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Abstract

These notes introduce Fourier series and discuss some applications.

1 Introduction

Joseph Fourier (1768-1830) who gave his name to Fourier series, was not the first
to use Fourier series neither did he answer all the questions about them. These
series had already been studied by Euler, d’Alembert, Bernoulli and others be-
fore him. Fourier also thought wrongly that any function could be represented
by Fourier series. However, these series bear his name because he studied them
extensively. The first concise study of these series appeared in Fourier’s publica-
tions in 1807, 1811 and 1822 in his Théorie analytique de la chaleur. He applied
the technique of Fourier series to solve the heat equation. He had the insight
to see the power of this new method. His work set the path for techniques that
continue to be developed even today.

Fourier Series, like Taylor series, are special types of expansion of functions.
With Taylor series, we are interested in expanding a function in terms of the
special set of functions 1, x, x2, x3, ... or more generally in terms of 1, (x− a),

(x− a)2, (x− a)3, .... You will remember from calculus that if a function f has
a power series representation at a then

f (x) =
∞∑

n=0

f (n) (a)

n!
(x− a)n (1)

With Fourier series, we are interested in expanding a function f in terms of the
special set of functions 1, cosx, cos 2x, cos 3x, ..., sinx, sin 2x, sin 3x, ... Thus,
a Fourier series expansion of a function is an expression of the form

f (x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx)

After reviewing periodic functions, we will focus on learning how to represent
a function by its Fourier series. We will only partially answer the question
regarding which functions have a Fourier series representation. We will finish
these notes by discussing some applications.
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2 Even, Odd and Periodic Functions

In this section, we review some results about even, odd and periodic functions.
These results will be needed for the remaining sections.

Definition 1 (Even and Odd) Let f be a function defined on an interval I
(finite or infinite) centered at x = 0.

1. f is said to be even if f (−x) = f (x) for every x in I.

2. f is said to be odd if f (−x) = −f (x) for every x in I.

The graph of an even function is symmetric with respect to the y-axis. The
graph of an odd function is symmetric with respect to the origin. For example,
5, x2, xn where n is even, cosx are even functions while x, x3, xn where n is
odd, sinx are odd.

You will recall from calculus the following important theorem about inte-
grating even and odd functions over an interval of the form [−a, a] where a > 0.

Theorem 2 Let f be a function which domain includes [−a, a] where a > 0.

1. If f is even, then
∫ a

−a
f (x) dx = 2

∫ a

0
f (x) dx

2. If f is odd, then
∫ a

−a
f (x) dx = 0

There are several useful algebraic properties of even and odd functions as
shown in the theorem below.

Theorem 3 When adding or multiplying even and odd functions, the following
is true:

• even + even = even

• even × even = even

• odd + odd = odd

• odd × odd = even

• even × odd = odd

Definition 4 (Periodic) Let T > 0.

1. A function f is called T -periodic or simply periodic if

f (x+ T ) = f (x) (2)

for all x.

2. The number T is called a period of f .
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3. If f is non-constant, then the smallest positive number T with the above
property is called the fundamental period or simply the period of f .

Let us first remark that if T is a period for f , then nT is also a period for
any integer n > 0. This is easy to see using equation 2 repeatedly:

f (x) = f (x+ T )

= f ((x+ T ) + T ) = f (x+ 2T )

= f ((x+ 2T ) + T ) = f (x+ 3T )

...

= f ((x+ (n− 1)T ) + T ) = f (x+ nT )

Classical examples of periodic functions are sinx, cosx and other trigono-
metric functions. sinx and cosx have period 2π. tanx has period π. We will
see more examples below.

Because the values of a periodic function of period T repeat every T units,
it is enough to know such a function on any interval of length T . Its graph is
obtained by repeating the portion over any interval of length T . Consequently,
to define a T -periodic function, it is enough to define it over any interval of
length T . Since different intervals may be chosen, the same function may be
defined different ways.

