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Preface

Approach This text is intended for undergraduate students in mathematics,
physics, and engineering. We have attempted to strike a balance between the pure
and applied aspects of complex analysis and to present concepts in a clear writing
style that is understandable to students at the junior or senior undergraduate level.
A wealth of exercises that vary in both difficulty and substance gives the text flex-
ibility. Sufficient applications are included to illustrate how complex analysis is
used in science and engineering. The use of computer graphics gives insight for
understanding that complex analysis is a computational tool of practical value. The
exercise sets offer a wide variety of choices for computational skills, theoretical
understanding. and applications that have been class tested for two editions of the
text. Student research projects are suggested throughout the text and citations are
made to the bibliography of books and journal articles.

The purpose of the first six chapters is to lay the foundations for the study of
complex analysis and develop the topics of analytic and harmonic functions, the
clementary functions, and contour integration. If the goal is to study series and the
residue calculus and applications. then Chapters 7 and 8 can be covered. If con-
formal mapping and applications of harmonic functions are desired, then Chapters
9 and 10 can be studied after Chapter 6. A new Chapter 11 on Fourier and Laplace
transforms has been added for courses that emphasize more applications.

Proofs are kept at an elementary level and are presented in a self-contained
manner that is understandable for students having a sophomore calculus back-
ground. For example, Green’s theorem is included and it is used to prove the
Cauchy-Goursat theorem. The proof by Goursat 1s included. The development of
series is aimed at practical applications.

Features Conformal mapping is presented in a visual and geometric manner so
that compositions and images of curves and regions can be understood. Boundary
value problems for harmonic functions are first solved in the upper half-plane so
that conformal mapping by elementary functions can be used to find solutions in
other domains. The Schwarz-Christoffel formula is carefully developed and appli-
cations are given, Two-dimensional mathematical models are used for applications
in the area of ideal fluid flow, steady state temperatures and electrostatics. Computer
drawn figures accurately portray streamlines, isothermals, and equipotential curves.

New for this third edition is a historical introduction of the origin of complex
numbers in Chapter 1. An early introduction to sequences and series appears in
Chapter 4 and facilitates the definition of the exponential function via series. A new
section on the Julia and Mandelbrot sets shows how complex analysis is connected

ix
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to contemporary topics in mathematics. Many sections have been revised including
branches of functions, the elementary functions, and Taylor and Laurent series. New
material includes a section on the Joukowski airfoil and an additional chapter on
Fourier series and Laplace transforms. Modern computer-generated illustrations
have been introduced in the third edition including: Riemann surfaces. contour and
surface graphics for harmonic functions, the Dirichlet problem, streamlines in-
volving harmonic and analytic functions, and conformal mapping.
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1

Complex
Numbers

1.1 The Origin of Complex Numbers

Complex analysis can roughly be thought of as that subject which applies the ideas
of calculus to imaginary numbers. But what exactly are imaginary numbers? Usu-
ally, students learn about them in high school with introductory remarks from their
teachers along the following lines: ““We can’t take the square root of a negative
number. But, let’s pretend we can—and since these numbers are really imaginary,
it will be convenient notationally to set i = \/——-_1_.” Rules are then learned for doing
arithmetic with these numbers. The rules make sense. If i = /— 1, it stands to reason
that iZ = —1. On the other hand, it is not uncommon for students to wonder all
along whether they are really doing magic rather than mathematics.

If you ever felt that way, congratulate yourself! You're in the company of
some of the great mathematicians from the sixteenth through the nineteenth centu-
ries. They too were perplexed with the notion of roots of negative numbers. The
purpose of this section is to highlight some of the episodes in what turns out to be
a very colorful history of how imaginary numbers were introduced, investigated,
avoided, mocked, and, eventually, accepted by the mathematical community. We
intend to show you that, contrary to popular belief, there is really nothing imaginary
about ‘‘imaginary numbers’’ at all. In a metaphysical sense, they are just as real as
are ‘‘real numbers.”’

Our story begins in 1545. In that year the Italian mathematician Girolamo
Cardano published Ars Magna (The Great Art), a 40-chapter masterpiece in which
he gave for the first time an algebraic solution to the general cubic equation

Xtrad+bx+c=0.

His technique involved transforming this equation into what is called a depressed
cubic. This is a cubic equation without the x? term, so that it can be written as

S+ bx+c=0.

Cardano knew how to handle this type of equation. Its solution had been
communicated to him by Niccolo Fontana (who, unfortunately, came to be known
as Tartaglia—the stammerer—because of a speaking disorder). The solution was

1



2 Chapter 1 Complex Numbers

also independently discovered some 30 years earlier by Scipione del Ferro of Bo-
logna. Ferro and Tartaglia showed that one of the solutions to the depressed cubic

1S
ox= oty LB e e B
) x= 2 4 27 2 427

This value for x could then be used to factor the depressed cubic into a linear term
and a quadratic term, the latter of which could be solved with the quadratic formula.
So, by using Tartaglia’s work, and a clever transformation technique, Cardano was
able to crack what had seemed to be the impossible task of solving the general cubic
equation.

It turns out that this development eventually gave a great impetus toward the
acceptance of imaginary numbers. Roots of negative numbers, of course, had come
up earlier in the simplest of quadratic equations such as x> + 1 = 0. The solutions
we know today as x = +./—1, however, were easy for mathematicians to ignore.
In Cardano’s time, negative numbers were still being treated with some suspicion,
so all the more was the idea of taking square roots of them. Cardano himself, al-
though making some attempts to deal with this notion, at one point said that quan-
tities such as /— 1 were *“as subtle as they are useless.”” Many other mathematicians
also had this view. However, in his 1572 treatise Algebra, Rafae] Bombeli showed
that roots of negative numbers have great utility indeed. Consider the simple de-
pressed cubic equation x* — 15x — 4 = 0. Letting b = —15 and ¢ = —4 in the
““Ferro-Tartaglia’” formula (1), we can see that one of the solutions for x 1s

x= 2+ /121 - -2+ /=121

Bombeli suspected that the two parts of x in the preceding equation could be
put in the form u + v./~1 and —u + v/—1 for some numbers « and v. Indeed,
using the well-known identity (¢ + b)* = &* + 3a°b + 3ab? + b?, and blindly
pretending that roots of negative numbers obey the standard rules of algebra, we
can see that

@ @+ /=1 =24+32)/-1+3@Q/-1 + (V1P
=8+ 12/-1-6- /-1
=2+ 11./-1
=2+ J=121.
Bombeli reasoned that if (2 + J=D3¥ =24+ /=121, it must be that 2 + —1

= 2 + J=121. Likewise, he showed —2 + /=1 = /=2 + /—121. But then
we clearly have

@) S+ /n2i-Y2+/2M=2+/D-(-2+ /D=4,

and this was a bit of a bombshell. Heretofore, mathematicians could easily scoff at
imaginary numbers when they arose as solutions to quadratic equations. With cubic
equations, they no longer had this luxury. That x = 4 was a correct solution to the
equation x* — 15x — 4 = 0 was indisputable, as it could be checked easily. However,
to arrive at this very real solution, one was forced to detour through the uncharted



1.1 The Origin of Complex Numbers 3

territory of “‘imaginary numbers.”’ Thus, whatever else one might say about these
numbers (which, today, we call complex numbers), their utility could no Jonger be
ignored.

But even this breakthrough did not authenticate complex numbers. After all,
a real number could be represented geometrically on the number line. What possible
representation could these new numbers have? In 1673 John Wallis made a stab at
a geometric picture of complex numbers that comes close to what we use today. He
was interested at the time in representing solutions to general quadratic equations,
which we shall write as x° + 2bx + ¢? = 0 so as to make the following discussion
more tractable. Using the quadratic formula, the preceding equation has solutions

x=—-bhb—- b —c* and x= —-b+ Jb? — 2.
Wallis imagined these solutions as displacements to the left and right from

the point —b. He saw each displacement, whose value was /b?> — ¢?, as the length
of the sides of the right triangles shown in Figure 1.1.

» o \

P, b.0) P, (0.0)

FIGURE 1.1 Wallis’ representation of real roots of quadratics.

The points P, and P, in this figure are the representations of the solutions to
our equation. This is clearly correct if b — ¢ = 0, but how should we picture P,
and P, in the case when negative roots arise—i.e., when &° — ¢® < 07 Wallis
reasoned that if this happened, » would be less than ¢, so the lines of length b in
Figure 1.1 would no longer be able to reach all the way to the x axis. Instead, they
would stop somewhere above it, as Figure 1.2 shows. Wallis argued that P, and P»

should represent the geometric locations of the solutions x = —6 — /b? — ¢* and
x=—b+ /b? — ¢?in the case when 52 — ¢ < 0. He evidently thought that since

b is shorter than ¢, it could no longer be the hypotenuse of the right triangle as it
had been earlier. The side of length ¢ would now have to take that role.

o > X

b, 0) ©.0)

FIGURE 1.2 Wallis’ representation of nonreal roots of quadratics.



4 Chapter 1 Complex Numbers

Wallis’ method has the undesirable consequence that —/—1 is represented
by the same point as is /— 1. Nevertheless, with this interpretation, the stage was
set for thinking of complex numbers as ‘‘points in the plane.”” By 1800, the great
Swiss mathematician Leonard Euler (pronounced ‘‘oiler’’) adopted this view con-
cerning the n solutions to the equation x" — | = 0. We shall learn shortly that these
solutions can be expressed as cos 0 + /—1 sin 0 for various values of 8: Euler
thought of them as being located at the vertices of a regular polygon in the plane.
Euler was also the first to use the symbol i for /—1. Today. this notation is still
the most popular, although some electrical engineers prefer the symbol j instead so
that / can be used to represent current.

Perhaps the most influential figure in helping to bring about the acceptance of
complex numbers was the brilliant German mathematician Karl Friedrich Gauss,
who reinforced the utility of these numbers by using them in his several proofs of
the fundamental theorem of algebra (see Chapter 6). In an 1831 paper, he produced
a clear geometric representation of x + 7y by identifying it with the point (x, ¥) in
the coordinate plane. He also described how these numbers could be added and
multiplied.

It should be noted that 1831 was not the year that saw complex numbers
transformed into legitimacy. In that same year the prolific logician Augustus De
Morgan commented in his book On the Studyv and Difficulties of Mathematics, **We
have shown the symbol ./—a to be void of meaning, or rather self-contradictory
and absurd. Nevertheless, by means of such symbols, a part of algebra is established
which is of great utility.”” To be sure, De Morgan had raised some possible logical
problems with the idea of complex numbers. On the other hand, there were sufficient
answers to these problems floating around at the time. Even if De Morgan was
unaware of Gauss’ paper when he wrote his book, others had done work similar to
that of Gauss as early as 1806, and the preceding quote illustrates that *‘raw logic’”
by itself is often insufficient to sway the entire mathematical community to adopt
new ideas. Certainly, logic was a necessary ingredient in the acceptance of complex
numbers, but so too was the adoption of this logic by Gauss, Euler, and others of
“‘sufficient clout.”” As more and more mathematicians came to agree with this new
theory, it became socially more and more difficult to raise objections to it. By the
end of the nineteenth century, complex numbers were firmly entrenched. Thus, as
it is with any new mathematical or scientific theory, the acceptance of complex
numbers came through a mixture of sociocultural interactions.

But what is the theory that Gauss and so many others helped produce. and
how do we now think of complex numbers? This is the topic of the next few sections.

EXERCISES FOR SECTION 1.1
1. Give an argument to show that —2 + Vv"——] = \3/ -2+ \/TZI.

2. Explain why cubic equations, rather than quadratic equations, played the pivotal rele in
helping to obtain the acceptance of complex numbers.

3. Find all solutions to 27x* — 9x — 2 = 0. Hinr: Get an equivalent monic polynomial,
then use formula (1).
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4. By inspection, one can see that a solutionto x* — 6x + 4 = 0 is x = 2. To get an idea
of the difficulties Bombeli had in establishing identities (2) and (3) in the text, try to
show how the solution x = 2 arises when using formula (1).

5. Explain why Wallis’ view of complex numbers results in —/—1 1 being representpd by
the same point as is /— 1.

6. Is it possible to modify slightly Wallis’ picture of complex numbers so that it 1$ con-
sistent with the representation we use today? To assist in your investigation of this
question. we recommend the following article: Norton, Alec, and Lotto, Benjamin,
**Complex Roots Made Visible,”’ The College Mathematics Journal, Vol. 15 (3), June
1984, pp. 248-249.

7. Write a report on the history of complex analysis. Resources include bibliographical
items 87. 105, and 179.

1.2 The Algebra of Complex Numbers

We have seen that complex numbers came to be viewed as ordered pairs of real
numbers. That is, a complex number z is defined to be

(I z=Wy),

where x and y are both real numbers.

The reason we say ordered pair is because we are thinking of a point in the
plane. The point (2, 3), for example, is not the same as (3, 2). The order in which
we write x and y in equation (1) makes a difference. Clearly, then, two complex
numbers are equal if and only if their x coordinates are equal and their y coordinates
are equal. In other words,

x,V)=(uv) iff x=u and y=w

(Throughout this text, iff means if and only if.)

If we are to have a meaningful number system, there needs to be a method for
combining these ordered pairs. We need to define algebraic operations in a consis-
tent way so that the sum, difference, product, and quotient of any two ordered pairs
will again be an ordered pair. The key to defining how these numbers should be
manipulated is to follow Gauss’ lead and equate (x, y) with x + iy. Then, by letting
z1 = (x1, ¥1) and 2> = (x2, y;) be arbitrary complex numbers, we see that

1t 2= (g, )t (x, v2)
=(x + iy) + G2 + iv2)
= (x; + x2) + i(y, + )
= () + X, 1+ »)

Thus, the following should certainly make sense:

Definition for addition

) u+ =0,y + (v
= (x; + x2, 51 + ¥2).
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Definition for subtraction
B) u— 2=, y) — (2, ¥)
= (X —x2, ¥ — y2)
EXAMPLE 1.1 1Ifz, = (3,7) and z> = (5, —6), then

1+ 22=03,7)+ (5, —-6)=(8,1) and
—2=0G3,7—(@5, —-6)=(-2,13).

&

At this point, it is tempting to define the product z;z; as z;2; = (x,x;, y1y2). It
turns out, however, that this is not a good definition, and you will be asked in the
problem set for this section to explain why. How, then, should products be defined?
Again, if we equate (x, y) with x + iy and assume, for the moment, that { = V-1
makes sense (so that > = —1), we have

122 = (oo y ez, y2)
(xp + iy + i)
X%+ ixyy + Xy + Py

= x X — yiy2 T ilay: + xy)
= (xix2 — Y1y, X1iy2 + x2y1).

Thus, it appears we are forced into the following definition.
Definition for multiplication
@ nz2 = (X, yx, y2)
= (x1x2 = yiy2, xiy2 T x02).

EXAMPLE 1.2 1fz = (3,7) and 22 = (5, —6), then
3, D5, —6) = (15 + 42, —18 + 35) = (57, 17).

2122

Note that this is the same answer that would have been obtained if we had used the
notation z; = 3 + 7i and z; = 5 — 6i. For then

2122 = (3, 7)5, —6)

3+ 7DH(5 — 6i)

15 — 18i + 35i — 42i?

15 — 42(—1) + (—18 + 35)i
57 + 17

(57, 17).

It
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Of course, it makes sense that the answer came out as we expected, since we used
the notation x + iy as motivation for our definition in the first place.

To motivate our definition for division, we will proceed along the same lines
as we did for multiplication, assuming z, # 0.

1 ey
2 (5 w)
_lxy toiy)
T+ i)

&

2

At this point we need to figure out a way to be able to write the preceding quantity
in the form x + iv. To do this, we use a standard trick and multiply the numerator
and denominator by x; — iv,. This gives

1t i) (e — D)

24

2 (e iy (2 =iy
XX + My2 + i(—.xf])’z + Xz_)’])

&3

2 el
X5+ y5

Xx2 Y yiya | X1y oy

I
2 2 2 2
5+ K+ 5

X0t vy, Xy oy
. > 3 .
¥+

il

i 2
RSN

Thus, we finaily arrive at a rather odd definition.

Definition for division

) o _ ey

: (0, )

xx toyiy: Xy + Xy
= 2 == 4 - ,forz # 0.
X3+ ¥ Tt v

&3

EXAMPLE 1.3 Ifz, = (3. Y and z» = (5, —6), then

u_ 3.7 (15-42 18+35\ (=27 53
» (5,-6) \25+36'25+36) \ 6l 61/
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As we saw with the example for multiplication, we will also get this answer if we
use the notation x + iy:

(3.7
> (5, —6)
347
5 —6i
3475+ 6i
5—6i5+ 6
15 + 18/ + 35i + 424
25 + 30f — 30i — 362
15 — 42 + (18 + 35)i

&3

]

25+ 36
—-27 53,
= — 4+ —
61 61

_ (=27 33
"\ 6l 61/

The technique most mathematicians would use to perform operations on com-
plex numbers is to appeal to the notation x + iy and perform the algebraic manip-
ulations, as we did here, rather than to apply the complicated looking definitions we
gave for those operations on ordered pairs. This is a valid procedure since the
x + iy notation was used as a guide to see how we should define the operations in
the first place. It is important to remember, however, that the x + /iy notation is
nothing more than a convenient bookkeeping device for keeping track of how to
manipulate ordered pairs. It is the ordered pair algebraic definitions that really form
the foundation on which our complex number system is based. In fact, if you were
to program a computer to do arithmetic on complex numbers, your program would
perform calculations on ordered pairs, using exactly the definitions that we gave.

It turns out that our algebraic definitions give complex numbers all the prop-
erties we normally ascribe to the real number system. Taken together, they describe
what algebraists call a field. In formal terms, a field is a set (in this case, the complex
numbers) together with two binary operations (in this case, addition and multipli-
cation) with the following properties:

(P1) Commutative law for addition: 7, + z» =z, + z;.
(P2) Associative law for addition: 7| + (5 + 23) = (z; + 72) + za.

(P3) Additive identity: There is a complex number w such that z + w = z for all
complex numbers z. The number w is obviously the ordered pair (0, 0).

(P4) Additive inverses: Given any complex number z, there is a complex
number 1 (depending on z) with the property that z + n = (0, 0).
Obviously, if z = (x, ¥) = x + iy, the number n will be
(—x, —y) = —x — iv.
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(P5) Commutative law for multiplication: z,z, = z,z;.
(P6) Associative law for multiplication: z,(z>z3) = (z;2)za.

(P7) Multiplicative identity: There is a complex number { such that z{ = z for
all complex numbers z. It turns out that (1, 0) is the complex number { with
this property. You will be asked to verify this in the problem set for this
section.

(P8) Multiplicative inverses: Given any complex number : other than the
number (0, 0), there is a complex number (depending on z) which we shall
denote by z~! with the property that zz-! = (1, 0). Given our definition for

(1, 0)

You will be asked to confirm this in the problem set for this section.

division, it seems reasonable that the number z-! would be z-! =

(P9) The distributive law: z,(z> + z3) = 7,25 + 222
None of these properties is difficult to prove. Most of the proofs make use of

corresponding facts in the real number system. To illustrate this, we give a proof of
property P1.

Proof of the commutative law for addition Let z; = (x,, ) and
22 = (x2, ¥2) be arbitrary complex numbers. Then,
o+ =Lyt . ye)
= (x; + x2, y; + y2) (by definition of addition of complex numbers)
= (x; + xj, y2 + ¥;) (by the commutative law for real numbers)

(x2, y2) + (x1, ¥1) (by definition of addition of complex numbers)

=z + z.

The real number system can actually be thought of as a subset of our complex
number system. To see why this is the case, let us agree that since any complex
number of the form (¢, 0) is on the x axis. we can identify it with the real number 7.
With this correspondence, it is easy to verify that the definitions we gave for ad-
dition, subtraction, multiplication, and division of complex numbers are consistent
with the corresponding operations on real numbers. For example, if x, and x; are
real numbers, then

xx: = (x), Mxz, 0) (by our agreed correspondence)
= (xjx> — 0,0 + 0)  (by definition of multiplication of complex numbers)
= (x1x2, 0) (confirming the consistency of our correspondence).

It is now time to show specifically how the symbol / relates to the quantity
\/:1_ . Note that

(0, 1> = (0, 1)(0, 1)
= (0 — 1,0 + 0) (by definition of multiplication of complex numbers)
(-1,0

= —1 (by our agreed correspondence).

]
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If we use the symbol i for the point (0, 1), the preceding gives iZ = (0, 1)* = —1,
which means i = (0, 1) = \/—_1. So, the next time you are having a discussion with
your friends, and they scoff when you claim that J—1 is not imaginary, calmly put
your pencil on the point (0, 1) of the coordinate plane and ask them if there
is anything imaginary about it. When they agree there isn’t, you can tell them
that this point, in fact, represents the mysterious \/tT in the same way that (1, 0)
represents 1.

We can also see more clearly now how the notation x + iy equates to (x, y).

Using the preceding conventions, we have

(by our previously discussed conventions,

ic,x = (x,0),etc)

=(x,0) + 0.y (by definition of multiplication of complex numbers)
= (xy) (by definition of addition of complex numbers),

x4+ iy = (0 + (0, D(y.0)

Thus, we may move freely between the notations x + iy and (x, y), depending on
which is more convenient for the context in which we are working.

We close this section by discussing three standard operations on complex
numbers. Suppose 7 = (x, y) = x + iy is a complex number. Then:

(i)  The real part of z, denoted by Re(z), is the real number x.
(i) The imaginary part of z, denoted by Im(z), is the real number y.

(iii) The conjugate of z, denoted by Z, is the complex number (x, —y) = x — iy.

EXAMPLE 1.4 Re(-3 + 7)) = —3 and Re[(9, 4)] = 9.

EXAMPLE 1.5 Im(-3 + 7)) = 7 and Im[(9, 4)] = 4.

EXAMPLE 1.6 =3+ 7 =-3—-7iand (9, 4) = (9, —-4).

The following are some important facts relating to these operations that you
will be asked to verify in the exercises:

(6) Re() = ire
z—2Z
7 Im(x) = TRl
) (%) 5 L0
2 22
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(12)
(13)
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Re(iz) = —Im(2).
Im(iz) = Re(2).

Because of what it erroneously connotes, it is a shame that the term imaginary

is used in definition (ii). Gauss, who was successful in getting mathematicians to
adopt the phrase complex number rather than imaginary number, also suggested that
we use lateral part of z in place of imaginary part of z. Unfortunately, this sugges-

tion

never caught on, and it appears we are stuck with the words history has handed

down to us.

EXERCISES FOR SECTION 1.2

1. Perform the required calculation and express the answer in the tform a + ib.
(@ 3 -2 —i4+5) (b) (7 —203i +°5)
(© T+HZ+H3B+1 (d G+ 2+
(ey (i — 1) )y »
(g)1+2i_4—3i M) (1 + 1) 2

3-4 22—
(i) (4—_;):1,—,3” (0 (1 + i3+ 3)

2. Find the following quantities.

{a) Re[(1 + D(2 + D] (b Im[(2 + H(3 + 1}
‘R<4—3i) d”(1+2/>
(©) Rel 35 @I
(e) Rel(i — 1)?] (O Imf(1 + ) 2]
1
{(2) Rel(x; — iv))’] (h) Im(x, — iy,)
(i) Rel[(x; + ivi)dx) — iv))] (j) Im[(xy + i)

3., Verify identities (6) through (13) given at the end of this section.

4, Letzy = (x), ¥)) and z> = (x2, v2) be arbitrary complex numbers. Prove or disprove the
following.

{a) Re(zy + z2) = Rel(z)) + Re(zy) (b) Re(ziz:) = Re(z))Re(z2)
(¢) Im(z, + z2) = Imiz)) + Im(zz) (d) Imiz;z2) = Im{z))Im(z2)

5, Prove that the complex number (1, 0) (which, you recall. we identify with the real
number 1) is the multiplicative identity for complex numbers. Hint: Use the (ordered
pair) definition for multiplication to verify that if z = (x, ) is any complex number,
then (x, y)(1, 0) = (x, ¥).

. . . (.o [, 1
6. Verify that if z = (x, ¥)., with x and v not both 0, then z=! = - <1.e.. = 7)
. . L (1,0) .
Hinr: Use the (ordered pair) definition for division to compute 77! = m . Then, with
the result you obtained, use the (ordered pair) definition for multiplication to confirm
that gz=' = (1, 0).
7. Show that zZ is always a real number.
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1
8. From Exercise 6 and basic cancellation laws, it follows that ;7! = — =

merator here, 7, is trivial to calculate, and since the denominator £z 1s a real number
(Exercise 7), computing the quotient Z/(zz) should be rather straightforward. Use this
fact to compute z' if z = 2 + 3i and againifz = 7 — 5i.

9. Explain why the complex number (0, 0) (which, you recall, we identify with the rcal
number 0) has no multiplicative inverse.

10. Let’s use the symbol * for a new type of multiplication of complex numbers defined by
21 * Zx = (x)1x2, 1 ¥2). This exercise shows why this is a bad definition.

(a) Using the definition given in property P7, state what the new multiplicative identity
would be for this new multiplication.

(b) Show that if we use this new multiplication, nonzero complex numbers of the form
(0, a) have no inverse. That is, show that if z = (0. @), there is no complex number
z' ! with the property that zz=' = {, where  is the multiplicative identity you found
in part (a).

11. Show. by equating the rcal numbers x; and x, with (x,, 0) and (x». 0), that the complex
definition for division is consistent with the real definition for division. Hint: Mimic the
argument the text gives for multiplication.

12. Prove property P9, the distributive law for complex numbers.

13. Complex numbers are ordered pairs of real numbers. Is it possible to have a number
system for ordered triples, quadruples. etc., of real numbers? To assist in your investi-
gation of this question, we recommend bibliographical items I, 132, 147, and 173.

14. We have made the statement that complex numbers are, in a mctaphysical sense. just
as real as are real numbers. But in what sense do numbers exist? It may surprise you
that mathematicians hold a variety of views with respect to this question. Write a short
paper summarizing the various views on the theme of the existence of number,

. The nu-

e

1.3 The Geometry of Complex Numbers

Since the complex numbers are ordered pairs of real numbers, there is a one-to-one
correspondence between them and points in the plane. In this section we shall see
what effect algebraic operations on complex numbers have on their geometric
representations.

The number z = x + iy = (x, ¥) can be represented by a position vector in the
xy plane whose tail is at the origin and whose head is at the point (x. v). When the
xy plane is used for displaying complex numbers, it is called the complex plane, or
more simply, the ; plane. Recall that Re(z) = x and Im(z) = v. Geometrically, Re(2)
is the projection of z = (x, ¥) onto the x axis, and Im(z) is the projection of 7 onto
the y axis. It makes sense, then, that the x axis is also called the real axis, and the
v axis is called the imaginary axis, as Figure 1.3 illustrates.

Imaginary axis
v

x Real axis

FIGURE 1.3 The complex plane.
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Addition of complex numbers is analogous to addition of vectors in the plane.
As we saw in Section 1.2, the sumof 2 = x; + iy; = (xy, v)),and 2 = x> + iy> =
(x2, ¥2) is (xy + x2, ¥y + v2). Hence, 7, + 2> can be obtained veLtorlally by using
the parallelogram law, which Figure |.4 illustrates.

M 'Copy of vector g,
(positioned at the tail of vector z,).
St
|Copy of vector z,
](posilioned at the 1ail of vector z,).

FIGURE 1.4 The sum z, + 2-.

The difference z; — z; can be represented by the displacement vector from the
point 2> = (x>, ;) to the poml 21 = (x}, ¥1), as Figure 1.5 shows.

[Copy of vector z, -z,
I(positioned at the tail of ,).

— X
l\' V\ jCopy of vector z,

(positioned at the tail of vector z)).

FIGURE 1.5 The difference z; — 2.

The modulus, or ubsolute value, of the complex number ; = x + iy is a
nonnegative real number denoted by |z| and is given by the equation

M |z = FIR

The number || is the distance between the origin and the point (x, ¥). The only
complex number with modulus zero is the number 0. The number : = 4 + 3 has
modulus 5 and is pictured in Figure 1.6. The numbers |Re()|. |Im(z)]
are the lengths of the sides of the right triangle OPQ, which is shown in Figure 1.7.
The inequality |z, ] < z:] means that the point z, is closer to the origin than the
point 2>, and it follows that

@ x| = [Re@| < [z] and [v| = [m)] < |:

]
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! -
] 443 1[(0_),) P=(xy=z
> 3 1z} Hm()!
} ¢ + - x IRe(z)| .
4 0=(0.0) Q=0
FIGURE 1.6 The real and imaginary FIGURE 1.7 The moduli of z and its
parts of a complex number. components.

Since the difference 7, — z; can represent the displacement vector from > to g, it
is evident that the distance between z; and z; is given by |z — z2|. This can be
obtained by using identity (3) of Section 1.2 and definition (1) to obtain the familiar
formula

(3) distz).22) = |z —

= J(x; —x2)? + (v — ¥y

Ifz=(x,y) =x+ iv,then —z = (—x, —¥) = —x — iy is the reflection of z
through the origin, and Z = (x, —y) = x — iy is the reflection of ; through the x
axis, as is illustrated in Figure 1.8.

FIGURE 1.8 The geometry of negation and conjugation.

There is a very important algebraic relationship which can be used in estab-
lishing properties of the absolute value that have geometric applications. Its proof
is rather straightforward, and it is given as Exercise 3.

(G

A beautiful application of equation (4) is its use in establishing the triangle
inequality. Figure 1.9 illustrates this inequality, which states that the sum of the
lengths of two sides of a triangle is greater than or equal to the length of the third
side.

) —
2 = -3

“ior




1.3  The Geometry of Complex Numbers 15

(5) The triangle inequality: |51 + | < [a[ + |22
Proof
o+ 2P =@ +2)& + 2 {by equation (4))
=@ +)@+ o) (by identity (9) of Section 1.2)

=00 Y UL+ 0 + 22
o f+az+ant
|z P +az+ 22 +

-

< (by equation (4) and the commutative law)
22|? (by identitics (10) and (11) of Section 1.2)
2+ 2Re(z133) + | 22> (by identity (6) of Section 1.2)

22

i

il

21

< [:l |2+2‘RC(ZIE) + ‘Z:lz
= [21 |2 +2 '115 + |zz |3 (by equations (2))
= (|z]| + |22

Taking square roots yields the desired inequality.

.
‘_—___IZLL__-».' 4
—

X

FIGURE 1.9 The triangle inequality.

EXAMPLE 1.7 To produce an example of which Figure 1.9 is a reasonable
illustration, let z; = 7 + jand z; = 3 + 5i. Then |:1} = /49 + 1 = /50 and
|23 = J/9+25 = \/@' Clearly, z; + zo = 10 + 64, hence ]zl + I3
J100 + 36 = /136. In this case, we can verify the triangle inequality without
recourse to computation of square roots since

=/136=234= 34+ /34 < /SO + /34 = |z| + |z|.

|z + 22

Other important identities can also be established by means of the triangle
inequality. Note that

)+ (—2)

jal =

I (
< la+a|+ |-
= '21 + ) + Zzl-
Subtracting |z>| from the left and right sides of this string of inequalities

gives an important relationship that will be used in determining lower bounds of
sums of complex numbers.
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L2

© |a+z

= |Z\| -

From equation (4) and the commutative and associative laws it follows that

2122 = @2)&i) = @I = |u el

Taking square roots of the terms on the left and right establishes another important
identity.

(7 |Z1Zz| = lZlHZl'.

As an exercise, we ask you to show

<l

|22

EXAMPLE 1.8 If: =1+ 2iandz =3 + 2, then |z| = VT +4=.5
and = /94+4 = \/33. Wg_also see that z;20 = —1 + 8i, hence
lZ]Zz' \/1+64=V/6—.=\/§\/l3: |Z,1‘

(8) provided z; # 0.

Z_l‘_

<2

&

22

<2

Figure 1.10 illustrates the multiplication given by Example 1.8. It certainly
appears that the length of the 7,7, vector equals the product of the lengths of z; and
z2, confirming equation (7), but why is it located in the second quadrant, when both
21 and z; are in the first quadrant? The answer to this question will become apparent
in Section 1.4.

FIGURE.1.10 The geometry of multiplication.

EXERCISES FOR SECTION 1.3

1. Locate the numbers z; and z; vectorially, and use vectors to find z, + z; and z; ~ 2>
when
(a)z; =2+ 3tand =4+ i
(b) 7 = -1+ 2iﬂﬂd13 = =2+ 3

©@zu=1+ifand=—-1+i/3



1.3 The Geometry of Complex Numbers 17

2. Find the following quantities.
o ) 4 -3
@ [+ 02+ o |5=7] © |+ o]
(d) |zz|.wherez=x+iv (&) |z— 1]
3. Prove identities (4) and (8).
4. Determine which of the following points lie inside the circle |z — i| =1
() % +i (b 1+ =
(c) Ly 2 ) =+ i3
22 T2 Y
5. Show that the point (z; + z)/2 is the midpoint of the line segment joining z, 1o 2.
6. Sketch the set of points determined by the following relations.
@ |z+1-2i| =2 (b) Rez + 1) =0
(©) |z+ 2] =1 (d) Imz ~ 2) > 6
7. Show that the equation of the linc through the points z, and z- can be expressed in the
formz = z) + Hz> — z)) where ¢ is a rcal number.
8. Show that the vector z, is perpendicular to the vector z; if and only it Re(z,73) = 0.
9. Show that the vector z, is parallel to the vector z; if and only if Im(z,z7) = 0.
10. Show that the four points z, z, —z. and —Z are the vertices of a rectangle with its center
at the origin.
11. Show that the four points z, iz, —z, and —iz are the vertices of a square with its center
at the origin.
12. Prove that /2 |z| = |Re(@)| + |Im(z)].
13. Show that jz; — z:| = |z + |z:].
14. Show that |zizz:| = |2 22| | =]
15. Show that |z"| = |z|" where n is an integer.
16. Show that I |z|| - !z;‘ l < |:| - .
17. Prove that |z =0 if and only if 7 = 0.
18. Show that z,2; + Z;z» is a real number.

20.
21.

22,

23,

24.

. If you study carefully the proof of the triangle incquality, you will notc that the reasons

., Under what conditions will these two

for the inequality hinge on Re(z,77) =

0
quantities be equal, thus turning the triangle inequality into an equality?

Prove that |z| - | = |z, |3 — 2 Re(z);) +
Use mathematical induction 1o prove that

22

n

=

=1

al.

Let z) and z; be two distinct points in the complex plane. Let K be a positive real con-
stant that is greater than the distance between z; and zz. Show that the set of points
{zi]z—a]| + = K) is an ellipse with foci z; and z5.

Use Exercise 22 to find the equation of the cllipse with foci 227 that goes through the
point 3 + 2i.

Use Exercise 22 to find the equation of the cllipse with foci £3/ that goes through the
point 8 — 3i.

o o
< 2
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25. Let z; and z; be two distinct points in the complex plane. Let K be a positive real con-
stant that is less than the distance between z; and z,. Show that the set of points
{z ||z~ 2] — | = K} is a hyperbola with foci 7, and z.

26. Usc Exercise 25 to find the equation of the hyperbola with foci 2 that goes through
the point 2 + 3i.

27. Use Exercise 25 to find the equation of the hyperbola with foci £25 that goes through
the point 7 + 244,

28. Write a report on how complex analysis is used to understand Pythagorean triples.
Resources include bibliographical items 94 and 97.

=22

1.4 The Geometry of Complex Numbers, Continued

In Section 1.3 we saw that a complex number z = x + iy could be viewed as a
vector in the xy plane whose tail is at the origin and whose head is at the point (x,
¥). A vector can be uniquely specified by giving its magnitude (i.e., its length) and
direction (i.e., the angle it makes with the positive x axis). In this section, we focus
on these two geometric aspects of complex numbers.

Let r be the modulus of  (i.e., r = ]: ] ), and let 8 be the angle that the line
from the origin to the complex number ; makes with the positive x axis. Then as
Figure 1.11 shows,

(1) z=1(rcos®, rsinB) = r(cos® + isin 0).

(X, y)=x+1iv
(rcos®, rsin®) = r(cos 0 + i sin 9)

FIGURE 1.11 Polar representation of complex numbers.

Identity (1) is known as a polar representation of z, and the values r and 0 are called
polar coordinates of z. The coordinate 8 is undefined if z = 0. and as Figure 1.11
shows, 8 can be any value for which the identities cos 8 = x/r and sin 6 = y/r hold
true. Thus, 0 can take on an infinite number of values for a given complex number
and 1s unique only up to multiples of 2. We call 8 an argument of z, and use the
notation 6 = arg z. Clearly,

2) 6=agz= arctanl ifx# 0,

x
but we must be careful to specify the choice of arctan(y/x) so that the point 7 cor-
responding to r and @ lies in the appropriate quadrant. The reason for this is that
tan 0 has period m, whereas cos 6 and sin 8 have period 2m.
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EXAMPLE 1.9
13n 13n

T
ﬁ+i=2¢osZ+i25in%=2cos—E—+i25inT

=2 cos(-T—g- + 2nn) + 2 sin(—g— + 27m>,

where n is any integer.

EXAMPLE 1.10 ifz= —./3 — i, then

r= Izl = |—ﬁ—i[ = 2 and
y ~1 n

0 = arctan — = arctan ——= = — , SO
x -J3 6

-3 -

i

n 1
2 cos — + i2 sin —
6 6

7 7
2 cos(-gn + 27tn> v 2 sin(?n + 2mz),

where n is any integer.

il

If 99 is a value of arg z, then we can display all values of arg z as follows:
(3) argz= 0, + 2nk, where k is an integer.

For a given complex number z ¥ 0, the value of arg z that lies in the range
—n < 8 < 7 is called the principal value of arg z and is denoted by Arg z. Thus,

(4) Argz=10, where —-n <8 <nm.
Using equations (3) and (4) we can establish a relation between arg z and Arg z:
(5) argz= Argz + 2mk, where k is an integer.

As we shall see in Chapter 2, Arg z is a discontinuous function of 7 because it
‘‘jumps’’ by an amount of 27t as z crosses the negative real axis.

In Chapter 5 we will define ¢* for any complex number z. You will see that
this complex exponential has all the properties of real exponentials that you studied
in earlier mathematics courses. That is, e> ¢z = ¢7°%2, and so forth. You will also
see that if z = x + iy, then

(6) & =e" i =¢e"(cosy + isiny).

We will use these facts freely from now on, and will prove the validity of our actions
when we get to Chapter 5.

If we set x = 0 and let 6 take the role of y in equation (6), we get a famous
equation known as Euler’s formula:

(7) e® = (cos 8 + isin 8) = (cos 0, sin ).
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If 8 is a real number, ¢’* will be located somewhere on the circle with radius
1 centered at the origin. This is easy to verify since

(8) |e®| = Jcos’® + sin’d = 1.

Figure 1.12 illustrates the location of the points ¢’ for various values of 6.

)

The unit circle

FIGURE 1.12 The location of ¢ for various values of 6,

Notice that when 0 = &, we gete'™ = (cos ¢, sin ) = (—1,0) = —1, s0
9 e*+1=0.

Euler was the first to discover this relationship. It has been labeled by many as the
most amazing equation in analysis, and with good reason. Symbols with a rich
history are miraculously woven together—the constant n discovered by Hippocrates:
¢ the base of the natural logarithms; the basic concepts of addition (+) and equality
(=); the foundational whole numbers 0 and 1; and i, the number that is the central
focus of this book.

Euler’s formula (7) is of tremendous use in establishing important algebraic
and geometric properties of complex numbers. As a start, it allows us to express
a polar form of the complex number z in a more compact way. Recall that if

r= ‘z| and 6 = arg z, then z = r(cos B + i sin 8). Using formula (7) we can now
write z in its exponential form:

(10) z = re®.

EXAMPLE 1.11 With reference to Example 1.10, with z = —/3 — i, we

have 7= zei(%(/b)_

Together with the rules for exponentiation that we will verify in Chapter 5,
equation (10) has interesting applications. If z; = rje™ and z» = r.e®, then

(A1) 7122 = rie®ire™ = rire*? = rirfcos(8; + 0;) + i sin(§; + 6.)].
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Figure 1.13 illustrates the geometric significance of equation (11). We have already
seen that the modulus of the product is the product of the moduli; that is,
l2122] = |z1| |z2|. Identity (11) establishes that an argument of z,z; is an argument
of z, plus an argument of z;; that is,

(12) arg(zyz;) = arg z; + arg z..

This fact answers the question posed at the end of Section 1.3 regarding why the
product z,z> was in a different quadrant than either z; or z;. This also offers an
interesting explanation as to why the product of two negative real numbers is a
positive real number—the negative numbers, each of which has an angular displace-
ment of 1 radians, combine to produce a product which is rotated to a point whose
argument is © + © = 2rn radians, coinciding with the positive real axis.

1 1
13 ' = —;—[cos(—@) + isin{—8§)] = :e”“.

Notice also that
(14) 7= r(cos 8 — isin 0) = rlcos(—8) + i sin(—0)] = re=* and

r , . ry .
= —[cos(B; — 85) + isin(B, — B;)] = —e®r="),

2 N ra

Ilil

(15)

¢

If z is in the first quadrant, Figure 1.14 shows the numbers z, 7, and z~! in the case
where |z| < 1. Figure 1.15 depicts the situation when > 1.

£
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The unit circle

FIGURE 1.14 Relative positions of z, 7, and z~', when |z} < 1.

The unit circle

FIGURE 1.16 Relative positions of z, Z. and z~', when |z]| > 1.

EXAMPLE 1.12 1f: =5+ 12i, thenr = 13 and z-' = 4[5 — (12i/13)] has

modulus & .

EXAMPLE 1.13 Itz = 8 and z» = 1 + i/3, then the polar forms are
21 = 8[cos(n/2) + i sin(n/2)] and z; = 2[cos(n/3) + i sin(n/3)]. So we have

7 8 o8 T n 4o 4 T 4'0n+,, T
- — — St - - = - m—
- 2c 3 3 i sin 5 3 cs6 zsn6

=2/3 4+ 2i

m| o
il




1.4 The Geometry of Complex Numbers, Continued 23

EXERCISES FOR SECTION 1.4

1.

10.
11.
12,
13.
14.

15.

16.

Find Arg : for the following values of z.

@ 1—i (b) =3+ (© (=1~ iJ3)

b 2 :

@ &= © T A R

(2) 1> i3 (h) (1 + i3+ 4)

SNTIEAE M

Represent the following complex numbers in polar form.

(a) —4 (by 6 — 6i (c) —7i
2.3 -2 ; 6

(d)y =23 - 2i (e) a = () i+ 7

(g) 5+ 5)° (hy 3+ 4/

Express the following in a + /b form.

(a) em/l (b) de in/2 (C) 86’"77!/3

(d) —DeiSnlo (e) 2ie i (f) Ge'23gin

(g) e'e™ (h) emHe-in

Use the exponential notation to show that

@ (V3 -0 + i/ =23+ 2 by (14 P =—-2+2

(€) 2i(/3 + il +i/3) = —8 (d) 8+ H =4~ 4di

Show that arg(z,z:z3) = arg g; + arg z; + arg z3. Hint: Use property (12).

Let ; = /3 + i Plot the points z. iz, —z. and —iz and describe a relationship among
their arguments.

Letz, = —1 + i\/i and z, = —\/3 + /. Show that the equation

Arg(ziz:) = Arg z; + Arg z2 does not hold for the specific choice of z; and z»,

Show that the equation Arg(z;z:) = Arg z; + Arg z; is true if we require that

—n/2 < Argz) < w/2 and —n/2 < Arg z> < W/2.

Show that arg z, = arg z, if and only if z; = cz,, where ¢ is a positive real constant.
Establish the identity arg(z,/z>) = arg 7, — arg 2.

Describe the set of complex numbers for which Arg(1/z) #* — Arg(z).

Show that arg(1/z) = —arg z.

Show thal arg(z,zz) = arg z; — arg za.

Show that

(a) Arg{zz) =0 (b) Arg(z + ) = 0 when Re(z) > 0.

Let z # z;. Show that the polar representation ¢ — zy = p(cos ¢ + i sin ¢) can be used
to denote the displacement vector from z; to z as indicated in Figure 1.16.

Let z), z2, and z; form the vertices of a triangle as indicated in Figure 1.17. Show that

o= arg(Zz - J) = arg(zz — 7)) — arg(z — o)

23 <1

is an expression for the angle at the vertex z;.
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FIGURE 1.16 Accompanies Exercise 15.  FIGURE 1.17 Accompanies Exercise 16.

1.5 The Algebra of Complex Numbers, Revisited

The real numbers are deficient in the sense that not all algebraic operations on them
produce real numbers. Thus, for V=1 to make sense, we must lift our sights to the
domain of complex numbers. Do complex numbers have this same deficiency? That
is, if we are to make sense out of expressions like /1 + i, must we appeal to yet
another new number system? The answer to this question is no. It turns out that any
reasonable algebraic operation we perform on complex numbers gives us complex
numbers. In this respect, we say that the complex numbers are complete. Later we
will learn how to evaluate complicated algebraic expressions such as (—1)’. For now
we will be content to study integral powers and roots of complex numbers.

The important players in this regard are the exponential and polar forms of a
complex number, z = re’® = r(cos 0 + i sin 8). By the laws of exponents (which,
you recall, we have promised to prove in Chapter 5!) we clearly have

(1) z' = (re®)" = re™® = r[cos(nd) + i sin(n0)], and

(2) z7"=(re®) " = r e = r[cos(—nB) + i sin(—nB)].

EXAMPLE 1.14 Show that (~V3 - i) = -8/ in two ways.

Solution 1 We appeal to the binomial formula and write
(- V3 -0 = (=V3) + 3(=V3)2(=i) + 3(~V3)(=i)* + (=i)* = -8i.

Solution 2  Using identity (1) and Example 1.11, we have

n 3 ; 21n
V3-ip = (2e’6) = (23e 35) = 8(cosz—gﬂ+isin2—é—n) = _8i.

Which of these methods would you use if you were asked to compute

(V3 -
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EXAMPLE 1.15 Evaluate (- /3 ~ i)-¢.

I\ —6
Solution (-3 - H"°= (Ze' ") =27%"" = 270(~]) = —é.

An interesting application of the laws of exponents comes from putting the
equation (¢®)” = ¢ into its polar form. This gives

(3) (cos B + isin )" = (cos n® + i sin n0),

which i1s known as De Moivre’s formula, in honor of the French mathematician
Abraham De Moivre (1667-1754).

EXAMPLE 1.16 De Moivre's formula (3) can be used to show that
co0s 50 = cos°8 — 10 cos?0 sinZ® + 5 cos 9 sin*6.

If we let n = 5. and use the binomial formula to expand the left side of equation
(3), then we obtain

c0s°0 + 75 cos*@ sin 8 — 10 cos?0 sin“6 — 107 cos?0 sin’@
+ 5 cos 0 sin*@ + i sin°0.

The real part of this expression is
cos’® — 10 cos'0 sin’® + 5 cos O sin*6.

Equating this to the real part of cos 58 + i sin 58 on the right side of equation (3)
establishes the desired result.

A key ingredient in determining roots of complex numbers turns out to be a corollary
to the fundamental theorem of algebra. We will prove the theorem in Chapter 6.
Our proofs must be independent of conclusions we derive here since we are going
to make use of the corollary now:

Corollary 1.1 (Corollary to the fundamental theorem of algebra) If P(z) is
a polvnomial of degree n (n > 0) with complex coefficients, then the equation
P(z) = O has precisely n (not necessarily distinct) solutions.

EXAMPLE 1.17 Let P(z) = 2> + (2 - 2i)z? + (=1 — 4i)z - 2. This poly-
nomial of degree 3 can be written as P(z) = (z - i)*’(z + 2). Hence, the equation
P(z) = 0 has solutions z;, = i, z, = i, and z; = —2. Thus, in accordance with
Corollary 1.1, we have three solutions, with z, and z, being repeated roots.
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The corollary to the fundamental theorem of algebra implies that if we can find n
distinct solutions to the equation z” = ¢ (or 77 — ¢ = 0), we will have found a/l the
solutions. We begin our search for these solutions by looking at the simpler equation
' = 1. You will soon see that solving this equation will enable us to handle the
more general one quite easily.

To solve 77 = 1, let us first note that from identities (5) and (10) of Section
1.4 we can deduce an important condition determining when two complex numbers
are equal. Let z; = rje® and z; = re=. Then,.
4 z, =z 0Ge.,rne =nrey iff r,=r and 08, = 0, + 271k,
where k is an integer.

That is, two complex numbers are equal if and only if their moduli agree, and
an argument of one equals an argument of the other to within an integral multiple

of 2n. Now, suppose z = re'® is a solution to z” = 1. Putting the latter equation in
exponential form gives us r"e¢”® = 1 . ¢, so relation (4) implies

rm=1 and n® =0 + 2nk,

. . - 2nk
where & is an integer. Clearly, for z = re’®, if r = 1, and 8 = — , we can generate
n

n distinct solutions to z7 = | (and, therefore, all solutions) by setting k = 0, 1, 2,
. »n — 1. (Note that the solutions for k = n, n + 1, . . . , merely repeat those
fork = 0,1, .. ., since the arguments so generated agree to within an integral

multiple of 2n.) As stated in Section 1.1, the n solutions can be expressed as

Ink 2 2
o S L2k 2Tk
5 zm=e = COo§ + i sin
n n

fork=0,1,....n— 1

’

They are called the nth roots of unity. The value w, given by

it 2n . 2n

6) w,=e"” =cos— + {sin—

n n

is called a primitive nth root of unity. By De Moivre’s formula, the nth roots of
unity can be expressed as

7D Lo,w,. .., o"

"> n

Geometrically, the nth roots of unity are equally spaced points that lie on the unit
circle {z: [z| = 1} and form the vertices of a regular polygon with n sides.

EXAMPLE 1.18 The solutions to the equation 28 = | are given by the 8 values

P 2nk ik
Z=e? =cos?+isin-—8—,fork=0,1,. R A

In Cartesian form these solutions are +1, i, ( \6 + i\/fz)/Z. and %( \/5 - i\/E)/Z,
From expressions (7) it is clear that wy = z;. Figure 1.18 gives an illustration of
this.
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[
i=w;
¥2 +id2 _ - 2+id2 _
2 = b 2 = »
-l=w} l=(u;‘ )
X
-2 —if2 _ s D _if2
3 =0, 3 :(D;
f=wj

FIGURE 1.18 The eight ecighth roots of unity.

The preceding procedure is easy to generalize in solving " = ¢ for any nonzero
complex number ¢. If ¢ = pe’® = p(cos ¢ + 7 sin 0). our solutions are given by

LR + 2rk + 2mk
(8) zm=p'e " = p”"(cosg)——— + isin d)___) for

n 14

k=0.1.....n—1.

Each solution in equation (8) can be considered an nth root of ¢. Geometrically, the
nth roots of ¢ are equally spaced points that lie on the circle {z: |z| = p"} and
form the vertices of a regular polygon with n sides. Figure 1.19 pictures the case
forn = 5.

FIGURE 1.19 Thc five solutions to the equation z° = ¢,

It is interesting to note that if { is any particular solution to the equation
2" = ¢, then all solutions can be generated by multiplying { by the various nth roots
of unity. That is, the solution set is

(9 Lo, lol . .. Lol
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The reason for this is that for anyj (L’ = L(wl)y' = {(w]) = {" = c, and that

i1 2n
multiplying a number by w, = ¢ " increases the argument of that number by — ,
n

so that expressions (9) contain n distinct values.

