristic equation r2 − r − 6 = 0 has the solutions r1 = 3 and r2 = −2.
The general solution is then given by

y(t) = c1e
3t + c2e

−2t.

Taking the derivative to obtain

y′(t) = 3c1e
3t − 2c2e

−2t.

The conditions y(0) = 1 and y′(0) = 2 lead to the system

c1 + c2 = 1
3c1 − 2c2 = 2.

Solving this system by the method of elimination we find c1 = 4
5

and c2 = 1
5
.

Hence, the unique solution to the initial value problem is

y(t) =
1

5
(4e3t + e−2t).

As t → −∞, e3t → 0 and e−2t →∞. Thus, y(t) →∞. Similarly, y(t) →∞
as t→∞

Case 2: b2 − 4ac = 0.
In this case, the characteristic equation has the single root r = − b

2a
. The

general solution to (5.1) is given by

y(t) = c1e
− b

2a
t + c2te

− b
2a
t

where c1 and c2 are arbitrary constants.

Example 5.2
Solve the initial value problem: y′′ + 2y′ + y = 0, y(0) = 1, y′1(0) = −1.

Solution.
The characteristic equation r2+2r+1 = 0 has a repeated root: r1 = r2 = −1.
Thus, the general solution is given by

y(t) = c1e
−t + c2te

−t.
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The two conditions y(0) = 1 and y′(0) = −1 lead to c1 = 1 and c2 = 0.
Hence, the unique solution is y(t) = e−t

Case 3: b2 − 4ac < 0.
In this case, the complex roots of equation (5.1) are given by

r1,2 =
−b± i

√
4ac− b2

2a

where i =
√
−1. The general solution is given by

y(t) = eαt(c1 cos βt+ c2 sin βt)

where α = − b
2a
, β =

√
4ac−b2

2a
, and c1 and c2 are real numbers.

Example 5.3
Solve the initial value problem

y′′ − 10y′ + 29y = 0, y(0) = 1, y′(0) = 3.

Solution.
The characteristic equation r2 − 10r + 29 = 0 has the complex roots r1,2 =
5± 2i. Thus, the general solution is given by the expression

y(t) = e5t(c1 cos 2t+ c2 sin 2t).

Finding y′ we obtain

y′(t) = e5t[(5c1 + 2c2) cos 2t+ (5c2 − 2c1) sin 2t].

The initial conditions yield c1 = 1 and c2 = −1. Thus, the unique solution
to the initial value problem is

y(t) = e5t(cos 2t− sin 2t)

An Eigenvalue Problem
Consider the question of finding a nontrivial twice differentiable function u
satisfying the ordinary differential equation

d2u

dx2
= λu, 0 < x < 1.
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subject to the boundary conditions u(0) = u(1) = 0. This problem is referred
to as the eigenvalue problem for the following reason: Define the function
L ≡ d2

dx2 . Then the given equation can be written as Lu = λu. In linear
algebra, λ is called an eigenvalue of L with corresponding eigenvector u.
Different solutions to the eigenvalue problem are obtained depending on the
sign of λ. Suppose first that λ = 0. Then u(x) = C1x + C2 for arbitrary
constants C1 and C2. Using the boundary conditions we find C1 = C2 = 0.
Hence, u ≡ 0.
Suppose that λ > 0. Then u(x) = Ae

√
λx + Be−

√
λx. Again, the boundary

conditions imply that u ≡ 0.
Now, suppose that λ < 0. Then u(x) = A cos

√
−λx + B sin

√
−λx. Using

the condition u(0) = 0 to obtain A = 0. Using the condition u(1) = 0
and assuming we are looking for non-trivial solution u we expect to have
sin
√
−λ = 0. This happens when λ = λn = −(nπ)2 where n ∈ N. We call λn

an eigenvalue with corresponding eigenfunction un(x) = sinnπx.
Finally, using the principle of superposition we find that the general solution
to the eigenvalue problem is given by

u(x) =
∞∑
n=1

An sinnπx

where the convergence is pointwise convergence (See Section 2).

Euler Equations
A second order linear differential equations of the form

ax2y′′ + bxy′ + cy = 0

where a, b, c are constants is called an Euler equation.
To solve Euler equation, one starts with solutions of the form y = xr (with
x > 0) where r is to be determined. Plugging this into the differential
equation to get

ax2r(r − 1)xr−2 + bxrxr−1 + cxr =0

(ar2 − ar + br + c)xr =0

ar2 − (a− b)r + c =0

This last equation is a quadratic equation in r and so we will have three cases
to look at : Real distinct roots, double roots, and complex conjugate roots.
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If the quadratic equation has two distinct real roots r1 and r2 then the general
solution is given by

y(x) = Axr1 +Bxr2 .

If the quadratic equation has two equal roots r1 = r2 = r then the general
solution is given by

y(x) = xr(A+B lnx).

If the quadratic equation has two complex conjugate solutions r1,2 = α± iβ
then the general solution is given by

y(x) = xα(A cos (β lnx) +B sin (β lnx)).

Example 5.4
Solve the initial value problem

2x2y′′ + 3xy′ − 15y = 0

y(1) = 0, y′(1) = 1.

Solution.
Letting y = xr we obtain the quadratic equation 2r2 + r − 15 = 0 whose
roots are r1 = 5

2
and r2 = −3. Hence, the general solution is given by

y(x) = Ax
5
2 +Bx−3.

The condition y(1) = 0 implies A + B = 0. The condition y′(1) = 1 implies
5
2
A − 3B = 1. Solving this system of two unknowns we find A = 2

11
and

B = − 2
11
. Hence, the unique solution is given by

y =
2

11
x

5
2 − 2

11
x−3

Second Order Linear nonhomogeneous ODE: The Method of Un-
determined Coefficients
We consider the nonhomogeneous second order

ay′′ + by′ + cy = g(t), a < t < b.

We know that the general solution has the structure

y(t) = c1y1(t) + c2y2(t) + yp(t)
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where yp(t) is a particular solution to the nonhomogeneous equation. We
will write y(t) = yh(t) + yp(t) where yh(t) = c1y1(t) + c2y2(t).
One way to finding yp is by using the method of undetermined coefficients.
The idea behind the method of undetermined coefficients is to look for yp(t)
which is of a form like that of g(t). This is possible only for special functions
g(t), but these special cases arise quite frequently in applications.
We will assume that g(t) being simple means it is some combination of terms
like ert, cos (kt), sin (kt), and polynomials ant

n+an−1t
n−1 + · · · a1t+a0. Based

on those terms we will put together a candidate yp that has some constants in
it we need to solve for: Those are the undetermined coefficients this method
is named for.
In the following table we list examples of g(t) along with the corresponding
form of the particular solution.

Form of g(t) Form of yp(t)
ant

n + an−1t
n−1 + · · ·+ a1t+ a0 tr[Antn +An−1t

n−1 + · · ·+A1t+A0

[antn + an−1t
n−1 + · · ·+ a1t+ a0]eαt tr[Antn +An−1t

n−1 + · · ·+A1t+A0]eαt

[antn + an−1t
n−1 + · · ·+ a1t+ a0] cosαt tr[(Antn +An−1t

n−1 + · · ·+A1t+A0) cosαt
or +(Bntn +Bn−1t

n−1 + · · ·+B1t+B0) sinαt]
[antn + an−1t

n−1 + · · ·+ a1t+ a0] sinαt
eαt[antn + an−1t

n−1 + · · ·+ a1t+ a0] sinβt tr[(Antn +An−1t
n−1 + · · ·+A1t+A0)eαt cosβt

or +(Bntn +Bn−1t
n−1 + · · ·+B1t+B0)eαt sinβt]

eαt[antn + an−1t
n−1 + · · ·+ a1t+ a0] cosβt

The number r is chosen to be the smallest nonnegative integer such that
no term in the assumed form is a solution of the homogeneous equation
ay′′ + by′ + cy = 0. The value of r will be 0, 1, or 2.

Example 5.5
List an appropriate form for a particular solution of
(a) y′′ + 4y = t2e3t.
(b) y′′ + 4y = te2t cos t.
(c) y′′ + 4y = 2t2 + 5 sin 2t+ e3t.
(d) y′′ + 4y = t2 cos 2t.

Solution.
The general solution to the homogeneous equation is yh(t) = c1 cos 2t +
c2 sin 2t.
(a) For g(t) = t2e3t, an appropriate particular solution has the form yp(t) =
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tr(A2t
2 +A1t+A0)e3t. We take r = 0 since no term in the assumed form for

yp is present in the expression of yh(t). Thus

yp(t) = (A2t
2 + A1t+ A0)e3t

(b) An appropriate form is

yp(t) = tr[(A1t+ A0)e2t cos t+ (B1t+B0)e2t sin t]

We take r = 0 since no term in the assumed form for yp is present in the
expression of yh(t). Thus

yp(t) = (A1t+ A0)e2t cos t+ (B1t+B0)e2t sin t

(c)
yp(t) = A2t

2 + A1t+ A0 +B0t cos 2t+ C0t sin 2t+D0e
3t

(d)

yp(t) = t(A2t
2 + A1t+ A0) cos 2t+ t(B2t

2 +B1t+B0) sin 2t

Example 5.6
Find the general solution of

y′′ − 2y′ − 3y = 4t− 5 + 6te2t

Solution.
The characteristic equation of the homogeneous equation is r2 − 2r − 3 = 0
with roots r1 = −1 and r2 = 3. Thus,

yh(t) = c1e
−t + c2e

3t

A guess for the particular solution is yp(t) = At+B+Cte2t+De2t. Inserting
this into the differential equation leads to

−3At− 2A− 3B − 3Cte2t + (2C − 3D)e2t = 4t− 5 + 6te2t

From this identity we obtain −3A = 4 so that A = −4
3
. Also, −2A−3B = −5

so that B = 23
9
. Since −3C = 6 we find C = −2. From 2C − 3D = 0 we find

D = −4
3
. It follows that

y(t) = c1e
−t + c2e

3t − 4

3
t+

23

9
−
(

2t+
4

3

)
e2t



40 REVIEW OF SOME ODES RESULTS

Practice Problems

Exercise 5.1
Solve the initial value problem

y′′ − 4y′ + 3y = 0, y(0) = −1, y′(0) = 1

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Exercise 5.2
Solve the initial value problem

y′′ + 4y′ + 2y = 0, y(0) = 0, y′(0) = 4

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Exercise 5.3
Solve the initial value problem

2y′′ − y = 0, y(0) = −2, y′(0) =
√

2

Describe the behavior of the solution y(t) as t→ −∞ and t→∞.

Exercise 5.4
Find a homogeneous second-order linear ordinary differential equation whose
general solution is y(t) = c1e

2t + c2e
−t.

Exercise 5.5
Solve the IVP

9y′′ − 6y′ + y = 0, y(3) = −2, y′(3) = −5

3

Exercise 5.6
Solve the IVP

25y′′ + 20y′ + 4y = 0, y(5) = 4e−2, y′(5) = −3

5
e−2

Exercise 5.7
The graph of a solution y(t) of the differential equation 4y′′ + 4y′ + y = 0

passes through the points (1, e−
1
2 ) and (2, 0). Determine y(0) and y′(0).
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Exercise 5.8
Find the general solution of y′′ − 6y′ + 9y = 0.

Exercise 5.9
Solve the IVP

y′′ + 2y′ + 2y = 0, y(0) = 3, y′(0) = −1

Exercise 5.10
Solve the IVP

2y′′ − 2y′ + y = 0, y(−π) = 1, y′(−π) = −1

Exercise 5.11
Find the general solution of

y′′ − y′ + y = 2 sin 3t

Exercise 5.12
Find the general solution of

y′′ + 4y′ − 2y = 2t2 − 3t+ 6
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Sample Exam Questions

Exercise 5.13
Find the general solution to the following differential equation.

x2y′′ − 7xy′ + 16y = 0.

Exercise 5.14
Find the general solution to the following differential equation.

x2y′′ + 3xy′ + 4y = 0.

Exercise 5.15
Consider the differential equation

d2y

dx2
+ λy = 0.

Determine the eigenvalues λ and the corresponding eigenfunctions if y satis-
fies the following boundary conditions:
(a) y(0) = y(π) = 0
(b) y(0) = y′(L) = 0
(c) y′(0) = y(1) = 0.

Exercise 5.16
Show by direct computation that the eigenvalue problems

(ky′(x))′ + λy(x) = 0, k > 0

with the following boundary conditions have no negative eigenvalues λ :
(a) y(0) = y(L) = 0
(b) y′(0) = y′(L) = 0
(c) y(L) = y(−L), y′(L) = y′(−L).

Exercise 5.17
Solve the initial-value problem: 2y′′ + 5y′ − 3y = 0, y(0) = 2, y′(0) = 1.

Exercise 5.18
Find the general solution of

y′′ − y′ = 5et − sin 2t

Exercise 5.19
Solve using undetermined coefficients:

y′′ + y′ − 2y = t+ sin 2t, y(0) = 1, y′(0) = 0



Introduction to PDEs

Many fields in engineering and the physical sciences require the study of ODE
and PDE. Examples of those fields are acoustics, aerodynamics, elasticity,
electrodynamics, fluid dynamics, geophysics (seismic wave propagation), heat
transfer, meteorology, oceanography, optics, petroleum engineering, plasma
physics (ionized liquids and gases), quantum mechanics.
So the study of partial differential equation is of great importance to the
above mentioned fields. The purpose of this chapter is to introduce the
reader to the basic terms of partial differential equations.

6 The Basic Concepts

The goal of this section is to introduce the reader to the basic concepts and
notations that will be used in the remainder of this book.
A differential equation is an equation that involves an unknown scalar
function (the dependent variable) and one or more of its derivatives. For
example,

d2y

dx2
− 5

dy

dx
+ 3y = −3 (6.1)

or
∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
+ u = 0. (6.2)

If the unknown function is a function in one single variable then the differ-
ential equation is called an ordinary differential equation. An example
of an ordinary differential equation is Equation (6.1). In contrast, when the
unknown function is a function of two or more independent variables then
the differential equation is called a partial differential equation, in short
PDE. Equation (6.2) is an example of a partial differential equation. In this
book we will be focusing on partial differential equations.

43
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Example 6.1
Identify which variables are dependent variable or independent variable(s)
for the following differential equations.
(a) d4y

dx4 − x2 + y = 0
(b) utt + xutx = 0.
(c) xdx

dt
= 4.

(d) ∂y
∂u
− 4∂y

∂v
= u+ 3y.

Solution.
(a) Independent variable is x and the dependent variable is y.
(b) Independent variables are x and t and the dependent variable is u.
(c) Independent variable is t and the dependent variable is x.
(d) Independent variables are u and v and the dependent variable is y

Example 6.2
Classify the following as either ODE or PDE.
(a) ut = c2uxx.
(b) y′′ − 4y′ + 5y = 0.
(c) ut + cux = 5.

Solution.
(a) PDE (b) ODE (c) PDE

The order of a partial differential equation is the highest order derivative
occurring in the equation. Thus, (6.2) is a second order partial differential
equation.

Example 6.3
Find the order of each of the following partial differential equations:
(a) xux + yuy = x2 + y2

(b) uux + uy = 2
(c) utt − c2uxx = f(x, t)
(d) ut + uux + uxxx = 0
(e) utt + uxxxx = 0.

Solution.
(a) First order (b) First order (c) Second order (d) Third order (e) Fourth
order
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A partial differential equation is called linear if it is linear in the unknown
function and all its derivatives with coefficients depend only on the indepen-
dent variables. For example, a first order linear partial differential equation
has the form

A(x, y)ux +B(x, y)uy + C(x, y)u = D(x, y)

whereas a second order linear partial differential equation has the form

A(x, y)uxx+B(x, y)uxy+C(x, y)uyy+D(x, y)ux+E(x, y)uy+F (x, y)u = G(x, y).

A partial differential equation is called quasi-linear if the highest-order
derivatives which appear in the equation are of degree 1(regardless of the
manner in which lower-order derivatives and unknown functions occur in the
equation). For example, a first order quasi-linear partial differential equation
has the form

A(x, y, u)ux +B(x, y, u)uy = C(x, y, u)

whereas a second order quasi-linear partial differential equation has the form

A(x, y, u, ux, uy)uxx+B(x, y, u, ux, uy)uxy+C(x, y, u, ux, uy)uyy = D(x, y, u, ux, uy).

A partial differential equation is semi-linear if it is quasi-linear and the
coefficients of the highest-order derivatives are functions of independent vari-
ables only. For example, a first order semi-linear partial differential equation
has the form

A(x, y)ux +B(x, y)uy = C(x, y, u)

whereas a second order semi-linear partial differential equation has the form

A(x, y)uxx +B(x, y)uxy + C(x, y)uyy = D(x, y, u, ux, uy).

Note that linear and semi-linear partial differential equations are special cases
of quasi-linear equations.
A partial differential equation that is not linear is called nonlinear. For
example, u2

x + 2uxy = 0.
As for ODEs, linear PDEs are usually simpler to analyze/solve than nonlinear
PDEs.
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Example 6.4
Determine whether the given PDE is linear, quasilinear, semilinear, or non-
linear:
(a) xux + yuy = x2 + y2

(b) uux + uy = 2
(c) utt − c2uxx = f(x, t)
(d) ut + uux + uxxx = 0
(e) u2

tt + uxxxx = 0.

Solution.
(a) Linear, quasilinear, semilinear.
(b) Quasilinear, nonlinear.
(c) Linear, quasilinear, semilinear.
(d) Quasilinear, semilinear, nonlinear.
(e) Quasilinear, semilinear, nonlinear

A more precise definition of a linear differential equation begins with the
concept of a linear differential operator L. The operator L is assembled
by summing the basic partial derivative operators, with coefficients depend-
ing on the independent variables. The operator acts on sufficiently smooth
functions depending on the relevant independent variables. Linearity im-
poses two key requirements:

L[u+ v] = L[u] + L[v] and L[αu] = αL[u],

for any two (sufficiently smooth) functions u, v and any constant α.

Example 6.5
Define a linear differential operator for the PDE

ut = c2uxx.

Solution.
Let L[u] = ut− c2uxx. Then one can easily check that L[u+ v] = L[u] +L[v]
and L[αu] = αL[u]

A linear partial differential equation is called homogeneous if every term
of the equation involves the unknown function or its partial derivatives. A
linear partial differential equation that is not homogeneous is called nonho-
mogeneous. In this case, there is a term in the equation that involves only
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the independent variables.
A homogeneous linear partial differential equation has the form

L[u] = 0

where L is a linear differential operator.

Example 6.6
Determine whether the equation is homogeneous or nonhomogeneous:
(a) xux + yuy = x2 + y2.
(b) utt = c2uxx.
(c) uxx + uyy = 0.

Solution.
(a) Nonhomogeneous because of x2 + y2.
(b) Homogeneous.
(c) Homogeneous

Finally, we shall be employing a few basic notational conventions regard-
ing the variables that appear in our differential equations. We always use
t to denote time, while x, y, z will represent (Cartesian) space coordinates.
Polar coordinates r, θ will also be used when needed, and our notational con-
ventions appear at the appropriate places in the exposition.
An equilibrium equation models an unchanging physical system, and so
only involves the space variables. The time variable t appears when mod-
eling dynamical , meaning time-varying, processes. Both time and space
coordinates are independent variables.
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Practice Problems

Exercise 6.1
Classify the following equations as either ODE or PDE.

(a) (y′′′)4 + t2

(y′)2+4
= 0

(b) ∂u
∂x

+ y ∂u
∂y

= y−x
y+x

(c) y′′ − 4y = 0

Exercise 6.2
Write the equation

uxx + 2uxy + uyy = 0

in the coordinates s = x, t = x− y.

Exercise 6.3
Write the equation

uxx − 2uxy + 5uyy = 0

in the coordinates s = x+ y, t = 2x.

Exercise 6.4
For each of the following PDEs, state its order and whether it is linear or
nonlinear. If it is linear, also state whether it is homogeneous or nonhomo-
geneous:
(a) uux + x2uyyy + sinx = 0
(b) ux + ex

2
uy = 0

(c) utt + (sin y)uyy − et cos y = 0.

Exercise 6.5
For each of the following PDEs, determine its order and whether it is linear
or not. For linear PDEs, state also whether the equation is homogeneous or
not. For nonlinear PDEs, circle all term(s) that are not linear.
(a) x2uxx + exu = xuxyy
(b) eyuxxx + exu = − sin y + 10xuy
(c) y2uxx + exuux = 2xuy + u
(d) uxuxxy + exuuy = 5x2ux
(e) ut = k2(uxx + uyy) + f(x, y, t).
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Exercise 6.6
Which of the following PDEs are linear?
(a) Laplace’s equation: uxx + uyy = 0.
(b) Convection (transport) equation: ut + cux = 0.
(c) Minimal surface equation: (1+Z2

y )Zxx−2ZxZyZxy+(1+Z2
x)Zyy = 0.

(d) Korteweg-Vries equation: ut + 6uux = uxxx.

Exercise 6.7
Classify the following differential equations as ODEs or PDEs, linear or
nonlinear, and determine their order. For the linear equations, determine
whether or not they are homogeneous.
(a) The diffusion equation for u(x, t) :

ut = kuxx.

(b) The wave equation for w(x, t) :

wtt = c2wxx.

(c) The thin film equation for h(x, t) :

ht = −(hhxxx)x.

(d) The forced harmonic oscillator for y(t) :

ytt + ω2y = F cos (ωt).

(e) The Poisson Equation for the electric potential Φ(x, y, z) :

Φxx + Φyy + Φzz = 4πρ(x, y, z).

where ρ(x, y, z) is a known charge density.
(f) Burger’s equation for h(x, t) :

ht + hhx = νhxx.

Exercise 6.8
Write down the general form of a linear second order differential equation of
a function in three variables.
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Exercise 6.9
Give the orders of the following PDEs, and classify them as linear or nonlin-
ear. If the PDE is linear, specify whether it is homogeneous or nonhomoge-
neous.
(a) x2uxxy + y2uyy − log (1 + y2)u = 0
(b) ux + u3 = 1
(c) uxxyy + exux = y
(d) uuxx + uyy − u = 0
(e) uxx + ut = 3u.

Exercise 6.10
Consider the second-order PDE

uxx + 4uxy + 4uyy = 0.

Use the change of variables v(x, y) = y − 2x and w(x, y) = x to show that
uww = 0.
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Sample Exam Questions

Exercise 6.11
Write the one dimensional wave equation utt = c2uxx in the coordinates
v = x+ ct and w = x− ct.

Exercise 6.12
Write the PDE

uxx + 2uxy − 3uyy = 0

in the coordinates v(x, y) = y − 3x and w(x, y) = x+ y.

Exercise 6.13
Write the PDE

aux + buy = 0

in the coordinates s(x, y) = ax+by and t(x, y) = bx−ay. Assume a2+b2 > 0.

Exercise 6.14
Write the PDE

ux + uy = 1

in the coordinates s = x+ y and t = x− y.

Exercise 6.15
Write the PDE

aut + bux = u, a, b 6= 0

in the coordinates v = ax− bt and w = 1
a
t.
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7 Solutions and Related Topics

By a classical solution or strong solution to a partial differential equation
we mean a function that satisfies the equation. To solve a PDE is to find all
its classical solutions. In the case of only two independent variables x and y,
a solution u(x, y) is visualized geometrically as a surface, called a solution
surface or an integral surface in the (x, y, u) space.
A formula that expresses all the solutions of a PDE is called the general
solution of the equation.

Example 7.1
Show that u(x, t) = e−λ

2α2t(cosλx − sinλx) is a solution to the equation
ut − α2uxx = 0.

Solution.
Since

ut − α2uxx =− λ2α2e−λ
2α2t(cosλx

− sinλx)− α2e−λ
2α2t(−λ2 cosλx+ λ2 sinλx) = 0

the given function is a solution to the given equation

Example 7.2
Find the general solution of uxy = 0.

Solution.
Integrating first we respect to y we find ux(x, y) = f(x), where f is an
arbitrary differentiable function. Integrating ux with respect to x we find
u(x, y) =

∫
f(x)dx+ g(y), where g is an arbitrary differentiable function

Note that the general solution in the previous example involves two arbitrary
functions. In general, the general solution of a partial differential equation
is an expression that involves arbitrary functions. This is in contrast to the
general solution of an ordinary differential equation which involves arbitrary
constants.
Usually, a classical solution enjoys properties such as smootheness (i.e. a
function that has continuous derivatives up to some desired order over some
domain.) and continuity. However, in the theory of nonlinear pdes, there are
solutions that do not require the smoothness property. Such solutions are



7 SOLUTIONS AND RELATED TOPICS 53

called weak solutions or generalized solutions. We illustrate this con-
cept using equations rather than pdes. Consider the equation x2 − y2 = 0.
The function y = x is a classical solution of this equation. This solution is
infinitely differentiable function. On the other hand, the function y = |x| is
also a solution to the given equation. However, this solution is not differen-
tiable at 0. We call such a solution a weak solution. In this book, the word
solution will refer to a classical solution.

Example 7.3
Show that u(x, t) = t+ 1

2
x2 is a classical solution to the PDE

ut = uxx. (7.1)

Solution.
Assume that the domain of definition of u is D ⊂ R2. Since u, ut, ux, utx, uxx
exist and are continuous in D(i.e., u is smooth in D) and u satisfies equation
(7.1), we conclude that u is a classical solution to the given PDE

Now, consider the linear differential operator L as defined in the previous
section. The defining properties of linearity immediately imply the key facts
concerning homogeneous linear (differential) equations.

Theorem 7.1
The sum of two solutions to a homogeneous linear differential equation is
again a solution, as is the product of a solution by any constant.

Proof.
Let u1, u2 be solutions, meaning that L[u1] = 0 and L[u2] = 0. Then, thanks
to linearity,

L[u1 + u2] = L[u1] + L[u2] = 0,

and hence their sum u1 +u2 is a solution. Similarly, if α is any constant, and
u any solution, then

L[αu] = αL[u] = α0 = 0,

and so the scalar multiple αu is also a solution

The following result is known as the superposition principle for homo-
geneous linear equations.
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Theorem 7.2
If u1, · · · , un are solutions to a common homogeneous linear partial differen-
tial equation L[u] = 0, then the linear combination u = c1u1 + · · · + cnun is
a solution for any choice of constants c1, · · · , cn.

Proof.
The key fact is that, thanks to the linearity of L, for any sufficiently smooth
functions u1, · · · , un and any constants c1, · · · , cn,

L[u] =L[c1u1 + · · ·+ cnun] = L[c1u1 + · · ·+ cn−1un−1] + L[cnun]

= · · · = L[c1u1] + · · ·+ L[cnun] = c1L[u1] + · · ·+ cnL[un].

In particular, if the functions are solutions, so L[u1] = 0, · · · , L[un] = 0, then
the right hand side of the above equation vanishes, proving that u is also a
solution to the homogeneous equation L[u] = 0

In physical applications, homogeneous linear equations model unforced sys-
tems that are subject to their own internal constraints. External forcing
is represented by an additional term that does not involve the dependent
variable. This results in the nonhomogeneous equation

L[u] = f

where L is a linear partial differential operator, u is the dependent variable,
and f is a given non-zero function of the independent variables alone.
You already learned the basic philosophy for solving of nonhomogeneous
linear equations in your study of elementary ordinary differential equations.
Step one is to determine the general solution to the homogeneous equation.
Step two is to find a particular solution to the nonhomogeneous version. The
general solution to the nonhomogeneous equation is then obtained by adding
the two together. Here is the general version of this procedure:

Theorem 7.3
Let ui be a particular solution to the nonhomogeneous linear equation L[u] =
f. Then the general solution to L[u] = f is given by u = ui + uh, where uh is
the general solution to the corresponding homogeneous equation L[u] = 0.

Proof.
Let us first show that u = ui +uh is also a solution to L[u] = f. By linearity,

L[u] = L[ui + uh] = L[ui] + L[uh] = f + 0 = f.
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To show that every solution to the nonhomogeneous equation can be ex-
pressed in this manner, suppose u satisfies L[u] = f. Set uh = u− ui. Then,
by linearity,

L[uh] = L[u− ui] = L[u]− L[ui] = 0,

and hence uh is a solution to the homogeneous differential equation. Thus,
u = ui + uh has the required form

In physical applications, one can interpret the particular solution ui as a
response of the system to the external forcing function, while the solution
uh to the homogeneous equation represents the system’s internal, unforced
motion. The general solution to a linear nonhomogeneous equation is thus a
combination of the external and internal responses.
As you have noticed by now, one solution of a linear PDE leads to the cre-
ation of lots of solutions. In contrast, nonlinear equations are much tougher
to deal with, for example, knowledge of several solutions does not necessarily
help in constructing others. Indeed, even finding one solution to a nonlinear
partial differential equation can be quite a challenge.
In this introductory course, we will primarily − but not exclusively − con-
centrate on analyzing the most basic linear partial differential equations. But
we will have occasion to briefly foray into the nonlinear realm, to appreciate
some recent developments in this fascinating area of contemporary research
and applications.
As observed above, a general solution of a partial differential equation has
infinitely many solutions. In almost all cases, this general solution is of little
use since it has to satisfy other supplementary conditions, usually called ini-
tial or boundary conditions. These conditions determine the unique solution
of interest.
A boundary value problem is a partial differential equation where either
the unknown function or its derivatives have values assigned on the physical
boundary of the domain in which the problem is specified. These conditions
are called boundary conditions. For example,

uxx + uyy =0 if 0 < x, y < 1

u(x, 0) = u(x, 1) =0 if 0 < x < 1

ux(0, y) = ux(1, y) =0 if 0 < y < 1.
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There are three types of boundary conditions which arise frequently in for-
mulating physical problems:
1. Dirichlet Boundary Conditions: In this case, the dependent function
u is prescribed on the boundary of the bounded domain. For example, if the
bounded domain is the rectangular plate 0 < x < L1 and 0 < y < L2, the
boundary conditions u(0, y), u(L1, y), u(x, 0), and u(x, L2) are prescribed.
The boundary conditions are called homogeneous if the dependent variable
is zero at any point on the boundary, otherwise the boundary conditions are
called nonhomogeneous.
2. Neumann Boundary Conditions: In this case, first partial derivatives
are prescribed on the boundary of the bounded domain. For example, the
Neuman boundary conditions for a rod of length L, where 0 < x < L, are of
the form ux(0, t) = α and ux(L, t) = β, where α and β are constants.
3. Robin or mixed Boundary Conditions: This occurs when the depen-
dent variable and its first partial derivatives are prescribed on the boundary
of the bounded domain.

An initial valur problem (or Cauchy problem) is a partial differential
equation together with a set of additional conditions on the solution or its
derivatives at either a given point or a given curve in the domain of the so-
lution. These conditions are called initial value conditions. For example,
the transport equation

ut(x, t) + cux(x, t) =0

u(x, 0) =f(x)

is a Cauchy problem.
It can be shown that initial conditions for a PDE are necessary and sufficient
for the existence of a unique solution.
We say that an initial and/or boundary value problem associated with a PDE
is well-posed if it has a solution which is unique and depends continuously
on the data given in the problem. The last condition, namely the continuous
dependence is important in physical problems. This condition means that
the solution changes by a small amount when the conditions change a little.
Such solutions are said to be stable.

Example 7.4
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For x ∈ R and t > 0 we consider the initial value problem

utt − uxx =0

u(x, 0) = ut(x, 0) =0

Clearly, u(x, t) = 0 is a solution to this problem.
(a) Let 0 < ε << 1 be a very small number. Show that the function uε(x, t) =
ε2 sin

(
x
ε

)
sin
(
t
ε

)
is a solution to the problem

utt − uxx =0

u(x, 0) =0

ut(x, 0) =ε sin
(x
ε

)
(b) Show that sup{|uε(x, t) − u(x, t)| : x ∈ R, t > 0} = ε2. Thus, a small
change in the initial data leads to a small change in the solution. Hence, the
initial value problem is well-posed.

Solution.
(a) We have

∂uε
∂t

=ε sin
(x
ε

)
cos

(
t

ε

)
∂2uε
∂t2

=− sin
(x
ε

)
sin

(
t

ε

)
∂uε
∂x

=ε cos
(x
ε

)
sin

(
t

ε

)
∂2uε
∂x2

=− sin
(x
ε

)
sin

(
t

ε

)
Thus, ∂2uε

∂t2
− ∂2uε

∂x2 = 0. Moreover, uε(x, 0) = 0 and ∂
∂t
uε(x, 0) = ε sin

(
x
ε

)
.

(b) We have

sup{|uε(x, t)− u(x, t)| : x ∈ R, t > 0} =ε2 sup{
∣∣∣∣sin(xε ) sin

(
t

ε

)∣∣∣∣ : x ∈ R, t > 0}

=ε2

A problem that is not well-posed is referred to as an ill-posed problem. We
illustrate this concept in the next example.
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Example 7.5
For x ∈ R and t > 0 we consider the initial value problem

utt + uxx =0

u(x, 0) = ut(x, 0) =0

Clearly, u(x, t) = 0 is a solution to this problem.
(a) Let 0 < ε << 1 be a very small number. Show that the function uε(x, t) =
ε2 sin

(
x
ε

)
sinh

(
t
ε

)
, where

sinhx =
ex − e−x

2
is a solution to the problem

utt + uxx =0

u(x, 0) =0

ut(x, 0) =ε sin
(x
ε

)
(b) Show that sup{| ∂

∂t
uε(x, 0) − ut(x, 0)| : x ∈ R} = ε and sup{|uε(x, t) −

u(x, t)| : x ∈ R} = ε2
∣∣sinh

(
t
ε

)∣∣ .
(c) Find limt→∞ sup{|uε(x, t)− u(x, t)| : x ∈ R}.

Solution.
(a) We have

∂uε
∂t

=ε sin
(x
ε

)
cosh

(
t

ε

)
∂2uε
∂t2

= sin
(x
ε

)
sinh

(
t

ε

)
∂uε
∂x

=ε cos
(x
ε

)
sinh

(
t

ε

)
∂2uε
∂x2

=− sin
(x
ε

)
sinh

(
t

ε

)
Thus, ∂2uε

∂t2
+ ∂2uε

∂x2 = 0. Moreover, uε(x, 0) = 0 and ∂
∂t
uε(x, 0) = ε sin

(
x
ε

)
.

(b) We have

sup{| ∂
∂t
uε(x, 0)− ut(x, 0)| : x ∈ R} = sup{

∣∣∣ε sin
(x
ε

)∣∣∣ : x ∈ R}

=ε sup{
∣∣∣sin(x

ε

)∣∣∣ : x ∈ R} = ε
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and

sup{|uε(x, t)− u(x, t)| : x ∈ R} =ε2 sup{
∣∣∣∣sinh

(
t

ε

)
sin
(x
ε

)∣∣∣∣ : x ∈ R}

=ε2
∣∣∣∣sinh

(
t

ε

)∣∣∣∣ .
(c) We have

lim
t→∞

sup{|uε(x, t)− u(x, t)| : x ∈ R} = lim
t→∞

ε2
∣∣∣∣sinh

(
t

ε

)∣∣∣∣ =∞.

Thus, a small change in the initial data leads to a catastrophically change in
the solution. Hence, the given problem is ill-posed
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Practice Problems

Exercise 7.1
Determine a and b so that u(x, y) = eax+by is a solution to the equation

uxxxx + uyyyy + 2uxxyy = 0.

Exercise 7.2
Consider the following differential equation

tuxx − ut = 0.

Suppose u(t, x) = X(x)T (t). Show that there is a constant λ such that
X ′′ = λX and T ′′ = λtT.

Exercise 7.3
Consider the initial value problem

xux + (x+ 1)yuy = 0, x, y > 1

u(1, 1) = e.

Show that u(x, y) = xex

y
is the solution to this problem.

Exercise 7.4
Show that u(x, y) = e−2y sin (x− y) is the solution to the initial value prob-
lem {

ux + uy + 2u = 0 for x, y > 0
u(x, 0) = sin x

Exercise 7.5
Solve each of the following differential equations:
(a) du

dx
= 0 where u = u(x).

(b) ∂u
∂x

= 0 where u = u(x, y).

Exercise 7.6
Solve each of the following differential equations:
(a) d2u

dx2 = 0 where u = u(x).

(b) ∂2u
∂x∂y

= 0 where u = u(x, y).
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Exercise 7.7
Show that u(x, y) = f(y+ 2x) +xg(y+ 2x), where f and g are two arbitrary
twice differentiable functions, satisfy the equation

uxx − 4uxy + 4uyy = 0.

Exercise 7.8
Find the differential equation whose general solution is given by u(x, t) =
f(x−ct)+g(x+ct), where f and g are arbitrary twice differentiable functions
in one variable.

Exercise 7.9
Let p : R→ R be a differentiable function in one variable. Prove that

ut = p(u)ux

has a solution satisfying u(x, t) = f(x + p(u)t), where f is an arbitrary
differentiable function. Then find the general solution to ut = (sinu)ux.

Exercise 7.10
Find the general solution to the pde

uxx + 2uxy + uyy = 0.

Hint: See Exercise 6.2.
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Sample Exam Questions

Exercise 7.11
Let u(x, t) be a function such that uxx exists and u(0, t) = u(L, t) = 0 for all
t ∈ R. Prove that ∫ L

0

uxx(x, t)u(x, t)dx ≤ 0.