Example 5 Describe the 2-periodic function shown in figure 1 in two different
ways:

1. By considering its values on the interval 0 ≤ x < 2;

2. By considering its values on the interval −1 ≤ x < 1.

Solution 1. On the interval 0 ≤ x < 2, the function is a portion of the
line y = −x + 1 thus f (x) = −x + 1 if 0 ≤ x < 2. The relation
f (x+ 2) = f (x) describes f for all other values of x.

2. On the interval −1 ≤ x < 1, the function consists of two lines. So
we have

f (x) =

{
−x− 1 if −1 ≤ x < 0
−x+ 1 if 0 ≤ x,≤ 1

The relation f (x+ 2) = f (x) describes f for all other values of x.

Although we have different formulas, they describe the same function. Of
course, in practice, we use common sense to select the most appropriate formula.

Next, we look at an important theorem concerning integration of periodic
functions over one period.

Theorem 6 (Integration Over One Period) Suppose that f is T -periodic.
Then for any real number a, we have∫ T

0

f (x) dx =

∫ a+T

a

f (x) dx (3)
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Figure 1: A function of period 2

Proof. Define F (a) =
∫ a+T

a
f (x) dx. By the fundamental theorem of calculus,

F ′ (a) = f (a+ T )− f (a) = 0 since f is T -periodic. Hence, F (a) is a constant
for all a. In particular, F (0) = F (a) which implies the theorem.

We illustrate this theorem with an example.

Example 7 Let f be the 2-periodic function shown in figure 1. Compute the
integrals below:

1.
∫ 1

−1
[f (x)]2 dx

2.
∫ N

−N
[f (x)]2 dx where N is any positive integer.

Solution 8 1. We described this function earlier and noticed that its sim-
plest expression was not over the interval [−1, 1] but over the interval [0, 2].

We should also note that if f is 2-periodic, so is [f (x)]2 (why?). Using
theorem 6, we have∫ 1

−1

[f (x)]2 dx =

∫ 2

0

[f (x)]2 dx

=

∫ 2

0

(−x+ 1)2 dx

=
−1

3
(−x+ 1)3

∣∣∣∣
2

0

=
2

3
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2. We break
∫ N

−N
[f (x)]2 dx into the sum of N integrals over intervals of

length 2.

∫ N

−N

[f (x)]2 dx =

∫
−N+2

−N

[f (x)]2 dx+

∫
−N+4

−N+2

[f (x)]2 dx+...+

∫ N

N−2

[f (x)]2 dx

By theorem 6, each integral is 2
3 . Thus

∫ N

−N

[f (x)]2 dx =
2N

3

The following result about combining periodic functions is important.

Theorem 9 When combining periodic functions, the following is true:

1. If f1, f2, ..., fn are T -periodic, then a1f1 + a2f2 + ... + anfn is also T -
periodic.

2. If f and g are two T -periodic functions so is f (x) g (x).

3. If f and g are two T -periodic functions so is f(x)
g(x) where g (x) �= 0.

4. If f has period T and a > 0 then f
(
x
a

)
has period aT and f (ax) has

period T
a
.

5. If f has period T and g is any function (not necessarily periodic) then the
composition g ◦ f has period T .

Proof. See problems.

The functions in the 2π-periodic trigonometric system

1, cosx, cos 2x, ..., cosmx, ..., sinx, sin 2x, ..., sinnx, ...

are among the most important periodic functions. The reader will verify that
they are indeed 2π-periodic. They share another important property.