EXAMPLE 1.19 Let's find all cube roots of 8 = 8[cos(n/2) + i sin(n/2)]
using formula (8). By direct computation, we see that the roots are

n/2) + 2nk n/2) + 2mk
=2 ‘os(——)——+ isin(—-—)—— , fork=20,1,2
3 3

The Cartesian forms of the solutions are zp = ﬁ + iz = —\/@ + {, and
2> = —2i, as shown in Figure 1.20.

¥

y

$s

L 3

FIGURE 1.20 The point z = 8/ and its three cube roots zy, z), and z».

EXERCISES FOR SECTION 1.5

1. Show that (3 + i)* = —8 + i8./3 in two ways:

(a) by squaring twice (b) by using equation (3)
2. Calculate the following,
1+ 0
@ (1 —i/3J3+ iy (b) tl l;, © (V3+ i
— i)

3. Use De Moivre’s formula and establish the following identities,
(a) cos 38 = cos'® — 3 cos O sin?0 (b) sin 30 = 3 cos sin 6 — sin?d



4.

1.5 The Algebra of Complex Numbers, Revisited 29

Let z be any nonzero complex number. and let n be an integer. Show that z* + ()" is
a real number.

For Exercises 5-9. find all the roots.

s.
8.
10.
11.
12.
13.

14,

15.

16.
17.

18.

19.

20.

21,

22,

24,

(=2 + 2nHi3 6. (—064)! 7. (-
(16" 9. (8)V°

Establish the quadratic formula.

Find the solutions to the equation z° + (1 + i)z + 5i = 0.

Solve the equation (z + 1)} = 7%

Let P(z) = a,z2" + a,_,z2""' + - -+ + a)z + a, be a polynomial with real coefficients
Qu.dy 1. . . @, ap If 2y is a complex root of P(z), show that Z; is also a root. Hinr:
Show that P(Z) = P(z;) = 0.

Find all the roots of the equation z* ~ 4z + 6z — 4z + 5 = O giventhatz; =iisa
root.

Let m and n be positive integers that have no common factor. Show that there are »
distinct solutions to w” = z and that they are given by

m(8 + 2mk) om0+ 2nk)
— + st ——

>f0rk=0.l....,n—l.
n n ,

Wy = r-”"""’(cos

Find the three solutions to z¥2 = 4./2 + i4./2.
) | — Z',’“l
(@) Ifz# 1, showthatl + z + 22+ - - - + 77 = ——

| —z

(b) Use part (a) and De Moivre’s formula to derive Lagrange’s identityv:

|2

1
1+ cosO +cos20+ - + cosnb =— -
2 2 sin(0/2)

where 0 < 0 < 27,

Let zx # | be an nth root of unity. Prove that

l+g+g5+ - +z;7' =0
Ifl=2z.2,2.. ...z, are the nth roots of unity, prove that
—ze—) - d=l+z+2 4+ + gl

Identity (3). De Moivre’s formula, can be established withoul recourse to properties of
the exponential function. Note that this identity is trivially true for # = 1, then

(a) Using basic trigonomeltric identities, show the identity is valid for n = 2.

(b) Use induction to verify the identity for all positive integers.

(¢) How would you verify this identity for all negative integers?

Look up the article on Euler’s formula and discuss what you found. Use bibliographical
item 169.

Look up the article on De Moivre's formula and discuss what you found. Use biblio-
graphical item 103.

. Look up the article on how complex analysis could be used in the construction of a

regular pentagon and discuss what you found. Use bibliographical item 114,

Write a report on how complex analysis is used to study roots of polynomials and/or
complex functions. Resources include bibliographical items 50. 65, 67, 102, 109, 120,
121, 122, 140, 152, 162, 171, 174. and 178.
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1.6 The Topology of Complex Numbers

In this section we investigate some basic ideas concerning sets of points in the plane.
The first concept is that of a curve. Intuitively, we think of a curve as a piece of
string placed on a flat surface in some type of meandering pattern. More formally,
we define a curve to be the range of a continuous complex-valued function z(f)
defined on the interval [a, #]. That is, a curve C is the range of a function given by
2(8) = (x(D), ¥(D) = x(1) + iy(1), fora <t < b, where both x(¢) and v(¢) are continuous
real-valued functions, If both x(r) and v(r) are differentiable, we say that the curve
is smooth. A curve for which x(1) and y(1) are differentiable except for a finite number
of points is called piecewise smooth. We specify a curve C as

(h Czn=x()+ i) fora=st=<bh,

and say that z(¢) is a parametrization for the curve C. Notice that with this param-
eterization, we are specifying a direction (o the curve C, and we say that C is a
curve that goes from the initial point z(a) = (x(a), W(a)) = x(a) + iv(a) to the terminal
point z(b) = (x(b), y(b)) = x(b) + iy(b). If we had another function whose range
was the same set of points as z(f) but whose initial and final points were re-
versed, we would indicate the curve this function defines by —C. For example, if
20 = x¢ T ivgand g = x; + iy, are two given points, then the straight line segment
joining z to z; is

(2) Coz(n)y = 1{xo + (xy —xp)] + i[ve + (v — )] for0=szr< |,

and is pictured in Figure 1.21. One way to derive formula (2) is to use the vector
form of a line. A point on the line is Zp = xo + ivo and the direction of the line is
2y — Zp: hence the line C in formula (2) is given by

Czty=m+ (g —z forO<r< .
Clearly one parametrization for ~C is
—Cyn =z +(zp—zt for0=st=<1,

It is worth noting that y(t) = z(I — 1). This illustrates a general principle: If C is a
curve parameterized by z(7} for 0 < 7 < 1. then one parameterization for —C will
bez(l —nN,0=<r=<1.

FIGURE 1.21 The straight line segment C joining 7, to z,.
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A curve C with the property that z(a) = z(b) is said to be a closed curve.
The line segment (2) is not a closed curve. The curve x(z) = sin 2r cos ¢, and
¥(#) = sin 2¢ sin ¢t for O < 7 < 271 forms the four-leaved rose in Figure 1.22. Observe
carefully that as ¢ goes from 0 to n/2, the point is on leaf 1; from ®/2 to m it is on
leaf 2; between ® and 37/2 it is on leaf 3; and finally, for ¢ between 37/2 and 27 it
is on leaf 4. Notice that the curve has crossed over itself at the origin.

FIGURE 1.22 The curve x(¢) = sin 2¢t cos ¢, ¥(f) = sin 2t sinz for 0 < ¢t < 2m,
which forms a four-leaved rose.

Remark In calculus the curve in Figure 1.22 was given the polar coordinate
parameterization r = sin 20.

We want to be able to distinguish when a curve does not cross over itself.
The curve C is called simple if it does not cross over itself, which is expressed
by requiring that z(#,) # z(f2) whenever f; # £, except possibly when ¢, = a and
t» = b. For example, the circle C with center zp = xy + iyp and radius R can be
parameterized to form a simple closed curve:

3) Cz)=(xp+ Rcost) + i(vp+ Rsint) = zp + Re”

for 0 < ¢t < 2 m, as shown in Figure 1.23. As ¢ varies from O to 27, the circle is
traversed in a counterclockwise direction. If you were traveling around the circle in
this manner, its interior would be on your left. When a simple closed curve is
parameterized in this fashion, we say that the curve has a positive orientation. We
will have more to say about this idea shortly.
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STEY
—

- <
N
—

z(t)

z(m) z(0) = z(2m)

FIGURE 1.23 The simple closed curve z(t) = zy + Re" for 0 < t < 2n.

We need to develop some vocabulary that will help us describe sets of points
in the plane. One fundamental idea is that of an e-neighborhood of the point z;, that
is, the set of all points satisfying the inequality

(G |Z—Zo|<8-

This set is the open disk of radius € > 0 about g, shown in Figure 1.24. In particular,
the solution sets of the inequalities

HE

2= <2 |z+1+2)]<3

are neighborhoods of the points 0, i, —1 — 2/, respectively, of radius 1, 2, 3,
respectively.

FIGURE 1.24 An e-neighborhood of the point zp.

An e-neighborhood of the point zg is denoted by D.(zp), and is also referred
to as the open disk of radius € centered at z,. Hence,

(5) Ddzo) = {z |z — =] <t}

We also define the closed disk of radius € centered at z,
(6) Dizo) = {z: |z — 2| =&}

and the punctured disk of radius € centered at z,

(7) Dizo) = {z0< |z— 7] <e}.
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The point zy is said to be an interior point of the set § provided that there
exists an €-neighborhood of z; that contains only points of S; zy is called an exterior
point of the set S if there exists an €-neighborhood of z; that contains no points of
S. If zp is neither an interior point nor an exterior point of S, then it is called a
boundary point of S and has the property that each €-neighborhood of z, contains
both points in S and points not in S. The situation is illustrated in Figure 1.25.

y

4

Extecrior

Boundary

FIGURE 1.25 The interior. exterior, and boundary of a set.

The boundary of Dg(zp) is the circle depicted in Figure 1.23. We denote this
circle by Cgl(zp), and refer to it as the circle of radius R centered at z;. The notation
Cr(zo) 1s used to indicate that the parameterization we chose for this simple closed
curve resulted in a positive orientation. Cr(zp) denotes the same circle, but with a
negative orientation. (In both cases counterclockwise denotes the positive direction.)
Using notation we have already introduced, it is clear that Cz(zp) = —Cyr(zp)-

EXAMPLE 1.20 Let s = (= |z| < 1}. Find the interior, exterior, and
boundary of S.

Solution Let zo be a point of S. Then |z0| < I so that we can choose
€ =1— |zo] > 0.1f z lies in the disk |z ~ 2| < &, then
lz] = |zo+z2— 20| = |20] + |2~ 2] <]z| +e=1

Hence the €-neighborhood of z is contained in S, and z; is an interior point of S. It
follows that the interior of S is the set {z: |;| < 1}.
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Similarly, it can be shown that the exterior of § is the set {z: > 1}. The
boundary of § is the unit circle {z: |z| = 1}. This is true because if zop = € is any
point on the circle, then any &-neighborhood of zp will contain the point
(1 — €/2)e'™, which belongs to §, and (1 + €/2)e™, which does not belong to S.

4
<

A set S is called open if every point of § is an interior point of S. A set S is
called closed if it contains all of its boundary points. A set S is said to be connected
if every pair of points z; and z; can be joined by a curve that lies entirely in S.
Roughly speaking, a connected set consists of a ‘*single piece.”” The unit disk D =
{z: ’z| < 1} is an open connected set. Indeed, if z; and z; lie in D, then the straight
line segment joining them lies entirely in D. The annulus A = {z: 1 < [z| < 2} is
an open connected set because any two points in A can be joined by a curve C that
lies entirely in A (see Figure 1.26). The set B = {z: |z + 2| <lor |z - 2| <1}
consists of two disjoint disks; hence it is not connected (see Figure 1.27).

FIGURE 1.26 The annulus A = {z: | < |z| <0 2} is a connected set.

We call an open connected set a domain. For example, the right half plane
H = {z: Re(z) > 0} is a domain. This is true because if zp = x; + iyp is any point
in H, then we can choose € = x, and the e-neighborhood of z; lies in H. Also, any
two points in H can be connected with the line segment between them. The open
unit disk |z| < 1 is also a domain. However, the closed unit disk |z] < lisnota
domain. It should be noted that the term ‘*domain’’ is a noun and is a kind of set.
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y

FIGURE 1.27 B = {z: |z+ 2| < 1lor |z~ 2| < 1} is not a connected sct.

A domain, together with some, none, or all of its boundary points, is called a
region. For example, the horizontal strip {z: 1 < Im(z) < 2} is a region. A set that
is formed by taking the union of a domain and its boundary is called a closed region;
that is, the half plane {z: x < ¥} is a closed region. A set is said to be bounded if
every point can be enveloped by a circle of some finite fixed radius, that is, there
exists an R > 0 such that for each z in § we have z| = R. The rectangle given by
{z: |x] = 4 and |v] = 3} is bounded because it is contained inside the circle
|z| = 5. A set that cannot be enclosed by a circle is called unbounded.

We mentioned earlier that a simple closed curve is positively oriented if its
interior is on the left when the curve is traversed. How do we know, however, that
any given simple closed curve will have an interior and exterior? The following
theorem guarantees that this is indeed the case. It is due in part to the work of the
French mathematician Camille Jordan.

Theorem 1.1 (The Jordan Curve Theorem): The complement of any simple
closed curve C can be partitioned into two mutually exclusive domains [ and
E in such a way that I is bounded, E is unbounded, and C is the boundary for
both 1 and E. In addition, 1 U E U C is the entire complex plune. (The domain
Lis called the interior of C, and the domain E is called the exterior of C.)

The Jordan curve theorem is a classic example of a result in mathematics that
seems obvious but is very hard to demonstrate. Its proof is beyond the scope of this
book. Jordan’s original argument, in fact, was inadequate, and it was not until 1905
that a correct version was finally given by the American topologist Oswald Veblen.
The difficulty lies in describing the interior and exterior of a simple closed curve
analytically, and in showing that they are connected sets. For example, in which
domain (interior or exterior) do the two points depicted in Figure 1.28 lie? If they
are in the same domain, how, specifically, can they be connected with a curve?
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Although an introductory treatment of complex analysis can be given without

using this theorem, we think it is important for the well-read student at least to be
aware of its significance.

~1

FIGURE 1.28 Are z; and z; in the interior or exterior of this simple closed curve?

EXERCISES FOR SECTION 1.6

1.

Sketch the curve z(f) = 2 + 2 + i(t + 1)
(a) for -1 =t =<0 (b) forl =r <2,
Hint: Use x = * + 2t, v = t + 1 and eliminate the parameter ¢.

. Find a parameterization of the line that

(a) joins the origin to the point 1 + 7. (b) joins the point i to the point 1 + /.
(c) joins the point 1 to the point 1 + /. (d) joins the point 2 to the point 1 + £

. Find a parameterization of the curve that is a portion of the parabola v = x* that

(a) joins the origin to the point 2 + 4i. {b) joins the point —1 + i 1o the origin.
(c) joins the point 1 + 7 to the origin.
Hint: For parts (a) and (b), use the parameter t = x.

4. Find a parameterization of the curve that is a portion of the circle |z| = | that joins
the point —/ to { if
(a) the curve is the right semicircle. (b} the curve is the left semicircle.

5. Find a parameterization of the curve that is a portion of the circle |:| = | that joins

the point 1 to 7 if
(a) the parameterization is counterclockwise along the quarter circle.
(b) the parameterization is clockwise.
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For Exercises 6-12, refer to the following sets:

10.
12.
13.
14.

15.
16.
17.
18.
19.
20.

(a) {z. Re(z) > 1}. by {z: =1 <Im(z) < 2).

(© {z |z -2—-i] =2} (d) {z: |z +3i| > 1}.

(e) {re": 0<r<land — n/2 <0 <n/2}. (H) {re®. r>1and /4 < 8 < n/3}.
(@) {z |z] <lor|z-4] <1}

Sketch each of the given sets. 7. Which of the sets are open?

Which of the sets are connected? 9. Which of the sets are domains?

Which of the sets are regions? 11. Which of the sets are closed regions?
Which of the sets are bounded?

Let S = {z;,22.. . ., 2.} be a finite set of points. Show that § is a bounded set.

Let § be the open set consisting of all points z such that |z + 2[ <lor

|z — 2| < 1. Show that § is not connected.

Prove that the neighborhood |z — zp| < € is an open set.

Prove that the neighborhood |z — zyp| < €15 a connected set.

Prove that the boundary of the neighborhood ]z - Zol < g is the circle |z - Zn’ =€
Prove that the set {z: |z| > 1) is the exterior of the set S given in Example 1.20.
Prove that the set {z: ’z| = 1} is the boundary of the set § given in Example 1.20.
Look up some articles on teaching complex analysis and discuss what you found. Re-
sources include bibliographical items 7, 11, 24, 27, 33, 43, 74, 84, 90, 101, 102, 103,
105, 114, 123, 134, 137, 160, 171, and 185.
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Complex Functions

2.1  Functions of a Complex Variable

A function f of the complex variable z is a rule that assigns to each value z in a set
D one and only one complex value w. We write

(H w=f

and call w the image of z under f. The set D is called the domain of definition of f,
and the set of all images R = {w = f(z): z € D} is called the range of f. Just as z
can be expressed by its real and imaginary parts, z = x + iy, we write w = u + iv,
where u and v are the real and imaginary parts of w, respectively. This gives us the
representation

2) fx+d)=u+iv

Since u and v depend on x and y, they can be considered to be real functions of the
real variables x and y; that is,

3) wu=ulxy and v = v(xy).

Combining equations (1), (2), and (3), it is customary to write a complex function
fin the form

@ f@) = flx +iy) = ulx, y) + iv(x, »).

Conversely, if u(x, y) and v(x, v) are two given real-valued functions of the real
variables x and y, then equation (4) can be used to define the complex function f.

EXAMPLE 2.1 Write f(z) = z*in the form f(z) = u(x, y) + iv(x, v).

Solution  Using the binomial formula, we obtain

f@ = (x + iy)* = x* + 4Py + 6x23y)* + dx(iy)} + (iy)*
= (x% — 6x°y2 + yH) + i(dxPy — 4xy?).

38
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EXAMPLE 2.2 Expressf(z) = ZRe(z) + 22 + Im(z) in the form of equations
(2) and (3) f(2) = ulx, y) + iv(x, v).

Solution  Using the elementary properties of complex numbers, it follows
that

FD) = —ivix + (@ — ¥ 4 i2xy) + v = (252 — ¥ 4 y) + i),

These examples show how to find u(x, ¥) and v(x, y) when a rule for computing
fis given. Conversely, if u(x, v) and v(x, y) are given, then the formulas

-2z
2

+
&1l

<

X = and y =

(%)

can be used to find a formula for f involving the variables z and Z.

EXAMPLE 2.3 Expressf(z) = 4x* + i4y* by a formula involving the variables
zand Z.

Solution Calculation reveals that

s+zy ,4':—v :
4 5 + 57

2T+ WHE 2T+ T
(1 - D2+ @2 +20hz+ (1 - H

&al

flo)

It may be convenient to use ; = re® in the expression of a complex function
f. This gives us the representation
(5) f(2) = flre® = u(r, 9) + iv(r, 9),

where u# and v are to be considered as real functions of the real variables r and 9.
Note that the functions u and v defined by equations (4) and (5) are different, since
equation (4) involves Cartesian coordinates and equation (5) involves polar
coordinates.

EXAMPLE 2.4 Express f(z) = z° + 4z2 — 6 in the polar coordinate form
u(r, 8) + iv(r, 0).

Solution Using equation (1) of Section 1.5, we obtain

f(z) = r¥(cos 50 + isin 50) + 4r%(cos 20 + isin 20) — 6
= (rScos 58 + 4ricos 26 — 6) + i(r°sin 50 + 4r°sin 20).
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EXERCISES FOR SECTION 2.1

1. Letf(z) = f(x + iy) = x + ¥y + i(x*y — ). Find

(a) f(—1 + 3i) (b) f(3i — 2)

2. Letf(z) = z2 + 47z — 5 Re(2) + Im(z). Find
(@) f(=3 + 2D (b f2i — D

3. Find f(1 + i) for the following functions.
(a) flx)y=z4+272+5 (b) fla) = e

4. Find f(2/ — 3) for the following functions.

o o e L z+2-3

(a) f(z) = (2 + 3z — 5D b fl) = —_z T

5. Let f(z) = z*' — 527 + 9z Use polar coordinates to find
() f(=1 +0) (b) f(1 +i/3)

6. Expressf(z) =22 + (2 — 3i)z in the form u + iv.

zt2 -1, " .

7. Express f(z) = z-*T in the form u + iv.

8. Express f(z) = z° + Z° in the polar coordinate form u(r. ) + iv(r, 9).

9. Express f(z) = z° + 27 in the polar coordinate form u(r, ) + iv(r, 9).

10, Let f(z) = f(x + iv) = e¢'cos ¥ + ie*sin . Find
(a) f(O) (b) f() (c) fin/d)
(d) f(1 + in/d) (e) f(i2n/3) ) f(2 + im)

11. Letf(z) = f(x + iy) = (1/2) In(x*> + ¥?) + i arctan(y/x). Find
(@ f(1y_ (b) f1+ 0 _ (© £(/3)
(d) (V3 + D) (e) f(1 + i/3) (H f3+ 4

12. Let f(z) = r’cos 20 + ir’sin 20, where z = re™. Find
(a) f(D (b) f(2e™)
(© f(/2e7%) (d) f(/3e™)

13. Letf(z) = In r + i0, where r = |z | # = Arg z Find
(a) f(1) (by f(1 + )
© f(=2) () f(=3+ D

14. A line that carries a charge of ¢/2 coulombs per unit length is perpendicular to the z
plane and passes through the point z,. The electric field intensity E(z) at the point z
varies inversely as the distance from z, and is directed along the line from z; to z. Show
that

k

E(z) = —.
—an

|

where k is some constant. (In Section 10.11 we will see that the answer is in fact
q

)]

15. Suppose that three positively charged rods carry a charge of /2 coulombs per unit length
and pass through the three points 0, 1 — 4, and 1 + 7. Use the result of Exercise 14 and
show that E(z) = 0 at the points z = (2/3) £ i( J23).

16. Suppose that a positively charged rod carrying a charge of ¢/2 coulombs per unit length
passes through the point 0 and that positively charged rods carrying a charge of ¢
coulombs per unit length pass through the points 2 + i and —2 + i. Use the result of
Exercise 14 and show that E(z) = 0 at the points z = ++ + i%.
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To show that f is onto, we must show that each point w in B is the image of some
point in A. If w € B, then z = g(w) lies in A and f(g(w)) = w, and we conclude that
f1s a one-to-one mapping from A onto B.

We observe that if f is a one-to-one mapping from D onto R and it A is a
subset of D, then fis a one-to-one mapping from A onto its image B. One can also
show that if £ = f(z) is a one-to-one mapping from 4 onto §, and w = g(£) is a one-
to-one mapping from § onto B, then the composition mapping w = g( f(z)) is a one-
to-one mapping from A onto B.

It is useful to find the image B of a specified set A under a given mapping
w = f(z). The set A is usuaily described with an equation or inequality involving x
and y. A chain of equivalent statements can be constructed that lead to a description
of the set B in terms of an equation or an inequality involving # and v.

EXAMPLE 2.5 Show that the function f(z) = iz maps the line y = x + [ onto
the linev = —u — 1.

Solution We can write fin the Cartesian form « + iv = f(z) = i(x + iy)

= —y + ix, and see that the transformation can be given by the equations 4 = —y
and v = x. We can substitute these into the equation y = x + 1 to obtain —u = v
+ 1, which can be writtenas v = —u — 1.

We now turn our attention to the investigation of some elementary mappings.
Let B = a + ib denote a fixed complex number. Then the transformation

4 w=T@D=z+B=x+a+iy+bh

is a one-to-one mapping of the z plane onto the w plane and is called a translation.
This transformation can be visualized as a rigid translation whereby the point 2 is
displaced through the vector ¢ + ib to its new position w = 7(z). The inverse
mapping is given by

5 z=T"'W=w-~-B=u—a+iy—0>b

and shows that T is a one-to-one mapping from the 7 plane onto the w plane. The
effect of a translation is pictured in Figure 2.2.

w=z+28
————
u=x+a
v =y+b

FIGURE 2.2 The translationw =T(z) =z + B=x +a + i(y + b).



2.2 Transformations and Linear Mappings 43

Let o be a fixed real number. Then the transformation
(6) W = R(:) = :(,iu —_ reiaem = rellt+um)

is a one-to-one mapping of the z plane onto the w plane and is called a rotation. Tt
can be visualized as a rigid rotation whereby the point ; is rotated about the origin
through an angle o to its new position w = R(z). If we use polar coordinates
w = pe™ in the w plane, then the inverse mapping is given by

(7)) z =R "(w) = we " = pelte™™ = pelto-w),

This shows that R is a one-to-one mapping of the z plane onto the w plane. The
effect of rotation is pictured in Figure 2.3.

w =peild +a)

D s
p=r
o=0+a

FIGURE 2.3 The rotation w = R(7) = re't® ',

Let K > 0 be a fixed positive real number. Then the transformation
(8) w=25802=Kz;=Kx+ iKy

is a one-to-one mapping of the z plane onto the w plane and is called a magnification.
If K > 1, it has the effect of stretching the distance between points by the factor K.
If K < 1, then it reduces the distance between points by the factor K. The inverse
transformation is given by
) S 10w 1 1 4 I
=85 wWy=—w=—u+i—v

{ K K K
and shows that S is one-to-one mapping from the z plane onto the w plane. The
effect of magnification is shown in Figure 2.4,
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3
 }
Kit+
w =Kz
—_—
] u = Kx
! Iy C o= Ky i+
B0 o W e
R R B
—_—— X f— b
1 K 1 K

FIGURE 2.4 The magnification w = S(z) = Kz = Kx + iKy.

Let A = Ke™ and B = a + ib, where K > 0 is a positive real number. Then
the transformation

(1 w=Wz=Az;+ B

is a one-to-one mapping of the z plane onto the w plane and is called a linear
transformation. It can be considered as the composition of a rotation, a magnifica-
tion. and a translation. It has the effect of rotating the plane through an angle given
by a = Arg A, followed by a magnification by the factor K = |A|. followed by a
translation by the vector B = a + ib. The inverse mapping is given by

B

1
(1Y z=W1lnw) = jq_w - -A—

and shows that W is a one-to-one mapping from the z plane onto the w plane.

EXAMPLE 2.6 Show that the linear transformation w = iz + i maps the right
half plane Re(z) > | onto the upper half plane Im(w) > 2.

Solution  We can write w = f(2) in Cartesian form u + iv = i(x + iv) + i
= —y + i(x + 1) and see that the transformation can be given by the equations
u = —yand v = x + 1. The substitution x = v — | can be used in the inequality
Re(z) = x > 1 to see that the image values must satisfy vy — 1 > | or v > 2, which
is the upper half plane Im(w) > 2. The effect of the transformation w = f(z) is a
rotation of the plane through the angle o = n/2 followed by a translation by the
vector B = i and is illustrated n Figure 2.5.
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FIGURE 2.5 The linear transformation w = f(z) = iz + i.

It is easy to see that translations and rotations preserve angles. Since magni-
fications rescale distance by a factor X, it follows that triangles are mapped onto
similar triangles, and so angles are preserved. Since a linear transformation can be
considered as a composition of a rotation, a magnification, and a translation, it
follows that linear transformations preserve angles. Consequently, any geometric
object is mapped onto an object that is similar to the original object; hence linear
transformations can be called similarity mappings.

EXAMPLE 2.7 Show that the image of the open disk Iz + 1+ i| <1 under
the transformation w = (2 — 4i)z + 6 + 2/ is the open disk |w + | — 3i| < 5.
Solution The inverse transformation is given by

w—6—2i

3 -4

and this substitution can be used to show that the image points must satisfy the
inequality

w—6—2

3 -4

+1+i| <l

Multiplying both sides by |3 — 4i| = S results in
|w—6—2i+ 1+ )3 - 4)| <5,

which can be simplified to obtain the inequality
|w+ 1 = 3i] <5.

Hence the disk with center —1 — 7 and radius | is mapped one-to-one and onto the
disk with center —1 + 3/ and radius 5 as pictured in Figure 2.6.
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FIGURE 2.6 Thc mapping w = §(z) = (3 — 4i)z + 6 + 2i.

EXAMPLE 2.8 Show that the image of the right half plane Re(z) > 1 under
the linear transformation w = (—~1 + i)z — 2 + 3i is the half plane v > u + 7.

Solution The inverse transformation is given by

w+2—3i_u+2+i(v—3)
-1+ -1+

<

which can be expressed in the component form

4 —u+v—5+,—u—v+l
x+iyv= i .
; 2 2

The substitution x = (—u + v — 5)/2 can be used in the inequality Re(z) = x > |
to see that the image points must satisfy (—u + v — 5)/2 > 1. This can be simplified
to yield the inequality v > u + 7. The mapping is illustrated in Figure 2.7.

FIGURE 2.7 The mapping w = f(z) = (=1 + i)z — 2 + 3i.




2.3 The Mappings w= z”7and w= zV» 47

EXERCISES FOR SECTION 2.2

1. Letw=1(l — iz +1—-2i
{a) Find the image of the half-plane Im(z) > 1.
{b) Sketch the mapping, and indicate the points z; = ~1 + f,zo =i, andz3 = 1 + §
and their images w, wa, and ws.
2, Letw = (2 + i)z — 3 + 4/ Find the imagc of the line

x=ty=1-—2t for —eo < < oo,

3. Letw=(3+4)z -2+
(a) Find the image of the disk |z — 1| < 1.
(b) Sketch the mapping, and indicate the points z; = 0. z> = 1 — i, and z: = 2 and their
images.
4. Letw = (3 + 4i)z — 2 + i. Find the image of the circle

x=1+cost. y=1+sint for—-n<r=mn
5. Let w = (2 + i)z — 2i. Find the triangle onto which the triangle with vertices
)= =2+i,z2= -2+ 2iand z; = 2 + /[ is mapped.
6. Find the linear transformation w = f(z) that maps the points z; = 2 and z; = —3/ onto
the points wy = 1 + 7 and w> = |, respectively.
7. Find the linear transformation w = $(z) that maps the circle |z| = 1 onto the circle

|w -3+ 2i| = 5 and satisfies the condition S(—i) = 3 + 3.

8. Find the lincar transformation w = f(z) that maps the triangle with vertices —4 + 2i,
-4 + 7i,and 1 + 2i onto the triangle with vertices 1, 0, and 1 + i.

9. Let S(z) = Kz, where K > 0 is a positive real constant. Show that the equation
[S(z)) = S(z2)| = K|z — 2| holds. and interpret this result geometrically.

10. Give a proof that the image of a circle under a linear transformation is a circle. Hint:
Let the given circle have the parameterizationx = xy + Rcost,y =y, + Rsint.

11. Prove that the composition of (wo linear transformations is a linear transformation.

12. Show that a linear transformation that maps the circle |z — zu| = Ry onto the circle
| — wo| = Ry can be expressed in the form

Ay — wy)R = (z ~ 20) Ry, where |A] = 1.

2.3 The Mappings w= z7and w= 2z~

The function w = f(z) = z° can be expressed in polar coordinates by

ki ]

() w=f) =2 =r,

where r > 0 and — © < 8 =< m. If polar coordinates, w = pe'® are used in the w
plane, then mapping (1) can be given by the system of equations

(2) p=r? and ¢ = 26.

If we consider the wedge-shaped set A = {re®: r > 0 and — n/4 < 6 < w/4},
then the image of A under the mapping f is the right half plane described by the
inequalities p > 0, — /2 < ¢ < /2. Since the argument of the product zz is twice
the argument of z, we say that f doubles angles at the origin. Points that lie on the
ray r > (), 8 = o are mapped onto points that lie on the ray p > 0, ¢ = 20
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If the domain of definition D for f(z) = z° is restricted to be the set

, -n i
3) D= {re’”:r>0 and ——<6<—}.
2 2
then the image of D under the mapping w = z° consists of all points in the w plane
(except the point w = 0 and all the points that lie along the negative u axis). The
inverse mapping of fis

@ z=fYw)= w2 =p2eP2 wherep>0and — 1w < <m.

The function f~}(w) = w'? in equation (4) is called the principal square root func-
tion and shows that f is one-to-one when its domain is restricted by set (3). The
mappings w = 7> and z = w!”? are illustrated in Figure 2.8.

1/2

=W

FIGURE 2.8 The mappings w = zZand z = w'/2,

Since f(~z) = (—2)°> = z2, we see thal the image of the left half plane
Re(z) < 0 under the mapping w = z? is the w plane slit along the negative « axis as
indicated in Figure 2.9.

FIGURE 2.9 The mapping w = 2.
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Other useful properties of the mapping w = z? can be investigated if we use
the Cartesian form
(5) w=f)=22=x -y + i2xv
and the resulting system of equations

(6) wu=x>—y and v=2xv

.»

EXAMPLE 2.9 The transformation w = f(z) = z2 maps vertical and horizontal
lines onto parabolas, and this fact is used to find the image of a rectangle. If ¢ > 0,
then the vertical line x = @ is mapped onto the parabola given by the equations
u = g’ — y? and v = 2ay, which can be solved to yield the single equation

v

42"

(M u=a —
If & > 0, then the horizontal line y = b is mapped onto the parabola given by the
equations i = x> — b*> and v = 2xb, which can be solved to yield the single equation

ye

ap*’

(8) u=—-b+

Since quadrant I is mapped onto quadrants I and Il by w = z°, we see that the
rectangle 0 << x < g, 0 <y < b is mapped onto the region bounded by the parabolas
(7) and (8) and the « axis. The four vertices 0, ¢, ¢ + ib, and ib are mapped onto
the four points 0, ¢°, a® — b° + i2ab, and — b, respectively, as indicated in Figure
2.10.

I

a+ib

I O

O O 0 O A

| O O O

T I I I T
0 O O O O O O

1]

0.5

FIGURE 2.10 The transformation w = z2,

The mapping w = z!”? can be expressed in polar form,

(9) w = f(:) = Z1/2 = ,.I/zeinll_
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where the domain of definition D for fis restrictedtobe r > 0, —n < 0 < . If
polar coordinates w = pe’® are used in the w plane, then mapping (9) can be rep-
resented by the system

, b
(10) p=#"7 and ¢ = 5
From equations (10) we see that the argument of the image is half the argument of
z and that the modulus of the image is the square root of the modulus of z. Points
that lic on the ray » > 0, 8 = o are mapped onto the ray p > 0, ¢ = o/2. The image
of the ¢ plane (with the point z = 0 deleted) consists of the right half plane
Re(w) > 0 together with the positive v axis, and the mapping is pictured in Figure
2.11.

FIGURE 2.11 Thc mapping w = '~

The mapping w = z!”? can be studied through our knowledge about its inverse
mapping z = w? 1f we use the Cartesian formula

(N z=w? =1’ — v2 + 2uy,
then the mapping z = w? is given by the system of equations

(12) x=u —v and y = 2uv.

EXAMPLE 2.10 The transformation w = f(z) = z'> maps vertical and hori-
zontal lines onto a portion of a hyperbola, enabling us to find images of half
planes. Let a > 0. Then system (12) can be used to see that the right half plane
given by Re(z) = x >> a is mapped onto the region in the right half plane satisfying
u? — v? > a and lies to the right of the hyperbola u? — v2 = a. If b > 0, then system
(12) can be used to see that the upper half plane Im(z) = v > b is mapped onto the
region in quadrant I satisfying 2uv > b and lies above the hyperbola 2uy = b. The
situation is illustrated in Figure 2.12.
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3
172 !
v W = :
A — 3
9
2
5
v=b 4 z=w" L
: -
X=d
T - X u
-3 3 6 9

FIGURE 2.12 The mapping w = 7'

Let n be a positive integer and consider the function w = f(z) = ¢, which can
be expressed in the polar coordinate form

(13) w=f)=z"=r"e" wherer>0and —n <8 <7

If polar coordinates w = pe® are used in the w plane, then mapping (13) can be
given by the system of equations

(14) p = r" and ¢ = n0.

We see that the image of theray r > 0, 8 = a is the ray p > 0, & = not and that
angles at the origin are increased by the factor #. Since the functions cos n6 and
sin n6 are periodic with period 2n/n, we see that fis in general an n-to-one function;
that is, n points in the z plane are mapped onto each point in the w plane (except
w = 0). If the domain of definition D of f in mapping (13) is restricted to be

. b b1
(15) D = {rew: r>0-—C<o s——},
n n

then the image of D under the mapping w = f(z) = z” consists of all points in the
w plane (except the origin w = 0), and the inverse function is given by

(16) z=f(w)y=wl =plett wherep>0and — < ¢ <.

The function f~!(w) = w!/" is called the principal nth root function and shows that
f is one-to-one when it is restricted to be the domain set (15). The mappings
w = " and z = w!”" are shown in Figure 2.13.
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FIGURE 2.13 The mappings w = z' and z = w'/.

EXERCISES FOR SECTION 2.3

1. Show that the image of the horizontal line v = 1 under the mapping w = z? is the
parabola w = v¥/4 — 1.

2. Show that the image of the vertical line x = 2 under the mapping w = z” is the parabola
u=4-v¥yle.

3. Find the image of the rectangle 0 < x < 2,0 < y < 1 under the mapping w = z°. Sketch
the mapping.

4. Find the image of the triangle with vertices 0, 2, and 2 + 2/ under the mapping w = z2.
Sketch the mapping.

5. Show that the infinite strip 1 < x < 2 is mapped onto the region that lies between the
parabolas v = 1 — v¥4 and u = 4 — v¥/16 by the mapping w = 2°.

6. For what values of z does (z?)'> = z hold if the principal value of the square root is to

be used?
7. Sketch the set of points satisfying the following relations.
(a) Re(z?) > 4 (b) Im(z%) > 6

8. Show that the region in the right half plane that lies to the right of the hyperbola
x? — y?> = 1 is mapped onto the right half plane Re(w) > 1 by the mapping w = z°.
9, Show that the image of the line x = 4 under the mapping w = z'? is the right branch
of the hyperbola > — v? = 4.
10. Find the image of the following sets under the mapping w = z'/2.
(a) {re”: r>1and n/3 < 0 < m/2}
(b) {re": 1 <r<9and 0 <6 < 2n/3)
(©) {re®:. r <4 and —m < 0 < n/2}
11. Find the image of the right half plane Re(z) > | under the mapping w = z2 + 2z + 1.
12. Show that the infinite strip 2 < y < 6 is mapped onto the region in the first quadrant
that lies between the hyperbolas uv = 1 and uv = 3 by the mapping w = 72
13. Find the image of the region in the first quadrant that lies between the hyperbolas
xy = 4 and xy = 4 under the mapping w = 7.
14. Show that the region in the z plane that lies to the right of the parabola x = 4 — y¥/16
is mapped onto the right half plane Re(w) > 2 by the mapping w = z'%. Hint: Use the
inverse mapping z = w2
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15. Find the image of the following sets under the mapping w = z*.
(a) {re® 1 < r<2and — /4 < 6 < n/3)
(b) {re": r >3 and 2n/3 < 8 < 3n/4}
16. Find the image of the sector r > 2, n/4 < 8 < /3 under the following mappings.

(a)y w = 7* (by w=2z* (¢c) w=2z°
17. Find the image of the sector r > 0, —m < 8 < 2n/3 under the following mappings.
(a) w=z"2 (by w=z" (c) w=z"

18. Use your knowledge about the complex square root function and explain the fallacy in
the following statement: 1 = J(—=I1X =1 = J(—=DJ/(=1) = () = —1.

2.4 Limits and Continuity

Let u = u(x, v) be a real-valued function of the two real variables x and y. We say
that u has the limit u, as (x, y) approaches (xy, yy) provided that the value of u(x, y)
gets close to the value uy as (x, y) gets close to (xy, vp). We write
)] Iim  u(x, ¥) = up.

[E AR R TR
That is, « has the limit u, as (x, y) approaches (xo, yo) if and only if |u(x, y) — uo|
can be made arbitrarily small by making both |x — xo| and |y — v| small. This
is like the definition of limit for functions of one variable, except that there are two
variables instead of one. Since (x, ¥) is a point in the xy plane, and the distance
between (x, y) and (xg, yo) 1s /{x — x0)° + (¥ = ¥y)°, we can give a precise definition
of limit as follows. To each number € > 0, there corresponds a number 8 > 0 such
that

2) ‘u(x. y) — u()\ < g, whenever 0 < /(x — xp)* + (v — vo)* < §.

EXAMPLE 2.11 If u(x, y) = x/(x* + v9), then
3) lim  u(x, y) = 0.

{x.)—10,0)

Solution Ifx = rcos ® and y = r sin 8, then

. 9) ricos’0 "
UiLx, yv) = - = ¥ COS'D.
T ricos?® + r2sin’@

Since /(x — 0)2 + (¥ — 0)* = r, we see that
|u(x, vy — 0] = r‘cos-‘ﬁ\ < g, whenever 0 < J/x2 + y? = r <&,

Hence for any € > 0, inequality (2) is satisfied for & = €; that is, u(x, y) has the
limit uy = 0 as {x, v) approaches (0, 0).

The value u of the limit must not depend on how (x, y) approaches (xg, ¥g).
So it follows that u(x, v} must approach the value u, when (x, ¥) approaches (xq, yy)
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along any curve that ends at the point (xo, ¥o). Conversely, if we can find two curves
C; and C, that end at (xy, vy) along which u(x, y) approaches the two distinct values
uy and u,, respectively, then u(x, v) does not have a limit as (x. y) approaches
{Xo. ¥o)-

EXAMPLE 2.12 The function u(x, ¥) = xy/(x2 + ¥°) does not have a limit as
(x, y) approaches (0, 0). If we let (x, v) approach (0, 0) along the x axis, then

hm  u(x, 0) = lim —(—Y& = (),

~ N
(D)= 10.0) wo-mm x° + 0°

But if we let (x, ¥) approach (0, 0) along the line y = x, then

. . (0)(x) 1
Iim  w(x,y) = lim > 5= —.
(x0=—10.0) -0 X< + x° 2

Since the two values are different, the value of the limit is dependent on how (x, v)
approaches (0, 0). We conclude that u(x, v) does not have a limit as (x, y) approaches
(0, 0).

Let f(z) be a complex function of the complex variable z that is defined for all
values of z in some neighborhood of z;, except perhaps at the point z,. We say that
[ has the limit wy as z approaches z, provided that the value f(z) gets close to the
value wy as z gets close to zy; and we write
@ limf(z) = wo.

MEY
Since the distance between the points z and z; can be expressed by |: -2 |, we
can give a precise definition of limit (4): For each positive number € > 0, there
exists 4 © > 0 such that

(5)  |f&) — wo| <&, whenever 0 < |z — z)| <8.

Geometrically, this says that for each e-neighborhood ]w - WU| < € of the point
wy there is a deleted §-neighborhood 0 < |z — z5| < & of zo such that the image
of each point in the 8-neighborhood, except perhaps z, lies in the e-neighborhood
of wy. The image of the 8-neighborhood does not have to fill up the entire e-neigh-
borhood; but if ¢ approaches z; along a curve that ends at z, then w = f(2) ap-
proaches wy,. The situation is illustrated in Figure 2.14,

If we consider w = f(z) as a mapping from the z plane into the w plane and
think about the previous geometric interpretation of a limit, then we are led to
conclude that the limit of a function f should be determined by the limits of its real
and imaginary parts » and v. This will also give us a tool for computing limits.
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FIGURE 2.14 The limit fiz) = wy as 2 - zZq.

Theorem 2.1 Let f(z) = u(x, y) + iv(x, ¥) be a complex function thar
is defined in some neighborhood of zy, except perhaps at 2y = xy + ivy. Then

(6) lim f(:) = Wy = Up + iVU

=3
if and only if

(7 lim  w(x,y) = uy and lim  vix.y) = w.

LX) > lag,yo) (. ¥)—lyvp)

Proof Let us first assume that statement (6) is true, and show that statement (7)
is true. According to the definition of limit, for each € > 0, there corresponds a
8 > 0 such that

|f(z) — wo| <&, whenever 0 < |z —z| < 8.

Since f(z) — wo = ulx, ¥) — up + {(v(x, y) — vg), We can use equations (2) of Section
1.3 to conclude that

lutx, y) = wo| < |f@ — wo| and |v(x.y) = vo| = [F(2) — w].

It now follows that Iu(x, ¥) —up| < € and |v(x, ) — vo| < €& whenever
0< [: - zo[ < & so that statement (7) is true.

Conversely, now let us assume that statement (7) is true. Then for each
€ > 0, there exists 8, > 0 and &, > 0 so that

| uCx, ) — uo| <~§—, whenever 0 < |z — zo| <8, and

| v(x, y) = ol <%, whenever 0 < |z — z| < 8.

“

Let d be chosen to be the minimum of the two values 8; and 8. Then we can use
the triangle inequality

|f@) — wo| = |ulx, y) — uo| + |v(x. ¥) — o]
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to conclude that
£ _

5 g, whenever ) < ]z — Zn’ < §.

/@) = wo| < % +

Hence the truth of statement (7) implies the truth of statement (6). and the proof of
the theorem is complete.

For example, lim (z2 — 27 + 1) = —1. To show this result, we let

=l

f=22 =22+ 1=x2 =32 —2x+ 1+ i2xy — 2y).
Computing the limits for ¥ and v, we obtain
Iim wx,y)=1—-1-2+1=-1 and
[EAR IS N
lim vix,y)=2-2=0.
(1=

So Theorem 2.1 implies that lim f(z) = —1.
=10

Limits of complex functions are formally the same as in the case of real func-
tions, and the sum, difference, product, and quotient of functions have limits given
by the sum, difference, product, and quotient of the respective limits. We state this
result as a theorem and leave the proof as an exercise.

Theorem 2.2 Lef lim f(z) = A and lim g(z) = B. Then

fentt T

® lim[f(x)xgx)] =AxB

I=In

(9 lim f(z)e(z) = AB.

(10)  lim f®

A
= = —B ., where B # 0.
sy 8\

Let u(x, y) be a real-valued function of the two real variables x and v. We say
that u is continuous at the point (xo. yy) if the following three conditions are satisfied:

(1 lim  u(x, v) exists.

o= (r.yn)
(12)  u(xg, vp) exists.

(13) lim  u(x, y) = ulxo, yo).

L= (xp.¥0)

Condition (13) actually contains conditions (11) and (12), since the existence of the
quantity on each side of the equation there is implicitly understood to exist. For
example, if u(x, y) = £3(x* + y?) when (x, y) # (0, 0) and if u(0, 0) = 0, then we
have already seen that u(x, ¥y) — 0 as (x, y) — (0, 0) so that conditions (11), (12),
and (13) are satisfied. Hence u(x, y) is continuous at (0, 0).
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Let f(z) be a complex function of the complex variable z that is defined for all
values of z in some neighborhood of z,. We say that f is continuous at z; if the
following three conditions are satisfied:

(14)  lim f(z) exists.

(15)  f(zo) exists.
(16) lim f(2) = f(z0).

i~
A complex function fis continuous if and only if its real and imaginary parts
u and v are continuous, and the proof of this fact is an immediate consequence of
Theorem 2.1. Continuity of complex functions is formally the same as in the case
of real functions, and the sum, difference, and product of continuous functions are
continuous; their quotient is continuous at points where the denominator is not zero.
These results are summarized by the following theorems, and the proofs are left as
exercises.

Theorem 2.3  Ler f(z) = u(x, y) + iv(x, v) be defined in some neighborhood
of zo. Then fis continuous at o = xo + ivy if and only if u and v are continuous
at (.X(), _)’()).

Theorem 2.4 Suppose that f and g are continuous at the point zo. Then the
following functions are continuous ar Z:

(17)  Their sum f(2) + g(2).

(18) Their difference f(2) — g(2).

(19)  Their product f(2)g(z).

(2)

(20)  Their quotient ( )provided that g(z,) #= 0.

-
&

(21) Their composition f(g(z)) provided that f(2) is continuous in a neighborhood
of the point g(zp).

EXAMPLE 2.13 Show that the polynomial function given by
w=Pz)=ay+ az+ st +ar
is continuous at each point z; in the complex plane.
Solution  Observe that if ay is the constant function, then lim. . ay = ag;
and if a, # 0, then we can use definition (5) with f(z) = «a,z and the choice

6= S/‘a, ] to prove that lim._,., @,z = a;zp. Then using property (9) and mathe-
matical induction, we obtain

-3

(22) limagt =@z fork=0,1.2,....n

I
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Property (8) can be extended to a finite sum of terms, and we can use the result of
equation (22) to obtain

(23) lim P(z) = lim (2 akz"> = > @ = P(z).
k=0

Lo Iy \k=0

Since conditions (14), (15), and (16) are satisfied, we can conclude that P is con-
tinuous at zg.

One technique for computing limits is the use of statement (20). Let P and Q
be polynomials. If Q(zp) # 0, then

lim P _ Po)
o Q(Z) Q(ZO) ’

Another technique involves factoring polynomials. If both P(zy) = O and

0(z0) 0, then P and Q can be factored as P(z) = (z — zp)P,(2) and
0@©@) = (z — z0001(2). If O1(zy) ¥ O, then the limit is given by
Py . (- z20)Pi(@D  Pil)
lim = lim

i Q) o @ — QD) Qizo)

=2
EXAMPLE 2.14 Show that lim ———— =1 - ..
-1+ — 22+ 2

Solution Here P and Q can be factored in the form
PD)=@—-—1-Dz+1+d and Q)= —-1-—0Dz—-1+1

so that the limit is obtained by the calculation

. 2?2 -2 @1 =DHz+ 1+
lim > A~ = lim . .
1420 — 22+ 2 FadRg] (Z -1- l)(Z’, -1+ l)
Lozt 1+ i
= lim ——=1 - 8

:—'l+iZ_1+i

EXERCISES FOR SECTION 2.4

o ) . N .
1. Find lim (22 — 4z + 2 + 5i). 2. Find lim —z]
244 i Z
-1 Z2Hz-2+1
3. Find lim —— . 4. Find lim —*—="!
i T — i 22— 27+ 1
Z2+z—-1-3i 2
5. Find lim “——— by factoring. 6. Show that lim — = 0.

e =224+ 2 o0 I



10.

I
12.
13.

16.

17.
18.

19.
20.
21,
22,

23.

24,

26.
29.

30.
32,
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State why lim (e'cos v -+ ix2y) = e%cos vy + ixgyo.
ot

State why lim [In{x? + y*) + iv] = In(x} + ¥}) + iv, provided that |z,| # 0.
R}

Show that lim — = 0.
=0 <

. z X — ¥+ iy
Letf(z) = S =TT T

{a) Find lim f(2) as z — 0 along the line v = x.
0

(b) Find lim f(z) as z -— 0 along the line y = 2x.
N

(c) Find lim f(z) as z — ( along the parabola y = a7,
0

(d) What can you conclude about the Iimit of f(z) as z — 07?

Let f(z) = Z/z. Show that f(z) does not have a limit as 7 — 0.

Does u(x. v) = (' — 3xv7)/(x" + v7) have a limit as (x. v) — (0, 0)?

Let f(z) = 212 = r1"?[cos(B/2) + i sin(0/2)], where r > 0 and —n << § < . Usec the
polar form of z and show that

(a) f(z) -> i as z - —1 along the upper semicircle r = 1,0 << 8 < @,

(b) f(z) > — ras z — —1 along the lower semicircle r = |, — 1 <0 <0,

. Does lim Arg 7 exist? Why? Hint: Use polar coordinates and let z approach — 4 from

i

the upper and lower half planes.

Determine where the following functions are continuous.
_ z+ 1 6245
(a) ' =97 + iz — 2 (h) = () ———
T+ =43+ 2
) P+ (©) x+ iy I~ x+ 0y
¢ 5 > L 5 e) s
=+ 22+ 2 x— | |z|—l

Let f(2) = [z Re(D))/
all values of .

Let f(z) = xe + iv?e *. Show that f(z) is continuous for all values of z.

Let f(z) == (x> + i)/ |z|* when z # 0. and let f£(0) = 1. Show that f(2) is not continuous
atz, = 0.