Exercise 7.12
Consider the initial value problem

ut + uxx = 0, x ∈ R, t > 0

u(x, 0) = 1.

(a) Show that u(x, t) ≡ 1 is a solution to this problem.

(b) Show that un(x, t) = 1 + en
2t

n
sinnx is a solution to the initial value

problem
ut + uxx = 0, x ∈ R, t > 0

u(x, 0) = 1 +
sinnx

n
.

(c) Find sup{|un(x, 0)− 1| : x ∈ R}.
(d) Find sup{|un(x, t)− 1| : x ∈ R}.
(e) Show that the problem is ill-posed.

Exercise 7.13
Find the general solution of each of the following PDEs by means of direct
integration.
(a) ux = 3x2 + y2, u = u(x, y).
(b) uxy = x2y, u = u(x, y).
(c) uxyz = 0, u = u(x, y, z).
(d) uxtt = e2x+3t, u = u(x, t).

Exercise 7.14
Consider the second-order PDE

uxx + 4uxy + 4uyy = 0.

(a) Use the change of variables v(x, y) = y − 2x and w(x, y) = x to show
that uww = 0.
(b) Find the general solution to the given PDE.
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Exercise 7.15
Derive the general solution to the PDE

utt = c2uxx

by using the change of variables v = x+ ct and w = x− ct.
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First Order Partial Differential
Equations

Many problems in the mathematical, physical, and engineering sciences deal
with the formulation and the solution of first order partial differential equa-
tions. Our first task is to understand simple first order equations. In ap-
plications, first order partial differential equations are most commonly used
to describe dynamical processes, and so time, t, is one of the independent
variables. Most of our discussion will focus on dynamical models in a single
space dimension, bearing in mind that most of the methods can be readily
extended to higher dimensional situations. First order partial differential
equations and systems model a wide variety of wave phenomena, including
transport of solvents in fluids, flood waves, acoustics, gas dynamics, glacier
motion, traffic flow, and also a variety of biological and ecological systems.
From a mathematical point of view, first order partial differential equations
have the advantage of providing conceptual basis that can be utilized in the
study of higher order partial differential equations.
In this chapter we introduce the basic definitions of first order partial dif-
ferential equations. We then derive the one dimensional spatial transport
eqution and discuss some methods of solutions. One general method of solv-
ability for quasilinear first order partial differential equation, known as the
method of characteristics, is analyzed.

8 Classification of First Order PDEs

In this section, we present the basic definitions pertained to first order PDE.
By a first order differential equation in two variables x and y we mean

65
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any equation of the form

F (x, y, u, ux, uy) = 0. (8.1)

In what follows the functions a, b, and c are assumed to be continuously
differentiable functions. If Equation (8.1) can be written in the form

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (8.2)

then we say that the equation is quasilinear. The following are examples
of quasilinear equations:

uux + uy + cu2 = 0

x(y2 + u)ux − y(x2 + u)uy = (x2 − y2)u.

If Equation (8.1) can be written in the form

a(x, y)ux + b(x, y)uy = c(x, y, u) (8.3)

then we say that the equation is semilinear. The following are examples of
semilinear equations:

xux + yuy = u2 + x2

(x+ 1)2ux + (y − 1)2uy = (x+ y)u2.

If Equation (8.1) can be written in the form

a(x, y)ux + b(x, y)uy + c(x, y)u = d(x, y) (8.4)

then we say that the equation is linear. Examples of linear equations are:

xux + yuy = cu

(y − z)yx + (z − x)uy + (x− y)uz = 0.

A first order pde that is not linear is said to be nonlinear. Examples of
nonlinear equations are:

ux + cu2
y = xy

u2
x + u2

y = c.

First order partial differential equations are classified as either linear or non-
linear. Clearly, linear equations are a special kind of quasilinear equation
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(8.2) if a and b are functions of x and y only and c is a linear function of u.
Likewise, semilinear equations are quasilinear equations if a and b are func-
tions of x and y only. Also, semilinear equations (8.4) reduces to a linear
equation if c is linear in u.
A linear equation is called homogeneous if d(x, y) ≡ 0 and nonhomoge-
neous if d(x, y) 6= 0. Examples of linear homogeneous equations are:

xux + yuy = cu

(y − z)ux + (z − x)uy + (x− y)uz = 0.

Examples of nonhomogeneous equations are:

ux + (x+ y)uy − u = ex

yux + xuy = xy.

Recall that for an ordinary linear differential equation, the general solution
depends mainly on arbitrary constants. Unlike ODEs, in linear partial dif-
ferential equations, the general solution depends on arbitrary functions.

Example 8.1
Solve the equation ut(x, t) = 0.

Solution.
The general solution is given by u(x, t) = f(x) where f is an arbitrary dif-
ferentiable function of x

Example 8.2
Consider the transport equation

aut(x, t) + bux(x, t) = 0

where a and b are constants. Show that u(x, t) = f(bt − ax) is a solution
to the given equation, where f is an arbitrary differentiable function in one
variable.

Solution.
Let v(x, t) = bt− ax. Using the chain rule we see that ut(x, t) = bfv(v) and
ux(x, t) = −afv(v). Hence, aut(x, t) + bux(x, t) = abfv(v)− abfv(v) = 0
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Practice Problems

Exercise 8.1
Classify each of the following PDE as linear, quasilinear, semi-linear, or non-
linear.
(a) xux + yuy = sin (xy).
(b) ut + uux = 0
(c) u2

x + u3u4
y = 0.

(d) (x+ 3)ux + xy2uy = u3.

Exercise 8.2
Show that u(x, y) = exf(2x− y), where f is a differentiable function of one
variable, is a solution to the equation

ux + 2uy − u = 0.

Exercise 8.3
Show that u(x, y) = x

√
xy satisfies the equation

xux − yuy = u

subject to
u(y, y) = y2, y ≥ 0.

Exercise 8.4
Show that u(x, y) = cos (x2 + y2) satisfies the equation

−yux + xuy = 0

subject to
u(0, y) = cos y2.

Exercise 8.5
Show that u(x, y) = y − 1

2
(x2 − y2) satisfies the equation

1

x
ux +

1

y
uy =

1

y

subject to u(x, 1) = 1
2
(3− x2).
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Exercise 8.6
Find a relationship between a and b if u(x, y) = f(ax + by) is a solution to
the equation 3ux − 7uy = 0 for any differentiable function f.

Exercise 8.7
Suppose L is a linear operator, that is, L(αu+βv) = αL(u)+βL(v). Consider
the homogeneous and nonhomogeneous linear equations

Lu = 0

Lu = f

where f is some function. Suppose v is a solution to the homogeneous equa-
tion, and w is a solution to the nonhomogeneous equation. Show u = av+w
is a solution to the nonhomogeneous equation for any constant a.

Exercise 8.8
Reduce the partial differential equation

aux + buy + cu = 0

to a first order ODE by introducing the change of variables s = ax+ by and
t = bx− ay.

Exercise 8.9
Solve the partial differential equation

ux + uy = 1

by introducing the change of variables s = x+ y and t = x− y.
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Sample Exam Questions

Exercise 8.10
Show that u(x, y) = e−4xf(2x− 3y) is a solution to the first-order PDE

3ux + 2uy + 12u = 0.

Exercise 8.11
Derive the general solution of the PDE

aut + bux = u, a, b 6= 0

by using the change of variables v = ax− bt and w = 1
a
t.

Exercise 8.12
Derive the general solution of the PDE

aux + buy = 0, a, b 6= 0

by using the change of variables s(x, y) = ax + by and t(x, y) = bx − ay.
Assume a2 + b2 > 0.

Exercise 8.13
Write the equation

ut + cux + λu = f(x, y)

in the coordinates v = x− ct, w = t.

Exercise 8.14
Suppose that u(x, t) = w(x− ct) is a solution to the PDE

xux + tut = Au

where A and c are constants. Let v = x− ct. Write the differential equation
with unknown function w(v).
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9 The One Dimensional Spatial Transport Equa-

tions

Modeling is the process of writing a differential equation to describe a physi-
cal situation. In this section we discuss the one-dimensional transport equa-
tion and discuss an analytical method for solving it.

Linear Transport Equation for Fluid Flows
We shall describe the transport of a dissolved chemical by water that is trav-
eling with uniform velocity c through a long thin tube G with uniform cross
section A. (The very same discussion applies to the description of the trans-
port of gas by air moving through a pipe.) We identify G with the open
interval (a, b), and the velocity c > 0 is in the (rightward) positive direction
of the x−axis. We will assume that the concentration of the chemical is con-
stant across the cross section A at each point x so that the chemical changes
in the x−direction and thus the term one-dimensional spatial equation. See
Figure 9.1

Figure 9.1

Let u(x, t) be a continuously differentiable function denoting the concentra-
tion of the chemical (i.e. amount of chemical/area) at position x at time
t. Then at time t, the amount of chemical stored in a section of the tube
between positions a and x is given by the definite integral∫ x

a

Au(s, t)ds.



72 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Since the water is flowing at a speed c, so at time h+ t the same quantity of
chemical will be ∫ x

a

Au(s, t)ds =

∫ x+ch

a+ch

Au(s, t+ h)ds.

Taking the derivative of both sides with respect to x we find

u(x, t) = u(x+ ch, t+ h).

Now taking the derivative of this last equation with respect to h we find

0 = ut(x+ ch, t+ h) + cux(x+ ch, t+ h).

Taking the limit of this last equation as h approaches 0 we find

ut(x, t) + cux(x, t) = 0 (9.1)

for all (x, t). This equation is called the transport equation in one-dimensional
space. It is a linear, homogeneous first order partial differential equation.

Example 9.1
Show that u(x, t) = f(x − ct) is a solution to (9.1), where f is an arbitrary
differentiable function in one variable.

Solution.
Using the chain rule we find

ut = −cf ′(x− ct) and ux = f ′(x− ct).

Hence, by substituting these results into the equation we find

ut + cux = −cf ′(x− ct) + cf ′(x− ct) = 0.

The solution u(x, t) = f(x − ct) is called the right traveling wave, since
the graph of the function f(x − ct) at a given time t is the graph of f(x)
shifted to the right by the value ct. Thus, with growing time, the function
f(x) is moving without changes to the right at the speed c

An initial value condition determines a unique solution to the transport equa-
tion as stated in the next theorem.
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Theorem 9.4
Let g be a continuously differentiable function. Then there is a unique con-
tinuously differentiable solution u(x, t) to the IVP

aux(x, t) + but(x, t) = 0

u(x, 0) = g(x).

Indeed, u is given explicitly by the formula

u(x, t) = f(bx− at), g(x) = f(bx).

Method of Solutions: The Coordinate Method
We will solve (9.1) by solving the more general equation

aux + buy = 0 (9.2)

where a2 + b2 > 0.
We introduce a new rectangular system by the substitution

s = ax+ by, t = bx− ay

According to the chain rule for the derivative of a composite function, we
have

ux =ussx + uttx = aus + but

uy =ussy + utty = bus − aut

Substituting these into (9.2) to obtain

a2us + abut + b2us − abut = 0

or
(a2 + b2)us = 0

and since a2 + b2 > 0 we obtain

us = 0.

Solving this equation, we find

u(s, t) = f(t)

where f is an arbitrary differentiable function of one variable. Now, in terms
of x and y we find

u(x, y) = f(bx− ay).
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Example 9.2
Use the coordinate method to find the solution to ut−3ux = 0, u(x, 0) = e−x

2
.

Solution.
Let v = −3x+ t and w = x+ 3t. Then ux = −3uv + uw and ut = uv + 3uw.
Substituting these into the given equation we find 10uv = 0 or uv = 0.
Hence, u(v, w) = f(w) or u(x, t) = f(x + 3t) where f is a differentiable
function in one variable. Since u(x, 0) = e−x

2
, we find e−x

2
= f(x). Hence,

u(x, t) = e−(x+3t)2

Transport Equation with Decay: The Method of Characteristic
Coordinates
A transport equation with decay is an equation given by

ut + cux + λu = f(x, t)

where λ and c are constants and f is a given function representing external
resources. Note that the decay is characterized by the term λu.
To solve this equation, we introduce the characteristic coordinates given
by

v = x− ct, w = t.

Using the chain rule, we find

ut =uvvt + uwwt = −cuv + uw

ux =uvvx + uwwx = uv.

Substituting these into the original equation we obtain the equation

uw + λu = f(v + cw,w)

which can be solved by the method of integrating factor. We illustrate this
approach in the next example.

Example 9.3
Find the general solution of the transport equation

ut + ux − u = t.
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Solution.
The characteristic coordinates are

v = x− t, w = t.

These transform the original equation to the first order ODE

uw − u = w.

Using the method of integrating factor, we find

d

dw
(e−wu) = we−w

and solving this equation we find

u(v, w) = −(1 + w) + ewf(v)

and in terms of x and t we find

u(x, t) = f(x− t)et − (1 + t)

A more general method for solving quasilinear first order partial differential
equations, known as the method of characteristics, will be discussed in the
next section.
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Practice Problems

Exercise 9.1
Use the coordinate method to find the solution to ut + 3ux = 0, u(x, 0) =
sinx.

Exercise 9.2
Use the coordinate method, solve the equation aux + buy + cu = 0.

Exercise 9.3
Use the coordinate method, solve the equation ux + 2uy = cos (y − 2x) with
the initial condition u(0, y) = f(y), where f : R→ R is a given function.

Exercise 9.4
Show that the initial value problem ut +ux = x, u(x, x) = 1 has no solution.

Exercise 9.5
Solve the transport equation ut + 2ux = −3u with initial condition u(x, 0) =

1
1+x2 .

Exercise 9.6
Solve ut + ux − 3u = t with initial condition u(x, 0) = x2.

Exercise 9.7
Show that the decay term λu in the transport equation with decay

ut + cux + λu = 0

can be eliminated by the substitution w = ueλt.

Exercise 9.8
Use the coordinate method to solve

ux + uy = u2

u(x, 0) = h(x)
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Exercise 9.9 (Well-Posed)
Let u be the unique solution to the IVP

ut + cux = 0

u(x, 0) = f(x)

and v be the unique solution to the IVP

ut + cux = 0

u(x, 0) = g(x)

where f and g are continuously differentiable functions.
(a) Show that w(x, t) = u(x, t)− v(x, t) is the unique solution to the IVP

ut + cux = 0

u(x, 0) = f(x)− g(x)

(b) Write an explicit formula for w in terms of f and g.
(c) Use (b) to conclude that the transport problem is well-posed. That is, a
small change in the initial data leads to a small change in the solution.

Exercise 9.10
Solve the initial boundary value problem

ut + cux = −λu, x > 0, t > 0

u(x, 0) = 0, u(0, t) = g(t), t > 0.
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Sample Exam Questions

Exercise 9.11
Solve the first-order equation 2ut+3ux = 0 with the initial condition u(x, 0) =
sinx.

Exercise 9.12
Solve the PDE

ux + uy = 1

using the coordinate method.

Exercise 9.13
Consider the first order linear homogeneous PDE

Aux +Buy + Cu = 0

where A,B, and C are constants with A 6= 0.
(a) Determine a, b, c, d in terms of A,B,C such that ad− bc 6= 0 and so that
the change of variables v = ax + by and w = cx + dy will reduce the given
PDE to a first order PDE of the form αuv + βu = 0.
(b) Use (a) to find the general solution of the given PDE.

Exercise 9.14
Use the result of the previous problem to solve the PDE

ux + uy + u = 0.
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10 The Method of Characteristics

In this section we develop a method for finding the general solution of a
quasilinear first order partial differential equation. This method is called
the method of characteristics or Lagrange’s method. This method of
solution can be described by the following result.

Theorem 10.1
The general solution of the quasilinear first order PDE

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u) (10.1)

is given by
f(v, w) = 0 (10.2)

where f is an arbitrary differentiable function of v(x, y, u) and w(x, y, u) and
v =constant= c1, w =constant= c2 are solutions to the ODE system

dx

a
=
dy

b
=
du

c
. (10.3)

Equations (10.3) are called the characteristic equations in non-parametric
forms. The corresponding parametric forms are given by the system of ODEs

dx

ds
=a

dy

ds
=b

du

ds
=c

Remark 10.1
Sometimes (10.2) is written explicitly as v = g(w) or w = g(v) where g is an
arbitrary differentiable function.

Example 10.1
Find the general solution of the PDE x2ux + y2uy = (x+ y)u.

Solution.
The characteristic equations for this PDE are dx

x2 = dy
y2

= du
(x+y)u

. Using the
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first two fractions, we have
∫

dx
x2 =

∫
dy
y2

and this implies x−y
xy

= c1. Also,

we can solve for x obtaining x = 1
1
y
−c1

and x + y = y
1−c1y + y. Using the

last two fractions we find dy
y2

= du
u(x+y)

=⇒ 1
y2

(
y

1−c1y + y
)
dy = du

u
=⇒(

1
y−c1y2 + 1

y

)
dy = du

u
=⇒

(
1−c1y
y−c1y2 + c1

1−c1y + 1
y

)
dy = du

u
=⇒

∫ (
2
y

+ c1
1−c1y

)
dy =∫

du
u

=⇒ 2 ln |y| − ln |1− c1y| = ln |u| + c2 =⇒ y2

1−c1y = cu =⇒ y · y
1−c1y =

cu =⇒ y 1
1
y
−c1

= cu =⇒ xy = cu. Hence, the general solution is

f

(
x− y
xy

,
xy

u

)
= 0

where f is an arbitrary differentiable function

Example 10.2
Find the general solution of the PDE yuux + xuuy = xy.

Solution.
The characteristic equations are dx

yu
= dy

xu
= du

xy
. Using the first two fractions

we find x2−y2 = c1. Using the last two fractions we find u2−y2 = c2. Hence,
the general solution is f(x2− y2, u2− y2) = 0 or u2 = y2 + g(x2− y2), where
f and g are arbitrary differentiable functions

Example 10.3
Find the general solution of the PDE x(y2−u2)ux−y(u2 +x2)yy = (x2 +y2)u.

Solution.
The characteristic equations are dx

x(y2−u2)
= dy
−y(u2+x2)

= du
(x2+y2)u

. Using a
property of proportions we can write

xdx+ ydy + udu

x2(y2 − u2)− y2(u2 + x2) + u2(x2 + y2)
=

du

(x2 + y2)u
.

That is
xdx+ ydy + udu

0
=

du

(x2 + y2)u

or

xdx+ ydy + udu = 0.
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Hence, we find x2 + y2 + u2 = c1. Also,

dx
x
− dy

y

y2 − u2 + u2 + x2
=

du

(x2 + y2)u

or
dx

x
− dy

y
=
du

u
.

Hence, we find ln
∣∣yu
x

∣∣ =constant or yu
x

= c2. The general solution is given by

f
(
x2 + y2 + u2,

yu

x

)
= 0

or

u =
x

y
g(x2 + y2 + u2)

where f and g are arbitrary differentiable functions

Example 10.4
Solve the transport equation using the method of characteristics

ut + cux = 0.

Solution.
The characteristic equations are given by

dt

1
=
dx

c
=
du

0
.

Solving the first two fractions we find x − ct = k. The last fraction implies
u = k′. The general solution is given by f(x− ct, u) = 0 or u = g(x− ct)

Solution curves to the ODE
dy

dx
=
b

a

are called characteristic curves or simply characteristics. These are
curves in the xy−plane.

Example 10.5
Find the characteristics of cos yux + uy + xu = 0.
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Solution.
Solving the equation dy

dx
= 1

cos y
by the separation of variable method we find

sin y − x = k

Example 10.6
Find the characteristics of ux + 2uy − u = 0.

Solution.
We have a = 1 and b = 2. Thus, dy

dx
= 2 so that the characteristics are given

by 2x− y = k
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Practice Problem

Exercise 10.1
Find the characteristics of the PDE

xux − yuy = u.

Exercise 10.2
Find the characteristics of the PDE

−yux + xuy = 0.

Exercise 10.3
Find the characteristics of the PDE

(x+ y)(ux + uy) = u− 1.

Exercise 10.4
Find the general solution of the PDE xux + yuy = 1 + u2.

Exercise 10.5
Find the general solution of the PDE ln (y + u)ux + uy = −1.

Exercise 10.6
Find the general solution of the PDE xux + yuy = u.

Exercise 10.7
Find the general solution of the PDE xux + yuy = nu.

Exercise 10.8
Find the general solution of the PDE x(y − u)ux + y(u− x)uy = u(x− y).

Exercise 10.9
Find the general solution of the PDE u(u2 + xy)(xux − yuy) = x4.

Exercise 10.10
Find the general solution of the PDE (y + xu)ux − (x+ yu)uy = x2 − y2.

Exercise 10.11
Find the general solution of the PDE (y2 + u2)ux − xyuy + xu = 0.
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Exercise 10.12
Find the general form of solutions to

ux + 2uy = u

and sketch some of the characteristics. Hint: define a new variable v = e−xu.
What equation does v satisfy?

Exercise 10.13
Find the general form of solutions to

(1 + x2)ux + uy = 0

and sketch some of the characteristics.
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Sample Exam Questions

Exercise 10.14
Find the general solution of the equation

ux + yuy = u.

Exercise 10.15
Find the characteristics associated with the PDE

ux + xuy + 3u = 2.

Exercise 10.16
Find the general solution of the first order PDE

ux + yuy + xu = 0.

Exercise 10.17
Find the characteristics of the PDE

1

x
ux +

1

y
uy = 0.

Exercise 10.18
Find the characteristics of the PDE

1

x
ux +

1

y
uy =

1

y
.
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11 The Cauchy Problem for First Order Quasi-

linear Equations

When solving a partial differential equation, it is seldom the case that one
tries to study the properties of the general solution of such equations. In
general, one deals with those partial differential equations whose solutions
satisfy certain supplementary conditions. In the case of a first order partial
differential equation, we determine the particular solution by formulating an
initial value porblem also known as a Cauchy problem.
In this section, we discuss the Cauchy problem for the first order quasilinear
partial differential equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u). (11.1)

Recall that the initial value problem of a first order ordinary differential
equation asks for a solution of the equation which has a given value at a
given point in R. The Cauchy problem for the PDE (11.1) asks for a solution
of (11.1) which has given values on a given curve in R2. A precise statement
of the problem is given next.

Initial Value Problem or Cauchy Problem
Let C be a given curve in R2 defined parametrically by the equations

x = x0(t), y = y0(t)

where x0, y0 are continuously differentiable functions on some interval I. Let
u0(t) be a given continuously differentiable function on I. The Cauchy prob-
lem for (11.1) asks for a continuously differentiable function u = u(x, y)
defined in a domain Ω ⊂ R2 containing the curve C and such that:
(1) u = u(x, y) is a solution of (11.1) in Ω.
(2) On the curve C, u equals the given function u0(t), i.e.

u(x0(t), y0(t)) = u0(t), t ∈ I. (11.2)

We call C the initial curve of the problem, u0(t) the initial data, and
(11.2) the initial condition of the problem. See Figure 11.1.
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Figure 11.1

If we view a solution u = u(x, y) of (11.1) as an integral surface of (11.1),
we can give a simple geometrical statement of the problem: Find a solu-
tion surface of (11.1) containing the curve Γ described parametrically by the
equations

Γ : x = x0(t), y = y0(t), u = u0(t), t ∈ I.

Note that the projection of this curve in the xy−plane is just the curve C.
The following theorem asserts that under certain conditions the Cauchy prob-
lem (11.1) - (11.2) has a unique solution.

Theorem 11.1
Suppose that x0(t), y0(t), and u0(t) are continuously differentiable functions
of t in an interval I, and that a, b, and c are functions of x, y, and u with
continuous first order partial derivatives with respect to their argument in
some domain D of (x, y, u)−space containing the initial curve

Γ : x = x0(t), y = y0(t), u = u0(t)

where t ∈ I. Then for each point (x0(t), y0(t), u0(t)) on Γ that satisfies the
condition

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) 6= 0. (11.3)

there exists a unique solution u = u(x, y) of (11.1) in a neighborhood U of
(x0(t), y0(t)) such that the initial condition (11.2) is satisfied for every point
on C contained in U. See Figure 11.2.
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Figure 11.2

Note that condition (11.3) implies that

dy0(t)

dx0(t)
6= b(x0, y0, u0)

a(x0, y0, u0)

which means that the vector (a(x0, y0, u0), b(x0, y0, u0), c(x0, y0, u0)) is not

tangent to Γ. (Recall that the normal vector to C has components
(
dy0(t)
dt

,−dx0(t)
t

)
so that a vector (a, b) is tangent to C if ady0(t)

dt
− bdx0(t)

dt
= 0.) It follows that

the Cauchy problem has a unique solution if C is nowhere characteristic.
We construct the desired solution using the method of characteristics as fol-
lows: Pick a point (x0(t), y0(t), u0(t)) ∈ Γ. Using this as the initial value
we solve the system of ODEs consisting of the characteristic equations in
parametric form

dx

ds
=a(x(s), y(s), u(s))

dy

ds
=b(x(s), y(s), u(s))

du

ds
=c(x(s), y(s), u(s))

satisfying the initial condition

(x(0), y(0), u(0)) = (x0(t), y0(t), u0(t)).
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The solution depends on the parameter s so it consists of a triples of functions

x = x(s, t), y = y(s, t), u = u(s, t). (11.4)

This system represents the parametric representation of the integral surface
of the problem in which the curve Γ corresponds to s = 0. The solution u is
recovered by solving the first two equations in (11.4) for

t = t(x, y), s = s(x, y)

and substituting these into the third equation to obtain u(x, y) = u(s(x, y), t(x, y)).

Example 11.1
Solve the Cauchy problem

ux + uy =1

u(x, 0) =f(x).

Solution.
The initial curve in R3 can be given parametrically as

Γ : x0(t) = t, y0(t) = 0, u0(t) = f(t).

We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −1 6= 0

so by the above theorem the given Cauchy problem has a unique solution.
To find this solution, we solve the system of ODEs

dx

ds
=1

dy

ds
=1

du

ds
=1.

Solving this system we find

x(s, t) = s+ α(t), y(s, t) = s+ β(t), u(s) = s+ γ(t).
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But x(0, t) = t so that α(t) = t. Similarly, y(0, t) = 0 so that β(t) = 0
and u(0, t) = f(t) implies γ(t) = f(t). Hence, the unique solution is given
parametrically by the equations

x(s, t) = t+ s, y(s, t) = s, u(s, t) = s+ f(t).

Solving the first two equations for s and t we find

s = y, t = x− y

and substituting these into the third equation we find

u(x, y) = y + f(x− y).

Alternative Computation
We can apply the results of the previous section to find the unique solution.
If we solve the characteristic equations in non-parametric form

dx

1
=
dy

1
=
du

1

we find x − y = c1 and u − x = c2. Thus, the general solution of the PDE
is given by u = x+ F (x− y). Using the Cauchy data u(x, 0) = f(x) we find
f(x) = x + F (x) which implies that F (x) = f(x) − x. Hence, the unique
solution is given by

u(x, y) = x+ f(x− y)− (x− y) = y + f(x− y)

If condition (11.3) is not satisfied than C is a characteristic curve. If the
curve Γ satisfies the characteristic equations than the problem has infinitely
many solutions. To see this, pick an arbitrary point P0 = (x0, y0, u0) on Γ.
Pick a new initial curve Γ′ passing through P0 which is not tangent to Γ at
P0. In this case, condition (11.3) is satisfied and the new Cauchy problem has
a unique solution. Since there are infinitely many ways of selecting Γ′, we
obtain infinitely many solutions. We illustrate this case in the next example.

Example 11.2
Solve the Cauchy problem

ux + uy =1

u(x, x) =x.
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Solution.
The initial curve in R3 can be given parametrically as

Γ : x0(t) = t, y0(t) = t, u0(t) = t.

We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = 0.

As in Example 11.1, the general solution of the PDE is u(x, y) = y + f(x−
y) where f is an arbitrary differentiable function. Using the Cauchy data
u(x, x) = x we find f(0) = 0. Thus, the solution is given by

u(x, y) = y + f(x− y)

where f is an arbitrary function such that f(0) = 0. There are infinitely
many choices for f. Hence, the problem has infinitely many solutions. Note
that Γ satisfies the characteristic equations

If condition (11.3) is not satisfied and if Γ does not satisfy the characteristic
equations then it can be shown that the Cauchy problem has no solutions.
We illustrate this case next.

Example 11.3
Solve the Cauchy problem

ux + uy =1

u(x, x) =1.

Solution.
The initial curve in R3 can be given parametrically as

Γ : x0(t) = t, y0(t) = t, u0(t) = 1.

We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = 0.

Solving the characteristic equations in parametric form we find

x(s, t) = s+ α(t), y(s, t) = s+ β(t), u(s, t) = s+ γ(t).
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Clearly, Γ does not satisfy the characteristic equations. Now, the general
solution to the PDE is given by u = y + f(x − y). Using the Cauchy data
u(x, x) = 1 we find f(0) = 1 − x, which is not possible since the LHS is a
fixed number whereas the RHS is a variable expression. Hence, the problem
has no solutions

Example 11.4
Solve the Cauchy problem

ux − uy =1

u(x, 0) =x2. (11.5)

Solution.
The initial curve is given parametrically by

Γ : x0(t) = t, y0(t) = 0, u0(t) = t2.

We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = 1 6= 0

so the Cauchy problem has a unique solution.
The characteristic equations are

dx

1
=
dy

−1
=
du

1
.

Using the first two fractions we find x+ y = c1. Using the first and the third
fractions we find u − x = c2. Thus, the general solution can be represented
by

u = x+ f(x+ y)

where f is an arbitrary differentiable function. Using the Cauchy data
u(x, 0) = x2 we find x2 − x = f(x). Hence, the unique solution is given
by

u = x+ (x+ y)2 − (x+ y) = (x+ y)2 − y

Example 11.5
Solve the initial value problem

ut + uux = x, u(x, 0) = 1.
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Solution.
The initial curve is given parametrically by

Γ : x0(t) = t, y0(t) = 0, u0(t) = 1.

We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −1 6= 0

so the Cauchy problem has a unique solution.
The characteristic equations are

dt

1
=
dx

u
=
du

x
.

Since
dt

1
=
d(x+ u)

x+ u

we find that (x + u)e−t = c1. Now, using the last two fractions we find
u2 − x2 = c2. Hence, the general solution is given by

f((x+ u)e−t, u2 − x2) = 0

where f is an arbitrary differentiable function. Using the Cauchy data we
find c1 = 1 + x and c2 = 1− x2 = 2(1 + x)− (1 + x)2 = 2c1 − c2

1. Thus,

u2 − x2 = 2(x+ u)e−t − (x+ u)2e−2t

or
u− x = 2e−t − (x+ u)e−2t.

This can be reduced further as follows: u + ue−2t = x + 2e−t − xe−2t =
2e−t + x(1− e−2t) =⇒ u = 2e−t

1+e−2t + x1−e−2t

1+e−2t = sech(t) + xtanh(t)

Example 11.6
Solve the initial value problem

uux + uy = 1

with the initial curve

Γ : x0(t) = 2t2, y0(t) = 2t, u0(t) = 0, t > 0.
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Solution.
We have

a(x0(t), y0(t), u0(t))
dy0

dt
(t)− b(x0(t), y0(t), u0(t))

dx0

dt
(t) = −4t 6= 0, t > 0

so the Cauchy problem has a unique solution.
The characteristic equations in parametric form are given by the system of
ODEs

dx

ds
=u

dy

ds
=1

du

ds
=1.

Thus, the solution of this system depends on two parameters s and t. Solving
the last two equations we find

y(s, t) = s+ β(t), u(s, t) = s+ γ(t).

Solving the first equation with u being replaced by s+ γ(t) we find

x(s, t) =
1

2
s2 + γ(t)s+ α(t).

Using the initial conditions

x(0, t) = 2t2, y(0, t) = 2t, u(0, t) = 0

we find

x(s, t) =
1

2
s2 + 2t2, y(s, t) = s+ 2t, u(s, t) = s.

Eliminating s and t we find

(u− y)2 + u2 = 2x.

Solving this quadratic equation in u to find

2u = y ± (4x− y2)
1
2 .

The solution surface satisfying u = 0 on y2 = 2x is given by

2u = y − (4x− y2)
1
2 .

This represents a solution surface only when y2 < 4x. The solution does not
exist for y2 > 4x
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Practice Problems

Exercise 11.1
Solve

(y − u)ux + (u− x)uy = x− y

with the condition u(x, 1
x
) = 0.

Exercise 11.2
Solve the linear equation

yux + xuy = u

with the Cauchy data u(x, 0) = x3.

Exercise 11.3
Solve

x(y2 + u)ux − y(x2 + u)uy = (x2 − y2)u

with the Cauchy data u(x,−x) = 1.

Exercise 11.4
Solve

xux + yuy = xe−u

with the Cauchy data u(x, x2) = 0.

Exercise 11.5
Solve the initial value problem

xux + uy = 0, u(x, 0) = f(x)

using the characteristic equations in parametric form.

Exercise 11.6
Solve the initial value problem

ut + aux = 0, u(x, 0) = f(x).

Exercise 11.7
Solve the initial value problem

aux + uy = u2, u(x, 0) = cos x
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Exercise 11.8
Solve the initial value problem

ux + xuy = u, u(1, y) = h(y).

Exercise 11.9
Solve the initial value problem

uux + uy = 0, u(x, 0) = f(x).

Exercise 11.10
Solve the initial value problem

√
1− x2ux + uy = 0, u(0, y) = y.
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Sample Exam Questions

Exercise 11.11
Consider

xux + 2yuy = 0.

(i) Find and sketch the characteristics.
(ii) Find the solution with u(1, y) = ey.
(iii) What happens if you try to find the solution satisfying either u(0, y) =
g(y) or u(x, 0) = h(x) for given functions g and h?
(iv) Explain, using your picture of the characteristics, what goes wrong at
(x, y) = (0, 0).

Exercise 11.12
Solve the equation ux + uy = u subject to the condition u(x, 0) = cos x.

Exercise 11.13
(a) Find the general solution of the equation

ux + yuy = u.

(b) Find the solution satisfying the Cauchy data u(x, 3ex) = 2.
(c) Find the solution satisfying the Cauchy data u(x, ex) = ex.

Exercise 11.14
Solve the Cauchy problem

ux + 4uy = x(u+ 1)

u(x, 5x) = 1.

Exercise 11.15
Solve the Cauchy problem

ux − uy = u

u(x,−x) = sinx.
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Exercise 11.16
(a) Find the characteristics of the equation

yux + xuy = 0.

(b) Sketch some of the characteristics.
(c) Find the solution satisfying the boundary condition u(0, y) = e−y

2
.

(d) In which region of the plane is the solution uniquely determined?

Exercise 11.17
Consider the equation ux + yuy = 0. Is there a solution satisfying the extra
condition
(a) u(x, 0) = 1
(b) u(x, 0) = x?
If yes, give a formula; if no, explain why.



Second Order Linear Partial
Differential Equations

In this chapter we consider the three fundamental second order linear partial
differential equations of parabolic, hyperbolic, and elliptic type. These types
arise in many applications such as the wave equation, the heat equation
and the Laplace’s equation. We will study the solvability of each of these
equations.

12 Second Order PDEs in Two Variables

In this section we will briefly review second order partial differential equa-
tions.
A second order partial differential equation in the variables x and y
is an equation of the form

F (x, y, u, ux, uy, uxx, uyy, uxy) = 0. (12.1)

If Equation (12.1) can be written in the form

A(x, y, u, ux, uy)uxx+B(x, y, u, ux, uy)uxy+C(x, y, u, ux, uy)uyy = D(x, y, u, ux, uy)
(12.2)

then we say that the equation is quasilinear.
If Equation (12.1) can be written in the form

A(x, y)uxx +B(x, y)uxy + C(x, y)uyy = D(x, y, u, ux, uy) (12.3)

then we say that the equation is semilinear.
If Equation (12.1) can be written in the form

A(x, y)uxx+B(x, y)uxy+C(x, y)uyy+D(x, y)ux+E(x, y)uy+F (x, y)u = G(x, y)
(12.4)

99
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then we say that the equation is linear.
A linear equation is said to be homogeneous when G(x, y) ≡ 0 and non-
homogeneous otherwise.
Equation (12.4) resembles the general equation of a conic section

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

which is classified as either parabolic, hyperbolic, or elliptic based on the sign
of the discriminant B2 − 4AC. We do the same for a second order linear
partial differential equation:
• Hyperbolic: This occurs if B2− 4AC > 0 at a given point in the domain
of u.
• Parabolic: This occurs if B2 − 4AC = 0 at a given point in the domain
of u.
• Elliptic: This occurs if B2 − 4AC < 0 at a given point in the domain of
u.

Example 12.1
Determine whether the equation uxx + xuyy = 0 is hyperbolic, parabolic or
elliptic.