Definition 10 (Orthogonal Functions) Two functions f and g are said to
be orthogonal over the interval [a, b] if

∫ b

a

f (x) g (x) dx = 0 (4)

The notion of orthogonality is very important in many areas of mathematics.
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Theorem 11 The functions in the trigonometric system 1, cosx, cos 2x, ..., cosmx, ..., sinx, sin 2x, ..., sinnx, ...
are orthogonal over the interval [−π, π] in other words, if m and n are two non-
negative integers, then∫ π

−π

cosmx cosnxdx = 0 if m �= n (5)∫ π

−π

cosmx sinnxdx = 0 ∀m,n∫ π

−π

sinmx sinnxdx = 0 if m �= n

Proof. There are different ways to prove this theorem. One way involves using
the identities

sinα cosβ =
1

2
[sin (α+ β) + sin (α− β)]

cosα sinβ =
1

2
[sin (α+ β)− sin (α− β)]

sinα sinβ =
1

2
[cos (α+ β)− cos (α− β)]

cosα cosβ =
1

2
[cos (α+ β) + cos (α− β)]

We illustrate the technique by proving
∫ π

−π
cosmx cosnxdx = 0 if m �= n. We

see that cosmx cosnx = 1
2 [cos (m+ n)x+ cos (m− n)x]. Therefore∫ π

−π

cosmx cosnxdx =
1

2

∫ π

−π

[cos (m+ n)x+ cos (m− n)] dx

=
1

2

[
1

m+ n
sin (m+ n)x+

1

m− n
sin (m− n)x

]∣∣∣∣
π

−π

= 0

Remark 12 We also have the useful identities∫ π

−π

cos2 mxdx =

∫ π

−π

sin2 mxdx = π for all m �= 0 (6)

We finish this section by looking at another example of a periodic function,
which does not involve trigonometric function but rather the greatest integer
function, also known as the floor function, denoted �x�. �x� represents the
greatest integer not larger than x. For example, �5.2� = 5, �5� = 5, �−5.2� =
−6, �−5� = −5. Its graph is shown in figure 2.

Example 13 Let f (x) = x − �x�. This gives the fractional part of x. For
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Figure 2: Graph of �x�

0 ≤ x < 1, �x� = 0, so f (x) = x. Also, since �x+ 1� = 1 + �x�, we get

f (x+ 1) = x+ 1− �x+ 1�

= x+ 1− 1− �x�

= x− �x�

= f (x)

So, f is periodic with period 1. Its graph is obtained by repeating the portion of
its graph over the interval 0 ≤ x < 1. Its graph is shown in figure

The practice problem will explore further properties of periodic functions.

2.1 Practice Problems

1. Prove theorem 2.

2. Prove theorem 3.

3. Sums of periodic functions. Show that if f1, f2, ..., fn are T -periodic,
then a1f1 + a2f2 + ...+ anfn is also T -periodic.

4. Sums of periodic functions. Let f (x) = cosx+ cosπx.

(a) Show that the equation f (x) = 2 has a unique solution.
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Figure 3: Graph of x− �x�

(b) Conclude from part a that f is not periodic. Does this contradict the
previous problem?

5. Finish proving theorem 11.

6. Operations on periodic functions.

(a) Show that if f and g are two T -periodic functions so is f (x) g (x).

(b) Show that if f and g are two T -periodic functions so is f(x)
g(x) where

g (x) �= 0.

(c) Show that if f has period T and a > 0 then f
(
x
a

)
has period aT and

f (ax) has period T
a
.

(d) Show that if f has period T and g is any function (not necessarily
periodic) then the composition g ◦ f has period T .

7. Using the previous problem, find the period of the functions below.

(a) sin 2x

(b) cos 1
2x+ 3 sin 2x

(c) 1
2+sin x

(d) ecos x
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8. Antiderivative of periodic functions. Suppose that f is 2π-periodic
and let a be a fixed real number. Define

F (x) =

∫ x

a

f (t) dt for all x

Show that F is 2π-periodic if and only if
∫ 2π

0
f (t) dt = 0. (hint: use

theorem 6)

3 Fourier Series of 2π-Periodic Functions

As noted earlier, Fourier Series are special expansions of functions of the form

f (x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx) (7)

To be able to use Fourier Series, we need to know:

1. Which functions have Fourier series expansions?

2. If a function has a Fourier series expansion, how do we compute the coef-
ficients a0, a1, ..., b0, b1, ...?

A general answer to the first question is beyond the scope of these notes. In
this section, we will answer the second question. In these notes, we will give
conditions which are sufficient for functions to have a Fourier Series Expansion.