Let f(2) = Re(g)/|z| when ¢ # 0. and let f(() = 1. Is f(2) continuous at the origin?
Let f{z) = [Re()]Y/ :| when z # (. and let j(0) = 1. Is f(2) continuous at the origin?
Let f(z) = V° = r'"7[cos(8/2) + 1 sin(6/2)]. where r > 0 and —n < 6 < 7. Show that

when z # 0, and let f(0) = 0. Show that f(z) is continuous for

<

~

f(2) is discontinuous at each point along the negative x axis.

Let f(z) = In|z| + i Arg 2. where — < Arg z < 7. Show that f(2) is discontinuous at
2y = 0 and at each point along the negative x axis.
Let A and B be complex constants. Use Theorem 2.1 1o prove that
Iim (Az + B) = Az + B.
=
Let Az = z — z. Show that lim f{2) = wy if and only if im f(zy + Az) = wy.
I AT 0

=

. Let |g(:)| < M and lim f(z) = 0. Show that lim f(2)g(z) = 0.

Establish identity (8). 27. Establish identity (9). 28. Establish identity (10).
Let f(z) be continuous for all values of -

(a) Show that g{z) = f(Z) is continuous for all z.

(b) Show that i(z) = f(2) is continuous for all z.

Establish the results of (17) and (18). 31. Establish the result (19),
Establish the result (20). 33. Establish the result (21).
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2.5 Branches of Functions

In Section 2.3 we defined the principal square root function and investigated some
of its properties. We left some unanswered questions concerning the choices of
square roots. We now look into this problem because it is similar to situations
involving other elementary functions.

In our definition of a function in Section 2.1 we specified that each value of
the independent variable in the domain is mapped onto one and only one value of
the dependent variable. As a result, one often talks about a single-valued function,
which emphasizes the only one part of the definition and allows us to distinguish
such functions from multiple-valued functions, which we now introduce.

Let w = f(z) denote a function whose domain is the set D and whose range is
the set R. If w is a value in the range, then there is an associated inverse function
z = g(w) that assigns to each value w the value (or values) of - in D for which the
equation f(z) = w holds true. But unless f takes on the value w at most once in D,
then the inverse function g is necessarily many valued, and we say that g is a
multivalued function. For example, the inverse of the function w = f(z) = z° is the
square root function z = g(w) = w'’2. We see that for each value 7 other than
z = 0, the two points z and ~z are mapped onto the same point w = f(2); hence g
is in general a two-valued function.

The study of limits, continuity, and derivatives loses all meaning if an arbitrary
or ambiguous assignment of function values is made. For this reason we did not
allow multivalued functions to be considered when we defined these concepts. When
working with inverse functions, it is necessary to carefully specify one of the many
possible inverse values when constructing an inverse function. The idea is the same
as determining implicit functions in calculus. If the values of a function f are de-
termined by an equation that they satisfy rather than by an explicit formula, then
we say that the function is defined implicitly or that fis an implicit function. In the
theory of complex variables we study a similar concept.

Let w = f(z) be a multiple-valued function. A branch of fis any single-valued
function f; that is continuous in some domain and, at each point z in the domain,
assigns one of the values of f(z).

EXAMPLE 2.15 Letus consider some branches of the two-valued square root
function f(z) = z'/2. We definc the principal square root function as

0 0 -
(H A = rcos Y + irlZsin ? = pli2ei®/2
where we require that r > 0 and —n < 8 < m. The function f is a branch of . We
can find other branches of the square root function. For example, let

) 0+ 2n .. 9+ 2m )
(2) fz(:) = rl2cos f + ir'2gin f — rl/261(0+2n)/2!

where r > 0and —n < 0 < 7.
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. . + 2n 6 0+ 2n )
If we use the identities cos ——— = —cos — and sin = —sin —,
2 2 2 2
then we see that
. 0 .. O -
f(z) = —r'Fcos = — ir'sin 5 = —r2e®? = —f(2),

so fi and f> can be thought of us “‘plus’” and *'minus’’ square root functions.

The negative real axis is called a branch cut for the functions f; and f>. It is char-
acterized by the fact that each point on the branch cut is a point of discontinuity for
both functions f) and f>.

EXAMPLE 2.16 To show that the function f; is discontinuous along the neg-
ative real axis, let z; = rye*™ denote a negative real number. Now we compute the
limit of fi(z) as z approaches z, through the upper half plane {z: Im(z) > 0} and the
limit of f,(z) as z approaches z;, through the lower half plane {z: Im(z) << 0}. In polar
coordinates these limits are given by

. : 6 . .0 Y
lim  fi(re®™ = lim r"z(cos - tisino-f= iry* and
)

(r.m)—{r)n) (r.)>rgn < <
. v . 0 .0 "
lim  fi(re®) = lim 2| cos— + isin— | = —ir}".
()= — 1) (r8) 3.~ 70) 2 2

Since the two limits are distinct, the function f; is discontinuous at zi. Likewise, f>
is discontinuous at z,. The mappings w = fi(z) and w = f>(z) and the branch cut are
illustrated in Figure 2.15.

-1l

y
N

FIGURE 2.15 The branches f; and f> of fiz) = 2!/
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Other branches of the square root function can be constructed by specifying
that an argument of Z given by 8 = arg z is to lie in the interval o < 0 < a + 27w,

Then the branch f, is given by

0 .. 8
(3) [ = r'"cos -+ ir'*sin 5 wherer > 0and o < 6 < o0 + 2m.
The branch cut for £, is the ray » = 0, = o. which includes the origin. The point
z = 0, common to all branch cuts for the multivalued function, is called a branch
point. The mapping w = f,(2) and its branch cut are illustrated in Figure 2.16.

FIGURE 2.16 The branch £, of f(z) = 22

The Riemann Surface for w = zV2

A method for visualizing a multivalued function is provided by using a Riemann
surface. These representations were introduced by G. F. B Riemann (1826-1866) in
1851. The idea is ingenious, a geometric construction that permits surfaces to be
the domain or range of a multivalued function.

Consider w = f(z) = z'?, which has two values for any given z (cxcept, of
course, for z = 0). Each function fi(z) and f(z), given in Example 2.15 is single-
valued on the domain formed by cutting the z plane along the ncgative x axis. Let
D, and D, be the domain of fi(z) and fi(z), respectively. The range sct f,(z) is
the set H, consisting of right half plane H, plus the positive v axis, and the range
set f2(z) is the set H, consisting of left half plane H, plus the negative v axis. The
sets H, and H, are “glued together” along the poitive v axis and the negative
v axis to form the w plane with the origin deleted.

Stack D, to D, directly above each other. The edge of Dy in the upper half
plane is joined to the edge of D- in the lower half plane, and the edge of D in the
lower half plane is joined to the edge of D, in the upper half plane. When these
domains are ‘‘glued’” together in this manner they form R. which is a Riemann
surface domain for the mapping w = f(z)} = z'/2. The portion of D;, Dz, and R that
satisfy ’:| < ] are shown in Figure 2.17.
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(c) A portion of R and its image under w = z'/2.

FIGURE 2.17 Formation of the Riemann surface for w = z'/2.

EXERCISES FOR SECTION 2.5

1. Let fi(z) and f>(z) be the two branches of the square root function given by equations
(1) and (2), respectively. Use the polar coordinate formulas in Section 2.3 to
(a) Find the image of quadrant II, x < 0 and y > 0, under the mapping w = f\(2).
(b) Find the image of quadrant 11, x < 0 and y > 0, under the mapping w = f3(z).
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(c) Find the image of the right half plane Re(z) > 0 under the mapping w = f(2).
(d) Find the image of the right half plane Re(z) > 0 under the mapping w = f3(z).
Let o = 0 in equation (3), and find the range of the function w = f(z).
Let o = 27 in equation (3), and find the range of the function w = f(z).
Find a branch of the square root function that is continuous along the negative x axis.
Letfi(z) = r'*cos(8/3) + ir'”*sin(8/3). where r > 0 and —n < 0 < m denote the principal
cube root function.
(a) Show that £, is a branch of the multivalued cube root function f(z) = z!/3,
(b) What is the range of f?
(c) Where is f; continuous?
6. Let f2(z) = r'3cos[(8 + 2m)/3] + ir'sin[(8 + 27)/3]. where r > O and — 1 < 0 < 7.
(a) Show that f; is a branch of the multivalued cube root function f(z) = z'/%.
(b) What is the range of f?
(c) Where is f> continuous?
(d) What is the branch point associated with f7
7. Find a branch of the multivalued cube root function that is different from those in
Exercises 5 and 6. State the domain and range of the branch you find.
8. Let f(z) = z"” denote the multivalued nth root function, where n is a positive integer.
(a) Show that fis in general an n-valued function.
(b) Write down the principal nth root function.
(c) Write down a branch of the multivalued nth root function that is different from the
one in part (b).
9. Describe a Riemann surface for the domain of definition of the multivalued function
w = fl2) = 2"
10. Describe a Riemann surface for the domain of definition of the multivalued function
w =f(Z) - Z]/4~
11. Discuss how Riemann surfaces should be used for both the domain of definition and the
range to help describe the behavior of the multivalued function w = f(z2) = z%3.
12. Show that the principal branch of the argument Arg z is discontinuous at 0 and all points
along the negative real axis.

neww

2.6 The Reciprocal Transformation w= 1/z
(Prerequisite for Section 9.2)

The mapping w = 1/z is called the reciprocal transformation and maps the z plane
one-to-one and onto the w plane except for the point z = 0, which has no image,
and the point w = 0, which has no preimage or inverse image. Since zZ = |z 2, we
can express the reciprocal transformation as a composition:

,7'
4

The transformation Z = :/’: ,3 is called the inversion mapping with respect to the
unit circle |z| = 1. It has the property that a nonzero point z is mapped onto the
point Z such that

2 |Z]|z] =1 and argZ = argz

Hence it maps points inside the circle |z| = 1 onto points outside the circle
|Z| = 1, and conversely. Any point of unit modulus is mapped onto itself. The
inversion mapping is illustrated in Figure 2.18.



2.6 The Reciprocal Transformation w= 1/z 65
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FIGURE 2.18 The inversion mapping.

The geometric description of the reciprocal transformation is now evident
from the composition given in expression (1). It is an inversion followed by a re-
flection through the x axis. If we use the polar coordinate form

v 1 .
(3) w=pe? =-—e" wherez=re®,
r

then we see that the ray r > 0, 8 = o is mapped one-to-one and onto the ray
p > 0, ¢ = —o. Also, points that lie inside the circle |z| = | are mapped onto
points that lie outside the circle |w’ = 1, and vice versa. The situation is 1llustrated
in Figure 2.19.

FIGURE 2.19 The reciprocal transformation w = 1/z.

It is convenient to extend the system of complex numbers by joining to it an
“*ideal’” point denoted by oo and called the point at infinity. This new set is called
the extended complex plane. The point e has the property that
(4) limgz, = e ifandonly if lim |z,| = e,

Hoseo H—300
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EXAMPLE 2.17 Show that the image of the right half plane Re(z) > +, under
the mapping w = 1/z, is the disk |w — 1| < 1.

Solution  The inverse mapping z = 1/w can be written as

©) iy i u— iv
xtiy=z=—=———.
wooul 4y’

Equating the real and imaginary parts in equation (6), we obtain the equations
. i -V
(7 x=——— uand y=——.
u- + v u- + v

The requirement that x > + forces the image values to satisfy the inequality
) u S !

w2
It is easy to manipulate inequality (8) to obtain
9 w=-2u+1+v<1,

which is an inequality that determines the set of points in the w plane that lie inside
the circle with center wy = 1 and radius 1. Since the reciprocal transformation is
one-to-one, preimages of the points in the disk |w -1 | < 1 will lie in the right
half plane Re(z) > + . The mapping is shown in Figure 2.21.

8-

W o=

FIGURE 2.21 The image of Re(z) > 1/2 under the mapping w = 1/z.

EXAMPLE 2.18 Find the image of the portion of the right half plane
Re(z) > 4 that lies inside the circle [z — 4| < I under the transformation w = 1/z.
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Solution  Using the result of Example 2.17, we need only find the image
of the disk |z — 3| < ] and intersect it with the disk |w — 1| < 1. To start with,
we can express the disk |z — +| < I by the inequality

(10) x4+ ¥y —x <2,

We can use the identities (7) to show that the image values of points satisfying
inequality (10) must satisfy the inequality
" 3

1
11 — < —.
() W+ v out 4+ 4

Inequality (11) can now be manipulated to yield
G < (u+ 3P+

which is an inequality that determines the set of points in the w plane that lie exterior

to the circle |w + %| = % . Therefore, the image is the crescent-shaped region
illustrated in Figure 2.22.

FIGURE 2.22 The mapping w = 1/z that is discussed in Example 2.18.

To study images of ‘‘generalized circles,”” let us consider the equation
(12) AX*+y)+Bx+Cv+ D=0

where A, B, C, and D are real numbers. Then equation (12) represents either a circle
or a line, depending on whether A # 0 or A = 0, respectively. If we use polar
coordinates, then equation (12) has the form

(13) Ar+ r(Bcos® + Csin®) + D = 0.

Using the polar coordinate form of the reciprocal transformation given in equation
(3). we find that the image of the curve in equation (13) can be expressed by the
equation

(14) A+ p(Bcosd — Csind) + Dp? =0,
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which represents either a circle or a line, depending on whether D # 0 or D = 0,
respectively. Therefore, we have shown that the reciprocal transformation w = 1/z
carries the class of lines and circles onto itself.

EXAMPLE 2.19 Find the images of the vertical lines x = @ and the horizontal
lines y = b under the mapping w = 1/z.

Solution The image of the line x = 0 is the line u = 0; that is, the v axis
is mapped onto the v axis. Similarly, the x axis is mapped onto the u axis.

If a # 0, then using equations (7), we see that the vertical line x = a is mapped
onto the circle

u
u? + v?

(15)

It is easy to manipulate equation (15) to obtain

1 1 , 1y 1\’
s+ v=lu——) tvi=|—},
a 4a- 2a 2a

uw — —u +

which is the equation of a circle in the w plane with center w, = 1/(2a) and radius
| 1/(2a)| .
Similarly, the horizontal line y = b is mapped onto the circle

1 1 1 2 1 ’
2 432 —y  — =yt + r 4 — ==,

which has center wo = —i/(2b) and radius | 1/(25) |. The images of several lines are
shown in Figure 2.23.

FIGURE 2.23 The images of horizontal and vertical lines under the reciprocal
transformation.
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EXERCISES FOR SECTION 2.6

For Exercises 1-8. find the image of the given circle or line under the reciprocal
transformation w = 1/z.

1. The horizontal line Im(z) = < . 2. Thecircle |z + i/2| =7
3. The vertical line Re(z) = —3. 4. Thecircle [z + 2| = L.

5. The line 2x + 2y = 1. 6. The circle |z — 2| = 1.
7. Thecircle [z — 3| = L. 8. The circle [z + 1 ~i| = 2.
9, (a) Show that limm (1/2) = 0. (b) Show that h_r}[} (1/2) = eo.

10. Show that the reciprocal transformation w = 1/z maps the vertical strip 0 < x < 1 onto
the region in the right half plane Re(w) > O that lies outside the circle |w — 1| = 1.

11. Find the image of the disk |z + 2i/3| < %+ under the reciprocal transformation.

12. Show that the reciprocal transformation maps the disk |z — 1| < 2 onto the region that
lies exterior to the circle |w + %| = % .

13. Find the image of the half plane y > © — x under the mapping w = 1/z.

14. Show that the half plane y < x ~ -+ is mapped onto the disk [w—1-i] < /2 by the
reciprocal transformation.

15. Find the image of the quadrant x > 1. y > 1 under the mapping w = 1/z.

16. Show that the transformation w = 2/z maps the disk |z ~ i| < 1 onto the lower half
plane Im(w) < —1.

17. Show that the transformation w = (2 — z)/z = — 1 + 2/z maps the disk ]z -1 | < 1
onto the right half plane Re(w) > 0.

18. Show that the parabola 2x = 1 — y* is mapped onto the cardioid p = 1 + cos ¢ by the
reciprocal transformation.

19. Limits involving . The function f(z) is said to have the limit L as z approaches e, and
we write

limfGz) =L

if for every € > 0 there exists an R > 0 so that
|/} = L| <e, whenever |z] > R.
Use this definition to prove that

z+ 1
1 =1
:LTZ“I

20. Show that the complex number z = x + iy is mapped onto the point

x v 2+ y
A+ 2+ 4+ 12+ + ]

on the Riemann sphere.

21. Explain how are the guantities +oo, —oo, and e different? How are they similar?

22. Write a report on Mobius transformation. Include ideas and examples that are not men-
tioned in the text. Resources include bibliographical items 12, 23, 24, 30, 36, and 43.
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Analytic and Harmonic
Functions

3.1 Differentiable Functions

Let f be a complex function that is defined at all points in some neighborhood of z;.
The derivative of f at 7y is written f'(z;) and is defined by the equation

, . f2) = flzo0)
(1) f'(z) = lim L——f(—“—

Ty Z— 20

provided that the limit exists. When this happens, we say that the function f is
differentiable at zy. If we write Az = 7 — Zp, then definition (1) can be expressed in
the form

flzo + AZ) — flo)
Az ’

If we let w = f(z) and Aw = f(z) — f(z25), then the notation dw/dz for the derivative
is expressed by
dw Aw

= lim —.
dz azo0 AZ

(2) f'(zo) = lim
Az}

(3 fllzo) =

EXAMPLE 3.1 If f(z) = 7% show we can use definition (1) to get f'(z) = 322

Solution Calculation reveals that

3 3 3 3
: T At SR Gl /) A A 1Y)
f'(z0) = im =¥—= = lim —2—=——0 © =32

=iy T X0 aTp Z <p

The subscript on zp can be dropped to obtain the general formula f'(z) = 3z°.

We must pay careful attention to the complex value Az in equation (3). since
the value of the limit must be independent of the manner in which Az = (. If we
can find two curves that end at zp along which Aw/Az approaches distinct values,
then Aw/Az does not have a limit as Az — 0 and f does not have a derivative at 2.

7
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EXAMPLE 3.2 Show that the function w = f(z) = Z = x — iy is nowhere
differentiable.

Solution To show this, we choose two approaches to the point zy = xy +
iyq and compute limits of the difference quotients. First, we approach zo = xy + ivp
along a line parallel to the x axis by forcing z to be of the form z = x + iy,

im f2) = flzo) _ Sl + ivo) — flxo + ivo)

lix Iim - -
o <0 (e ivgoligr g (X F ivp) — (xo + ivo)

(x — ivo) — (xo — ivo)

= lim
(v ivg)=ag 1 ivg) («\' - X()) + I(\’(‘, - _V())
. X = X
= Iim
(ivpl=slyg 1y X 7 Xp

= 1.
Second, we approach z, along a line parallel to the y axis by forcing z to be of the
form z = xp + iv:
- f2) = flze) _ . Sl + iy) — flxo + ivo)
lim —————— = lim - -
- I (o it vy (Yo 1Y) — (xo + ivp)

(xo — i¥) — (%0 — iyo)

= lim -
(o ol g (Yo — Xo) + iy — Yo)
. —i(y — yo)
= lim —_—
Ly 1 iv)= (g Favg) I(}' - _V())

= -1

Since the limits along the two approaches are different, there is no computable limit
for the right side of equation (1). Therefore f(z) = 7 is not differentiable at the point
Z0- Since g was arbitrary, f(z) is nowhere differentiable.

Our definition of the derivative for complex functions is formally the same as
for real functions and is the natural extension from real variables to complex vari-
ables. The basic differentiation formulas follow identically as in the case of real
functions, and we obtain the same rules for differentiating powers, sums, products,
quotients, and compositions of functions. The proof of the differentiation formulas
are easily established by using the limit theorems.

Let C denote a complex constant. From definition (1) and the technique ex-
hibited in the solution to Example 3.1, the following are easily established, just as
they were in the real case:

d
(GY) - C = 0, where C is a constant, and
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d . L
(5) —2z"=nz*"!, where n is a positive integer.

7
29

Furthermore, the rules for finding derivatives of combinations of two differentiable
functions f and g are identical to those developed in calculus:

d
(6) 7 [Cf(] = Cf' (),

d 1 r
(7 e LD+ g =f+ g

d
® % [A(De)] = f(Dg() + f(D)g (),

d f0) _ f@e) — flag' @) ,
)] & 20 PO , provided that g(z) # 0,

d
(10) o fle(@) = (g2 (-

Important particular cases of (9) and (10), respectively, are

d 1 —-n . e
— = —, for z #* 0 and where # is a positive integer,

>
n n+1
dz 27z

(an

d
(12) 7 [f(D) = n[f(D]""'f'(z), where n is a positive integer.

EXAMPLE 3.3 If we use equation (12) with f(z) = z2 + 2z + 3and f'(z) =
2z + 2i, then we see that

d
T (2 + 2z 4+ 3) = 8(z2 + 22+ 3z + i),

Several proofs involving complex functions rely on properties of continuous
functions. The following result shows that a differentiable function is a continuous
function.

Theorem 3.1 Iffis differentiable at zy. then f is continuous at zy.

Proof Since fis differentiable at z,, from definition (1) we obtain
. (@) = fe)
lim ————— =
-y I

1 (o).
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Using the multiplicative property of limits given by formula (9) in Section 2.4, we
see that
: . @) — flzo)
lim (/) = fle = tim Z2=L@)
- I-430 < T
. f@ = flzo)
lim ﬁL—f—(Q Iim (z — zp)
=3 Z— 2 -0

fz)-0=0.

Hence lim f(z) = f(zp), and f is continuous at z.
a2

7= o)

I

I

]

Using Theorem 3.1, we are able to establish formula (8). Letting h(z) =
f(2)g(2) and using definition (1), we write
h(z) — h(z . 2g(2) — flzw)glz
W (z0) = lim ( 2 (o) - im fl2g( )~ _f( 0)8( o).

I3 T QA o0 < 20

If we add and subtract the term f(z0)g(z) in the numerator, we can regroup the last
term and obtain

. (08 — flzogm .. Azwe() — flzo)g(zo)
m + Iim

h(zo) =1 I
-0 7~ 2o = I — o
—1im LTS i o) 4 i) tim £ 8@
R ™ 20 R REEENY I~

Using definition (1) for derivative and the continuity of g. we obtain A'(z) =
S (z0)g(z0) + f(z0)g’ (zp). Hence formula (8) is established. The proofs of the other
formulas are left as exercises.

The rule for differentiating a polynomial can be extended to complex vari-
ables. Let P(z) be a polynomial of degree n:

(13) P(Z) = dy + a\l + az&z + -+ (1,7:".

Then mathematical induction can be used with formulas (5) and (7) to obtain the
derivative of (13):

(14) P@ =a; +2az+ 3a:% + - + na,2"

The proof is left as an exercise.

Properties of limits and derivatives can be used to establish L’ Hépital's rule,
which has the familiar form that is learned in calculus.

Assume f and g are differentiable at z;. If f(zg) = 0, g{zp) = 0, and g'(zp) # 0,
then

lim J@_ lim [@

-2 g(Z.) [N g'(Z) '

Finding limits of the form ‘*0/0”’ by L’H&pital’s rule is given in Exercise 7.
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EXERCISES FOR SECTION 3.1

1.

Find the derivatives of the following functions.
() fl)y=57—4z2+72-8
(b)y g(z) = (7 — iz + 9
27+ 1
z+ 2
(d) F(z) = (22 + (1 — 3z + Iuz* + 322 + 5i)
d -1
Use definition (1), and show that — - = —.
dzz z°
If fis differentiable for all z. then we say that f'is an entire function. If fand g are entire
functions, decide which of the following are entire functions.
(@) [f))? (b) f(z)g(z) () f(g(z)
(d) f(l/z) (e) flz— 1 (N flgzy
Use definition (1) to establish formula (5).

() hi(z) = forz # —2

. Let P be a polynomial of degree n given by P(z) = ay + «yz + - - - + a,z". Show that

P =u, + 22+ -+ na, 2",

. Let P be a polynomial of degree 2, given by

P(2) =z — 2)z — ),
where z; and z» are distinct, Show that

P'(2) 1 1
+

Piz) z—21 z—z2

7. Use L'Hopital’s rule to find the following limits.
i d -1 o d-iz— 11—
(a) :l-lj? L1 ) :,-lxrlr?v Z: -2+ 2
o+ ] 44
(") liln/ :: + 1 (d) :ETI Zz - 27+ 2
© i ® — 64 " . - 512
. R
© :Hll.lflvﬁ 3+ 8 () ;H_llTxﬁ -8
8. Let f be differentiable at z,. Show that there exists a function n(z). such that
fl2) = flzp) + @)z — 20) + Nz — zp), where (2) = 0 as z — z,.
d . e
9. Show that d— 77" = —nz "' where n is a positive integer.
z
10. Establish the identity
d , . , X .
e F(Deh(2) = F(2g(Dh(2) + flDg" (Dh(2) + flDgh'(2).

11. Show that the function f(z) = |z 2 is differentiable only at the point z, = 0. Hint: To
show that fis not differentiable at z, # 0, choose horizontal and vertical lines through
the point zy, and show that Aw/Az approaches two distinct values as Az — 0 along those
two lines.

12. Establish identity (4). 13. Establish identity (7).

14. Establish identity (9). 15. Establish identity {10).
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16. Establish identity (12).
17. Consider the differentiable function f(z) = z* and the two points z; = | and z> = 1.
Show that there docs not exist a point ¢ on the line y = 1 — x between | and 7 such that

f(z2) — flzp)

-
<2 <l

= (o).

This shows that the mean value theorem for derivatives does not extend to complex
functions.

18. Let f(z) = 7" denote the multivalued "*nth root function,”” where n is a positive integer.
Use the chain rule to show that if g(z) is any branch of the nth root function. then

g(2)

X | =

g =—-=
in some suitably chosen domain (which you should specify).

19. Write a report on Rolle’s theorem for complex functions. Resources include bibliograph-
ical items 64 and 127.

3.2 The Cauchy-Riemann Equations

Let f(z) = u(x, ) + iv(x, ) be a complex function that is differentiable at the point
zo- Then it is natural to seek a formula for computing f'(z) in terms of the partial
derivatives of u(x, v) and v(x, y). If we investigate this idea, then it is easy to find
the required formula; but we will find that there are special conditions that must be
satisfied before it can be used. In addition, we will discover two important equations
relating the partial derivatives of u and v, which were discovered independently by
the French mathematician A. L. Cauchy* and the German mathematician G. F. B.
Riemann.

First, let us reconsider the derivative of f(z) = z?. The limit given in formula
(1) of Section 3.1 must not depend on how z approaches z,. We investigate two such
approaches, a horizontal and a vertical approach to z;. Recall from our graphics
analysis of w = 22 that the image of a square is a ‘‘curvilinear quadrilateral.”” For
convenience, let the square have verticeszp =2 +i,z; =201 + i,z =2 + 1.0l4,
and z; = 2.01 + 1.01i. Then the image points are wy = 3 + 4i, wy; = 3.0401 +
4.02i, w, = 2.9799 + 4.04i, and w3 = 3.02 + 4.0602i, as shown in Figure 3.1.

*A. L. Cauchy (1789-1857) played a prominent role in the development of complex analysis. and
you will see his name several times throughout this text. The last name is nof pronounced as
“*kaushee.”” The beginning syllable has a long ‘0’ sound, like the word kosher, but with the second
syllable having a long ‘‘e’" instead of “‘er’" at the end. Thus, we pronounce Cauchy as *'kOshe.””
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FIGURE 3.1 The image of a small square with vertex zo = 2 + 7 using w = z°.

Approximations for f'(2 + {) are made using horizontal or vertical increments

in Z:
o JQOLE D —fR+ ) 0.0401 + 0.02 ,
"2 + = = = 4. +
T =t h-@+0 0.01 O+
and
Q2+ 1.01) = f2 + i) —0.0201 + 0.04
Fe+ =L hojerh, =4+ 201

C+10ID -2+ D 0.01i

These computations lead to the idea of taking limits along the horizontal and vertical
directions, and the results are, respectively,

fQH+h+H—f2+0 . 4h + B2 + i2h
= nm

@2+ i) = lim =4+2i
W0 h B 0
and
240+ i) — Qi ~2h — I + idh
Fo+ =ittt —jern ko R BR_
B0 ih =0 ih

We now generalize this idea by taking limits of an arbitrary complex function
and obtain an important result.

Theorem 3.2 (Cauchy-Riemann Equations) Ler f(2) = f(x + iy) =
u(x, y) + iv(x, y) be differentiable at the point zy = xp + ivy. Then the partial
derivatives of u and v exist at the point (xo. yo) and satisfy the equations

(1) wxo, yo) = vilxo, o) and  ulxy, yo) = —v,(xo, ¥o)-
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Proof We shall choose horizontal and vertical lines that pass through the point
{x0. yo) and compute the limiting values of Aw/Az along these lines. Equating the
two resulting limits will result in equations (1). For the horizontal approach to z;
we set 7 = x + iy, and obtain

Slx + ivo) — flxo + iyo)

= lim : ;
gty X Yo = (¥ + ivp)
- km ulx, vo) — ulxg, yo) + ilvlx, ¥o) — vixg, yoll
R X — Xp
oulx, vo) = ulxo, Yo) . (X, yo) — V{Xo. Yo)
= lim + 7 lim .
Yoy X — Xy Ny X — Xy

We see that the last limits are the partial derivatives of u and v with respect to x,
and we obtain

(2 f(z) = udxo. vo) + ivilxo, Yo)

Along the vertical approach to z;, we have 2 = x, + iy. Calculation reveals that
. flxo + v} — flxy + ivo)
lim - -

(g -lgay X0 + 1y — (,’Cn + l}'())

lim u(xp, ¥) — u(xp, yo) + ilv(xo, y) — v{xo, yo)l

YoV I(‘ - .V())

v(xo, ¥) — vixo, Yo)

f ' (zn)

. .. uxp, ¥) — ulxp. yo)
Itm i lim .

A ¥ — Yo Y—ry Y =

I

We see that the last limits are the partial derivatives of u and v with respect to v,
and we obtain

(3)  f'(z0) = vilxo, ¥o) — iuxp, yo).

Since fis differentiable at z;, the limits given by equations (2) and (3) must be equal.
If we equate the real and imaginary parts in equations (2) and (3), then the result is
equations (1), and the proof is complete.

At this stage we may be tempted to use equation (2) or (3) to compute f'(z,).
We now investigate when such a procedure is valid.

EXAMPLE 3.4 The function f(z) = 2* = x* — 3xy? + i(3x%y — ) is known
to be differentiable. Verify that its derivative satisfies equation (2).

Solution  We can rewrite the function in the form

J = ulx, v) + ivix, ) = X — 307 + iGxy — ¥,
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from which it follows that

@ = ux ¥) + iv(x y) = 302 — 3y + i6xy = 3(x? — v2 4 2xy) = 32

EXAMPLE 3.5 The function defined by

@) = @7 _ 2 - 3wy = 3y

: [
z x4y X+ ¥

when £ # 0 and f(0) = O is not differentiable at the point zy = 0. However, the
Cauchy-Riemann equations (1) hold true at (0, 0). To verify this, we must use limits
to calculate the partial derivatives at (0, 0). Indeed.
v -0
ulx, 0y — u(0, 0) ¥+ 0

1 (0, 0 = lim = lim*- = ].
=0 x—0 v 0 X

In a similar fashion, one can show that
u, (0,0 =0, vd(0,0) =0, and v.(0, 0) = 1.

Hence the Cauchy-Riemann equations hold at the point (0, 0).
We now show that fis not differentiable at z;, = 0. If we let z approach 0 along
the x axis, then

lim fx+ 0) =~ A0 _ lim

ooy x+0i—-0 =nx — 0

x—0
= 1.

But if we let  approach 0 along the line ¥y = x given by the parametric equations
x=rtandy =t then

. S+ iy — f(0) .
lim —————— = Ilim -
un—wo t+it—0 (-0 t+ it

—t— it
— = —1.

Since the two limits are distinct, we conclude that fis not differentiable at the origin.

Example 3.5 shows that the mere satisfaction of the Cauchy-Riemann equa-
tions is not a sufficient criterion to guarantee the differentiability of a function. The
next theorem gives us sufficient conditions under which we can use equations (2)
and/or (3) to compute the derivative f'(zp). They are referred to as the Cauchy-
Riemann conditions for differentiability.

Theorem 3.3 (Sufficient Conditions) Letf(z) = ulx, y) + iv(x, y) be a
continuous function that is defined in some neighborhood of the point 7 =
xo + ivo. If all the partial derivatives u., u,, v, and v, are continuous at the
point {xy, yy) and if the Cauchy-Riemann equations u.(xy, yp) =
vixo, yo) and u.(xo, yo) = —vixo. yo) hold, then f is differentiable at z,
and the derivative f'(zy) can be computed with either formula (2) or (3).
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Proof LetAz = Ax + iAy and Aw = Au + iAv, and let Az be chosen small
enough that z lies in the e-neighborhood of 7y in which the hypotheses hold true.
We will show that Aw/Az approaches the limit given in equation (2) as Az approaches
zero. The difference Au can be written as

Au = u(xy + Ax, yo + Ay) — ulxp, vo).
If we add and subtract the term wu(xy, yo + Ay), then the result is

4)  Au = [u{xyg + Ax, yo + Ay) — ulxo, yo + Ay)]
+ [ulxo, yo + Ay) — ulxo, yo)l.

Since the partial derivatives w, and u, exist, the mean value theorem for real func-
tions of two variables implies that a value x* exists between x¢ and xp + Ax such
that the first term in brackets on the right side of equation (4) can be written as

(5)  ulxo + Ax, yo + Ay) — ulxo, yo + Ay) = ux*, yo + Ay)Ax.

Furthermore, since u, and u, are continuous at (xo, yp), there exists a quantity €,
such that

(6) udx*, yo + Ay) = udxo, yo) + €,

where €, — 0 as x* — xp and Ay — 0. Since Ax — 0 forces x* — x;, we can use
the equation

(7 wlxo + Ax, 30 + Ay) — ulxo. yo + Ay) = [udxo, ¥o) + €1]Ax,

where €, — 0 as Ax — 0 and Ay — 0. Similarly, there exists a quantity g, such that
the second term in brackets on the right side of equation (4) satisfies the equation

(8)  ulxo, yo + Ay) — ulxo, yo) = [u,(xp, yo) + €2]Ay,

where €; — 0 as Ax = 0 and Ay — 0.
Combining equations (7) and (8), we obtain

(9 Au= (u, + &)Ax + (u, + £2)Ay,

where the partial derivatives u, and u, are evaluated at the point (xp, yo) and €, and
€> tend to zero as Ax and Ay both tend to zero. Similarly, the change Av is related
to the changes Ax and Ay by the equation

(10) Av = (v + e3)Ax + (v, + €4)Ay

where the partial derivatives v, and v, are evaluated at the point (xo, yo) and €; and
£, tend to zero as Ax and Ay both tend to zero. Combining equations (9) and (10),
we have

(1)  Aw = uAx + u Ay + i(v.Ax + v,Ay) + £,Ax + €24y + i(e38x + £44y).
The Cauchy-Riemann equations can be used in equation (11) to obtain

Aw = uAx — vAY + i(v,Ax + nAy) + £, Ax + £Ay + i(e:Ax + €4AY).
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Now the terms can be rearranged to yield
(12)  Aw = u[Ax + (Ay]) + iv [Ax + iAy] + €/Ax + €Ay + i(e:Ax + €,Ay).

Since Az = Ax + iAy, we can divide both sides of equation (12) by Az and take the
limit as Az — O:

, Aw . . €1Ax SZA'V B AX R EqA}’
(13) lm—=u, + iv, + lim + + i + i .
Az Az Az Az

a—0 Az 210
Using the property of £, mentioned in equation (6), we have

. S]AX A,\’
lim -

A=)

= lim |g | < lim|g| = 0.
Ai—=0 A0

Similarly, the limits of the other quantities in equation (13) involving &, €3, &4 are
zero. Therefore the limit in equation (13) becomes
Aw

lim — = f(z0) = wudxo, vo) + ivixo, ¥o),
ar—-0 AZ

and the proof of the theorem is complete.

EXAMPLE 3.6 The function f(z) = e~cos x + je~'sin x is differentiable for
all z, and its derivative is f'(z) = —e'sinx + ie 'cos x. To show this, we first write
u(x, v) = ¢ “cos x and v(x, y) = e ’sin x and compute the partial derivatives:

u(x, y) = v(x,y) = —e'sinx and
vdx, v) = —u(x, ¥y) = e ‘cos x.

We see that i, v, u,, u,, v, and v, are all continuous functions and that the Cauchy-
Riemann equations hold for all values of (x, y). Hence, using equation (2), we write

F(2) = udx, v) + ivix, y) = —e 'sinx + ie”'cos x.

The Cauchy-Riemann conditions are particularly useful in determining the set
of points for which a function f is differentiable.

EXAMPLE 3.7 The function f(z) = x* + 3xv2 + i(¥* 4+ 3x2y) is differentiable
only at points that lie on the coordinate axes.

Solution  To show this, we write u(x, ¥) = x* + 3xy? and v(x, y) = y*> +
3x2y and compute the partial derivatives:

u(x, ¥) = 352 + 3y, v{x, ¥) = 3x° + 3v2,
u(x, y) = 6xy, vdx, y) = 6xv.
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Here u, v, u,, u,, v, and v, are all continuous, and u(x, y) = v,(x, ¥) holds for all
(x, ¥). But u.(x, v) = —v{x, y) if and only if 6xv = —6xv, which is equivalent to
12xy = 0. Therefore the Cauchy-Riemann equations hold only when x = 0 or
v = 0, and according to Theorem 3.3, f is differentiable only at points that lie on
the coordinate axes.

When polar coordinates (r, 9) are used to locate points in the plane, it is
convenient to use expression (5) of Section 2.1 for a complex function; that is,

f(2) = fre'®) = ulr, 8) + iv(r, 8).

In this case, # and v are real functions of the real variables r and 8. The polar form
of the Cauchy-Riemann equations and a formula for finding f'(z) in terms of the
partial derivatives of u(r, 0) and v(r, 0) are given in the following result which is
proved in Exercise 13.

Theorem 3.4 (Polar Form) Lez f(z) = u(r, 6) + iv(r, 0) be a continuous
Sfunction that is defined in some neighborhood of the point 7y = rye™. If all
the partial derivatives u,, u,, v,, and v, are continuous at the point (rs, 8y) and
if the Cauchyv-Riemann equations

: 1 —1
(14)  ulry, Bp) = - v(ro, 8v) and  vi(ro. By) = o uy(ro, o)
0 0

hold, then f is differentiable at 2, and the derivative f'(zy) can be computed
by either of the following formulas:

(15)  f(z0) = e~ ™ludrg, 80) + iviro, 8p)] or

1 .
(16)  f'(z0) = — e ™0[vy(rn, Bp) — iug(rp, 80)].

o

EXAMPLE 3.8 Show thatif fis given by

) 0 b
f2) = 2 = rV2cos — + irtfZsin —,
2 2
where the domain is restricted to be » > 0 and —xm < 0 < 7, then the derivative is
given by

1
f@ =505 =

1
217 2

r‘”zcm9 — i=—r-12sin =
2 Ty

where r > 0 and —n < 0 < m.

Solution To show this, we write

] ]
u(r. 0) = r'2cos 5 and Wr9) = r'2sin -

<
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Here,
1 1 0
ulr,0) = —vy,(r,0) = ~r "2cos - and
r 2 2

vdr, 0) = ! uy(r, 0) = lr‘”zsin -
’ r ' 2 2

Using these results in equation (15), we obtain

(1 e 1 0
"(z0) = e | = -2 — 4+ = r-124ipn ~
(o) =e (2r cos o + iz r 51112>

1 1 1
—io| = 2gi2 | = Z p=12p—i02 =
e (2 r-1e ST 27

EXERCISES FOR SECTION 3.2

1. Use the Cauchy-Riemann conditions to show that the following functions are differ-
entiable for all z, and find f'(2).
(@) flz) =iz + 4i (b) flz) = 7°
(©) f&) = =20y + x) + i(x* — 2y — y)

2. Let f(z) = e‘cos y + ie'sin y. Show that both f(z) and f”(z) are differentiable for all z.

3. Find the constants g and b such that f(z) = (2x — y) + i(ax + by) is differentiable for
all z.

4. Show that f(z) = (y + ix)/(x*> + y?) is differentiable for all z #= 0.

5. Show that f(z) = e***[cos(y? — x7) + i sin(y»* — x7)] is differentiable for all z.

6. Use the Cauchy-Riemann conditions to show that the following functions are nowhere
differentiable.
(a) f) =2 (by gz =z+z2
(¢) h(z) = e'cos x + ie¥sin x

7. Letf(z) = |z*. Show that f is differentiable at the point z, = 0 but is not differentiable
at any other point.

8. Show that the function f(z) = x*> + ¥? + i2xy has a derivative only at points that lie on
the x axis.

9. Let fbe a differentiable function. Establish the identity | f'(2) [ = u} + 7 = ul + v2.

10. Let f(z) = (In ) — 82 + i20 In r where r > 0 and —% < B < m. Show that fis
differentiable for r > 0, —m < 8 < m, and find f'(z).

11. Let f be differentiable at z, = ree®. Let z approach z, along the ray r > 0, 8 = 8, and
use definition (1) of Section 3.1 to show that equation (15) of Section 3.2 holds.

12. A vector field F(z) = U(x, y) + iV(x, y) is said to be irrotational if U(x, y) = V.(x, ).
It is said to be solenvidal if U (x, y) = —V,{x, y). If f(2) is an analytic function, show
that F(z) = f(z) is both irrotational and solenoidal.

13. The polar form of the Cauchy-Riemann equations.

(a) Use the coordinate transformation

x=rcos® and v=rsinb
and the chain rules

ax dy ax y
U, =u,—+u,— and u, = u,— + u, -
ar T or 06 "~ 00
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to prove that

u,=ucos 0 + usin® and u, = —ursin@ + u,rcos  and
v, =vweos O + vsin® and v, = —vussin 8 + vyrcos 8.

(b) Use the results of part (a) to prove that
ru, =v, and rv, = —u,

14. Explain how the limit definition for derivative in complex analysis and the limit defi-
nition for the derivative in calculus are different. How are they similar?

15. Write a report on Cauchy-Riemann equations and the other conditions that guarantee
that f(z) is analytic. Resources include bibliographical items 21. 39, 62, 72. 86, 155,
and 161.

3.3 Analytic Functions and Harmonic Functions

It is seldom of interest to study functions that are differentiable at only a single
point. Complex functions that have a derivative at all points in a neighborhood of
2o deserve further study. In Chapter 7 we will learn that if the complex function f
can be represented by a Taylor series at zo, then it must be differentiable in some
neighborhood of z5. The function f is said to be analytic at zy if its derivative exists
at each point z in some neighborhood of z;,. If fis analytic at each point in the region
R, then we say that f is analytic on R. If f is analytic on the whole complex plane,
then f is said to be entire.

Points of nonanalyticity are called singular points. They are important for
certain applications in physics and engineering.

EXAMPLE 3.9 The function f(z) = x2 + y? + i2xy is nowhere analytic.

Solution  We identify the functions u(x, y) = x2 + y? and v(x, y) = 2xy.
The equation u, = v, becomes 2x = 2x, which holds everywhere. But the equation
uy, = —v, becomes 2y = —2y, which holds only when y = 0. Thus f(x) is differ-
entiable only at points that lie on the x axis. However, for any point z; = xo + 0/
on the x axis and any d-neighborhood of zg, the point z; = xp + id/2 is a point where
fis not differentiable. Therefore f is not differentiable in any full neighborhood of
Zo, and consequently 1t is not analytic at z.

We have seen that polynomial functions have derivatives at all points in the
complex plane; hence polynomials are entire functions. The function f(z) =
e*cos y + ie*sin y has a derivative at all points z, and it is an entire function.

The results in Section 3.2 show that an analytic function must be continuous
and must satisfy the Cauchy-Riemann equations. Conversely, if the Cauchy-
Riemann conditions hold at all points in a neighborhood of z,, then f is analytic at
2o. Using properties of derivatives, we see that the sum, difference, and product of
two analytic functions are analytic functions. Similarly, the quotient of two analytic
functions is analytic, provided that the function in the denominator is not zero. The
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chain rule can be used to show that the composition g( f(z)) of two analytic functions
S and g is analytic. provided that g is unalytic in a domain that contains the range
of f.

The function f(z) = 1/z is analytic for all z # 0; and if P(g) and Q(z) are
polynomials, then their quotient P(z)/((z) is analytic at all points where Q(z) # 0.
The square root function is more complicated. If

IA

. B .. B
(h Ao =7 =r""cos >+ ir'sing . wherer >0 and -m <9

“ =

T,

then fis analytic at all points except zy = 0 and except at points that lie along the
negative x axis. The function f(2) = 7'% defined by equation (1) is not continuous
at points that lie along the negative x axis, and for this reason it is not analytic there.

Let ¢(x, ) be a real-valued function of the two real variables x and v. The
partial differential equation

2y dv. v+ oy =0

is known as Laplace’s equation and is sometimes referred to as the potential equa-
tion. If ¢, .. ¢.. ¢... 0,,, &.,, and ¢,, are all continuous and if ¢(x, ¥) satisfies
Laplace™s equation, then ¢(x, y) is called a harmonic function. Harmonic functions
are important in the areas of applied mathematics, engineering, and mathematical
physics. They are used to solve problems involving steady state temperatures, two-
dimensional electrostatics. and ideal fluid flow. An important result for our studies
is the fact that if f(2) = w(x, ¥) + iv(x, ¥) is an analytic function, then both « and »
arc harmonic functions. In Chapter 10 we will see how complex variable techniques
can be used 1o solve some problems involving harmonic functions.

Theorem 3.5 Ler fiz) = wuix, v) + iv(x, v) be an analviic function in the
domain D. If all second-order partial derivatives of w and v are continuous,
then both u and v are harmonic functions in D.
Proof Since fis analytic. # and v satisfy the Cauchy-Riemann equations
(3) u,=vrv, and u, = —v,.
If we differentiate both sides of equations (3) with respect to x. we obtain
) u,=nrv,, and u,, = —v,,.

Similarly, if we differentiate both sides of equations (3) with respect to v, then we
obtiin

(5) wu,=v, and u, = —v..

Since the partial derivatives it,,, . V.. and v, are all continuous, a theorem from
the calculus of real functions states that the mixed partial derivatives are equal: that
is.

6) wu,=u,, and v, = v
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If we use equations (4), (5), and (6), then it follows that ur,, + u,, = v, — v, = 0,
and v, + v, = —u, + u,, = 0. Therefore both v and v are harmonic functions.

Remark for Theorem 3.5 Corollary 6.2 in Chapter 6 will show that if f(2) is
analytic, then all the partial derivatives of w and v are continuous. Hence Theorem
3.5 holds for all unalytic functions.

On the other hand, if we are given a function u(x. y) that is harmonic in the
domain D and if we can find another harmonic function v(x, ¥), where their first
partial derivatives satisty the Cauchy-Riemann equations throughout D, then we say
that v(x, v) is the harmonic conjugate of u(x, v). It then follows that the function
f2) = wlx, ¥) + iv(x, y) is analytic in D.

EXAMPLE 3.10 1fu(x. ») = 22 — v2 then un(x, v) + olx.y) =2 —2=0;
hence 1 is a harmonic function. We find that v(x. v) = 2xy is also a harmonic function
and that

uy=v.=2x and u, = —v,= -2y
Therefore v is the harmonic conjugate of «, and the function f given by
fQy=x =y + iy =3

is an analytic function.

Harmonic functions are easily constructed from known analytic functions.

EXAMPLE 3.11 The function f(z) = 2% = x* — 3xy + i(3x%y — ¥*) is analytic
for all values of Z, hence it follows that

u(x, v) = Re[ D)} = &% — 3"
is harmonic. and
vix y) = Im[f(D)] = 33y — 3}

is the harmonic conjugate of u(x, v). Their graphs are given in Figures 3.2 and 3.3.
The partial derivatives are u(x. v) = 3x> — 3y, u(x, ¥) = —6xv, v(x, v) = 6bxv,
and v(x, ¥) = 3x — 3y’ and are easily shown to satisfy the Cauchy-Riemann
equations. At the point (x, v) = (2, — 1), we have «,(2, —1) = v(2, = 1) = 9, and
these partial derivatives can be seen along the edges of the surfaces for u and v
where x = 2 and y = — 1. Similarly, «. (2. —1) = 12 and v (2, —1) = —12 can also
be seen along the edges of the surfuces for w and v where x = 2 and y = —1.
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Since u is harmonic, all terms except those involving x in equation (8) will
cancel, and a formula for C’(x) involving x alone will be revealed. Now elementary
integration of the single-variable function C’(x) can be used to discover C(x).

This technique is a practical method for constructing v(x, y). Notice that both
u.(x, ¥) and u,(x, y) are used in the process.

EXAMPLE 3.12 Show that u(x, y) = xy* — x3y is a harmonic function and
find the conjugate harmonic function v(x, y).

Solution The first partial derivatives are
9 wlx,yy =y — 3x% and wu(x,¥) = 3 — &
To verify that u is harmonic, we use the second partial derivatives and see that
ulx, ¥) + u,(x, y) = —6xy + 6xy = 0, which implies that u is harmonic. To
construct v(x, ¥), we start with equation (7) and the first of equations (9) to get

(10) v(x,y) = J-(y3 = 3xtvdy + C(x) = +y4 — 253 + Cl).

Differentiate the left and right sides of equation (10) with respect to x and use
—u,(x, ¥) = v.{x, ¥) and equations (9) on the left side to get

(1) =3x? + 13 =0 - 3xy? + C'¥).
Cancel the terms involving both x and y in equation (11) and discover that
(12) C'x) = x%

Integrate equation (12) and get C(x) = +x* + C, where C is a constant. Hence the
harmonic conjugate of u is

v,y =+xt = 3xyr+ Lyt 4+ C

EXAMPLE 3.13 Let fbe an analytic function in the domain D. If lf@| =k
where K is a constant, then f is constant in D.

Solution  Suppose that K = 0. Then | f(z)|> = 0, and hence u?> + v = 0.
It follows that both ¥ = 0 and v = 0, and therefore f(z) = 0 in D.

Now suppose that K # 0; then we can differentiate the equation u®> + v> =
K? partially with respect to x and then with respect to y to obtain the system of
equations

(13)  2uu, + 2vw, =0 and 2uu, + 2vv, = 0.
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The Cauchy-Riemann equations can be used in equations (13) to express the system
n the form

(14)  wuu, —vu, =0 and vu, + wu, = 0.

Treating u and v as coefficients, we easily solve equations (14) for the unknowns
u, and u,:

'0 _‘),
0 u 0
U, = = — =0 and
u vl w4
¥ u
u 0
v 0O 0
U, = — = = s = 0
u —-v u: + v°
v u

A theorem from the calculus of real functions states that the conditions 4, = 0 and
u, = 0 together imply that u(x, y) = ¢, where ¢, is a constant. Similarly, we find
that v(x, y) = ¢3, and therefore f(z) = ¢; + ica.