Solution.
Here we are given A = 1, B = 0, and C = x. Since B2 − 4AC = −4x, the
given equation is hyperbolic if x < 0, parabolic if x = 0 and elliptic if x > 0

Second order partial differential equations arise in many areas of scientific
applications. In what follows we list some of the well-known models that are
of great interest:
1. The heat equation in one-dimensional space is given by

ut = kuxx

where k is a constant.
2. The wave equation in one-dimensional space is given by

utt = c2uxx

where c is a constant.
3. The Laplace equation is given by

∆u = uxx + uyy = 0.
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Practice Problems

Exercise 12.1
Classify each of the following equation as hyperbolic, parabolic, or elliptic:
(a) Wave propagation: utt = c2uxx, c > 0.
(b) Heat conduction: ut = cuxx, c > 0.
(c) Laplace’s equation: ∆u = uxx + uyy = 0.

Exercise 12.2
Classify the following linear scalar PDE with constant coefficents as hyper-
bolic, parabolic or elliptic.
(a) uxx + 4uxy + 5uyy + ux + 2uy = 0.
(b) uxx − 4uxy + 4uyy + 3ux + 4u = 0.
(c) uxx + 2uxy − 3uyy + 2ux + 6uy = 0.

Exercise 12.3
Find the region(s) in the xy−plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic. Sketch these regions.

Exercise 12.4
Show that u(x, t) = cos x sin t is a solution to the problem

utt = uxx

u(x, 0) = 0

ut(x, 0) = cosx

ux(0, t) = 0

for all x, t > 0.

Exercise 12.5
Classify each of the following PDE as linear, quasilinear, semi-linear, or non-
linear.
(a) ut + uux = uuxx
(b) xutt + tuxx + u3u2

x = t+ 1
(c) utt = c2uxx
(d) u2

tt + ux = 0.
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Exercise 12.6
Show that, for all (x, y) 6= (0, 0), u(x, y) = ln (x2 + y2) is a solution of

uxx + uyy = 0,

and that, for all (x, y, z) 6= (0, 0, 0), u(x, y, z) = 1√
x2+y2+z2

is a solution of

uxx + uyy + uzz = 0.

Exercise 12.7
Consider the eigenvalue problem

uxx = λu, 0 < x < L

ux(0) = k0u(0)

ux(L) = −kLu(L)

with Robin boundary conditions, where k0 and kL are given positive numbers
and u = u(x). Can this system have a nontrivial solution u 6≡ 0 for λ > 0?
Hint: Multiply the first equation by u and integrate over x ∈ [0, L].

Exercise 12.8
Show that u(x, y) = f(x)g(y), where f and g are arbitrary differentiable
functions, is a solution to the PDE

uuxy = uxuy.

Exercise 12.9
Show that for any n ∈ N, the function un(x, y) = sinnx sinhny is a solution
to the Laplace equation

∆u = uxx + uyy = 0.

Exercise 12.10
Solve

uxy = xy.
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Sample Exam Questions

Exercise 12.11
Classify each of the following second-oder PDEs according to whether they
are hyperbolic, parabolic, or elliptic:
(a) 2uxx − 4uxy + 7uyy − u = 0.
(b) uxx − 2 cosxuxy − sin2 xuyy = 0.
(c) yuxx + 2(x− 1)uxy − (y + 2)uyy = 0.

Exercise 12.12
Let c > 0. By computing ux, uxx, ut, and utt show that

u(x, t) =
1

2
(f(x+ ct) + f(x− ct)) +

1

2c

∫ x+ct

x−ct
g(s)ds

is a solution to the PDE
utt = c2uxx

where f is twice differentiable function and g is a differentiable function.
Then compute and simplify u(x, 0) and ut(x, 0).

Exercise 12.13
Consider the second-order PDE

yuxx + uxy − x2uyy − ux − u = 0.

Determine the region D in R2, if such a region exists, that makes this PDE:
(a) hyperbolic, (b) parabolic, (c) elliptic.

Exercise 12.14
Consider the second-order hyperbolic PDE

uxx + 2uxy − 3uyy = 0.

Use the change of variables v(x, y) = y− 3x and w(x, y) = x+ y to solve the
given equation.

Exercise 12.15
Solve the Cauchy problem

uxx + 2uxy − 3uyy = 0.

u(x, 2x) = 1, ux(x, 2x) = x.
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13 Hyperbolic Type: The Wave equation

The wave equation has many physical applications from sound waves in air
to magnetic waves in the Sun’s atmosphere. However, the simplest systems
to visualize and describe are waves on a stretched elastic string.
Initially the string is horizontal with two fixed ends say a left end L and a
right end R. Then from end L we shake the string and we notice a wave
propogate through the string. The aim is to try and determine the vertical
displacement from the x−axis of the string, u(x, t), as a function of position
x and time t. A displacement of a tiny piece of the string between points P
and Q is shown in Figure 13.1.

Figure 13.1

where
• θ(x, t) is the angle between the string and a horizontal line at position x
and time t;
• T (x, t) is the tension in the string at position x and time t;
• ρ(x) is the mass density of the string at position x.
To derive the wave equation we need to make some simplifying assumptions:
(1) The density of the string, ρ, is constant so that the mass of the string
between P and Q is simply ρ times the length of the string between P and



13 HYPERBOLIC TYPE: THE WAVE EQUATION 105

Q, where the length of the string is ∆s given by

∆s =
√

(∆x)2 + (∆u)2 = ∆x

√
1 +

(
∆u

∆x

)2

≈ ∆x

√
1 +

(
∂u

∂x

)2

(2) The displacement, u(x, t), and its derivatives are assumed small so that

∆s ≈ ∆x

and the mass of the portion of the string is

ρ∆x.

(3) The only forces acting on this portion of the string are the tensions
T (x, t) at P and T (x+ ∆x, t) at Q. (In physics, tension is the magnitude of
the pulling force exerted by a string). The gravitational force is neglected.
(4) Our tiny string element moves only vertically. Then the net horizontal
force on it must be zero.
Next, we consider the forces acting on the typical string portion shown in
Figure 13.1. These forces are:
(i) tension pulling to the right, which has magnitude T (x+ ∆x, t), and acts
at an angle θ(x+ ∆x, t) above the horizontal.
(ii) tension pulling to the left, which has magnitude T (x, t), and acts at an
angle θ(x, t) above the horizontal.
Now we resolve the forces into their horizontal and vertical components.
•Horizontal: The net horizontal force of the tiny string is T (x+∆x, t) cos θ(x+ ∆x, t)−
T (x, t) cos θ(x, t). Since there is no horizontal motion, we must have

T (x, t) cos θ(x, t) = T (x+ ∆x, t) cos θ(x+ ∆x, t) = T. (13.1)

• Vertical: At P the tension force is −T (x, t) sin θ(x, t) whereas at Q the
force is T (x+ ∆x, t) sin θ(x+ ∆x, t). Then Newton’s Law of motion

mass × acceleration = Applied Forces

gives

ρ∆x
∂2u

∂t2
= T (x+ ∆x, t) sin θ(x+ ∆x, t)− T (x, t) sin θ(x, t).
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Dividing by T and using (13.1) we obtain

ρ

T
∆x

∂2u

∂t2
=
T (x+ ∆x, t) sin θ(x+ ∆x, t)

T (x+ ∆x, t) cos θ(x+ ∆x, t)
− T (x, t) sin θ(x, t)

T (x, t) cos θ(x, t)

= tan θ(x+ ∆x, t)− tan θ(x, t).

But

tan θ(x, t) = lim
∆x→0

∆u

∆x
= ux(x, t).

Likewise,
tan θ(x+ ∆x, t) = ux(x+ ∆x, t).

Hence, we get

ρ

T
∆xutt(x, t) = ux(x+ ∆x, t)− ux(x, t).

Dividing by ∆x and letting ∆x→ 0 we obtain

ρ

T
utt(x, t) = uxx(x, t)

or
utt(x, t) = c2uxx(x, t) (13.2)

where c2 = T
ρ
. We call c the wave speed.

D’Alembert Solution of (13.2)
Let v = x+ ct and w = x− ct. Then by application of the chain rule we find

ut =c(uv − uw)

ux =uv + uw

utt =c2(uvv − 2uvw + uww)

uxx =uvv + 2uvw + uww.

Substituting into (13.2) we obtain

c2(uvv + 2uvw + uww) = c2(uvv − 2uvw + uww)

and this simplifies to

4c2uvw = 0 or uvw = 0.
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It follows that
u(v, w) = f(v) + g(w)

where f and g are arbitrary differentiable functions. Now, writing u in terms
of x and y we find the general solution

u(x, y) = f(x+ ct) + g(x− ct).

D’Alembert’s solution involves two arbitrary functions that are determined
(normally) by two initial conditions.

Example 13.1
Find the solution to the Cauchy problem

utt =c2uxx

u(x, 0) =v(x)

ut(x, 0) =w(x).

Solution.
We have

u(x, 0) = f(x) + g(x) = v(x)

and
ut(x, 0) = cf ′(x)− cg′(x) = w(x)

which implies that

f(x)− g(x) =
1

c
W (x) =

1

c

∫
w(x)dx.

Therefore,

g(x) =
1

2
(v(x)− 1

c
W (x)).

Hence,

f(x) =
1

2
(v(x) +

1

c
W (x)).

Finally,

u(x, t) =
1

2
[v(x− ct) + v(x+ ct) +

1

c
(W (x+ ct)−W (x− ct))]

=
1

2
[v(x− ct) + v(x+ ct) +

1

c

∫ x+ct

x−ct
w(s)ds]
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Practice Problems

Exercise 13.1
Show that if v(x, t) and w(x, t) satisfy equation (13.2) then αv + βw is also
a solution to (13.2), where α and β are constants.

Exercise 13.2
Show that any linear time independent function u(x, t) = ax+ b is a solution
to equation (13.2).

Exercise 13.3
Find a solution to (13.2) that satisfies the homogeneous conditions u(x, 0) =
u(0, t) = u(L, t) = 0.

Exercise 13.4
Solve the initial value problem

utt =9uxx

u(x, 0) = cos x

ut(x, 0) =0.

Exercise 13.5
Solve the initial value problem

utt =uxx

u(x, 0) =
1

1 + x2

ut(x, 0) =0.

Exercise 13.6
Solve the initial value problem

utt =4uxx

u(x, 0) =1

ut(x, 0) = cos (2πx).



13 HYPERBOLIC TYPE: THE WAVE EQUATION 109

Exercise 13.7
Solve the initial value problem

utt =25uxx

u(x, 0) =v(x)

ut(x, 0) =0

where

v(x) =

{
1 if x < 0
0 if x ≥ 0.

Exercise 13.8
Solve the initial value problem

utt =c2uxx

u(x, 0) =e−x
2

ut(x, 0) = cos2 x.

Exercise 13.9
Prove that the wave equation, utt = c2uxx satisfies the following properties,
which are known as invariance properties. If u(x, t) is a solution, then
(i) Any translate, u(x− y, t) where y is a fixed constant, is also a solution.
(ii) Any derivative, say ux(x, t), is also a solution.
(iii) Any dilation, u(ax, at), is a solution, for any fixed constant a.

Exercise 13.10
Find v(r) if u(r, t) = v(r)

r
cosnt is a solution to the PDE

urr +
2

r
ur = utt.
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Sample Exam Questions

Exercise 13.11
Find the solution of the wave equation on the real line (−∞ < x < +∞)
with the initial conditions

u(x, 0) = ex, ut(x, 0) = sin x.

Exercise 13.12
The total energy of the string (the sum of the kinetic and potential energies)
is defined as

E(t) =
1

2

∫ L

0

(u2
t + c2u2

x)dx.

(a) Using the wave equation derive the equation of conservation of energy

dE(t)

dt
= c2(ut(L, t)ux(L, t)− ut(0, t)ux(0, t)).

(b) Assuming fixed ends boundary conditions, that is the ends of the string
are fixed so that u(0, t) = u(L, t) = 0, for all t > 0, show that the energy is
constant.
(c) Assuming free ends boundary conditions for both x = 0 and x = L, that
is both u(0, t) and u(L, t) vary with t, show that the energy is constant.

Exercise 13.13
For a wave equation with damping

utt − c2uxx + dut = 0, d > 0, 0 < x < L

with the fixed ends boundary conditions show that the total energy decreases.

Exercise 13.14
(a) Verify that for any twice differentiable R(x) the function

u(x, t) = R(x− ct)

is a solution of the wave equation utt = c2uxx. Such solutions are called
traveling waves.
(b) Show that the potential and kinetic energies (see Exercise 13.12) are
equal for the traveling wave solution in (a).
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Exercise 13.15
Find the solution of the Cauchy wave equation

utt = 4uxx

u(x, 0) = x2, ut(x, 0) = sin 2x.

Simplify your answer as much as possible.
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14 Parabolic Type: The Heat Equation in One-

Dimensional Space

In this section, We will look at a model for describing the distribution of
temperature in a solid material as a function of time and space.
Before we begin our discussion of the mathematics of the heat equation, we
must first determine what is meant by the term heat? Heat is type of energy
known as thermal energy. Heat travels in waves like other forms of energy,
and can change the matter it touches. It can heat it up and cause chemical
reactions like burning to occur.
Heat can be released through a chemical reaction (such as the nuclear re-
actions that make the Sun “burn”) or can be trapped for a limited time by
insulators. It is often released along with other kinds of energy such as light
waves or sound waves. For example, a burning candle releases light and heat
waves. On the other hand, an explosion releases light, heat, and sound waves.
The most common units of heat are BTU (British Thermal Unit), Calorie
and Joule.
Consider now a rod made of homogeneous heat conducting material (i.e. it
is composed of the exact same material and no foreign bodies are in it) of
uniform density ρ and constant cross section A, placed along the x−axis from
x = 0 to x = L as shown in Figure 14.1.

Figure 14.1

Assume the heat flows only in the x−direction, with the lateral sides well
insulated, and the only way heat can enter or leave the rod is at either end.
Also we assume that the temperature of the rod is constant at any point of
the cross section. In other words, temperature will only vary in x and we
can hence consider the rod to be a one spatial dimensional rod. We will also
assume that heat energy in any piece of the rod is conserved.
Let u(x, t) be the temperature of the cross section at the point x and the
time t. Consider a portion U of the rod from x to x + ∆x of length ∆x as
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shown in Figure 14.2.

Figure 14.2

Consider the portion S of U of height ∆s. From the theory of heat conduction,
the quantity of heat ∆Q from x to x+ ∆s at time t is given by

∆Q = cρu(x, t)∆V

where ∆V is the volume of S and c is the specific heat, that is, the amount
of heat energy that it takes to raise one unit of mass of the material by one
unit of temperature.
But S is a cylinder of height ∆s and area of base A so that ∆V = A∆s.
Hence,

∆Q = cρAu(x, t)∆s.

The quantity of heat in the portion U is given by

Q(t) =

∫ x+∆x

x

cρAu(s, t)ds.

By differentiating we take the partial of u to find the change in heat with
respect to time.

dQ

dt
=

∫ x+∆x

x

cρAut(s, t)ds.

Assuming that u is continuously differentiable, we can apply the mean value
theorem for integrals and find x ≤ ξ ≤ x+ ∆x such that∫ x+∆x

x

ut(s, t)ds = ∆xut(ξ, t).

Thus, the rate of change of heat in U is given by

dQ

dt
= cρA∆xut(ξ, t).
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On the other hand, by Fourier (or Fick’s) law of heat conduction, the rate
of heat flow through any cross section is proportional to the area A and
the negative gradient of the temperature normal to the cross section, and
heat flows in the direction of decreasing temperature. Thus, the rate of heat
flowing in U through the cross section at x is −KAux(x, t) and the rate of
heat flowing out of U through the cross section at x+∆x is−KAux(x+∆x, t),
where K is the thermal conductivity of the rod.
Now, the conservation of energy law states

rate of change of heat in U = rate of heat flowing in − rate of heat flowing
out

or mathematically written as,

cρA∆xut(ξ, t) = −KAux(x, t) +KAux(x+ ∆x, t)

or
cρA∆xut(ξ, t) = KA[ux(x+ ∆x, t)− ux(x, t)].

Dividing this last equation by cAρ∆x and letting ∆x→ 0 we obtain

ut(x, t) = kuxx(x, t) (14.1)

where k = K
cρ

is called the diffusivity constant.

Equation (14.1) is the one dimensional heat equation which is second order,
linear, homogeneous, and of parabolic type.
The non-homogeneous heat equation

ut = kuxx + f(x)

is known as the heat equation with an external heat source f(x). An ex-
ample of an exterenal heat source is the heat generated from a candle placed
under the bar.
The function

E(t) =

∫ L

0

cρu(x, t)dx

is called the total thermal energy at time t of the entire rod.

Example 14.1
The two ends of a uniform rod of length L are insulated. There is a con-
stant source of thermal energy q0 6= 0 and the temperature is initially
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u(x, 0) = f(x).
(a) Write the equation and the boundary conditions for this model.
(b) Calculate the total thermal energy of the entire rod.

Solution.
(a) The model is given by the PDE

cρut(x, t) = Kuxx + q0

with boundary conditions

ux(0, t) = ux(L, t) = 0.

(b) First note that

d

dt

∫ L

0

cρu(x, t)dx =

∫ L

0

cρut(x, t)dx =

∫ L

0

Kuxxdx+

∫ L

0

q0dx

= Kux|L0 + q0L = q0L

since ux(0, t) = ux(L, t) = 0. Integrating in time from 0 to t we find

E(t) = q0Lt+ C.

But C = E(0) =
∫ L

0
cρu(x, 0)dx =

∫ L
0
cρf(x)dx. Hence, the total thermal

energy is given by

E(t) =

∫ L

0

cρf(x)dx+ q0Lt

Initial Boundary Value Problems
In order to solve the heat equation we must give the problem some initial
conditions. If you recall from the theory of ODE, the number of conditions
required for solving initial value problems always matched the highest order
of the derivative in the equation.
In partial differential equations the same idea holds except now we have to
pay attention to the variable we are differentiating with respect to as well.
So, for the heat equation we have got a first order time derivative and so we
will need one initial condition and a second order spatial derivative and so
we will need two boundary conditions.
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For the initial condition, we define the temperature of every point along the
rod at time t = 0 by

u(x, 0) = f(x)

where f is a given (prescribed) function of x. This function is known as the
initial temperature distribution.
The boundary conditions will tell us something about what the temperature
is doing at the ends of the bar. The conditions are given by

u(0, t) = T0 and u(L, t) = TL.

and they are called as the Dirichlet conditions. In this case, the general
form of the heat equation initial boundary value problem is to find u(x, t)
satisfying

ut(x, t) =kuxx(x, t), 0 ≤ x ≤ L, t > 0

u(x, 0) =f(x), 0 ≤ x ≤ L

u(0, t) =T0, u(L, t) = TL, t > 0.

In the case of insulated endpoints, i.e. there is no heat flow out of them, we
use the boundary conditions

ux(0, t) = ux(L, t) = 0.

These conditions are examples of what is known as Neumann boundary
conditions. In this case, the general form of the heat equation initial bound-
ary value problem is to find u(x, t) satisfying

ut(x, t) =kuxx(x, t), 0 ≤ x ≤ L, t > 0

u(x, 0) =f(x), 0 ≤ x ≤ L

ux(0, t) =ux(L, t) = 0, t > 0.
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Practice Problems
Exercise 14.1
Show that if u(x, t) and v(x, t) satisfy equation (14.1) then αu+ βv is also a
solution to (14.1), where α and β are constants.

Exercise 14.2
Show that any linear time independent function u(x, t) = ax+ b is a solution
to equation (14.1).

Exercise 14.3
Find a linear time independent solution u to (14.1) that satisfies u(0, t) = T0

and u(L, T ) = TL.

Exercise 14.4
Show that to solve (14.1) with the boundary conditions u(0, t) = T0 and
u(L, t) = TL it suffices to solve (14.1) with the homogeneous boundary
conditions u(0, t) = u(L, t) = 0.

Exercise 14.5
Find a solution to (14.1) that satisfies the conditions u(x, 0) = u(0, t) =
u(L, t) = 0.

Exercise 14.6
Let (I) denote equation (14.1) together with intial condition u(x, 0) = f(x),
where f is not the zero function, and the homogeneous boundary conditions
u(0, t) = u(L, t) = 0. Suppose a nontrivial solution to (I) can be written in
the form u(x, t) = X(x)T (t). Show that X and T satisfy the ODE

X ′′ − λ
k
X = 0 and T ′ − λT = 0

for some constant λ.

Exercise 14.7
Consider again the solution u(x, t) = X(x)T (t). Clearly, T (t) = T (0)eλt.
Suppose that λ > 0.
(a) Show that X(x) = Aex

√
α + Be−x

√
α, where α = λ

k
and A and B are

arbitrary constants.
(b) Show that A and B satisfy the two equations A + B = 0 and A(eL

√
α −

e−L
√
α) = 0.

(c) Show that A = 0 leads to a contradiction.
(d) Using (b) and (c) show that eL

√
α = e−L

√
α. Show that this equality leads

to a contradiction. We conclude that λ < 0.
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Exercise 14.8
Consider the results of the previous exercise.

(a) Show that X(x) = c1 cos βx+ c2 sin βx where β =
√
−λ
k
.

(b) Show that λ = λn = −kn2π2

L2 , where n is an integer.

Exercise 14.9

Show that u(x, t) =
∑n

k=1 uk(x, t), where un(x, t) = cne
− kn

2π2

L2 t sin
(
nπ
L

)
x sat-

isfies (14.1) and the homogeneous boundary conditions.

Exercise 14.10
Suppose that a wire is stretched between 0 and a. Describe the boundary
conditions for the temperature u(x, t) when
(i) the left end is kept at 0 degrees and the right end is kept at 100 degrees;
and
(ii) when both ends are insulated.

Exercise 14.11
Let ut = uxx for 0 < x < π and t > 0 with boundary conditions u(0, t) =
0 = u(π, t) and initial condition u(x, 0) = f(x). Let E(t) =

∫ π
0

(u2
t + u2

x)dx.
Show that E ′(t) < 0.

Exercise 14.12
Suppose

ut = uxx + 4, ux(0, t) = 5, ux(L, t) = 6, u(x, 0) = f(x).

Calculate the total thermal energy of the one-dimensional rod (as a function
of time).
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Sample Exam Questions

Exercise 14.13
Consider the heat equation

ut = kuxx

for x ∈ (0, 1) and t > 0, with boundary conditions u(0, t) = 2 and u(1, t) = 3
for t > 0 and initial conditions u(x, 0) = x for x ∈ (0, 1). A function v(x)
that satisfies the equation v′′(x) = 0, with conditions v(0) = 2 and v(1) = 3
is called a steady-state solution. That is, the steady-state solutions of the
heat equation are those solutions that don’t depend on time. Find v(x).

Exercise 14.14
Consider the equation for the one-dimensional rod of length L with given
heat energy source:

ut = uxx + q(x).

Assume that the initial temperature distribution is given by u(x, 0) = f(x).
Find the equilibrium (steady state) temperature distribution in the following
cases.
(a) q(x) = 0, u(0) = 0, u(L) = T.
(b) q(x) = 0, ux(0) = 0, u(L) = T.
(c) q(x) = 0, u(0) = T, ux(L) = α.

Exercise 14.15
Consider the equation for the one-dimensional rod of length L with insulated
ends:

cρut = Kuxx, ux(0, t) = ux(L, t) = 0.

(a) Give the expression for the total thermal energy of the rod.
(b) Show using the equation and the boundary conditions that the total
thermal energy is constant.

Exercise 14.16
Suppose

ut = uxx + x, u(x, 0) = f(x), ux(0, t) = β, ux(L, t) = 7.

(a) Calculate the total thermal energy of the one-dimensional rod (as a func-
tion of time).
(b) From part (a) find the value of β for which a steady-state solution exist.
(c) For the above value of β find the steady state solution.
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15 An Introduction to Fourier Series

In this and the next section we will have a brief look to the subject of Fourier
series. The point here is to do just enough to allow us to do some basic so-
lutions to partial differential equations later in the book.
Motivation: In Calculus we have seen that certain functions may be repre-
sented as power series by means of the Taylor expansions. These functions
must have infinitely many derivatives, and the series provide a good approx-
imation only in some (often small) vicinity of a reference point.
Fourier series constructed of trigonometric rather than power functions, and
can be used for functions not only not differentiable, but even discontinuous
at some points. The main limitation of Fourier series is that the underlying
function should be periodic.
Recall from calculus that a function series is a series where the summands
are functions. Examples of function series include power series, Laurent se-
ries, Fourier series, etc.
Unlike series of numbers, there exist many types of convergence of series of
functions, namely, pointwise, uniform, etc. We say that a series of functions∑∞

n=1 fn(x) converges pointwise to a function f if and only if the sequence
of partial sums

Sn(x) = f1(x) + f2(x) + · · ·+ fn(x)

converges pointwise to f. We write

∞∑
n=1

fn(x) = lim
n→∞

Sn(x) = f(x).

Likewise, we say that a series of functions
∑∞

n=1 fn(x) converges uniformly
to a function f if and only if the sequence of partial sums {Sn}∞n=1 converges
uniformly to f.
In this section we introduce a type of series of functions known as Fourier
series. They are given by

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
, − L ≤ x ≤ L (15.1)

where an and bn are called the Fourier coefficients. The expression on the
right is called a trigonometric series. Note that we begin the series with
a0

2
as opposed to simply a0 to simplify the coefficient formula for an that we
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will derive later in this section.
The main questions we want to consider next are the questions of determin-
ing which functions can be represented by Fourier series and if so how to
compute the coefficients an and bn.
Before answering these questions, we look at some of the properties of Fourier
series.

Periodicity Property
Recall that a function f is said to be periodic with period T > 0 if
f(x + T ) = f(x) for all x, x + T in the domain of f. The smallest value
of T for which f is periodic is called the fundamental period. A graph of
a T−periodic function is shown in Figure 15.1.

Figure 15.1

For a T−periodic function we have

f(x) = f(x+ T ) = f(x+ 2T ) = · · · .

Note that the definite integral of a T−periodic function is the same over any
interval of length T. By Exercise 15.1 below, if f and g are two periodic func-
tions with common period T, then the product fg and an arbitrary linear
combination c1f + c2g are also periodic with period T. It is an easy exercise
to show that the Fourier series (15.1) is periodic with fundamental period 2L.

Orthogonality Property
Recall from Calculus that for each pair of vectors ~u and ~v we associate a
scalar quantity ~u ·~v called the dot product of ~u and ~v. We say that ~u and ~v
are orthogonal if and only if ~u · ~v = 0. We want to define a similar concept
for functions.
Let f and g be two functions with domain the closed interval [a, b]. We define
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a function that takes a pair of functions to a scalar. Symbolically, we write

< f, g >=

∫ b

a

f(x)g(x)dx.

We call < f, g > the inner product of f and g. We say that f and g
are orthogonal if and only if < f, g >= 0. A set of functions is said to
be mutually orthogonal if each distinct pair of functions in the set is
orthogonal.

Example 15.1
Show that the set

{
1, cos

(
nπ
L
x
)
, sin

(
nπ
L
x
)

: n ∈ N
}

is mutually orthogonal in
[−L,L].

Solution.
We have ∫ L

−L
1 · cos

(nπ
L
x
)
dx =

L

nπ

[
sin
(nπ
L
x
)]L
−L

= 0

and ∫ L

−L
1 · sin

(nπ
L
x
)
dx = − L

nπ

[
cos
(nπ
L
x
)]L
−L

= 0.

Now, for n 6= m we have∫ L

−L
cos
(mπ
L
x
)

cos
(nπ
L
x
)
dx =

1

2

∫ L

−L

[
cos

(
(m+ n)π

L
x

)
+ cos

(
(m− n)π

L
x

)]
dx

=
1

2

[
L

(m+ n)π
sin

(
(m+ n)π

L
x

)
+

L

(m− n)π
sin

(
(m− n)π

L
x

)]L
−L

= 0

where we used the trigonometric identity

cos a cos b =
1

2
[cos (a+ b) + cos (a− b)].

In the exercises below, we show that∫ L

−L
sin
(mπ
L
x
)

sin
(nπ
L
x
)
dx = 0
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and ∫ L

−L
cos
(mπ
L
x
)

sin
(nπ
L
x
)
dx = 0

The reason we care about these functions being orthogonal is because we will
exploit this fact to develop a formula for the coefficients in our Fourier series.

Now, in order to answer the first question mentioned earlier, that is, which
functions can be expressed as a Fourier series expansion, we need to intro-
duce some mathematical concepts.
A function f(x) is said to be piecewise continuous on [a, b] if it is contin-
uous in [a, b] execept possibly at finitely many points of discontinuity within
the interval [a, b], and at each point of discontinuity, the right- and left-
handed limits of f exist. An example of a piecewise continuous function is
the function

f(x) =

{
x 0 ≤ x < 1

x2 − x 1 ≤ x ≤ 2.

We will say that f is piecewise smooth in [a, b] if and only if f(x) as well
as its derivatives are piecewise continuous.
The following theorem, proven in more advanced books, ensures that a
Fourier decomposition can be found for any function which is piecewise
smooth.

Theorem 15.1
Let f be a 2L-periodic function. If f is a piecewise smooth on [−L,L] then
for all points of discontinuity x ∈ (−L,L) we have

f(x−) + f(x+)

2
=
a0

2
+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
.

where as for points of continuity x ∈ (−L,L) we have

f(x) =
a0

2
+
∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
.

Remark 15.1
(1) Almost all functions occurring in practice are piecewise smooth functions.
(2) Given a non-periodic function f on [−L,L]. The above theorem applies
to the periodic extension F of f where F (x + 2nL) = f(x) (n ∈ Z) and
F (x) = f(x) on [−L,L].
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Convergence Results of Fourier Series
We list few of the results regarding the convergence of Fourier series:
(1) The type of convergence in the above theorem is pointwise convergence.
(2) The convergence is uniform for a continuous function f on [−L,L] such
that f(−L) = f(L).
(3) The convergence is uniform whenever

∑∞
n=1(|an|2 + |bn|2) is convergent.

(4) If f(x) is periodic, continuous, and has a piecewise continuous derivative,
then the Fourier Series corresponding to f converges uniformly to f(x) for
the entire real line.
(5) The convergence is uniform on any closed interval that does not contain
a point of discontinuity.

Euler-Fourier Formulas
Next, we will answer the second question mentioned earlier, that is, the ques-
tion of finding formulas for the coefficients an and bn. These formulas for an
and bn are called Euler-Fourier formulas which we derive next. We will as-
sume that the RHS in (15.1) converges uniformly to f(x) on the interval
[−L,L]. Integrating both sides of (15.1) we obtain∫ L

−L
f(x)dx =

∫ L

−L

a0

2
dx+

∫ L

−L

∞∑
n=1

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
dx.

Since the trigonometric series is assumed to be uniformly convergent, from
Section 2, we can interchange the order of integration and summation to
obtain∫ L

−L
f(x)dx =

∫ L

−L

a0

2
dx+

∞∑
n=1

∫ L

−L

[
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
)]
dx.

But ∫ L

−L
cos
(nπ
L
x
)
dx =

L

nπ
sin
(nπ
L
x
)]L
−L

= 0

and likewise ∫ L

−L
sin
(nπ
L
x
)
dx = − L

nπ
cos
(nπ
L
x
)]L
−L

= 0.

Thus,

a0 =
1

L

∫ L

−L
f(x)dx.
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To find the other Fourier coefficients, we recall the results of Exercises 15.2
- 15.3 below. ∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx =

{
L if m = n
0 if m 6= n∫ L

−L
sin
(nπ
L
x
)

sin
(mπ
L
x
)
dx =

{
L if m = n
0 if m 6= n∫ L

−L
sin
(nπ
L
x
)

cos
(mπ
L
x
)
dx = 0, ∀m,n.

Now, to find the formula for the Fourier coefficients am for m > 0, we multiply
both sides of (15.1) by cos

(
mπ
L
x
)

and integrate from −L to L to otbain∫ L

−L
f(x) cos

(mπ
L
x
)

=

∫ L

−L

a0

2
cos
(mπ
L
x
)
dx+

∞∑
n=1

[
an

∫ L

−L
cos
(nπ
L
x
)

cos
(mπ
L
x
)
dx

+ bn

∫ L

−L
sin
(nπ
L
x
)

cos
(mπ
L
x
)]

dx.

Hence, ∫ L

−L
f(x) cos

(mπ
L
x
)
dx = amL

and therefore

am =
1

L

∫ L

−L
f(x) cos

(mπ
L
x
)
dx.

Likewise, we can show that

bm =
1

L

∫ L

−L
f(x) sin

(mπ
L
x
)
dx.

Example 15.2
Find the Fourier series expansion of

f(x) =

{
0, x ≤ 0
x, x > 0

on the interval [−π, π].
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Solution.
We have

a0 =
1

π

∫ π

−π
f(x)dx =

1

π

∫ π

0

xdx =
π

2

an =
1

π

∫ π

0

x cosnxdx =
1

π

[
x sinnx

n
+

cosnx

n2

]π
0

=
(−1)n − 1

πn2

bn =
1

π

∫ π

0

x sinnxdx =
1

π

[
−x cosnx

n
+

sinnx

n2

]π
0

=
(−1)n+1

n

Hence,

f(x) =
π

4
+
∞∑
n=1

[
(−1)n − 1

πn2
cos (nx) +

(−1)n+1

n
sin (nx)

]

Example 15.3
Apply Theorem 15.1 to the function in Example 15.2.

Solution.
Let F be a periodic extension of f of period 2π. Thus, f(x) = F (x) on the
interval [−π, π]. Clearly, F is a piecewise smooth function so that by the
previous thereom we can write

π

4
+
∞∑
n=1

[
(−1)n − 1

πn2
cos (nx) +

(−1)n+1

n
sin (nx)

]
=


π
2
, if x = −π

f(x), if −π < x < π
π
2
, if x = π

Taking x = π we have the identity

π

4
+
∞∑
n=1

(−1)n − 1

πn2
(−1)n =

π

2

which can be simplified to

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

This provides a method for computing an approximate value of π
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Remark 15.2
An example of a function that does not have a Fourier series representation
is the function f(x) = 1

x2 on [−L,L]. For example, the coefficient a0 for this
function does not exist. Thus, not every function can be written as a Fourier
series expansion.

The final topic of discussion here is the topic of differentiation and integration
of Fourier series. In particular we want to know if we can differentiate a
Fourier series term by term and have the result be the Fourier series of the
derivative of the function. Likewise we want to know if we can integrate a
Fourier series term by term and arrive at the Fourier series of the integral of
the function. Answers to these questions are provided next.

Theorem 15.2
A Fourier series of a piecewise smooth function f can always be integrated
term by term and the result is a convergent infinite series that always con-
verges to

∫ L
−L f(x)dx even if the original series has jumps.

Theorem 15.3
A Fourier series of a continuous function f(x) can be differentiated term by
term if f ′(x) is piecewise smooth. The result of the differentiation is the
Fourier series of f ′(x).
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Practice Problems

Exercise 15.1
Let f and g be two functions with common domain D and common period
T. Show that
(a) fg is periodic of period T.
(b) c1f + c2g is periodic of period T, where c1 and c2 are real numbers.

Exercise 15.2
Show that for m 6= n we have
(a)
∫ L
−L sin

(
mπ
L
x
)

sin
(
nπ
L
x
)
dx = 0 and

(b)
∫ L
−L cos

(
mπ
L
x
)

sin
(
nπ
L
x
)
dx = 0.

Exercise 15.3
Compute the following integrals:
(a)
∫ L
−L cos2

(
nπ
L
x
)
dx.

(b)
∫ L
−L sin2

(
nπ
L
x
)
dx.

(c)
∫ L
−L cos

(
nπ
L
x
)

sin
(
nπ
L
x
)
dx.

Exercise 15.4
Find the Fourier coefficients of

f(x) =


−π, −π ≤ x < 0
π, 0 < x < π
0, x = 0, π

on the interval [−π, π].

Exercise 15.5
Find the Fourier series of f(x) = x2 − 1

2
on the interval [−1, 1].

Exercise 15.6
Find the Fourier series of the function

f(x) =


−1, −2π < x < −π
0, −π < x < π
1, π < x < 2π.
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Exercise 15.7
Find the Fourier series of the function

f(x) =

{
1 + x, −2 ≤ x ≤ 0
1− x, 0 < x ≤ 2.

Exercise 15.8
Show that f(x) = 1

x
is not piecewise continuous on [−1, 1].

Exercise 15.9
Assume that f(x) is continuous and has period 2L. Prove that∫ L

−L
f(x)dx =

∫ L+a

−L+a

f(x)dx

is independent of a ∈ R. In particular, it does not matter over which interval
the Fourier coefficients are computed as long as the interval length is 2L.
[Remark: This result is also true for piecewise continuous functions].

Exercise 15.10
Consider the function f(x) defined by

f(x) =

{
1 0 ≤ x < 1
2 1 ≤ x < 3

and extended periodically with period 3 to R so that f(x+ 3) = f(x) for all
x.
(i) Find the Fourier series of f(x).
(ii) Discuss its limit: In particular, does the Fourier series converge pointwise
or uniformly to its limit, and what is this limit?
(iii) Plot the graph of f(x) and the limit of the Fourier series.
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Sample Exam Questions

Exercise 15.11
For the following functions f(x) on the interval −L < x < L, determine the
coefficients an, n = 0, 1, 2, · · · and bn, n ∈ N of the Fourier series expansion.
(a) f(x) = 1.
(b) f(x) = 2 + sin

(
πx
L

)
.