3.1 Euler Formulas for the Coefficients

The coefficients which appear in the Fourier series were known to Euler before
Fourier, hence they bear his name. We will derive them the same way Fourier
did. This technique is worth remembering.

• Computation of a0. Starting with equation 7, we integrate each side
over the interval [−π, π] and assuming term by term integration is legiti-
mate, we obtain∫ π

−π

f (x) dx = a0

∫ π

−π

dx+
∞∑

n=1

[
an

∫ π

−π

cosnxdx+ bn

∫ π

−π

sinnxdx

]

Since
∫ π

−π
cosnxdx =

∫ π

−π
sinnxdx = 0 for n = 1, 2, 3, ..., we have∫ π

−π

f (x) dx = a0

∫ π

−π

dx

= 2πa0

Thus

a0 =
1

2π

∫ π

−π

f (x) dx
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• Computation of an. Again, starting with equation 7, we multiply each
side by cosmx for a fixed integer m ≥ 1 and integrate each side as before.
We obtain∫ π

−π

f (x) cosmxdx = a0

∫ π

−π

cosmxdx+
∞∑

n=1

[
an

∫ π

−π

cosnx cosmxdx+ bn

∫ π

−π

sinnx cosmxdx

]

Now, from equation 5, we have:
∫ π

−π
cosmxdx = 0,

∫ π

−π
sinnx cosmxdx =

0 and
∫ π

−π
cosnx cosmxdx =

{
0 if m �= n

π if m = n
. So, we are left with

∫ π

−π

f (x) cosmxdx = πam

Thus

am =
1

π

∫ π

−π

f (x) cosmxdx for m ≥ 1

• Computation of bn. We proceed in a similar way. Starting with equation
7, we multiply each side by sinmx for a fixed integer m ≥ 1 and integrate
each side as before. We leave it to the reader to verify that

bm =
1

π

∫ π

−π

f (x) sinmxdx for m ≥ 1

We summarize our findings in the following proposition.

Proposition 14 Suppose that the 2π-periodic function f has the Fourier series
representation

f (x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx)

Then the coefficients a0, an, bn for n = 1, 2, ... are called the Fourier coefficients
of f and are given by the Euler’s formulas

a0 =
1

2π

∫ π

−π

f (x) dx (8)

an =
1

π

∫ π

−π

f (x) cosnxdx for n = 1, 2, ... (9)

bn =
1

π

∫ π

−π

f (x) sinnxdx for n = 1, 2, ... (10)

Definition 15 For a positive integer N , we denote the N th partial sum of the
Fourier series of f by SN (x). So, we have

SN (x) = a0 +
N∑

n=1

(an cosnx+ bn sinnx)
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We now illustrate what we did with some examples.

Example 16 Find the Fourier series of f (x) = sinx.
Using the formulas above along with equation 7, we find that

a0 =
1

2π

∫ π

−π

sinxdx = 0

an =
1

π

∫ π

−π

sinx cosnxdx = 0 for all n

bn =
1

π

∫ π

−π

sinx sinnxdx = 0 except when n = 1

When n = 1,we have a1 = 1. Thus, a Fourier series of sinx is sinx. Of course,
this was to be expected.