Harmonic functions are solutions to many physical problems, Applications
include two-dimensional models of heat flow, electrostatics, and fluid flow. For
example, let us see how harmonic functions are used to study fluid flows. We must
assume that an incompressible and frictionless fluid flows over the complex plane
and that all cross sections in planes parallel to the complex plane are the same.
Situations such as this occur when fluid is flowing in a deep channel, The velocity
vector at the point (x, y) is

(15) Vi, y) = plx, y) + iglx, ¥)

and is illustrated in Figure 3.4.

i
;__.7‘7’?)*“—)_—7‘—)
4 > .
>/7'/’ e e —
-
- —
»&

—_— - = —— —
T e
_*—"*-?II*‘ Ll <

S
—)—)-)—?l —

FIGURE 3.4 The vector field V(x, ¥) = p(x, y) + ig(x, y), which can be
considered as a fluid flow.
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The assumptions that the flow is irrotational and has no sources or sinks im-
plies that both the curl and divergence vanish, thatis, g, — p, = Oand p, + g, = 0.
Hence p and g obey the equations

(16) pudx,y) = —qux,y) and pyx, y) = g.(x, y).

Equations (16) are similar to the Cauchy-Riemann equations and permit us to define
a special complex function:

(7)) f@) = ulx, y) + ivx, y) = p(x, y) — ig(x, ¥).

Here we have u, = p,, u, = p,, v. = —g,, and v, = —g,. Now equations (16) can
be used to obtain the Cauchy-Riemann equations for f(z):

(18)  u,(x, y) = pdx, y) = ~q,(x, ¥) = v{x, y),
udx, y) = plx, y) = qx, y) = —vix y).

Therefore the function f(z) defined in equation (17) is analytic, and the fluid flow,
equation (15), is the conjugate of an analytic function, that is,

(19 V(x, vy = f).

In Chapter 6 we will prove that every analytic function f(z) has an analytic
antiderivative F(z); hence we are justified to write

(200 F(@) = ¢(x, y) + ib(x, y), where F'(2) = f(2).

Observe that ¢(x, v) is a harmonic function. If we use the vector interpretation of a
complex number, then the gradient of ¢(x, y) can be written as follows:

(21 grad ¢(x, ¥) = O.(x, y) + i¢,(x, y).

The Cauchy-Riemann equations applied to F(z) give us ¢, = —i,, and equa-
tion (21) becomes

(22)  grad O(x, ») = 0.0, ¥) — W lx, ¥) = 0Ax, ) + il x, ¥).

Theorem 3.2 says that ¢ (x, y) + i {x, ¥) = F'(z), which can be substituted in
equation (22) to obtain

(23)  grad ¢(x, y) = F'(2).
Now use F'(z) = f(z) in equation (23) to conclude that ¢(x, y) is the scalar potential
function for the fluid flow in equation (19), that is,

(24)  V(x, y) = grad ¢(x, y).

The curves ¢(x, y) = constant are called equipotentials. The curves Y(x, y) =
constant are called streamlines and describe paths of fluid flow. In Chapter 10 we
will see that the family of equipotentials is orthogonal to the family of streamlines
(see Figure 3.5).
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Strcamline

FIGURE 3.5 The families of orthogonal curves {6(x, y) = constant} and
{d(x. ¥} = constant} for the function F(z7) = ¢(x, ¥) + ib(x, v).

EXAMPLE 3.14 Show that the harmonic function ¢(x, y) = x> — y? is the
scalar potential function for the fluid flow

Vix, y) = 2x ~ i2y.

Solution The fluid flow can be written as

Vi, y) = f(0) = 2x + 2y = 2z
The antiderivative of f(z) = 2z is F(z) = 2%, and the real part of F(z) is the desired
harmonic function:

O(x. ¥) = RelF(2)] = Re[x* — y* + 2xy] = x* — %

Observe that the hyperbolas ¢(x, ¥) = x* — y?> = C are the equipotential curves, and
the hyperbolas ¥(x, v} = 2xy = C are the streamline curves; these curves are or-
thogonal, as is shown in Figure 3.6.
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I
2

FIGURE 3.6 The equipotential curves x* — v’ = C and streamline curves
2xy = ( for the function F(z) = ¢~

EXERCISES FOR SECTION 3.3

1.

b

10.

11.

12.

Show that the following functions are entire.

(a) flz) = coshasiny —isinhxcosv (b) g(z) = coshxcosy + /sinhxsiny
State why the composition of two entire {unctions is an entire function.

Determine where f(z) = x* + 3xy? + (v’ + 3x°v) is differentiable. [s fanalytic? Why?
Determine where f{z) = 8x — x* — xy* + i(x°y + ¥* — 8y) is differentiable. Is fanalytic?
Why?

Let fiz) = x* — ¥v2 + 12 |,x_v .

(a) Where does f have a derivative? (b) Where is f analytic?

Show that u(x. y) = e¢'cos y and v(x, ¥) = e'sin v are harmonic for all values of (x. ).
Let u(x, ¥) = In(x® + ¥°) for (x. ¥) # (0, 0). Compute the partial derivatives of u. and
verity that i satisfies Laplace’s equation.

Let «. b, and ¢ be real constants. Determine a relation among the coefficients that will
guarantee that the functions ¢(x. y) = ax’ + bxy + ¢v7 is harmonic.

Does an analytic function f(2) = u(x. v) + ivix. v) exist for which vix, v) = xF + v¥?
Why?

Find the analylic function f(2) = u(x, ¥) + iv(x, ¥) given the following.

(a) u(x,v) = v\ — 3xly (b) u(x, ¥) = sin y sinh x

{c) vix.y) = e'sinx (d) v(x, v) = sin x cosh ¥

Let v(x, y) = arctan(y/x) for x # 0. Compute the partial derivatives of v, and verify that
v satisfies Laplace’s equation.

Let u#(x, v) be harmonic. Show that U(x, v) = u{x, —v) is harmonic. Hint. Use the chain
rule for differentiation ol real functions,



13.

14.
18

16.

17.

18.

19.

20.

22,

26.

27.

28.
29.
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Let uyta. v) = x° — v= and u-(x. ¥) = x¥ — 3xv°. Show that w, and u> are harmonic
functions and that their product #,(x. ¥)u{x, ¥) is not a harmonic function.

Let v be the harmonic conjugate of ». Show that —u is the harmonic conjugate of v.
Let v be the harmonic conjugate of «. Show that i = #* — 7 is a harmonic funclion.
Suppose that v is the harmonic conjugate of # and that « is the harmonic conjugate of
. Show that « and v must be constant functions.

Let f be an analytic function in the domain D. If f*(z) = 0 for all - in D, then show that

f1is constant in 1,

Let fand g be analytic functions in the domain D. If f'(z) = g'(2) for all 7 in D, then
show that f(z) = g(z) + C. where C 15 a complex constant.

Let f be a nonconstant analyuc function in the domain D. Show that the function
g(z) = F(2)is not analytic in D.

Let /(z) = f(re™) = In r + i8 where r > 0 and —n << § <I 7. Show that fis analytic in
the domain indicated and that f'(z) = 1/z.

Let f(z) = f(re™) = u(r. B) + iv(r. 8) be analytic in a domain 0 that does not contain
the origin. Use the polar form of the Cauchy-Riemann equations i1, = —rv,, and v, =
ru,. and differentiate them with respect to 9 and then with respect to r. Use the results
to establish the polar form of Laplace’s equation:

FPudr. 8) + e, 8) + oug(r, 8) = 0,

Use the polar form of Laplace’s equation given in Exercise 21 to show that u(r, 8) =
ricos n8 and v(r, 8) = r”sin n0 are harmonic functions.
Use the polar form of Laplace’s equation given in Exercise 21 to show that

ulr. 9) = (r + }) cosB and v(r.8) = (r - }) sin 8
are harmonic functions.
Let fbe an analytic function in the domain D. Show that if Re[ f(z)] = 0 at all points
in D, then fis constant in D.
Assume that F(z) = ¢(x, v) + ibix. v) is analytic in the domain D and that F'(z) # O in
D. Consider the families of level curves {§(x. v) = constant} and {¥(x. ¥} = constant},
which are the equipotentials and streamlines for the fluid flow V(x, ¥) = F'(2). Prove
that the two families of curves are orthogonal. Hint: Suppose that (x. vo) is a point
common 1o the two curves ¢(x. v) = ¢y and $(x, v} = ¢. Take the gradient of ¢ and ¥,
and show that the normals to the curves are perpendicular.
The function F(z) = /7 is used to determine a field known as a dipole. Express F(z) in
the form F(z) = &(x, v) + Al(x, v) and sketch the equipotentials ¢ = 1. 1/2. 1/4 and the
streamlines ¢ = |, 172, 1/4.
The logarithmic function will be introduced in Chapter 5. Let F(z) = log z = In 3| +
i arg ;. Here we have ¢(x. v) = ln|:| and d(x. v) = arg z. Sketch the equipotentials
¢ =0.In2.1n 3. In 4 and the streamlines ¢y = k/8 fork = 0. 1.. . .. 7.
Discuss and compare the statements “*f(z) ts analytic’” and "*f(z) 1s differentiable.”’
Discuss and compare the statements “‘u(x. v) is harmonic’™ and "“u(x. v) is the trnaginary
part of an analytic lunction.””
Write a report on analytic functions. Include a discussion of the Cauchy-Riemann cqua-
tions and the other conditions that guarantee that f(2) is analytic. Resources include
bibliographical items 21, 39. 62, 72, 86. 155. and 161.




94

31.

32.

34.
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Write a report on harmonic functions. Include ideas and examples that are not mentioned
in the text. Resources include bibliographical items 2, 14, 28, 61, 69, 70. 71, 76. 77,
85,98, 111, 113, 131, 135, 138, 158, and 165.

Write a report on how computer graphics are used for graphing harmonic functions and
complex functions and conformal mappings. Resources include bibliographical items
33,34, 109, and 146.

. Write a report on fluid flow and how it is related to harmonic and analytic functions.

Include some ideas not mentioned in the text. Resources include bibliographical items
37,46, 91, 98, 124, 141, 145, 158, and 166.

Write a report on the Polya vector field. Resources include bibliographical items 25, 26.
27, and 83.
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Sequences, Series, and
Julia and Mandelbrot Sets

In this chapter we learn the basics for complex sequences and series. We also explore
an application of these ideas in what has popularly come to be known as chaetic
processes.

4.1 Definitions and Basic Theorems
for Sequences and Series

In formal terms, a complex sequence is a function whose domain is the positive
integers and whose range is a subset of the complex numbers. The following are
examples of sequences:

0 f(,,>=(2-1)+(5+1)i =123 .. ).
n n

(2) g(n) = ™Y n=1,273...)

(3) h(n)=5+3i+< ) n=1,23,...),

1+

| A
4 r(n)—(4+2) n=1,2,3...)

For convenience, we at times use the term sequence rather than complex se-
quence. If we wish a function s to represent an arbitrary sequence, we could specify
it by writing s(1) = z;, s(2) = 2, 5(3) = z3, and so on. The values z, z2. 23, . . .,
are called the rerms of a sequence, and mathematicians, being generally lazy when
it comes to things like this, often refer to z,, 2o, z3, etc., as the sequence itself, even
though they are really speaking of the range of the sequence when they do this. You
will usually see a sequence written as {z,};_,, {z.}7, or, when the indices are un-
derstood, as {z,}. Mathematicians are also not so fussy about starting a sequence at
Z1, so that {z,}7 {z.}7_o etc., would also be acceptable notation, provided all

n=-1°

95
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terms were defined. For example, the sequence r given by equation (4) could be
written in a variety of ways:

[ AG GG 57
(3}

The sequences f and g given by equations (1) and (2) behave differently as n
gets larger and larger. The terms in equation (1) approach 2 + 5/ = (2, 5), while
those in equation (2) do not approach any one particular number, as they simply
oscillate around the eight eighth roots of unity on the unit circle. Informally, the
sequence {z,}7 has { as its limit as n approaches infinity, provided the terms z, can
be made as close as we please to { by making » large enough. When this happens,
we write
(5) limz,=C or z,>( as n— oo

n—roo
If lim z, = {, we say that the sequence {z,}7 converges to .
f—eo
We need arigorous definition for statement (5), however, if we are to do honest
mathematics. Thus, we have the following.

Definition 4.1 lim z, = { means that for any real number € > 0 there

n—os
corresponds a positive integer N, (which depends on €) such that z,, € D,({)
whenever n > N,.

Note: The reason we use the notation N, is to emphasize the fact that this
number depends on our choice of €. Sometimes it will be convenient to drop the
subscript. Figure 4.1 illustrates a convergent sequence.

All terms z,, forn> N, ,
are inside this disk D,({).
—_—

FIGURE 4.1 A sequence that converges to .

In form, Definition 4.1 is exactly the same as the corresponding definition for
limits of real sequences. In fact, there is a simple criterion that casts the convergence
of complex sequences in terms of the convergence of real sequences.
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Theorem 4.1 Lerz, = x, + iy, and { = u + iv. Then,
6) limz, = ifandonlyif

N—roo

(7) limx,=u and

e

(8 limy,=w

n—e

Proof First we will assume statement (6) is true, and from this deduce the truth
of statements (7) and (8). Let € be an arbitrary positive real number. To establish
statement (7), we must show that there is a positive integer N, such that the inequality
|x,, — u| < € holds whenever n > N,. Since we are assuming statement (6) to be
true, we know according to Definition 4.1 that there is a positive integer N, such
that z, € D(0) if n > N,. Recall that z, e D({) is equivalent to the inequality
|z« — §| < €. Thus, whenever n > N,, we have

Ixn - “| = |RC(Z,, - C)‘
|z,, - | (by inequality (2) of Section 1.3)
<e,

A

and this proves statement (7). In a similar way, it can be shown that statement (6)
implies statement (8), and we leave this verification as an exercise.
To complete the proof of this theorem, we must show that statements (7) and
(8) jointly imply statement (6). Let € > 0 be an arbitrary real number. By statements
(7) and (8) there exists positive integers N, and M, such that
£

9 |x, —u| < X whenever n > V., and

3
10) |y —v|< whenever n > M,.

5 B
Let L, = max{N,, M.}. Then if n > L,, we see that

|Zn - Cl = ‘(xn + iyn) - (u + lV)|
= |(.X,, - u) + i(yn - V){
< |(x,, - u)| + ii( Vn V)I {What is the reason for this step?)
= |(x,, - u)| + |i | |(y,, - v)| (by properties of absolute value)
= |(x,,—u)| + |(y,,-v)| (since |i| = 1)
< % + -;- (by statements (9) and (10))
= E.

We needed to show the strict inequality |z, — {| < €, and the next to the last
line in the preceding proof gives us precisely that. Note also that we have been
speaking of the limit of a sequence. Strictly speaking, we are not entitled to use this
terminology, since we have not proved that a given complex sequence can have
only one limit. The proof of this, however, is almost identical to the corresponding
result for real sequences, and we have left it as an exercise.



98 Chapter 4 Sequences, Series, and Julia and Mandelbrot Sets

EXAMPLE 4.1 Consider z, = [\/; + i(n + 1)]/n. Then we write

. 1 n+1
y=xpt 0y, =—4=+1i .
NE) n

Using results about sequences of real numbers, which are studied in calculus, we
find that

) . 1 . Con+1
limy, =lim—= =0 and limy, = lim = 1.

e noe G N H—en n—seo n

Therefore

,  Untin+ 1)
Imz, =lim————— =

- yoo N H

EXAMPLE 4.2 Let us show that {(1 + )"} diverges. In this case. we have
e (1 + ,')n — ( /77- "C0§ E _|_ ,( /;)nqin ﬂt_
<n [ pNV4 § 4 V4 2 .

Since the real sequences {(V@)”cos(nn/df)} and {(V/f)"sin(nnm)} both diverge, we
conclude that {(1 + )"} diverges.

As 1s the case with the real numbers, we also have

Definition 4.2 The sequence {z,} is said to be a Cauchy sequence if for
every € > 0 there exists a positive integer N, such that if n, m > N,, then
]:,, - z,,,| < €, or, equivalently, 7, — z,, belongs to the disk D, (0).

The following should now come as no surprise.
Theorem 4.2 If {z,} is a Cauchy sequence, {z2,} converges.

Proof 1Letz, = x, + iv, Using the techniques of Theorem 4.1, it is easy to
show that both {x,} and {v,} are Cauchy sequences of real numbers. Since Cauchy
sequences of real numbers are convergent, we know that

limx, = x and limy, = yg

H—roe H—es
for some real numbers x, and yy. By Theorem 4.1, this means

lim z, = 2o,

e

where Zp = xp + ivo. In other words, the sequence {z,} converges to z.
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Let {z,} be a complex sequence. We can form a new sequence {S,}. called
the sequence of partial sums, in the following way:

(ll) S] B
S, = + oo,

The formal expression E a= + >+ ---+ 7, + - is called an infinite
Fy

series, and 7. 2o, ctc., are called the rerms of the series. If there is a complex number
S for which

Ui

(12) S =1im§S, = lim >, z,

pv)
"o n—oe k-

we will say that the infinite series E Z converges to §, and that § is the sum of the
=

infinite series. When this happens, we write

(13) S=> o
A1

The series Z Zi is said to be absolutely convergent provided that the (real)
o

series of magnitudes E ]:A ’ converges. If a series does not converge, we say that it
fay

diverges.
It is important to note that the first finitely many terms of a series do not affect
its convergence or divergence and that in this respect the beginning index of a series

is irrelevant. Thus, we will without comment conclude that il a series >,

Lo
A=A

I con-

verges, then so docs E . where 2o, 71, . . ., Zy is any finite collection of terms.
=0

A similar remark holds for determining divergence of a serics.

As one might expect, many of the results concerning real series carry over to
the complex case. We give several of the more standard theorems along with ex-
amples of how they are used.
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Theorem 4.3 Letz, = x, + iv,and S = U + iV. Then

§= 2 = 2 (x, + 1v,)

n=1 n—

if and only if both
U= Z x, and V= E ¥,
n=1

=1\

Proof LetU, = EZ:, xpand V, = EL, viand S, = U, + iV,. We can use
Theorem 4.1 to conclude that

limS, =limW, +iV)y=U+iV=S_5

n—yee oo

if and only if both lim, .. U, = U and lim, ... V, = V, and the completion of the
proof follows easily from definitions (12) and (13).

Theorem 4.4 [f E;,i, 2, 18 a convergent complex series, then lim z, = 0.

Ji—en

The proof of Theorem 4.4 is left as an exercise.

EXAMPLE 4.3 Show that the series
2 1 + in(—=1y i‘ [1 (—1)”]

3
n=1 n- n= I [{ n

s convergent.

Solution  From calculus it is known that the series

1 -1y
— and V( )

1 n- n= 1 n

NZE

are convergent. Hence Theorem 4.3 implies that the given complex series is
convergent.

EXAMPLE 4.4 The series

_1 4 _] il
v (—1) 1_ [ ) ,_}
n=1 n

is divergent.

Solution  From the study of calculus it is known that the series E” ()
is divergent. Hence Theorem 4.3 implies that the given complex series is divergent.

EXAMPLE 4.5 The series .7, (1 + i)" is divergent.
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Solution  Here we set 2, = (1 + i), and we observe that lim,_.. :,,,! =
lim,_.. (21" = . Hence lim, .. z, # 0, and Theorem 4.4 implies that the given

series is not convergent: hence it is divergent.

Theorem 4.5 Let >, z, and D w, be convergent series, and let ¢ be a

P Lo
=1 "=

complex nimber. Then

- -
E C = ('}_, o uand
=] n=1

Z} (2, T w) = zl z, + 2} W
"W n= =

Proof  The proof of this theorem is left as an exercise.

Definition 4.3 Let S’ u, and 3 b, be convergent series, where a, and b,

H:” "= ()

are complex numbers. The Cauchy product of the two series is defined to be
It

vvﬂ
the series >_J ¢, where ¢, = E b, .
n- 0 A=t

Theorem 4.6 If the Cauchy product converges, then

i \
2 Cp = L, a; S‘ brl .
-0 n-=0 - (b

Proof The proof can be found in a number of texts, for example. Infinire
Sequences and Series. by Konrad Knopp (translated by Frederick Bagemihl: New
York: Dover, 1956).

Theorem 4.7 (Comparison Test) Ler .., M, be a convergent series of
real nonnegative terms. If {2} is a sequence of complex numbers and |z, | <
M, holds for all n. then

= 2 vy
=] -l

converges.
Proof  Using equations (2) of Section 1.3, we see that | v, | < |z,| = M, and

’.\‘,I ’ <z, ’ <= M, holds for all n. The comparison test for real sequences can be used
to conclude that

].\',,’ and }: '_\',,'

=1 si=|
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are convergent. A result from calculus states that an absolutely convergent serics is
convergent. Hence
> x, and Z v,

n=1

<
n=1

are convergent. We can use these results together with Theorem 4.3 to conclude that
N = zll x, + iE,,":, ¥, is convergent,

Lan=1 ~n

Corollary 4.1 If E 2, converges absolutely, then 2 I, converges.

n=0 n={

We leave the proof of this corollary as an exercise.

EXAMPLE 4.6 Show that ,,_, (3 + 4i)"/(5"n2) converges.

Solution  Calculating the modulus of the terms. we find that |z,| =
| (3 + 4y/(5'n*)| = 1/n* = M,. We can use the comparison test and the fact that

> (1/n%) converges to conclude that > (3 + 4i/(5"n?) converges.

n=1

Supposec that we have a series E I, Where z, = ¢,(z — o). If o and the
n=0

collection of ¢, are fixed complex numbers, we will get different series by selecting

. . 1 )
different values for ;. For example, if o« = 0, and ¢, = = for all n, we get the series
mn.

-1 l n.
HZ()E (5) lfz -

which the series E ¢.{z — o) converges will thus be the domain of a function

n={

and 2 (4 + 0"it 2 =4 + i. The collection of points for
n=nn!

B~

flz) = Q ¢y(z — ), which is called a power series function. Technically, this
series is undefined if z = o and n = 0, since 0” is undefined. We get around this

difficulty by stipulating that the series E ¢,{z — @) is really compact notation
n=0

for ¢y + E c{z — o).

n=1

If &« = 0 and ¢, = 1 for all n in the preceding, our series becomes Z 2" We
n="0

call this a geometric series, one of the most important series in mathematics.
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< 1, the series E " converges

Theorem 4.8 (Geometric Series) If |:
n=>0

1
to f(z) = —. That is. if I'! < 1, then

1 -z
(14) Z:"=1+:+;3+-»-+;A+-~=1] :
n=>0 -2

If |z]| = 1. the series diverges.
Proof Suppose |z| < I. According to equation (12), we must show
1
Iim §, = ]——_ , Where

(15 S, =1+z+F+ -+

Multiplying both sides of equation (15) by z gives
(16) Sy =+ +F+ -+l 40
Subtracting equation (16) from equation (15) yields
(17) (1 =28, =1~z

so that

1
(18 S, =-—-

-z 1 -z

Since ‘;] < 1, lim z7 = 0. (Can you prove this? You will be asked to do so in the

H-s

, ) 1
exercises!) Hence Iim §, =

1= 1 — 2

If |z| = 1, then clearly lim # 0. Hence lim z” # 0 (see problem 24), 50

N—en H—yee

- N
<

by the contrapositive of Theorem 4.4, 2z” must diverge.

=0

- 1
Corollary 4.2 If |z| > 1, the series > " convergesto f(7) = 1 That

n=1 “

is, if |z| > 1, then
= 1

(19) E o= zl4zi4 44 = oo equivalently,
n=1 -
- 1
200 =2, " = —gl=-ri- - - =
(20) ,,Z:, 1 -z

If 12| < 1, the series diverges.



104 Chapter 4 Sequences, Series, and Julia and Mandelbrot Sets

1
Proof If we let — take the role of z in equation (14), we get
z

ey S (l> _— i

n=0 \Z
1_7

Z

&a | —

’<1.

1
Multiplying both sides of equation (21) by — gives
z

o 15 (et

- *
Z n=0 \Z z—1

|

-l <1
z
which, by Theorem 4.5, is the same as

> 1+ 1
23) > (l> i

Z

< 1.

n=0 Z'"l,

= (1Y 1
But this is equivalent to saying that (—) = I if 1 < |z|, which is what
n=1 \Z I~

the corollary claims.
It is left as an exercise to show that the series diverges if ]z| = 1.

Corollary 4.3 Ifz 5 1, then for all n

| "
=]+z+zz+...+zn—l+ .
1 -z 1 -¢

Proof This follows immediately from equation (18).

EXAMPLE 4.7 Show that 2,7 [(1 — )v2"] =1 — i

Solution  If we set z = (1 — i)/2, then we see that |z| = V212 < 1, s0o we
can use representation (14) for a geometric series. The sum is given by
1 _ 2 2 [
C1-i 2-1+i 1+i "
2

1

EXAMPLE 4.8 Evaluate 3, (é)

n=3

Solution  We can put this expression in the form of a geometric series:
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o (-2

S—r
N
B |~
S~—’

e

t3 |~

(by Theorem 4.5)

) (by reindexing)

NI~

N~
M
i

wl:
M.

. B[ ~.
S~

]

ST

) (by Theorem 4.8, since

=_— - — (by standard simplification procedures).

The equality given by equation (24) illustrates an important point when eval-
uating a geometric series whose beginning index is other than zero. The value of

o
&

2 z" will equal If we think of z as the “‘ratio”” by which a given term of

1—z°

the series is multiplied to generate successive terms, we see that the sum of a geo-
first term

metric series equals r , provided |ratio| < 1.
ratio

1 —

The geometric series is used in the proof of the following theorem, known as
the ratio test. It is one of the most commonly used tests for determining the con-
vergence or divergence of series. The proof is similar to the one used for real series,
and is left for the reader to establish.

Theorem 4.9 (d’Alembert’s Ratio Test) If > (, is a complex series
with the property that =0

ii |C/HI L
m = L,
T

then the series is absolutely convergent if L < 1 and divergent if L > 1,

EXAMPLE 4.9 Show that D>, [(1 — i)/n!] converges.

Solution  Using the ratio test, we find that

(1 = fy!

+ ! nt|l —1i 1 —i /2
limL—f)—-=lim—|———|= imu= im " =0=1L
1300 |(1 — l)j fi—poo (n + 1)’ nowe N + 1 n—soo 1 + l

n!

Since L < 1, the series converges.
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EXAMPLE 4.10 Show that the series ., [(z — i)/2"] converges for all
values of z in the disk |z — i| < 2 and diverges if |z — i| > 2.

Solution  Using the ratio test, we find that

z— l’)rHl
+1 =1 =1
lim —2"— = lim l | = l I =L
Fi—yen (Z b 1)” N0 2 2
211

If |z — i| << 2, then L < 1 and the series converges. If ]" - i| > 2, then L > 1,
and the series diverges.

Our next result, known as the root test, is slightly more powertul than the
ratio test. Before we state this test, we need to discuss a rather sophisticated idea
that it uses—the limit supremum.

Definition 4.4 Let {1,} be a sequence of positive real numbers. The limit
supremum of the sequence (denoted by lim sup t,,) is the smallest real number

o
L with the property that for any € > 0 there are at most finitely many terms
in the sequence that are larger than L + €. If there is no such number L, then
we set lim sup t, = oo.

n—rwo

EXAMPLE 4.11 The limit supremum of the sequence
{t.} = {4.1,5.1,4.01,5.01,4.001, 5001, . . . }islimsupt, = §,

H—ro
because if we set L = 5, then for any € > 0. there are only finitely many terms in
the sequence larger than L + £ = 5 + £. Additionally, if L is smaller than 5, then
by setting € = 5 — L, we can find infinitely many terms in the sequence larger than
L+ e sincel +e=235.

EXAMPLE 4.12 The limit supremum of the sequence
{t.} = {1.2,3,1,2,3,1,2,3,1,2,3, .. .}islimsup¢, = 3,

because if we set L = 3, then for any € > 0, there are only finitely many terms
(actually, there are none) in the sequence larger than L + € = 3 + €. Additionally,

if L is smaller than 3, then by setting € = we can find infinitely many terms

in the sequence larger than L + ¢, since L + € < 3.

3—-L 3+L 3 L 3 3
= =Z4+Z<i4=3
2 2 2 2 2

<L+E=L+

|
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EXAMPLE 4.13 The limit supremum of the Fibonacci sequence
{t.} = {1,1,2,3,5,8,13,21,34, . . .} is limsupt, = o,

n—ree

(The Fibonacci sequence has the property that foreveryn > 2, t, = t, | + 1,_2.)

The limit supremum is a powerful idea because the limit supremum of a se-
quence always exists, which is not true for the limit. However, Example 4.14 illus-
trates the fact that if the limit of a sequence does exist, it will be the same as the
limit supremum.

EXAMPLE 4.14 The sequence

{t.} = {1 + l}
n

={2,1.5,1.33,125,1.2, ...} has limsup ¢, = 1.

We leave the verification of this as an exercise.

Theorem 4.10 (The Root Test) Given the series z L, suppose

n=0

lim sup |G, |"" = L.

NH—rco
Then the series is absolutely convergent if L < | and divergent if L > |.

Proof We give a proof assuming lim [, [/ exists. (A proof of the more

n—o
general case using the limit supremum can be found in a number of advanced texts.)
Since the limit supremum is the same as the limit when the latter exists, we have
(25) lim |, | = L.
N—rim

Suppose first that L < 1. We can select a number » such that L < r < . By equation
(25) there exists a positive integer N such that for all n > N we have |§,7 |”” < r,

and so |{,| < r” Since r < I, Theorem 4.8 implies 2 r* converges. But then
n=N+1

by Theorem 4.7 and Corollary 4.1 >, |G| converges, hence so does 2, |G, |-
n=N+1 0

Now suppose L > 1. We can select a number r such that 1 < r <C L. Again,
using equation (25) we conclude that there exists a positive integer N such that for
alt n > N we have |G, | > r, and so |{,| > r”. But since r > I, this implies that

h=

¢, does not converge to 0, and so by Theorem 4.4, . {, does not converge.
n=0
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Note that in applying either Theorems 4.9 and 4.10. if L = |, the convergence
or divergence of the series is unknown, and further analysis is required to determine
the true state of affairs.

EXERCISES FOR SECTION 4.1

1.

mooB

10.
11.

12.
13.

14.

15.

16.
17.

Find the following limits.

) tim [~ + ) by tim
a) nm § — - m—
( noe \ 2 4 ) "o n
ot 4 CoAn i + onh
(¢) him ——— (@ lim—m—m—
PN, 2" oo "
Show that lim, ... ()" = 1. where (""" is the principal value of the nth root of /.

Let I“TI,,,, In = Lo Show that ]il‘n;,“ Evr = Zo.
Let >z, = Show that 2 %, =5

< >'
1 .
Show lhal =i

,111+)+1 rz+l

M7

Show that

Show that E ( ;”) diverges.

Does hm

P—res

Let {r,} and {G } be two convergent sequences of real numbers such that

) exist? Why?

(ﬂ

imr,=r, and J}im 9, = 6.

T T

Show that hm, _,..r,e" = rie®,

S0+ iy
Show that z - L =1+
=0 <

Show that E, o [z + 1y727) converges Tor all values of 7 in the disk l + zl <2
diverges if [: +il > 2

4y
Is the senes — convergent’ ? Why?
1 on!

Use the mlm test and show that the following series converge.

, 1+ S+ gy Sy S+

(a)E( 3 ) (b)zT (C)z—,_' V_____
L | 2

nol mn! ¢ Sh2n + !
Use the ratio test to find a disk in which the following series converge.
- . " <~ (2= (z — 3 —diy
a} ] + v)nzu (h) > V —_—
@2, 1+ E, Gray EaGrar ),,2.
Show that if z,, . z, converges. then tim,, .. z, = 0. Hint: 2, = S, — S,,,[.

U
Is the series E — convergent? Why”?
d

a=1F

Let ?” yx, +ivy)y = U+ iV. If ¢ = a + ibis a complex constant, show that

E (@ + ib)x, + iv,) = (a + iU + V).
n=1}

and
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18. Letf(z) = z+ 2%+ z* + - -+ ¥ + - - - . Show that f(z) = z + f(2%).
<X lal
n=0

20. Prove that statement (6) implics statement (8) in Theorem 4.1.

21. You were asked to justify one of the inequalities in the proof ot Theorem 4.1. Give the
justification.

22, Prove that a sequence can have only onc limit. Hint: Supposc there is a scquence {z,)}
such that z, = {, and z, = {>. Show this implies {; = {> by proving that for all € > 0,
G- G <e

23. Prove Corollary 4.1,

24. Prove lim 7, = Qiff lim|z,| = 0

"= "o

19. If 2z, converges, show that | 2z
n=0 n=0

25, Est = 0.
26. > 1. then lim lS,,| = oo. Hint:
I :u zr ] ]
e N el R
-z 1 -z -z 1 -z 1 - I -z
27. Prove the series in Corollary 4.2 diverges if |‘| <
28. Prove Theorem 4.9,
29. Give a rigorous argument to show that lim sup #, = 1 in Example 4.14.

1

30. (a) Use the formula for geometric scrics with z = re where r << 1 to show that

s‘« |l —rcos® + irsin 6
) npimt =
b I+ 72—~ 2rcos®

(b) Use part (a) to obtain

) [ —rcos®
z ricos n = —————  and
et} 1 +r>—2rcost
. rsin O
? rsin n = ——————— .
from | +r- —2rcos 8
31. Show that ¢'"" converges for Im z > ().
n=t) g

4.2 Power Series Functions

In this section we list some results that will be useful in helping us establish prop-
erties of functions defined by power series.

Theorem 4.11 Suppose f(3) = z c,(z — aY. The set of points = for which

n=0

the series converges is one of the following:

(1) The single point ; = o.
ity The disk D (o) {22 |2 — oc] < p}. along with part (either none, some, or
ally of the urcle Cp(a) = {z | - O(| =p}.
(ii1) The entire complex plane.
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Theorem 4.12 The radius of convergence. p, of the power series function

f(z) = D ez — o) can be found by any of the following methods:
n=0
(1) Cauchy’s root test: p = ———— (Provided the limit exists).
lim I Ch ’ 1in

n oo

(i1) Cauchy-Hadamard formula: p = ————————  (This limit always
lim sup |c, | ' ’

exists.)

C, . ., .
— | (Provided the limit exists).
Cnol

In cases (1) and (i) we set p = oo if the limit equals 0, and p = 0 if the limit
equals oo,

(iii) d’Alembert’s ratio test: p = lim

H=yee

Proof If you examine carefully the proof of Theorem 4.11, you will see
that we have already proved case (i). It follows directly from inequality (1). Case
(ii) 18 left for more advanced courses, and case (iii) can be established by appealing
to the ratio test.

EXAMPLE 4.15 Find the radius of convergence of
n+2 ”v
fo) = E( )1—4)”.

3n + |

i n+ 2
Solution By Cauchy’s root test, lim|c, | = lim

1
Nn—oes e 30+ 1 —3_ 0 50 the

radius of convergence is 3.

EXAMPLE 4.16 The series E ' = 1+ 4z + 5228 4 432 4 5%0 + 457

n=0

. has radius of convergence % by the Cauchy-Hadamard formula because

lim sup|c, | = 5.

1o

EXAMPLE 4.17 Find the radius of convergence of f(z) = i ni 7",

Solution By the ratio test, the radius of convergence is
(n+ 1) l

lim

N—ee

= lim (n + 1) = o. Thus, the series converges for all values of z.

o

n!
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We come now to the main result of this section.

Theorem 4.13 Suppose the function f(z) = 2 co(z — )" has radius of
n=_

convergence p > 0. Then
(i) f is infinitely differentiable for all z € D (), in fact
(i) for all k, f9@) = > n(n — 1) - (n — k + De,(z — )%, and

n=k

(k)

k!
denotes the function fitself, so that f9(z) = f(2) for all z.)

(iil) ¢ = ) , where ¥ denotes the kth derivative of f. (When k = 0, f®

Proof If we can establish case (ii) for k = 1, the cases for k = 2,3, . . .
will follow by induction. For instance, the case when k = 2 follows by applying the

result for £ = 1 to the series f'(z) = Z ne,(z — o),

We begin by defining the following functions:
- J o
g(z) = 21 ne,(z — oy, S§i(2) = ZU ez — )y, R = Z] ez — o).
n= ne= n=j+
Here S;(z) is simply the (j + 1)st partial sum of the series f(z), and R;(z) is the sum
of the remaining terms of that series. We leave as an exercise that the radius of
convergence for g(z) is p, the same as that of f(z). For a fixed z; € D,(o), we must

f2) — fzo) f @) _

prove f'(zy) = g(zp), that is, we must prove lim ———— = g(zy). This can be
= 4 20
done by showing that for all € > 0. there exists 8 > 0 such that if z € D () with
0 < |2 - 2| < & then f(z)"f(lo)_g(zo)
I~ 2

Let zp € D,() and € > 0 be given. Choose r < p so that 7y € D(c). Choose
8 to be small enough so that Dg(z9) C Do) C D, (o) (see Figure 4.3), and also
small enough to satisfy an additional restriction, which we shall specify in a moment.

y
4

=; The disk Dy(z,)
‘ The disk D, (o)
The disk D, (c:)

X

FIGURE 4.3 Choosing & to prove f'(zy) = g(zo).
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Since f(z) = §,(z) + R;(z), simplifying the right-hand side of the following
equation reveals that for all j,

) — flz $i(z2) — S(z
@ [.f() S o>_g(50)]=[,<3_ ( ())_S],(ZO)]+

T < 20
Ri(z) - R,»(m)]

I~

[Si(z0) — g(z0)] + |:
where §}(zo) is the derivative of the function §; evaluated at zo. Equation (2) has the
general form A = B + C + D. By the triangle inequality,

|A| = |[B+C+D| < |B| +|C|+ |D|,
so our proof will be complete if we can show that for a small enough value of 8

each of the expressions |B|, |C|, and |D| can be shown to be less than % .

Calculation for | D |
Rj(l) - Rj(l[})

v —_

< <0

( > el = oy = (- am) ‘

z = ) — (2 — )" ‘

- —_

< 20

(Compare with exerciée 19 of Section 4.1).
As an exercise, we ask you to establish

z—0o) —(z0 — W)

< <0

(3)

‘ < nr'l

Assuming this to be the case, we get

Ri(2) — Ri(zp) < i

y—
< &

C))

| c,|nrnt.

n=s+1

Since r < p, the series E |c,7 | nr'-! converges (can you explain why?). This means

n=1

that the tail part of the series, which is the right-hand side of inequality (4), can

€
certainly be made less than 3 if we choose j Jarge enough, say j = N,.

Calculation for |C |

J
Since Si(zp) = Z ne,{zo — )"~ 1, it is clear that lim S;(z0) = g(20). This means there

n=1 fpree

is an integer N such that if j = N,, then | Sj(z0) — g(z0)

2
<-.
3
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Calculation for \ B \

Define N = max{/N,, N-}. Because Sx(2) is a polynomial, Sy(zy) exists. Thus, we
can tind & smal] enough so that it complies with the restriction previously placed
on it as well as ensuring

Svtz) — Swizo)

I~

o

— Sn(zu) ’ < < whenever z € D, (o) with 0 < |z — o] <86

w

Using this value of N for j in equation (2) together with our chosen & yields con-
clusion (ii) of our theorem.

To prove (ii1), note that if we set z = o in (ii), all the terms drop out except
when n = k, giving us f¥ () = k(k — 1) - - (k — k + 1)c;. Solving for ¢; completes
the proof of our theorem.

EXAMPLE 4.18 Show that Z (n+ D" = (]]—), for all z € D;(0).
n=0 2)”

“

. |
Solution We know from Theorem 4.8 that f(z) = l = Z =" for all

< n=0

1
z € D(0). If we set £k = | in Theorem 4.13, case (ii), f'(2) "—‘(1—7 =
z nz""! = 2 (n + I)z7 for all z € D(0).

n=1 n=0

EXAMPLE 4.19 The Bessel function of order zero is given by

had _1”
hm=2()(

b (n!)?

-2

25 2 -9 -0
et e T oee T

B | &

and termwise differentiation shows that its derivative is given by

,ﬂ_ith'fm_:+;_§_;_5+
W= T2, T2 T \z) Tam e

We leave as an exercise that the radius of convergence of these series is infinity.
The Bessel function J,(z) of order one is known to satisfy the differential equation
Ii2) = —Ju2).

EXERCISES FOR SECTION 4.2

1. Prove case (iii) of Theorem 4.12.
hind ] - -t
2. Consider the following serics: ZI ", E:I ”—_ , and EI :—’
"= H= =

(a) Using Theorem 4.12, show thal each series has radius of convergence 1.
{b) Show that the first series converges nowhere on C,(0).
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(c) Show that the second series converges everywhere on C(0).
(d) It turns out that the third series converges everywhere on ('(0) except at the point
z = 1. This is not casy to prove. but see if you can do so.
R 1 + 2
3. Show that 2;“ (n+ 1)Y= (]___7

4. Find the radius of convergence of the following.

)= S‘ (_ 1 < [ S‘ t oo
(a) g(z) 2 2 (b) #1(z) 2
= an ons Y o (nh)?
2y = ———):” (D) = il
(e) /1) h\2n+ 1 3n+4) 7 () s Fom 1 003 VI
- - 1)z”
vf:V D — (=] (z) = n(n—
(e) M) = 2 2 = (= () fl2) E Ty
o (34 7Y SO
) = v Z/z i l )= S‘ hd -1
(&) &0 =2 (4;; n z) ) ey =2 T
() g(z) = 3 =27 Hint lim |1 + (Um) = e.
n—0 M. Tl oo
(j)gzy= > 2
=10
4 :Z z; ZJ 25 Z() ;7
(k)smh(z)+4_z:= 1 +z+§+;+;+;+?+;+~-

5. Suppose that E c,2" bas radius of convergence K. Show that z iz has radius of

=1t} ne-0

convergence R

6. Does therc cxist a power series z c,Z" that converges at ¢, = 4 — 7 and diverges at
n=0
> =2 + 3i? Why?
7. Verify part (ii) of Theorem 4.13 for all £ by using mathematical induction.
8. This exercise will establish that the radius of convergence for g given in Theorem 4.13

1s p. the same as that of the function f.

]
(a) Explain why the radius of convergence for g is )
lim sup | nc, |'T:|

1

(b) Show that lim sup |n|"""

p—

= 1. Hint; The lim sup cquals the limit. Show thal

o logn
lim —2 = o,
e 11— 1
L !
{c) Assuming that lim sup|c,|””" = lim sup ‘c‘,, ‘ “, show that the conclusion for
- e

this exercise follows.
(d) Establish the truth of the assumption made in part (c).
9. This exercise will establish the validity of inequality (3) given in the proof of Theorem
4.13.
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(a) Show that

|'\,u L ! L S TR I |‘

= ’

y =1

A

"\"‘ '[ + “.\"" ’t

R T B S LR I L R

where v and ¢ arc arbitrary complex numbers, s # 7.

(b) Arguc why in incquality (3) we know that |7 — O(l < rand |zo — O
(¢)Lety =z — aands = oy — o in part () o establish incquality (3.

10. Show that the radius of convergence is infinity of the series for Jo(2) and Ji(2) given in
Example 4.19.

11. Explain what you think might happen if the complex number £ is substituted for x in
the Maclaurin series for sin v that is studied in calculus?

12. Write a report on scries of complex numbers and/or functions. Include idcas and cx-
amples not mentioned in the text. Resources include bibliographical items 10. 83. 116,
and 153

<,

4.3 Julia and Mandelbrot Sets

An impetus for studying complex analysis is the comparison of properties of real
numbers and Tunctions with their complex counterparts. In this section we take a
look at Newton's method for finding solutions to the equation f{z) = 0. We then
examine the more general topic of iteration.

Recall from calculus that Newton’s mcthod proceeds by starting with a func-
tion f{x) and an initial “*guess’™ v, as a solution to f(x) = 0. We then generate a new

. f(-\'i)) R . . .
guess vy by the computation x| = v, — T Using v, in place of x. this process
J
. . flxy) . ) S
is repeated. giving us xa = vy — o We thus obtain a sequence of points {x}.
AR
Ji) . . . .
where v, ; = y — f-i . The points {x};_, are called the iferates of x,. For
LRSYS

functions defined on the real numbers, this method gives remarkably good results.
so that the sequence {x} often converges to a solution of f(x) = 0 rather quickly.
In the late 1800s the British mathematician Arthur Cayley investigated the question
as (o whether Newton's method can be applied to complex functions. He wrote a
paper giving an analysis for how this method works for quadratic polynomials and
indicated his intention to publish a subsequent paper for cubic polynomials. Unfor-
tunately. Cayley died before producing this paper. As you will see, the extension of
Newton's method to the complex domain and the more general question of iteration
are quite complicated.

EXAMPLE 4.20 Trace out the next five iterates of Newton's method given
an initial guess of -y = 4 + 47 as a solution to the equation f(2) = 0. where f(3) =
4.
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Solution  Given : as an initial guess, our next guess will be z

-

<~

4.1, where values are rounded to five decimal places.

TABLE 4.1

The iterates of z, =

to f(z2) = z2 + 1.

+ %/ for Newton’s method applied

e

. With the aid of a computer algebra system, we can easily produce Table

-

<k

f(Zh)

W= O

0.25000 + 0.25000i
—0.87500 + 1.12500i
—0.22212 + 0.83942;

0.03624 + 0.97638:
—0.00086 + 0.99958

0.00000 + 1.00000:{

1.00000 + 0.12500i
0.50000 — 1.96875i
0.34470 — 0.37290i
0.04799 + 0.07077i
0.00084 — 0.00172i
0.00000 + 0.00000:

Figure 4.4 shows the relative positions of these points on the z plane. Notice
that the points 2, and zs are so close together that they appear to coincide and that
the value for s agrees to five decimal places with the actual solution z = i.

4
124
. zyandzg
2 | J,./
084
0.6 1
044
L e
021 “n
—t } 4 e x
-075 -05 -025 025 05 075

FIGURE 4.4 The iterates of z, = § + i for Newton’s method applied to
flo=27+1
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The complex version of Newton's method appears also to work quite well.
You may recall, however. that with functions defined on the reals, it is not the case
that every initial guess produces a sequence thut converges to a solution. Example
4.21 shows that the same is true in the complex case.

EXAMPLE 4.21 Show that Newton’s method fails for the function
f(z) = 2 + | if our initial guess is a real number.

Solution  From Example 4.20 we know that given any guess z as a solution

of 2 + 1 = 0, the next guess at a solution is N(7) = 7 — ’-f% == - l . Let z; be
any real number, and let {z} be the sequence of iterations produced by the initial
seed zo. If for any &, z; = 0, the iteration terminates with an undefined result. If all
the terms of the sequence {z;} are defined, an easy induction argument shows that
all the terms of the sequence will be real. Since the solutions of z* + 1 = 0 are i,
the sequence {z;} cannot possibly converge to either solution. In the exercises we
ask you to explore in detail what happens when z; is in the upper or lower half

plane.

The case for cubic polynomials is more complicated than that for quadratics.
Fortunately, we can get an idea of what’s going on by doing some experimentation
with computer graphics. Let us begin with the cubic polynomial f(z) = 2% + 1.

. ) 1 /3 1 /3.
(Reca]], the roots of this polynomial are at ~1, 5 + VTI. and 5~ \Tl> We as-

sociate a color with each root (blue, red. and green, respectively). We form a rect-
angular region R, which contains the three roots of f(z), and partition this region
into equal rectangles R;;. We then choose a point Z;; at the center of each rectangle
and for each onc of these points we apply the following algorithm:
L Wi N = J@ ) . . o

. ith N() = ek compute N(z;;). Continue computing successive iterates
of this initial point until we either are within a certain preassigned tolerance
(say €) of one of the roots of f(z) = 0, or until the number of iterations has
exceeded a preassigned maximum.
If step | left us within € of one of the roots of f(z), we color the entire rectangle
R;; with the color associated with that root. Otherwise, we assume the initial
point z;; does not converge to any root and color the entire rectangle yellow,

t

Notice that the preceding algorithm does not prove anything. In step 2, there
is no a priori reason 1o justify the assumption mentioned, nor is there any necessity
for an initial point z;; to have its sequence of iterates converging to one of the roots
of f(z) = 0 just because a particular iteration is within € of that root. Finally, the
fact that one point in a rectangle behaves in a certain way does not imply that all
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the points in that rectangle behave in a like manner. Nevertheless, we can use this
algorithm to motivate mathematical explorations. Indeed, computer experiments like
the one described have contributed to a lot of exciting mathematics in the past 15
years. Color plate 1 at the end of this section shows the results of applying our
algorithm to the cubic polynomial f(z) = z* + 1. The points in the blue, red,
and green regions arzthose “*initial guesses’’ that will converge to the roots —1,

! /3 1 /3
5+ ~ = and;,- - \Tl respectively. (The roots themselves are located in the

2
middle of the three largest colored regions.) The complexity of this picture becomes
apparent when we observe that wherever two colors appear to meet, the third color
cmerges between them. But then, a closer inspection of the area where this third
color meets one of the other colors reveals again a different color between them.
This process continues with an infinite complexity.

Not all initial guesses will result in a sequence that converges to a solution
(let zp be any real number, as in Example 4.21). On the other hand, there appear to
be no yellow regions with any area in color plate |, indicating that most initial
guesses 7y at a solution to 71 + 1 = 0 will produce a sequence {z;} which converges
to one of the three roots. Color plate 2 illustrates that this is not always the case. It
shows the results of applying the preceding algorithm to the polynomial f(z) =
2+ (—0.26 + 0.02/)z + (—0.74 + 0.02/). The yellow area shown is often referred
to as the rabbit. It consists of a main body and two ears. Upon closer inspection
(color plate 3) we see that each one of the ears consists of a main body and two
ears. Color plate 2 is an example of a fractal image. Mathematicians use the term
fractal to indicate an object that is self-similar and infinitely replicating.

In 1918 the French mathematicians Gaston Julia and Pierre Fatou noticed this
tfractal phenomenon when exploring iterations of functions not necessarily con-
nected with Newton’s method. Beginning with a function f(z) and a point z,, they
computed the iterates z; = f(zp). 22 = f(21),. . .,z 1 =f(u),. . ., and investigated
properties of the sequence {z;}. Their findings did not receive a great deal of atten-
tion, largely because computer graphics were not available at that time. With the
recent proliferation of computers, it is not surprising that these investigations were
revived in the 1980s. Detailed studies of Newton’s method and the more general
lopic of iteration were undertaken by a host of mathematicians including Curry,
Douady, Garnett, Hubbard, Mandlebrot, Milnor, and Sullivan. We now turn our
attention to some of their results by focusing on the iterations produced by quad-
ratics of the form £,(2) = z° + ¢

EXAMPLE 4.22 Given f(z) = 22 + ¢, analyze all possible iterations for the
function fo(z) = z7 + 0.

Solution In the exercises we will ask you to verify that if |z| < 1 the
scquence will converge to 0, if |zn| > | the sequence will be unbounded, and if
|z0] = 1 the sequence will either oscillate chaotically around the unit circle or
converge to |.
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Given the function f(z) = z? + c, and an initial seed z;, the set of iterates
given by z; = fu(z0). z2 = f(2)), etc., are also called the orbits of 7, generated by
fAz). Let K, denote the set of points with bounded orbits for f.(z). Example 4.22
shows that Kj is the closed unit disk D,(0). The boundary of K, is known as the
Julia set for the function f,(z). The Julia set for fi(z) is the unit circle C1(0). It turns
out that K_is a nice simple set only when ¢ = 0 or ¢ = —2. Otherwise, K. is fractal.
Color plate 4 shows K_;>s. The variation in colors indicate the length of time it
takes for points to become ‘‘sufficiently unbounded’” according to the following
algorithm, which uses the same notation as our algorithm for iterations via Newton's
method:

1. Compute f.(z;). Continue computing successive iterates of this initial point
until the absolute value of one of the iterations exceeds a certain bound (say
L), or until the number of iterations has exceeded a preassigned maximum.