(c) f(x) =

{
1 x ≤ 0
0 x > 0.

(d) f(x) = x.

Exercise 15.12
Let f(t) be the function with period 2π defined as

f(t) =

{
2 if 0 ≤ x ≤ π

2

0 if π
2
< x ≤ 2π

f(t) has a Fourier series and that series is equal to

a0

2
+
∞∑
n=1

(an cosnt+ bn sinnt).

Find a3

b3
.

Exercise 15.13
Let f(x) = x3 on [−π, π], extended periodically to all of R. Find the Fourier
coefficients an, n = 1, 2, 3, · · · .

Exercise 15.14
Let f(x) be the square wave function

f(x) =

{
−π −π ≤ x < 0
π 0 ≤ x ≤ π

extended periodically to all of R. To what value does the Fourier series of
f(x) converge when x = 0?

Exercise 15.15
(a) Find the Fourier series of

f(x) =

{
1 −π ≤ x < 0
2 0 ≤ x ≤ π
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extended periodically to all of R. Simplify your coefficients as much as pos-
sible.
(b) Use (a) to evaluate the series

∑∞
n=1

(−1)n+1

(2n−1)
. Hint: Evaluate the Fourier

series at x = π
2
.
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16 Fourier Sines Series and Fourier Cosines Se-

ries

In this section we discuss some important properties of Fourier series when
the underlying function f is either even or odd.
A function f is odd if it satisfies f(−x) = −f(x) for all x in the domain of
f whereas f is even if it satisfies f(−x) = f(x) for all x in the domain of f.
Now, we recall from Exercises (1.6)-(1.7) the following facts about even and
odd functions. If f(x) is even then∫ L

−L
f(x)dx = 2

∫ L

0

f(x)dx.

If f is odd then ∫ L

−L
f(x)dx = 0.

Using just these basic facts we can figure out some important properties of
the Fourier series we get for odd or even functions.

Example 16.1
Show the following
(a) If f and g are either both even or both odd then fg is even.
(b) If f is odd and g is even then fg is odd.

Solution.
(a) Suppose that both f and g are even. Then (fg)(−x) = f(−x)g(−x) =
f(x)g(x) = (fg)(x). That is, fg is even. Now, suppose that both f and g
are odd. Then (fg)(−x) = f(−x)g(−x) = [−f(x)][−g(x)] = (fg)(x). That
is, fg is even.
(b) f is odd and g is even. Then (fg)(−x) = f(−x)g(−x) = −f(x)g(x) =
−(fg)(x). That is, fg is odd

Example 16.2
(a) Find the value of the integral

∫ L
−L f(x) sin

(
nπ
L
x
)
dx when f is even.

(b) Find the value of the integral
∫ L
−L f(x) cos

(
nπ
L
x
)
dx when f is odd.

Solution.
(a) Since the function sin

(
nπ
L
x
)

is odd and f is even, we have that f(x) sin
(
nπ
L
x
)
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is odd so that ∫ L

−L
f(x) sin

(nπ
L
x
)
dx = 0

(b) Since the function cos
(
nπ
L
x
)

is even and f is odd, we have that f(x) cos
(
nπ
L
x
)

is odd so that ∫ L

−L
f(x) cos

(nπ
L
x
)
dx = 0

Even and Odd Extensions
Let f : [0, L] → R be a piecewise smooth function. We define the odd
extension of this function on the interval −L ≤ x ≤ L by

fodd(x) =


f(x) 0 < x ≤ L
−f(−x) −L ≤ x < 0

0 x = 0.

This function will be odd on the interval [−L,L], and will be equal to f(x)
on the interval (0, L]. We can then further extend this function to the entire
real line by defining it to be 2L periodic. Let f odd denote this extension. We
note that f odd is an odd function and piecewise smooth so that by Theorem
15.1 it possesses a Fourier series expansion, and from the fact that it is odd
all of the a′ns are zero. Moreover, in the interval [0, L] we have

f(x) =
∞∑
n=1

bn sin
(nπ
L
x
)
. (16.1)

We call (16.1) the Fourier sine series of f.
The coefficients bn are given by the formula

bn =
1

L

∫ L

−L
f odd sin

(nπ
L
x
)
dx =

2

L

∫ L

0

f odd sin
(nπ
L
x
)
dx

=
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx

since f odd sin
(
nπ
L
x
)

is an even function.
Likewise, we can define the even extension of f on the interval −L ≤ x ≤ L
by

feven(x) =

{
f(x) 0 ≤ x ≤ L
f(−x) −L ≤ x < 0.
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We can then further extend this function to the entire real line by defining
it to be 2L periodic. Let f even denote this extension. Again, we note that
f even is equal to the original function f(x) on the interval upon which f(x)
is defined. Since f even is piecewise smooth, by Theorem 15.1 it possesses a
Fourier series expansion, and from the fact that it is even all of the b′ns are
zero. Moreover, in the interval [0, L] we have

f(x) =
a0

2
+
∞∑
n=1

an cos
(nπ
L
x
)
. (16.2)

We call (16.2) the Fourier cosine series of f. The coefficients an are given
by

an =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx, n = 0, 1, 2, · · · .

Example 16.3
Graph the odd and even extensions of the function f(x) = x, 0 ≤ x ≤ 1.

Solution.
We have fodd(x) = x for −1 ≤ x ≤ 1. The odd extension of f is shown in
Figure 16.1(a). Likewise,

feven(x) =

{
x 0 ≤ x ≤ 1
−x −1 ≤ x < 0.

The even extension is shown in Figure 16.1(b)

Figure 16.1
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Example 16.4
Find the Fourier sine series of the function

f(x) =

{
x, 0 ≤ x ≤ π

2

π − x, π
2
≤ x ≤ π.

Solution.
We have

bn =
2

π

[∫ π
2

0

x sinnxdx+

∫ π

π
2

(π − x) sinnxdx

]
.

Using integration by parts we find

∫ π
2

0

x sinnxdx =
[
−x
n

cosnx
]π

2

0
+

1

n

∫ π
2

0

cosnxdx

=− π cos (nπ/2)

2n
+

1

n2
[sinnx]

π
2
0

=− π cos (nπ/2)

2n
+

sin (nπ/2)

n2

while ∫ π

π
2

(π − x) sinnxdx =

[
−(π − x)

n
cosnx

]π
π
2

− 1

n

∫ π

π
2

cosnxdx

=
π cos (nπ/2)

2n
− 1

n2
[sinnx]ππ

2

=
π cos (nπ/2)

2n
+

sin (nπ/2)

n2

Thus,

bn =
4 sin (nπ/2)

πn2
,

and the Fourier sine series of f(x) is

f(x) =
∞∑
n=1

4 sin (nπ/2)

πn2
sinnx =

∞∑
n=1

4(−1)2n−1

π(2n− 1)2
sin (2n− 1)x
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Practice Problems

Exercise 16.1
Give an example of a function that is both even and odd.

Exercise 16.2
Graph the odd and even extensions of the function f(x) = 1, 0 ≤ x ≤ 1.

Exercise 16.3
Graph the odd and even extensions of the function f(x) = L−x for 0 ≤ x ≤
L.

Exercise 16.4
Graph the odd and even extensions of the function f(x) = 1 + x2 for 0 ≤
x ≤ L.

Exercise 16.5
Find the Fourier cosine series of the function

f(x) =

{
x, 0 ≤ x ≤ π

2

π − x, π
2
≤ x ≤ π

Exercise 16.6
Find the Fourier cosine series of f(x) = x on the interval [0, π].

Exercise 16.7
Find the Fourier sine series of f(x) = 1 on the interval [0, π].

Exercise 16.8
Find the Fourier sine series of f(x) = cos x on the interval [0, π].

Exercise 16.9
Find the Fourier cosine series of f(x) = e2x on the interval [0, 1].
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Sample Exam Questions

Exercise 16.10
For the following functions on the interval [0, L], find the coefficients bn of
the Fourier sine expansion.
(a) f(x) = sin

(
2π
L
x
)
.

(b) f(x) = 1
(c) f(x) = cos

(
π
L
x
)
.

Exercise 16.11
For the following functions on the interval [0, L], find the coefficients an of
the Fourier cosine expansion.
(a) f(x) = 5 + cos

(
π
L
x
)
.

(b) f(x) = x
(c)

f(x) =

{
1 0 < x ≤ L

2

0 L
2
< x ≤ L

Exercise 16.12
Consider a function f(x), defined on 0 ≤ x ≤ L, which is even (symmetric)
around x = L

2
. Show that the even coefficients (n even) of the Fourier sine

series are zero.

Exercise 16.13
Consider a function f(x), defined on 0 ≤ x ≤ L, which is odd around x = L

2
.

Show that the even coefficients (n even) of the Fourier cosine series are zero.

Exercise 16.14
The Fourier sine series of f(x) = cos

(
πx
L

)
for 0 ≤ x ≤ L is given by

cos
(πx
L

)
=
∞∑
n=1

bn sin
(nπx
L

)
, n ∈ N

where

b1 = 0, bn =
2n

(n2 − 1)π
[1 + (−1)n].

Using term-by-term integration, find the Fourier cosine series of sin
(
nπx
L

)
.
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Exercise 16.15
Consider the function

f(x) =

{
1 0 ≤ x < 1
2 1 ≤ x < 2

(a) Sketch the even extension of f.
(b) Find a0 in the Fourier series for the even extension of f.
(c) Find an (n = 1, 2, · · · ) in the Fourier series for the even extension of f.
(d) Find bn in the Fourier series for the even extension of f.
(e) Write the Fourier series for the even extension of f.
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17 Separation of Variables for PDEs

Finding analytic solutions to PDEs is essentially impossible. Most of the
PDE techniques involve a mixture of analytic, qualitative and numeric ap-
proaches. Of course, there are some easy PDEs too. If you are lucky your
PDE has a solution with separable variables. In this section we discuss the
application of the method of separation of variables in the solution of PDEs.
In developing a solution to a partial differential equation by separation of
variables, one assumes that it is possible to separate the contributions of
the independent variables into separate functions that each involve only one
independent variable. Thus, the method consists of the following steps
1. Factorize the (unknown) dependent variable of the PDE into a product of
functions, each of the factors being a function of one independent variable.
That is,

u(x, y) = X(x)Y (y).

2. Substitute into the PDE, and divide the resulting equation by X(x)Y (y).
3. Then the problem turns into a set of separated ODEs (one for X(x) and
one for Y (y).)
4. The general solution of the ODEs is found, and boundary initial condi-
tions are imposed.
5. u(x, y) is formed by multiplying together X(x) and Y (y).

We illustrate these steps in the next two examples.

Example 17.1
Find all the solutions of the form u(x, t) = X(x)T (t) of the equation

uxx − ux = ut

Solution.
It is very easy to find the derivatives of a separable function:

ux = X ′(x)T (t), ut = X(x)T ′(t) and uxx = X ′′(x)T (t)

this is basically a consequence of the fact that differentiation with respect
to x sees t as a constant, and vice versa. Now the equation uxx − ux = ut
becomes

X ′′(x)T (t)−X ′(x)T (t) = X(x)T ′(t).
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We can separate variables further. Division by X(x)T (t) gives

X ′′(x)−X ′(x)

X(x)
=
T ′(t)

T (t)
.

The expression on the LHS is a function of x whereas the one on the RHS is
a function of t only. They both have to be constant. That is,

X ′′(x)−X ′(x)

X(x)
=
T ′(t)

T (t)
= λ.

Thus, we have the following ODEs:

X ′′ −X ′ − λX = 0 and T ′ = λT.

The second equation is easy to solve: T (t) = Ceλt. The first equation is
solved via the characteristic equation ω2 − ω − λ = 0, whose solutions are

ω =
1±
√

1 + 4λ

2
.

If λ > −1
4

then

X(x) = Ae
1+
√

1+4λ
2

x +Be
1−
√

1+4λ
2

x.

In this case,

u(x, t) = De
1+
√

1+4λ
2

xeλt + Ee
1−
√

1+4λ
2

xeλt.

If λ = −1
4

then

X(x) = Ae
x
2 +Bxe

x
2

and in this case
u(x, t) = (D + Ex)e

x
2
− t

4 .

If λ < −1
4

then

X(x) = Ae
x
2 cos

(√
−(1 + 4λ)

2
x

)
+Be

x
2 sin

(√
−(1 + 4λ)

2
x

)
.

In this case,

u(x, t) = D′e
x
2

+λt cos

(√
−(1 + 4λ)

2
x

)
+B′e

x
2

+λt sin

(√
−(1 + 4λ)

2
x

)
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Example 17.2
Solve Laplace’s equation using the separation of variables method

∆u = uxx + uyy = 0.

Solution.
We look for a solution of the form u(x, y) = X(x)Y (y). Substituting in the
Laplace’s equation, we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y)

from both sides, we find:

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

The solutions of these equations depend on the sign of λ.
• If λ > 0 then the solutions are given

X(x) =Ae
√
λx +Be−

√
λx

Y (y) =C cos (
√
λy) +D sin (

√
λy)

where A,B,C, and D are constants. In this case,

u(x, t) =k1e
√
λx cos (

√
λy) + k2e

√
λx sin (

√
λy)

+k3e
−
√
λx cos (

√
λy) + k4e

−
√
λx sin (

√
λy).

• If λ = 0 then

X(x) =Ax+B

Y (y) =Cy +D
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where A,B, and C are arbitrary constants. In this case,

u(x, y) = k1xy + k2x+ k3y + k4.

• If λ < 0 then

X(x) =A cos (
√
−λx) +B sin (

√
−λx)

Y (y) =Ce
√
−λy +De−

√
−λy

where A,B,C, and D are arbitrary constants. In this case,

u(x, y) =k1 cos (
√
−λx)e

√
−λy + k2 cos (

√
−λx)e−

√
−λy

+k3 sin (
√
−λx)e

√
−λy + k4 sin (

√
−λx)e−

√
−λy

Example 17.3
Solve using the separation of variables method.

yux − xuy = 0.

Solution.
Substitute u(x, y) = X(x)Y (y) into the given equation we find

yX ′Y − xXY ′ = 0.

This can be separated into
X ′

xX
=

Y ′

yY
.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X ′

xX
=

Y ′

yY
= λ

where λ is a constant. This results in the following two ODEs

X ′ − λxX = 0 and Y ′ − λyY = 0.

Solving these equations using the method of separation of variable for ODEs

we find X(x) = Ae
λx2

2 and Y (y) = Be
λy2

2 . Thus, the general solution is given
by

u(x, y) = Ce
λ(x2+y2)

2
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Practice Problems

Exercise 17.1
Solve using the separation of variables method

∆u+ λu = 0.

Exercise 17.2
Solve using the separation of variables method

ut = kuxx.

Exercise 17.3
Derive the system of ordinary differential equations for R(r) and Θ(θ) that
is satisfied by solutions to

urr +
1

r
ur +

1

r2
uθθ = 0.

Exercise 17.4
Derive the system of ordinary differential equations and boundary conditions
for X(x) and T (t) that is satisfied by solutions to

utt = uxx − 2u, 0 < x < 1, t > 0

u(0, t) = 0 = u(1, t) t > 0

of the form u(x, t) = X(x)T (t). (Note: you do not need to solve for X and
T .)

Exercise 17.5
Derive the system of ordinary differential equations and boundary conditions
for X(x) and T (t) that is satisfied by solutions to

ut = kuxx, 0 < x < L, t > 0

u(x, 0) = f(x), ux(0, t) = 0 = ux(L, t) t > 0

of the form u(x, t) = X(x)T (t). (Note: you do not need to solve for X and
T .)

Exercise 17.6
Find all product solutions of the PDE ux + ut = 0.
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Exercise 17.7
Derive the system of ordinary differential equations for X(x) and Y (y) that
is satisfied by solutions to

3uyy − 5uxxxy + 7uxxy = 0.

of the form u(x, y) = X(x)Y (y).

Exercise 17.8
Find the general solution by the method of separation of variables.

uxy + u = 0.

Exercise 17.9
Find the general solution by the method of separation of variables.

ux − yuy = 0.
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Sample Exam Questions

Exercise 17.10
Find the general solution by the method of separation of variables.

utt − uxx = 0.

Exercise 17.11
For the following PDEs find the ODEs implied by the method of separation
of variables.
(a) ut = kr(rur)r
(b) ut = kuxx − αu
(c) ut = kuxx − aux
(d) uxx + uyy = 0
(e) ut = kuxxxx.

Exercise 17.12
Find all solutions to the following partial differential equation that can be
obtained via the separation of variables.

ux − uy = 0.

Exercise 17.13
Separate the PDE uxx−uy +uyy = u into two ODEs with a parameter. You
do not need to solve the ODEs.
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18 Solutions of the Heat Equation by the Sep-

aration of Variables Method

In this section we apply the method of separation of variables in solving the
one spatial dimension of the heat equation.

The Heat Equation with Dirichlet Boundary Conditions
Consider the problem of finding all nontrivial solutions to the heat equation
ut = kuxx that satisfies the initial time condition u(x, 0) = f(x) and the
Dirichlet boundary conditions u(0, t) = T0 and u(L, t) = TL.
From Exercise 14.4, it suffices to solve the problem with the Dirichlet bound-
ary conditions being replaced by the homogeneous boundary conditions u(0, t) =
u(L, t) = 0 (that is, the endpoints are assumed to be at zero temperature)
with u not the trivial solution. Let’s assume that the solution can be writ-
ten in the form u(x, t) = X(x)T (t). Substituting into the heat equation we
obtain

X ′′

X
=

T ′

kT
.

Since the LHS only depends on x and the RHS only depends on t, there must
be a constant λ such that

X′′

X
= λ and T ′

kT
= λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

As far as the boundary conditions, we have

u(0, t) = 0 = X(0)T (t) =⇒ X(0) = 0

and
u(L, t) = 0 = X(L)T (t) =⇒ X(L) = 0.

Note that T is not the zero function for otherwise u ≡ 0 and this contradicts
our assumption that u is the non-trivial solution.
Next, we consider the three cases of the sign of λ.
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Case 1: λ = 0
In this case, X ′′ = 0. Solving this equation we find X(x) = ax + b. Since
X(0) = 0 we find b = 0. Since X(L) = 0 we find a = 0. Hence, X ≡ 0 and
u(x, t) ≡ 0. That is, u is the trivial solution.

Case 2: λ > 0
In this case, X(x) = Ae

√
λx+Be−

√
λx. Again, the conditions X(0) = X(L) =

0 imply A = B = 0 and hence the solution is the trivial solution.

Case 3: λ < 0
In this case, X(x) = A cos

√
−λx + B sin

√
−λx. The condition X(0) = 0

implies A = 0. The condition X(L) = 0 implies B sin
√
−λL = 0. We must

have B 6= 0 otherwise X(x) = 0 and this leads to the trivial solution. Since
B 6= 0, we obtain sin

√
−λL = 0 or

√
−λL = nπ where n ∈ N. Solving for λ

we find λ = −n2π2

L2 . Thus, we obtain infinitely many solutions given by

Xn(x) = An sin
nπ

L
x, n ∈ N.

Now, solving the equation
T ′ − λkT = 0

by the method of separation of variables we obtain

Tn(t) = Bne
−n

2π2

L2 kt, n ∈ N.

Hence, the functions

un(x, t) = Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt, n ∈ N

satisfy ut = kuxx and the boundary conditions u(0, t) = u(L, t) = 0.
Now, in order for these solutions to satisfy the initial value condition u(x, 0) =
f(x), we invoke the superposition principle of linear PDE to write

u(x, t) =
∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt. (18.1)

To determine the unknown constants Cn we use the initial condition u(x, 0) =
f(x) in (18.1) to obtain

f(x) =
∞∑
n=1

Cn sin
(nπ
L
x
)
.
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Since the right-hand side is the Fourier sine series of f on the interval [0, L],
the coefficients Cn are given by

Cn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx. (18.2)

Thus, the solution to the heat equation is given by (18.1) with the C ′ns
calculated from (18.2).

Remark 18.1
According to Exercise 14.4, the solution to the heat equation with non-
homogeneous condition u(0, t) = T0 and u(L, t) = TL is given by

u(x, t) =
∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt + T0 +
TL − T0

L
x.

The Heat Equation with Neumann Boundary Conditions
When both ends of the bar are insulated, that is, there is no heat flow out
of them, we use the boundary conditions

ux(0, t) = ux(L, t) = 0.

In this case, the general form of the heat equation initial boundary value
problem is to find u(x, t) satisfying

ut(x, t) =kuxx(x, t), 0 ≤ x ≤ L, t > 0

u(x, 0) =f(x), 0 ≤ x ≤ L

ux(0, t) =ux(L, t) = 0, t > 0.

Since 0 = ux(0, t) = X ′(0)T (t) we obtain X ′(0) = 0. Likewise, 0 = ux(L, t) =
X ′(L)T (t) implies X ′(L) = 0. Now, differentiating X(x) = A cos

√
−λx +

B sin
√
−λx with respect to x we find

X ′(x) = −
√
−λA sin

√
−λx+

√
−λB cos

√
−λx.

The conditionsX ′(0) = X ′(L) = 0 imply
√
−λB = 0 and

√
−λA sin

√
−λL =

0. Hence, B = 0 and λ = −n2π2

L2 and

Xn(x) = An cos
(nπ
L
x
)
, n = 0, 1, 2, · · ·



18 SOLUTIONS OF THE HEAT EQUATION BY THE SEPARATION OF VARIABLES METHOD149

and

un(x, t) = Cn cos
(nπ
L
x
)
e−

n2π2

L2 kt.

By the superposition principle, the required solution to the heat equation
with Neumann boundary conditions is given by

u(x, t) =
C0

2
+
∞∑
n=1

Cn cos
(nπ
L
x
)
e−

n2π2

L2 kt

where

Cn =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx, n ∈ N.
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Practice Problems

Exercise 18.1
Find the temperature in a bar of length 2 whose ends are kept at zero
and lateral surface insulated if the initial temperature is f(x) = sin

(
π
2
x
)

+
3 sin

(
5π
2
x
)
.

Exercise 18.2
Find the temperature in a homogeneous bar of heat conducting material of
length L with its end points kept at zero and initial temperature distribution
given by f(x) = dx

L2 (L− x), 0 ≤ x ≤ L.

Exercise 18.3
Find the temperature in a thin metal rod of length L, with both ends insu-
lated (so that there is no passage of heat through the ends) and with initial
temperature in the rod f(x) = sin

(
π
L
x
)
.

Exercise 18.4
Solve the following heat equation with Dirichlet boundary conditions

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) =

{
1 0 ≤ x < L

2

2 L
2
≤ x ≤ L.

Exercise 18.5
Solve

ut = kuxx

u(0, t) = u(L, t) = 0

u(x, 0) = 6 sin

(
9π

L
x

)
.

Exercise 18.6
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) =

{
0 0 ≤ x < L

2

1 L
2
≤ x ≤ L.
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Exercise 18.7
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) = 6 + 4 cos

(
3π

L
x

)
.

Exercise 18.8
Solve

ut = kuxx

subject to
ux(0, t) = ux(L, t) = 0

u(x, 0) = −3 cos

(
8π

L
x

)
.

Exercise 18.9
Find the general solution u(x, t) of

ut = uxx − u, 0 < x < L, t > 0

ux(0, t) = 0 = ux(L, t), t > 0.

Briefly describe its behavior as t→∞.
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Sample Exam Questions

Exercise 18.10 (Energy method)
Let u1 and u2 be two solutions to the Robin boundary value problem

ut = uxx − u, 0 < x < 1, t > 0

ux(0, t) = ux(1, t) = 0, t > 0

u(x, 0) = g(x), 0 < x < 1

Define w(x, t) = u1(x, t)− u2(x, t).
(a) Show that w satisfies the initial value problem

wt = wxx − w, 0 < x < 1, t > 0

w(x, 0) = 0, 0 < x < 1

(b) Define E(t) =
∫ 1

0
w2(x, t)dx ≥ 0 for all t ≥ 0. Show that E ′(t) ≤ 0.

Hence, 0 ≤ E(t) ≤ E(0) for all t > 0.
(c) Show that E(t) = 0, w(x, t) = 0. Hence, conclude that u1 = u2.

Exercise 18.11
Consider the heat induction in a bar where the left end temperature is main-
tained at 0, and the right end is perfectly insulated. We assume k = 1 and
L = 1.
(a) Derive the boundary conditions of the temperature at the endpoints.
(b) Following the separation of variables approach, derive the ODEs for X
and T.
(c) Consider the equation in X(x). What are the values of X(0) and X(1)?
Show that solutions of the form X(x) = sin

√
−λx satisfy the ODE and one

of the boundary conditions. Can you choose a value of λ so that the other
boundary condition is also satisfied?

Exercise 18.12
Using the method of separation of variables find the solution of the heat
equation

ut = kuxx

satisfying the following boundary and initial conditions:
(a) u(0, t) = u(L, t) = 0, u(x, 0) = 6 sin

(
9πx
L

)
(b) u(0, t) = u(L, t) = 0, u(x, 0) = 3 sin

(
πx
L

)
− sin

(
3πx
L

)
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Exercise 18.13
Using the method of separation of variables find the solution of the heat
equation

ut = kuxx

satisfying the following boundary and initial conditions:
(a) ux(0, t) = ux(L, t) = 0, u(x, 0) = cos

(
πx
L

)
+ 4 cos

(
5πx
L

)
.

(b) ux(0, t) = ux(L, t) = 0, u(x, 0) = 5.

Exercise 18.14
Find the solution of the following heat conduction partial differential equation

ut = 8uxx, 0 < x < 4π, t > 0

u(0, t) = u(4π, t) = 0, t > 0

u(x, 0) = 6 sinx, 0 < x < 4π.
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19 Elliptic Type: Laplace’s Equations in Rect-

angular Domains

Boundary value problems are of great importance in physical applications.
Mathematically, a boundary-value problem consists of finding a function
which satisfies a given partial differential equation and particular bound-
ary conditions. Physically speaking, the problem is independent of time,
involving only space coordinates.
Just as initial-value problems are associated with hyperbolic PDE, bound-
ary value problems are associated with PDE of elliptic type. In contrast to
initial-value problems, boundary-value problems are considerably more diffi-
cult to solve.
The main model example of an elliptic type PDE is the Laplace equation

∆u = uxx + uyy = 0 (19.1)

where the symbol ∆ is referred to as the Laplacian. Solutions of this equa-
tion are called harmonic functions.

Example 19.1
Show that, for all (x, y) 6= (0, 0), u(x, y) = ln (x2 + y2) is a harmonic function.

Solution.
We have

ux =
2x

x2 + y2

uxx =
2y2 − 2x2

(x2 + y2)2

uy =
2y

x2 + y2

uyy =
2x2 − 2y2

(x2 + y2)2

Plugging these expressions into the equation we find uxx + uyy = 0. Hence,
u(x, y) is harmonic

The Laplace equation is arguably the most important differential equation in
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all of applied mathematics. It arises in an astonishing variety of mathemati-
cal and physical systems, ranging through fluid mechanics, electromagnetism,
potential theory, solid mechanics, heat conduction, geometry, probability,
number theory, and on and on.
There are two main modifications of the Laplace equation: the Poisson
equation (a non-homogeneous Laplace equation):

∆u = f(x, y)

and the eigenvalue problem (the Helmholtz equation):

∆u = λu, λ ∈ R.

Solving Laplace’s Equation (19.1)
Note first that both independent variables are spatial variables and each
variable occurs in a 2nd order derivative and so we will need two boundary
conditions for each variable a total of four boundary conditions.
Consider (19.1) in the rectangle

Ω = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}

with the Dirichlet boundary conditions

u(0, y) = f1(y), u(a, y) = f2(y), u(x, 0) = g1(x), u(x, b) = g2(x)

where 0 ≤ x ≤ a and 0 ≤ y ≤ b.
The separation of variables method is most successful when the boundary
conditions are homogeneous. Thus, solving the Laplace’s equation in Ω re-
quires solving four initial boundary conditions problems, where in each prob-
lem three of the four conditions are homogeneous. The four problems to be
solved are

(I)

 uxx + uyy = 0
u(0, y) = f1(y),

u(a, y) = u(x, 0) = u(x, b) = 0
(II)

 uxx + uyy = 0
u(a, y) = f2(y),

u(0, y) = u(x, 0) = u(x, b) = 0

(III)

 uxx + uyy = 0
u(x, 0) = g1(x),

u(0, y) = u(a, y) = u(x, b) = 0
(IV )

 uxx + uyy = 0
u(x, b) = g2(x),

u(0, y) = u(a, y) = u(x, 0) = 0
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If we let ui(x, y), i = 1, 2, 3, 4, denote the solution of each of the above
problems, then the solution to our original system will be

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y).

In each of the above problems, we will apply separation of variables to (19.1)
and find a product solution that will satisfy the differential equation and the
three homogeneous boundary conditions. Using the Principle of Superposi-
tion we will find a solution to the problem and then apply the final boundary
condition to determine the value of the constant(s) that are left in the prob-
lem. The process is nearly identical in many ways to what we did when we
were solving the heat equation.
We will illustrate how to find u(x, y) = u4(x, y). So let’s assume that the so-
lution can be written in the form u(x, y) = X(x)Y (y). Substituting in (19.1),
we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y)

from both sides, we find:

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = 0 = X(0)Y (y) =⇒ X(0) = 0

u(a, y) = 0 = X(a)Y (y) =⇒ X(a) = 0

u(x, 0) = 0 = X(x)Y (0) =⇒ Y (0) = 0

u(x, b) = g2(x) = X(x)Y (b).
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Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the first equation: since X ′′ − λX = 0 the solution depends on the
sign of λ. If λ = 0 thenX(x) = Ax+B. Now, the conditionsX(0) = X(a) = 0
imply A = B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ > 0 then
X(x) = Ae

√
λx + Be−

√
λx. Now, the conditions X(0) = X(a) = 0, λ 6= 0

imply A = B = 0 and hence the solution is the trivial solution. Hence, in
order to have a nontrivial solution we must have λ < 0. In this case,

X(x) = A cos
√
−λx+B sin

√
−λx.

The condition X(0) = 0 implies A = 0. The condition X(a) = 0 implies
B sin

√
−λa = 0. We must have B 6= 0 otherwise X(x) = 0 and this leads to

the trivial solution. Since B 6= 0, we obtain sin
√
−λa = 0 or

√
−λa = nπ

where n ∈ N. Solving for λ we find λn = −n2π2

a2 . Thus, we obtain infinitely
many solutions given by

Xn(x) = sin
nπ

a
x, n ∈ N.

Now, solving the equation
Y ′′ + λY = 0

we obtain

Yn(y) = ane
√
−λny + bne

−
√
−λny = An cosh

√
−λny +Bn sinh

√
−λny, n ∈ N.

Using the boundary condition Y (0) = 0 we obtain An = 0 for all n ∈ N.
Hence, the functions

un(x, y) = Bn sin
(nπ
a
x
)

sinh
(nπ
a
y
)
, n ∈ N

satisfy (19.1) and the boundary conditions u(0, y) = u(a, y) = u(x, 0) = 0.
Now, in order for these solutions to satisfy the boundary value condition
u(x, b) = g2(x), we invoke the superposition principle of linear PDE to write

u(x, y) =
∞∑
n=1

Bn sin
(nπ
a
x
)

sinh
(nπ
a
y
)
. (19.2)

To determine the unknown constants Bn we use the boundary condition
u(x, b) = g2(x) in (19.2) to obtain

g2(x) =
∞∑
n=1

(
Bn sinh

(nπ
a
b
))

sin
(nπ
a
x
)
.
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Since the right-hand side is the Fourier sine series of g2 on the interval [0, a],
the coefficients Bn are given by

Bn =

[
2

a

∫ a

0

g2(x) sin
(nπ
a
x
)
dx

]
[sinh

(nπ
a
b
)

]−1. (19.3)

Thus, the solution to the Laplace’s equation is given by (19.1) with the B′ns
calculated from (19.3).

Example 19.2
Solve 

uxx + uyy = 0
u(0, y) = f1(y),

u(a, y) = u(x, 0) = u(x, b) = 0

Solution.
Assume that the solution can be written in the form u(x, y) = X(x)Y (y).
Substituting in (19.1), we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtracting Y ′′(y)
Y (y)

from both sides, we find:

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and Y ′′ + λY = 0.

As far as the boundary conditions, we have for all 0 ≤ x ≤ a and 0 ≤ y ≤ b

u(0, y) = f1(y) = X(0)Y (y)

u(a, y) = 0 = X(a)Y (y) =⇒ X(a) = 0
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u(x, 0) = 0 = X(x)Y (0) =⇒ Y (0) = 0

u(x, b) = 0 = X(x)Y (b) =⇒ Y (b) = 0

Note that X and Y are not the zero functions for otherwise u ≡ 0 and this
contradicts our assumption that u is the non-trivial solution.
Consider the second equation: since Y ′′+λY = 0 the solution depends on the
sign of λ. If λ = 0 then Y (y) = Ay+B. Now, the conditions Y (0) = Y (b) = 0
imply A = B = 0 and so u ≡ 0. So assume that λ 6= 0. If λ < 0 then
Y (y) = Ae

√
−λy + Be−

√
−λy. Now, the condition Y (0) = Y (b) = 0 imply

A = B = 0 and hence the solution is the trivial solution. Hence, in order to
have a nontrivial solution we must have λ > 0. In this case,

Y (y) = A cos
√
λy +B sin

√
λy.

The condition Y (0) = 0 implies A = 0. The condition Y (b) = 0 implies
B sin

√
λb = 0. We must have B 6= 0 otherwise Y (y) = 0 and this leads to

the trivial solution. Since B 6= 0, we obtain sin
√
λb = 0 or

√
λb = nπ where

n ∈ N. Solving for λ we find λn = n2π2

b2
. Thus, we obtain infinitely many

solutions given by

Yn(y) = sin
(nπ
b
y
)
, n ∈ N.

Now, solving the equation

X ′′ − λX = 0, λ > 0

we obtain

Xn(x) = ane
√
λnx + bne

−
√
λnx = An cosh

(nπ
b
x
)

+Bn sinh
(nπ
b
x
)
, n ∈ N.

However, this is not really suited for dealing with the boundary condition
X(a) = 0. So, let’s also notice that the following is also a solution.

Xn(x) = An cosh
(nπ
b

(x− a)
)

+Bn sinh
(nπ
b

(x− a)
)
, n ∈ N.

Now, using the boundary condition X(a) = 0 we obtain An = 0 for all n ∈ N.
Hence, the functions

un(x, y) = Bn sin
(nπ
b
y
)

sinh
(nπ
b

(x− a)
)
, n ∈ N
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satisfy (19.1) and the boundary conditions u(a, y) = u(x, 0) = u(x, b) = 0.
Now, in order for these solutions to satisfy the boundary value condition
u(0, y) = f1(y), we invoke the superposition principle of linear PDE to write

u(x, y) =
∞∑
n=1

Bn sin
(nπ
b
y
)

sinh
(nπ
b

(x− a)
)
. (19.4)

To determine the unknown constants Bn we use the boundary condition
u(0, y) = f1(y) in (19.4) to obtain

f1(y) =
∞∑
n=1

(
Bn sinh

(
−nπ
b
a
))

sin
(nπ
b
y
)
.

Since the right-hand side is the Fourier sine series of f1 on the interval [0, b],
the coefficients Bn are given by

Bn =

[
2

b

∫ b

0

f1(y) sin
(nπ
b
y
)
dy

] [
sinh

(
−nπ
b
a
)]−1

. (19.5)

Thus, the solution to the Laplace’s equation is given by (19.4) with the B′ns
calculated from (19.5)

Example 19.3
Solve

uxx + uyy = 0, 0 < x < L, 0 < y < H

u(0, y) = u(L, y) = 0, 0 < y < H

u(x, 0) = uy(x, 0), u(x,H) = f(x), 0 < x < L.

Solution.
Using separation of variables we find

X ′′

X
= −Y

′′

Y
= λ.

We first solve {
X ′′ − λX = 0 0 < x < L

X(0) = X(L) = 0

We find λn = −n2π2

L2 and

Xn(x) = sin
nπ

L
x, n ∈ N.
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Next we need to solve{
Y ′′ + λY = 0 0 < y < H

Y (0)− Y ′(0) = 0

The solution of the ODE is

Yn(y) = An cosh
(nπ
L
y
)

+Bn sinh
(nπ
L
y
)
, n ∈ N.

The boundary condition Y (0)− Y ′(0) = 0 implies

An −Bn
nπ

L
= 0.

Hence,

Yn = Bn
nπ

L
cosh

(nπ
L
y
)

+Bn sinh
(nπ
L
y
)
, n ∈ N.

Using the superposition principle and the results above we have

u(x, y) =
∞∑
n=1

Bn sin
nπ

L
x
[nπ
L

cosh
(nπ
L
y
)

+ sinh
(nπ
L
y
)]
.

Substituting in the condition u(x,H) = f(x) we find

f(x) =
∞∑
n=1

Bn sin
nπ

L
x
[nπ
L

cosh
(nπ
L
H
)

+ sinh
(nπ
L
H
)]
.