Example 17 Find the Fourier series of f (x) =
∣∣sin x

2

∣∣.
Clearly, this function is 2π-periodic. Its graph is shown in figure 4.
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Figure 4: Graph of |sinx|

1. Computation of a0. Using the formulas above along with equation 7,
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we find that

a0 =
1

2π

∫ π

−π

∣∣∣sin x

2

∣∣∣ dx
=

1

π

∫ π

0

sin
x

2
dx since

∣∣∣sin x

2

∣∣∣ is even and sin
x

2
≥ 0 on [0, π]

=
2

π

2. Computation of an.

an =
1

π

∫ π

−π

∣∣∣sin x

2

∣∣∣ cosnxdx
=

2

π

∫ π

0

sin
x

2
cosnxdx

=
1

π

∫ π

0

[
sin

2n+ 1

2
x− sin

n− 1

2
x

]
dx if n ≥ 1

=
1

π

[
−2

2n+ 1
cos

2n+ 1

2
x+

2

2n− 1
cos

2n− 1

2
x

]∣∣∣∣
π

0

=
1

π

[
2

2n+ 1
−

2

2n− 1

]

=
−4

π (4n2 − 1)

3. Computation of bn.

bn =
1

π

∫ π

−π

|sinx| sinnxdx

= 0 since

∫ π

−π

|sinx| sinnx is odd

4. In conclusion

∣∣∣sin x

2

∣∣∣ = 2

π
+

∞∑
n=1

−4

π (4n2 − 1)
cosnx

To see how this series compares to the function, we will plot some of the
partial sums. Let

SN (x) =
2

π
+

N∑
n=1

−4

π (4n2 − 1)
cosnx
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∣∣sin x
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Figure 7: Graph of
∣∣sin x

2

∣∣ and S10 (x)

Example 18 We now look at a 2π-periodic function with discontinuities and
derive its Fourier series using the formulas of this section (assuming it is legit-
imate). This function is called the sawtooth function. It is defined by

g (x) =

{
1
2 (π − x) if 0 < x ≤ 2π
g (x+ 2π) otherwise

Find the Fourier series for this function. Plot this function as well as S1 (x) , S7 (x) , S20 (x)
where SN (x) is the N th partial sum of its Fourier series.
Since f is described between 0 and 2π, we can use theorem 6 to compute the
Fourier coefficients integrating between 0 and 2π.

1. Computation of a0.

a0 =
1

2π

∫ 2π

0

f (x) dx

=
1

4π

∫ 2π

0

(π − x) dx

= 0
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2. Computation of an.

an =
1

π

∫ 2π

0

f (x) cosnxdx for n = 1, 2, ...

=
1

2π

∫ 2π

0

(π − x) cosnxdx

=
1

2π

[
π

∫ 2π

0

cosnxdx−

∫ 2π

0

x cosnxdx

]

The first integral is 0. The second can be evaluated by parts.∫ 2π

0

x cosnxdx =
x

n
sinnx

∣∣∣2π
0

−
1

n

∫ 2π

0

sinnxdx

=
1

n2
cosnx

∣∣∣∣
2π

0

= 0

so
an = 0

3. Computation of bn.

bn =
1

π

∫ 2π

0

f (x) sinnxdx for n = 1, 2, ...

=
1

2π

∫ 2π

0

(π − x) sinnxdx

=
1

2π

[
π

∫ 2π

0

sinnxdx−

∫ 2π

0

x sinnxdx

]

The first integral is 0. The second can be done by parts.

∫ 2π

0

x sinnxdx =
−x

n
cosnx

∣∣∣∣
2π

0

+
1

n

∫ 2π

0

cosnxdx

=
−2π

n
+

1

n2
sinnx

∣∣∣∣
2π

0

=
−2π

n

Therefore

bn =
1

2π

[
0−

−2π

n

]

=
1

n
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4. Conclusion. The Fourier series of the sawtooth function is

g (x) =
∞∑

n=1

sinnx

n

Below, we show the graphs of S1 (x), S7 (x), S20 (x).
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Graph of the sawtooth function (black) and S1 (x) (red)
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Remark 19 Several important facts are worth noticing here.