2.  If step 1 left us with an iteration whose absolute value exceeds L, we color
the entire rectangle R;; with a color indicating the number of iterations
needed before this value was attained (the more iterations required, the
darker the color). Otherwise, we assume the orbits of the initial point z; do
not diverge to infinity and we color the entire rectangle black.

Notice, again, that this algorithm does not prove anything. It merely guides
the direction of our efforts to do rigorous mathematics.

Color plate 5 shows the Julia set for the function f(z). where ¢ = —0.11 —
0.67i. The boundary of this set is different from that of the other sets we have seen
in that it is disconnected. Julia and Fatou independently discovered a simple crite-
rion that can be used to tell when the Julia set for f.(z) is connected or disconnected.
We state their result, but omit the proof, as it is beyond the scope of this text.

Theorem 4.14 The boundary of K, is connected if and only if 0 € K,. In
other words, the Julia set for f.(2) is connected if and only if the orbits of 0
are bounded.

EXAMPLE 4.23 Show that the Julia set for £i(z) is connected.

Solution  We apply Theorem 4.14 and compute the orbits of 0 for fi(z) =
2+ i Wehave () =i, fi(D = -1+, f(—1+DH=—-i,f(—D=—-1+i....
Thus, the orbits of O are the sequence 0, —1 + i, —i, =1 + {, =i, =1 + i, —i,

., which is clearly a bounded sequence. Thus, by Theorem 4.14, the Julia set
for f(z) is connected.

In 1980, the Polish-born mathematician Benoit Mandelbrot used computer
graphics to study the following set:

M = {c: the Julia set for f.(z) is connected }
= {c: the orbits of 0 determined by f.(z) are bounded}.
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The set M has come to be known as the Mandelbrot set. Color plate 6 shows
its intricate nature. Technically, the Mandelbrot set is not fractal since it is not self-
similar (although it may look that way). It is, however, infinitely complex, Color
plate 7 shows a zoom over the upper portion of the set shown in color plate 6, and
likewise color plate 8 zooms in on the upper portion of color plate 7. Notice that
we see in color plate 8 the emergence of another structure very similar to the Man-
delbrot set we began with, It is not an exact replica. Nevertheless, if we zoomed in
on this set at the right spot (and there are many such choices), we would eventually
see yet another ‘*Mandelbrot clone’” and so on ad infinitum! The remainder of this
section looks at some of the properties of this amazing set.

EXAMPLE 4.24 Show that {c: HE ﬂ cMm

Solution  Let IC’ < 1, and let {a,}_, be the orbits of O generated by
f(2) = z2 + c. Thus,
ay = 0,
a, =flap) =aj + ¢ =,
a, = f{a)) = ai + ¢, and in general,
a,., = fla,) = a> + ¢

We shall show that {a,} is bounded. In particular, we shall show that |a,,| < 4 for

all n by mathematical induction. Clearly |a,| < +if n = O or I. Assume |a,| <

+ for some value of n = 1 (our goal is to show |a,.;| < 3 ). Now

|a,,+1| = Ia,l, + C|

A

|a;| + |c| by the triangle inequality
<+ + by our induction assumption and the fact that |¢| < 4.
In the exercises, we ask you to show that if |c| > 2, then ¢ ¢ M. Thus, the

Mandelbrot set depicted in color plate 6 contains the disk D},4(0). and is contained
in the disk D.(0).

There are other methods for determining which points belong to M. To see
what they are, we need some additional vocabulary.

Definition 4.5 The point zy is a fixed point for the function f(z) if f(zo) =

20

Definition 4.6 The point z, is an attracting point for the function f(z) if
|f’(20)l <1

The following theorem explains the significance of these terms.
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Theorem 4.15 Suppose 2y is an attracting fixed point for the function f(2).
Then there is a disk D,(zo) about 7y such that the iterates of all the points in
D,(zp) are drawn towards the point z in the sense that

if z € D(z), then | f(z) — zol < |z~ 2.

Proof  Since z is an attracting point for f, we know that |f"(zy)| < 1. Since
fis differentiable at zy, we know that given any € > 0 there exists some r > 0 such

that if z is any point in the disk D’(z), then f2) = f) _ o) | < e If we set
I 20
g€ =1 — |f(z0)]. then we have for all z in D,(z) that

f2) = flzo) _

< <0

' A f(m)

- || = J'(z0) ' <1 - |f@].

which gives

S — flzo)

2=

Thus,
|/~ flz)| < |z = 2]
Since 7 is a fixed point for f, this implies

If@ ~ w]| < |z - 2.

In 1905, Fatou showed that if the function f.(z) has attracting fixed points, the
orbits of 0 determined by f.(z) must converge to one of them. Since a convergent
sequence is bounded, this implies that ¢ must belong to M. In the exercises we ask
you to show that the main cardioid-shaped body of M in color plate 6 is composed
of those points ¢ for which f.(z) has attracting fixed points. You will find that The-
orem 4.16 is a useful characterization of them.

Theorem 4.16 The points ¢ for which f.(z) has attracting fixed points satisfy
Il + (1 — 4c)”2| < 1or ‘1 — (1 — 40)V*| < 1, where the square root is the
principal square root function.

Proof The point z; is a fixed point for f.{z) if and only if fi{zy) = zo. In
other words, if and only if z(z) — zy + ¢ = 0. The solutions to this equation are
I + (1 — 4c)i” I — (1 — 40)¥
i R
where again the fractional exponent is the principal square root function. Now, if
Zy 1s an attracting point, then | f{(zo)| = | 2z9| < 1. Combining this with the solutions
for z, gives our desired result.
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Definition 4.6 An n-cycle for a function fis a set {20, 2y, . . ., 2,1} 0f n
complex numbers such that z; = flzi_)) for k =1, 2. ..., n — 1, and
f(:u—]) = 2p-

Definition 4.7 An n-cycle {zo, 21, - . . » 2n_1} for a function f is said to be

attracting if | gi(zo)| < 1. where g, is the composition of f with itself n times.
For example, if n = 2, then g2(z) = f(f(2)).

EXAMPLE 4.25 Example 4.23 shows that {—1 + i, —i} is a 2-cycle for the
function f;(z). It is not an attracting 2-cycle since g,(z) = z* + 2iz2 + i — 1, and
g4(z) = 4z + 4iz. Hence, |gh(—1 + )| = |4 + 4i],s0 |gx—=1 + D] > 1.

In the exercises, we ask you to establish that if {zy, z;, . . .. z,_,)} is an
attracting n-cycle for a function f, then not only does z, satisfy |g,(z)| < 1. but in
fact we also have that g, ()| < 1,fork=1,2,...,n— 1.

It turns out that the large disk to the left of the cardioid in color plate 6 consists
of those points ¢ for which f.(z) has a 2-cycle. The disk to the left of this, as well
as the large disks above and below the main cardioid disk, are those points ¢ for
which f.(z) has a 3-cycle.

Continuing with this scheme, we see that the idea of n-cycles explains the
appearance of the ‘*buds’’ that you see on color plate 6. It does not, however, begin
to do justice to the enormous complexity of the entire set. Even color plates 7 and
8 are a mere glimpse into its awesome beauty. In the exercise section, we suggest
several references for projects that you may like to pursue for a more detailed study
of topics relating to those covered in this section.

EXERCISES FOR SECTION 4.3

1. Prove that Newton’s method always works for polynomials of degree 1 (functions of
the form f(z) = uz + b, where a # 0). How many iterations are necessary before

—b
Newton’s method produces the solution z = — 1o f(z) = 07
a

2. Consider the function f(z) = > + 1, where N(z) = z -

] 1 )

2\" z/°

(a) Show that if Im(zy) > 0, the sequence {z;} formed by successive iterations of z;, via
N(z) lies entirely within the upper half plane.

1 1 1 1
Hint: If z = r(cos 6 + 7 sin 8). show N(2) = 5 (r - —)cos 0+ 1'5 (r + ;) sin 6.
r
(b) Show a similar result holds if Im(z,) < 0.
(¢) Discuss whether {z;} converges to i if Im(zy) > 0.

(d) Discuss whether {z,} converges to —i if Im(zp) < 0.
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(e) Use induction to show that if all the terms of the sequence{z;} are defined, then the
sequence {z;} is real provided z, is real.
(f) For which real numbers will the sequence {z;} be defined?

. Formulaie and solve analogous questions 1o Exercise 2 for the function f{z) = z* — I.

4. Consider the function fy(z) = z2, and an initial point zy. Let {z} be the sequence of

iterates of zy generated by fi(z). That is, z, = fuo{zu), 22 = fo(z)), and so forth.

(a) Show that if ]z“| < 1, the sequence {z;} converges (o 0.

(b) Show that if |z,| > I. the sequence {z) is unbounded.

(¢) Show that if |z,| = I, the sequence {z;} either converges to | or oscillates
around the unit circle. Give a simple criterion that can be applied to g, that will
dictate which one of these two paths the sequence {z;} takes.

Show that the Julia set for f 2(z) 1s connected.

Determine the precise structure of the set K_.

Prove thatif 7 = ¢ is in the Mandelbrot set, then its conjugate T is also in the Mandelbrot

set. Thus, the Mandelbrot set is symmetric about the x axis. Hint: Use mathematical

induction.

8. Find a value ¢ in the Mandelbrot set such that its negative, —c¢, is not in the Mandelbrot
set.

w

Nawm

10. Show that if ¢ is any real number greater than 1/4, then c is not in the Mandelbrot set.
Note: Combining this with Example 4.23 shows that the cusp in the cardioid section of
the Mandelbrot set occurs precisely at ¢ = 1/4.

11. Use Theorem 4.16 to show that the point —3V3i belongs to the Mandelbrot set.

12. Show that the points ¢ that solve the inequalities of Theorem 4.16 form a cardioid. This
cardioid is the main body of the Mandelbrot set shown in color plate 6. Hint: It may be
helpful to write the inequalities of Theorem 4.16 as

s+ G- | <3 o |-G -ot]<q.

13. Suppose that {z. z;} is a 2-cycle for £ Show that if z; is attracting for g;(2), then so is
the point z,. Hint: Differentiate g-(z) = f(f(z)) using the chain rule, and show that
g’ﬂa;) = gé(a).

14. Generalize Exercise 13 to n-cycles.

The remaining exercises are suggested projects for those wishing to engage in a more
detailed study of complex dynamics.

15. Write a report on how complex analysis is used in the study of dynamical systems.
Resources include bibliographical items 53, 54, 55, 58, and 143.

16. Write a report on how complex analysis is used in the study of fractals. Resources
include bibliographical items 7, 8, 9. 11, 55, 57, 58, 78, 84, 101, 125, 126, 134, 139,
143, 167, 175, and 188.

17. Write a report on how complex analysis is used to study the Julia set. Resources include
bibliographical items 144 and 177,

18. Write a report on how complex analysis is used to study the Mandelbrot set. Include
ideas and examples that are not mentioned in the text. Resources include bibliographical
items 31, 45, 56. 74, 125, 126. and 177.

19. Write a report on how complex functions are used in the study of chaos. Resources
include bibliographical items 11, 53. 54, 55, 57, 58, 142, and 168.
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Elementary Functions

How should complex-valued functions such as ¢, log z, sin z, etc.. be defined?
Clearly, any responsible definition should satisfy the following criteria: (1) The
functions so defined must give the same values as the corresponding functions for
real variables when the number z is a real number. (2) As far as possible, the prop-
erties of these new functions must correspond with their real counterparts. For ex-
ample, we would want e%1-=: = eies: to be valid regardless of whether ; were real
or complex.

These requirements may seem like a tall order to fill. There is a procedure,
however, that offers promising results. It is to put in complex form the expansion
of the real functions e*, sin x, etc., as power series.

5.1 The Complex Exponential Function

A standard result from elementary calculus is that the exponential function can be

represented by the power series ¢* = E — x”. Thus, it is only natural to define the
n=0 A,

complex exponential e° (also written as exp z) in the following way:

o1
Definition 5.1 ¢ = exp(z) = > — 2.
n=0N.

Clearly this definition agrees with that of the real exponential function when
z is a real number. We now show that this complex exponential has two of
the key properties we associate with its real counterpart, and verify the identity
e® = cos 0 + isin B, which we promised to establish back in Chapter 1.

Theorem 5.1 The function exp(z) is an entire function satisfving:

d
(3) exp'(z) = exp(z) = €. (In other words, - e = ¢.)

(1) exp(z) + z2) = exp(z))exp(z2). (In other words, e71' = = e71e72)
(i) If 0 is a real number, then e = cos § + i sin 0.

Proof From Example 4.17, we see that the series in Definition 5.1 has an
infinite radius of convergence, so exp(z) is entire by Theorem 4.13, (i).

125
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(1) By use of Theorem 4.13, (ii),

= 1 |
eXP(b)—Z—'”‘=E 2—; = exp(2).

n=1 n= 1(n - 1)'

(i1) Let { be an arbitrary complex number, and define g(z) by
g(2) = exp(2) exp(§ — 2).

Using the product rule, chain rule, and part (i), we have
g'(2) = exp(z) exp(C — z) + exp(@)[—exp({ — 2)] = Oforall z.

This implies that the function g must be constant (see Exercise 17 of Section 3.3).
Thus, for all z, g(z) = g(0). Since exp(0) = 1 (verify!), we deduce

g(2) = g(0) = exp(0) exp(C — 0) = exp({). Hence,
exp(2) exp(§ — 2) = exp({).
If we set z = z;, and let { = z; + 72, we get exp(zpexpl(z) + z2 — 2)) =
exp(z; + z;), which simplifies to our desired result.
(ii1) If 0 is a real number, then by Definition 5.1,
e = exp(iB)

= 2 — (iB)"

azo n!

1
(H = 2 [(2 S (i19) + m (iB)Z’”':I (by separating odd and even exponents)

7n+ 1
2 = (=1 ——  (verify!)
20 (2 TR +1)! Y
=cos 0 +isin 0 (by the series represenlalions for the real-valued sine and cosine

functions).

Note that parts (ii) and (iii) of the Theorem 5.1 combine to verify De Moivre’s
formula, which we gave in Section 1.5 (see identity (3) of that section).
If z = x + iy, we also see from conclusions (ii) and (iii) that

(3) exp(z) = ¢ = e = g'e = e¥(cos ¥y + i sin y).

Some texts start with equation (3) as their definition for exp(z). In the exer-
cises, we show that this is a natural approach from the standpoint of differential
equations.

The notation exp(z) is preferred over ¢ in some situations. For example,
exp(+) = 1.22140275816017 . . . is the value of exp(z) when z = 1/5, and equals
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Some of the properties of the transformation w = ¢ = exp(z) are:
(4) e = ¢z for all z, provided » is an integer.
5 e=1 if and only if z = 2nmi, where n is an integer.
(6) €41 =¢n if and only if z» = z; + 2nmi, where »n is an integer.

Properties (4) through (6) are left for the reader to establish.
Let us investigate the modulus and argument of w = ¢*. If z = x + iy, and we
write w in its exponential form as w = pe', equation (3) gives us

peit = e*e’.
Using property (4) of Section 1.5, the preceding implies
(7) p=e¢ and ¢ =y + 2nn, where n is an integer. Therefore,
8) p=|e|=¢e" and
(9) ¢ = arg e’ = Arg ¢ + 2nn, where n is an integer.

If we solve the equations in statement (7) for x and y, we get
(10) x=1Inp, andy = ¢ + 2an, where n is an integer.

Thus, for any complex number w # Q, there are infinitely many complex numbers
z = x + iy such that w = e*. From statement (10), we see that the numbers z are

A z=x+iy=Ilnp + ip + 2nn)
= In|w| + i(Arg w + 2nm), where n is an integer.

Hence
explln|w| + i(Arg w + 2nm)] = w.

In summary, the transformation w = ¢* maps the complex plane (infinitely often)
onto the entire set S = {w: w ¥ 0} of nonzero complex numbers.

If we restrict the solutions in statement (11) so that only the principal value
of the argument, —% < Arg w < T, is used, we can also see that the transformation
w = > = ¢**¥ maps the horizontal strip —7 < y < 7t one-to-one and onto the range
set S = {w: w # 0}. This strip is called the fundamental period strip and is shown
in Figure 5.2. Furthermore, the horizontal line z = ¢ + ib, for —eo < t < e in the
z plane, is mapped onto the ray w = ¢'e’’ = ¢'(cos b + i sin b) that is inclined at an
angle ¢ = b in the w plane. The vertical segment z = g + i0, for -1 < 0 < 7 in
the z plane, is mapped onto the circle centered at the origin with radius ¢“ in the w
plane. That is, w = eYe’® = e“(cos O + 7 sin 0). In Figure 5.2, the lines ry, r, and r3
are mapped to the rays r}, r;, and r3, respectively. Likewise, the segments s,, s, and
53 are mapped to the corresponding circles, s, 55, and s3, respectively.
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(a) Why is there no shading inside the circle 5,7

(b) Explain why the images of ry. r2, and r; appear (o make. respectively. angles of
—7n/8, m/4, and 3n/4 radians with the positive u axis.

(c) Why does the shading get lighter in the w plane as the distance {rom the origin
icreases?

(d) Describe precisely where the images of the points /x (in the z plane) should be
located in the w plane.

6. Show that exp(z + (m) = exp(z — in) holds for all .
7. Find the value of ¢* = u + /v for the following values of z.
W = (b) %— 7 () —4 + i
i3n 51 o .
(d)*]+—2— (C)]+T (1);—21
8. Find all valucs of 7 for which the {ollowing equations hold.
(a) e = —4 (h) e =2+ 2
(© =3~ (dy e = =1+ /3
9. Express exp(z®) and exp(1/z) in Cartesian form w(x, v) + iv(x, v).
10. Show that:
(a) exp(Z) = exp Z holds for all z and that
{b) exp(z) is nowhere analytic.
11. Show that |e | < | if and only if Re(z) > 0.
12. Show that:
e~ 1 e+l
(a) hm =1 (b) Iim — = ~]
=0 z coind AT

14.

15.

16.

17.

18.
19,

20.

22.

. Show that f{z) = ze* is analytic tor all ¢ by showing that its real and imaginary parts

satisfy the Cauchy-Riemann equations.

Find the derivatives of the following:

(a) 7 (b) z* exp(z?)

(c) elarim: (d)y exp(l/z)

Let n be a positive integer. Show that:

(a) (exp )’ = exp(nz) (b) 1 = exp(—nz)
(exp 2)"

Show that the image of the horizontal ray x > 0, y = 7/3 under the mapping w =
exp z is a ray.

Show that the image of the vertical line segment x = 2, ¥y = 1, where /6 < ¢t < 7n/6
under the mapping w = ¢ 1s half of a circle.

Use the fact that exp(z?) is analytic to show that e~ sin 2Zxv is a harmonic function.

Show that the image of the line x =1, ¥ = 2n + £, where —eo < t < oo under the mapping
w = exp z is a spiral.

Show that the image of the first quadrant x > 0, ¥ > 0 under the mapping w = cxp z is
the region [w| > 1.

. Let o be a real constant. Show that the mapping w = exp r maps the horizontal strip

o <y < o + 27 one-to-one and onto the range |w| > 0.
Explain how the complex function e and the function ¢* studied in calculus are different.
How are they similar?
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5.2 Branches of the Complex Logarithm Function

If w is a nonzero complex number, then the equation w = exp z has infinitely many
solutions. Because the function exp(z) is a many-to-one function, its inverse (the
logarithm) is necessarily multivalued. Special consideration must be made to define
branches of the logarithm that are one-to-one.

Definition 5.2 (Multivalued Logarithm) For z # 0, we define the func-
tion log(z) as the inverse of the exponential function; that is,

(1) log(z) =w ifand only if = exp(w).

If we go through the same steps as we did in equations (10} and (11) of Section
5.1, we will see that the values of w that solve equation (1) are

(2) log(x) = In|z| + iarg(z) (2 0),

where arg(z) is an argument of z and In i z] denotes the natural logarithm of
the positive number |:| Using identity (8} in Section 1.4, we can write

3 logz)=In ] :| + i[Arg(z) + 2mn). where n is an integer.

We call any one of the values given in equations (2) or (3) a logarithm of z.
Notice that the different values of log(z) all have the same real part and that their
imaginary parts differ by the amount 2nn, where n is an integer.

Definition 5.3 (Principal Value of the Logarithm) Forz # 0, we define
the principal value of the logarithm as follows:

(4)  Log(z) = In|z| + i Arg(z), where |z| > 0 and —1 < Arg(z) < 7.

The domain for f(z) = Log(z) = w is the set of all nonzero complex numbers
in the z plane, and its range is the horizontal strip —n < Im{w) < & in the w plane.
Notice that Log(z) is a single-valued function and corresponds to setting n = 0 in
formula (3). This is the choice used by popular software programs such as Mathe-
matica™, which we used to produce Figure 5.4. Parts (a) and (b) of this figure give
the real and imaginary parts (¢ and v. respectively) for Log(z) = Log(x + iv) =
u(x, ¥} + iv(x, y). Figure 5.4(b) illustrates a phenomenon inherent in constructing a
logarithm function: It must have a discontinuity! This is the case because as we saw
in Chapter 2, any branch we choose for arg(z) is necessarily a discontinuous func-
tion. The principal branch, Arg(z), is discontinuous at each point along the negative
X axis.
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.
4
T
TITTI
0
-
2 2
0 4]
2 -2
Y A X ¥
(a) u = Re[Log(2)] (b) v = Im[Log(z)]
FIGURE 5.4 The real and imaginary parts of Log(z).
EXAMPLE 5.3 By standard computations, we have
. . . . mn2 (n
log(l + ) =In|1 + | + iarg(l +z)=——2—+1 Z+27m .
where #n is an integer; the principal value is
In2 n
Log(l + i) = — + i~ .
og( i) 5 14

Properties of /og(z) and Log(z)
From equations (1) and (4). it follows that
(5) expflog(z)] =z forall z # 0,
and that the mapping w = Log 7 is one-to-one from the domain D = {z |:] >0}

in the ; plane onto the horizontal strip —n < Im(w) < 7 in the w plane. The mapping

w = Log(z) and its branch cut are shown in Figure 5.5.

w = Logz
_

FIGURE 5.5 The single-valued mapping w = Log(2).
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Even though Log(z) is not continuous along the negative real axis, it is still
possible to compute the logarithm of negative numbers.

EXAMPLE 5.4 By using equation (4) we sec that
(a) Log(—e) = In|—e| + i Arg(—e) = 1 + in, and
(b) Log(—=1) = In|—1| + i Arg(=1) = im.

When z = x + i0, where x is a positive real number, the principal value of the
complex logarithm of z is

(6) Log(x + i0) = Inx, wherex > 0.

Hence Log(z) is an extension of the real function In x to the complex case. To find
the derivative of Log(z), we use polar coordinates z = re®, and formula (4) becomes

(7) Log(z) =Inr +i0, where —m <0 <mandr>0.

In equation (7) we have u(r, 8) = In r and v(r, 6} = 8. The polar form of the
Cauchy-Riemann equations are

i 1
® u=-vps=- and v,=—uy, =0
r r r

and appear to hold for all z # 0. But since Log(z) is discontinuous along the nega-
tive x axis where 8 = m, the Cauchy-Riemann equations (8) are valid only for
—7n < § < w. The derivative of Log(z) is found by using the results of equations
(8) and identity (15) of Section 3.2, and we find that

d ) 1 I
9 c_i_ Log(e) = e (u, + iv,) =—e ™ =-, where —n <06 <mandr>0.
4 r z

Let z, and z; be nonzero complex numbers. The multivalued function log z
obeys the familiar properties of logarithms:

(10)  log(zizz) = log(zy) + log(z),
(11) log(zi/z) = log(z;) — log(zz), and
(12)  log(1/z) = —log(2).

Identity (10) is easy to establish. Using identity (12) in Section 1.4 concerning the
argument of a product, we write

log(zizz) = In|z | |z2] + i arg(zi22)
=In|z |+ In + i arg(zy) + i arg(z)
=[In|z | + iarg (z))] + [In]z2| + i arg(z)] = log(z)) + log(zo).

<2

Identities (11) and (12) are easy to verify and are left as exercises.
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It should be noted that identities (10)-(12) do not in general hold true when
og(z) is replaued everywhere by Log(z). For example, if we make the specific
‘hoices 7, = — /3 + i and - = —1 + i/3. then their product is 7,z = —4i. Com-
wuting the prinupal value of the logarithms, we find that

T in
Log(ziz2) = Log(—4i) = In4 — —.

lhe sum of the logarithms is given by

Log(z)) + Log(z2) = Log(—/ 340+ Log(—1 + i/3)
i5m i2n i3n
=ln2+—+]n2+—=1n4+——,
6 3 2
ind identity (10) does not hold for these principal values of the logarithm.
We can construct many different branches of the multivalued logarithm func-
ion. Let o denote a fixed real number, and choose the value of 8 = arg(z) that lies
n the range o0 < 8 < o + 2x. Then the function

13) fixy=Inr+1i9, wherer>0andoa <0 <o+ 2n

s a single-valued branch of the logarithm function. The branch cut for fis the ray
) = o. and each point along this ray is a point of discontinuity of f. Since
:xpl f(z)] = z. we conclude that the mapping w = f(z) is a one-to-one mapping of
he domain |z| > 0 onto the horizontal strip a0 < Im(w) < & + 2m. If o < ¢ <
! < o + 2m, then the function w = f(z) maps the set D = {re™ a <r < b, ¢ <
} << d} one-to-one and onto the rectangle R = {u + ivilna < u <Inbh.c < v < d}.
Fhe mapping w = f(z), its branch cut 8 = «, and the set D and its image R are
shown in Figure 5.6.

FIGURE 5.6 The branch w = f(z) of the logarithm.
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Any branch of the logarithm function is discontinuous along its branch cut.
In particular, f(z) = Log(z) is discontinuous at z = 0 and at points on the negative
x axis. Hence the derivative of Log(z) does not exist at z = 0 and at points on the
negative x axis. However, if we focus our attention on the multivalued function
w = log(z), then implicit differentiation will permit us to use the formula dw/dz =
1/z. This can be justified by starting with the second formula in equations (1) and
differentiating implicitly with respect to z to get

(14) 1 = exp(w) cj%

We can substitute exp(w) = z in equation (14) and obtain

dw 1 1

Therefore we have shown that

d 1
(15) = log(z) = z
holds for all z # 0.

It is appropriate to consider the Riemann surface for the multivalued function
w = log(z). This requires infinitely many copies of the z plane cut along the negative
x axis, which we will label Sy fork=.. ., —-n,...,~-1,0,1,. . .,%, .. ..
Now stack these cut planes directly upon each other so that the corresponding points
have the same position. Join the sheet S; to Sy., as follows. For each integer & the
edge of the sheet S; in the upper half plane is joined to the edge of the sheet 5.,
in the lower half plane. The Riemann surface for the domain of log(z) looks like a

spiral staircase that extends upward on the sheets S, S;, . . . and downward on the
sheets S_|, S_2,. . ., as shown in Figure 5.7. Polar coordinates are used for z on
each sheet:

(16) on S, use z=r(cos® + isin®), where
|z| and 2k — 1 < 0 < 7 + 2mk.

It

;
The correct branch of log(z) on each sheet is

(17) on S, use log(z) = Inr + iB, where
r=|z| and2mk — n < 0 < m + 27k
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12. Show that:
(a) In(x2 + y?) (b) arctan(y/x)
are harmonic functions in the right half plane Re(z) > 0.
13. Show that z7 = exp{n log(z)] where n is an integer.
14. (a) Show that Log(z,z:) = Log(z)) + Log(z,) holds true provided that Re(z;) > 0 and
Re(zm) > 0.
(b) Does Log[(—1 + i)?l = 2 Log(—1 + ?
15. (a) Is it always true that Log(1/z) = —Log(z)? Why?

d ]
(b) Is it always true that ; Log(z) = - 7 Why?

<

16. Construct branches of log(z + 2) that are analytic at all points in the plane except at
points on the following rays:
(@Ax=-2,yv=0 by x ==-2,y=0 () x=-2,v=0

17. Construct a branch of log(z + 4) that is analytic at the point z = =5 and takes on the
value 7ri there.

18. Using the polar coordinate notation z = re’, discuss the possible interpretations of the
function f(z) = In r + 0.

19. Show that the mapping w = Log(z) maps the ray r > (), § = /3 one-lo-one and onto
the horizontal line v = n/3.

20. Show that the mapping w = Log(z) maps the semicircle r = 2, —7/2 < 6 < /2 one-
to-one and onto the vertical line segment w = In 2, —1/2 < v < 7/2.

21. Find specific values of 7, and 2> so that Log(z,/z2) # Log(z;) — Log(z.).

22. Show that loglexp(z)] = z + i2nn, where » is an integer.

23. Show why the solutions to equation (1) are given by those in equation (2). Hint: Mimic
the process used in obtaining identities (10) and (11) of Section 5.1.

24. Explain why the function Log(z) is not defined when z =

5.3 Complex Exponents

In Section 1.5 we indicated that the complex numbers are complete in the sense that
it is possible to make sense out of expressions such as /1 + i or (—1) without
having to appeal to a number system beyond the framework of complex numbers.
We are now in a position to come up with a meaningful definition of what is meant
by a complex number raised to a complex power.

Definition 5.4 Let ¢ be a complex number. We define 2 by the equation
(1) ¢ = expfc log(2)].

This definition makes sense, since if both z and ¢ are real numbers with
z > 0, equation (1) gives the familiar (real) definition for z*.

Since log(z) is multivalued, the function z© will in general be multivalued. The
function f given by

(2)  f(2) = explc Log(z)}

1s called the principal branch of the multivalued function z'. Note that the principal
branch of z° is obtained from equation (1) by replacing log(z) with the principal
branch of the logarithm.
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EXAMPLE 5.5 Find the principal values of /1 + i and (—1)..
Solution From Examples 5.3 and 5.4,

In2 b1 T
Log(l +i)=—"+i==1In2" +i-, and
og( i) > iz =1n iy, an

Log(—1) = in.

By using equation (1), therefore, we see that the principal values of /1 + i and

(—1) are

JT+i=(1+p”
|
= exp[i (ln 212 4 t%)]
= exp(ln 214 + iE)
8
= 214 (cosg + isin g)
=~ 1.09684 + 0.45509i, and
(—1) = exp(i(in}))
= exp(—m)
= (0.04321.

It is interesting that the result of raising a real number to a complex power
may be a real number in a nontrivial way.

Let us now consider the various possibilities that may arise when we apply
formula (1):
Case (i): Let us suppose ¢ = k, where & is an integer. Then if z = re®*,

klog(z) = k In(r) + ik(® + 2mn),

where n is an integer. Recalling that the complex exponential function has period
2wi, we have

(3) & = explk log(2)]
explk In(r) + k(0 + 27.n))
r* exp(ik8) = r*(cos k0 + i/ sin k0),

il

which is the single-valued kth power of z that was studied in Section 1.5.
Case (i1): If ¢ = 1/k, where k is an integer, and z = re’®, then

1 j 2

Tinr+ (0 + Tm)'

k k
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where n is an integer. Hence, formula (1) becomes

l
exp[; log(z)]

1
exp[z In(r) + i

(4) ZI/l.

0 + 2nn
k

.8 + 2nn ) 0 + 2nn {0+ 2mn
ri% exp P = rik cos\ ———— +zsm——k— .

Using again the periodicity of the complex exponential function, we see that equa-
tion (4) gives k distinct values correspondington = 0, 1, . . ., k — 1. Therefore,
the fractional power z'* is the multivalued kth root function.

Case (ii1): If j and k are positive integers that have no common factors, and
¢ = j/k, then formula (1) becomes

+ i 8 + : 4 .

k k

and again there are k distinct values correspondington =0, 1,. . .,k — 1.
Case (iv): If ¢ is not a rational number, then there are infinitely many values
for z*.

EXAMPLE 5.6 The values of 2!°+//50 are given by

1 [
2]/99i/50= - 4 — 2+ 2 ]
exp[(g 50)(111 i nn)]
m2_em (2 2w
P79 T35 T \50 T 9

2 2
219p-nn25| o M + @_ﬂ + isin ln__ + JC_") ,
50 9 50 9

where 7 is an integer, and the principal value of 2'°+//30 is given by

: In2 In2
21940150 = 2"9[005(2—()) +i sin(—:—o—> ] =~ 1.079956 + 0.014972i.

Terms for the multivalued expression withn = —9, —8,. . ., 8, 9 are shown
in Figure 5.8, and exhibit a spiral pattern that is often present in complex powers.



5.3 Complex Exponents 141

g
2

FIGURE 5.8 Some of the values of 2//9+//50,

Some of the rules for exponents carry over from the real case. If ¢ and d are
complex numbers and z # 0, then
, 1
6) ==
(7) Z«'zd — :('+11

=

(8) i = g-d,

A
(9) () =z, where n is an integer.

Identity (9) does not hold if n is replaced with an arbitrary complex value.

EXAMPLE 5.7

(i®) = exp[i log(—1)] = e~ ""27 where n is an integer and
(1)*" = exp(2i log i) = e~"!"¥% where n is an integer.

Since these sets of solutions are not equal, identity (9) does not always hold.
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The derivative of f(z) = exp[c Log(z)] can be found by using the chain rule,
and we see that

C
(100 f'(2) = - exp[c Log(2)].
<
If we use z¥ = exp[c Log(z)], then equation (10) can be written in the familiar form

we learn in calculus. That is,

(ll) i#('——gﬂ('
) d:{& ZA-,

which holds true when z“ is the principal value, when z lies in the domain r > O,
—71 < 8 < 7, and when ¢ is a complex number.

We can use definition (1) to define the exponential function with base b where
b # 0 is a complex number, and we write

(12) b = explz log(b)].

If a value of log(b) is specified, then b in equation (12) can be made single-valued,
and the rules of differentiation can be used to show that the resulting branch of b°
is an entire function. The derivative of b is then given by the familiar rule

(13) %bz = b log(b).

EXERCISES FOR SECTION 5.3

1. Find the principal value of the following:

() & (b) (1 + iy (e) (—1y= d) (1 +iy3)7
2. Find all values of the following:
(a) ii (b (-1v7 (c) (PP~ (d (1 + i

Show that if z ¥ 0, then z has a unique value.

Find all values of (—1)* and (i)¥3.

5. Use polar coordinates z = re™, and show that the principal branch of 7' is given by the
equation

& w

7= e "[cos(In r) + isin(ln 7)), wherer > 0and —n < 6 < n.
6. Let o be a real number. Show that the principal branch of z* is given by the equation
7 =r“cos of + ir*sin 0f, where -t <9 <.

Find (d/dz)z~.

7. Establish identity (13); that is, (d/d2)b- = b log(b).

8 Letz, = (1 +i)forn=12,. .. .Show that the sequence {z,} is a solution to the
linear difference equation

w =22 - 22,2 forn=3,4, ... .

Hint: Show that the equation holds true when the values z,,. z,_;, and z,,_» are substituted.
9. Verify identity (6). 10. Verify identity (7).
11. Verify identity (8). 12. Verify identity (9).
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13. Is 1 raised to any power always equal to 17 Why?
14. Construct an example that shows that the principal value of (z,z;)'"* need not be equal

to the product of the principal values of £} ¢,

5.4 Trigonometric and Hyperbolic Functions

Given the success we have had in using power series to define the complex expo-
nential, we have reason to believe this approach will be fruitful for other elementary
functions as well. The power series expansions for the real-valued sine and cosine
functions are

x2n+l i -2

sin x = /}:‘6 (—1)y -——————(zn T and cosx = ,Zu (—1y -

Thus, it is natural to make the following definitions.

Definition 5.5

-2n
Z

———, ¢0sI= =1y .
n=0 (2“ + l)' r;)( (2")'

Clearly, these definitions agree with their real counterparts when z is real.
Additionally. it is easy to show that cos 7 and sin z are entire functions. (We leave
the argument as an exercise.) Their derivatives can be computed by appealing to
Theorem 4.13. part (ii):

d - :Zn‘l
() —sinz = i [2 (=1 —}
n=0

dz Z (2n + 1
_ i (—1y (2n + Dz*"  (Exercise: Explain why the index n
=0 Cn+ ! stays at O here.)
_ S“" 1y =2n
,f:’n( ) (2n)!
= COS Z.

It is left as an exercise to show that
(2) —cosz= —sinz.

dz

We also ask you to establish that for all complex values z,
(3) sinfz 4+ cos?z=I.

The other trigonometric functions are defined in terms of the sine and cosine
functions and are given by
sin z Cos z

cotz = — 5
COS 2 Sin g

(4) tang =
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1 1
(5) secz= , Cscz = .
Cos Z sin z

The rules for differentiating a quotient can now be used in equations (4) and
(5) together with identity (3) to establish the differentiation formulas

d d
(6) —tanz =sec?z, —cotz = —csciz;
z dz
d d
(7) —secz=secztanz, ——CSCZ = —CSCZcCotz,
dz dz

Many algebraic properties of the sine and cosine extend to the complex
domain. It is easy to show by appealing to Definition 5.5 that

®) sin(—z) = —sinz and cos(—z) = cosz forallz

To establish other properties, it will be useful to have formulas to compute cos z
and sin z that are of the form u + iv. (Additionally, the applications in Chapters 9
and 10 will use these formulas.) We begin by observing that the argument given to
prove part (iii) in Theorem 5.1 easily generalizes to the complex case with the aid
of Definition 5.5. That is,

(9) e==cosz+ising
for all z, whether z is real or complex. Hence,
(10) e = =cos(—z) + isin(—z) =cosz — isinz
Subtracting equation (10) from equation (9) and solving for sin z gives
(1) sinz= i (e — e i) = l (e ¥+ix — g¥-iv),
2i 2i

Now we appeal to Theorem 5.1, parts (ii) and (iii), to get

sin z = % [e~¥(cos x + isin x) — e*(cos x — i sin x)]

e+ e e — e

=sinx——— +icosx
2 2

Similarly

(12) cosz= +(e 4 e ) = F(e >+ 4 or-iv)

e’ + e .. e — e
cosx{ ——— | —ismx| ——).
2 2

You may recall that the hyperbolic cosine and hyperbolic sine of the real
variable v are

Y 4 ey Y — ¥
(13) coshy = %— and sinhy = %—

Substituting identities (13) into the proper places of equation (12) gives
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(14) sinz = sin x cosh y + i cos x sinh y.
A similar derivation leads to the formula for cos z:
(15) cosz = cosxcoshy — isinxsinhy.

A graph of the mapping w = sin z = sin(x + iy) = sin x cosh y + i cos x sinh
v can be obtained parametrically. Consider the vertical line segments in the z plane
-n  krn
R + —_—
2 12
x value letting y vary continuously, —3 < y < 3. The image of these vertical seg-
ments are hyperbolas in the uv plane, as Figure 5.9 illustrates. We will give a more
detailed investigation of the mapping w = sin z in Chapter 9.

obtained by successively setting x = fork=0,1,. . .,12, and for each

v

W= Sinz A

A —

3

2

1

- v v u
~n/2 w2 -10
-1
-2
-3
-10

FIGURE 5.9 Vertical segments are mapped onto hyperbolas by w = sin(z).

Identities (14) and (15) can be used to investigate the periodic character of
the trigonometric functions, and we have

(16) cos(z + 2n) = cosz and sin(z + 21) = sin z
and

(A7 cos(z+ ) = —cosz and sin(z + ®) = —sinz.
Identities (17) can be used to show that

(18) tan(z + m) =tanz and cot(z + M) = cotz.

A solution of the equation f(z) = 0 is called a zero of the given function f,
The zeros of the sine and cosine function are real, and we find that

(19) sinz =0 ifandonlyifz = nn,
where n = 0, 1,42, . . ., and

(20) cosz = ifandonly ifz = (n + )n  wheren = 0, £1,42, . . . .
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EXAMPLE 5.8 Let us verify identity (20). We start with equation (15) and
write

(21) 0 = cos x cosh y — isin x sinh y,
Equating the real and imaginary parts of equation (21), we obtain
(22) O=cosxcoshy and O = sinx sinh v.

Since the real-valued function cosh v is never zero, the first equation in (22) implies
that 0 = cos x. from which we obtain x = (n + H)n forn = 0, 1,42, . . . . By
using these values for x the second cquation in (22) becomes

0 = sin|(n + -H)n] sinh y = (—1)" sinh v.

Hence y = 0, and the zeros of cos 7 are the values 7 = (n + 3)m wherc n = 0, £],
2, ...

The standard trigonometric identities are valid for complex variables:
(23) sin(zy + z2) = sin gy cos Z» + cos 7y sin 2> and
(24) cos{z) + Z2) = cos Z) €08 2> — Sin z; sin Ia.
When z, = z», identities (23) and (24) become
(25) sin2z=2sinzcosz and c¢os 2z = cos®z— sinz
Other useful identities are

(26) sin(—z) = —sinz and cos(—z) = cos Z,

v =n = e
2D sm(g + z) = sm(a - :) and sm(E - z) = COS Z.

EXAMPLE 5.9 Let us show how identity (24) is proven in the complex case.
We start with the definitions (3) and (4) and the right side of identity (24). Then we
write

(28) COS 7 COS I = JL [ei(:, D) 4 ittt el 4 emilein »] and
—sin 4 sin = % [ei(.il‘:_\) — eC1mn) — i) 4 @il :3)]'
When these expressions are added, we obtain
COS 2] COS 7 — Sin gy sin gy = 1 [ef511%) + et G2 = cos(z, + ),

and identity (24) is established.




5.4 Trigonometric and Hyperbolic Functions 147

Identities involving moduli of cosine and sine are also important. If we start
with identity (14) and compute the square of the modulus of sin z, the result is

2

|sinz|* = |sinxcoshy + i cos x sinh y
sin® x cosh’? y + cos? x sinh? y
= sin® x(cosh? y — sinh? y) + sinh? y(cos? x + sin? x).

Using the hyperbolic identity cosh? y — sinh? y = 1 yields

(29 |sin z|> = sin x + sinh? y.

A similar derivation shows that

(30) |cos z|* = cos? x + sinh? y.

If we set z = xy + iy in equation (29) and let y — oo, then the result is

lim |sin(x, + iy) > = sin xp + lim sinh? y = oo,

Voo V—yoo
This shows that sin z is not a bounded function, and it is also evident that cos z is
not a bounded function. This is one of the important differences between the real
and complex cases of the functions sine and cosine.

From the periodic character of the trigonometric functions it is apparent that
any point w = cos £ in the range of cos z is actually the image of an infinite number
of points.

EXAMPLE 5.10 Let us find all the values of z for which the equation
cos z = cosh 2 holds true. Starting with identity (15), we write

(31) cos xcoshy — isinxsinhy = cosh 2.
Equating the real and imaginary parts in equation (31) results in
(32) cosxcoshy =cosh2 and sinxsinhy = 0.

The second equation in (32) implies either that x = nn where #n is an integer or that
y = 0. Using the latter choice y = 0 and the first equation in (32) leads to the
impossible situation cos x = (cosh 2/cosh 0) = cosh 2 > 1. Therefore x = nw where
n is an integer. Since cosh y = 1 for all values of y, we see that the term cos x in
the first equation in (32) must also be positive. For this reason we eliminate the odd
values of n and see that x = 2nk where k is an integer.

We now solve the equation cosh y cos 2ank = cosh y = cosh 2 and use the
fact that cosh y is an even function to conclude that y = +2. Therefore the solutions
to the equation cos z = cosh 2 are z = 2wk + 2i where k is an integer.

The hyperbolic functions also find practical use in putting the tangent function
into u + iv form. By earlier results, we have

sin(x + #v) _ sinx coshy + i cos x sinh y

tan z = tan(x + iy) = — = — - .
N cos(x + iy) cosxcoshy — isinxsinhy
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If we multiply each term on the right by the conjugate of the denominator, the
simplified result will be

cos x sin x + i cosh y sinh v

(33) tanz = S : - .
cos® x cosh? vy + sin? x sinh? y

We leave as an exercise that the identities cosh® y — sinh” v = 1, and sinh 2y =
cosh y sinh v can be used in simplifying equation (33) to get

) sin 2x . sinh 2y
(34) tanz =

1 .

cos 2x + cosh 2y cos 2x + cosh 2y
As was with the case with sin z, a graph of the mapping w = tan 7 can be
obtained parametrically. Consider the vertical line segments in the : plane obtained

- kT
by successively setting x = e + To fork =0,1,. . .,8, and for each x value

letting v vary continuously, —3 =< v < 3. The image of these vertical segments are
circular arcs in the uv plane, as Figure 5.10 shows. We will give a more detailed
investigation of the mapping w = tan 7 in Chapter 9.

\
4

—n/4 /4 -1 1

FIGURE 5.10 Vertical segments are mapped onio circular arcs by
w = tan z.

The hyperbolic cosine and hyperbolic sine of a complex variable are defined
by the equations

(35) coshz= e+ ¢ and
(36) sinhz = 3(e" — ¢79).
The other hyperbolic functions are given by the formulas

sinh z cosh z
and cothz; = ——;
cosh z sinh z

(37) tanhz =
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| 1
and c¢schz = — .
cosh ¢ sinh z

(38) sech:z =
The derivatives of the hyperbolic functions follow the same rules as in calculus:

v d . d
39 7 cosh z = sinh z and — sinh z = cosh z;

az az

(40) = tanh ; = sech’ z and — coth z = —csch? z;
d
(41 A sechz = —sech ztanh z and I c¢schz = —csch z coth z

The hyperbolic cosine and hyperbolic sine can be expressed as
(42) coshz = coshxcosy+ isinhxsiny and
(43) sinh z = sinh x cos vy + i cosh x sin v.

The trigonometric and hyperbolic functions are all defined in terms of the
exponential function, and they can easily be shown to be related by the following
identities:

(44) cosh(iz) = cosz and sinh(iz) = 7sin z;

(45) sin(iz) = isinhz and cos(iz) = cosh z

Some of the identities involving the hyperbolic functions are
(46) cosh? z — sinh? z = 1,

(47) sinh(z, + z») = sinh z; cosh 2z + cosh z; sinh 2,

(48) cosh(z; + z3) = cosh z; cosh z; + sinh z; sinh 2,

(49) cosh{z + 2ri) = cosh Z,

(50) sinh(z + 2mi) = sinh 2,

(51) cosh(—z) = coshz, and

(52) sinh(—z) = —sinh z.

We conclude this section with an example from electronics. In the theory of
electric circuits it is shown that the voltage drop Ex across a resistance R obeys
Ohm’s law:

(53) Ex=IR,

where I is the current flowing through the resistor. It is also known that the current
and voltage drop across an inductor L obey the equation
dl

(54) EL:LE'
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The current and voltage drop across a capacitor C are related by
1 J’
(55) Ec= e I(7) d=.

The voltages E;, Eg, and E¢ and the impressed voltage E(r) in Figure 5.11
satisfy the equation

(56) EL + ER + E(' = E(f)

r

I

]
T

C
E R L E
" E(1) L
M

O MN,0—

FIGURE 5.11 An LRC circuit.

Suppose that the current /(¢) in the circuit is given by
(57) ItH = I sin wt.
Using equations (53), (54), and (57), we obtain
(58) Ep = Rlysin ot and
(5%9) E; = wlLl, cos wt,

and we can set fp = 7/2 in equation (55) to obtain
, 1
60y E-= ——— 1, cos wl.

wC

If we write equation (57) as a complex current
(61) I* = Jpe™'

and use the understanding that the actual physical current / is the imaginary part of
I*, then equations (58)—(60) can be written

(62) Ej, = Rlpe™ = RI*,

+

(63) E, = iwLly™ = ioLl*, and
(64) E, L e = 7
= — e’ = —— .
€ wc inC

Substituting equations (62)-(64) into equation (56) results in

(65) E¥=E,+E +E.= [R + i(wL - —-)]1*
wC,
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and the complex quantity Z defined by

(66) Z=R+ i<wL— L)

wC

is called the complex impedance. Using equation (66), we can write

(67)

E* = ZI*,

which is the complex extension of Ohm’s law.

EXERCISES FOR SECTION 5.4

By making use of appropriate thecorems in Section 4.2, show that sin z and cos 7 are
entire functions.

d
Establish that ; cosz = —sin z.

This exercise will demonstrate that for all z, sin” z + cos® z = |.

(a) Define the function g{z) = sin® z + cos® z. Explain why g is entire.
(b) Show that g is constant. Hins: look at g'(z).

(¢) Use part (b) to establish that for all z, sin® z + cos* z = 1.

4. Show by appealing to Definition 5.5 that sin(—z) = —sin z, and cos(-z) = cos z for all
5. Verity identity (9). Hint: Use a similar argument to the one used in the proof of Theorem
4.14, part (iii).
6. Show that equation (33) simplifies to equation (34). Hint: Use the facts that
cosh? y — sinh’> y = 1, and sinh 2v = cosh v sinh v.
7. Explain why the pictures in Figures 5.6 and 5.7 came out the way they did.
8. Show that:
n
(a) sin(m — z) = sin z b sin(z - z) = COs z
9. Express the following quantities in u + iv form:
. ) C(m+ 4 o
(a) cos(l + 1) (b) sin 1 (c) sin 27
. w4+ 2 i
(d) cos(—2 + 1) (e) tan ! (f) tan :
4 2
10. Find the derivatives of the following:
(a) sin(l/2) (b) ztan z (c) sec z° (d) zesc? g
11. Establish identity (15).
12. Show that:
(a) sin z = sin z holds for all z and that  (b) sin Z is nowhere analytic.
13. Show that:
z -1
(a) lim — = 0 and that
=0 4

14,

(b) lim tan(xo + /v) = i, where x, is any fixed real number.

Find all values of z for which the following equations hold:
(a) sin 7 = cosh 4 (b) cosz =2 (¢) sinz = i sinh 1

. Show that the zeros of sin z are 7 = s where n is an integer.
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16. Establish identity (23). 17. Establish identity (30).

18. Establish the following relation: |sinh y| < |sin z| < cosh y.

19. Use the result of Exercise 18 to help establish the inequality |cos z]> + |sinz | = I,
and show that equality holds if and only if z is a real number.