Recall the Fourier sine series of f on [0, L] given by

f(x) =
∞∑
n=1

An sin
nπ

L
x

where

An =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx.

Thus, the general solution is given by

u(x, y) =
∞∑
n=1

Bn sin
nπ

L
x
[nπ
L

cosh
(nπ
L
y
)

+ sinh
(nπ
L
y
)]
.

with the Bn satisfying

Bn

[nπ
L

cosh
(nπ
L
H
)

+ sinh
(nπ
L
H
)]

=
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx
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Practice Problems
Exercise 19.1
Solve 

uxx + uyy = 0
u(a, y) = f2(y),

u(0, y) = u(x, 0) = u(x, b) = 0.

Exercise 19.2
Solve 

uxx + uyy = 0
u(x, 0) = g1(x),

u(0, y) = u(a, y) = u(x, b) = 0.

Exercise 19.3
Solve 

uxx + uyy = 0
u(x, 0) = u(0, y) = 0,

u(1, y) = 2y, u(x, 1) = 3 sin πx+ 2x

where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Hint: Define U(x, y) = u(x, y)− 2xy.

Exercise 19.4
Show that u(x, y) = x2 − y2 and u(x, y) = 2xy are harmonic functions.

Exercise 19.5
Solve

uxx + uyy = 0, 0 ≤ x ≤ L, − H

2
≤ y ≤ H

2
subject to

u(0, y) = u(L, y) = 0, − H

2
< y <

H

2

u(x,−H
2

) = f1(x), u(x,
H

2
) = f2(x), 0 ≤ x ≤ L.

Exercise 19.6
Consider a complex valued function f(z) = u(x, y)+ iv(x, y) where i =

√
−1.

We say that f is holomorphic or analytic if and only if f can be expressed
as a power series in z, i.e.

u(x, y) + iv(x, y) =
∞∑
n=0

anz
n.

(a) By differentiating with respect to x and y show that
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ux = vy and uy = −vx

These are known as the Cauchy-Riemann equations.
(b) Show that ∆u = 0 and ∆v = 0.

Exercise 19.7
Show that Laplace’s equation in polar coordinates is given by

urr +
1

r
ur +

1

r2
uθθ = 0.

Exercise 19.8
Solve

uxx + uyy = 0, 0 ≤ x ≤ 2, 0 ≤ y ≤ 3

subject to

u(x, 0) = 0, u(x, 3) =
x

2

u(0, y) = sin

(
4π

3
y

)
, u(2, y) = 7.

Exercise 19.9
Solve

uxx + uyy = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

subject to
uy(x, 0) = 0, u(x,H) = 0

u(0, y) = u(L, y) = 4 cos
( πy

2H

)
.

Exercise 19.10
Solve

uxx + uyy = 0, x > 0, 0 ≤ y ≤ H

subject to
u(0, y) = f(y), |u(x, 0)| <∞

uy(x, 0) = uy(x,H) = 0.
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Sample Exam Questions

Exercise 19.11
Consider Laplace’s equation inside a rectangle

uxx + uyy = 0, 0 ≤ x ≤ L, 0 ≤ y ≤ H

subject to the boundary conditions

u(0, y) = 0, u(L, y) = 0, u(x, 0)−uy(x, 0) = 0, u(x,H) = 20 sin
(πx
L

)
−5 sin

(
3πx

L

)
.

Find the solution u(x, y).

Exercise 19.12
Solve Laplace’e equation uxx + uyy = 0 in the rectangle 0 < x, y < 1 subject
to the conditions

u(0, y) = u(1, y) = 0, 0 < y < 1

u(x, 0) = sin (2πx), ux(x, 0) = −2π sin (2πx), 0 < x < 1.

Exercise 19.13
Find the solution to Laplace’s equation on the rectangle 0 < x < 1, 0 < y < 1
with boundary conditions

u(x, 0) = 0, u(x, 1) = 1

ux(0, y) = ux(1, y) = 0.

Exercise 19.14
Solve Laplace’s equation on the rectangle 0 < x < a, 0 < y < b with the
boundary conditions

ux(0, y) = −a, ux(a, y) = 0

uy(x, 0) = b, uy(x, b) = 0.

Exercise 19.15
Solve Laplace’s equation on the rectangle 0 < x < π, 0 < y < 2 with the
boundary conditions

u(0, y) = u(π, y) = 0

uy(x, 0) = 0, uy(x, 2) = 2 sin 3x− 5 sin 10x.
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20 Laplace’s Equations in Circular Regions

In the previous section we solved the Dirichlet problem for Laplace’s equation
on a rectangular region. However, if the domain of the solution is a disc,
an annulus, or a circular wedge, it is useful to study the two-dimensional
Laplace’s equation in polar coordinates.
It is well known in calculus that the cartesian coordinates (x, y) and the polar
coordinates (r, θ) of a point are related by the formulas

x = r cos θ and y = r sin θ

where r = (x2 + y2)
1
2 and tan θ = y

x
. Using the chain rule we obtain

ux =urrx + uθθx = cos θur −
sin θ

r
uθ

uxx =uxrrx + uxθθx

=

(
cos θurr +

sin θ

r2
uθ −

sin θ

r
urθ

)
cos θ

+

(
− sin θur + cos θurθ −

cos θ

r
uθ −

sin θ

r
uθθ

)(
−sin θ

r

)
uy =urry + uθθy = sin θur +

cos θ

r
uθ

uyy =uyrry + uyθθy

=

(
sin θurr −

cos θ

r2
uθ +

cos θ

r
urθ

)
sin θ

+

(
cos θur + sin θurθ −

sin θ

r
uθ +

cos θ

r
uθθ

)(
cos θ

r

)
Substituting these equations into ∆u = 0 we obtain

urr +
1

r
ur +

1

r2
uθθ = 0. (20.1)

Example 20.1
Find the solution to

∆u = 0, x2 + y2 < a2

subject to
(i) Boundary condition: u(a, θ) = f(θ), − π ≤ θ ≤ π.
(ii) Boundedness at the origin: |u(0, θ)| <∞.
(iii) Periodicity: u(r, θ + 2π) = u(r, θ), − π ≤ θ ≤ π.
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Solution.
First, note that (iii) implies that u(r,−π) = u(r, π) and uθ(r,−π) = uθ(r, π).
Next, we will apply the method of separation of variables to (21.1). Suppose
that a solution u(r, θ) of (21.1) can be written in the form u(r, θ) = R(r)Θ(θ).
Substituting in (21.1) we obtain

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0.

Dividing by RΘ (under the assumption that RΘ 6= 0) we obtain

Θ′′(θ)

Θ(θ)
= −r2R

′′(r)

R(r)
− rR

′(r)

R(r)
.

The left-hand side is independent of r whereas the right-hand side is inde-
pendent of θ so that there is a constant λ such that

−Θ′′(θ)

Θ(θ)
= r2R

′′(r)

R(r)
+ r

R′(r)

R(r)
= λ.

This results in the following ODEs

Θ′′(θ) + λΘ(θ) = 0 (20.2)

and
r2R′′(r) + rR′(r)− λR(r) = 0. (20.3)

The second equation is known as Euler’s equation. Both of these equations
are easily solvable. To solve (20.2), we only have to add the appropriate
boundary conditions. From (iii), we have Θ(−π) = Θ(π) and Θ′(−π) =
Θ′(π). If λ > 0 then Θ(θ) = A cos (

√
λθ) +B cos (

√
λθ). Using the condition

Θ(−π) = Θ(π) we obtain 2B sin (
√
λπ) = 0. Using the condition Θ′(−π) =

Θ′(π) we obtain 2
√
λA sin (

√
λπ) = 0. If sin (

√
λπ) 6= 0 then A = B = 0

and we get the trivial solution. Therefore, we require sin (
√
λπ) = 0 and this

leads to λn = n2 for n = 1, 2, · · · . Note that we start with n = 1 since λ > 0.
Hence,

Θn(θ) = An cosnθ +Bn sinnθ.

If λ = 0 then Θ(θ) = A+Bθ and the conditions Θ(−π) = Θ(π) and Θ′(−π) =
Θ′(π) leads to Θ(θ) = A. If λ < 0 then

Θ(θ) = A cosh (
√
−λθ) +B sinh (

√
−λθ)



20 LAPLACE’S EQUATIONS IN CIRCULAR REGIONS 167

and applying the conditions Θ(−π) = Θ(π) and Θ′(−π) = Θ′(π) we find
A = B = 0. In summary, we have

Θn(θ) = A′n cosnθ +B′n sinnθ, n = 0, 1, 2 · · ·

The equation in R is of Euler type and its solution must be of the form
R(r) = rα. Substituting into (20.3) and using λ = n2, we find

α(α− 1)rα + αrα − n2rα = 0.

Solving this equation we find α = ±n. Hence, we let

Rn(r) = Cnr
n +Dnr

−n, n ∈ N.

For n = 0, R = 1 is a solution. To find a second solution, we solve the
equation

r2R′′ + rR′ = 0.

This can be done by dividing through by r and using the substitution S = R′

to obtain rS ′ + S = 0. Solving this by noting that the left-hand side is just
(rS)′ we find S = c

r
. Hence, R′ = c

r
and this implies R(r) = C ln r. Thus,

R = 1 and R = ln r form a couple of linearly independent solutions of (20.3)
and so a general solution is given by

R0(r) = C0 +D0 ln r.

By assumption (ii), u(r, θ) must be bounded near r = 0, and so does Rn.
Since r−n and ln r are unbounded near r = 0, we must set D0 = Dn = 0. In
this case, the solutions to Euler’s equation are given by

Rn(r) = Cnr
n, n = 0, 1, 2, · · · .

Using the superposition principle, and combining the results obtained above,
we find

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ).

Now, using the boundary condition u(a, θ) = f(θ) we can write

f(θ) = C0 +
∞∑
n=1

(anAn cosnθ + anBn sinnθ)
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which is usually written in a more convenient equivalent form by

f(θ) =
a0

2
+
∞∑
n=1

(an cosnθ + bn sinnθ).

It is obvious that an and bn are the Fourier coefficients, and therefore can be
determined by the formulas

an =
1

π

∫ π

−π
f(θ) cosnθdθ, n = 0, 1, · · ·

and

bn =
1

π

∫ π

−π
f(θ) sinnθdθ, n = 1, 2, · · · .

Finally, the general solution to our problem is given by

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

where

C0 =
a0

2
=

1

2π

∫ π

−π
f(θ)dθ

An =
an
an

=
1

anπ

∫ π

−π
f(θ) cosnθdθ, n = 1, 2, · · ·

Bn =
bn
an

=
1

anπ

∫ π

−π
f(θ) sinnθdθ, n = 1, 2, · · ·

Example 20.2
Find a 2π−periodic function solution

∆u = 0, − π ≤ θ < π, 1 ≤ r ≤ 2

subject to
u(1, θ) = u(2, θ) = sin θ, − π ≤ θ < π.

Solution.
Use separation of variables. First, solving for Θ(θ)), we see that in order
to ensure that the solution is 2π−periodic in θ, the eigenvalues are λ = n2.
When solving the equation for R(r), we do NOT need to throw out solutions
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which are not bounded as r → 0. This is because we are working in the
annulus where r is bounded away from 0 and ∞. Therefore, we obtain the
general solution

u(r, θ) = (C0 +C1 ln r)+
∞∑
n=1

[(Cnr
n+Dnr

−n) cosnθ+(Anr
n+Bnr

−n) sinnθ].

But

C0 +
∞∑
n=1

[(Cn +Dn) cosnθ + (An +Bn) sinnθ] = sin θ

and

C0 + C1 ln 2 +
∞∑
n=1

[(Cn2n +Dn2−n) cosnθ + (An2n +Bn2−n) sinnθ] = sin θ

Hence, comparing coefficients we must have

C0 =0

Cn +Dn =0

An +Bn =0 n 6= 1

A1 +B1 =1

Cn2n +Dn2−n =0

An2n +Bn2−n =0 n 6= 1

2A1 + 2−1B1 =1

Solving these equations we find C0 = Cn = Dn = 0, A1 = 1
3
, B1 = 2

3
, and

An = Bn = 0 for n 6= 1. Hence, the solution to the problem is

u(r, θ) =
1

3

(
r +

2

r

)
sin θ

Example 20.3
Solve Laplace’s equation inside a 60◦ wedge of radius a subject to the bound-
ary conditions:
(1) u(a, θ) = 1

3
cos 9θ − 1

9
cos 3θ.

(2) uθ(r, 0) = 0, uθ(r,
π
3
) = 0.

(3) |u(0, θ)| <∞.
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Solution.
Letting u(r, θ) = R(r)Θ(θ) and separating the variables we obtain the eigen-
value problem

Θ′′(θ) + λΘ(θ) = 0.

As above, one can easily see that the solution is of the form

Θ(θ) = A cos
√
λθ +B sin

√
λθ.

The condition Θ′(0) = 0 implies B = 0. The condition Θ′
(
π
3

)
= 0 implies

λn = (3n)2, n = 0, 1, 2, · · · . Thus, the angular solution is

Θn(θ) = A′n cos 3nθ, n = 0, 1, 2, · · ·

The corresponding solutions of the radial problem are

Rn(r) = Anr
3n +Bnr

−3n, n = 0, 1, · · · .

To obtain a solution that remains bounded as r → 0 we take Bn = 0. Hence,

un(r, θ) =
∞∑
n=0

Cnr
3n cos 3nθ, n = 0, 1, 2, · · ·

Using the boundary condition

u(a, θ) =
1

3
cos 9θ − 1

9
cos 3θ

we obtain C1a
3 = −1

9
and C3a

9 = 1
3

and 0 otherwise. Thus,

u(a, θ) =
1

3

(r
a

)9

cos 9θ − 1

9

(r
a

)3

cos 3θ
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Practice Problems

Exercise 20.1
Solve the Laplace’s equation in the unit disk with u(1, θ) = 3 sin 5θ.

Exercise 20.2
Solve the Laplace’s equation in the upper half of the unit disk with u(1, θ) =
π − θ.

Exercise 20.3
Solve the Laplace’s equation in the unit disk with ur(1, θ) = 2 cos 2θ.

Exercise 20.4
Consider

u(r, θ) = C0 +
∞∑
n=1

rn(An cosnθ +Bn sinnθ)

with

C0 =
a0

2
=

1

2π

∫ π

−π
f(φ)dφ

An =
an
an

=
1

anπ

∫ π

−π
f(φ) cosnφdφ, n = 1, 2, · · ·

Bn =
bn
an

=
1

anπ

∫ π

−π
f(φ) sinnφdφ, n = 1, 2, · · ·

Using the trigonometric identity

cos a cos b+ sin a sin b = cos (a− b)

show that

u(r, θ) =
1

2π

∫ π

−π
f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ.

Exercise 20.5
(a) Using Euler’s formula from complex analysis eit = cos t+ i sin t show that

cos t =
1

2
(eit + e−it),
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where i =
√
−1.

(b) Show that

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) = 1 +

∞∑
n=1

(r
a

)n
ein(θ−φ) +

∞∑
n=1

(r
a

)n
e−in(θ−φ).

(c) Let q1 = r
a
ei(θ−φ) and q2 = r

a
e−i(θ−φ). It is defined in complex analysis that

the absolute value of a complex number z = x+iy is given by |z| = (x2+y2)
1
2 .

Using these concepts, show that |q1| < 1 and |q2| < 1.

Exercise 20.6
(a)Show that

∞∑
n=1

(r
a

)n
ein(θ−φ) =

rei(θ−φ)

a− rei(θ−φ)

and
∞∑
n=1

(r
a

)n
e−in(θ−φ) =

re−i(θ−φ)

a− re−i(θ−φ)

Hint: Each sum is a geoemtric series with a ratio less than 1 in absolute
value so that these series converges.
(b) Show that

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) =

a2 − r2

a2 − 2ar cos (θ − φ) + r2
.

Exercise 20.7
Show that

u(r, θ) =
a2 − r2

2π

∫ π

−π

f(φ)

a2 − 2ar cos (θ − φ) + r2
dφ.

This is known as the Poisson formula in polar coordinates.

Exercise 20.8
Solve

uxx + uyy = 0, x2 + y2 < 1

subject to
u(1, θ) = θ, − π ≤ θ ≤ π.
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Exercise 20.9
The vibrations of a symmetric circular membrane where the displacement
u(r, t) depends on r and t only can be describe by the one-dimensional wave
equation in polar coordinates

utt = c2(urr +
1

r
ur), 0 < r < a, t > 0

with initial condition
u(a, t) = 0, t > 0

and boundary conditions

u(r, 0) = f(r), ut(r, 0) = g(r), 0 < r < a.

(a) Show that the assumption u(r, t) = R(r)T (t) leads to the equation

1

c2

T ′′

T
=

1

R
R′′ +

1

r

R′

R
= λ.

(b) Show that λ < 0.

Exercise 20.10
Cartesian coordinates and cylindrical coordinates are shown in Figure 20.1
below.

Figure 20.1
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(a) Show that x = r cos θ, y = r sin θ, z = z.
(b) Show that

uxx + uyy + uzz = urr +
1

r
ur +

1

r2
uθθ + uzz.
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Sample Exam Questions

Exercise 20.11
An important result about harmonic functions is the so-called the maximum
principle which states: Any harmonic function u(x, y) defined in a domain
Ω satisfies the inequality

min
(x,y)∈∂Ω

u(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

u(x, y), ∀(x, y) ∈ Ω ∪ ∂Ω

where ∂Ω denotes the boundary of Ω.
Let u be harmonic in Ω = {(x, y) : x2 + y2 < 1} and satisfies u(x, y) = 2− x
for all (x, y) ∈ ∂Ω. Show that u(x, y) > 0 for all (x, y) ∈ Ω.

Exercise 20.12
Let u be harmonic in Ω = {(x, y) : x2 +y2 < 1} and satisfies u(x, y) = 1 + 3x
for all (x, y) ∈ ∂Ω. Determine
(i) max(x,y)∈Ω u(x, y)
(ii) min(x,y)∈Ω u(x, y)
without solving ∆u = 0.

Exercise 20.13
Let u1(x, y) and u2(x, y) be harmonic functions on a smooth domain Ω such
that

u1|∂Ω = g1(x, y) and u2|∂Ω = g3(x, y)

where g1 and g2 are continuous functions satisfying

max
(x,y)∈∂Ω

g1(x, y) < min
(x,y)∈∂Ω

g1(x, y).

Prove that u1(x, y) < u2(x, y) for all (x, y) ∈ Ω ∪ ∂Ω.

Exercise 20.14
Show that rn cos (nθ) and rn sin (nθ) satisfy Laplace’s equation in polar co-
ordinates.

Exercise 20.15
Solve the Dirichlet problem

∆u = 0, 0 ≤ r < a, − π ≤ θ ≤ π

u(a, θ) = sin2 θ.
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Exercise 20.16
Solve Laplace’s equation

uxx + uyy = 0

outside a circular disk (r ≥ a) subject to the boundary condition

u(a, θ) = ln 2 + 4 cos 3θ.

You may assume that the solution remains bounded as r →∞.



The Laplace Transform
Solutions for PDEs

If in a partial differential equation the time t is one of the independent vari-
ables of the searched-for function, we say that the PDE is an evolution
equation. Examples of evolutions equations are the heat equation and the
wave equation. In contrast, when the equation involves only spatial indepen-
dent variables then the equation is called a stationary equation. Examples
of stationary equations are the Laplace’s equations and Poisson equations.
There are classes of methods that can be used for solving the initial value or
initial boundary problems for evolution equations. We refer to these meth-
ods as the methods of integral transforms. The fundamental ones are the
Laplace and the Fourier transforms. In this chapter we will just consider the
Laplace transform.

21 Essentials of the Laplace Transform

Laplace transform has been introduced in an ODE course, and is used espe-
cially to solve linear ODEs with constant coefficients, where the equations
are transformed to algebraic equations. This idea can be easily extended
to PDEs, where the transformation leads to the decrease of the number of
independent variables. PDEs in two variables are thus reduced to ODEs. In
this section we review the Laplace transform and its properties.
Laplace transform is yet another operational tool for solving constant coeffi-
cients linear differential equations. The process of solution consists of three
main steps:
• The given “hard” problem is transformed into a “simple” equation.
• This simple equation is solved by purely algebraic manipulations.
• The solution of the simple equation is transformed back to obtain the so-

177
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lution of the given problem.
In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem. The third step is made easier by
tables, whose role is similar to that of integral tables in integration.
The above procedure can be summarized by Figure 21.1

Figure 21.1

The Laplace transform is defined in the following way. Let f(t) be defined
for t ≥ 0. Then the Laplace transform of f, which is denoted by L[f(t)]
or by F (s), is defined by the following equation

L[f(t)] = F (s) = lim
T→∞

∫ T

0

f(t)e−stdt =

∫ ∞
0

f(t)e−stdt

The integral which defines a Laplace transform is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral is convergent then we say that the function f(t)
possesses a Laplace transform. So what types of functions possess Laplace
transforms, that is, what type of functions guarantees a convergent improper
integral.

Example 21.1
Find the Laplace transform, if it exists, of each of the following functions

(a) f(t) = eat (b) f(t) = 1 (c) f(t) = t (d) f(t) = et
2

Solution.
(a) Using the definition of Laplace transform we see that

L[eat] =

∫ ∞
0

e−(s−a)tdt = lim
T→∞

∫ T

0

e−(s−a)tdt.

But ∫ T

0

e−(s−a)tdt =

{
T if s = a

1−e−(s−a)T

s−a if s 6= a.



21 ESSENTIALS OF THE LAPLACE TRANSFORM 179

For the improper integral to converge we need s > a. In this case,

L[eat] = F (s) =
1

s− a
, s > a.

(b) In a similar way to what was done in part (a), we find

L[1] =

∫ ∞
0

e−stdt = lim
T→∞

∫ T

0

e−stdt =
1

s
, s > 0.

(c) We have

L[t] =

∫ ∞
0

te−stdt =

[
−te

−st

s
− e−st

s2

]∞
0

=
1

s2
, s > 0.

(d) Again using the definition of Laplace transform we find

L[et
2

] =

∫ ∞
0

et
2−stdt.

If s ≤ 0 then t2−st ≥ 0 so that et
2−st ≥ 1 and this implies that

∫∞
0
et

2−stdt ≥∫∞
0
dt. Since the integral on the right is divergent, by the comparison theorem

of improper integrals (see Theorem 23.1 below) the integral on the left is also
divergent. Now, if s > 0 then

∫∞
0
et(t−s)dt ≥

∫∞
s
dt. By the same reasoning

the integral on the left is divergent. This shows that the function f(t) = et
2

does not possess a Laplace transform

The above example raises the question of what class or classes of functions
possess a Laplace transform. To answer this question we introduce few math-
ematical concepts.
A function f that satisfies

|f(t)| ≤Meat, t ≥ C (21.1)

is said to be a function with an exponential order a. If C = 0 in
(21.1) then the function is said to be exponentially bounded. Clearly,
if limt→∞ e

−atf(t) = 0 for some a > 0 then f is of exponential order a.
A function f is called piecewise continuous on an interval if the interval
can be broken into a finite number of subintervals on which the function is
continuous on each open subinterval (i.e. the subinterval without its end-
points) and has a finite limit at the endpoints (jump discontinuities and
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no vertical asymptotes) of each subinterval. Below is a sketch of a piecewise
continuous function.

Note that a piecewise continuous function is a function that has a finite
number of breaks in it and doesn’t blow up to infinity anywhere. A function
defined for t ≥ 0 is said to be piecewise continuous on the infinite in-
terval if it is piecewise continuous on 0 ≤ t ≤ T for all T > 0. Also, note
that a bounded continuous function is piecewise continuous.

Example 21.2
Show that the following functions are piecewise continuous and exponentially
bounded for t ≥ 0.

(a) f(t) = tn (b) f(t) = tn sin at

Solution.
(a) Since et =

∑∞
n=0

tn

n!
≥ tn

n!
, tn ≤ n!et for all t ≥ 0. Hence, tn is continuous

(and hence piecewise consitnuous) and exponentially bounded.
(b) Since |tn sin at| ≤ n!et, tn sin at is piecewise continuous and exponentially
bounded

The following is an existence result of Laplace transform.

Theorem 21.1
Suppose that f(t) is piecewise continuous on t ≥ 0 and has an exponential
order a. Then the Laplace transform

F (s) =

∫ ∞
0

f(t)e−stdt

exists as long as s > a. Note that the two conditions above are sufficient, but
not necessary, for F (s) to exist.
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In what follows, we will denote the class of all piecewise continuous functions
with an exponential order by PE . The next theorem shows that any linear
combination of functions in PE is also in PE . The same is true for the product
of two functions in PE .

Theorem 21.2
Suppose that f(t) and g(t) are two elements of PE with

|f(t)| ≤M1e
a1t, t ≥ C1 and |g(t)| ≤M2e

a1t, t ≥ C2.

(i) For any constants α and β the function αf(t) +βg(t) is also a member of
PE . Moreover

L[αf(t) + βg(t)] = αL[f(t)] + βL[g(t)].

(ii) The function h(t) = f(t)g(t) is an element of PE .

We next discuss the problem of how to determine the function f(t) if F (s)
is given. That is, how do we invert the transform. The following result on
uniqueness provides a possible answer. This result establishes a one-to-one
correspondence between the set PE and its Laplace transforms. Alterna-
tively, the following theorem asserts that the Laplace transform of a member
in PE is unique.

Theorem 21.3
Let f(t) and g(t) be two elements in PE with Laplace transforms F (s) and
G(s) such that F (s) = G(s) for some s > a. Then f(t) = g(t) for all t ≥ 0
where both functions are continuous.

With the above theorem, we can now officially define the inverse Laplace
transform as follows: For a function f ∈ PE whose Laplace transform is F,
we call f the inverse Laplace transform of F and write f = L−1[F (s)].
Symbolically

f(t) = L−1[F (s)]⇐⇒ F (s) = L[f(t)].

Example 21.3
Find L−1

(
1
s−1

)
, s > 1.
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Solution.
From Example 23.1(a), we have that L[eat] = 1

s−a , s > a. In particular, for

a = 1 we find that L[et] = 1
s−1

, s > 1. Hence, L−1
(

1
s−1

)
= et, t ≥ 0 .

The above theorem states that if f(t) is continuous and has a Laplace trans-
form F (s), then there is no other function that has the same Laplace trans-
form. To find L−1[F (s)], we can inspect tables of Laplace transforms of
known functions to find a particular f(t) that yields the given F (s).
When the function f(t) is not continuous, the uniqueness of the inverse
Laplace transform is not assured. The following example addresses the
uniqueness issue.

Example 21.4
Consider the two functions f(t) = H(t)H(3− t) and g(t) = H(t)−H(t− 3),
where H is the Heaviside function defined by

H(t) =

{
1, t ≥ 0
0, t < 0

(a) Are the two functions identical?
(b) Show that L[f(t)] = L[g(t).

Solution.
(a) We have

f(t) =

{
1, 0 ≤ t ≤ 3
0, t > 3

and

g(t) =

{
1, 0 ≤ t < 3
0, t ≥ 3

Since f(3) = 1 and g(3) = 0, f and g are not identical.
(b) We have

L[f(t)] = L[g(t)] =

∫ 3

0

e−stdt =
1− e−3s

s
, s > 0.

Thus, both functions f(t) and g(t) have the same Laplace transform even
though they are not identical. However, they are equal on the interval(s)
where they are both continuous

The inverse Laplace transform possesses a linear property as indicated in
the following result.
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Theorem 21.4
Given two Laplace transforms F (s) and G(s) then

L−1[aF (s) + bG(s)] = aL−1[F (s)] + bL−1[G(s)]

for any constants a and b.

Convolution integrals are useful when finding the inverse Laplace transform
of products. They are defined as follows: The convolution of two scalar
piecewise continuous functions f(t) and g(t) defined for t ≥ 0 is the integral

(f ∗ g)(t) =

∫ t

0

f(t− s)g(s)ds.

Example 21.5
Find f ∗ g where f(t) = e−t and g(t) = sin t.

Solution.
Using integration by parts twice we arrive at

(f ∗ g)(t) =
∫ t

0
e−(t−s) sin sds

= 1
2

[
e−(t−s)(sin s− cos s)

]t
0

= e−t

2
+ 1

2
(sin t− cos t)

Next, we state several properties of convolution product, which resemble
those of ordinary product.

Theorem 21.5
Let f(t), g(t), and k(t) be three piecewise continuous scalar functions defined
for t ≥ 0 and c1 and c2 are arbitrary constants. Then
(i) f ∗ g = g ∗ f (Commutative Law)
(ii) (f ∗ g) ∗ k = f ∗ (g ∗ k) (Associative Law)
(iii) f ∗ (c1g + c2k) = c1f ∗ g + c2f ∗ k (Distributive Law)

Example 21.6
Express the solution to the initial value problem y′ + αy = g(t), y(0) = y0

in terms of a convolution integral.
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Solution.
Solving this initial value problem by the method of integrating factor we find

y(t) = e−αty0 +

∫ t

0

e−α(t−s)g(s)ds = e−αty0 + (e−αt ∗ g)(t)

The following theorem, known as the Convolution Theorem, provides a way
for finding the Laplace transform of a convolution integral and also finding
the inverse Laplace transform of a product.

Theorem 21.6
If f(t) and g(t) are elements in PE then

L[(f ∗ g)(t)] = L[f(t)]L[g(t)] = F (s)G(s).

Thus, (f ∗ g)(t) = L−1[F (s)G(s)].0

Example 21.7
Use the convolution theorem to find the inverse Laplace transform of

P (s) =
1

(s2 + a2)2
.

Solution.
Note that

P (s) =

(
1

s2 + a2

)(
1

s2 + a2

)
.

So, in this case we have, F (s) = G(s) = 1
s2+a2 so that f(t) = g(t) = 1

a
sin (at).

Thus,

(f ∗ g)(t) =
1

a2

∫ t

0

sin (at− as) sin (as)ds =
1

2a3
(sin (at)− at cos (at))

The next example provides a solution method for solving ordinary differential
equations.

Example 21.8
Solve the initial value problem

4y′′ + y = g(t), y(0) = 3, y′(0) = −7
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Solution.
Take the Laplace transform of all the terms and plug in the initial conditions
to obtain

4(s2Y (s)− 3s+ 7) + Y (s) = G(s)

or
(4s2 + 1)Y (s)− 12s+ 28 = G(s).

Solving for Y (s) we find

Y (s) =
12s− 28

4
(
s2 + 1

4

) +
G(s)

4
(
s2 + 1

4

)
=

3s

s2 +
(
(1

2

)2 − 7

(
1
2

)2

s2 +
(

1
2

)2 +
1

4
G(s)

(
1
2

)2

s2 +
(

1
2

)2

Hence,

y(t) = 3 cos

(
t

2

)
− 7 sin

(
t

2

)
+

1

2

∫ t

0

sin
(s

2

)
g(t− s)ds.

So, once we decide on a g(t) all we need to do is to evaluate the integral and
we’ll have the solution

We conclude this section with the following table of Laplace transform pairs.
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f(t) F(s)

H(t) =
{

1, t ≥ 0
0, t < 0

1
s , s > 0

tn, n = 1, 2, · · · n!
sn+1 , s > 0

eαt 1
s−α , s > α

sin (ωt) ω
s2+ω2 , s > 0

cos (ωt) s
s2+ω2 , s > 0

sinh (ωt) ω
s2−ω2 , s > |ω|

cosh (ωt) s
s2−ω2 , s > |ω|

eαtf(t), with |f(t)| ≤Meat F (s− α), s > α+ a

eαttn, n = 1, 2, · · · n!
(s−α)n+1 , s > α

eαt sin (ωt) ω
(s−α)2+ω2 , s > α

eαt cos (ωt) s−α
(s−α)2+ω2 , s > α

f(t− α)H(t− α), α ≥ 0 e−αsF (s), s > a
with |f(t)| ≤Meat

H(t− α), α ≥ 0 e−αs

s , s > 0
tf(t) -F ′(s)

t
2ω sinωt s

(s2+ω2)2
, s > 0

1
2ω3 [sinωt− ωt cosωt] 1

(s2+ω2)2
, s > 0

f ′(t), with f(t) continuous sF (s)− f(0)
and |f ′(t)| ≤Meat s > max{a, 0}+ 1

f ′′(t), with f ′(t) continuous s2F (s)− sf(0)− f ′(0)
and |f ′′(t)| ≤Meat s > max{a, 0}+ 1

f (n)(t), with f (n−1)(t) continuous snF (s)− sn−1f(0)− · · ·
and |f (n)(t)| ≤Meat -sf (n−2)(0)− f (n−1)(0)

s > max{a, 0}+ 1∫ t
0 f(u)du, with |f(t)| ≤Meat F (s)

s , s > max{a, 0}+ 1

Table L
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Practice Problems

Exercise 21.1
Determine whether the integral

∫∞
0

1
1+t2

dt converges. If the integral con-
verges, give its value.

Exercise 21.2
Determine whether the integral

∫∞
0

t
1+t2

dt converges. If the integral con-
verges, give its value.

Exercise 21.3
Determine whether the integral

∫∞
0
e−t cos (e−t)dt converges. If the integral

converges, give its value.

Exercise 21.4
Using the definition, find L[e3t], if it exists. If the Laplace transform exists
then find the domain of F (s).

Exercise 21.5
Using the definition, find L[t− 5], if it exists. If the Laplace transform exists
then find the domain of F (s).

Exercise 21.6
Using the definition, find L[e(t−1)2 ], if it exists. If the Laplace transform
exists then find the domain of F (s).

Exercise 21.7
Using the definition, find L[(t − 2)2], if it exists. If the Laplace transform
exists then find the domain of F (s).

Exercise 21.8
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =

{
0, 0 ≤ t < 1

t− 1, t ≥ 1
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Exercise 21.9
Using the definition, find L[f(t)], if it exists. If the Laplace transform exists
then find the domain of F (s).

f(t) =


0, 0 ≤ t < 1

t− 1, 1 ≤ t < 2
0, t ≥ 2.

Exercise 21.10
Let n be a positive integer. Using integration by parts establish the reduction
formula ∫

tne−stdt = −t
ne−st

s
+
n

s

∫
tn−1e−stdt, s > 0.

Exercise 21.11
For s > 0 and n a positive integer evaluate the limits

(a) limt→0 t
ne−st (b) limt→∞ t

ne−st

Exercise 21.12
Use the linearity property of Laplace transform to find L[5e−7t + t + 2e2t].
Find the domain of F (s).

Exercise 21.13
Find L−1

(
3
s−2

)
.

Exercise 21.14
Find L−1

(
− 2
s2

+ 1
s+1

)
.

Exercise 21.15
Find L−1

(
2
s+2

+ 2
s−2

)
.

Exercise 21.16
Use Table L to find L[2et + 5].

Exercise 21.17
Use Table L to find L[e3t−3H(t− 1)].

Exercise 21.18
Use Table L to find L[sin2 ωt].
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Exercise 21.19
Use Table L to find L[sin 3t cos 3t].

Exercise 21.20
Use Table L to find L[e2t cos 3t].

Exercise 21.21
Use Table L to find L[e4t(t2 + 3t+ 5)].

Exercise 21.22
Use Table L to find L−1[ 10

s2+25
+ 4

s−3
].

Exercise 21.23
Use Table L to find L−1[ 5

(s−3)4
].
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Sample Exam Questions

Exercise 21.24
Use Table L to find L−1[ e

−2s

s−9
].

Exercise 21.25
Using the partial fraction decomposition find L−1

[
12

(s−3)(s+1)

]
.

Exercise 21.26
Using the partial fraction decomposition find L−1

[
24e−5s

s2−9

]
.

Exercise 21.27
Use Laplace transform technique to solve the initial value problem

y′ + 4y = g(t), y(0) = 2

where

g(t) =


0, 0 ≤ t < 1
12, 1 ≤ t < 3
0, t ≥ 3

Exercise 21.28
Use Laplace transform technique to solve the initial value problem

y′′ − 4y = e3t, y(0) = 0, y′(0) = 0.

Exercise 21.29
Consider the functions f(t) = et and g(t) = e−2t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Exercise 21.30
Consider the functions f(t) = sin t and g(t) = cos t, t ≥ 0. Compute f ∗ g in
two different ways.
(a) By directly evaluating the integral.
(b) By computing L−1[F (s)G(s)] where F (s) = L[f(t)] and G(s) = L[g(t)].

Exercise 21.31
Compute t ∗ t ∗ t.
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Exercise 21.32
Compute H(t) ∗ e−t ∗ e−2t.

Exercise 21.33
Compute t ∗ e−t ∗ et.
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22 Solving PDEs Using Laplace Transform

The same idea for solving linear ODEs using Laplace transform can be ex-
ploited when solving PDEs for functions in two variables u = u(x, t). The
transformation will be done with respect to the time variable t ≥ 0, the spa-
tial variable x will be treated as a parameter unaffected by this transform.
In particular we define the Laplace transform of u(x, t) by the formula

L(u(x, t)) = U(x, s) =

∫ ∞
0

u(x, τ)e−sτdτ.

The time derivatives are transformed in the same way as in the case of
functions in one variable, that is, for example

L(ut)(x, t) = sU(x, s)− u(x, 0)

and
L(utt)(x, s) = s2U(x, s)− su(x, 0)− ut(x, 0).