1. The Fourier series seems to agree with the function, except at the points
of discontinuity.

2. At the points of discontinuity, the series converges to 0, which is the av-
erage value of the function from the left and from the right.

3. Near the points of discontinuity, the Fourier series overshoots its limiting
values. This is a well known phenomenon, known as Gibbs phenom-

enon. To see a simulation of this phenomenon, visit the ??

3.2 Piecewise Continuous and Piecewise Smooth Func-

tions

After defining some useful concepts, we give a sufficient condition for a function
to have a Fourier series representation.

Notation 20 We will denote f (c−) = lim
x→c−

f (x) and f (c+) = lim
x→c+

f (x)

Remembering that a function f is continuous at c if lim
x→c

f (x) = f (c), we

see that a function f is continuous at c if and only if

f (c−) = f (c+) = f (c)
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Definition 21 (Piecewise Continuous) A function f is said to be piecewise
continuous on the interval [a, b] if the following are satisfied:

1. f (a+) and f (b−) exist.

2. f is defined and continuous on (a, b) except at a finite number of points
in (a, b) where the left and right limit at these points exist.

Definition 22 (Piecewise Smooth) A function f , defined on [a, b] is said to
be piecewise smooth if f and f ′ are piecewise continuous on [a, b] that is if the
following are satisfied:

1. f is piecewise continuous on [a, b]

2. f ′ exists on (a, b) except possibly at finitely many points in (a, b) where
theone sided limits of f ′ at these points exists.

3. lim
x→a+

f ′ (x) and lim
x→b−

f ′ (x) exists.

The sawtooth function is piecewise smooth. A simple example of a function
which is not piecewise smooth is x

1

3 for −1 ≤ x ≤ 1. Its derivative does not
exist at 0, neither do the one sided limits of its derivative at 0.

Definition 23 The average of f at c is defined to be

f (c−) + f (c+)

2

Clearly, if f is continuous at c, then its average at c is f (c).
We are now ready to state a fundamental result in the theory of Fourier

series.

Theorem 24 Suppose that f is a 2π-periodic piecewise smooth function. Then,
for all x, we have

f (x−) + f (x+)

2
= a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (11)

where the coefficients are given by equations 8, 9, and 10. In particular, if f is
piecewise smooth and continuous at x, then

f (x) = a0 +
∞∑

n=1

(an cosnx+ bn sinnx) (12)

Thus, at points where f is continuous, the Fourier series converges to the
function. At points of discontinuity, the series converges to the average of the
function at these points. This was the case in the example with the sawtooth
function.

We do one more example.
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Example 25 (Triangular Wave) The 2π-periodic triangular wave is given
on the interval [−π, π] by

h (x) =

{
π + x if −π ≤ x ≤ 0
π − x if 0 ≤ x ≤ π

1. Find its Fourier series.

2. Plot h (x) as well as some partial sums of its Fourier series.

3. Show how this series could be used to approximate π
(
actually π2

)
.

Solution 26 1. We begin by plotting h (x)We see the function is piecewise

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8
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Figure 8: Plot of the triangular wave

smooth and continuous for all x.

• Computation of a0.

a0 =
1

2π

∫ π

−π

f (x) dx

=
1

2π
π2

=
π

2

19



• Computation of an.

an =
1

π

∫ π

−π

f (x) cosnxdx

=
1

π

[∫ 0

−π

(π + x) cosnxdx+

∫ π

0

(π − x) cosnxdx

]

=
2

π

∫ π

0

(π − x) cosnxdx replacing x by − x in the first integral

=
2

π

[
π − x

n
sinnx

∣∣∣∣
π

0

+
1

n

∫ π

0

sinnxdx

]

=
2

π

[
−1

n2
cosnx

∣∣∣∣
π

0

]

=
2

π

[
1

n2
+

cosnπ

n2

]

=
2

π

[
1

n2
−

(−1)n

n2

]

=

{
0 if n even
4

πn2
if n odd

• Computation of bn.