20. Show that the mapping w = sin z maps the y axis one-to-one and onto the v axis.

21. Use the fact that sin iz is analytic to show that sinh x cos y is a harmonic function.

22. Show that the transformation w = sin z maps the ray x = n/2, ¥y > 0 one-to-one and
ontotheray w > 1. v = 0.

23. Express the following quantities in u + iv form.

, 4—i
(a) sinh(l + im) (b) cosh% (c) cosh( 4”‘)

24. Establish identity (46).
25. Show that:

(a) sinh(z + in) = —sinh z (b) tanh{z + ixw) = tanh z
26. Find all values of z for which the following equations hold:

(a) sinh z = i/2 (b) coshz = 1
27. Find the derivatives of the following:

(a) zsinhz (b) cosh z* (c) ztanh z
28. Show that:

(a) sin iz = [ sinh z (b) cosh(iz) = cos z

29. Establish identity (42).

30. Show that:
{a) cosh z = cosh z and that (b) cosh z is nowhere analytic.

31. Establish identity (48).

32. Find the complex impedance Zif R = 10, L =10, C = 0.05, and w = 2.

33. Find the complex impedance Zif R = 15, L = 10, C = 0.05. and w = 4.

34. Explain how sin z and the function sin x studied in calculus are different. How are they
similar?

35. Look up the article on trigonometry and discuss what you found. Use bibliographical
item 80.

5.5 Inverse Trigonometric and Hyperbolic Functions

The trigonometric and hyperbolic functions were expressed in Section 5.4 in terms
of the exponential function. When we solve for their inverses, we will obtain for-
mulas that involve the logarithm. Since the trigonometric and hyperbolic functions
are all periodic, they are many-to-one. Hence their inverses are necessarily multi-
valued. The formulas for the inverse trigonometric functions are given by

(1) arcsinz = —ilogliz + (1 — 797,

(2) arccosz = —ilog[z + i1 — z%)'?], and
i i+ z

(3) arctanz = - log(, )
2 i—2Z

The derivatives of the functions in formulas (1)—(3) can be found by implicit dif-
ferentiation and are given by the formulas:
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d . i
4) Zi—z arcsin z = m s
v o -1
(5 d_:' arccos 7 = El—_;z)”z , and

d
(6) d—zarctan¢= T

We shall establish equations (1) and (4) and leave the others as exercises.
Starting with w = arcsin z, we write

. 1 ,
z=sinw=—(e" —e'"),
21

which also can be written as

(7) & ~2iz—ev=0.

If each term in equation (7) is multiplied by ¢'", the result is
(8) (e — 2ize'm ~ 1 =0,

which is a quadratic equation in terms of ¢/*. Using the quadratic equation to solve
for e’ in equation (8), we obtain

_2iz+ (44"

9 v =iz 4+ (1 - )",

where the square root is a multivalued function. Taking the logarithm of both sides
of equation (9) leads to the desired equation

w = arcsin z = —i logliz + (1 — z%)'?],

where the multivalued logarithm is used. To construct a specific branch of arcsin z,
we must first select a branch of the square root and then select a branch of the
logarithm.

The derivative of w = arcsin ¢ is found by starting with the equation sin
w = z and using implicit differentiation to obtain

dw 1
dz  cosw’
When the principal value is used, w = Arcsin z = —i Log[iz + (1 — z%)"?] maps

the upper half plane, Im(z) > 0, onto a portion of the upper half plane Im(w) > 0,
-7 T
that lies in the vertical strip B3 < Re(w) < 3 The image of a rectangular grid in

the z plane is a “‘spider web’’ in the w plane, as Figure 5.12 shows,
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F
3
w = Arcsin
__>
y 3
b
10
1
X i
-10 -8 -6 4 -2 2 4 6 810 -n/2 /2

FIGURE 5.12 A rectangular grid is mapped onto a spider web by w = Arcsin z.

EXAMPLE 5.11 The values of arcsin /2 are given by
(10) arcsin 2 = —ilogliv/2 + (1 — (V2))'2] = —ilog (iV2 i)
Using straightforward techniques, we simplify equation (10) and obtain
arcsin ﬁ = —i log[(ﬁi 1)]
= i[]n(ﬁi 1+ i(E + 2nn>]

2
= g + 2nn — i In(/2 £ 1), where n is an integer.
If we observe that
2-—-1 2+1 1 ~
In(/2 - 1) = ln(f ﬁ)(f o= vz,
2+ 1 V2 +1

then we can write

T
arcsin f = > +2rnnti ln(ﬁ + 1), where n is an integer.

EXAMPLE 5.12 Suppose that we make specific choices in equation (10). We
select +i as the value of the square root [1 — (/2)2]'2 and use the principal value
of the logarithm. The result will be

f(J2) = aresin /2 = —iLog(iy2 + i) = g —in(J2 + D),
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and the corresponding value of the derivative is given by

1

- T = -1

= 1
' V2 = ——_—_——s—— = =
LTINS

The inverse hyperbolic functions are given by the equations:
(11) arcsinh z = log[z + (2 + 1)V,

(12) arccosh £ = log[z + (2 — 1)"?], and

Il =z

1 I+z
(13) arctanhz = 510g< )

The derivatives of the inverse hyperbolic functions are given by

i .1
(]4) Ez‘ arcsinh 7 = m .
d 1
(15) d—zarccoshz = m, and
d 1
(16) — arctanh z = =
dz 1 —z°

To establish identity (13), we start with w = arctanh z and obtain

e — e~ " 672\;' — 1
e+ emv - eZu' + 1 ’

z=tanhw =

which can be solved for ¢° to yield e>* = (1 + z)/(1 — z). After taking the loga-
rithms of both sides, we obtain the result

1 1 +z
w = arctanh z = Elog .

I -z

and identity (13) is established.

EXAMPLE 5.13 Calculation reveals that

g LF L2 L
LH1+20 1L
BT _1_-2i 2%

il

arctanh(1 + 2i)

1
2
1 A3 . .

Zln 24+ 3 + n | m, where n is an integer.
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EXERCISES FOR SECTION 5.5

1.

® NS v W

Find all values of the following:

(a) arcsin % (b) arccos % (c) arcsin 3

(d) arccos 3i (e) arctan 2i (f) arctan
Find all values of the following:

(a) arcsinh { (b) arcsinh % (c) arccosh i
(d) arccosh + (e) arctanh i (f) arctanh ;/3

Establish equations (2) and (5).

Establish equations (3) and (6).

Establish the idenuty arcsin z + arccos z = (n/2) + 27n where n is an integer,
Establish equation (16).

Establish equations (11) and (14).

Establish equations (12) and (15).
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Complex Integration

6.1 Complex Integrals

In Chapter 3 we saw how the derivative of a complex function is defined. We now
turn our attention to the problem of integrating complex functions. We will find that
integrals of analytic functions are well behaved and that many properties from cal-
culus carry over to the complex case. To introduce the integral of a complex func-
tion, we start by defining what is meant by the integral of a complex-valued function
of a real variable. Let

J) = ut) + iv(t)y fora<t=<bpb,

where u(f) and v(r) are real-valued functions of the real variable ¢. If u and v are
continuous functions on the interval, then from calculus we know that 1 and v are
integrable functions of 1. Therefore we make the following definition for the definite
integral of f:

b h 2]
)] j f@® dr = f u(®) dt + i[ v(?) dt.

Integrals of this type can be evaluated by finding the antiderivatives of « and
v and evaluating the definite integrals on the right side of equation (1). That is, if
U'(H) = u(t) and V' (1) = v(1). then we write
[

(2) [ dr = U — Ula) + ifV(D) — V(a)].

EXAMPLE 6.1 Let us show that

) h

3 t— ) dr=—.

(3) o (t — iy dr 7

Since the complex integral is defined in terms of real integrals, we write the inte-
grand in equation (3) in terms of its real and imaginary parts: f(r) = (¢ — i) =
¥ — 3r + i(—3F + 1). Here we see that 4 and v are given by u(r) = £ — 3t and
v(t) = —3# + 1. The integrals of & and v are easy to compute, and we find that

1 -5 1
f (# — 3 dt = — and J (=32 + 1)dr = 0.
0 4 0

157
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Hence definition (1) can be used to conclude that

i 1 1 _
jﬂ t—Ndt = .fu u(t) dr + iL V(e dr = 75

Our knowledge about the elementary functions can be used to find their
integrals.

EXAMPLE 6.2 Let us show that
/2 ' l 5 l’ )
Lew0+mm=5wﬂ—n+5@u+n

Using the method suggested by equations (1) and (2), we obtain

n/2 nf2 n/2
L exp(t + in) dt = L e cos tdt + i[{) e’ sin t dt.

The integrals can be evaluated via integration by parts, and we have

/2 1 i t=n/2
J'n exp(t + i) dt = 5 e'(cos t + sin t) + 5 e(sint — cos t)
& < =0

(enll — 1) + %(en/z + 1)_

-

Complex integrals have properties that are similar 1o those of real integrals.
Let f(t) = u(t) + iv(f) and g(r) = p(#) + ig(?) be continuous on g < ¢t < b. Then the
integral of their sum is the sum of their integrals; so we can write

b b b
(G)] . [f(©) + g(t)] dr = , f(nyde + J:’ g(t) dr.

It is convenient to divide the intervala < r < bintoga <t < candc =t < b and
integrate f(r) over these subintervals. Hence we obtain the formula

b 4 b
5) | fdr= f foyde+ | fwar

Constant multiples are dealt with in the same manner as in calculus. If ¢ + id denotes
a complex constant, then

b b

(6) (c +id)f(t)dt = (¢ + id) | () dr

If the limits of integration are reversed, then

u b
(ﬂﬁmm=nmm
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Let us emphasize that we are dealing with complex integrals. We write the integral
ot the product as follows:

4

b
(8) . f(og(t) dr = f , [u(Hp(t) — v(Hg(D)] dt +

[7
i J:, [u(g(t) + v(t)p(n)] dt.

EXAMPLE 6.3 Let us prove equation (6). We start by writing
(c + id)f(r) = cu(t) — dv(ey + i[cv(®) + du(®)].

Using definition (1), the left side of equation (6) can be written as

i b b [
(9) cj u(ty dt — df vt dt + ic[ v(t) dr + idJ' u(t) dr,

{ 1

which is easily seen to be equivalent to the product

[ b
(1) (¢ + id)liJ’ u(t) dt + iJ’ v(t) dt].

o)

It is worthwhile to point out the similarity between equation (2) and its
counterpart in calculus. Suppose that U and V are differentiable on @ < ¢ < b and
F(n = U + iV(e), then F'(t) is defined to be

F(n=U{®+iv,
and equation (2) takes on the familiar form
P
(11) f f( dt = F(by — F(a), where F'(1) = f(1).
This can be viewed as an extension of the fundamental theorem of calculus. In
Section 6.5 we will see how the extension is made to the case of analytic functions

of a complex variable. For now, note that we have the following important case of
equation (11):

[
a2 [ rwd =1 - @,

EXAMPLE 6.4 et us use equation (11) to show that [7 exp (it) dt = 2i.

Solution If we let F(r) = —i exp (it} = sin t — i cos 7 and f(¢f) = exp(it)
= cos t + i sin ¢, then F'(f) = f(1), and from equation (11) we obtain

L explit)dt = L St dr = F(w) — F(0) = —ie™ + i’ = 2i.




160 Chapter 6 Complex Integration

EXERCISES FOR SECTION 6.1

For Exercises 1-4, use equations (1) and (2) to find the following definite integrals.

t
t+i

1 I /2 2
1. L Be—D*dt 2. L (r+ 20 de 3. L cosh(inydr 4. L dt

n/d
5. Find J’U t exp(it) dr.

6. Let m and n be integers. Show that

2n
f pimtg-in (Jj = 0 when m # n.
0 2 whenm = n

7. Show that j‘) e <" dt = 1/z provided that Re(z) > 0.

f:d
8. Let f(r) = u(f) + iv(t) where u and v are differentiable. Show that | f(1f'(r) dt =

LB ~ Flf @F.
9. Establish identity (4). 10. Establish identity (5).
11, Establish identity (7). 12, Establish identity (8).

6.2 Contours and Contour Integrals

In Section 6.1 we learned how to evaluate integrals of the form f ﬁjf(t) dt, where f
was complex-valued and [a, &] was an interval on the real axis (so that r was real,
with ¢ € [a, b]). In this section we shall define and evaluate integrals of the form
fc f(2) dz, where f is complex-valued and C is a contour in the plane (so that z is
complex, with z € C). Our main result is Theorem 6.1, which will show how to
transform the latter type of integral into the kind we investigated in Section 6.1.

We will use concepts first introduced in Section 1.6, where we defined the
concept of a curve in the plane. Recall that to represent a curve C we used the
parametric notation

I Czdo=x()+ivt) forasr=<hbh,

where x(#) and y(#) are continuous functions. We now want to place a few more
restrictions on the type of curve that we will be studying. The following discussion
will lead to the concept of a contour, which is a type of curve that is adequate for
the study of integration.

Recall that C is said to be simple if it does not cross itself, which is expressed
by requiring that z(#;) # z(r>) whenever ¢, ¥ .. A curve C with the property that
2(b) = z(a) is said to be a closed curve. If z(b) = z(a) is the only point of intersection,
then we say that C is a simple closed curve. As the parameter ¢ increases from the
value a to the value b, the point z(z) starts at the initial point z(a), moves along the
curve C, and ends up at the terminal points z(b). If C is simple, then z(f) moves
continuously from z(a) to z(b) as ¢t increases, and the curve is given an orientation,
which we indicate by drawing arrows along the curve. Figure 6.1 illustrates how
the terms ‘‘simple’’ and ‘‘closed’’ can be used to describe a curve.
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Z(h)
7 2!
Z{a) zit) )

Zla) = z(h)

(ar A curve that s simple. (b) A shmple closed curve.

zih)

4TS
2{d) P
Zla) = z(M)

tc) A curve thut is nof simple tdy A closed curve that is nor simple.

and nor closed.

FIGURE 6.1 The terms ‘‘simple” and '‘closed’” used to describe curves.

The complex-valued function z(#) in equation (1) is said to be differentiable
if both x(#) and y(z) are differentiable for @ < r < b. Here the one-sided derivatives*
of x(¢) and y(1) are required to exist at the endpoints of the interval. The derivative
z'(#) with respect to ¢ is defined by the equation

2 Z@W=xO+ iy fora<t=<b

The curve C defined by equation (1) is said to be smooth if z'(f), given by
equation (2), is continuous and nonzero on the interval. If C is a smooth curve, then
C has a nonzero tangent vector at each point z(f), which is given by the vector z'(z).
If x'(ty) = 0, then the tangent vector z'(fo) = iy'(fg) is vertical. If x'(¢g) # 0, then
the slope dv/dx of the tangent line to C at the point z(#) is given by y'(#p)/x' (tp)-
Hence the angle of inclination 8() of the tangent vector z'(1) is defined for all values
of ¢ and is the continuous function given by

0(n) = arglz'(n] = arg[(x'(n + iy'(H].

Therefore a smooth curve has a continuously turning tangent vector. A smooth curve
has no corners or cusps. Figure 6.2 illustrates this concept.

2(0) '
() 2(b)
(@) z(a)
{a) A smooth curve. (b) A curve that is not smooth.

FIGURE 6.2 The term *‘smooth’’ used to describe curves.

*The derivative on the right x'(¢*) and on the left x'(b-) are defined by the following limits:

x(1) — x(a) and x'(6-) = lim x(t) — x(b) '
a i— b

Aat) = lim li s

[ 1 —



162 Chapter 6 Complex integration

If C is a smooth curve, then ds, the differential of arc length, is given by

(0| dr

(3 ds= JIX(O)P + [VOlrdt =

Since x'(1) and v'(¢f) are continuous functions, then so is the function

JIX'OF + [¥'(0]-. and the length L of the curve C is given by the definite integral

b [

_ T T T (Ae 4 — o

@ L=| JIWOF + [YOF dt = f |2 ar
Now consider C to be a curve with parameterization
Czgny=x()+ i) forast=<b

The opposite curve —C traces out the same set of points in the plane but in the
reverse order, and it has the parameterization

—Ci )y = x(—=t) + iv(~1) for—-b=<t=< —a

Since z23(1) = z;(—1#), it is easy to see that —C is merely C traversed in the opposite
sense. This is illustrated in Figure 6.3.

7,0 z,(1) )
2 2,(—b)
z, (@) Zy(—a)

FIGURE 6.3 The curve C and its opposite curve —C.

A curve C that is constructed by joining finitely many smooth curves end to
end is called a contour. Let C, C5, . . ., C, denote n smooth curves such that the
terminal point of C; coincides with the initial point of Cy,, for k = 1,2, . . .,
n — 1. Then the contour C is expressed by the equation

5y C=C+G+- -+

A synonym for contour is path.

EXAMPLE 6.5 Let us find a parameterization of the polygonal path C from
—1 + ito 3 — i, which is shown in Figure 6.4.

—1 1 2\\*2

FIGURE 6.4 The polygonal path C = C, + C» + Cafrom ~1 + i to 3 — .
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Solution The contour is conveniently expressed as three smooth
curves C = C; + C; + C;. A formula for the straight line segment joining two
points was given by equation (2) in Section 1.6. If we set zp = —1 + i and
z1 = —1, then the segment C, joining 7, to z; is given by

Coz =t —)=C1+D+d-1—-(=1+0]
which can be simplified to obtain

Cohozih=-14+il —1n for0=<r<.
In a similar fashion the segments C- and C; are given by

Crny=(=1+20+ it forO=sr=<1 and
C:zzn=(+2n+il =20 for0<r<.

We are now ready to define the integral of a complex function along a contour
C in the plane with initial point A and terminal point B. Our approach is to mimic

what is done in calculus. We create a partition P, = {zo = A, 2y, 22, . ., 2, = B}
of points that proceed along C from A to B and form the differences Az; = 2 — zx_)
for k = 1. 2.. . ., n. Between each pair of partition points z;_; and z; we select a

point ¢; on C, where the function f(c,) is evaluated (see Figure 6.5). These values
are used to make a Riemann sum for the partition:

(6) S(P,) = g:lf(c;)(a -y = AZI fleoAz,.

¥

|

G=A

FIGURE 6.5 Partition points {z; }. and function evaluation points {c;} for a
Riemann sum along the contour C fromz = Atoz = B.

Assume now that there exists a unique complex number L that is the limit of
every sequence {S(£,)} of Riemann sums given in equation (6). where the maximum
of ]Azk| tends toward 0, for the sequence of partitions. We define the number L as
the value of the integral of f(7) taken along the contour C. We thus have the
following.
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Definition 6.1 Ler C be a contour, thenf(' () dz = lim E fleAzy,

n—on A=

provided the limit exists in the sense previously discussed.

You will notice that in this definition, the value of the integral depends on the
contour. In Section 6.3 the Cauchy-Goursat Theorem will establish the remarkable

property that if f(z) is analytic, then J,C f(2) dz 1s independent of the contour.

EXAMPLE 6.6 Use a Riemann sum to construct an approximation for the
contour integral [¢ exp z dz, where C is the line segment joining the point A = 0 to

n
B=2+i—-.
4
Solution Set n = 8 in equation (6) and form the partition Py z; = rl +
Tk L. ) . .

13—7 fork =0,1,2,. . ., 8. For this situation, we have a uniform increment Az, =
o S _ZL_1+ZA_2](—1 2k -1
Z+ xﬁ. For convenience we select ¢; = > =3 + i P for

k=1,2,. . ..8 The points {z;} and {c;} are shown in Figure 6.6.
v
T
af Y © [ 23
* Q
(‘A °
E I . (o] Z,,\
8 o °
° o

- ® °
“0 o]

. . .

1 2

FIGURE 6.6 Partition and evaluation points for the Riemann sum S(FPg).
One possible Riemann sum, then, is

, ul 8 2k — 1 2k — {1 i
S(Pyg) é]ﬂck) Az k§ exp[ 2 [ o 1 + 132

=1

By rounding the terms in this Riemann sum to two decimal digits, we obtain an
approximation for the integral:

S(Pg) = (0.28 + 0.131) + (0.33 + 0.197) + (041 + 0.29) + (0.49 + 0.42)

+ (0.57 + 0.61) + (0.65 + 0.841) + (0.72 + 1.16i) + (0.78 + 1.57),
S(Pg) = 4.23 + 5.201.
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This compares favorably with the precise value of the integral, which you will soon
2 V2
see equals exp| 2 + IZ -1=-1+ ez—{—_ + ie‘l_,— = 4.22485 + 5.22485i.

In general, obtaining an exact value for an integral given by Definition 6.1 is
a daunting task. Fortunately, there is a beautiful theory that allows for an easy
computation of many contour integrals. Suppose we have a parameterization of the
contour C given by the function z(¢) for ¢ = t < b. That 1s, C is the range of the
function z(?) over the interval [a, b], as Figure 6.7 shows.

Ad
[

0N —

a 4Tt b

FIGURE 6.7 A parameterization of the contour C by z(t) fora < t < b.

It follows that

lim E flcoAz; = lim E fletz — %)

Hepoo h= noee k=1

lim 2 Ferz(t) — 2t D),

Hoeo k=

where the 7, and #; are those points contained in the interval [a, b] with the property
that c; = z(7¢) and z; = z(1), as is also shown in Figure 6.7. If for all £ we multiply

o= b
the kth term in the last sum by % we get
[ S 3
t s, «t )
lim ; fum)[(‘)*,““}(z fioy) = lim kEf( (n))[————( L f(‘ "]Ark.
H—roo — NN—eo K= L k=1

The quotient inside the last summation looks suspiciously like a derivative, and the
entire quantity looks like a Riemann sum. Assuming no difficulties, this last ex-
pression should equal

b

F(z(1)Z' (1) dt, as defined in Section 6.1.
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It would be especially nice if we were to get the same limit regardless of how we
parameterize the contour C. As the following theorem states, this is indeed the case.

Theorem 6.1 Suppose f(2) is a continuous complex-valued function defined
on a set containing the contour C. Let z(t) be any parameterization of C for
a<t=b Then

fC f@dz = f (z(0)z' (D) dt.

Proof We omit the proof of this theorem since it involves ideas (such as
the theory of the Riemann-Stieltjes integral) that are beyond the scope of this book.
A more rigorous development of the contour integral based on Riemann sums is
found in advanced texts such as L. V. Ahlfors, Complex Analvsis, 3rd ed. (New
York: McGraw-Hill, 1979).

There are two important facets of Theorem 6.1 that are worth mentioning.
First, the theorem makes the problem of evaluating complex-valued functions along
contours easy since it reduces our task to one that requires the evaluation complex-
valued functions over real intervals—a procedure we studied in Section 6.1. Second,
according to the theorem this transformation yields the same answer regardless of
the parameterization we choose for C, a truly remarkable fact.

EXAMPLE 6.7 Let us give an exact calculation of the integral in Example
6.6. That is, we want [ exp z dz, where C is the line segment joining A = 0 to

L
B=2+ iz. According to equation (2) of Section 1.6, we can parameterize C by

T n
z2(t) = (2 + iZ)t’ for0 <t < 1. Since z'(f) = (2 + 11> according to Theorem

6.1 we have that

[owee [ T")]( )
g) eeinis gt
il
)

2+

-
(z+,
-

p ] I
2+ 14 UO eXcos(mt/4) dt + i fo e sin(wt/4) dt}.

_c

eY[cos(nr/d) + i sin(ne/4)] dt

O
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Each integral in the last expression can be done using integration by parts. We Jeave
as an exercise that the final answer simplifies toexp | 2 + 11 — 1, as claimed in

Example 6.6.

EXAMPLE 6.8 Evaluate [

radius 1 centered at x = 2 oriented in a position (i.e., counterclockwise) direction.

— dz, where C is the upper semicircle with

“

Solution  The function z(r) = 2 + ¢/, for 0 < r < R is a parameterization

1
for C. We apply Theorem 6.1 with f(z) = —- (Note: f(z(t)) = and

-2 (=27
(1) = ie".) Hence,

! g 1 Jn
= _— e — , —
J(‘ =2 d J;) (2 + ey — 2 ie' dt 0 idt iT.

To help convince yourself that the value of the integral is independent of the param-
eterization chosen for the given contour, try working through this example with
Ay =2+ ev for0 <1< 1.

There 1s a convenient bookkeeping device that helps us remember how to
apply Theorem 6.1. Since f¢ f(2) dz = % f(z(1) 2’ (1) dt, we can symbolically equate
z with z(f) and dz with '(#) dr. This should be easy to remember because Z is

dz
supposed to be a point on the contour C parameterized by z(f), and i (1) ac-

cording to the Leibniz notation for the derivative.
If z(r) = x(1) + iv(1), then by the preceding paragraph we have

(8) di=:z(dt=[x()+ VD)l dt = dx + idy,

where dx and dv are the differentials for x(1) and v(1), respectively. (That is, dx is
equated with x'(f) dr and dv with y'(r) dr.) The expression dz is often called the
complex differential of z. Just as dx and dv are intuitively considered to be small
segments along the x and v axes in real variables, we can think of dz as representing
a very tiny piece of the contour C. Moreover, if we write

©)  |dz] =| 0+ iy®1dt] = | ¥ + iy’ 0] | dr = NIX DT + [y (O dr.,

then we know from calculus that the length of the curve C, L(C), is given by

b
(1 Lo = J VX (D + (D)2 di = J. ldz},
a C

so we can think of | dz | as representing the length of dz.
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Suppose f(2) = u(z) + iv(2), and z(f) = x(r) + iv($) is a parameterization for
the contour C. Then

b
(11) [C flz)dz = ) FGEO)Z' (1) dt

= f, [u(z(t)) + iv(X'(1) + iv' (D] dr
[

= (X" (1) — viz(D)y' (D] dt

b
+ ["’ [\«’(‘Z'(t))xr(f) + u(:(t))\"(l)] di

h b
= (ux’ — vy') dt + ij (wx" + uy') dt,
o “

where we are equating u with u(z(#)). x” with x'(1), etc.
If we use the differentials given in equation (8), then equation (11) can be
written in terms of line integrals of the real-valued functions « and v, giving

(12) JC fydz = J; ude —vdy +i L vdx + udy,
which is easy to remember if we recall that symbolically
[ dz = (u + ivi(dx + idy).

We emphasize that equation (12) is merely a notational device for applying
equation (7) in Theorem 6.1. We recommend you carefully apply the theorem as
illustrated in Examples 6.7 and 6.8 before using any shortcuts suggested by equation
(12).

EXAMPLE 6.9 Let us show that

J’ zdz=f zdz =4 + 2,
c, c,

where C, is the line segment from —1 —ito 3 + i and C; is the portion of the
parabola x = y* + 2y joining —1 — i to 3 + i, as indicated in Figure 6.8.

'//41»,/1 >3 4 R
~i —i
—1 i

=1 —i
(a) The line segment. (b} The portion ol the parabola.

FIGURE 6.8 The two contours C; and C> joining —1 — ito 3 + /.
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The line segment joining (—1, —1) to (3, 1) is given by the slope intercept
formulay = +x — 4, which can be written as x = 2y + 1. It is convenient to choose
the parameterization y = t and x = 2t + 1. Then the segment C, can be given by

Cphozih=2t+14+it and dz=Q+ DHdt for—1 =<r=<].
Along C;, we have f(z(t)) = 2t + | + it. Computing the value of the integral in
equation (7), we obtain

]
L zdz = fil 2+ 1+ 2+ ddr,

which can be evaluated by using straightforward techniques to obtain

|
Cy

Similarly, for the portion of the parabola x = y?> + 2y joining (=1, —1) to
(3, 1), it is convenient to choose the parameterization y = t and x = 2 + 2z, Then
C, can be given by

Crzp=r+2r+it and dz=(2t+2+Ddt for—-1=<t=<1.

1 ]
r=fl(3t+2)dt+if|(4t+l)dt=4+2i.

&

Along C, we have f(z(r)) = r* + 2t + ir. Computing the value of the integral in
equation (7), we obtain

1
L zdz=jl(t3+21+it)(2t+2+i)dt
i 1 |
=j1(213+6t3+3t)dt+ij](3tz+4t)dr=4+2i.

In this example, the value of the two integrals is the same. This does not hold in
general, as is shown in Example 6.10.

EXAMPLE 6.10 Let us show that
J Zdz = —mi, but j 7dz; = — 4,
a c,

where C, is the semicircular path from —1 to 1 and C; is the polygonal path from
—1 to 1, respectively, that are shown in Figure 6.9.

] —1+i & 1+
C, > >
‘{(\ C,
A Y °
¢ &—> X X
-1 1 —1 1
(a) The semicircular path. (b) The polygonal path.

FIGURE 6.9 The two contours C, and C- joining —1to 1.
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Solution The semicircle C; can be parameterized by
Ci:z() = —cost +isint and d; = (sint+icost)ydt forO<t<m

Along C; we have f(z(t)) = —cos t — i sin t. Computing the value of the integral
equation in (7), we obtain

J 7dz
C

n
fo (—cost—ismn(sint + icost)dt

Il

ks
—i jo (cos? t + sin? £y dt = —Ti.

The polygonal path C; must be paramelterized in three parts, one for each line
segment:

M = -1+ i, dz, = 1 d1. flon)y = -1 -1,
= —1+2t+1i, dn=2dt floa()y = —1 + 2t — |,
W =1+il =0, dmn=—idr, flzx)H=1-—1i(l — 1),

i

where all of the parameters r are to be taken on the interval 0 < r < 1. The value
of the integral in equation (7) is obtained by adding the three integrals along the
above three segments, and the result is

I

] [
f( (-1 - it)idt+f0 -1+ 2r- i)2dt+j() [1 — i1 = D)(—i)de

)

A straightforward calculation now shows that

I 1
j Tdz = { 6r — 3 dr + if (—d)y dt = —4i.
C, Jo 0
We remark that the value of the contour integral along C, is not the same as the
value of the contour integral along C, although both integrals have the same initial
and terminal points.

Contour integrals have properties that are similar to those of integrals of a
complex function of a real variable, which were studied in Section 6.1. Tt C is given
by equation (1), then the contour integral for the opposite contour —C is given by

(13) J_C f) dz j__,:f(z(—f))[—:’(—ﬂ]dT.

Using the change of variable t = —7 in equation (13) and identity (7) of Section
6.1, we obtain

(19 f_C o) dz —L f@) dz.
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If two functions f and g can be integrated over the same path of integration C, then
their sum can be integrated over C, and we have the familiar result

(15 L [f(z) + g@] dz = f( f@ dz + J-C 2(2) dz.

Constant multiples are dealt with in the same manner as in identity (6) in Section
6.1:

(16) L (c + id)f(2) dz = (¢ + id) J—C f(2) dz

If two contours C, and C, are placed end to end so that the terminal point of C,
coincides with the initial point of C5, then the contour C = €| + C: is a continuation
of C,. and we have the property

(17) lelf'(z) dz = Llf(:) dz + Llf(z) dz.

If the contour C has two parameterizations

C: 210 = x () + ivi() fora<tr<b and

C: 22(1) = xa(7) + iva7) fora <7 <8,
and there exists a differentiable function 7 = ¢(f) such that
(18) o =0, B=o0ob), and ¢o'(H >0 fora<t<b,

then we say that z2(7) is a reparameterization of the contour C. If f is continuous
on C, then we have

b B
(19 L fla@z(n dr = L J 27z (7) di.

Identity (19) shows that the value of a contour integral is invariant under a change
in the parametric representation of its contour if the reparameterization satisfies
equations (18).

There are a few important inequalities relating to complex integrals, which
we now state.

Lemma 6.1 (Integral Triangle Inequality) If f(r) = u(t) + iv(t) is «
continuous function of the real parameter t, then

4 b
(20) If(r) dt’ < f, [ f@)| dr.

Proof Write the value of the integral in polar form:

(2]

b
21 rpeito = f fOdt and 1y = f e f(f) dr.

i
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Taking the real part of the second integral in equations (21), we write

b
rp = f Re[e~"of(n)] dt.

Using equation (2) of Section 1.3, we obtain the relation
Rele=®f(n] < |e"™f(n| = | f(n)].

The left and right sides can be used as integrands, and then familiar results from
calculus can be used to obtain

b b
ro = j Rele*of(D] dt < | | f(O] dr.

Since

.
ro = U f® df’,

we have established inequality (20).

Lemma 6.2 (ML Inequality) Iff(z) = u(x, y) + iv(x, ) is continuous on
the contour C, then

< ML,

(22 ' L f@) dz

where L is the length of the contour C and M is an upper bound for the
modulus | f(z)| on C.

Proof When inequality (20) is used with Theorem 6.1, we get

b b
(23) ‘ L f@ dz| = ' . J610) 4G dr’ <] | foz' (| dr.

Let M be the positive real constant such that
|fz)] =M forallzonC
Then equation (9) and inequality (23) imply that

UC flz) dz

Therefore inequality (22) is proved.

b
SJ M| (] dt = ML.
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EXAMPLE 6.11 Let us use inequality (22) to show that

J 1 I
3 dz
czs+ 1

2J5°
where C is the straight line segment from 2to 2 + i Here |22 + || = |z — i| X
|z + i|, and the terms |z — i| and |z + i| represent the distance from the point
to the points i and —/, respectively. We refer to Figure 6.10 and use a geometric
argument to see that

=

|z—i] =2 and z+i| =5 forzonC.

+
4
=

—iq

FIGURE 6.10 The distances |z — /| and |z + i | forzon C.

Here we have

1 I
[f2] = |z —i]]z +{] SZ\/S_—M’

and L = 1, so inequality (22) implies that

|
[
cz+ 1

EXERCISES FOR SECTION 6.2

1. Sketch the following curves.
(@ zin=r-1+it+4d)forl =t =<3
(by z(t) = sint + i cos 2t for —n/2 <t < 7/2
(c) z(y =5cost — B3sinsrform/2 <t <2n
2. Give a parameterization of the contour C = C, + C; indicated in Figure 6.11.
3. Give a parameterization of the contour C = C, + (> + C; indicated in Figure 6.12.
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¥ ¥
A
2i Cﬁ 24 20
C .
/il V('3
~- —+ + — ¥
—3 -2 -1 1 2 3
FIGURE 6.11 Accompanies FIGURE 6.12 Accompanies
Exercise 2. Exercise 3.

4. Consider the integral [.z%dz, where C is the positively oriented upper semi-circle of
radius 1, centered at 0.
(a) Given a Riemann sum approximation for the above integral by selecting n = 4, and
the following points: z; = ™3, ¢, = ¢/%-D"3 for appropriate values of k.
{b) Compute the integral exactly by selecting a parameterization for C and applying
Theorem 6.1.

T
5. Show that the integral in Example 6.7 simplifies to exp(Z + IZ) -1

6. Evaluate f- y dz for —i 10 i along the following contours as shown in Figures 6.13(a)
and 6.13(b).
(a) The polygonal path C with vertices —i, —1 — i, —{, and .
(b) The contour C that is the left half of the circle |z| = 1.

ta) (b}

FIGURE 6.13 Accompanies Exercise 6.

7. Evaluate {¢ x dz from —4 to 4 along the following contours as shown in Figures 6.14(a)
and 6.14(b).

(a) The polygonal path C with vertices —4, —4 + 4{,4 + 4/, and 4.
(b) The contour C that is the upper half of the circle |z| = 4.

—4+4i all REAL
) G Y
N NI TN X
-4 =2 2 4 2 4
(a) {b)

FIGURE 6.14 Accompanies Exercise 7.
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11.

12.
13.

14.
15,

16.
17.
18.
19,
20,
21.

22.

23.

24,

25.

26.
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Evaluate [ ¢ dz, where C is the circle || = 4 taken with the counterclockwise ori-
entation. Hint: Let C: z(h = dcost + idsintfor0 <1 < 2m.

Evaluate [ 7 dz. where C is the circle |:| = 4 taken with the counterclockwise orien-
tation.

Evaluate [ (z + 1) dz. where C given by C: z(t) = cost + i sintfor 0 < ¢t < 7/2.
Evaluate [ z dz, where C is the line segment from i to | and z(#) = t + (1 — ni for
O<r=1.

Evaluate [ z° dz, where C is the line segment from 1 to 1 + 7 and z(#) = 1 + it for
O0<r=<1.

Evaluate [ (x> — iy®) dz, where C is the upper semicircle C: z(t) = cos t + i sin ¢t for
O<r<nm

Evaluate [ |z-| dz. where C given by C: z() =1 + ir*for0 < 1 < |,

Evaluate [ |z — | | dz. where C is the upper half of the circle |z| = 1 taken with the
counterclockwise orientation.

Evaluate [ (1/2) dz, where C is the circle |z| = 2 taken with the clockwise orientation.
Hint: C. ztt) = 2cost — i2sintlorQ <71 < 2m.

Evaluate J - (1/37) dz. where C is the circle Iz = 2 taken with the clockwise orientation.
Evaluate [ exp z dz, where C is the straight linc segment joining 1 to 1 + ix.

Show that [ cos z dz = sin(] + ), where C is the polygonal path from 0 to 1 + i that
consists of the line segments from 0 to 1 and 1 to 1 + /.

Show that fexp 2 dz = expl] + /) — 1, where C is the straight line segment joining
OQto !l + 1/

Evaluate [ 7 exp z dz, where C is the square with vertices 0, 1, 1 + . and i taken with
the counterclockwise orientation,

Let z(£) = xt#) + iv(r) for v <t < b be a smooth curve. Give a meaning for each of the
following expressions.

b b
(a) (v by |2’ (n] ar () J 2 dt (d) j |2'(0)] dr

Let f be a continuous function on the circle ,z — zu| = R. Let the circle C have the
parameterization C: 2{8) = 7, + Re” for 0 = 8 < 2x. Show that

-~

J(_f(:) dz = iR JU fizo + Re™)e® df.

Use the results of Exercise 23 to show that

(a) I-
Je

|
(b) f( (——)” dz = 0, where # # | is an integer.
T —

dz = 2xmi and

<

<

where the contour C is the circle |z - zul = R taken with the counterclockwise
orientation,

Explain how contour integrals studied in complex analysis and line integrals studied in
calculus are different. How are they similar?

Wrile a report on contour integrals. Include some of the more complicated techniques
in your discussion. Resources include bibliographical items 5, 16, 81, 82, and 157.

The Cauchy-Goursat Theorem

The Cauchy-Goursat theorem states that within certain domains the integral of an
analytic function over a simple closed contour is zero. An extension of this theorem
will allow us to replace integrals over certain complicated contours with integrals
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Let the simple closed contour C have the parameterization C: z(1) = x(1) +
iv(f) fora = r = b. If C is parameterized so that the interior of C is kept on the left
as z(#) moves around C, then we say that C is oriented in the positive (counterclock-
wise) sense; otherwise, C is oriented negatively. If C is positively oriented, then
—C is negalively oriented. Figure 6.17 illustrates the concept of positive and neg-
ative orientation.

_ x
I o [ g
(a) A positively oriented contour. (b) A negatively oricnted contour.

FIGURE 6.17 Simple closed contours that are positively and negatively oriented.

An important result from the calculus of real variables is known as Green’s
theorem and is concerned with the line integral of real-valued functions.

Theorem 6.2 (Green’s Theorem) Let C be a simple closed contour with
positive orientation. and let R be the domain that forms the interior of C. If P
and Q are continuous and have continuous partial derivatives P, P,, Q., and
Q, at all points on C and R, then

(n f( Pl y)dx + Qx, y) dy = f j [Qux, ¥) = Pyx, Y)] dx dy.

R

Proof for a Standard Region™ If R is a standard region, then there exist
functions y = g (x) and v = g>(x) for ¢ < x < b whose graphs form the lower and
upper portions of C, respectively, as indicated in Figure 6.18. Since C is to be given
the positive (counterclockwise) orientation, these functions can be used (o express
C as the sum of two contours C; and C, where

Cizoi(r) =t + igy(1) fora<t<b and
Ca 22y = —1t + ig—1) for—b=<t< —a

We now use the functions g,(x) and g,(x) to express the double integral of
—P,(x, ¥) over R as an iterated integral, first with respect to v and second with

respect to x, as follows:
g2}
J P.(x, v)dv | dx
gt :

f
(2) —J J'P'\.(.x. v)dxdy = _J [
R

*A standard region is bounded by a contour €. which can be expressed in the two forms C = €, + (>
and C = (5 + C, that are used in the proof.
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\ ¢
>
A ‘ ¥ = 8,(X) 8 — |
| |
.
£ R
N i
| W ; : !
; e ) '
vy =g.(x) |
| I - I
t ¢ !
y — -+ X
d h

FIGURE 6.18 Integration over a standard region where C = C) + C».

Computing the first iterated integral on the right side of equation (2), we obtain
fr f2]
3 ‘IJP\(.V, vydx dy = j Py, g1(x)) dy — J P(x, g->(1)) dx.
R

In the second integral on the right side of equation {3) we can use the change of
variable x = —f and manipulate the integral to obtain

" b "~
4 —J fP'\(.x, ydxdy = J P(x, g,(xX)) dx + J / P(—1, g2(=D)} =1y dr.

o

When the two integrals on the right side of equation (4) are interpreted as contour
integrals along C, and C, respectively. we sec thal

5 - J f Py, videdy = f( P(x. v) dx + J(‘ P, v)dx = J(‘ P(x, v) dx.
% | 2

To complete the proof, we rely on the fact that for a standard region, there
exist functions x = A (y) and x = ha(y) for ¢ < v < d whose graphs form the left
and right portions of C. respectively, as indicated in Figure 6.19. Since C has the
positive orientation, it can be expressed as the sum of two contours Cs and Cy, where

Cuzt) =hi(—-n—it for—d<t< —c¢ and
Cy: za(D = haoft) + it forc €r<d.

FIGURE 6.19 Integration over a standard region where C = C; + C..
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Using the functions h;(y) and h(y), we express the double integral of
Q.(x, y) over R as an iterated integral:

o Ra(y)

(6) f JQ (x, y)dx dy = f , [ iy 28 ) dx] dy.
R ¢ iy

A similar derivation will show that equation (6) is equivalent to

(7) j J Qdx, y)dxdy = f c Q(x, y) dy.
R

When equations (5) and (7) are added, the result is equation (1), and the proof is
complete.

We are now ready to state our main result in this section.

Theorem 6.3 (Cauchy-Goursat Theorem) Let f be analytic in a simply
connected domain D. If C is a simple closed contour that lies in D, then

(8) L fe)dz = 0.

Proof If we add the additional hypothesis that the derivative f'(z) is also contin-
uous, the proof is more intuitive. It was Augustin Cauchy who first proved this
theorem under the hypothesis that f'(z) is continuous. His proof. which we will now
state, used Green’s theorem.

Proof Using Green’s Theorem We assume that C is oriented in the
positive sense and use equation (12) in Section 6.2 to write

9 J’(‘f(z)(iz=ﬁudx—Vd_v+iLde+udy.

If we use Green’s theorem on the real part of the right side of equation (9) with
P = uand Q = —v, then we obtain

(10) J'C udx —vdy = JJ(—V\ = u,) dx dy,
R

where R is the region that is the interior of C. If we use Green’s theorem on the
imaginary part, the result will be

(1n ,fc vdx + udy = jj(u,‘ — v,) dx dy.
R
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The Cauchy-Riemann equations u, = v, and u, = —v, can be used in equations (10)
and (11) to see that the value of equation (9) is given by

J’Cf(z)dz=fj()dxdy+iff0dxdy=0,
R R

and the proof is complete.

A proof that does not require the continuity of f'(z) was devised by Edward
Goursat (1858-1936) in 1883.

Goursat’s Proof of Theorem 6.3 We first establish the result for a
triangular contour C with positive orientation. Construct four positively oriented
contours C', C?, C?, and C* that are the triangles obtained by joining the midpoints
of the sides of C as shown in Figure 6.20.

FIGURE 6.20 The triangular contours C and C'!, C2. C*, C*,

Since each contour is positively oriented, if we sum the integrals along the
four triangular contours, then the integrals along the segments interior to C cance]
out in pairs. The result is

4
(12) f flydz =2 fﬁk f(2) dz.
¢ k=1 /¢

Let C, be selected from C', €3, C?, and C* so that the following relation holds true:

3
= >

k=1
We can proceed inductively and carry out a similar subdivision process to obtain a

sequence of triangular contours {C, }, where the interior of C,_, lies in the interior
of C, and the following inequality holds:

(13) U( flo)y d: L,kf(:) dz s4ILlf(z) dz|.

(14) Uf f@) d-‘ < 4U¢' f(2) dzl forn=12,....
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Let T, denote the closed region that consists of C, and its interior. Since the length
of the sides of C, go to zero as n — oo, there exists a unique point zo that belongs
to all of the closed triangular regions 7,. Since f is analytic at the point z,, there
exists a function 1(z) with

(15)  f(2) = flzo) + f'(zo)z = 20) + NNz — 20).
Using equation (15) and integrating f along C,, we find that

(16) L”f(z) dz = Lyf(zu) dz + L’f’(zo)(z — 20) dz
+ f( NNz — 20) dz
= [f(zo) — f'(20)20] JC,, ldz +  fl(zp) L” zdz
+ f ¢ NNz — 20) dz
= f c. NNz — z0) dz.
If € > 0 is given, then a & > 0 can be found such that
(17) |z = 2| <38 implies that [n@)| < i

where L is the length of the original contour C. An integer n can now be chosen so
that C, lies in the neighborhood [z - zol < 9, as shown in Figure 6.21.

FIGURE 6.21 The contour C, that lies in the neighborhood |z — zo| < 8.

Since the distance between a point z on a triangle and a point z; interior to the
triangle is no greater than half the perimeter of the triangle, it follows that

(18) |z - 30! <+ L, forallzon C,,

where L, is the length of the triangle C,. From the preceding construction process,
it follows that

(19 L,=(H)"L and |z - znl < ()L forzon C,
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We can use equations (14), (17), and (19) of this section and equation (23} of Section
6.2 to obtain the following estimate:

Uc F@ d:\ =4 f( ]n(:)(z - || dz|

€ 1 n+l
< 4”J’ =1z L|d:
C, LA \2

2”—]8
= T ¢ |d:',|

27-lg 1)” €
= -_ L = -,
L \2 2

Since € was arbitrary, it follows that equation (12) holds true for the triangular
contour C. If C is a polygonal contour, then interior edges can be added until the
interior is subdivided into a finite number of triangles. The integral around each
triangle is zero, and the sum of all these integrals is equal to the integral around the
polygonal contour C. Therefore equation (12) holds true for polygonal contours.
The proof for an arbitrary simple closed contour is established by approximating
the contour *‘sutficiently close’” with a polygonal contour.

EXAMPLE 6.12 Let us recall that exp z, cos z, and 7", where n is a positive
integer are all entire functions and have continuous derivatives. The Cauchy-Goursat
theorem implies that for any simple closed contour we have

jexp:d:=0, jcos: =0, f:”d:=0,
c c c

EXAMPLE 6.13 If Cis a simple closed contour such that the origin does not
lie interior to C, then there is a simply connected domain D that contains C in which
f(z) = 1/z” is analytic, as is indicated in Figure 6.22. The Cauchy-Goursat theorem
implies that

] . . o
- dz = 0 provided that the origin does not lie interior to C.

FIGURE 6.22 A simple connected domain D containing the simple closed
contour C that does not contain the origin.
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It is desirable to be able to replace integrals over certain complicated contours
with integrals that are easy to evaluate. If C, is a simple closed contour that can be
continuously deformed into another simple closed contour C; without passing
through a point where f is not analytic, then the value of the contour integral of f
over C; is the same as the value of the integral of f over C5. To be precise, we state
the following result.

Theorem 6.4 (Deformation of Contour) Let C, und C> be two simple
closed positively oriented contours such that C, lies interior to C,. If fis
analytic in a domain D that contains both C, and Cs and the region between
them, as shown in Figure 6.23, then

ff. flo) dz = sz(z) dz.

FIGURE 6.23 The domain D that contains the simple closed contours C, and C»
and the region between them.

Proof Assume that both C, and C; have positive (counterclockwise) ori-
entation. We construct two disjoint contours or cuts L; and L; that join C, to C,.
Hence the contour C; will be cut into two contours C| and C;”, and the contour C»
will be cut into C5 and C;". We now form two new contours:

Ki=-Cy+L +Ci—L: and K, =-C) +L,+Cy - L,

which are shown in Figure 6.24. The function f will be analytic on a simply con-
nected domain D, that contains K, and f will be analytic on the simply connected
domain D, that contains K>, as is illustrated in Figure 6.24.
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P X = X

(a) The contour K| and domain D,. (b) The contour X, and domain D,.

FIGURE 6.24 The cuts L; and L, and the contours K, and K- used to prove the
Deformation Theorem.

The Cauchy-Goursat theorem can be applied to the contours K, and K>, and
the result is

20) L f(z)dz =0 and wa(:) dz = 0.

Adding contours, we observe that

Q) K +K=-C/+L +C;—L,—Cy +L,+C; - L
=C,+C-C=C/=C—Cy.

We can use identities (14) and (17) of Section 6.2 and equations (20) and (21) given
in this section to conclude that

L:f(z) dz — L flaydz = L] f@Qdz + L? f)ydz = 0,

which completes the proof of Theorem 6.4.

We now state an important result that is proven by the deformation theorem.
This result will occur several times in the theory to be developed and is an important
tool for computations.

EXAMPLE 6.14 Let z, denote a fixed complex value. If C is a simple closed
contour with positive orientation such that z, lies interior to C, then

dz
(22) Cz—

= 2ni and

dz . .
fc (—— = 0 wheren # 1 is an integer.

= )"
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Solution  Since zp lies interior to C, we can choose R so that the circle Cg
with center z, and radius R lies interior to C. Hence f(z) = 1/(z - z¢)" is analytic in
a domain D that contains both C and C, and the region between them, as shown in
Figure 6.25. Let Cg have the parameterization

Criz(0) =70+ Re® and dz=iRe®dd for0 <0 <2m.

FIGURE 6.25 The domain D that contains both C and Cx.

The deformation theorem implies that the integral of f over Cy has the same value
as the integral of fover C, and we obtain

dz dz 2n i Rei® n
f =f_ =f’ed9=i d8 = 2mi
C Cp 2 0 0

=y - Re®
and
- - 2n 2 1) 2n
f—d“ =f & =f LR g = iR'-nf eil1-m% g

C (: — ZD)" CK z — ZO)H O Rne""‘) 0

I-n a=2n I~n 1-n
R R R

1 —n =0 l—-n 1-n

The deformation theorem is an extension of the Cauchy-Goursat theorem to a
doubly connected domain in the following sense. Let D be a domain that contains
C, and C; and the region between them, as shown in Figure 6.25. Then the contour
C = C; — () is a parameterization of the boundary of the region R that lies between
C, and C; so that the points of R lie to the left of C as a point z{f) moves around C.
Hence C is a positive orientation of the boundary of R, and Theorem 6.4 implies
that

J;ﬂf(z) dz = 0.

We can extend Theorem 6.4 to multiply connected domains with more than one
“‘hole.”” The proof, which is left for the reader, involves the introduction of several
cuts and is similar to the proof of Theorem 6.4.
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Theorem 6.5 (Extended Cauchy-Goursat Theorem)

Let C, C). Ca. . . . , C, be simple closed positively oriented contours with the
property that Cy lies interior to C fork = 1,2, . . . | n, and the set interior
to Cy has no points in common with the set interior to C; if k # j. Let f be
analytic on a domain D that contains all the contours and the region between
Cand C; + C, + - -+ + C,, which is shown in Figure 6.26. Then

(23) f( f(2) dz = ;} @ de

FIGURE 6.26 The multiply connected domain D and the contours C and
C,, Cs, . . ., C,in the statement of the Extended Cauchy-Goursat Theorem.