The spatial derivatives remain unchanged, for example,

Lux(x, t) =

∫ ∞
0

ux(x, τ)e−sτdτ =
∂

∂x

∫ ∞
0

u(x, τ)e−sτdτ = Ux(x, s).

Likewise, we have
Luxx(x, t) = Uxx(x, s).

Thus, applying the Laplace transform to a PDE in two variables x and t we
obtain an ODE in the variable x and with the parameter s.

Example 22.1
Let u(x, t) be the concentration of a chemical contaminant dissolved in a
liquid on a half-infinte domain x > 0. Let us assume that at time t = 0 the
concentration is 0 and on the boundary x = 0, constant unit concentration of
the contaminant is kept for t > 0. The behaviour of this problem is described
by the following mathematical model

ut − uxx = 0 , x > 0, t > 0
u(x, 0) = 0,
u(0, t) = 1,
|u(x, t)| <∞, ∀x > 0, t > 0.

Find u(x, t).
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Solution.
Applying Laplace transform to both sides of the equation we obtain

sU(x, s)− u(x, 0)− Uxx(x, s) = 0

or

Uxx(x, s)− sU(x, s) = 0.

This is a second order linear ODE in the variable x and positive parameter
s. Its general solution is

U(x, s) = A(s)e−
√
sx +B(s)e

√
sx.

Since U(x, s) is bounded in the variable x, we must have B(s) = 0 and in
this case we obtain

U(x, s) = A(s)e−
√
sx.

Next, we apply Laplace transform to the boundary condition obtaining

U(0, s) = L(1) =
1

s
.

This leads to A(s) = 1
s

and the transformed solution becomes

U(x, s) =
1

s
e−
√
sx.

Thus,

u(x, t) = L−1

(
1

s
e−
√
sx

)
.

One can use a software package to find the expression for L−1
(

1
s
e−
√
sx
)

Example 22.2
Solve the following initial boundary value problem

ut − uxx = 0 , x > 0, t > 0
u(x, 0) = 0,
u(0, t) = f(t),
|u(x, t)| <∞, ∀x > 0, t > 0.
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Solution.
Following the argument of the previous example we find

U(x, s) = F (s)e−
√
sx, F (s) = Lf(t).

Thus, using Theorem 21.6 we can write

u(x, t) = L−1
(
F (s)e−

√
sx
)

= f ∗ L−1(e−
√
sx).

It can be shown that

L−1(e−
√
sx) =

x√
4πt3

e−
x2

4t .

Hence,

u(x, t) =

∫ t

0

x√
4π(t− s)3

e−
x2

4(t−s)f(s)ds

Example 22.3
Solve the wave equation

utt − c2uxx = 0 , x > 0, t > 0
u(x, 0) = ut(x, 0) = 0,

u(0, t) = f(t),
|u(x, t)| <∞, ∀x > 0, t > 0.

Solution.
Applying Laplace transform to both sides of the equation we obtain

s2U(x, s)− su(x, 0)− ut(x, 0)− c2Uxx(x, s) = 0

or
c2Uxx(x, s)− s2U(x, s) = 0.

This is a second order linear ODE in the variable x and positive parameter
s. Its general solution is

U(x, s) = A(s)e−
s
c
x +B(s)e

s
c
x.

Since U(x, s) is bounded in the variable x, we must have B(s) = 0 and in
this case we obtain

U(x, s) = A(s)e−
s
c
x.
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Next, we apply Laplace transform to the boundary condition obtaining

U(0, s) = L(f(t)) = F (s).

This leads to A(s) = F (s) and the transformed solution becomes

U(x, s) = F (s)e−
s
c
x.

Thus,

u(x, t) = L−1
(
F (s)e−

x
c
s
)

= H
(
t− x

c

)
f
(
t− x

c

)
Remark 22.1
Laplace transforms are useful in solving parabolic and some hyperbolic PDEs.
They are not in general useful in solving elliptic PDEs.



196 THE LAPLACE TRANSFORM SOLUTIONS FOR PDES

Practice Problems

Exercise 22.1
Solve by Laplace transform

ut + ux = 0 , x > 0, t > 0
u(x, 0) = sinx,
u(0, t) = 0

Hint: Method of integrating factor of ODEs.

Exercise 22.2
Solve by Laplace transform

ut + ux = −u , x > 0, t > 0
u(x, 0) = sinx,
u(0, t) = 0

Exercise 22.3
Solve

ut = 4uxx

u(0, t) = u(1, t) = 0

u(x, 0) = 2 sin πx+ 3 sin 2πx.

Hint: A particular solution of a second order ODE must be found using the
method of variation of parameters.

Exercise 22.4
Solve by Laplace transform

ut − ux = u , x > 0, t > 0
u(x, 0) = e−5x,
|u(x, t)| <∞

Exercise 22.5
Solve by Laplace transform

ut + ux = t , x > 0, t > 0
u(x, 0) = 0,
u(0, t) = t2
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Exercise 22.6
Solve by Laplace transform

xut + ux = 0 , x > 0, t > 0
u(x, 0) = 0,
u(0, t) = t

Exercise 22.7
Solve by Laplace transform

utt − c2uxx = 0 , x > 0, t > 0
u(x, 0) = ut(x, 0) = 0,

u(0, t) = sinx,
|u(x, t)| <∞

Exercise 22.8
Solve by Laplace transform

utt − 9uxx = 0, 0 ≤ x ≤ π, t > 0

u(0, t) = u(π, t) = 0,

ut(x, 0) = 0, u(x, 0) = 2 sinx.

Exercise 22.9
Solve by Laplace transform

uxy = 1 , x > 0, y > 0
u(x, 0) = 1,

u(0, y) = y + 1.

Exercise 22.10
Solve by Laplace transform

utt = c2uxx , x > 0, t > 0
u(x, 0) = ut(x, 0) = 0,

ux(0, t) = f(t),
|u(x, t)| <∞.
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Sample Exam Questions

Exercise 22.11
Solve by Laplace transform

ut + ux = u , x > 0, t > 0
u(x, 0) = sin x,
u(0, t) = 0

Exercise 22.12
Solve by Laplace transform

ut − c2uxx = 0 , x > 0, t > 0
u(x, 0) = T,
u(0, t) = 0,
|u(x, t)| <∞

Exercise 22.13
Solve by Laplace transform

ut − 3uxx = 0, 0 ≤ x ≤ 2, t > 0

u(0, t) = u(2, t) = 0,

u(x, 0) = 5 sin (πx)

Exercise 22.14
Solve by Laplace transform

ut − 4uxx = 0, 0 ≤ x ≤ π, t > 0

ux(0, t) = u(π, t) = 0,

u(x, 0) = 40 cos
x

2

Exercise 22.15
Solve by Laplace transform

utt − 4uxx = 0, 0 ≤ x ≤ 2, t > 0

u(0, t) = u(2, t) = 0,

ut(x, 0) = 0, u(x, 0) = 3 sin πx.



The Fourier Transform
Solutions for PDEs

In the previous chapter we discussed one class of integral transform meth-
ods, the Laplace transfom. In this chapter, we consider a second fundamental
class of integral transform methods, the so-called Fourier transform.
Fourier series are designed to solve boundary value problems on bounded
intervals. The extension of Fourier methods to the entire real line leads nat-
urally to the Fourier transform, an extremely powerful mathematical tool for
the analysis of non-periodic functions. The Fourier transform is of fundamen-
tal importance in a broad range of applications, including both ordinary and
partial differential equations, quantum mechanics, signal processing, control
theory, and probability, to name but a few.

23 Complex Version of Fourier Series

We have seen in Section 15 that a 2L−periodic function f : R → R that is
piecewise smooth on [−L,L] can be expanded in a Fourier series

f(x) =
a0

2
+
∞∑
n=1

(
an cos

(nπ
L
x
)

+ bn sin
(nπ
L
x
))

at all points of continuity of f. In the context of Fourier analysis, this is
referred to as the real form of the Fourier series. It is often convenient to
recast this series in complex form by means of Euler formula

eix = cosx+ i sinx.

It follows from this formula that

199
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eix + e−ix = 2 cos x and eix − e−ix = 2i sinx

or

cosx = eix+e−ix

2
and sinx = eix−e−ix

2i
.

Hence the Fourier expansion of f can be rewritten as

f(x) =
a0

2
+
∞∑
n=1

[
an

(
e
inπx
L + e−

inπx
L

2

)

+bn

(
e
inπx
L − e− inπxL

2i

)]

f(x) =
∞∑

n=−∞

cne
inπx
L (23.1)

where c0 = a0

2
and for n ∈ N we have

cn =
an − ibn

2

c−n =
an + ibn

2
.

It follows that if n ∈ N then

an = cn + c−n and bn = i(cn − c−n). (23.2)

That is, an and bn can be easily found once we have formulas for cn. In order
to find these formulas, we need to evaluate the following integral∫ L

−L
e
inπx
L e−

imπx
L dx =

∫ L

−L
e
i(n−m)πx

L dx

=
L

i(n−m)π
e
i(n−m)πx

L

]L
−L

=− iL

(n−m)π
[cos [(n−m)π] + i sin [(n−m)π]

− cos [−(n−m)π]− i sin [−(n−m)π]]

=0
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if n 6= m. If n = m then ∫ L

−L
e
inπx
L e−

inπx
L dx = 2L.

Now, if we multiply (23.1) by e−
inπx
L and integrate from −L to L and apply

the last result we find ∫ L

−L
f(x)e−

inπx
L dx = 2Lcn

which yields the formula for coefficients of the complex form of the Fourier
series:

cn =
1

2L

∫ L

−L
f(x)e−

inπx
L dx, n = 0,±1,±2, · · · .

Example 23.1
Find the complex Fourier coefficients of the function

f(x) = x, − π ≤ x ≤ π

extended to be periodic of period 2π.

Solution.
Using integration by parts and the fact that eiπ = e−iπ = −1 we find

cn =
1

2π

∫ π

−π
xe−inxdx

=
1

2π

[(
ix

n

)
e−inx

∣∣∣∣π
−π
−
∫ π

−π

(
i

n

)
e−inxdx

]
=

1

2π

[(
iπ

n

)
e−inπ +

(
iπ

n

)
einπ

]
+

1

2π

[
1

n2
e−inπ − 1

n2
einπ

]
=

1

2π

[
2i
π

n
(−1)n

]
+

1

2π
(0) =

(−1)ni

n
Remark 23.1
It is often the case that the complex form of the Fourier series is far simpler
to calculate than the real form. One can then use (23.2) to find the real form
of the Fourier series. For example, the Fourier coefficients of the real form of
the previous function are given by

an = (cn + c−n) = 0 and bn = i(cn − c−n) = 2
n
(−1)n+1, n ∈ N
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Practice Problems

Exercise 23.1
Find the complex Fourier coefficients of the function

f(x) = x, − 1 ≤ x ≤ 1

extended to be periodic of period 2.

Exercise 23.2
Let

f(x) =


0 −π < x < −π

2

1 −π
2
< x < π

2

0 π
2
< x < π

be 2π−periodic. Find its complex series representation.

Exercise 23.3
Find the complex Fourier series of the 2π−periodic function f(x) = eax over
the interval (−π, π).

Exercise 23.4
Find the complex Fourier series of the 2π−periodic function f(x) = sinx
over the interval (−π, π).

Exercise 23.5
Find the complex Fourier series of the 2π−periodic function defined

f(x) =

{
1 0 < x < T
0 T < x < 2π

Exercise 23.6
Let f(x) = x2, − π < x < π, be 2π−periodic.
(a) Calculate the complex Fourier series representation of f.
(b) Using the complex Fourier series found in (a), recover the real Fourier
series representation of f.

Exercise 23.7
Let f(x) = sinnπx, − 1

2
< x < 1

2
, be of period 1.

(a) Calculate the coefficients an, bn and cn.
(b) Find the complex Fourier series representation of f.
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Exercise 23.8
Let f(x) = 2− x, − 2 < x < 2, be of period 2.
(a) Calculate the coefficients an, bn and cn.
(b) Find the complex Fourier series representation of f.

Exercise 23.9
Suppose that the coefficients cn of the complex Fourier series are given by

cn =

{
2
iπn

if |n| is odd
0 if |n| is even.

Find an, n = 0, 1, 2, · · · and bn, n = 1, 2, · · · .

Exercise 23.10
Recall that any complex number z can be written as z = Re(z) + iIm(z)
where Re(z) is called the real part of z and Im(z) is called the imaginary
part. The complex conjugate of z is the complex number z = Re(z) −
iIm(z). Using these definitions show that an = 2Re(cn) and bn = −2Im(cn).
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Sample Exam Questions

Exercise 23.11
Suppose that

cn =

{
i

2πn
[e−inT − 1] if n 6= 0

T
2π

if n = 0.

Find an and bn.

Exercise 23.12
Find the complex Fourier series of the function f(x) = ex on [−2, 2].

Exercise 23.13
Consider the wave form

(a) Write f(x) explicitly. What is the period of f.
(b) Determine a0 and an for n ∈ N.
(c) Determine bn for n ∈ N.
(d) Determine c0 and cn for n ∈ N.

Exercise 23.14
If z is a complex number we define sin z = 1

2
(eiz − e−iz). Find the complex

form of the Fourier series for sin 3x without evaluating any integrals.

Exercise 23.15
Find cn for the 2π−periodic function

f(x) =

{
1 if s ≤ x ≤ s+ h
0 elsewhere in [−π, π]
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24 The One Dimensional Fourier Transform

One of the problems with the theory of Fourier series discussed so far is that
it applies only to periodic functions. There are many times when one would
like to divide a function which is not periodic into a superposition of sines
and cosines. The Fourier transform is the tool often used for this purpose.
Like the Laplace transform, the Fourier transform is often an effective tool
in finding explicit solutions to differential equations.
To start with, let f : R→ R be a piecewise continuous function that vanishes
outside an interval of the form [−πL, πL]. This function can be extended to
a periodic function, still denoted by f , of period 2πL. From the previous
section we can find the complex Fourier series of f to be

f(x) =
∞∑

n=−∞

cne
inx
L (24.1)

where

cn =
1

2πL

∫ πL

−πL
f(x)e−

inx
L dx.

Let ξ ∈ R. Multiply both sides of (24.1) by e−iξx and then integrate both sides
from −πL to πL. Assuming integration and summation can be interchanged
we find ∫ πL

−πL
f(x)e−iξxdx =

∞∑
n=−∞

cn

∫ πL

−πL
e−iξxe

inx
L dx.

It can be shown that the RHS converges, say to f̂(ξ), as L→∞. Hence, we
find

f̂(ξ) =

∫ ∞
−∞

f(x)e−iξxdx. (24.2)

Thus, for a piecewise continuous function f, we define the Fourier trans-
form of f to be the function f̂ given by (24.2). We will use the notation
F [f(x)] = f̂(ξ).
Now, letting ξ = n

L
in (24.2) we find

f̂
(n
L

)
=

∫ πL

−πL
f(x)e−

inx
L dx = 2πLcn.
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Hence, (24.1) can be written in the form

f(x) =
1

2πL

∞∑
n=−∞

f̂
(n
L

)
e
inx
L .

In the limit as L → ∞, it can be shown that this last sum approaches an
improper integral, and our formula becomes

F−1[f̂(ξ)] = f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)eiξxdξ (24.3)

Equation (24.3) is called the Fourier inversion formula. If we make use of
Euler’s formula, we can write the Fourier inversion formula in terms of sines
and cosines,

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ) cos ξxdξ +
i

2π

∫ ∞
−∞

f̂(ξ) sin ξxdξ

a superposition of sines and cosines of various frequencies.
Equations (24.2) and (24.3) allow one to pass back and forth between a given
function and its representation as a superposition of oscillations of various
frequencies.

Example 24.1
Find the Fourier transform of the function f(x) defined by

f(x) =

{
e−ax if x ≥ 0

0 if x < 0

for some a > 0.

Solution.
We have

f̂(ξ) =

∫ ∞
−∞

f(x)e−iξxdx =

∫ ∞
0

e−axe−iξxdx

=

∫ ∞
0

e−ax−iξxdx =
e−x(a+iξ)

−(a+ iξ)

∣∣∣∣∞
0

=
1

a+ iξ

The following theorem lists the basic properties of Fourier transform
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Theorem 24.1
Let f, g, be piecewise continuous functions. Then we have the following
properties:
(1) Linearity: F [αf(x) +βg(x)] = αF [f(x)] +βF [g(x)], where α and β are
arbitrary numbers.
(2) Shifting: F [f(x− α)] = e−iαξF [f(x)].
(3) Scaling: F [f

(
x
α

)
] = αF [f(αx)].

(4) Continuity: If
∫∞
−∞ |f(x)|dx <∞ then f̂ is continuous in ξ.

(5) Differentiation: F [f (n)(x)] = (iξ)nF [f(x)).
(6) Integration: F

[∫ x
0
f(s)ds

]
= − 1

iξ
F [f(x)].

(7) Parseval’s Relation:
∫∞
−∞ |f(x)|2dx = 1

2π

∫∞
−∞ |f̂(ξ)|2dξ.

(8) Duality: F [F [f(x)]] = 2πf(−x).
(9) Multiplication by xn : F [xnf(x)] = inf̂ (n)(ξ).

(10) Gaussians: F [e−αx
2
] =

√
π
α
e−

ξ2

4α .

(11) Product: F [(f(x)g(x)] = 1
2π
F [f(x)] ∗ F [g(x)].

(12) Convolution: F [(f ∗ g)(x)] = F [f(x)] · F [g(x)].

Example 24.2
Determine the Fourier transform of the Gaussian u(x) = e−αx

2
, α > 0.

Solution.
We have

û(ξ) =

∫ ∞
−∞

e−αx
2

e−iξxdx.

If we differentiate this relation with respect to the variable ξ and then inte-
grate by parts we obtain

û′(ξ) =− i
∫ ∞
−∞

xe−αx
2

e−iξxdx

=
i

2α

∫ ∞
−∞

d

dx
(e−αx

2

)e−iξxdx

=
iξ

2α

∫ ∞
−∞

(e−αx
2

)e−iξxdx = − ξ

2α
û(ξ)

Thus we have arrived at the ODE û′(ξ) = − ξ
2α
û(ξ) whose general solution

has the form

û(ξ) = Ce−
ξ2

4α
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Since

û(0) =

∫ ∞
−∞

e−αx
2

dx =

√
π

α
= C

we find

û(ξ) =

√
π

α
e−

ξ2

4α

Example 24.3
Prove

F [f(−x)] = f̂(−ξ).

Solution.
Using a change of variables we find

F [f(−x)] =

∫ ∞
−∞

f(−x)e−iξxdx =

∫ ∞
−∞

f(x)eiξxdx = f̂(−ξ)

Example 24.4
Prove

F [F [f(x)]] = 2πf(−x).

Solution.
We have

f(x) =
1

2π

∫ ∞
−∞

f̂(ξ)eiξxdξ

Thus,

2πf(−x) =

∫ ∞
−∞

f̂(ξ)e−iξxdξ = F [f̂(ξ)] = F [F [f(x)]]

The following theorem lists the properties of inverse Fourier transform

Theorem 24.2
Let f and g be piecewise continuous functions.
(1’) Linearity: F−1[αf̂(ξ) + βĝ(ξ)] = αF−1[f̂(ξ)] + βF−1[ĝ(ξ)].
(2’) Derivatives: F−1[f̂ (n)(ξ)] = (−ix)nf(x).
(3’) Multiplication by ξn : F−1[ξnf̂(ξ)] = (−i)nf (n)(x).
(4’) Multiplication by e−iξα : F−1[e−iξαf̂(ξ)] = f(x− α).

(5’) Gaussians: F−1[e−αξ
2
] = 1√

4πα
e−

x2

4α .

(6’) Product: F−1[f̂(ξ)ĝ(ξ)] = f(x) ∗ g(x).
(7’) Convolution: F−1[f̂ ∗ ĝ(ξ)] = 2π(fg)(x).
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Remark 24.1
It is important to mention that there exists no established convention how
to define the Fourier transform. In the literature, we can meet an equivalent
definition of (24.2) with the constant 1√

2π
or 1

2π
in front of the integral.

There also exist definitions with positive sign in the exponent. The reader
should keep this fact in mind while working with various sources or using the
transformation tables.
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Practice Problems

Exercise 24.1
Find the Fourier transform of the function

f(x) =

{
1 if −1 ≤ x ≤ 1
0 otherwise.

Exercise 24.2
Obtain the transformed problem when applying the Fourier transform with
respect to the spatial variable to the equation and initial condition

ut + cux = 0

u(x, 0) = f(x).

Exercise 24.3
Obtain the transformed problem when applying the Fourier transform with
respect to the spatial variable to the equation and both initial conditions

utt = c2uxx, x ∈ R, t > 0

u(x, 0) = f(x)

ut(x, 0) = g(x).

Exercise 24.4
Obtain the transformed problem when applying the Fourier transform with
respect to the spatial variable to the equation and both initial conditions

∆u = uxx + uyy = 0, x ∈ R, 0 < y < L

u(x, 0) = 0

u(x, L) =

{
1 if −a < x < a
0 otherwise

Exercise 24.5
Find the Fourier transform of f(x) = e−|x|α, where α > 0.
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Exercise 24.6
Prove that

F [e−xH(x)] =
1

1 + iξ

where

H(x) =

{
1 if x ≥ 0
0 otherwise.

Exercise 24.7
Prove that

F
[

1

1 + ix

]
= 2πeξH(−ξ).

Exercise 24.8
Prove

F [f(x− α)] = e−iξαf̂(ξ).

Exercise 24.9
Prove

F [eiαxf(x)] = f̂(ξ − α).

Exercise 24.10
Prove the following

F [cos (αx)f(x)] =
1

2
[f̂(ξ + α) + f̂(ξ − α)]

F [sin (αx)f(x)] =
i

2
[f̂(ξ + α)− f̂(ξ − α)]
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Sample Exam Questions

Exercise 24.11
Prove

F [f ′(x)] = (iξ)f̂(ξ).

Exercise 24.12
Find the Fourier transform of f(x) = 1−|x| for −1 ≤ x ≤ 1 and 0 otherwise.

Exercise 24.13
Find, using the definition, the Fourier transform of

f(x) =


−1 −a < x < 0
1 0 < x < a
0 otherwise

Exercise 24.14

Find the inverse Fourier transform of f̂(ξ) = e−
ξ2

2 .

Exercise 24.15
Find F−1

(
1

a+iξ

)
.
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25 Applications of Fourier Transforms to PDEs

Fourier transform is a useful tool for solving differential equations. In this
section, we apply Fourier transforms in solving various PDE problems. Con-
trary to Laplace transform, which usually uses the time variable, the Fourier
transform is applied to the spatial variable on the whole real line.
The Fourier transform will be applied to the spatial variable x while the vari-
able t remains fixed. The PDE in the two variables x and t passes under the
Fourier transform to an ODE in the t−variable. We solve this ODE to obtain
the transformed solution û which can be converted to the original solution u
by means of the inverse Fourier transform. We illustrate these ideas in the
examples below.

First Order Transport Equation
Consider the initial value problem

ut + cux = 0

u(x, 0) = f(x).

Let û(ξ, t) be the Fourier transform of u in x. Performing the Fourier trans-
form on both the PDE and the initial condition, we reduce the PDE into an
ODE in t

∂û

∂t
+ iξcû = 0

û(ξ, 0) = f̂(ξ).

Solution of the ODE gives

û(ξ, t) = f̂(ξ)e−iξct.

Thus,
u(x, t) = F−1[û(ξ, t)] = f(x− ct)

which is exactly the same as we obtained by using the method of character-
istics.

Second Order Wave Equation
Consider the two dimensional wave equation

utt = c2uxx, x ∈ R, t > 0
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u(x, 0) = f(x)

ut(x, 0) = g(x).

Again, by performing the Fourier transform of u in x, we reduce the PDE
problem into an ODE problem in the variable t:

∂2û

∂t2
= −c2ξ2û

û(ξ, 0) = f̂(ξ)

ût(ξ, 0) = ĝ(ξ).

General solution to the ODE is

û(ξ, t) = Φ(ξ)e−iξct + Ψ(ξ)eiξct

where Φ and Ψ are two arbitrary functions of ξ. Performing the inverse
transformation and making use of the translation theorem, we get the general
solution

u(x, t) = φ(x− ct) + ψ(x+ ct)

where φ̂ = Φ and ψ̂ = Ψ. But

Φ(ξ) =
1

2

[
f̂(ξ)− 1

iξc
ĝ(ξ)

]

Ψ(ξ) =
1

2

[
f̂(ξ) +

1

iξc
ĝ(ξ)

]
.

By using the integration property, we find the inverse transforms of Φ and Ψ

φ(x) =
1

2

[
f(x) +

1

c

∫ x

0

g(s)ds

]

ψ(x) =
1

2

[
f(x)− 1

c

∫ x

0

g(s)ds

]
.

Application of the translation property then yields directly the D’Alambert
solution

u(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(s)ds.
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Second Order Heat Equation
Next, we consider the heat equation

ut = kuxx, x ∈ R, t > 0

u(x, 0) = f(x).

Performing Fourier Transform in x for the PDE and the initial condition, we
obtain

∂û

∂t
= −kξ2û

û(ξ, 0) = f̂(ξ).

Treating ξ as a parameter, we obtain the solution to the above ODE problem

û(ξ, t) = f̂(ξ)e−kξ
2t.

Application of the convolution theorem yields

u(x, t) =f(x) ∗ F−1[e−kξ
2t]

=f(x) ∗
[

1√
4πkt

e−
x2

4kt

]
=

1√
4πkt

∫ ∞
−∞

f(s)e−
(x−s)2

4kt ds

Laplace’s Equation in 2D
Consider the problem

∆u = uxx + uyy = 0, x ∈ R, 0 < y < L

u(x, 0) = 0

u(x, L) =

{
1 if −a < x < a
0 otherwise

Performing Fourier Transform in x for the PDE we obtain the second order
PDE in y

ûyy = ξ2û.

The general solution is given by

û(ξ, y) = A(ξ) sinh ξy +B(ξ) cosh ξy.
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Using the boundary condition û(ξ, 0) = 0 we find B(ξ) = 0. Using the second
boundary condition we find

û(ξ, L) =

∫ ∞
−∞

u(x, L)e−iξxdx

=

∫ a

−a
e−iξxdx =

∫ a

−a
cos ξxdx

=
2 sin ξa

ξ

Hence,

A(ξ) sinh ξL =
2 sin ξa

ξ

and this implies

A(ξ) =
2 sin ξa

ξ sinh ξL
.

Thus,

û(ξ, y) =
2 sin ξa

ξ sinh ξL
sinh ξy.

Taking inverse Fourier transform we find

u(x, y) =
1

2π

∫ ∞
−∞

2 sin ξa

ξ sinh ξL
sinh ξyeiξxdξ.

Noting that the integrand is an even function in ξ, we can simplify a little to
obtain

u(x, y) =
1

2π

∫ ∞
−∞

2 sin ξa

ξ sinh ξL
sinh ξy cos ξxdξ
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Practice Problems

Exercise 25.1
Solve, by using Fourier transform

ut + cux = 0

u(x, 0) = e−
x2

4 .

Exercise 25.2
Solve, by using Fourier transform

ut = kuxx − αu, x ∈ R

u(x, 0) = e−
x2

γ .

Exercise 25.3
Solve the heat equation

ut = kuxx

subject to the initial condition

u(x, 0) =

{
1 if x ≥ 0
0 otherwise.

Exercise 25.4
Use Fourier transform to solve the heat equation

ut = uxx + u, −∞ < x <∞ < t > 0

u(x, 0) = f(x).

Exercise 25.5
Prove that ∫ ∞

−∞
e−|ξ|yeiξxdξ =

2y

x2 + y2
.

Exercise 25.6
Solve the Laplace’s equation in the half plane

uxx + uyy = 0, −∞ < x <∞, 0 < y <∞

subject to the boundary condition

u(x, 0) = f(x), |u(x, y)| <∞.
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Exercise 25.7
Use Fourier transform to find the transformed equation of

utt + (α + β)ut + αβu = c2uxx

where α, β > 0.

Exercise 25.8
Solve the initial value problem

ut + 3ux = 0

u(x, 0) = e−x

using the Fourier transform.

Exercise 25.9
Solve the initial value problem

ut = kuxx

u(x, 0) = e−x

using the Fourier transform.
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Sample Exam Questions

Exercise 25.10
Solve the initial value problem

ut = kuxx

u(x, 0) = e−x
2

using the Fourier transform.

Exercise 25.11
Solve the initial value problem

ut + cux = 0

u(x, 0) = x2

using the Fourier transform.

Exercise 25.12
Solve, by using Fourier transform

∆u = 0

uy(x, 0) = f(x)

lim
x2+y2→∞

u(x, y) = 0.
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Answers and Solutions

Section 1

1.1
(a) y3 cos (xy)
(b) ex

2y(2y + 4x2y2)
(c) 0

1.2
(a) fx(x, y) = 4x3, fy(x, y) = 3√

y

(b) fx(x, y, z) = 2xy + 43, fy(x, y, z) = x2 − 20yz3 − 28
1+16y2

, fz(x, y, z) =

−30y2z2

(c) fs(s, t) = 2t7

s
− 4

7
s−

3
7 , ft(s, t) = 7t6 ln (s2)− 27

t4

(d) fx(x, y) = 4
x2 sin

(
4
x

)
ex

2y−5y3+cos
(

4
x

)
ex

2y−5y3(2xy), fy(x, y) = cos
(

4
x

)
ex

2y−5y3(x2−
15y2)

(e) fu(u, v) = 9(u2+5v)−9u(2u)
(u2+5v)2

= −9u2+45v
(u2+5v)2

, fv(u, v) = −45u
(u2+5v)2

(f) fx(x, y, z) = sin y
z2
, fy(x, y, z) = x cos y

z2
, fz(x, y, z) = −2x sin y

z3

(g) fx(x, y) = 1
2

(
2x+ 5

5x−3y2

)
(x2+ln (5x− 3y2))−

1
2 , fy(x, y) = − 3y

5x−3y2
(x2+

ln (5x− 3y2))−
1
2

1.3 3

1.4
∂z
∂s

= t2est
2

sin (s2t) + 2stest
2

cos (s2t)
∂z
∂t

= 2stest
2

sin (s2t) + s2est
2

cos (s2t)

1.5 u is the depedent variable whereas x and y are the independent variables.

221
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1.6 We have ∫ a

−a
f(x)dx =

∫ 0

−a
f(x)dx+

∫ a

0

f(x)dx.

By the change of variable u = −x we find∫ 0

−a
f(u)du = −

∫ 0

a

f(−u)du = −
∫ a

0

f(u)du.

Hence, the result follows.

1.7 We have ∫ a

−a
f(x)dx =

∫ 0

−a
f(x)dx+

∫ a

0

f(x)dx.

By the change of variable u = −x we find∫ 0

−a
f(u)du = −

∫ 0

a

f(−u)du =

∫ a

0

f(u)du.

Hence, the result follows.

1.8 By the product rule of derivatives we have

(uv)′ = u′v + uv′.

Integrate both sides to obtain

uv =

∫
u′vdx+

∫
uv′dx.

Now subtract
∫
u′vdx from both sides to obtain the desired result.

1.9
utt = − sin

(
x
ε

)
sin
(
t
ε

)
uxx = − sin

(
x
ε

)
sin
(
t
ε

)
.

1.10
utt = sin

(
x
ε

)
sinh

(
t
ε

)
uxx = − sin

(
x
ε

)
sinh

(
t
ε

)
.
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1.11 ε2 sup{
∣∣sinh

(
t
ε

)∣∣}
1.12 (a) We have sup{|un(x, 0)− 1| : x ∈ R} = 1

n
sup{| sinnx| : x ∈ R} = 1

n
.

(b) We have sup{|un(x, t)− 1| : x ∈ R} = en
2t

n

Section 2

2.1 (a) For all 0 ≤ x < 1 we have limn→∞ fn(x) = limn→∞ x
n = 0. Also,

limn→∞ fn(1) = 1. Hence, the sequence {fn}∞n=1 converges pointwise to f.
(b) Suppose the contrary. Let ε = 1

2
. Then there exists a positive integer N

such that for all n ≥ N we have

|fn(x)− f(x)| < 1

2

for all x ∈ [0, 1]. In particular, we have

|fN(x)− f(x)| < 1

2

for all x ∈ [0, 1]. Choose (0.5)
1
N < x < 1. Then |fN(x)−f(x)| = xN > 0.5 = ε

which is a contradiction. Hence, the given sequence does not converge uni-
formly.

2.2 For every real number x, we have

lim
n→∞

fn(x) = lim
n→∞

nx+ x2

n2
= lim

n→∞

x

n
+ lim

n→∞

x2

n2
= 0

Thus, {fn}∞n=1 converges pointwise to the zero function on R.

2.3 For every real number x, we have

− 1√
n+ 1

≤ fn(x) ≤ 1√
n+ 1

.

Moreover,

lim
n→∞

1√
n+ 1

= 0.

Applying the squeeze rule for sequences, we obtain

lim
n→∞

fn(x) = 0
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for all x in R. Thus, {fn}∞n=1 converges pointwise to the zero function on R.

2.4 First of all, observe that fn(0) = 0 for every n in N. So the sequence
{fn(0)}∞n=1 is constant and converges to zero. Now suppose 0 < x < 1 then
n2xn = n2en lnx. But ln x < 0 when 0 < x < 1, it follows that

limn→∞ fn(x) = 0 for 0 < x < 1

Finally, fn(1) = n2 for all n. So,

lim
n→∞

fn(1) =∞.

Therefore, {fn}∞n=1 is not pointwise convergent on [0, 1].

2.5 For −π
2
≤ x < 0 and 0 < x ≤ π

2
we have

lim
n→∞

(cosx)n = 0.

For x = 0 we have fn(0) = 1 for all n in N. Therefore, {fn}∞n=1 converges
pointwise to

f(x) =

{
0 if −π

2
≤ x < 0 and 0 < x ≤ π

2

1 if x = 0.

2.6 (a) Let ε > 0 be given. Let N be a positive integer such that N > 1
ε
.

Then for n ≥ N ∣∣∣∣x− xn

n
− x
∣∣∣∣ =
|x|n

n
<

1

n
≤ 1

N
< ε.

Thus, the given sequence converges uniformly (and pointwise) to the function
f(x) = x.
(b) Since limn→∞ f

′
n(x) = 1 for all x ∈ [0, 1), the sequence {f ′n}∞n=1 converges

pointwise to f ′(x) = 1. However, the convergence is not uniform. To see
this, let ε = 1

2
and suppose that the convergence is uniform. Then there is a

positive integer N such that for n ≥ N we have

|1− xn−1 − 1| = |x|n−1 <
1

2
.

In particular, if we let n = N + 1 we must have xN < 1
2

for all x ∈ [0, 1).

But x =
(

1
2

) 1
N ∈ [0, 1) and xN = 1

2
which contradicts xN < 1

2
. Hence, the
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convergence is not uniform.

2.7 (a) The pointwise limit is

f(x) =


0 if 0 ≤ x < 1
1
2

if x = 1
1 if 1 < x ≤ 2

(b) The convergence cannot be uniform because if it were f would have to
be continuous.

2.8 (a) Let ε > 0 be given. Note that

|fn(x)− 1

2
| =

∣∣∣∣2 cosx− sin2 x

2(2n+ sin2 x)

∣∣∣∣ ≤ 3

4n
.

Since limn→∞
3

4n
= 0 we can find a positive integer N such that if n ≥ N

then 3
4n
< ε. Thus, for n ≥ N and all x ∈ R we have

|fn(x)− 1

2
| ≤ 3

4n
< ε.

This shows that fn → 1
2

uniformly on R and also on [2, 7].
(b) We have

lim
n→∞

∫ 7

2

fnxdx =

∫ 7

2

lim
n→∞

fnxdx =

∫ 7

2

1

2
dx =

5

2
.

2.9 We have proved earlier that this sequence converges pointwise to the
discontinuous function

f(x) =

{
0 if −π

2
≤ x < 0 and 0 < x ≤ π

2

1 if x = 0

Therefore, uniform convergence cannot occur for this given sequence.

2.10 (a) Using the squeeze rule we find

lim
n→∞

sup{|fn(x)| : 2 ≤ x ≤ 5} = 0.
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Thus, {fn}∞n=1 converges uniformly to the zero function.
(b) We have

lim
n→∞

∫ 5

2

fn(x)dx =

∫ 5

2

0dx = 0.

Section 3.

3.1 y = 1
2
(1− e−t2).

3.2 y(t) = 3t−1
9

+ e−2t + Ce−3t.

3.3 y(t) = 3 sin t+ 3 cos t
t

+ C
t
.

3.4 y(t) = 1
13

(3 sin (3t) + 2 cos (3t)) + Ce−2t.

3.5 y(t) = Ce− sin t − 3.

3.6 α = −2.

3.7 p(t) = 2 and g(t) = 2t+ 3.

3.8 y0 = y(0) = −1 and g(t) = 2et + cos t+ sin t.

3.9 1.

3.10 u(x, y) = f(bx− ay)e
− c
a2+b2

(ax+by)
.