bn =
1

π

∫ π

−π

f (x) sinnxdx

= 0 since the integrand is odd

• Conclusion.

h (x) =
π

2
+

4

π

∞∑
n=0

cos (2n+ 1)x

(2n+ 1)2

2. Let SN (x) = π
2 + 4

π

N∑
n=0

cos(2n+1)x

(2n+1)2
. We plot S1 (x), S5 (x)

3. From h (x) = π
2 + 4

π

∞∑
n=0

cos(2n+1)x

(2n+1)2
, if we let x = 0, we get

π =
π

2
+

4

π

∞∑
n=0

1

(2n+ 1)2

π

2
=

4

π

∞∑
n=0

1

(2n+ 1)2

π2

8
=

∞∑
n=0

1

(2n+ 1)2

= 1 +
1

32
+

1

52
+

1

72
+ ...
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Figure 9: Plot of the triangular wave and S1 (x)
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Figure 10: Plot of the triangular wave and S5 (x)
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This allows us to approximate π2.

3.3 Practice Problems

1. Show that another way to compute the Fourier coefficients is

a0 =
1

2π

∫ 2π

0

f (x) dx

an =
1

π

∫ 2π

0

f (x) cosnxdx for n = 1, 2, ...

bn =
1

π

∫ 2π

0

f (x) sinnxdx for n = 1, 2, ...

2. In the problems below, you are given a 2π-periodic function and its Fourier
series. For each function, (a) Derive the Fourier series, (b) sketch the graph
of the function and some of the partial sums of its Fourier series on the
interval [−2π, 2π].

(a) f (x) = |x| if −π ≤ x < π, Fourier series:
π

2
−

4

π

∞∑
n=0

cos (2n+ 1)x

(2n+ 1)2

(b) f (x) =

{ x

π
if 0 ≤ x < π

0 if −π < x ≤ 0
, Fourier series:

1

4
−

1

π2

∞∑
n=1

[(
1

n2
−

(−1)n

n2

)
cosnx+

π (−1)n

n
sinnx

]

(c) f (x) = x2 if −π ≤ x ≤ π, Fourier series:
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx

(d) f (x) = x if −π < x < π, Fourier series: 2
∞∑

n=1

(1)n+1

n
sinnx

3. Use the Fourier series of 2c) to obtain

π2

6
= 1 +

1

22
+

1

32
+

1

42
+ ...

4. Use the Fourier series of 2d) to obtain

π

4
= 1−

1

3
+

1

5
−

1

7
+ ...

4 Fourier Series of Functions with Arbitrary Pe-

riods

So far, we’ve worked with 2π-periodic functions for convenience. Similar results
exist for functions having any period. These results can be obtained in a similar
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manner. However, there is an easier way, one calculus II students are familiar
with: substitution. One way to obtain a new series representation is to perform
a substitution in a known series. Suppose that f is a function with period T =
2p > 0 for which we want to find a Fourier series. In other words f (x+ 2p) =

f (x). If we let t =
πx

p
and we define

g (t) = f (x) = f

(
pt

π

)

Then, g has period
2p
p

π

that is 2π. So, g has a Fourier series representation

g (t) = a0 +
∞∑

n=1

[an cosnt+ bn sinnt]

where

a0 =
1

2π

∫ π

−π

g (t) dt

an =
1

π

∫ π

−π

g (t) cosntdt

bn =
1

π

∫ π

−π

g (t) sin tdt

Using the substitution t =
πx

p
, we obtain

g

(
πx

p

)
= a0 +

∞∑
n=1

[
an cos

nπx

p
+ bn sin

nπx

p

]

that is

f (x) = a0 +
∞∑

n=1

[
an cos

nπx

p
+ bn sin

nπx

p

]