EXAMPLE 6.15 If C is the circle {z| = 2 taken with positive orientation,
then

J 2:’. da .
24) 212 = 47

Solution  Using partial fractions, the integral in equation (24) can be written
as

20dz j dz_ dz
c2+2 Joz+iJ2 Joz—iJ7
Since the points z = * i,/2 lie interior to C, Example 6.14 implies that

dz .
(26) J; i 27,

AN

(25)

The results in (26) can be used in (25) to conclude that

2zdz
cz2 4+ 2

= 2mi + 2mi = 4mi.
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EXAMPLE 6.16 1f Cisthecircle |z — i| = 1 taken with positive orientation,
then

27) j 2z dz - i
7322 i

Solution  Using partial fractions, the integral in equation (27) can be writlen
as

28) f 2z dz _J’ dz +f dz
ez w2 2+ iJ2 Jog—iJ2’

In this case, only the point z = i /2 lies interior to C, so the second integral on the
right side of equation (28) has the value 2mi. The function f(2) = 1/(z + i\/i) is
analytic on a simply connected domain that contains C. Hence by the Cauchy-
Goursat theorem the first integral on the right side of equation (28) is zero (see
Figure 6.27). Therefore

2zdz
j, =0+ 2ni = 2xi.
cz2 4+ 2

—_— X

—z\/_
FIGURE 6.27 The circle |z —i| = 1 and the points z = %

<
~
W)

EXAMPLE 6.17 Show that

o =2
f - dz = —6mi

v =2
<

where C is the ‘‘figure eight’” contour shown in Figure 6.28(a).

(a) The figure eight contour C. (b) The contours C, and C,.

FIGURE 6.28 The contour C = C; + C..
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Solution  Partial fractions can be used to express the integral as

-2 1 |
29) f ~ dz=2f —(L—f d"
Cz= — 2 ¢z Ccz—

<

Using the Cauchy-Goursat theorem and property (14) of Section 6.2 together with
Example 6.13, we compute the value of the first integral on the right side of equation
(29):

il
w2
o
&1 | -
&
+
N
AR
1| -

1
(30) 2j —dz
cz

I

|

J

|
o
ISR

o
o
+
o
Il

|

)
—
[\
g
=

|

|
'
g

In a similar fashion we find that

Iz 1z dz
31) —f_ - =—f ‘ —f =0 - 2mi = —2mi.
cz—1 cz—1 Gz—1

The results of equations (30) and (31) can be used in equation (29) to conclude that

z—2

7
Cze— ¢

dz = —4mi — 2ni = —6mi.

EXERCISES FOR SECTION 6.3

1. Determine the domain of analyticity for the following functions, and conclude that

Je f(2) dz = 0, where C is the circle |z| = 1 with positive orientation.
. z o 1
(a) f() = 712 b)) f(z) = R
(c) flz) =tanz (d) f(z) = Loglz + 5)
2. Show that f¢ z=' dz = 2mi, where C is the square with vertices 1 £ i, — 1 £/ with

positive orientation,

3. Show that f¢ (42 — 4z + 5)"' dz = 0, where C is the unit circle |z| = 1 with positive
orientation.

4. Find [ (22 — z)-! dz for the following contours.

(a) The circle |z — 1] = 2 with positive orientation.
(b) The circle |z -1 \ 1 with positive orientation.
5. Find f 2z — )2 — 9! dL for the following contours.

(a) The circle |z| = 2 with positive orientation.
(b) The circle |z| = + with positive orientation.
6. Evaluate [ (z° — 2) ' dz, where C is the figure eight contour shown in Figure 6.28(a).
7. Evaluate [ (2z — 1Xz° — z) ' dz. where C is the figure eight contour shown in Figure
6.28(a).
8. Evaluate [ (422 + 4z — 3)"'dz = [ (2z — 1)7'(2z + 3)~" dz for the following contours.

(a) The circle |z| = 1 with positive orientation.
(b) The circle |z + %I = 1 with positive orientation.
{c) The circle |z| = 3 with positive orientation.

9. Evaluate [ (z2 — 1)~ dz for the contours given in Figure 6.29,



10.

11.

12.
13.

14.

15.

6.4
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¥ ¥y
A
X X
—1 i }
(b)

FIGURE 6.29 Accompanies Exercise 9.

(a)

Let C be the triangle with vertice 0, 1, and 7/ with positive orientation. Parameterize C
and show that

fldzzo and ]zdz=().
c &

Let the circle |z| = 1 be given the parameterization
Czity=cost+ isint for—m<t=<m

Use the principal branch of the square root function:

, . R .
2= r'Pcos S+ ir'fsing for —-m<B<=mx

<

LSS A==

and find f7'7 dz.
Evaluate [ ’z F exp z dz. where C is the unit circle |z’ = 1 with positive orientation.
Let f(z) = u(r, 8) + iv(r, 6) be analytic for all values of z = re®. Show that

-

Lh [u(r, B) cos 8 — v(r, B) sin 8] 8 = 0.

Hint: Integrate f around the circle |z| = 1.

Show by using Green’s theorem that the area enclosed by a simple closed contour C is
%fcx dy — vdx.

Compare the various methods for evaluating contour integrals. What are the limitations
of each method?

The Fundamental Theorems of Integration

Let f be analytic in the simply connected domain D. The theorems in this section
show that an antiderivative F can be constructed by contour integration. A conse-
quence will be the fact that in a simply connected domain, the integral of an analytic
function f along any contour joining z; to z; is the same, and its value is given by
F(z2) — F(z)). Hence we will be able to use the antiderivative formulas from calculus
to compute the value of definite integrals.

Theorem 6.6 (Indefinite Integrals or Antiderivatives) Le: f be ana-
Iytic in the simply connected domain D. If zo is a fixed value in D and if C is
any contour in D with initial point 7y and terminal point 7, then the function
given by
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) Fo=[ o= e
is analytic in D and
2 F@=f.

Proof We first establish that the integral is independent of the path of integration.
Hence we will need to keep track only of the endpoints, and we can use the notation

| o= reao

Let C, and C; be two contours in D, both with the initial point zy and the
terminal point z, as shown in Figure 6.30. Then C = C, — (5 is a simple closed
contour, and the Cauchy-Goursat theorem implies that

LI f®) dt - Lﬂg) dg = LVQ £&) dt = 0.

Therefore the contour integral in equation (1) is independent of path. Here we have
taken the liberty of drawing contours that intersect only at the endpoints. A slight
modification of the foregoing proof will show that a finite number of other points
of intersection are permitted.

—p X

FIGURE 6.30 The contours C; and C- joining z 10 z.

We now show that F'(z) = f(z). Let z be held fixed, and let Az be chosen small
enough so that the point z + Az also lies in the domain D. Since z is held fixed,
f(z) = K where K is a constant, and equation (12) of Section 6.1 implies that

(3) f ~f(z)a@:f_"”'Kang=KA:=f<zm:.

Using the additive property of contours and the definition of F given in equation
(1), it follows that

@ Fetad-Fo= | fod- | fod

- L £® de ~ qu<§> d = f( f®) &,
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where the contour C is the straight line segment joining z to z + Az and C, and C;
join zp to z and zy to z + Az, respectively, as shown in Figure 6.31.

+ 4z

>

FIGURE 6.31 The contours C, and C; and the line segment C = —C, + C-.

Since fis continuous at z, then if € > 0, there is a & > 0 so that
(5) |f® - fl2)] <€ whenever [£—z| <8.

If we require that |Az] < &, then using equations (3) and (4), inequality (5), and
inequality (22) of Section 6.2, we obtain the following estimate:

|Flz + Az) — F(@)
© ! Az

- 0| = a0 4 - J s

= T2 f|f<g> o) |
< |
|az]

ejAz| ==

Consequently, the left side of equation (6) tends to 0 as Az — O; that is, F'(z) =
f(2), and the theorem is proven.

It is important to notice that the line integral of an analytic function is inde-
pendent of path. An easy calculation shows

f :dz=f zdz =4+ 2,
C, C.

where C, and C, were contours joining —1 — i to 3 + i Since the integrand
f(z) = z is an analytic function, Theorem 6.6 implies that the value of the two
integrals is the same; hence one calculation would suffice.

If we set z = z; in Theorem 6.6, then we obtain the following familiar result
for evaluating a definite integral of an analytic function.
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Theorem 6.7 (Definite Integrals) Letfbe analytic in a simply connected
domain D. If zp and z, are two points in D, then

<]
@) J- ) dz = F(z)) — Flzo)
24
where F is any antiderivative of f.

Proof 1If F is chosen to be the function in equation (1), then equation (7)
holds true. If G is any other antiderivative of f, then H(z) = G(z) — F(2) is analytic,
and H'(z) = 0 for all points z in D. Hence H(z) = K where K is a constant, and
G(z) = F(z) + K. Therefore G(z;) — G(z9) = F(z;) — F(zy), and Theorem 6.7 is
proven.

Theorem 6.7 is an important method for evaluating definite integrals when the
integrand is an analytic function. In essence, it permits us to use all the rules of
integration that were introduced in calculus. For analytic integrands, application of
Theorem 6.7 is easier to use than the method of parameterization of a contour.

EXAMPLE 6.18 Show that f] cos zdz = —sin 1 + i sinh 1.
Solution  An antiderivative of f(z) = cos z is F(z) = sin z. Hence

i
f]coszdz=sini—sinl = —sin 1 + i sinh 1.

EXAMPLE 6.19 Evaluate (2 + %) Ll ele™4 dy.

Solution In Example 6.7, we broke the integrand up into its real and imag-
inary parts, which then required integration by parts. Using Theorem 6.7, however,
we see that

ity [} i\ [’
4 — 2pintld — 4+ — f M2+ inld)
(2 4) JO ele (2 4) 0 e dt

. 1
(2 + Et.) I |ef2+in/4)
4/ \2+ 7

4 0

il

e(2+in/4) — eO
— 6[241'.1/4) - 1.
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EXAMPLE 6.20 Show that

j%w:’ d= L4
= i

v 172
4 2V

where z'”* is the principal branch of the square root function and the integral is to
be taken along the line segment joining 4 to 8 + 6i.

Solution Example 3.8 showed that if F(z) = z'2, then F'(z) = 1/(2z'?),
where the principal branch of the square root function is used in both the formulas
for £ and F’. Hence

8- 6i dZ
L SR = BHE)E AR =3 -2 =1+

EXAMPLE 6.21 letD = {z = re®: r > 0and —n < 0 < ©t) be the simply
connected domain shown in Figure 6.32. Then F(z) = Log z is analytic in D, and
its derivative is F'(z) = 1/z. If C is a contour in D that joins the point z; to the point
Z2, then Theorem 6.7 implies that

2dz dz
J- —=| —=Llogz ~ Log zi.

7z C 7

a0 Z

(a) The path C joining 7 and . (b) The path that is a portion
of the unit circle lzl=1.

FIGURE 6.32 The simply connected domain D in Examples 6.21 and 6.22.

EXAMPLE 6.22 Asa consequence of Example 6.21, let us show that
Lfif = 2ni, where C is the unit circle |z| = 1,
taken with positive orientation.
Solution If we let z» approach —1 through the upper half plane and z

approaches — 1 through the lower half plane, then we can integrate around the por-
tion of the circle shown in Figure 6.32(b) and take limits to obtain
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dz . .
lim — = lim Logz; — lim Loguz
\—-1J0 I =1 n—-1

-] Im-(:z):»() Imiz))0

in — (—im) = 27,

o]
e | B
il

EXERCISES FOR SECTION 6.4

For Exercises 1-14, use antiderivatives to find the value of the definite integral.

2+ i 1 +z /2
1. 72 dz 2. : z (use Log 2) 3. exp z dz
1+i Z kA
VT+i w2 -
4. | (P +z0d: 5. f ~ coszdz 6. L sin ; dz
2+ni 142§ i
7. j o, LEXP T dz 8. L N exp(z®) dz 9. L 7 cos z dz
i i Vi o dy
10. j sin® z dz 11. Log z dz 12. f w
n ] LAt 4
2+i2., -1 244 z - 2
13. ] —dz 14, f

15. Show that f ldz =12z~ 2z, by parametenzmg the line segment from z, to zz.
16. Letz, and z>» be points in the right half plane. Show that

17. Find

314 dz
Z
9 272"

where 7'/ is the principal branch of the square root function and the integral is to be
taken along the line segment from 9 to 3 + 4,.

18. Find [*,, z'? dz, where z'"? is the principal branch of the square root function and the
integral is to be taken along the right half of the circle |z| =

19. Using the equation

i

i
224+1 2z+4i 2z-1i

show that if z lies in the right half plane, then

b d& l
J{) P = arctan 7 = ELog(( + i) - —Log(z - .

20. Letf" and g’ be analytic for all z. Show that

f A28 dz = flzglz) — flz)gla) — f F(2e(2) dz.

21. Compare the various methods for evaluating contour integrals. What are the limitations
of each method?

22, Explain how the fundamental theorem of calculus studied in complex analysis and the
fundamental theorem of calculus studied in calculus are different. How are they similar?
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6.5 Integral Representations for Analytic Functions

We now present some major results in the theory of functions of a complex variable.
The first result is known as Cauchy’s integral formula and shows that the value of
an analytic function f can be represented by a certain contour integral. The nth
derivative, f(z), will have a similar representation. In Chapter 7 we will show how
the Cauchy integral formulae are used to prove Taylor’s theorem, and we will es-
tablish the power series representation for analytic functions. The Cauchy integral
formulae will also be a convenient tool for evaluating certain contour integrals.

Theorem 6.8 (Cauchy’s Integral Formula) Ler [ be analytic in the
simply connected domain D, and let C be a simple closed positi vely oriented
contour that lies in D. If 2y is a point that lies interior to C. then

. 1 (2)
(1) f(:o)=?—m.j 1Oy

Proof Since fis continuous at z,, if € > 0 is given, there is a & > 0 such

that
2) ]f(z) —f(zo)| < € whenever |z — @ol < 6.
Also the circle Co: |z = 20| = + & lies interior to C as shown in Figure 6.33.

FIGURE 6.33 The contours C and Cy in the proof of Cauchy’s integral formula.

Since f(z0) is a fixed value, we can use the result of Exercise 24 of Section 6.2 to
conclude that

(2 dz 1 z
@) fap =L & _ L[ J&

200 JGy 7 — 7y 2mi Joyz — zp
Using the deformation theorem we see that

A [ fo [ S

. 2z N dz.
2ni Joz - g, 2riJoiz — 7y

(4)
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Using inequality (2), equations (3) and (4), and inequality (22) of Section 6.2, we
obtain the following estimate:

I [ f@dz _ LJ f@dz f f(m) dz
(5) 271:1 J’ — 20 f(~0) 2mni Jc, = 20 ZTU Gy 2
| f(2) = flzo) |
< | TR g
2n Ja, )Z - Z[)I
1 €
< — = E.

3 (1728 ™0

Since € can be made arbitrarily small, the theorem is proven.

EXAMPLE 6.23 Show that

exp z .
f 4 dz = i2me,

where C is the circle |z| = 2 with positive orientation.

Solution Here we have f(z) = exp z and f(1) = e. The point zp = 1 lies
interior to C, so Cauchy’s integral formula implies that

_ exp z
=/ 27 -1

2

and multiplication by 2ni will establish the desired result.

EXAMPLE 6.24 Show that

J’ sing . — J2mi
cdz+m 4 -
where C is the circle || = 1 with positive orientation.

Solution Here we have f(z) = sin z. We can manipulate the integral and
use Cauchy’s integral formula to obtain

sin z 1 J’ sin z 1 J’ f@
dz = ———dr=- | — 4
L 42+ 7 cz+ ) T 4lcz— (—m/d)

4
_ i Qnif il E Si I _‘/Em
= 5 (2mD), = —sin Rl Al

We now state a general result that shows how differentiation under the integral
sign can be accomplished. The proof can be found in some advanced texts. See, for
instance, Rolf Nevanlinna and V. Paatero, Introduction to Complex Analvsis
{Reading, Massachusetts: Addison-Wesley Publishing Company, 1969), Section
9.7.
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Theorem 6.9 (Leibniz’s Rule) Le: D be a simply connected domain, and
let I a = t < b be an interval of real numbers. Let f(z, t) and its partial
derivative f.(z, f) with respect to z be continuous functions for all z in D and
all tin 1. Then

b

6) F=| flena
is analytic for z in D, and
12
F{2) = fznat

We now show how Theorem 6.8 can be generalized to give an integral rep-
resentation for the nth derivative, f"(z). Leibniz's rule will be used in the proof,
and we shall see that this method of proof will be a mnemonic device for remem-
bering how the denominator is written.

Theorem 6.10 (Cauchy’s Integral Formulae for Derivatives) Ler f
be analytic in the simply connected domain D, and let C be a simple closed
positively oriented contour that lies in D. If z is a point that lies interior to C,
then

n! f®

M7y = ——
D ) =5 T

Proof We will establish the theorem for the case n = 1. We start by using
the parameterization

CE=&r and dE=E(dt forast< b
We use Theorem 6.8 and write

R W L (O UY

® &=t = ® T ml -

The integrand on the right side of equation (8) can be considered as a function
f(z, ©) of the two variables z and ¢, where

FEE W) FEDE @)
= d {z, = —
(- 0 LD =nTT

Using equations (9) and Leibniz’s rule, we see that f'(z) is given by

fxﬂ__~1_fﬁﬂgo»§%nz#___1_f (8 dt
Tomide (B0 —27  2midoE -2

and the proof for the case » = 1 is complete. We can apply the same argument to
the analytic function f’ and show that its derivative f” has representation (7) with
n = 2. The principle of mathematical induction will establish the theorem for any
value of n.

9 flz,n
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EXAMPLE 6.25 Let z, denote a fixed complex value. If C is a simple closed
positively oriented contour such that z; lies interior to C, then

dz dz
(10) J' = 2ni and j i 0
Cz—2 C(z— )"

£

where n = 1 is a positive integer.
Solution Here we have f(z) = 1 and the nth derivative is f""(z) = 0. The-
orem 6.8 implies that the value of the first integral in equations (10) is given by

dz

€z — 2

= 2mif(zp) = 27,
and Theorem 6.10 can be used to conclude that

dz 2mi
- e = — fln)Y =
L G o f¥(z0) = 0.

— ZO)" vl

We remark that this is the same result that was proven earlier in Example 6.14. Tt
should be obvious that the technique of using Theorems 6.8 and 6.10 is easier.

EXAMPLE 6.26 Show that
J exp 22 4 —~4n
C

p Z .
z -0 3¢
where C is the circle |z| = 2 with positive orientation.

-

Solution Here we have f(z) = exp z%, and a straightforward calculation
shows that f(z) = (12z + 8z% exp z°. Using Cauchy’s integral formulae with
n = 3, we conclude that

J exp 22 d~—@ oy W4l —4m

ce-ip T3 '

EXAMPLE 6.27 Show that
f exp(inz) dz 2n
c 3°

222 -5+ 2

where C is the circle |:| = 1 with positive orientation.
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Solution By factoring the denominator we obtain 27> — S5z + 2 =
(2z = iz — 2). Only the root 7z = + lies interior to C. Now we set f(z) =
[exp(imz))/(z — 2) and use Theorem 6.8 to conclude that

expting)dz 1 flodz 1 ALy . exp(im/2)
fr st 2 2lez-qp s W =m T
_m
=5

We now state two important corollaries to Theorem 6.10.

Corollary 6.1 If f is analytic in the domain D, then all derivatives f', f",
..o oL L exist and are analytic in D.

Proof  For each point zo in D. there exists a closed disk |z — 20| < R that
is contained in D. The circle C: |7 — :0| = R can be used in Theorem 6.10 to show
that f")(zy) exists for all n.

This result is interesting, since the definition of analytic function means that
the derivative [’ exists at all points in D. Here we find something more, that the
derivatives of all orders exist!

Corollary 6.2 Ifu is a harmonic function at each point (x, ¥) in the domain
D, then all partial derivatives u,. u,, U, U,;, and u., exist and are harmonic
functions.

Proof  For each point (xo, vo) in D there exists a closed disk |z — zo| < R
that is contained in D. A conjugate harmonic function v exists in this disk, so the
function f(z) = uw + iv is an analytic function. We use the Cauchy-Riemann equa-
tions and see that f'(z) = u, + iv, = v, — iu,. Since f” is analytic, the functions u,
and u, are harmonic. Again, we can use the Cauchy-Riemann equations to see that

f”(z) = Uy + i".\'\' = Vv — i“\'\' = Ty T i\"\\-.

Since f” is analytic, the functions u,,, u,,, and u,, are harmonic.

EXERCISES FOR SECTION 6.5

For Exercises 1-15, assume that the contour C has positive orientation.

= 1.

1. Find f¢ (exp z + cos 2)z7! dz, where C is the circle
2. Find f¢ (z + 1) '(z — 1)7' dz, where C is the circle
3. Find f¢(z + 1y '(z — 1)72 dz, where C is the circle |
4. Find fr(z* — 1) dz, where C is the circle |z ~ 1 |

-
<

-1 =1
-1} =1
I

[
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5. Find [¢ (z cos 2)~' dz, where C is the circle |z| = 1.
6. Find [cz7* sin z dz, where C is the circle |z]| = 1.
7. Find [ z7* sinh(z?) dz, where C is the circle [z| = 1.
8. Find [ z° sin z dz along the following contours:
(a) The circle |; - | =1 (b) The circle |z — (W/4)]| = 1.
9. Find f¢ 27 exp z dz. where C is the circle |z| = 1 and n is a positive integer.
10. Find [ z7%(z* ~ 16)7' exp z dz along the following contours:

(a) The circle |z| = 1. (b) Thecircle |z — 4] = 1.
11. Find [ (2% + 4)°' dz, where C is the circle |z -1- i' = 1.
12. Find [¢ (2 + 1)~' dz along the following contours:

{a) Thecircle |z — i| = 1. (b) Thecircle |z + i| = 1.
13. Find [ (z° + 1)-! sin z dz along the following contours:
(a) The circle |:' - i| = 1. (by The circle |z + il =1,

14. Find J¢ (22 + 1) ? dz, where C is the circle |z — i| = 1.
15. Find [z '(z = 1) ' exp z dz along the following contours:
(a) The circle |z| = 1/2. (b) The circle

= 7
L

7
<

For Exercises 16-19, assume that the contour C has positive orientation.

16. Let P(z) = ay + ayz + a2z” + as7? be a cubic polynomial. Find [ P(z)z " dz. where C
is the circle |z| = 1 and n is a positive integer.

17. Let fbe analytic in the simply connected domain D, and let C be a simple closed contour
in D. Suppose that zy lies exterior to C. Find [ f(z}z — z0) ' dz.

18. Let z; and z> be two complex numbers that lie interior to the simple closed contour C.
Show that [¢(z — 2,y "(z — z2) ' dz = 0.

19. Let f be analytic in the simply connected domain D, and let z, and z> be two complex
numbers that lie interior to the simple closed contour C that lies in D. Show that

f(z:)-f(zf)_if fl2) dz
= TS

n— L 2ni )z — 220

State what happens when z; — z;.
20. The Legendre polynomial P,(z) is defined by

i

P.z) [(z* ~ 1y

= 2! dz
Use Cauchy’s integral formula to show that

P = o | 2 DA

2mi Jo 2 = 2y
where z lies inside C.

21. Discuss the importance of being able to define an analytic function f(z) with the contour
integral in formula (1). How does this differ from other definitions of a function that
you have learned?

22. Write a report on Cauchy integral formula. Include examples of complicated examples
discussed in the literature. Resources include bibliographical items 13, 59, 107, 110,
118, 119, and 187.
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6.6 The Theorems of Morera and Liouville
and Some Applications

In this section we investigate some of the qualitative properties of analytic and
harmonic functions. Qur first result shows that the existence of an antiderivative for
a continuous function is equivalent to the statement that the integral of f is inde-
pendent of the path of integration. This result is stated in a form that will serve as
a converse to the Cauchy-Goursat theorem.

Theorem 6.11 (Morera’s Theorem) Let f be a continuous function in a
simply connected domain D. If

Ddz=0
[
for every closed contour in D, then f is analytic in D.

Proof Select a point z; in D and define F(z) by the following integral:

Fiz) = f CAE) d.

The function F(z) is uniquely defined because if C, and C; are two contours in D,
both with initial point zp and terminal point z, then C = C; — (C; is a closed contour
in D, and

0= f( f) d = Lf(i:) dg — Lf(&) dg.

Since f(z) is continuous, then if € > 0, there exists a & > 0 such that [§ ~ z| < &
implies that |f(§) - f(z)| < €. Now we can use the identical steps to those in the
proof of Theorem 6.6 to show that F'(z) = f(z). Hence F(z) is analytic on D, and
Corollary 6.1 implies that F'(z) and F"(z) are also analytic. Therefore f'(z) = F"(2)
exists for all z in D, and we have proven that f(z) is analytic on D.

Cauchy’s integral formula shows how the value f(zy) can be represented by a
certain contour integral. If we choose the contour of integration C to be a circle with
center Zo. then we can show that the value f(zo) is the integral average of the values
of f(z) at points z on the circle C.

Theorem 6.12 (Gauss’'s Mean Value Theorem) If f is analytic in a
simply connected domain D that contains the circle C: |: - Z,ol = R, then

) 1 2r '
() flzo) = 5;,[0 flzo + Re®) db.
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Proof The circle C can be given the parameterization
2) C:z8) =2z + Re® and dz=iRe®dd for0 <6 <2rn
We can use the parameterization (2) and Cauchy’s integral formula to obtain

I [* flzo + Re™)i Re" d§

Sz) = g; o R

1 [ v
J— - 10
= fo flzo + Re™ d8,

and Theorem 6.12 is proven.

We now prove an important result concerning the modulus of an analytic
function.

Theorem 6.13 (Maximum Modulus Principle) Let f be analytic and
nonconstant in the domain D. Then |f(:)| does not attain a maximum value
at any point zp in D.

Proof by Contradiction Assume the contrary, and suppose that there
exists a point zo in D such that

(3) |f@| = |fz)| holds for all zin D.

If Cy: ': - Zu| = R is any circle contained in D, then we can use identity (1) and
property (22) of Section 6.2 to obtain
1 [& ‘
< —J lf(;o + re”’)| d6 forO0<r <R
2w Jo

| 2n
@ |fzo)| = n jn Sflzo + re®) do

But in view of inequality (3), we can treat |f(z)| = |flzo + re®)| as a real-valued
function of the real variable 8 and obtain

1 2r ' 1 2n
(5) aﬁ] | flzo + re)] dB = 5 f( | fa| d8 = |fla)| for0O=r=R

If we combine inequalities (4) and (5), the result is the equation

1 2 )
| fzo)| = ;f | o + re)| e,

which can be written as

(6) joh (lf(Zo)| - ]f(zo+ re’“)|)d6 =0 for0<r=<R

A theorem from the calculus of real-valued functions states that if the integral of a
nonnegative continuous function taken over an interval is zero, then that function
must be identically zero. Since the integrand in equation (6) is a nonnegative real-
valued function, we conclude that it is identically zero; that is,

(7 |fa)| = |flzo + re®)| forO<r<Rand0 < 6 < 2m.
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If the modulus of an analytic function is constant, then the results of Example 3.13
show that the function is constant. Therefore identity (7) implies that

(8) f(z) = f(zo) forall zin the disk Dp: |z — 2| =R

Now let Z denote an arbitrary point in D, and let C be a contour in D that joins
Zp to Z. Let 2d denote the minimum distance from C to the boundary of D. Then we
can find consecutive points zo, 21, 22, . . .. % = Z along C with |z, — | = d.
such that the disks Dy: lz — | dfork=20,1,. . .,nare contained in D and
cover C, as shown in Figure 6.34.

Since each disk D, contains the center z;,, of the next disk D,., it follows
that z; lies in Dy, and from equation (8) we see that f(z,) = f(zo). Hence | f(z)| also
assumes its maximum value at z;. An argument identical to the one given above
will show that

(9) f(2) = flz)) = flzg) for all z in the disk D,.

We can proceed inductively and show that
(10)  f(2) = flze. ) = f(zx) for all z in the disk Dy, .

By using equations (8), (9), and (10) it follows that f(Z) = f(z,). Therefore f is
constant in D. With this contradiction the proof of the theorem is complete.

FIGURE 6.34 The ‘‘chain of disks’™ Dy, D,.. . . , D, that cover C.

The maximum modulus principle is sometimes stated in the following weaker
form.

Theorem 6.13* (Maximum Modulus Principle) Let f be analvtic and
nonconstant in the bounded domain D. If f is continuous on the closed region
R that consists of D and all of its boundary points B, then | f(2)| assumes its
maximum value, and does so only at point(s) zy on the boundary B.
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EXAMPLE 6.28 Let f(z) = az + b, where the domain is the disk D =
{z: <. 1}. Then fis continuous on the closed region R = {z: 1z| < 1}. Prove
that

<

max | f@)] = Ja| + |b]
MEa]
and that this value is assumed by f at a point zy = ¢ on the boundary of D.
Solution  From the triangle inequality and the fact that |z| < 1 it follows
that
|f(z)| = |az + b‘ =< ‘az‘ + ‘b‘ < ‘a| + ‘b‘,
If we choose zp = e, where 8, = arg b — arg a, then
argazy = arga + (arg b — arga) = arg b,

so the vectors azg and b lie on the same ray through the origin. Hence
|azo + b| = |az| + |b| = |a| + |b]. and the result is established.

Theorem 6.14 (Cauchy’s Inequalities) Ler f be analytic in the simply
connected domain D that contains the circle C: ': - Zol =R If ,f(:)[ =M
holds for all points 7 on C, then

M
an  [f%)] = nRT forn=1,2,.. ..

Proof Let C have the parameterization
C:z(0) =70 + Re® and dz=iRe®dbd for0 <0 < 2m.
We can use Cauchy’s integral formulae and write

! z) az ' (7 f(z iy Rei*
(12)  fo(z) = ZL’_J' _f@dz__ n! [*flzo + Re™)i Re" d8

wi Jo(z - :0)n+1 i Jo Rrtleitnt o

Using equation (12) and property (22) of Section 6.2, we obtain

n! [
n)(~ [ > i
[f"zo)| < R o | f(zo + Re™)| db
nt [ n' n'M
= — Mdo = — M2 = —,
2nR" Jo 2nR" R”

and Theorem 6.14 is established.




6.6 The Theorems of Morera and Liouville 205

The next result shows that a nonconstant entire function cannot be a bounded
function.

Theorem 6.15 (Liouville’s Theorem) If f is an entire function and is
bounded for all values of z in the complex plane, then f is constant.

Proof Suppose that | f(z)| < M holds for all values of z. Let z denote an
arbitrary point. Then we can use the circle C: | =2 ] = R, and Cauchy’s inequality
with n = 1 implies that

, M
(13 |f] = R
If we let R —> oo in inequality (13), then we see that f'(zy) = 0. Hence f'(z) = 0 for

all z. If the derivative of an analytic function is zero for all z, then it must be a
constant function. Therefore f is constant, and the theorem is proven.

EXAMPLE 6.29 The function sin z is not a bounded function.

Solution One way to see this is to observe that sin z is a nonconstant entire
function, and therefore Liouville’s theorem implies that sin z cannot be bounded.
Another way is to investigate the behavior of real and imaginary parts of sin z. If
we fix x = @/2 and let y — oo, then we see that

i N ny n 18
m smj = 1y
Yo bee 2 . ¥ s4oo 2 2

lim sin — cosh y + i cos = sinh y
lim coshy = +ee,

Y=o +oo

Liouville’s theorem can be used to establish an important theorem of elemen-
tary algebra.

Theorem 6.16 (The Fundamental Theorem of Algebra) If P(z) isa
polynomial of degree n, then P has at least one zero.

Proof by Contradiction Assume the contrary and suppose that P(z) # 0
for all z. Then the function f(7) = 1/P(z) is an entire function. We show that f is
bounded as follows. First we write P(z) = a,7" + a,_,2"~' + - - + a;z + ap and
consider the equation

l —
[P |

[—
—

14) )| = .

( ' ’f( )’ an_| an_2 a) dyp
+ +o

z z* e bl

&

‘n
a, +
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Since |ac|/|z"*| = |ac|/r"* = 0as |z| = r — oo, it follows that

a,—_| + an:Z

(15) an + —> oo,

-~
<

< <

+"'+%)—>a,, as
If we use statement (15) in equation (14), then the result is
|f2)] =0 as |z| - o
In particular, we can find a value of R such that
(16) |f@] =1 forall [z| =R
Consider
| f@)] = (lutx, R + [v(x, NI,

which is a continuous function of the two real variables x and y. A result from
calculus regarding real functions says that a continuous function on a closed and
bounded set is bounded. Hence |f(z) is a bounded function on the closed disk

x* + ¥y <R,
that is, there exists a positive real number K such that
(17 |f]| <K forall |z| <R

Combining inequalities (16) and (17), it follows that | f(z)| < M = max{K, 1}
holds for all z. Liouville’s theorem can now be used to conclude that fis constant.
With this contradiction the proof of the theorem is complete.

Corollary 6.3 Ler P be a polynomial of degree n. Then P can be expressed
as the product of linear factors. That is,

PRY=Az—-—az— ) (2 — 2y

where 7\, o, . . ., 2, are the zeros of P counted according to multiplicity and
A is a constant.

EXERCISES FOR SECTION 6.6

For Exercises 1-4, express the given polynomial as a product of linear factors.

1. Factor P(z) = z* + 4. 2. Factor P(z) = z2 + (1 + Dz + 5i.
Factor P(z) = z* — 4z% 4+ 622 — 4z + 5,

Factor P(z) = 2% — (3 + 3i)z° + (=1 + 6i)z + 3 — i. Hint: Show that P(i) = 0.
Let f(z) = az" + b, where the region is the disk R = {z: |z| < 1}. Show that

U

max [f@] = a] + o]

6. Show that cos z is not a bounded [unction.
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Let f(z) = z°. where the region is the rectangle R = {; = x + iv: 2 < x < 3 and
l =y=<3}.

Find the following:

(a) max | fio)] (b) mkl;n [ f2)]

(c) max Re [ f(z)] (d) min Im { f{2)]
R r

Hint for (a) and (b): )'| is the distance from 0 to z.
Let F(z) = sin z, where the region is the rectangle

T
R={z=x+iy:Os.xS;andOS_vs2}.

&

o

Find maxg | f(z)|. Hinr: |sin 2] = sin’x + sinbh?y.

Let f be analytic in the disk |z| < 5, and suppose that | f(§)| < 10 for values of £ on
the circle |€ — 1] = 3. Find a bound for | f%(1)].

Let f be analytic in the disk |z| < 5. and suppose that | f{€)| < 10 for values of & on
the circle [ ~ 1| = 3. Find a bound for | f*%0)].

Let f be an entire function such that | f(z)| < M |z| holds for all z.

{a) Show that f"(z) = O for all z, and (b) conclude that f(z) = az + b.

Establish the following minimum modulus principle. Let f be analytic and nonconstant
in the domain D. If | f(z)| = m. where m > 0 holds for all zin D, then | f(z)| does not
attain a minimum value at any point ¢, in D.

Let u(x. y) be harmonic for all (x, y). Show that

1 2n
u(xy, ¥o) = 5-7; J; w(xy + Rcos 0, vy + Rsin 8) d0, where R > 0.

Hing: Consider f(z) = u(x, ¥} + iv{x, »).

Establish the following maximum principle for harmonic functions. Let u(x, y) be har-
monic and nonconstant in the simply connected domain D. Then # does not take on a
maximum valuc at any point (xy. yy) in D. Hint: Let f(z) = u(x, y) + iv(x, y) be analytic
in D, and consider F(z) = exp[f(z)] where |F(z)] = ¥,

Let f be an entire function that has the property | f(z)| = 1 for all z. Show that f is
constant.

Let f be a nonconstant analytic function in the closed disk R = {z: [:| < 1}. Suppose
that | f(z)| = K for all z on the circle |z| = 1. Show that f has a zero in D. Hint: Use
both the maximum and minimum modulus principles.

Why is it important to study the fundamenial theorem of algebra in a complex analysis
course?

Look up the article on Morera’s theorem and discuss what you found. Use bibliograph-
ical item 163,

Look up the article on Liouville’s theorem and discuss what you found. Use biblio-
graphical item 117.

Write a report on the fundamental theorem of algebra. Discuss ideas that you found in
the literature that are not mentioned in the text. Resources include bibliographical items
6, 18, 29, 38, 60, 66, 150. 151, 170. and 184.

. Write a report on zeros of polynomials and/or complex functions. Resources include

bibliographical items 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162, 171. 174, and
178.
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Taylor and Laurent Series

Throughout this text we have compared and contrasted properties of complex func-
tions with functions whose domain and range lie entirely within the reals. There are
many similarities, such as the standard differentiation formulas. On the other hand,
there are some surprises, and in this chapter we will encounter one of the halimarks
distinguishing complex functions from their real counterparts.

It is possible for a function defined on the real numbers to be differentiable
everywhere and yet not be expressible as a power series (see Exercise 27 at the end
of Section 7.2). In the complex case, however, things are much simpler! It turns out
that if a complex function is analytic in the disk D), its Taylor series about o
will converge to the function at every point in this disk. Thus, analytic functions
are locally nothing more than glorified polynomials,

We shall also see that complex functions are the key to unlocking many of the
mysteries encountered when power series are first introduced in a calculus course,
We begin by discussing an important property associated with power series—
uniform convergence.

7.1 Uniform Convergence
Recall that if we have a function f(7) defined on a set T, the sequence of functions
{S.(2)} converges to the function f at the point z = zy € T provided lim §,(z) =

f(zp). Thus, for the particular point zp, this means that for each € > 0, there exists
a positive integer &, ., (which depends on both € and z) such that

(1) lf n= Ng.:(,v then ]S;;(Z()) - f(ZU)I < E.
If §,(z) is the nth partial sum of the series Z iz — o, statement (1) becomes
=0

n—1

> cdzo — o — flzp)

(2) ifn=N_., then

€.

< E&.

It is important to stress that for a given value of €, the integer N, we need to
satisfy statement (1) will often depend on our choice of zy. This is not the case if

208
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the sequence {S,(c)} converges uniformly. For a uniformly convergent sequence, it
is possible to find an integer N, (which depends only on €) that guarantees statement
(1) no matter which value for z, € T we pick. In other words, if n is large enough,
the function S,(c) is uniformly close to f(z). Formally, we have the following
definition.

DEFINITION 7.1  The sequence {S,(2)} converges uniformly to f(2) on the
set T if for every € > 0, there exists a positive integer N, (which depends only
on €) such that

(3) ifn =N, then |S() — fl0)| <e forallzeT.
If in the preceding, §,(z) is the nth partial sum of a series E il — o)f, we say that
=0

the series E ci(z — a)* converges uniformly to f(z) on the set 7.
k=0

1
EXAMPLE 7.1 The sequence {5,(2)} = {ef + —} converges uniformly to
n

f(2) = ¢- on the entire complex plane because for any € > 0, statement (3) is satisfied
for all z if N, is any integer greater than 1/e. We leave the details for showing this
as an exercise.

A good example of a sequence of functions that does not converge uniformly
is the sequence of partial sums comprising the geometric series. Recall that the

n—1

p—_—

geometric series has S,(2) = E &= " = converging to f(z) = ]
Jaty) -z -z

z € Dy(0). Since the real numbers are a subset of the complex numbers, we can show
statement (3) is not satisfied by demonstrating it does not hold when we restrict
our attention to the real numbers. In that context, D,(0) becomes the open interval
(—1, 1), and the inequality |S,(z) — f(2)| < € becomes |S,(x) = f(x)| < €, which
for real variables is equivalent to f(x) — € < §,(x} < f(x) + €. If statement (3) were
to be satisfied, then given € > 0, S,(x) should (for large enough values of n) be
within an e-bandwidth of the function f(x) for all x in the interval (=1, 1). Figure
7.1 illustrates that there is an € such that no matter how large » is, we can find
xg € (—1, 1) such that 5,(xy) is outside this bandwidth. In other words, this figure
illustrates the negation of statement (3), which in technical terms is

for all

(4) there exists € > 0 such that for all positive integers N, there is somen = N
and some zo € T such that | S,(z0) — f(z0)| = &.

We leave the verification of statement (4) when applied to the partial sums of a
geometric series as an exercise.
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v=flx)-¢

FIGURE 7.1 The geometric series does not converge uniformly on
(=1, .

There is a useful procedure known as the Weierstrass M-test, which can help
determine whether an infinite series is uniformly convergent.

Theorem 7.1 (Weierstrass M-test): Suppose the infinite series E i (2)
=0

has the property that for each k, ’ u(z)

<=M, forallzeT. lfz M converges,
=0

then 2 ui(2) converges uniformly on T,
k=0

n-1

Proof LetS,(2) = Z u;(z) be the nth partial sum of the series. If n > m,
=0

n—i
’Sn(z) - Sm(Z)l = ’”m(:) + Uy I(:) + .+ Uy l(:)’ = 2 M/v

k=m

Since the series E M, converges, the last expression can be made as small as we
k=D

wish by choosing m large enough. Thus, given € > 0, there is a positive integer N,
such that if n, m > N,, then |5,(z) — $,(z)| < & But this means that for all z € T,
{S.(2)} is a Cauchy sequence. According to Theorem 4.2, this sequence must con-
verge to a number which we might as well designate by f(z). That is,

F() = lim S,(2) = >, w(2).

H—on k=0
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This gives us a function to which the series z ui(z) converges; it remains to be
i=0
shown that the convergence is uniform. Let € > 0 be given. Again, since E M
k=0
converges, there exists N, such that if n = N, then z M, < &. Thus, if n = N,, we
k=n

have for all z € T that

n-1

[f@) - S| = LEO (@ = 2, ()

k=0
2 ui(z)

k=n

<S M,
k=n

< g, which completes the argument.

As an application of the Weierstrass M-test, we have the following.

Theorem 7.2 Suppose the power series . iz — ) has radius of con-
=0

vergence p > 0. Then for each r, 0 < r < p, the series converges uniformly
on the closed disk Do) = {z: |z — &| = r}.

Proof Given r with 0 < r < p, choose zg € D,(&) such that |z — &t| = r.

Since z ci(z — o)* converges absolutely for z € D (o) (Theorems 4.9 and 4.11,
k=0

part ii), we know that i [ex(zo — o¥| = kZ | ck| r* converges. For all z € Do)
k=0 =0
it is clear that
lez — | = || |z — o] = || 7k

The conclusion now follows from the Weierstrass M-test with M; = ‘cA | rk.

Corollary 7.1 For each r, 0 < r < 1, the geometric series converges uni-
formly on the closed disk D (0).

The following theorem gives important properties of uniformly convergent

sequences.

Theorem 7.3 Suppose {S;} is a sequence of continuous functions defined
on a set T containing the contour C. If {S;} converges uniformly to f on the
set T, then

(1) fis continuous on T, and
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(i) lim j Si(D) dz = J lim Si(z) dz = f f(2) dz.
ke /€ 9

Clhoe

Proof (i) Given z € 7, we must prove lim f(z) = f(zo). Let € > 0 be given.
=L

Since S, converges uniformly on 7, there exists a positive integer N, such that

€
forall z e T. |f(2) — Su@)| < 3 whenever k = N,. Since Sy_is continuous at Zy,

there exists 8 > 0 such that if |z — 20| < §, then | Sy (2) — Sn,(z0) | < % . Hence, if
|z ~ z0| < &, we have
| f@) = flzo)| = | F@) = Sw(2) + Sn(2) — Sw(z0) + Su(20) — f(z0) |
< |f2) = Sn@| + |Sw@ — Sule)| + |Swlz) — flz0) |

<ELELE_,
33 3

(i1) Let € > 0 be given, and let L be the length of the contour C. Since {S;}
converges uniformly to fon T, there exists a positive integer N, such that if k = N,

€
then | Si(z) = f(2)] <] forall z € T. Since € C T. max | 5,() = f)| < % so if
eC
k=N,

| 150 - sion ¢
max |Suz) — f(z)| L (by Lemma 6.2)
teC

e

Corollary 7.2 If the series Z ci{z — )" converges uniformly to f(z) on

"=

the set T, and C is a contour contained in T, then

J; Si(2) dz — L fz) dz

IA

> ez — oy dz = f( 2 ol — oyde = f S dz.
n=_0 C

n=0JC

EXAMPLE 7.2 Show that -Log(l-2)= i -’1; Z"forall ze D, (0).

Solution Given zy € D;(0). choose r such that 0 < ]zOI < r < 1, thus

ensuring that zp € DA0). By Corollary 7.1, the geometric series E " converges
n=0
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uniformly to ] on D0). If C is any contour contained in D,(0), Corollary 7.2

— <

gives

1 -
‘L‘]ngz=z 7dz

n=0JC

Now, the composite function —Log(1l - z) is an antiderivative for on D,(0),

where Log is the principal branch of the logarithm. Clearly, " "1 is an anti-

n
derivative for the function z”. Hence, if C is the straight line segment joining 0 to
Zo, Theorem 6.7 gives

—Log(1 - z D YD PR
og( ) ° Z’o n+lz 0
which becomes
N 1
-Lo 1—Z)= ntl— il 24
el ° 2-3 1’ “nto

Since zy € D,(0) was arbitrary, we are done.

EXERCISES FOR SECTION 7.1

1. This question relates to Figure 7.1.

(a) For x near —1, is the graph of §,(x) above or below f(x)? Explain.

(b) Is the index n in S,(x) odd or even? Explain.

(¢) Assuming the graph is accurate to scale. what is the value of n in $,(x)?
2. Complete the details to verify the claim of Example 7.1.

n—1 1 — 2 1
3. Show that statement (4) holds if S,(z) = > z* = . f@ =1 and T = D,(0).
=0 -z -z

Hint: Given € > 0, and a positive integer n, consider z,, = '/
4. Prove that the following series converge uniformly on the sets indicated.

(@) i%z"onﬁ,(o)={z:|z| <1}

1 -
(b)glmon {z: |z’ =2}
= o4
s 2
(C)A‘Zﬂz3+k:

@ ;

~hz* + 1

5. Why can’t we use the arguments of Theorem 7.2 to prove that the geometric series
converges uniformly on all of D(0)?

6. By starting with the series for cos z given in Section 5.4, choose an appropriate contour
and use the methodology of Example 7.2 to obtain the series for sin z.

on Dg(0), where 0 < R <C oo

~h
<

on 5,(0), where 0 < r < 1.
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7. Suppose that {f,(z)} and {g.(z)} converge uniformly on the set T.
(a) Show that the sequence {f,(z) + g,(z)} converges uniformly on the set 7.
(b) Show by example that it is not necessarily the case that {f,(2)g,(z)} converges uni-
formly on the set T.
8. On what portion of D(0) does the sequence {nz"},_, converge, and on what portion
does it converge uniformly?

7.2 Taylor Series Representations

In Section 4.2 we saw that functions defined by power series have derivatives of all
orders. In Section 6.5 we saw that analytic functions also have derivatives of all
orders. It seems natural, therefore, that there would be some connection between
analytic functions and power series. As you might guess, the connection exists via
the Taylor and Maclaurin series of analytic functions.

Definition 7.2 If f(z) is analytic at 7 = o, the series

2) 3),
flo) + frlo)(z - o) + f‘2(!oz) (z— a)? + fl3(!a) (z- o)’ +...

20 f(k)(a)
=2

is called the Taylor series for f centered around o. When the center is o = 0,
the series is called the Maclaurin series for f.

(z - o)*

To investigate when the preceding series converges we will need the following
lemma.

Lemma 7.1 If z, zo, and o are complex numbers with z # 2, and 7 # o,
then

. 11 20— @ (:o—a)3+
- z—o (-0} (-
Ty = " 7 — el
4 ,(&0 o) 1 (50 o) 7
-y -z (c—o!

where n is a positive integer.

Proof oo !
I—z (-0 —(x—w

1 1
z—al~ (- wiz:—- o’

The result now follows from Corollary 4.3 if in that corollary we replace z by
0 —

. We leave the verification details as an exercise.
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Theorem 7.4 (Taylor's Theorem) Suppose f is analytic in a domain G,
and that Dg(0) is contained in G. Then the Taylor series for f converges to
f(2) for all z in Dg(); that is,

f‘"’ o)
k! {

@) f=, z — o for all 7 € Dg(av).

=0
Furthermore, this representation is valid in the largest disk with center o that
is contained in G, and the convergence is uniform on any closed subdisk
Doy = {z |z —a|=r)forO<r<R

Proof We observe first that if we can establish equation (2), the uniform
convergence on D,(a) for 0 < r < R will follow immediately from Theorem 7.2 by
f*o)

Ko

Let z; € Dg(ax) be given, and let r designate the distance between 24 and ¢, so
that Izo - (1] = r. We note that 0 < r < R, since g, belongs to the open disk Dg(x).
Choose p such that

equating c; of that theorem with

3) 0=sr<p<R,

and let C = C (o) be the positively oriented circle centered at o with radius p as
shown in Figure 7.2,

FIGURE 7.2 The constructions for Taylor’s theorem.

Since C is contained in G. we can use the Cauchy integral formula to get

| 1
flzo) = ==

2niJcz —

@) dz

Replacing in the integrand by its equivalent expression in Lemma 7.1 gives

I — 2
< g
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1 j 1 p—Q (20 — Q)"
) = — + oo =
@ f&o) 2mi Je [z - o ( !

(z - o’ (z — o
1 (30 — (X)”A] ‘
+ ) dz
z— w2 — 00”"]]( )
_ [ @ ”"—“f fod L @w-r fad
2niJe z — @ 2 Joe@z - o)? 2mi C(z— o]
n (o — o)*! f f(g) dz
Cc(z —

2mi o)z — oyt

where n is a positive integer. The last term in this expression can be put in the form

1 (20 — )" 'f(2) dz

5 AR

(5) E) = G-y

Recall also by the Cauchy integral formula that for k = 0, 1,2, . . .,
2mi f(2) dz
k) o L

® - oy = | ool

Substituting equations (5) and (6) into equation (4) now gives

" 23] a)
(7) f(:(l) = I‘Zﬂ f I\$ o — (X)A + EII(ZO)'

The summation on the right-hand side of equation (7) is the first » + 1 terms of the
Taylor series. Our proof will be complete if we can show that the remainder, E,(2¢),
can be made as small as we please by taking n to be sufficiently large.

We will use the ML inequality (Lemma 6.2) to get a bound for |E,,(:u)‘.
According to our constructions shown in Figure 7.2, we have

® |wo-—of=r and |z-a]=p.
By inequality (6) of Section 1.3, we also have

(9) ll_lni = l[z—o) — (~0—(1)|

X
\"—al—| - af
p -

%

If we set M = max |f(z)| for z on C, equations (8) and (9) allow us to conclude

(- "''fz) | LM( 1 ) )
p— —OL)’”'I < (p) 5—r M forzeC.

The length of the circle C is 2np, so using the ML inequality in conjunction with
equations (5) and (10) gives

1 (rYy 1
(1) |Ez0)| = n(a) ('S—_—;)M(an).

10
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. \i+]
According to equation (3), the fraction é is less than 1, so (-;;) (and hence

the right side of equation (11)) goes to zero as a goes to infinity. Thus, given any
€ > 0, we can find an integer N, such that |E,,(z0)| < g for n = N,, and our proof
is complete.

If fis an entire function, then f has no singular points, and equation (2) holds
for all complex numbers z, making the radius of convergence of the Taylor series
equal to infinity. The fact that equation (2) is valid in the largest disk with center o
that is contained in G is made clear by the following corollary.

Corollary 7.3 Suppose that f is analytic in the domain G that contains
the point 7 = O. Let 7y be a singular point of minimum distance to o. If
’Z,() - (X’ = R, then

(1) the Tavlor series (2) converges to f(z) on all of Dg(0), and

(11) if § > R, the Taylor series (2) does not converge to f(2) on all of Dg(0).

Proof

(i)  The argument for (i) is identical to the proof of Theorem 7.2.