3.11 y(t) = t ln |t|+ 7t.

3.12 Since p(t) = a we find µ(t) = eat. Suppose first that a = λ. Then

y′ + ay = be−at

and the corresponding general solution is

y(t) = bte−at + Ce−at

Thus,
limt→∞ y(t) = limt→∞( bt

eat
+ C

eat
)

= limt→∞
b

aeat
= 0
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Now, suppose that a 6= λ then

y(t) =
b

a− λ
e−λt + Ce−at

Thus,
lim
t→∞

y(t) = 0.

3.13 y(t) = (−tet + et)−1.

3.14 y(t) = t2

4
− t

3
+ t2

2
+ 1

12t2
.

3.15 y(t) = tSi(t) + (3− Si(1))t.

Section 4

4.1 y(t) =
(

3
2
et

2
+ C

) 1
3
.

4.2 y(t) = Ce
t2

2
−2t.

4.3 y(t) = Ct2 + 4.

4.4 y(t) = 2Ce4t

1+Ce4t
.

4.5 y(t) =
√

5− 4 cos (2t).

4.6 y(t) = −
√

(−2 cos t+ 4).

4.7 y(t) = e1−t − 1.

4.8 y(t) = 2√
−4t2+1

.

4.9 y(t) = tan (t+ π) = − cot t.

4.10 y(t) = 3−e−t2

3+e−t2
.

4.11 α = 1
2
, y0 = 1

2
and n = 3.

4.12 u(x, y) = F (y)e−3x +G(x) where F (y) =
∫
f(y)dy.
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4.13 y2 + cos y + cos t+ t2

2
= 2.

4.14 3y2y′ + cos y + 2t = 0, y(2) = 0.

4.15 The ODE is not separable.

Section 5

5.1 y(t) = −2et + e3t. limt→−∞ y(t) = 0 and limt→∞ y(t) =∞.

5.2 y(t) = −2
√

2e(−2−
√

2)t+2
√

2e(−2+
√

2)t. limt→−∞ y(t) = −∞ and limt→∞ y(t) =
0.

5.3 y(t) = −2e−
√

2
2
t. limt→−∞ y(t) = −∞ and limt→∞ y(t) = 0.

5.4 y′′ − y′ − 2y = 0.

5.5 y(t) = e
t
3
−1(1− t).

5.6 y(t) = e−
2t
5 (t− 1).

5.7 y(0) = 2 and y′(0) = −2.

5.8 y(t) = c1e
3t + c2te

3t.

5.9 y(t) = 3e−t cos t+ 2e−t sin t.

5.10 y(t) = −e 1
2

(t+π)(3 cos t
2

+ sin t
2
).

5.11 y(t) = yh(t) + yp(t) = e
1
2
t(c1 cos

√
3

2
t+ c2 sin

√
3

2
t) + 6

73
cos 3t− 16

73
sin 3t.

5.12 y(t) = yh(t) + yp(t) = c1e
(−2−

√
6)t + c2e

(−2+
√

6)t − t2 − 5
2
t− 9.

5.13 y = Ax4 +Bx4 lnx.

5.14 y = x−1(A cos (
√

3 lnx) +B sin (
√

3 lnx)).
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5.15 (a) λn = n2, yn(x) = sinnx, n = 1, 2, · · · .
(b) λn =

[(
n− 1

2

)
π
L

]2
and yn = sin

(
π
L

(
n− 1

2

)
x
)
, n = 1, 2, 3, · · · .

(c) λn =
(
π
(
n− 1

2

))2
, yn(x) = cos

(
π
(
n− 1

2

))
x, n = 1, 2, · · · .

5.16 We consider first the cases (a) and (b). Multiply the equation by y′(x)
and integrate in x from 0 to L.∫ L

0

(ky′(x))′y(x)dx+

∫ L

0

λy2(x)dx = 0.

Use integration by parts in the first integral

[ky′(x)y(x)]
L
0 −

∫ L

0

k(y′(x))2dx+

∫ L

0

λy2(x)dx = 0.

The boundary term vanishes because of the boundary conditions. We solve
the above equation for λ and obtain

λ =

∫ L
0
k(y′(x))2dx∫ L
0
y2(x)dx

≥ 0.

For the case (c), we repeat the above argument but by integrating from −L
to L.

5.17 y(t) = 2e
t
2 .

5.18 y(t) = c1 + c2e
t − 1

10
cos (2t) + 1

5
sin (2t) + 5tet

5.19 y(t) = 17
15
et + 1

6
e−2t − 1

2
t− 1

4
− 3

20
sin 2t− 1

20
cos 2t.

Section 6

6.1 (a) ODE (b) PDE (c) ODE.

6.2 uss = 0.

6.3 uss + utt = 0.

6.4 (a) Order 3, nonlinear (b) Order 1, linear, homogeneous (c) Order 2,
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linear, nonhomogeneous.

6.5 (a) Linear, homogeneous, order 3.
(b) Linear, nonhomogeneous, order 3. The inhomogeneity is − sin y.
(c) Nonlinear, order 2. The nonlinear term is uux.
(d) Nonlinear, order 3. The nonlinear terms are uxuxxy and uuy.
(e) Linear, nonhomogeneous, order 2. The inhomogeneity is f(x, y, t).

6.6 (a) Linear. (b) Linear. (c) Nonlinear. (d) Nonlinear.

6.7 (a) PDE, linear, second order, homogeneous.
(b) PDE, linear, second order, homogeneous.
(c) PDE, nonlinear, fourth order.
(d) ODE, linear, second order, nonhomogeneous.
(e) PDE, linear, second order, nonhomogeneous.
(f) PDE, quasilinear, second order.

6.8 A(x, y, z)uxx+B(x, y, z)uxy+C(x, y, z)uyy+E(x, y, z)uxz+F (x, y, z)uyz+
G(x, y, z)uzz+H(x, y, z)ux+I(x, y, z)uy+J(x, y, z)uz+K(x, y, z)u = L(x, y, z).

6.9 (a) Order 3, linear, homogeneous.
(b) Order 1, nonlinear.
(c) Order 4, linear, nonhomogeneous
(d) Order 2, nonlinear.
(e) Order 2, linear, homogeneous.

6.10 uww = 0.

6.11 uvw = 0.

6.12 uvw = 0.

6.13 us = 0.

6.14 us = 1
2
.

6.15 uw = u.
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Section 7

7.1 a = b = 0.

7.2 Substituting into the differential equation we find

tX ′′T −XT ′ = 0

or

X ′′

X
=
T ′

tT
.

The LHS is a function of x only whereas the RHS is a function of t only.
This is true only when both sides are constant. That is, there is λ such that

X ′′

X
=
T ′

tT
= λ

and this leads to the two ODEs X ′′ = λX and T ′ = λtT.

7.3 We have xux + (x + 1)yuy = x
y
(ex + xex) + (x + 1)y

(
−xex

y2

)
= 0 and

u(1, 1) = e.

7.4 We have ux+uy+2u = e−2y cos (x− y)−2e−2y sin (x− y)−e−2y cos (x− y)+
2e−2y sin (x− y) = 0 and u(x, 0) = sin x.

7.5 (a) The general solution to this equation is u(x) = C where C is an
arbitrary constant.
(b) The general solution is u(x, y) = f(y) where f is an arbitrary function of
y.

7.6 (a) The general solution to this equation is u(x) = C1x + C2 where
C1 and C2 are arbitrary constants.
(b) We have uy = f(y) where f is an arbitrary function of y. Hence, u(x, y) =∫ y
a
f(t)dt.
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7.7 Let v(x, y) = y + 2x. Then

ux =2fv(v) + g(v) + 2xgv(v)

uxx =4fvv(v) + 4gv(v) + 4xgvv(v)

uy =fv(v) + xgv(v)

uyy =fvv(v) + xgvv(v)

uxy =2fvv(v) + gv(v) + 2xgvv(v)

Hence,

uxx − 4uxy + 4uyy =4fvv(v) + 4gv(v) + 4xgvv(v)

−8fvv(v)− 4gv(v)− 8xgvv(v)

+4fvv(v) + 4xgvv(v) = 0.

7.8 utt = c2uxx.

7.9 Let v = x+ p(u)t. Using the chain rule we find

ut = fv · vt = fv · (p(u) + puutt).

Thus
(1− tfvpu)ut = fvp.

If 1 − tfvpu ≡ 0 on any t−interval I then fvp ≡ 0 on I which implies that
fv ≡ 0 or p ≡ 0 on I. But either condition will imply that tfvpu ≡ 0 and
this will imply that 1 = 1− tfvpu = 0, a contradiction. Hence, we must have
1− tfvpu 6= 0. In this case,

ut =
fvp

1− tfvpu
.

Likewise,
ux = fv · (1 + puuxt)

or

ux =
fv

1− tfvpu
.

It follows that ut = p(u)ux.
If ut = (sinu)ux then p(u) = sinu so that the general solution is given by

u(x, t) = f(x+ t sinu)
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where f is an arbitrary differentiable function in one variable.

7.10 u(x, y) = xf(x− y) + g(x− y).

7.11 Using integration by parts, we compute∫ L

0

uxx(x, t)u(x, t)dx = ux(x, t)u(x, t)|Lx=0 −
∫ L

0

u2
x(x, t)dx

=ux(L, t)u(L, t)− ux(0, t)u(0, t)−
∫ L

0

u2
x(x, t)dx

=−
∫ L

0

u2
x(x, t)dx ≤ 0

Note that we have used the boundary conditions u(0, t) = u(L, t) = 0 and
the fact that u2

x(x, t) ≥ 0 for all x ∈ [0, L].

7.12 (a) This can be done by plugging in the equations.
(b) Plug in.
(c) We have sup{|un(x, 0)− 1| : x ∈ R} = 1

n
sup{| sinnx| : x ∈ R} = 1

n
.

(d) We have sup{|un(x, t)− 1| : x ∈ R} = en
2t

n
.

(e) We have limt→∞ sup{|un(x, t) − 1| : x ∈ R, t > 0} = limt→∞
en

2t

n
= ∞.

Hence, the solution is unstable and thus the problem is ill-posed.

7.13 (a) u(x, y) = x3 + xy2 + f(y), where f is an arbitrary function.

(b) u(x, y) = x3y2

6
+ F (x) + g(y), where F (x) =

∫
f(x)dx.

(c) u(x, t) = 1
18
e2x+3t + t

∫ x
a
f(s)ds+

∫ x
a
g(s)ds.

7.14 (b) u(x, y) = xf(y − 2x) + g(y − 2x).

7.15 We have

ut =cuv − cuw
utt =c2uvv − 2c2uwv + c2uww

ux =uv + uw

uxx =uvv + 2uvw + uww

Substituting we find uvw = 0 and solving this equation we find uv = f(v)
and u(v, w) = F (v) +G(w) where F (v) =

∫
f(v)dv.
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Finally, using the fact that v = x + ct and w = x − ct; we get d’Alembert’s
solution to the one-dimensional wave equation:

u(x, t) = F (x+ ct) +G(x− ct)

where F and G are arbitrary differentiable functions.

Section 8

8.1 (a) Linear (b) Quasi-linear, nonlinear (c) Nonlinear (d) Semi-linear, non-
linear.

8.2 Let w = 2x− y. Then ux + 2uy − u = exf(w) + 2exfw(w)− 2exfw(w)−
exfw(w) = 0.

8.3 We have xux − yuy = x(
√
xy + xy

2
√
xy

) − y x2

2
√
xy

= x
√
xy = u. Also,

u(y, y) = y2.

8.4 We have −yux + xuy = −2xy sin (x2 + y2) + 2xy sin (x2 + y2) = 0. More-
over, u(0, y) = cos y2.

8.5 We have 1
x
ux+ 1

y
uy = 1

x
(−x)+ 1

y
(1+y) = 1

y
. Moreover, u(x, 1) = 1

2
(3−x2).

8.6 3a− 7b = 0.

8.7 Plug u = av + w into the equation. Using the linearity of L and the
assumptions on v and w, obtain

L(u) = L(av + w) = aL(v) + L(w) = 0 + f = f

for any constant a. Therefore, u solves the nonhomogeneous equation for any
a.

8.8 us + cu
a2+b2

= 0.

8.9 u(x, t) = 1
2
(x+ y) + f(x− y).
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8.10 We have

ux =− 4e−4xf(2x− 3y) + 2e−4xf ′(2x− 3y)

uy =− 3e−4xf ′(2x− 3y)

Thus,

3ux + 2uy + 12u =− 12e−4xf(2x− 3y) + 6e−4xf ′(2x− 3y)

−6e−4xf ′(2x− 3y) + 12e−4xf(2x− 3y) = 0.

8.11 u(x, y) = f(ax− bt)e ta .

8.12 u(x, y) = f(bx− ay).

8.13 uw + λu = f(v + cw,w).

8.14 vwv(v) = Aw(v).

Section 9

9.1 u(x, t) = sin (x− 3t).

9.2 u(x, y) = e
− c(ax+by)

a2+b2 f(bx− ay).

9.3 u(x, y) = x cos (2x− y) + f(y − 2x).

9.4 The change of coordinates v = x + t and w = x − t reduces the
original equation to the equation uv = v+w

4
whose solution is given by

u(v, w) = v2

8
+ wv

4
+g(w) or u(x, t) = (x+t)2

8
+ x2−t2

4
+g(x− t). But u(x, x) = 1

so that 1 = x2

2
+ g(0) or g(0) = 1 − x2

2
which is impossible since g(0) is a

constant. Hence, the given initial value problem has no solution.

9.5 u(x, t) = e−3t

1+(x−2t)2
.

9.6 u(x, t) = e3t
[
(x− t)2 + 1

9

]
− 1

3
t− 1

9
.

9.7 Using the chain rule we find wt = ute
λt + λueλt and wx = uxe

λt. Substi-
tuting these equations into the original equation we find

wte
−λt − λu+ cwxe

−λt + λu = 0
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or
wt + cwx = 0

9.8 u(x, y) = h(x−y)
1−yh(x−y)

.

9.9 (a) w(x, t) is a solution to the equation follows from the principle of
superposition. Moreover, w(x, 0) = u(x, 0)− v(x, 0) = f(x)− g(x).
(b) w(x, t) = f(x− ct)− g(x− ct).
(c) From (b) we see that

max
x,t
{|u(x, t)− v(x, t)|} = max

x
{|f(x)− g(x)|}.

Thus, small changes in the initial data produces small changes in the solu-
tion. Hence, the problem is a well-posed problem.

9.10

u(x, t) =

{
g
(
t− x

c

)
e−

λ
c
x if x < ct

0 if x ≥ ct.

9.11 u(x, t) = sin
(

2x−3t
2

)
.

9.12 u(x, y) = 1
2
(x+ y) + f(x− y).

9.13 (a) a = 1, b = 0, c = B, and d = −A (b) u(x, y) = f(Bx− Ay)e−
C
A
x.

9.14 u(x, y) = f(x− y)e−x.

9.15 u(x, y) = f(x− y)e−x + x+ y − 2.

Section 10

10.1 The characteristics are hyperbolas: xy = k.

10.2 The characteristics are circles centered at the origin: x2 + y2 = k.

10.3 The characteristics are parallel lines with common slope equals to
1 : x− y = k.

10.4 f
(
y
x
, xe− arctanu

)
= 0 where f is an arbitrary differentiable function.
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10.5 f(y + u, y ln (y + u) − x) = 0 or u = −y + g(y ln (y + u) − x) where
f and g are arbitrary differentiable functions.

10.6 f
(
y
x
, u
x

)
= 0 or u = xg

(
y
x

)
where f and g are arbitrary differentiable

functions.

10.7 f
(
y
x
, u
xn

)
= 0 or u = xng

(
y
x

)
where f and g are arbitrary differen-

tiable functions.

10.8 f(x + y + z, xyu) = 0 or u = g(x+y+z)
xy

where f and g are arbitrary
differentiable functions.

10.9 f(xy, x4 − u4 − 2xyu2) = 0, where f is an arbitrary differentiable func-
tion.

10.10 f(x2 + y2 − u2, 2xy + u2) = 0 where f is an arbitrary differentiable
function.

10.11 f( y
u
, x2 + y2 + u2) = 0 where f is an arbitrary differentiable func-

tion.

10.12 u(x, y) = exf(y − 2x).

10.13 u(x, y) = f(y − arctanx) for any differentiable function f. The char-
acteristics are shown below.
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10.14 u = exf(ye−x) where f is an arbitrary differential function.

10.15 The characteristics are solutions to the DE dy
dx

= x. Solving this ODE

we find y = x2

2
+ C.

10.16 u = e−
x2

2 f(ye−x) where f is an arbitrary differentiable function of
one variable.

10.17 Solving dy
dx

= x
y

by the separation of variables we find x2 − y2 = k,
where k is a constant.

10.18 Solving dy
dx

= x
y

by the separation of variables we find x2 − y2 = k,
where k is a constant.

Section 11

11.1 u(x, y) = 1−xy
x+y

, x+ y 6= 0.

11.2 u(x, y) = (x+ y)(x2 − y2).

11.3 2xyu+ x2 + y2 − 2u+ 2 = 0.

11.4 u(x, y) = ln
(
x+ 1− y

x

)
.
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11.5 u(x, y) = f(xe−y).

11.6 u(t, x) = f(x− at).

11.7 u(x, y) = 1
sec (x−ay)−y .

11.8 u(x, y) = h
(
y − (x−1)2

2
− (x− 1)

)
ex−1.

11.9 u(x, y) = f(x− uy).

11.10 u(x, y) = y − sin−1 x.

11.11 (i) y = Cx2. The characteristics are parobolas in the plane centered
at the origin. See figure below.

(ii) u(x, y) = eyx
−2
.

(iii) In the first case, we cannot substitute x = 0 into yx−2 (the argument
of the function f, above) because x−2 is not defined at 0. Similarly, in the
second case, we’d need to find a function f so that f(0) = h(x). If h is not
constant, it is not possible to satisfy this condition for all x ∈ R.
(iv) All characteristics intersect at (0, 0). Since the solution is constant along
any characteristic, if the solution is not exactly constant for all (x, y), then
the limit of u(x, y) as (x, y) → (0, 0) is different if we approach (0, 0) along
different characteristics. Therefore, the method doesn’t work at that point.
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11.12 u(x, y) = ey cos (x− y).

11.13 (a) u = exf(ye−x) where f is an arbitrary differential function.
(b) We want 2 = u(x, 3x) = exf(3exe−x) = exf(3). This equation is impossi-
ble so this Cauchy problem has no solutions.
(c) We want ex = exf(exe−x) =⇒ f(1) = 1. In this case, there are infinitely
many solutions to this Cauchy problem, namely, u(x, y) = exf(ye−x) where
f is an arbitrary function satisfying f(1) = 1.

11.14 u(x, y) = −1 + 2e
x2

2 e−
(4x−y)2

2 .

11.15 The Cauchy problem has no solutions.

11.16 (a) The characteristics satisfy the ODE dy
dx

= x
y
. Solving this equa-

tion we find x2 − y2 = C. Thus, the characteristics are hyperbolas.
(b)

(c) The general solution to the PDE is u(x, y) = f(x2 − y2) where f is
an arbitrary differentiable function. Since u(0, y) = e−y

2
we find f(y) = ey.

Hence, u(x, y) = ex
2−y2 .

(d) This solution is only defined in the region covered by characteristics that
cross the y axis: y2 − x2 > 0. The solution in the region y2 − x2 < 0 can be
any function of the form u(x, y) = f(x2 − y2).
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11.17 (a) Solving the ODE dy
dx

= y we find the characteristics ye−x = C.
Thus, u(x, y) = f(ye−x). If u(x, 0) = 1 then we choose f to be any arbitrary
differentiable function satisfying f(0) = 1.
(b) The line y = 0 is a characteristic so that u has to be constant there.
Hence, there is no solution satisfying the condition u(x, 0) = x.

Section 12

12.1 (a) Hyperbolic (b) Parabolic (c) Elliptic.

12.2 (a) Ellitpic (b) Parabolic (c) Hyperbolic.

12.3 • The PDE is of hyperbolic type if 4y2(x2 + x+ 1) > 0. This is true for
all y 6= 0. Graphically, this is the xy−plane with the x−axis removed,
• The PDE is of parabolic type if 4y2(x2 + x+ 1) = 0. Since x2 + x+ 1 > 0
for all x ∈ R, we must have y = 0. Graphically, this is x−axis.
• The PDE is of elliptic type if 4y2(x2 + x+ 1) < 0 which can not happen.

12.4 We have

ux(x, t) = − sinx sin t,

uxx(x, t) = − cosx sin t,

ut(x, t) = cosx cos t,

utt(x, t) = − cosx sin t.

Thus,

uxx(x, t) = − cosx sin t = utt(x, t),

u(x, 0) = cosx sin 0 = 0,

ut(x, 0) = cosx cos 0 = cosx,

ux(0, t) = − sin 0 sin t = 0.

12.5 (a) Quasi-linear (b) Semi-linear (c) Linear (d) Nonlinear.



242 ANSWERS AND SOLUTIONS

12.6 We have

ux =
2x

x2 + y2

uxx =
2y2 − 2x2

(x2 + y2)2

uy =
2y

x2 + y2

uyy =
2x2 − 2y2

(x2 + y2)2

Plugging these expressions into the equation we find uxx + uyy = 0. Similar
argument holds for the second part of the problem.

12.7 Multiplying the equation by u and integrating, we obtain

λ

∫ L

0

u2(x)dx =

∫ L

0

uuxx(x)dx

=[u(L)ux(L)− u(0)ux(0)]−
∫ L

0

u2
x(x)dx

=−
[
kLu(L)2 + k0u(0)2 +

∫ L

0

u2
x(x)dx

]
For λ > 0, because k0, kL > 0, the right-hand side is nonpositive and the
left-hand side is nonnegative. Therefore, both sides must be zero, and there
can be no solution other than u ≡ 0, which is the trivial solution.

12.8 Substitute u(x, y) = f(x)g(y) into the left side of the equation to obtain
f(x)g(y)(f(x)g(y))xy = f(x)g(y)f ′(x)g′(y). Now, substitute the same thing
into the right side to obtain (f(x)g(y))x(f(x)g(y))y = f ′(x)g(y)f(x)g′(y) =
f(x)g(y)f ′(x)g′(y). So the sides are equal, which means f(x)g(y) is a solution.

12.9 We have

(un)xx = −n2 sinnx sinhny and (un)yy = n2 sinnx sinhny

Hence, ∆un = 0.

12.10 u(x, y) = x2y2

4
+ F (x) +G(y), where F (x) =

∫
f(x)dx.



243

12.11 (a) We have A = 2, B = −4, C = 7 so B2−4AC = 16−56 = −40 < 0.
So this equation is elliptic everywhere in R2.
(b) We have A = 1, B = −2 cosx, C = − sin2 x so B2 − 4AC = 4 cos2 x +
4 sin2 x = 4 > 0. So this equation is hyperbolic everywhere in R2.
(c) We have A = y, B = 2(x − 1), C = −(y + 2) so B2 − 4AC =
4(x− 1)2 + 4y(y+ 2) = 4[(x− 1)2 + (y+ 1)2− 4]. The equation is parabolic if
(x− 1)2 + (y+ 1)2 = 4. It is hyperbolic if (x− 1)2 + (y+ 1)2 > 4 and elliptic
if (x− 1)2 + (y + 1)2 < 4.

12.12 Using the chain rule we find

ut(x, t) =
1

2
(cf ′(x+ ct)− cf ′(x− ct)) +

1

2c
[g(x+ ct)(c)− g(x− ct)(−c))

=
c

2
(f ′(x+ ct)− f ′(x− ct)) +

1

2
(g(x+ ct) + g(x− ct))

utt =
c2

2
(f ′′(x+ ct) + f ′′(x− ct)) +

c

2
(g′(x+ ct)− g′(c− xt))

ux(x, t) =
1

2
(f ′(x+ ct) + f ′(x− ct)) +

1

2c
[g(x+ ct)− g(x− ct)]

uxx(x, t) =
1

2
(f ′′(x+ ct) + f ′′(x− ct)) +

1

2c
[g′(x+ ct)− g′(x− ct)]

By substitutition we see that c2uxx = utt. Moreover,

u(x, 0) =
1

2
(f(x) + f(x)) +

1

2c

∫ x

x

g(s)ds = f(x)

and

ut(x, 0) = g(x).

12.13 (a) 1 + 4x2y > 0, (b) 1 + 4x2y = 0, (c) 1 + 4x2y < 0.

12.14 u(x, y) = f(y − 3x) + g(x+ y).

12.15 u(x, y) = f(y − 3x) + g(x+ y) = 10x2+y2−7xy+6
6

.

Section 13
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13.1 Let z(x, t) = αv(x, t) + βw(x, t). Then we have

c2zxx =c2αvxx + c2βwxx

=αvtt + βvtt

=ztt.

13.2 Indeed we have c2uxx(x, t) = 0 = utt(x, t).

13.3 u(x, t) = 0.

13.4 u(x, t) = 1
2
(cos (x− 3t) + cos (x+ 3t)).

13.5 u(x, t) = 1
2

[
1

1+(x+t)2
+ 1

1+(x−t)2

]
.

13.6 u(x, t) = 1 + 1
8π

[sin (2πx+ 4πt)− sin (2πx− 4πt)].

13.7

u(x, t) =


1 if x− 5t < 0 and x+ 5t < 0
1
2

if x− 5t < 0 and x+ 5t > 0
1
2

if x− 5t > 0 and x+ 5t < 0
0 if x− 5t > 0 and x+ 5t > 0

13.8 u(x, t) = 1
2
[e−(x+ct)2 + e−(x−ct)2 ] + t

2
+ 1

4c
cos (2x) sin (2ct).

13.9 Just plug the translated/differentiated/dialated solution into the wave
equation and check that it is a solution.

13.10 v(r) = A cos (nr) +B sin (nr).

13.11 u(x, t) = 1
2
[ex−ct + ex+ct + 1

c
(cos (x− ct)− cos (x+ ct))].
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13.12 (a) We have

dE

dt
(t) =

∫ L

0

ututtdx+

∫ L

0

c2uxuxtdx

=

∫ L

0

ututtdx+ c2ut(L, t)ux(L, t)− c2ut(0, t)ux(0, t)− c2

∫ L

0

utuxxdx

=c2ut(L, t)ux(L, t)− c2ut(0, t)ux(0, t) +

∫ L

0

ut(utt − c2uxx)dx

=c2(ut(L, t)ux(L, t)− ut(0, t)ux(0, t))

since utt − c2uxx = 0.
(b) Since the ends are fixed, we have ut(0, t) = ut(L, t) = 0. From (a) we
have

dE

dt
(t) = c2(ut(L, t)ux(L, t)− ut(0, t)ux(0, t)) = 0.

(c) Assuming free ends boundary conditions, that is ux(0, t) = ux(L, t) = 0,
we find dE

dt
(t) = 0.

13.13 Using the previous exercise, we find

dE

dt
(t) = −d

∫ L

0

(ut)
2dx.

The right-hand side is nonpositive, so the energy either decreases or is con-
stant. The latter case can occur only if ut(x, t) is identically zero, which
means that the string is at rest.

13.14 (a) By the chain rule we have ut(x, t) = −cR′(x − ct) and utt(x, t) =
c2R′′(x − ct). Likewise, ux(x, t) = R′(x − ct) and uxx = R′′(x − ct). Thus,
utt = c2uxx.
(b) We have

1

2

∫ L

0

(ut)
2dx =

∫ L

0

c2

2
[R′(x− ct)]2dx =

∫ L

0

c2

2
(ux)

2dx.

13.15 u(x, t) = x2 + 4t2 + 1
4

sin 2x sin 4t.

Section 14
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14.1 Let z(x, t) = αu(x, t) + βv(x, t). Then we have

kzxx =kαuxx + kβvxx

=αut + βvt

=zt.

14.2 Indeed we have kuxx(x, t) = 0 = ut(x, t).

14.3 u(x, t) = T0 + TL−T0

L
x.

14.4 Let u be the solution to (14.1) that satisfies u(0, t) = u(L, t) = 0. Let
w(x, t) be the time independent solution to (14.1) that satisfies w(0, t) = T0

and w(L, t) = TL. That is, w(x, t) = T0 + TL−T0

L
x. From Exercise 14.1,

the function u(x, t) = u(x, t) + w(x, t) is a solution to (14.1) that satis-
fies u(0, t) = T0 and u(L, t) = TL.

14.5 u(x, t) = 0.

14.6 Substituting u(x, t) = X(x)T (t) into (14.1) we obtain

k
X ′′

X
=
T ′

T
.

Since X only depends on x and T only depends on t, we must have that
there is a constant λ such that

kX
′′

X
= λ and T ′

T
= λ.

This gives the two ordinary differential equations

X ′′ − λ
k
X = 0 and T ′ − λT = 0.

14.7 (a) Letting α = λ
k
> 0 we obtain the ODE X ′′−αX = 0 whose general

solution is given by X(x) = Aex
√
α +Be−x

√
α for some constants A and B.

(b) The condition u(0, t) = 0 implies that X(0) = 0 which in turn implies

A+B = 0. Likewise, the condition u(L, t) = 0 implies Ae
√
Lα +Be−L

√
α = 0.

Hence, A(eL
√
α − e−L

√
α) = 0.

(c) If A = 0 then B = 0 and u(x, t) is the trivial solution which contradicts
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the assumption that u is non-trivial. Hence, we must have A 6= 0.
(d) Using (b) and (c) we obtain eL

√
α = e−L

√
α or e2L

√
α = 1. This equa-

tion is impossible since 2L
√
α > 0. Hence, we must have λ < 0 so that

X(x) = A cos (x
√
−α) +B sin (x

√
−α.

14.8 (a)Now, write β =
√
−λ
k
. Then we obtain the equation X ′′ + β2X = 0

whose general solution is given by

X(x) = c1 cos βx+ c2 sin βx.

(b) Using X(0) = 0 we obtain c1 = 0. Since c2 6= 0 we must have sin βL = 0.
Thus, λ = −kn2π2

L2 , where n is an integer.

14.9 For each integer n ≥ 0 we have un(x, t) = cn
T (0)

T (0)e
kn2π2

L2 t sin
(
nπ
L

)
x

is a solution to (14.1). By superposition, u(x, t) is also a solution to (14.1).
Moreover, u(0, t) = u(L, t) = 0 since un(0, t) = un(L, t) = 0.

14.10 (i) u(0, t) = 0 and u(a, t) = 100 for t > 0.
(ii) ux(0, t) = ux(a, t) = 0 for t > 0.

14.11 Solving this problem we find u(x, t) = e−t sinx. We have

E(t) =

∫ π

0

[e−2t sin2 x+ e−2t cos2 x]dx =

∫ π

0

e−2tdx = πe−2t.

Thus, E ′(t) = −2πe−2t < 0 for all t > 0.

14.12 E(t) =
∫ L

0
f(x)dx+ (1 + 4L)t.

14.13 v(x) = x+ 2.

14.14 (a) v(x) = T
L
x.

(b) v(x) = T.
(c) v(x) = αx+ T.

14.15 (a) E(t) =
∫ L

0
cρu(x, t)dx.

(b) We integrate the equation in x from 0 to L :∫ L

0

cρut(x, t)dx =

∫ L

0

Kuxxdx = Kux(x, t)|L0 = 0,
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since ux(0, t) = ux(L, t) = 0. The left-hand side can also be written as

d

dt

∫ L

0

cρu(x, t)dx = E ′(t).

Thus, we have shown that E ′(t) = 0 so that E(t) is constant.

14.16 (a) The total thermal energy is

E(t) =

∫ L

0

u(x, t)dx.

We have

dE

dt
=

∫ L

0

ut(x, t)dx = ux|L0 +

∫ L

0

xdx = (7− β) +
L2

2
.

(b) The steady solution (equilibrium) is possible if the right-hand side van-
ishes:

(7− β) +
L2

2
= 0

Solving this equation for β we find β = 7 + L2

2
.

(c) By integrating the equation uxx + x = 0 we find the steady solution

u(x) = −x
3

6
+ C1x+ C2

From the condition ux(0) = β we find C1 = β. The steady solution should
also have the same value of the total energy as the initial condition. This
means ∫ L

0

(
−x

3

6
+ βx+ C2

)
dx =

∫ L

0

f(x)dx = E(0).

Performing the integration and then solving for C2 we find

C2 =
1

L

∫ L

0

f(x)dx+
L3

24
− βL

2
.

Therefore, the steady-state solution is

u(x) =
1

L

∫ L

0

f(x)dx+
L3

24
− βL

2
+ βx− x3

6
.
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Section 15

15.1 (a) We have (fg)(x+ T ) = f(x+ T )g(x+ T ) = f(x)g(x) = (fg)(x).
(b) We have (c1f+c2g)(x+T ) = c1f(x+T )+c2g(x+T ) = c1f(x)+c2g(x) =
(c1f + c2g)(x).

15.2 (a) For n 6= m we have∫ L

−L
sin
(mπ
L
x
)

sin
(nπ
L
x
)
dx =− 1

2

∫ L

−L

[
cos

(
(m+ n)π

L
x

)
− cos

(
(m− n)π

L
x

)]
dx

=− 1

2

[
L

(m+ n)π
sin

(
(m+ n)π

L
x

)
− L

(m− n)π
sin

(
(m− n)π

L
x

)]L
−L

=0

where we used the trigonometric identiy

sin a sin b =
1

2
[− cos (a+ b) + cos (a− b)].

(b) For n 6= m we have∫ L

−L
cos
(mπ
L
x
)

sin
(nπ
L
x
)
dx =

1

2

∫ L

−L

[
sin

(
(m+ n)π

L
x

)
− sin

(
(m− n)π

L
x

)]
dx

=
1

2

[
− L

(m+ n)π
cos

(
(m+ n)π

L
x

)
+

L

(m− n)π
cos

(
(m− n)π

L
x

)]L
−L

=0

where we used the trigonometric identiy

cos a sin b =
1

2
[sin (a+ b)− sin (a− b)].

15.3 (a) L (b) L (c) 0.
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15.4

a0 =
1

π

∫ π

−π
f(x)dx = 0

an =
1

π

∫ π

−π
f(x) cosnxdx

=−
∫ 0

−π
cosnxdx+

∫ π

0

cosnxdx = 0

bn =
1

π

∫ π

−π
f(x) sinnxdx

=−
∫ 0

−π
sinnxdx+

∫ π

0

sinnxdx

=
2

n
[1− (−1)n]

15.5 f(x) = −1
6

+
∑∞

n=1
4

(nπ)2
(−1)n cos (nπx).

15.6 f(x) =
∑∞

n=1
2
nπ

[
cos
(
nπ
2

)
− (−1)n

]
sin
(
nx
2

)
.

15.7 f(x) =
∑∞

n=1
4

(nπ)2
[1− (−1)n] cos

(
nπ
2
x
)
.

15.8 Since the sided limits at the point of discontinuity x = 0 do not exist,
the function is not piecewise continuous in [−1, 1].

15.9 Define the function

g(a) =

∫ L+a

−L+a

f(x)dx.

Using the fundamental theorem of calculus, we have

dg

da
=
d

da

∫ L+a

−L+a

f(x)dx

=f(L+ a)− f(−L+ a) = f(−L+ a+ 2L)− f(−L+ a)

=f(−L+ a)− f(−L+ a) = 0

Hence, g is a constant function, and in particular we can write g(a) = g(0)
for all a ∈ R which gives the desired result.
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15.10 (i) f(x) = 10
3

+
∑∞

n=1

[
− 1
nπ

sin
(

2nπ
3

)
cos
(

2nπx
3

)
− 1

nπ

(
− cos

(
2nπ

3

)
+ 1
)

sin
(

2nπx
3

)]
.

(ii) Using the theorem discussed in class, because this function and its deriva-
tive are piecewise continuous, the Fourier series will converge to the function
at each point of continuity. At any point of discontinuity, the Fourier series
will converge to the average of the left and right limits.
(iii)

.

15.11 (a) a0 = 2, an = bn = 0 for n ∈ N.
(b) a0 = 4, an = 0, b1 = 1, and bn = 0.
(c) a0 = 1, an = 0, bn = 1

πn
[1− (−1)n], n ∈ N.

(d) a0 = an = 0, bn = 2L
πn

(−1)n+1, n ∈ N.

15.12 −1

15.13 an = 0 for all n ∈ N.

15.14 f(0−)+f(0+)
2

= −π+π
2

= 0.

15.15 (a) f(x) = 3
2

+ 2
π

∑∞
n=1

sin (2n−1)x
2n−1

.

(b)
∑∞

n=1
(−1)n+1

2n−1
= π

4
.

Section 16

16.1 f(x) = 0.

16.2
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16.3

16.4



253

16.5 f(x) = π
4

+
∑∞

n=1
2
πn2 [2 cos (nπ/2)− 1− (−1)n] cosnx.

16.6 f(x) = π
2

+
∑∞

n=1
2
n2π

[(−1)n − 1] cosnx.

16.7 f(x) =
∑∞

n=1
2
nπ

[1− (−1)n] sinnx.

16.8 f(x) = 2
π

∑∞
n=1 n

(
1−(−1)n

n2−1

)
sinnx.