Using the same substitution, we can express the Fourier coefficients in terms of

x and f . We do it for a0. If t =
πx

p
then dt =

π

p
dx so

a0 =
1

2π

∫ π

−π

g (t) dt

=
1

2π

π

p

∫ p

−p

g

(
πx

p

)
dx

=
1

2p

∫ p

−p

f (x) dx

So, we have the following:
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Theorem 27 Suppose that f is a 2p-periodic piecewise smooth function. The
Fourier series of ff is given by

f (x) = a0 +
∞∑

n=1

[
an cos

nπx

p
+ bn sin

nπx

p

]
(13)

where

a0 =
1

2p

∫ p

−p

f (x) dx (14)

an =
1

p

∫ p

−p

f (x) cos
nπx

p
dx (15)

and

bn =
1

p

∫ p

−p

f (x) sin
nπx

p
dx (16)

The Fourier series converges to f (x) if f is continuous at x and to
f (x−) + f (x+)

2
otherwise.

We finish this section by noticing that in the special cases that f is either

even or odd, the series simplifies greatly. If f is even, then
∫ p

−p
f (x) sin

nπx

p
is

odd so that bn = 0 and the series is simply a cosine series. Similarly, if f is odd,

then
∫ p

−p
f (x) cos

nπx

p
is odd and an = 0 and the series is simply a sine series.

We summarize this in a theorem.

Theorem 28 Suppose that f is 2p-periodic and has the Fourier series repre-
sentation

f (x) = a0 +
∞∑

n=1

[
an cos

nπx

p
+ bn sin

nπx

p

]

Then:

1. f is even if and only if bn = 0 for all n and in this case

f (x) = a0 +
∞∑

n=1

an cos
nπx

p

2. f is odd if and only if an = 0 for all n and in this case

f (x) =
∞∑

n=1

bn sin
nπx

p
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5 Some Applications

In the examples, we saw how we could use Fourier series to approximate π. One
of the main uses of Fourier series is in solving some of the differential equations
from mathematical physics such as the wave equation or the heat equation.
Fourier developed his theory by working on the heat equation. Fourier series
also have applications in music synthesis and image processing. All these will
be presented in another talk. We will mention the relationship between sound
(music) and Fourier series.

When we represent a signal f (t) by its Fourier series f (t) = a0+
∞∑

n=1

[
an cos

nπt

p
+ bn sin

nπt

p

]
,

we are finding the contribution of each frequency
nπ

p
to the signal. The value

of the corresponding coefficients give us that contribution. The nth term of the

partial sum of the Fourier series, an cos
nπt

p
+ bn sin

nπt

p
, is called the nth har-

monic of f . Its amplitude is given by
√
a2n + b2n. Conversely, we can create a

signal by using the Fourier series a0 +
∞∑

n=1

[
an cos

nπt

p
+ bn sin

nπt

p

]
for a given

value of p and playing with the value of the coefficients.
Audio signals describe air pressure variations captured by our ears and per-

ceived as sounds. We will focus here on periodic audio signals also known as
tones. Such signals can be represented by Fourier series.

A pure tone can be written as x (t) = a cos (ωt+ φ) where a > 0 is the
amplitude , ω > 0 is the frequency in radians/seconds and φ is the phase angle.
An alternative way to represent the frequency is in Hertz. The frequency f in

Hertz is given by f =
ω

2π
.

The pitch of a pure tone is logarithmically related to the frequency. An
octave is a frequency range between f and 2f for a given frequency f in Hertz.
Tones separated by an octave are perceived by our ears to be very similar.
In western music, an octave is divided into 12 notes equally spaced on the
logarithmic scale. The ordering of notes in the octave beginning at the frequency
220 Hz are shown below

Note A A# B C C# D D# E F F# G G# A
Frequency (Hz) 220 233 247 262 277 294 311 330 349 370 392 414 440

A more complicated tone can be represented by a Fourier series of the form

x (t) = a1 cos (ωt+ φ1) + a2 cos (ωt+ φ2) + ...
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