16.9 f(x) = 1
2
(e2 − 1) +

∑∞
n=1

4[(−1)ne2−1]
4+n2π2 cos (nπx).

16.10 (a) If f(x) = sin
(

2π
L
x
)

then bn = 0 if n 6= 2 and b2 = 1.
(b) If f(x) = 1 then

bn =
2

L

∫ L

0

sin
(nπ
L
x
)
dx =

2

nπ
[1− (−1)n].

(c) If f(x) = cos
(
π
L
x
)

then

b1 =
2

L

∫ L

0

cos
(π
L
x
)

sin
(π
L
x
)
dx = 0
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and for n 6= 1 we have

bn =
2

L

∫ L

0

cos
(π
L
x
)

sin
(nπ
L
x
)
dx

=
1

2

2

L

∫ L

0

[
sin
(πx
L

)
(1 + n)− sin

(πx
L

)
(1− n)

]
dx

=
1

L

[
− L

(1 + n)π
cos
(πx
L

)
(1 + n) +

L

(1− n)π
cos
(πx
L

)
(1− n)

]L
0

=
2n

(n2 − 1)π
[1− (−1)n].

16.11 (a) a0 = 10 and a1 = 1, and an = 0 for n 6= 1.
(b) a0 = L and an = 2L

(πn)2
[(−1)n − 1], n ∈ N.

(c) a0 = 1 and an = 2
πn

sin
(
πn
2

)
, n ∈ N.

16.12 By definition of Fourier sine coefficients,

bn =
2

L

∫ L

0

f(x) sin
(nπ
L
x
)
dx

The symmetry around x = L
2

can be written as

f

(
L

2
+ x

)
= f

(
L

2
− x
)

for all x ∈ R. To use this symmetry it is convenient to make the change of
variable x− L

2
= u in the above integral to obtain

bn =

∫ L
2

−L
2

f

(
L

2
+ u

)
sin

[
nπ

L

(
L

2
+ u

)]
du.

Since f
(
L
2

+ u
)

is even in u and for n even sin
[
nπ
L

(
L
2

+ u
)]

= sin
(
nπu
L

)
is

odd in u, the integrand of the above integral is odd in u for n even. Since
the intergral is from −L

2
to L

2
we must have b2n = 0 for n = 0, 1, 2, · · ·

16.13 By definition of Fourier cosine coefficients,

an =
2

L

∫ L

0

f(x) cos
(nπ
L
x
)
dx
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The anti-symmetry around x = L
2

can be written as

f

(
L

2
− y
)

= −f
(
L

2
+ y

)

for all y ∈ R. To use this symmetry it is convenient to make the change of
variable x = L

2
+ y in the above integral to obtain

an =

∫ L
2

−L
2

f

(
L

2
+ y

)
cos

[
nπ

L

(
L

2
+ y

)]
dy.

Since f
(
L
2

+ y
)

is odd in y and for n even cos
[
nπ
L

(
L
2

+ y
)]

= ± cos
(
nπy
L

)
is

even in y, the integrand of the above integral is odd in y for n even. Since
the intergral is from −L

2
to L

2
we must have a2n = 0 for all n = 0, 1, 2, · · · .

16.14 sin
(
nπx
L

)
= 2

π
− 2

π

∑∞
n=2

1−(−1)n

n2−1
cos
(
nπx
L

)
.

16.15 (a)

(b) a0 = 2
2

∫ 2

0
f(x)dx = 3.
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(c) We have

an =
2

2

∫ 2

0

f(x) cos
(nπx

2

)
dx

=

∫ 1

0

cos
(nπx

2

)
dx+

∫ 2

1

2 cos
(nπx

2

)
dx

=
2

nπ
sin
(nπx

2

)∣∣∣∣1
0

+ 2
2

nπ
sin
(nπx

2

)∣∣∣∣2
1

=− 2

nπ
sin
(nπ

2

)
.

(d) bn = 0 since f(x) sin
(
nπx

2

)
is odd in−2 ≤ x ≤ 2.

(e)

f(x) =
3

2
+
∞∑
n=1

(
− 2

nπ
sin
(nπ

2

))
cos
(nπx

2

)
.

Section 17

17.1 We look for a solution of the form u(x, y) = X(x)Y (y). Substituting in
the given equation, we obtain

X ′′Y +XY ′′ + λXY = 0.

Assuming X(x)Y (y) is nonzero, dividing for X(x)Y (y) and subtract both

sides for X′′(x)
X(x)

, we find:

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+ λ.

The left hand side is a function of x while the right hand side is a function
of y. This says that they must equal to a constant. That is,

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
+ λ = δ.

where δ is a constant. This results in the following two ODEs

X ′′ + δX = 0 and Y ′′ + (λ− δ)Y = 0.
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• If δ > 0 and λ− δ > 0 then

X(x) =A cos δx+B sin δx

Y (y) =C cos (λ− δ)y +D sin (λ− δ)y

• If δ > 0 and λ− δ < 0 then

X(x) =A cos δx+B sin δx

Y (y) =Ce−
√
−(λ−δ)y +De

√
−(λ−δ)y

• If δ = λ > 0 then

X(x) =A cos δx+B sin δx

Y (y) =Cy +D

• If δ = λ < 0 then

X(x) =Ae−
√
−δx +Be

√
−δx

Y (y) =Cy +D

• If δ < 0 and λ− δ > 0 then

X(x) =Ae−
√
−δx +Be

√
−δx

Y (y) =C cos (λ− δ)y +D sin (λ− δ)y

• If δ < 0 and λ− δ < 0 then

X(x) =Ae−
√
−δx +Be

√
−δx

Y (y) =Ce−
√

(λ−δ)y +De
√

(λ−δ)y.

17.2 Let’s assume that the solution can be written in the form u(x, t) =
X(x)T (t). Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since X only depends on x and T only depends on t, we must have that
there is a constant λ such that

X′′

X
= λ and T ′

kT
= λ.
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This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

Next, we consider the three cases of the sign of λ.
Case 1: λ = 0
In this case, X ′′ = 0 and T ′ = 0. Solving these equations we find X(x) =
ax+ b and T (t) = c.

Case 2: λ > 0
In this case, X(x) = Ae

√
λx +Be−

√
λx and T (t) = Cekλt.

Case 3: λ < 0
In this case, X(x) = A cos

√
−λx+B sin

√
−λx and and T (t) = Cekλt.

17.3 r2R′′(r) + rR′(r)− λR(r) = 0 and Θ′′(θ) + λΘ(θ) = 0.

17.4 X ′′ = (2 + λ)X, T ′′ = λT,X(0) = 0, X(1) = 0.

17.5 X ′′ − λX = 0, T ′ = kλT,X ′(0) = 0 = X ′(L).

17.6 u(x, t) = Ceλ(x−t).

17.7 5X ′′′ − 7X ′′ − λX = 0 and 3Y ′′ − λY ′ = 0.

17.8 u(x, y) = Ceλx−
y
λ .

17.9 u(x, y) = Ceλxyλ.

17.10 We look for a solution of the form u(x, y) = X(x)T (t). Substitut-
ing in the wave equation, we obtain

X ′′(x)T (t)−X(x)T ′′(t) = 0.

Assuming X(x)T (t) is nonzero, dividing for X(x)T (t) we find:

X ′′(x)

X(x)
=
T ′′(t)

T (t)
.
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The left hand side is a function of x while the right hand side is a function
of t. This says that they must equal to a constant. That is,

X ′′(x)

X(x)
=
T ′′(t)

T (t)
= λ

where λ is a constant. This results in the following two ODEs

X ′′ − λX = 0 and T ′′ − λT = 0.

The solutions of these equations depend on the sign of λ.
• If λ > 0 then the solutions are given

X(x) =Ae
√
λx +Be−

√
λx

T (t) =Ce
√
λt +De−

√
λt

where A,B,C, and D are constants. In this case,

u(x, t) = k1e
√
λ(x+t) + k2e

√
λ(x−t) + k3e

−
√
λ(x+t) + k4e

−
√
λ(x−t).

• If λ = 0 then

X(x) =Ax+B

T (t) =Ct+D

where A,B, and C are arbitrary constants. In this case,

u(x, t) = k1xt+ k2x+ k3t+ k4.

• If λ < 0 then

X(x) =A cos
√
−λx+B sin

√
−λx

T (t) =A cos
√
−λt+B sin

√
−λt

where A,B,C, and D are arbitrary constants. In this case,

u(x, t) =k1 cos
√
−λx cos

√
−λt+ k2 cos

√
−λx sin

√
−λt

+k3 sin
√
−λx cos

√
−λt+ k4 sin

√
−λx sin

√
−λt.

17.11 (a) u(r, t) = R(r)T (t), T ′(t) = kλT, r(rR′)′ = λR.
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(b) u(x, t) = X(x)T (t), T ′ = λT, kX ′′ − (α + λ)X = 0.
(c) u(x, t) = X(x)T (t), T ′ = λT, kX ′′ − aX ′ = λX.
(d) u(x, t) = X(x)Y (y), X ′′ = λX, Y ′′ = −λY.
(e) u(x, t) = X(x)T (t), T ′ = kλT, X ′′′′ = λX.

17.12 u(x, y) = Ceλ(x+y).

17.13 X ′′ = λX, Y ′ − Y ′′ + Y = λY.

Section 18

18.1 u(x, t) = sin
(
π
2
x
)
e−

π2k
4
t + 3 sin

(
5π
2
x
)
e−

25π2k
4

t.

18.2 u(x, t) = 8d
π3

∑∞
n=1

1
(2n−1)3

sin
(

(2n−1)π
L

x
)
e−

k(2n−1)2π2

L2 t.

18.3 u(x, t) = 2
π
− 4

π

∑∞
n=1

1
(4n2−1)

cos
(

2nπ
L
x
)
e−k

4n2π2

L2 t.

18.4 u(x, t) =
∑∞

n=1Cn sin
(
nπ
L
x
)
e−

n2π2

L2 t where

Cn =


− 4
nπ

n = 2, 6, 10, · · ·
0 n = 4, 8, 12, · · ·
6
nπ

n is odd.

18.5 u(x, t) = 6 sin
(

9π
L
x
)
e
−81π2

L2 t.

18.6 u(x, t) = 1
2

+
∑∞

n=1 Cn cos
(
nπ
L
x
)
e−

n2π2

L2 t where

Cn =


− 2
nπ

n = 1, 5, 9, · · ·
2
nπ

n = 3, 7, 11, · · ·
0 n is even

18.7 u(x, t) = 6 + 4 cos
(

3π
L
x
)
e−

9π2

L2 t.

18.8 u(x, t) = −3 cos
(

8π
L
x
)
e−

64π2

L2 t.

18.9

u(x, t) =
∞∑
n=0

an cos
(nπ
L
x
)
e
−
(

1+n2π2

L2

)
t
.
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As t→∞, e−
(

1+n2π2

L2

)
t → 0 for each n ∈ N. Hence, u(x, t)→ 0.

18.10 (b) We have

E ′(t) =2

∫ 1

0

w(x, t)wt(x, t)dx

=2

∫ 1

0

w(x, t)[wxx(x, t)− w(x, t)]dx

= 2w(x, t)wx(x, t)|10 − 2

[∫ 1

0

w2
x(x, t)dx+

∫ 1

0

w2(x, t)dx

]
=− 2

[∫ 1

0

w2
x(x, t)dx+

∫ 1

0

w2(x, t)dx

]
≤ 0

Hence, E is decreasing, and 0 ≤ E(t) ≤ E(0) for all t > 0.
(c) Since w(x, 0) = 0, we must have E(0) = 0. Hence, E(t) = 0 for all t ≥ 0.
This implies that w(x, t) = 0 for all t > 0 and all 0 < x < 1. Therefore
u1(x, t) = u2(x, t). This means that the given problem has a unique solution.

18.11 (a) u(0, t) = 0 and ux(1, t) = 0.
(b) Let’s assume that the solution can be written in the form u(x, t) =
X(x)T (t). Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since X only depends on x and T only depends on t, we must have that
there is a constant λ such that

X′′

X
= λ and T ′

kT
= λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

As far as the boundary conditions, we have

u(0, t) = 0 = X(0)T (t) =⇒ X(0) = 0

and
ux(1, t) = 0 = X ′(1)T (t) =⇒ X ′(1) = 0.
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Note that T is not the zero function for otherwise u ≡ 0 and this contradicts
our assumption that u is the non-trivial solution.
(c) We haveX ′ =

√
−λ cos

√
−λx andX ′′ = λ sin

√
−λx. Thus, X ′′−λX = 0.

Moreover X(0) = 0. Now, X ′(1) = 0 implies cos
√
−λ = 0 or

√
−λ =(

n− 1
2

)
π, n ∈ N. Hence, λ = −

(
n− 1

2

)2
π2.

18.12 (a) Let’s assume that the solution can be written in the form u(x, t) =
X(x)T (t). Substituting into the heat equation we obtain

X ′′

X
=

T ′

kT
.

Since the LHS only depends on x and the RHS only depends on t, there must
be a constant λ such that

X′′

X
= λ and T ′

kT
= λ.

This gives the two ordinary differential equations

X ′′ − λX = 0 and T ′ − kλT = 0.

As far as the boundary conditions, we have

u(0, t) = 0 = X(0)T (t) =⇒ X(0) = 0

and
u(L, t) = 0 = X(L)T (t) =⇒ X(L) = 0.

Note that T is not the zero function for otherwise u ≡ 0 and this contradicts
our assumption that u is the non-trivial solution.
Next, we consider the three cases of the sign of λ.

Case 1: λ = 0
In this case, X ′′ = 0. Solving this equation we find X(x) = ax + b. Since
X(0) = 0 we find b = 0. Since X(L) = 0 we find a = 0. Hence, X ≡ 0 and
u(x, t) ≡ 0. That is, u is the trivial solution.

Case 2: λ > 0
In this case, X(x) = Ae

√
λx+Be−

√
λx. Again, the conditions X(0) = X(L) =

0 imply A = B = 0 and hence the solution is the trivial solution.
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Case 3: λ < 0
In this case, X(x) = A cos

√
−λx + B sin

√
−λx. The condition X(0) = 0

implies A = 0. The condition X(L) = 0 implies B sin
√
−λL = 0. We must

have B 6= 0 otherwise X(x) = 0 and this leads to the trivial solution. Since
B 6= 0, we obtain sin

√
−λL = 0 or

√
−λL = nπ where n ∈ N. Solving for λ

we find λ = −n2π2

L2 . Thus, we obtain infinitely many solutions given by

Xn(x) = An sin
nπ

L
x, n ∈ N.

Now, solving the equation

T ′ − λkT = 0

by the method of separation of variables we obtain

Tn(t) = Bne
−n

2π2

L2 kt, n ∈ N.

Hence, the functions

un(x, t) = Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt, n ∈ N

satisfy ut = kuxx and the boundary conditions u(0, t) = u(L, t) = 0.
Now, in order for these solutions to satisfy the initial value condition u(x, 0) =
6 sin

(
9πx
L

)
, we invoke the superposition principle of linear PDE to write

u(x, t) =
∞∑
n=1

Cn sin
(nπ
L
x
)
e−

n2π2

L2 kt. (1)

To determine the unknown constants Cn we use the initial condition u(x, 0) =
6 sin

(
9πx
L

)
in (1) to obtain

6 sin

(
9πx

L

)
=
∞∑
n=1

Cn sin
(nπ
L
x
)
.

By equating coefficients we find C9 = 6 and Cn = 0 if n 6= 9. Hence, the
solution to the problem is given by

u(x, t) = 6 sin

(
9πx

L

)
e−

81π2

L2 kt.
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(b) Similar to (a), we find

u(x, t) = 3 sin
(π
L
x
)
e−

π2kt
L2 − sin

(
3π

L
x

)
e−

9π2kt
L2

18.13 u(x, t) = cos
(
πx
L

)
e−

pi2kt

L2 + 4 cos
(

5πx
L

)
e−

25pi2kt

L2 .
(b) u(x, t) = 5.

18.14 u(x, t) = 6 sinxe−8t.

Section 19

19.1 u(x, y) =
∑∞

n=1Bn sin
(
nπ
b
y
)

sinh
(
nπ
b
x
)

where

Bn =

[
2

b

∫ b

0

f2(y) sin
(nπ
b
y
)
dy

] [
sinh

(nπ
b
a
)]−1

.

19.2 u(x, y) =
∑∞

n=1Bn sin nπ
a
x sinh

(
nπ
a

(y − b)
)

where

Bn =

[
2

a

∫ a

0

g1(x) sin
(nπ
a
x
)
dx

]
[sinh

(
−nπ
a
b
)

]−1.

19.3 u(x, y) = 2xy + 3
sinhπ

sin πx sinhπy.

19.4 If u(x, y) = x2 − y2 then uxx = 2 and uyy = −2 so that ∆u = 0.
If u(x, y) = 2xy then uxx = uyy = 0 so that ∆u = 0.

19.5

u(x, y) =
∞∑
n=1

[An cosh
(nπ
L
y
)

+Bn sinh
(nπ
L
y
)

] sin
nπ

L
x.

where

An =

[
2

L

∫ L

0

(f1(x) + f2(x)) sin
nπ

L
xdx

] [
cosh

(
nπH

2L

)]−1

and

Bn =

[
2

L

∫ L

0

(f2(x)− f1(x)) sin
nπ

L
xdx

] [
sinh

(
nπH

2L

)]−1
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19.6 (a) Differentiating term by term with respect to x we find

ux + ivx =
∞∑
n=0

nan(x+ iy)n−1.

Likewise, differentiating term by term with respect to y we find

uy + ivy =
∞∑
n=0

nani(x+ iy)n−1.

Multiply this equation by i we find

−iuy + vy =
∞∑
n=0

nan(x+ iy)n−1.

Hence, ux + ivx = vy − iuy which implies ux = vy and vx = −uy.
(b) We have uxx = (vy)x = (vx)y = −uyy so that ∆u = 0. Similar argument
for ∆v = 0.

19.7 Polar and Cartesian coordinates are related by the expressions x =
r cos θ and y = r sin θ where r = (x2 + y2)

1
2 and tan θ = y

x
. Using the chain

rule we obtain

ux =urrx + uθθx = cos θur −
sin θ

r
uθ

uxx =uxrrx + uxθθx

=

(
cos θurr +

sin θ

r2
uθ −

sin θ

r
urθ

)
cos θ

+

(
− sin θur + cos θurθ −

cos θ

r
uθ −

sin θ

r
uθθ

)(
−sin θ

r

)
uy =urry + uθθy = sin θur +

cos θ

r
uθ

uyy =uyrry + uyθθy

=

(
sin θurr −

cos θ

r2
uθ +

cos θ

r
urθ

)
sin θ

+

(
cos θur + sin θurθ −

sin θ

r
uθ +

cos θ

r
uθθ

)(
cos θ

r

)
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Substituting these equations into (21.1) we obtain the dersired equation.

19.8 u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y) where

u1(x, y) = 0

u2(x, y) =
∞∑
n=1

[
− 2

nπ
· (−1)n

sinh
(

3nπ
2

)] sin
nπ

2
x sinh

(nπ
2
y
)

u3(x, y) =
1

sinh
(

8π
3

) sinh

(
4π(x− 2)

3

)
sin

(
4π

3
y

)

u4(x, y) =
∞∑
n=1

14(1− (−1)n)

nπ sinh
(

2nπ
3

) sin
(nπ

3
y
)

sinh
(nπ

3
x
)
.

19.9

u(x, y) =
4

sinh
(
πL
2H

) {sinh
( πx

2H

)
− sinh

(
π(x− L)

2H

)}
cos

πy

2H
.

19.10 u(x, t) = A0 +
∑∞

n=1 Ane
−
√
λnx cos

√
λny where

A0 =
1

H

∫ H

0

f(y)dy

An =
2

H

∫ H

0

f(y) cos
nπ

H
ydy.

19.11 u(x, y) = 20
Y1(H)

Y1(y) sin
(
πx
L

)
− 5

Y3(H)
sin
(

3πx
L

)
.

19.12 u(x, y) = sin (2πx)e−2πy.

19.13 u(x, y) = y.

19.14 u(x, y) = 1
2
x2 − 1

2
y2 − axby + C where C is an arbitrary constant.

19.15 u(x, y) = 2 cosh 3y sin 3x
cosh 6

− 5 cosh 10y sin 10x
cosh 20

.

Section 20
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20.1 u(r, θ) = 3r5 sin 5θ.

20.2 u(r, θ) = π
4

+
∑∞

n=1 r
n
[

1−(−1)n

n2π
cosnθ + sinnθ

n

]
.

20.3 u(r, θ) = C0 + r2 cos 2θ.

20.4 Substituting C0, An, and Bn into the right-hand side of u(r, θ) we find

u(r, θ) =
1

2π

∫ 2π

0

f(φ)dφ+
∞∑
n=1

rn

πan

∫ 2π

0

f(φ) [cosnφ cosnθ + sinnφ sinnθ] dφ

=
1

2π

∫ 2π

0

f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ.

20.5 (a) We have eit = cos t + i sin t and e−it = cos t − i sin t. The result
follows by adding these two equalities and dividing by 2.
(b) This follows from the fact that

cosn(θ − φ) =
1

2
(ein(θ−φ) + e−in(θ−φ)).

(c) We have |q1| = r
a

√
cos (θ − φ)2 + sin (θ − φ)2 = r

a
< 1 since 0 < r < a. A

similar argument shows that |q2| < 1.

20.6 (a) The first sum is a convergent geometric series with ratio q1 and
sum

∞∑
n=1

(r
a

)n
ein(θ−φ) =

r
a
ei(θ−φ)

1− q1

=
rei(θ−φ)

a− rei(θ−φ)
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Similar argument for the second sum.
(b) We have

1 + 2
∞∑
n=1

(r
a

)n
cosn(θ − φ) =1 +

rei(θ−φ)

a− rei(θ−φ)

+
re−i(θ−φ)

a− re−i(θ−φ)

=1 +
r

ae−i(θ−φ) − r
+

r

ae−i(θ−φ) − r
=1 +

r

a cos (θ − φ)− r − ai sin (θ − φ)

+
r

a cos (θ − φ)− r + ai sin (θ − φ)

=1 +
r[a cos (θ − φ)− r + ai sin (θ − φ)]

a2 + 2ar cos (θ − φ) + r2

+
r[a cos (θ − φ)− r − ai sin (θ − φ)]

a2 − 2ar cos (θ − φ) + r2

=
a2 − r2

a2 − 2ar cos (θ − φ) + r2
.

20.7 We have

u(r, θ) =
1

2π

∫ 2π

0

f(φ)

[
1 + 2

∞∑
n=1

(r
a

)n
cosn(θ − φ)

]
dφ

=
1

2π

∫ 2π

0

f(φ)
a2 − r2

a2 − 2ar cos (θ − φ) + r2
dφ

=
a2 − r2

2π

∫ 2π

0

f(φ)

a2 − 2ar cos (θ − φ) + r2
dφ.

20.8 u(r, θ) = 2
∑∞

n=1(−1)n+1rn sinnθ
n
.

20.9 (a) Differentiating u(r, t) = R(r)T (t) with respect to r and t we find

utt = RT ′′ and ur = R′T and urr = R′′T.

Substituting these into the given PDE we find

RT ′′ = c2

(
R′′T +

1

r
R′T

)
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Dividing both sides by c2RT we find

1

c2

T ′′

T
=
R′′

R
+

1

r

R′

R
.

Since the RHS of the above equation depends on r only, and the LHS depends
on t only, they must equal to a constant λ.
(b) The given boundary conditions imply

u(a, t) = 0 = R(a)T (t) =⇒ R(a) = 0

u(r, 0) = f(r) = R(r)T (0)

ut(r, 0) = g(r) = R(r)T ′(0).

If λ = 0 then R′′+ 1
r
R′ = 0 and this implies R(r) = C ln r. Using the condition

R(a) = 0 we find C = 0 so that R(r) = 0 and hence u ≡ 0. If λ > 0 then
T ′′ − λc2T = 0. This equation has the solution

T (t) = A cos (c
√
λt) +B sin (c

√
λt).

The condition u(r, 0) = f(r) implies that A = f(r) which is not possible.
Hence, λ < 0.

20.10 (a) Follows from the figure and the definitions of trigonometric func-
tions in a right triangle.
(b) The result follows from equation (20.1).

20.11 By the maximum principle we have

min
(x,y)∈∂Ω

u(x, y) ≤ u(x, y) ≤ max
(x,y)∈∂Ω

u(x, y), ∀(x, y) ∈ Ω

But min(x,y)∈∂Ω u(x, y) = u(1, 0) = 1 and max(x,y)∈∂Ω u(x, y) = u(−1, 0) = 3.
Hence,

1 ≤ u(x, y) ≤ 3

and this implies that u(x, y) > 0 for all (x, y) ∈ Ω.

20.12 (i) u(1, 0) = 4 (ii) u(−1, 0) = −2.
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20.13 Using the maximum principle and the hypothesis on g1 and g2, for
all (x, y) ∈ Ω ∪ ∂Ω we have

min
(x,y)∈∂Ω

u1(x, y) = min
(x,y)∈∂Ω

g1(x, y)

≤u1(x, y) ≤ max
(x,y)∈∂Ω

u1(x, y)

= max
(x,y)∈∂Ω

g1(x, y) < max
(x,y)∈∂Ω

g2(x, y)

≤ min
(x,y)∈∂Ω

g1(x, y) = min
(x,y)∈∂Ω

u2(x, y)

≤u2(x, y) ≤ max
(x,y)∈∂Ω

u2(x, y) = max
(x,y)∈∂Ω

g2(x, y).

20.14 We have

∆(rn cos (nθ)) =
∂2

∂r2
(rn cos (nθ)) +

1

r

∂

∂r
(rn cos (nθ)) +

1

r2

∂2

∂θ2
(rn cos (nθ))

=n(n− 1)rn−2 cos (nθ) + nrn−2 cos (nθ)− rn−2n2 cos (nθ) = 0

Likewise, ∆(rn sin (nθ)) = 0.

20.15 u(r, θ) = 1
2
− r2

2a2 cos 2θ.

20.16 u(r, θ) = ln 2 + 4
(
a
r

)3
cos 3θ.

Section 21

21.1 Convergent.

21.2 Divergent.

21.3 Convergent.

21.4 1
s−3

, s > 3.

21.5 1
s2
− 5

s
, s > 0.

21.6 f(t) = e(t−1)2 does not have a Laplace transform.
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21.7 4
s
− 4

s2
+ 2

s3
, s > 0.

21.8 e−s

s2
, s > 0.

21.9 − e−2s

s
+ 1

s2
(e−s − e−2s), s 6= 0.

21.10 − tne−st

s
+ n

s

∫
tn−1e−stdt, s > 0.

21.11 (a) 0 (b) 0.

21.12 5
s+7

+ 1
s2

+ 2
s−2

, s > 2.

21.13 3e2t, t ≥ 0.

21.14 −2t+ e−t, t ≥ 0.

21.15 2(e−2t + e2t), t ≥ 0.

21.16 2
s−1

+ 5
s
, s > 1.

21.17 e−s

s−3
, s > 3.

21.18 1
2

(
1
s
− s2

s2+4ω2

)
, s > 0.

21.19 3
s2+26

, s > 0.

21.20 s−3
(s−3)2+9

, s > 3.

21.21 2
(s−4)3

+ 3
(s−4)2

+ 5
s−4

, s > 4.

21.22 2 sin 5t+ 4e3t, t ≥ 0.

21.23 5
6
e3tt3, t ≥ 0.

21.24 {
0, 0 ≤ t < 2

e9(t−2), t ≥ 2.
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21.25 3e3t − 3e−t, t ≥ 0.

21.26 4[e3(t−5) − e−3(t−5)]H(t− 5), t ≥ 0.

21.27 y(t) = 2e−4t+3[H(t−1)−H(t−3)]−3[e−4(t−1)H(t−1)−e−4(t−3)H(t−
3)], t ≥ 0.

21.28 1
5
e3t + 1

20
e−2t − 1

4
e2t, t ≥ 0.

21.29 et−e−2t

3
.

21.30 t
2

sin t.

21.31 t5

120
.

21.32 1
2
− e−t + 1

2
e−2t.

21.33 −t+ et

2
− e−t

2
.

Section 22

22.1 u(x, t) = sin (x− t)−H(t− x) sin (x− t).

22.2 u(x, t) = [sin (x− t)−H(t− x) sin (x− t)]e−t.

22.3 u(x, t) = 2e−4π2t sin πx+ 6e−16π2t sin 2πx.

22.4 u(x, t) = [sin (x− t)−H(t− x) sin (x− t)]et.

22.5 u(x, t) = t2e−x − te−x + t.

22.6 u(x, t) =
(
t− 1

2
x2
)
H
(
t− 1

2
x2
)
.

22.7 u(x, t) = L−1
(
e−

s
c x

s2+1

)
= H

(
t− x

c

)
sin
(
t− x

c

)
.

22.8 u(x, t) = 2 sinx cos 3t.
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22.9 u(x, y) = y(x+ 1) + 1.

22.10 u(x, t) = L−1
(
e−

s
c x

s2+1

)
= h

(
t− x

c

)
sin
(
t− x

c

)
.

22.11 u(x, t) = e−5xe−4tH(t).

22.12 u(x, t) = L−1
(
−T

s
e−
√
s
c
x + T

s

)
.

22.13 u(x, t) = 5e−3π2t sin (πx).

22.14 u(x, t) = 40e−t cos x
2
.

22.15 u(x, t) = 3 sin πx cos 2πt.

Section 23

23.1 (−1)ni
nπ

.

23.2 f(x) = 1
2

+
∑∞

n=1
1
nπ

sin
(
nπ
2

)
(einx + e−inx).

23.3 f(x) = sinh aπ
π

∑∞
n=−∞

(−1)n(a+in)
(a2+n2)

einx.

23.4 f(x) = eix−e−ix
2i

.

23.5 f(x) = 1
2π

{
T +

∑−1
n=−∞

i
n
[e−int − 1]eint +

∑∞
n=1

i
n
[e−int − 1]eint

}
.

23.6 (a) f(x) = π2

3
+
∑−1

n=−∞
2
n2 (−1)neinx +

∑∞
n=1

2
n2 (−1)neinx.

(b) f(x) = π2

3
+
∑∞

n=1
4
n2 (−1)n cosnx.
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23.7 (a)

a0 =2

∫ 1
2

− 1
2

sinnπxdx = − 2

π
[cos

π

2
− cos−π

2
] = 0

an =2

∫ 1
2

− 1
2

sinnπx cos 2nπxdx = 0

bn =2

∫ 1
2

− 1
2

sinnπx sin 2nπxdx =
8(−1)nn

π − 4n2π

(b) f(x) = 4
π

∑∞
n=−∞

(−1)nn
i(1−4n2)

e2nπix.

23.8 (a)

a0 =
1

2

∫ 2

−2

(2− x)dx = 4

an =
1

2

∫ 2

−2

(2− x) cos
(nπ

2
x
)
dx = 0

bn =
1

2

∫ 2

−2

(2− x) sin
(nπ

2
x
)
dx =

4(−1)n

nπ

(b) f(x) = 2 +
∑−1

n=−∞
2(−1)n+1i

nπ
e(

inπ
2
x) +

∑∞
n=1

2(−1)n+1i
nπ

e(
inπ
2
x).

23.9 an = cn + c−n = 0. We have for |n| odd bn = i 4
inπ

= 4
nπ

and for
|n| even bn = 0.

23.10 Note that for any complex number z we have z + z = 2Re(z) and
z − z = −2iRe(z). Thus,

cn + cn = an

which means that an = 2Re(cn). Likewise, we have

cn − cn = ibn

That is ibn = −2iIm(cn). Hence, bn = −2Im(cn).

23.11 an = 2Re(cn) = 1
πn

sin (nT ) and bn = 1−cos (nT )
nπ

.
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23.12 f(x) = i
∑∞

n=−∞
i sin (2−inπ)

2−inπ e
inπ
2
x.

23.13 (a) We have

f(t) =

{
1 0 < t < 1
0 1 < t < 2

and f(t+ 2) = f(t) for all t ∈ R.
(b) We have

a0 =
2

L

∫ L

0

f(x)dx =

∫ 2

0

dx =

∫ 1

0

dx = 1

an =

∫ 1

0

cosnπxdx =
sinnπ

nπ
= 0.

(c) We have

bn =

∫ 1

0

sinnπxdx =
1− cosnπ

nπ
=

1− (−1)n

nπ
.

Hence,

bn =

{
2
nπ

if n is odd
0 if n is even

(d) We have c0 = a0

2
= 1

2
and for n ∈ N we have

cn =
an − ibn

2
=

{
− i
nπ

if n is odd
0 if n is even

23.14 sin 3x = 1
2
(e3ix − e−3ix).

23.15 e−ins
(

1−e−inh
2πin

)
.

Section 24

24.1

f̂(ξ) =

{
2 sin ξ

ξ
if ξ 6= 0

2 if ξ = 0.

24.2
∂û

∂t
+ iξcû = 0
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û(ξ, 0) = f̂(ξ).

24.3
∂2û

∂t2
= −c2ξ2û

û(ξ, 0) = f̂(ξ)

ût(ξ, 0) = ĝ(ξ).

24.4

ûyy = ξ2û

û(ξ, 0) = 0, û(ξ, L) =
2 sin ξa

ξ
.

24.5 1
α−iξ + 1

α+iξ
= 2α

α2+ξ2
.

24.6 We have

F [e−xH(x)] =

∫ ∞
−∞

e−xH(x)e−iξxdx

=

∫ ∞
0

e−x(1+iξ)dx = −e
−x(1+iξ)

1 + iξ

∣∣∣∣∞
0

=
1

1 + iξ
.

24.7 Using the duality property, we have

F
[

1

1 + ix

]
= F [F [e−ξH(ξ)]] = 2πeξH(−ξ).

24.8 We have

F [f(x− α)] =

∫ ∞
−∞

f(x− α)e−iξxdx

=e−iξα
∫ ∞
−∞

f(u)e−iξudu

=e−iξαf̂(ξ)
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where u = x− α.

24.9 We have

F [eiαxf(x)] =

∫ ∞
−∞

eiαxf(x)e−iξxdx =

∫ ∞
−∞

eix(α−ξf(x)e−iξxdx = f̂(ξ − α).

24.10 We will just prove the first one. We have

F [cos (αx)f(x)] =F [
f(x)eiαx

2
+ f(x)

e−iαx

2

=
1

2
[F [f(x)eiαx] + F [f(x)e−iαx]]

=
1

2
[f̂(x− α) + f̂(x+ α)].

24.11 Using the definition and integration by parts we find

F [f ′(x)] =

∫ ∞
−∞

f ′(x)e−iξxdx

= f(x)e−iξx
∣∣∞
−∞ + (iξ)

∫ ∞
−∞

f(x)e−iξxdx

=f(x) cos ξx− if(x) sin ξx+ (iξ)f̂(ξ) = (iξ)f̂(ξ)

where we used the fact that limx→∞ f(x) = 0.

24.12 2
ξ2

(1− cos ξ).

24.13 2
iξ

(1− cos ξa).

24.14 F−1[f̂(ξ)] = 1√
2π
e−

x2

2 .

24.15 F−1
(

1
a+iξ

)
= e−ax, x ≥ 0.

Section 25

25.1 u(x, t) = f(x) ∗ F−1[− 1
|ξ|e
−|ξ|y].
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25.2 u(x, t) = F−1[u(ξ, t)] = e−
(x−ct)2

4 .

25.3

u(x, t) =

√
γ

4π
e−αtF−1[e−ξ

2(kt+ γ
4

)]

=

√
γ

4π
e−αt ·

√
π

kt+ γ/4
· e−

x2

4(kt+γ/4)

=
√
γ4kt+ γe−

x2

4kt+γ e−αt.

25.4 u(x, t) = 1√
4πkt

∫∞
0
e−

(x−s)2
4kt ds.

25.5

u(x, t) =etF−1[e−ξ
2t]

=e−αt
1√
4πt

e−
x2

4t .

25.6 We have∫ ∞
−∞

e−|ξ|yeiξxdξ =

∫ 0

−∞
eξyeiξxdξ +

∫ ∞
0

e−ξyeiξxdξ

=
1

y + ix
eξ(y+ix)

∣∣∣∣0
−∞

+
1

−y + ix
eξ(−y+ix)

∣∣∣∣∞
0

=
1

y + ix
+

1

−y + ix
=

2y

x2 + y2
.

25.7

u(x, y) =
1

2π

∫ ∞
−∞

f̂(ξ)e−|ξ|yeiξxdξ

=
1

2π
f(x) ∗

[
2y

x2 + y2

]
=

1

2π

∫ ∞
−∞

f(x)
2y

(x− ξ)2 + y2
dξ.
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25.8 ûtt + (α + β)ût + αβû = −c2ξ2û.

25.9 u(x, t) = e−(x−3t).

25.10 u(x, t) = e−(x−kt).

25.11 u(x, t) = 1√
4πkt

∫∞
−∞ e

−s2− (x−s)2
4kt ds.

25.12 u(x, t) = (x− ct)2.

25.13 u(x, t) = f(x) ∗ F−1[− 1
|ξ|e
−|ξ|y].