(i) If |zp — a| = R. then 5y € Dg(or) whenever § > R. If for some § > R,
the Taylor series converged to f(Z) on all of Dg(o), then according to Theorem 4.13,
f would be differentiable at z;, contradicting the fact that z, is a singular point.

| -
1 . = Z (n + Dz is valid for z € D(0).
- Z) n=0

EXAMPLE 7.3 Show that 0

Solution We established this identity with the use of Theorem 4.13

in Example 4.18. We will now do so via Theorem 7.4. If f(2) = a

(-2
standard induction argument (which we leave as an exercise) will show that
(n+ 1!
O e—
(1 — :)N 2
the role of k)

. Thus, f"(0) = (n + 1)!, and identity (2) gives (with n taking

"= i (n + Dz

n=0 n! n=0

2y — 1 —_ S f”)(o).,n— S M,r
12 fQ=gT =2 I ,

n=

Furthermore, since the point g5 = 1 is the closest singularity to the point
o = 0, Corollary 7.2 assures us that equation (12) must be valid for all z € D,(0).
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EXAMPLE 7.4 Show that for z € D,(0),

(13) ! S = 2 12" and ! = 2:0 (—_. l)ﬂzZn'

1 -z n=0 1 + Zz -
Solution We know that for z € D,(0),

(14) = "

1 -
If we let z2 take the role of z in equation (14), we get that = 2 (2 =
n=0

5
4
<

> 227 for 22 € D,(0). But z2 € D,(0) if and only if z € D,(0). Letting —z? take the
n=0

role of z in (14) gives the second part of equation (13).

Corollary 7.3 clears up what often seems to be a mystery when series are first
introduced in calculus. The calculus analog of equation (13) is

1 < 1 S
= > x and —= > (=1yx® forxe (=1, 1)
n=0 -

15 =
(3) 1 — x? 1 +x =0

For many students, it makes sense that the first series in equation (15) converges

only on the interval (—1, 1) because ] is undefined at the points x = +1. It

S
— x-

seems unclear as to why this should also be the case for the series representing

since the real-valued function f(x) = is defined everywhere. The

1+ x2’ 1 + x2
explanation, of course, comes from the complex domain. The complex function

f@) =

points *i, and the distance between them and the point & = 0 equals 1. According
to Corollary 7.3, therefore, equation (13) is valid only for z € D,(0), and thus equa-
tion (15) is valid only forx € (—1, 1).

Alas, there is a potential fly in this ointment. Corollary 7.3 applies to Taylor
series. To form the Taylor series of a function, we must compute its derivatives.
Since we did not get the series in equation (13) by computing derivatives, how do
we know they are indeed the Taylor series centered about o = 07 Perhaps the Taylor
series would give completely different expressions than the ones given by equation
(13). Fortunately, the following theorem removes this possibility.

[+ 2 is not defined everywhere. In fact, the singularities of f are at the

Theorem 7.5 (Uniqueness of Power Series) Suppose that in some disk
D, () we have

f@ =2 afz— oy = Dbz — oy

n= n=0

Thena,=b,forn=0,1,2,. . ..
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frl)(a)
n!
Thus, any power series representation of f(z) is automatically the Taylor series.

Proof By Theorem 4.12,a, = =p,forn=0,1,2,.

EXAMPLE 7.5 Find the Maclaurin series of f(z) = sin’z.

Solution Computing derivatives for f(z) would be an onerous task. Fortu-
nately, we can make use of the trigonometric identity

. 3 . )
sin'z = : sin z — Z sin 3z

Recall that the series for sin z (valid for all z) is

b ~2n+l
C. 7= —1) - .
sinz = 2 (1"
Using this identity, we obtain
ZZIHI 1 & (3:)2111 1
30 = T 1Y — —_ —_ Y —_—
Hns »Zo( Do i Y o 0!
z.’.n +1 I 9,172)14 !
__Z(_ )H_____._z _)n.____
T e (2 + 1)’ 4; 1= (2n + l)'
3(1 gn)--n 1 fnd 3(1 — 971)2'21141
e 2 (___ )n — = Z —_——
n=0 4(271 + 1)' n=1 4(271 + 1)'

By the uniqueness of power series, this last expression is the Maclaurin series for
in3-
SIn-z;

The preceding argument used some obvious results of power series represen-
tations that we have not yet formally stated. The requisite results are part of the
following.

Theorem 7.6 Ler f and g have the power series representations

flo= Ean(x —a)y forzeD, () and

=0

80 = 3 by — oy forze Do

If r = min {r\. r2}. and B is any complex constant, then

(16)  Bf(2) = 20 Ba,(z — a) for z € D, ()

(A7) fl) + g2) = E (a, + b))z — oy forzeDAo) and

n=0



220 Chapter 7 Taylor and Laurent Series

=3 n

(18) flDgk) = z c(z — o)t for ze Do), wherec, = 2 ab,_;.

=0 k=0

Identity (18) is known as the Cauchy product of the series for f(z) and g(2).

Proof We leave the details for (16) and (17) as an exercise, To establish
(18) we observe that the function A(z) = f(2)g(z) is analytic in D{a). Thus, for
z € Do),

() = flDg' @) + f(2gk). A2 =gl + 2f (g (D) + f2g"(2).

By mathematical induction, the preceding pattern can be generalized to the nth
derivative, giving Leibniz’s formula for the derivative of a product of functions:

= n!
19 A7) = —_ z {n—k) 7).
U e émm—wf”g @
(We will ask you to show this as an exercise.)

By Theorem 4.13, we know that

oy gty _
g o e and e = bk

so equation (19) becomes

h(ni (X) n k o (n-4%) o fad
( _ o) g ( )_Eakbu—k-

0, = =
(20) n! o kK (n—k! 2

Now, according to equation (2), we know that

find (n
(m)ma=2h(wz—wm

n!

k=

Substituting equation (20) into equation (21) gives equation (18) because of the
uniqueness of power series.

EXAMPLE 7.6 Use the Cauchy product of series to show that

l oo
T =20+ D forze D).

= E z" for z € D|(0). In terms of The-

1~z n=0
orem 7.6, we have a, = b, = 1 for all n, and thus equation (18) gives

Solution Let f(z) = g(z) =

1 o H o
R )V = h(2) = f(gz) = 2 (2 akb,,_k):" = 2 (n + 1)z, as required.
- )y n=0 0 n=
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EXERCISES FOR SECTION 7.2

o Sl
<

1. Show that sinh z = ———forall z.
ow that sin ”20 Gn T ! ora
~
2. Show that cosh z = NE::“ 2 for all z.
ind (_])n 1
3. Show that Log(l + 2) = >, 2" for all z € D,(0).
n=1 ¥
4. Find the Maclaurin series for arctan z. Hint: Choose an appropriate contour and integrate
the appropriate series given in Example 7.4.
5. Find the Maclaurin series for cos’z. Hint: Use the trigonometric identity 4 cos®z =
cos 3z + 3 cos z.
6. Find the Taylor series for f(z) = - < centered about @ = 1. Where does this series
converge? Hint i il ( 1) 1 Expand the laste sio
nverge? Hint: = =@ z-1)7T7—7. I st expression
& 2 T-c-n VT e P P
using a geometric series.
] —
7. Find the Taylor series for f(z) = ; centered about o0 = |, Where does this series
> Hint 1-z ] z—1
converge? Hint: =\
£ -3 \2)T-1z- 2]
. sin Z .
8. Letf(2) = , and set f(0) = 0.
(a) Explain why fis analytic at z = 0.
(b) Find the Maclaurin series for f(2).
(¢) Find the Maclaurin series for g(z) = L F(& de.
9. Find the Maclaurin series for f(z) = (zZ + 1)sin z.
10. Let B denote a fixed complex number, and let f(z) = (1 + )P = exp[B Log(l + z)} be
the principal branch of (1 + z)®. Establish the binomial expansion
-1 - D -2
(]+z)”=1+[3z+ﬁ(l5 "z3+B(B Ut )z-‘+~»
2! 3!
b -DB-2) - PB-n+1
=1+ z B B ) ' B—n ) 7 for all z € D(0).
n=1 n:
11. Show that f(z) = 7 has its Taylor series representation about the point o0 = i given
by
{1 (z — iy . . Iz
floy =D ————forallze{z |z —i| <2
ah (1 — iy+!
1 ) , )
12. Use the identity cos z = 5 (e + ¢~~) to find the Maclaurin series for f(z) = e-cos z =

1 1
— e(l BN + - ell i),'.
2

2
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13. Suppose that f(z) = E ¢,2" is an entire function.
n=0

(a) Find a serics representation for 7(?) using powers of z,
(b) Show that f(z) is an entire function.
(¢) Does f(z) = f(z)? Why?

14. Find f**(0) for the following functions.

(a) f(Z) = ”2:[) (3 + (~ 1)”)”;{"

> (1 + )",
() g(x) = 240,
n=)
O h() = > —m——
© ,;) (V3 + 0
15. Letf(z) = E " =1+z+22+322+5224+ 825+ 13z° + - - -, where the coefficients
n=0
¢, are the Fibonacci numbers defined by ¢y = 1. ¢, = l.and ¢, = ¢,_) + ¢,_> forn = 2.

1
(a) Show that f(z) = ﬁ for all z in the disk Dg(0) for some number R. Hint:
— -7

Show that f satisfies the equation f(2) = 1 + zf(z) + 2°f(2).
(b) Find the value of R in part a for which the series representation is valid. Hint:
Find the singularities of f(z).
16. Complete the details in the verification of Lemma 7.1.
17. We used Lemma 7.1 in establishing identity (4). However, Lemma 7.1 is valid provided
z # zp and 7 # o. Explain why in identity (4) this is indeed the case.

n+ D!

18. Prove by mathematical induction that f'"(z) = T in Example 7.3.

19. Establish identities (16) and (17).

20. Use Maclaurin series and the Cauchy product in identity (18) to verify the identity
sin 2z = 2 cos z sin z up to terms involving z°.

21. The Fresnel integrals C(z) and $(z) arc defined by

Clz) = L cos(€?) dé and S() = f( sin(€2) dt,

and F(z) is defined by the equation F(z) = C(z) + i5(2).
(a) Establish the identity

F(o) = J' ) exp(iE?) dE.

(b) Integrate the power series for exp(i£°) and obtain the power serics for F(z).
(¢) Use the partial sum involving terms up to 2’ to find approximations to C(1.0) and

S(1.0).
22. Compute the Taylor series for the principal logarithm f(z) = Log z expanded about the
centerzo = —1 + i. Hint: Use f'(z) = [z — (=1 + i) + (=1 + )] ! and expand f'(z)

in powers of [z — (—1 + )], then apply Corollary 7.2.
23. Let f be defined in a domain that contains the origin. The function f is said to bc even
if f{(—z) = f(2), and it is called odd if f(—2) = —f(2).
(a) Show that the derivative of an odd function is an even function.
(b) Show that the derivative of an even function is an odd function.
Hint: Use limits.



24,

285,
26.

27.

28.

29.

30.

7.3
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(a) If f(z) is even, show that all the coefficients of the odd powers of z in the Maclaurin
series are zero.

(b) If f(2) 15 odd, show that all the coefficients of the even powers of 7z in the Maclaurin
Series are zero.

Establish identity (19) by using mathematical induction.

Consider the following function:

1
f@=41-¢

0 when 7 =

when z #*

)

B | = NI |

(a) Use Theorem 7.4 to show that the Maclaurin series for f(z) equals E 7.

n=I0)

(b) Obviously. the radius of convergence of this series equals 1 (ratio test). However,
the distance between 0 and the nearest singularity of f equals + . Explain why this
does not contradict Corollary 7.3.

Consider the real-valued function f defined on the real numbers as follows:

e whenx # 0,
Jx = { 0  whenx =0

(a) Show that for all n > 0, f"/(0) = 0, where '’ is the nth derivative of f. Hint: Use
the limit defimition for the derivative to establish the case for n = 1, then use math-
ematical induction to complete your argument.

(b) Explain why this gives an example of a function that, although differentiable every-
where on the real line, is not expressible as a Taylor series about 0. Hint: Evaluate
the Taylor series representation for f(x) when x # 0, and show that the series does
not equal f(x),

(c) Explain why a similar argument could not be made for the complex-valued function
g defined on the complex numbers as follows:

@ = e~ whenz # 0,
gl = 0 whenz=0.

Hinr: Show that g(z) is not even continuous at z = 0 by taking limits along the real
and imaginary axes.
Explain how Laurent series and series solutions for differential equations studied in
calculus are different. How are they similar?
Write a report on series of complex numbers and/or functions. Include ideas and ex-
amples not mentioned in the text. Resources include bibliographical items 10, 83, 116,
and 153.
Write a report on the topic of analytic continuation. Be sure to discuss the chain of
power series and disks of convergence. Resources include bibliographical items 4, 19,
46, 51, 52, 93, 106, 128, 129, 141, 145, and 166.

Laurent Series Representations

Suppbse f(z) is not analytic in Dg(ar), but is analytic in Dg(e) = {z: 0 < |z — o]

1
< R}. For example, the function f(z) = —

S €7 is not analytic when z = 0 but is
e
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analytic for |z| > 0. Clearly, this function does not have a Maclaurin series rep-
resentation. If we use the Maclaurin series for g(z) = e°, however, and formally
divide each term in that series by z?, we obtain the representation

+ =+

=4

) 1z 2 2

+ —_ —_ —_ _

& 2?2 2z 3 4 56
that is valid for all z such that |z| > 0.

This example raises the question as to whether it might be possible to gener-

alize the Taylor series method to functions analytic in an annulus
A(r,R,a) = {z:r<|z-a)| <R}
Perhaps we can represent these functions with a series that employs negative powers

1
of z in some way as we did with f(z) = = e°. As you will see shortly, this is indeed

&

the case. We begin by defining a series that allows for negative powers of .

Definition 7.3 Let ¢, be a collection of complex numbers for n = 0, £,

12,43, . . . . The doubly infinite series z c.(z — o), also called a Laurent

N=—oco
series, is defined by

£ oo

(1) 2 Cn(z - a)” = Z Cﬂz(z - a)_” + 2:0 Cﬂ(: - (x)”v

N=—oc =

provided the series on the right-hand side of this equation converge.

Note: You may recall that by 2 c.(z — o) we really mean
n=0

co + Z c,(z — o). At times it will be convenient to write E c iz — o) as

n=1 H=—w

Dalz— = ckz— o) + ez = ay
n=—oo Nn=—oo n=0
rather than using the expression given in equation (1).
Definition 7.4 Given 0 < r < R, we define the annulus centered at o with
radii r and R by
A(r.R o) = {zr< |z— a| <R).
The closed annulus centered at o with radii r and R is denoted by
Ar.Ro)=(zr=|z-a| =R).

Figure 7.3 illustrates these terms.
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Ifze Cy, then | 20— o] « | z— &t] so by use of the geometric series (Theorem 4.8) we have

1 |
n (-0 — (z0 — )
1

- . _ -G
(z oc)(l . oc>

> (o — o) .
= ’g) (:—_—GW (provided z € C>).

Morcover, by the Weierstrass M-test, it is possible to show that the preceding series
converges uniformly for z € C;. We leave the details as an exercise.
Likewise, if z € C), we leave as an exercise for you to show by Corollary 4.2
that
1 S (- oy
®) —— =2

I Ah( — oy U7

and that the convergence is uniform for z € C).
Substiluling the series for equations (7) and (8) into equation (6) yields

v (o — o) 1 J S Loy

9 0) = 1 dz + —— flo) dz.

©  fla) = ,m ZO gy @ o 2 S )

Since the series in equation (9) converge uniformly on C- and C|, respectively, we
can interchange the summations and the integrals in accord with Corollary 7.2 to
obtain

< 1 2)dz
(10)  flz) = > [—- i)—‘—](:n - o)+

= 2niJo(z — ay!

SR j v de | —
;[zm GICE d\,] g

If we move some terms around in the second series of equation (10) and reindex,
we get

: SR odz |
A feo) = 2 [,—— . —'ﬂ’—‘——,](m - o)+

aoo ) 2mi VG (2 — o)

S _I_J A O NP PP
HZ] [21‘” c (: — a)_”‘] d@](A:O a) .

We apply the extended Cauchy-Goursat theorem once more to conclude that the
integrals taken over C; and C) in equation (11) give the same result if they are taken
over the contour C_ (), where p is any number such that r < p < R. This yields

g odz |
12 fGo) = Z{—f ——f—(—)————:l(z[] -+

2ri Jow (z — a)rt!

RN I (¢ R P
N21|:2nl JC;'"' 7 - a)~n4 | d":'(*ﬂ a) .
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Finally, writing the second series first in equation (12) gives

=11 i
(13)  flzo) = Z[—j f(—)dz](z[) -+

A 2mi o (z — oy

B f fodz |
'E)I:zni C:"' (z — a)n< l:|(«,0 a) .

Since zy € A was arbitrary, this establishes equations (2) and (3), and our proof of
Theorem 7.8 is complete.

What happens to the Laurent series if f is analytic in the disk Dg(x)? If we
look at equation (11), we see that the coefficient for the positive power (zg — )"
equals fU(zg)/n! by using Cauchy’s integral formula for derivatives. Hence, the
series in equation (2) involving the positive powers of (z, — o) is actually the Taylor
series for f. The Cauchy-Goursat theorem shows us that the coefficients for the
negative powers of (z, — @) equal zero. In this case, therefore, there are no negative
powers involved, and the Laurent series reduces to the Taylor series.

Our next theorem delineates two important aspects of the Laurent series.

Theorem 7.9 Suppose that f is analytic in the annulus A(r, R. o), and has

Laurent series f(z) = Z ¢z — ) forall z € A(r, R, o).

N=—co
() Iff(z) = D bz ~ @) for all z € A(r, R, @), then b, = ¢, for all n. (In
N=—ro
other words, the Laurent series for f in a given annulus is unique.)
(i1) Forall z € A(r, R, Q), the derivatives for f(2) may be obtained by termwise
differentiation of its Laurent series.

Proof We will prove part (i) only, since the proof for part (ii) invelves no
new ideas beyond what you have already seen in the proof of Theorem 4.13. Since

the series z b,(z — o) converges pointwise on A(r, R, &), Theorem 7.7 guarantees

Pyt
that this series converges uniformly on C; (o) for 0 = r < p < R. By Laurent’s
theorem,

e [ O,
C

2mi Joro (z — o)t! <
1 oo
= -——znl o (Z — a)—n—l 2 bm(Z _ a)m dZ'.
e m=—oo
S _b’” == | 4 1 1
= Z . (z — ay""~l dz (since the convergence is uniform).
== 2T C:‘"'

Since (z — oy"~"~! has an antiderivative for all 7 except when m = n, all the
terms in the preceding expression drop out except when m = n, giving us
b”

= gmi Jer, @7 @z = b
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The uniqueness of the Laurent series is an important property because the
coefficients in the Laurent expansion of a function are seldom found by using equa-
tion (3). The following examples illustrate some methods for finding the Laurent
series coefficients.

EXAMPLE 7.7 Find three different Laurent series representations for
f(z) = 3/(2 + 7 — %) involving powers of z.

Solution  The function f has poles at z = —1, 2, and is analytic in the disk
D:|z|< 1, in the annulus A: 1 <|z|< 2, and in the region R:|z|>2. We will
find a different Laurent series for f in each of the three domains D, A, and R. We
start by writing f in its partial fraction form:

3 N N S
1+22-2 1+z 21— (2

(1) floy =

We can use Theorem 4.8 and Corollary 4.2 to obtain the following representations
for the terms on the right side of equation (14):

as) 1= ;(—1)’-3' valid for |z| < 1
had ’_l)nol ]
(16) = ”= Z valid for |z| > 1,
1z = )
(17 = ”;2”‘] valid for |z| <2, and
o n-1
(18) — /7) ”Z] " valid for |z} > 2.

Representations (15) and (17) are both valid in the disk D, and thus we have

zf <1,

(19) f(z)=i[(~n"+~]—]z~ valid for

n=0 2”+ |

which is a Laurent series that reduces to a Maclaurin series. In the annulus A,
representations (16) and (17) are valid; hence we get

g — 1yt - il
20) fz)= > (——13— + > —— wvalid for 1 < |z| <2.
n=1 Z n=0 &

Finally, in the region R we can use representations (16) and (18) to obtain

had (_l)n+l — 2»7—1

cn f =2

n=1

valid for |z| > 2.

-1
<

EXAMPLE 7.8 Find the Laurent series representation for f(z) = (cos z — 1)/&*
that involves powers of z.
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Solution We can use the Maclaurin series for cos z — 1 to write

:__IZZ+_1-,4_L~6+
21 4! 6!
@)= p

et
<

We formally divide each term by z* to obtain the Laurent series

-1 1 z?

==+ ———+
& 222 24 720

valid for z # 0.

EXAMPLE 7.9 Find the Laurent series for exp(—1/z2) centered at z, = 0.
Solution  The Maclaurin series for exp Z is given by
haid Zn
(22) expZ=2 = valid forall Z
n=0 n:

Using the substitution Z = —z~? in equation (22), we obtain

exp( ) E = o valid for |z| > 0.

EXERCISES FOR SECTION 7.3

1. Find two Laurent series expansions for f(z) = 1/(z* — z*) that involve powers of z.
2. Find the Laurent series for f(z) = (sin 2z)/z* that involves powers of z.
3. Show that
1 1 1
flo) = = .
1-z 1-1i | — z—i

has a Laurent series representation about the point 7, = / given by

1 bsd (] —_ l')n-l . ) —
= = — —_— 7 —_ > .
f(@ — ”Z:I p— valid for |z — i| > /2

4, Show that

1-z_ < 1
z—2 =0 (z — l)”

is valid for |z -1 | > 1. Hint: Use the hint for Exercise 6 in Section 7.2.
5. Show that

1 -z - 2"

z—3 n=0(z — l)n

is valid for |z -1 | > 2. Hint: Use the hint for Exercise 7 in Section 7.2.
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10.
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12.

13.

14.

15.
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Find the Laurent series for sin(1/z) centered at o0 = 0.

Find the Laurent series for f(z) = (cosh z — cos z)/z° thal involves powers of 2.

Find the Laurent series for f(z) = 1/[z*(1 — z)°] that involves powers of 7 and is valid
for |:| > 1. Hint: UTY — (VD)) = 2211 — z)°.

Find two Laurent series for z-'(4 — z)-” involving powers of z. Hinr: Usc the result of
Example 7.6.

Find three Laurent series for (z2 — 5z + 6) ! centered at o = 0.

Let g and b be positive real numbers with # > ¢ > 1. Show that

I—a S b= gt

L =
v I b n-1 nz"

holds for |z| > &. Hint: Log(z ~ a)(z — ) = Log[1 — (a/z)] — Logll — (b/2)].

Use the Maclaurin series for sin 7 and then long division to show that the Laurent series

for csc z with o0 = 0 is
| S S
cscz=—+ -+ —
: 6 360

Can Log z be represented by a Maclaurin scries or a Laurent series about the point
o = (7 Give a reason for your answecr.
Show that cosh[z + (1/2)] = Z a,z", where

H= e

1 2n
a, = — j cos n8 cosh(2 cos 9) d0.
2x Jo

Hint: Let the path of integration be the circle C: z| =1
The Bessel function J,(2) is sometimes defined by the generating function

f 1 .
explri(l - T)J = E JAn"

Use the circle C: |z| = 1 as the contour of integration. and show that

1 ("
Jz) = *J cos(nB — z sin 0) d0.
n Jo

. Consider the real-valued function u(8) = 1/(5 — 4 cos 8).

(a) Use the substitution cos 8 = (1/2)}z + 1/z) and obtain

z 1 1 1
0) = f(z) = = - )
u®) = 1) z—2X2z-1 31-22 31-2¢

(b) Expand the function f(z) in part (a) in a Laurent series that is valid in the annulus
172 < ]zl < 2 and get

+

uM?

) - l l *H(-H + _‘,”)
Sz ~3 3 I 7).

(¢) Use the substitutions cos(n@) = (1/2)(z" + z77) in part (b) and obtain the Fourier
series for u(9):

w®) = 2 7=V cos(nB).

|[44

ll
3735
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n . @a,7" converges in the annulus
ri < |z| < r2where r, < 1and 1 < r,. Consider the real-valued function u(8) = f(e™).
Show that #(8) has the Fourier series expansion

17. Suppose that the Laurent expansion f(z) = 2

2n

u(h) = f(e®) = E a,e”, where a, = ; J:) e~ f(e) do.

18. The Z-transform. Let {a,)} be a sequence of complex numbers satisfying the growth
condition |a,| < MR forn =0, 1.. . . for some fixed positive values M and R. Then
the Z-transform of the sequence {«,} is the function F(z) defined by

Z({an}) = F(z) = E) a,z”".
=\
Prove that F(z) converges for |z| > R.
19. With reference to Exercise 18, find Z({q4,}) for the following sequences:
(a) a, =2 (b) a, = 1/n! () a, = l/m + 1)
(d) a, = | when nis even, g, = 0 when n is odd
20. With reference to Exercise 18, prove the shifting property for the Z-transform:

Z({arnl}) = Z’,[Z({ll,,}) — un).

21. Use the Weierstrass M-test to show that the series >, c_,(z — o)™ of Theorcm 7.7

ek
n=1

converges uniformly on the set (z: [z] = s) as claimed.
22. Show that the series in equation (7) converges uniformly for z € C».
23, Establish the validity of equation (8) by appealing to Corollary 4.2.
24. Show that the series in equation (8) converges uniformly for z € ().

7.4 Singularities, Zeros, and Poles

The point « is called a singular point, or singularity, of the complex function f if
f(2) is not analytic at = a, but every neighborhood Dg() of o contains at least
one point at which f is analytic. For example, the function f(z) = 1/(1 — ) is not
analytic at z = I, but is analytic for all other values of z. Thus, the pointz = 1 isa
singular point of f(2). As another example, consider g(z) = Log z. We saw in Section
5.2 that g is analytic for all 7 except at the origin and at the points on the negative
real axis. Thus, the origin and cach point on the negative real axis is a singularity
of g.

The point « is called an isolated singularity of a complex function fif fis not
analytic at ¢, but there exists a real number R > 0 such that fis analytic everywhere
in the punctured disk (o). Our function f(z) = 1/(1 — z) has an isolated singularity
at z = 1, but the singularity at z = 0 (or at any point of the negative real axis) is
not isolated for g(z) = Log z. Functions with isolated singularities have a Laurent
series, since the punctured disk Dg(0) is the same as the annulus A(0, R, o). We
now look at this special case of Laurent’s theorem in order to classity three types
of isolated singularities.
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Definition 7.5 Let f have an isolated singularity at o with Laurent series
expansion

A2 = 2 ez — oy valid for all z € A0, R, ).

Then we distinguish the following tvpes of singularities at o

() Ifc, =0forn=—1,-2,=3,. . ., then we say that f has a removable
singularity at o.

(1) If k is a positive integer such that c_; # Q0 and ¢, = 0 forn = -k — 1,
—k =2, —k —3,. .., then we say that f has a pole of order k at q.

(iii) If ¢, # O for infinitely many negative integers n, then we say that f has
an essential singularity at .

Let us investigate some examples in the three cases that arise.
(1) If f has a removable singularity at «, then it has a Laurent series

() fz) = 2, ez — oyt valid for all z € A0, R, o).

By Theorem 4.13, we see that the power series in equation (1) defines an analytic
function in the disk Dg(at). If we use this series to define f(ot) = ¢y, then the function
f becomes analytic at z = o, and the singularity is ‘‘removed.”” As an example,

sin z . .
It is undefined at z = 0, and has an isolated

consider the function f(z) = —.

<

singularity at z = 0. The Laurent series for f is given by

L _sinz_1{ 2 +£ '_7+
o= Pl e TR T
FA- - )
= —§+§—%+--- valid for |z| > 0.
We can ‘‘remove’’ this singularity if we define f(0) = 1, for then f will be analytic
cosz — 1 )
at 0 in accordance with Theorem 4.13. Another example is g(z) = B E— which

<

has an isolated singularity at z = 0. The Laurent series for fis given by

1 o

|
= ——4+——-——=—+4 ... valdfor [z| > 0.
2 4! 6!
If we choose to define g(0) = —< , then g will be analytic for all z.

(ii) If f has a pole of order £ at o, the Laurent series for f is given by

(2) f2) = >, culz — oy valid for all z € A(O, R, &), where ¢_; # 0.
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sin z

1
3 2
o~ A

For example, f(z) =

has a pole of order 2 at z = 0.
If f has a pole of order | at o, then we say that f has a simple pole at ¢. An

example is

5

1

| en
K

1| —

g =—e=-F1+ SEREP

£ | —

+

9
w

s

which has a simple pole at 7 = 0.
(iii) If an infinite number of negative powers of (z — @) occur in the Laurent

series, then f has an essential singularity. For example

L
N TR =T

has an essential singularity at the origin.

Definition 7.6 A function f(z) analvtic in Dg(Q) is said to have a zero of
order k at the point 7 = o if and only if

3 f%c) =0 forn=0,1, ..., k— 1, and f) # 0.
A zero of order one is sometimes called a simple zero.

Theorem 7.10 A function f(2) analyvtic in Dg(a) has a zero of order k at

the point z = o if and onlv if its Taylor series given by f(z) = z c(z — )
n=>0

has

4) co=c=---=¢_, =0 and ¢ #0.

Proof Statement (4) follows immediately from equation (3) since we have

fo)

n!

Cp = according to Taylor's theorem.

EXAMPLE 7.10 We see from Theorem 7.10 that the function

7 11 S1S

< <

s e
3t 5! 7!

fl@) =zsinz? = * —

has a zero of order 3 at z = 0. Furthermore, Definition 7.6 confirms this because
f(z) = 2z%cos * + sin 7,
f(2) = —47%in 22 + 4z°cos I* + 2z cos 22,
') = —8z%cos 72 — 127%in 72 — 87%cos Z°
+ 8z cos 22 — 4z%in 22 + 2 cos z°

Clearly we have f(0) = f'(0) = f"(0) = 0, but 0 ## f'''(0) = 2.
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Theorem 7.11  Suppose fis analytic in Dg(Q). Then f(z) has a zero of order
k at z = o if and only if f can be expressed in the form

(5) flo) = (z — g2,

where g is analytic at z = a, and g(a) # 0.

Proof Suppose that f(z) has a zero of order k at «. Using equation (4) of
Theorem 7.10 we can write f(z) as

6) flD) =2, culz — )"

n=0

= 2 ci(z — o) (by equations (4))
n=k

= > oz — (by reindexing)

n=0

= (z — ot Z Coeilz — 0), where ¢; # 0.
n=0

The series on the right side of equation (6) defines a function which we shall
denote by g(z). That is,

g2 = 2 ez — 0y = x + X conlz — oy valid for all z in Dg(cx).
n=0 n=1

By Theorem 4.13, g is analytic in Dg(e). Also, g(o) = ¢ # 0.
Conversely, suppose that f has the form given by equation (5). Since g(z) is
analytic at z = 0., it has the power series representation

(7) g() = > byz — )y, where g(&) = by # 0 by assumption.

=0

If we multiply both sides of equation (7) by (- — )*, we obtain the following power
series representation for f:

fD =@z~ 0 =D bz — oyt = 2 b, iz — oY

n=0 n=k

By Theorem 7.10, f(2) has a zero of order k at z = «, and our proof is complete.

An immediate consequence of Theorem 7.11 is the following result. The proof
is left as an exercise.

Corollary 7.4 If f(z) and g(z) are analytic at z = o, and have zeros of
orders m and n, respectively, at z = «, then their product h(z) = f(2)g(z) has
a zero of order m + natz = o.
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EXAMPLE 7.11 Letf(z) = z%sin z. Then f(2) can be factored as the product
of z3 and sin z, which have zeros of order m = 3, and » = | at - = 0. Hence,
z = 0 is a zero of order 4 of f(z).

Our next result gives a useful way to characterize a pole.
Theorem 7.12 A function f(z) analytic in the punctured disk Di(a) has a
pole of order k at z = o if and only if f can be expressed in the form

h(z)
8 ) =—"27,
®) f(2) < oy

where h(z) is analytic at z = o, and h() # 0.

Proof Suppose that f(z) has a pole of order k at z = o.. The Laurent series
for f can then be written as

1 e
-———( o 2 co_ilz — o), wherec_; # 0.
FAa n=0

The series on the right side of equation (9) defines a function which we shall denote
by h(z). That is,

® flo=

oo

(10) h() = 2, coiz — )" forall zin Dp(a) = {z: 0 < |z — a| <R},

n=0

If we specify that i{0) = c¢_, then A is analytic in all of Dy(at), with A(a) # 0.
Conversely, suppose that f has the form given by eguation (8). Since h(z) is

analytic at z = o with A(a) 5 0, it has a power series representation

(11} h(z) = D, by(z ~ &), where b, # 0.
n=0

If we divide both sides of equation (11) by (z — a)*, we obtain the following Laurent
series representation for f:

oo o

f) =2 bz — ok = > b,z — 0y = > cfz— ), wherec, = b, ..
4] k

n= n=-k n=—-k

Since c_; = by # 0, f(z) has a pole of order k at z = o. This completes the proof.

The following results will be useful in determining the order of a zero or a
pole. The proofs follow easily from Theorems 7.11 and 7.12 and are left as exercises.

Theorem 7.13
(i) If f(2) is analytic and has a zero of order k at z = «, then g(2) = 1/f(2)
has a pole of order k at z = a.
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(11) If f(2) has a pole of order k at z = ., then g(2) = 1/f(2) has a removable
singularity at 7 = . If we define h(a)) = Q. then h(z) has a zero of order
katz=o.

Corollary 7.5 If f(2) and g(z) have poles of orders m and n, respectively,
at z = d, then their product h(z) = f(2)g(z) has a pole of order m + n at
=0

Corollary 7.6 Let f(z) and g(2) be analytic with zeros of orders m and n,

respectively, at 7 = o. Then their quotient h(z) = f(z)/g(z) has the following

behavior:

(1) If m > n, then A(2) has a removable singularity at 7 = o. If we define

h(e) = 0, then h(z) has a zero of order m — nat 7 = Q.

(11) If m < n, then h(2) has a pole of ordern — mat z = «.

(i11) If m = n, then h(z) has a removable singularity at ; = o, and can be
defined so that h(z) is analytic at z = o by h() = lim k().

I

EXAMPLE 7.12 Locate the zeros and poles of A(z) = (tan z)/z and determine
their order.

Solution In Section 5.4 we saw that the zeros of f(z) = sin z occur at the
points 7 = nn. where n is an integer. Since f'(nn) = cos nn # 0, the zeros of f are
simple. In a similar fashion it can be shown that the function g(z) = z cos ¢ has
simple zeros at the points z = 0 and z = (n + +)n where # is an integer. From the
information given we find that 4(z) = f(z)/g(z) has the following behavior.

(1) £ has simple zeros at z = aw where n = +1, 32, . . . .
(ii) /4 has simple poles at z = (n + )% where n is an integer.
(111) /18 analytic at 0 and lim h(z) # 0.
20

EXAMPLE 7.13 Locate the poles of g(z) = 1/(5z* + 2622 + 5), and specify
their order.

Solution  The roots of the quadratic equation 5Z2 + 26Z + 5 = 0 occur at
the points Z, = -5 and Z; = —1/5. If we use the substitution Z = z°, then we see
that the function f(z) = 5z* + 2622 + 5 has simple zeros at the points +i./5 and
+i/./5. Theorem 7.13 implies that g has simple poles at +i/5 and +i/./5.

EXAMPLE 7.14 Locate the poles of g(z) = (% cot mz)/z%, and specify their
order.
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Solution The functions z2sin ntz and f(z) = (z° sin nz)/(% cos Az) have a
zero of order 3 at z = 0 and simple zeros at the points ¢ = £1, £2, . . . . Using
Theorem 7.13, we see that g has a pole of order 3 at z = 0 and simple poles at the
points z = 1, %2, . . ..

EXERCISES FOR SECTION 7.4

Locate the zeros of the functions in Exercises 1 and 2, and determine their order.

L (a) (1 + 2% (b) sin” z (©) 22+ 2z +2
(d) sin 22 (e) z* + 1022+ 9 1 +expz

2. (a) ¢ + 1 (b) Zrexpiz = 1) () 26 + 22 + 1
(d) z* cos’z (e) 2% + & (D 72 cosh ¢

Locate the poles of the functions in Exercises 3 and 4, and determine their order.

3. (@) @+ iz - D (bh) z7(z2 =22+ 2)*
(© ¢+ D! @ @+ 22 -2
(e) (3z% + 1022 + 3) ! G+ 273+ 4!
4. (a) z cotz (b) z7%sin z (¢) (z°sin 2)~*
(d) z-'csc z (e) (1 —expz)! (f) z 5sinh z
Locate the singularities of the functions in Exercises 5 and 6, and determine their type.
5. (a) 27z — sin 2) (b) sin(1/z)
{¢) z exp(l/2) (d) tan z
6. (@) (7 + )7 'sinz (b) z/sin z
(c) (expz — 1Mz (d) (cos z — cos 2z)/z*
For Exercises 7-10, use L"Hopital’s rule to find the limit.
7. fim ¢ 8. li 2 —2iz — 1
T 4 g S
1+ . sinz+ sinhz — 2z
9. lim ——— 10. lim T2 T T
i 1+ =0 ZS
11. Let f be analytic and have a zero of order £ at z,. Show that f'(z) has a zero of order
k — 1 atz,.

12. Let fand g be analytic at z; and have zeros of order m and n, respectively, at z,. What
can you say about the zero of f + g at z,?

13. Let fand g have poles of order m and n, respectively, at zy. Show that f + g has either
a pole or removable singularity at z.

14. Let f be analytic and have a zero of order & at z;. Show that f'(2)/f(z) has a simple pole

al zo.
15. Let fhave a pole of order k at z;,. Show that f'(z) has a pole of order k + 1 at z,.
16. Establish Corollary 7.4. 17. Establish Corollary 7.5.
18. Establish Corollary 7.6. 19. Find the singularities of cot z ~ 1/z.
20. Find the singularities of Log z°. 21. Find the singularities of

sin(l/z)

22. If f(z) has a removable singularity at z, then prove that 1/f(z) has either a removable
singularity or a pole at z.

23. How are the definitions of singularity in complex analysis and asymptote studied in
calculus different? How are they similar?
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7.5 Applications of Taylor and Laurent Series

In this section we show how Taylor and Laurent series can be used to derive im-
portant properties of analytic functions. We begin by showing that the zeros of an
analytic function must be “‘isolated’’ unless the function is identically zero. A point
o of a set T is called isolated if there exists a disk D,(o) about o that does not
contain any other points of 7.

Theorem 7.14 Suppose fis analytic in a domain D containing at o. and that
f(o) =0. Iffis not identically zero in D, then there exists a punctured disk D)) in
which f has no zeros.

Proof By Taylor’s theorem, there exists some disk Dg(o) about o such that

SN NI (e
flo) = E] S

n=I

(z — oy forall z e Dr(or).

Now, if all the Taylor coefficients f™(a)/n! of f were zero, then f would be iden-
tically zero on Dg(). A proof similar to the proof of the maximum modulus prin-
ciple given in Section 6.6 would then show that fis identically zero in D, contradicting
our assumption about f.

Thus. not all the Taylor coefficients of f are zero. and we may select the
smallest integer k such that f*(a)/k! # 0. According to the results of the previous
section, f has a zero of order k at o and can be written in the form

[l = (2 — oYgla).

where g is analytic at o and g(o) # 0. Since g is a continuous function, there exists
a disk D, (a) throughout which g is nonzero. Therefore, f(z) # O in the punctured
disk D)(o).

The following corollaries are given as exercises.

Corollary 7.7 Suppose that f is analytic in the domain D, and that o € D.
If there exists a sequence of points {z,} in D such that z, — o, and f(z,) = 0,
then f(z) = 0 forall z € D.

Corollary 7.8 Suppose fand g are analytic in the domain D, where o € D.
If there exists a sequence {z,} in D such that z, — o, and f(z,) = g(z,) for all
n, then f(z) = g(z) forall z € D.

Theorem 7.14 allows us to give a simple argument for one version of L Hépital's
rule.

Corollary 7.9 (L’Hopital’s Rule) Suppose f and g are analytic at o. If
flo) = 0 and g(a) = 0, but g’'(o) # 0, then
. [ flo
hm— = -
oo g(:) g (o)
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Proof Since g’'(®) # 0. g is not identically zero, so by Theorem 7.14,
there is a punctured disk Df(oc) in which g(z) # 0. Thus, the quotient

@ _ f - flm

is defined for all z € D:((x), and we can write
g  glo) — glo)

LSO fQ = fe) Q) ~ Sl = o) [ )
m = lim lim

e 8 e 8D — gl - L [g(2) — gz — o) B g (o)’

The following theorem can be used to get Taylor series for quotients of ana-
lytic functions. Its proof involves ideas from Section 7.2, and we leave it as an
exercise.

Theorem 7.15 (Division of Power Series) Suppose fand g are analytic
at o with power series representations

() = E afz — o)y and g(2) = 2 b(z — o)y forall z e Dg(0).

n=0 n=0

If g(at) #= 0, then the quotient f/g has the power series representation

9]

& _ S e - ar,

g(;) n=0

where the coefficients satisfy the equations
a, = bocy, + bic,_y + - - -+ b, o1 + by

. i) : -
In other words, the series for the quotlem‘f(— can be obtained by the familiar
g z

<

process of dividing the series for f by the series for g using the standard long
division algorithm.

EXAMPLE 7.15 Find the first few terms of the Maclaurin series for the func-

oo
tion f(z) = sec z if |:| <5 and compute f*(0).

Solution  Using long division, we see that

. — 1 — 1 _]+l-3+i-4+
SCC;‘—COSZ— 53 :4 36 = 2" 24."
1 — =+ ==+
2! 4! 6!
- , : 20 s
Moreover, using Taylor’s theorem, we see that if f(z) = sec z, then TRl e SO

F(0) = 5.

We close this section with some results concerning the behavior of complex
functions at points near the different types of isolated singularities. Our first theorem
is due to the German mathematician G. F. Bernhard Riemann (1826-1866).
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Theorem 7.16 (Riemann) Suppose that f is analvtic in D). If [ is
bounded in D (), then either fis analvtic at & or f has a removable singularitv
ar o.

Proof Consider the function g defined as follows:

o _ Jz=)f(zy whenz#=a,
(s = { 0 when z = 0.

Clearly, g is analytic in at least D (o). By straightforward calculation,

g(2) — glo)
m— =
- o

g (o) = i — lim (z = a)f(2) = 0.

adts A <=0

The last equation follows because fis bounded. Thus, g i1s also analytic at o, with
gty = 0.
By Taylor’s theorem. g has the representation

i ()
2y gl = z g_(?) (z — o) forallzeD(c)
n=2 .

We can divide both sides of equation (2) by (z — o)’ and use equation (1) to obtain
the following power series representation for f:

(- — a)n—l — w
al v =hn + 2)!

j(:) _ i‘ g(u)(a)

(z — o).

By Theorem 4.13, fis analytic at « if we define f(o) =

(2) o
g__(y_} . This completes the

proof.

The following corollary is given as an exercise.

Corollary 7.10 Suppose that f is analvtic in D (@). Then f can be defined
to be analytic at o if and only if im f(2) exists (and is finite).

gt

Theorem 7.17  Suppose that f is analytic in D,(0.). The function f has a pole
of order k at o, if and only if lim [f2)] = co,

Proof Suppose. first, that f has a pole of order & at o. Using Theorem 7.12,
we can say that
h(2)
(z— o’

[ =

where h is analytic at o, and A{at) # 0. Since

im |A(2)| = || # 0 and lim

:- | =0,
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we conclude that

1
hm [ f(z)| = lim [A@)| lim———— = o
Pt “f( ’ <L | l I—=sa | (: - a)L |
Conversely. suppose that lim |f(:) ] = oo. By the definition of a limit, there must
1
be some § > 0 such that | f(z)| > 1if 2 e Dy(a). Thus, the function g(z) = —— is

f)
analytic and bounded (by equation 1) in Dg(a). By Theorom 7.16, we may define g
at o so that g is analytic in all of Ds(a). In fact,

1
gy =lm-——=20
, | Ion f(:,) ‘
so o is a zero of g. We claim that o must be of finite order, for otherwise we would
bl () o
have g"”(a) = 0 for all n, and hence g(2) = E g (' ) (z— o) =0forall ;e Dyo).
n=0 n.

] , L .
Since g(2) = ﬁ is analytic in D (o), this is impossible, so we can let k be the order

of the zero of g at . By Theorem 7.13 it follows that f has a pole of order &, and
this completes our proof.

Theorem 7.18 The function f has an essential singularity at o if and only
if lim |f(2)| does not exist.

S0

Proof We see from Corollary 7.10 and Theorem 7.17 that the conclusion
of Theorem 7.18 is the only option possible.

EXAMPLE 7.16 Show that the function g defined by

@) = e~ when z # 0,
8971 0 when ; =

is not continuous at z = 0.
Solution In Exercise 27 of Section 7.2, we asked you to show this by

computing limits along the real and imaginary axes. Note, however, that the Laurent
series for g(z) in the annulus D(0) is

-t ]
g =1+ (=15,

so that 0 is an essential singularity for g. According to Theorem 7.18, lim | g(2) |
=0

does not exist, so g is not continuous at 0.
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EXERCISES FOR SECTION 7.5

1.

Ry

10,

11.

12.

Consider the function f(z) = z sin(1/z).

(a) Show that there is a sequence (z,) of points converging to z = 0 such that
fGzy=0forn=1,2,3.. ...

(b) Does this contradict Corollary 7.7?

Determine whether there exists a function f(z) that is analytic at z = 0 such that

] 1
f(-z-;)=0 and f(zn_l>=1 forn=12, .. ..

Determine whether there exists a function f(z) that is analytic at z = 0 such that

f(l) =f(1> =i, forn=12....
n n n-

Determine whether there exists a function f(z) that is analytic at z = 0 such that

f(l) =f(_—l) =lz forn=12, . ...
n n n

Prove Corollaries 7.7 and 7.8.
Prove Theorem 7.15.
Let f(z) = tan z.
(a) Use Theorem 7.15 to find the first few terms of the Maclaurin series for f(z) if
n
IZ‘ =~ 2 '
(b) What are the values of f(0) and f7N0)?
Prove Corollary 7.10.
Show that the real function f(x) defined by

o1
fx) = {x sin N when x # 0,
0 when x = 0,

is continuous at x = 0, but that the corresponding function g(z) defined by

<

1
zsin— whenz =0,

glz) = z
0 when z # 0,

is not continuous at z =

Write a report on analytic functions. Include a discussion of the Cauchy-Riemann equa-
tions and the other conditions that guarantee that f(z) is analytic. Resources include
bibliographical items 21, 39, 62, 72, 86, 155, and 161.

Write a report on infinite products of complex numbers and/or functions. Resources
include bibliographical items 4, 19, 51, 129, 145, and 181.

Write a report on the Bieberbach conjecture. Your report should be more of a narrative
about the conjecture and its eventual proof. Resources include bibliographical items 49,
73, 108, 148, and 189.



Residue Theory

8.1 The Residue Theorem

The Cauchy integral formulae in Section 6.5 are useful in evaluating contour inte-
grals over a simple closed contour C where the integrand has the form f(z)/(z — zo)*
and fis an analytic function. In this case, the singularity of the integrand is at worst
a pole of order k at zp. In this section we extend this result to integrals that have a
finite number of isolated singularities and lie inside the contour C. This new method
can be used in cases where the integrand has ap essential singularity at zp and is an
important extension of the previous method.

Let f have a nonremovable isolated singularity at the point z;. Then f has the
Laurent series representation

oo

1 flo= E a,(z — zo)y" valid for 0 <

1= —oo

z— 2| <R

The coefficient a_, of 1/(z — z¢) is called the residue of f at z;, and we use the
notation

(2) Res|f,z] =a_;.
EXAMPLE 8.1 If f(z) = exp(2/2), then the Laurent series (1) has the form

2 2 22 23
fO=expl-|=1+-+ =+

212 31

and we see that Res[f, 0] = 2.

3

EXAMPLE 8.2 1fg(z) = v show that Reslg, 0] =

9 <

W

Solution  Using Example 7.7, we find that g has three Laurent series rep-
resentations involving powers of z. The Laurent series of the form (1) is given by

244
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gl = i [(—1)” + L:|z”" valid for 0 < |z] < 1.

n=0 2nr !
Computing the first few coefficients, we obtain

(-)_é_l__}._{_g _E 2+
I I R T

Therefore Res[g, 0] = 3.

Let us recall that the Laurent series coefficients in equation (1) are given by

1 (&) d
3y a,=-— ﬂ—g)i* forn=0,%1,£2, . ..
2ni Jo (& = gyt
where C = C, (2p) = {z: ] - zo| = r} is any positively oriented circle with » < R.
This gives us an important fact concerning Res| £, zp]. If we set n = —1 in equation

(3), then we obtain

(4) J; f(g) dg = 2nia,1 = 2mi RCS[f; Z()]

where zo is the only singularity of f that lies inside C. If we are able to find the
Laurent series expansion for f given in equation (1), then equation (4) gives us an
important tool for evaluating contour integrals.

EXAMPLE 8.3 Evaluate f. exp(2/z) dz, where C is the unit circle |z| =1
taken with positive orientation.

Solution We have seen that the residue of f(z) = exp(2/z) at zp = 0 is
Res{f, 0] = 2. Using equation (4), we find that

e

L exp(y) dz = 2mi Res[f, 0] = 4ni.

¢

Theorem 8.1 (Cauchy’s Residue Theorem) Let D be a simply con-
nected domain, and let C be a simple closed positively oriented contour that
lies in D. If fis analytic inside C and on C, except at the points 2, 22, . . .,
2, that lie inside C, then

(5) f( fz) dz = zmkE] Res[f, z].

The situation is illustrated in Figure 8.1.
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FIGURE 8.1 Thec domain D and contour C and the singular points
21, 22, . - -, 7, in the statement of Cauchy’s residue theorem.

Proof Since there are a finite number of singular points inside C,
there exists an r > 0 such that the positively oriented circles C; = C, (z4) (for k =
1. 2, . . ., n) are mutually disjoint and all lie inside C. Using Theorem 6.5, the
extended Cauchy-Goursat theorem, it follows that

(6) J f@dz= 2, | fz)dz
C k=1 JC

Since f is analytic in a punctured disk with center z; that contains the circle Cy,
equation (4) can be used to obtain

) fc flDdz =2miRes[f ] fork=12 ... .n
k
Using equation (7) in equation (6) results in
L f(2) dz = 2mi >, Res[f. %),
k=1

and the theorem is proven.

8.2 Calculation of Residues

The calculation of a Laurent series expansion is tedious in most circumstances. Since
the residue at z; involves only the coefficient a | in the Laurent expansion, we seek
a method to calculate the residue from special information about the nature of the
singularity at zo.

If f has a removable singularity at zp, then a_, = QO forn = 1, 2, . . ..
Therefore if z; is a removable singularity, then Res[f, z¢] = 0.
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Theorem 8.2 (Residues at Poles)
(i) If f has a simple pole at 7, then
(1) Res[f, 2l = lim(z ~ 20)f(z).

(1) If f has a pole of order 2 at zy, then

. d e
(2)  Resif, z} = lim 7 (2 = z)f(2)-
(111) If f has a pole of order k at z, then
v 1 gkt .
(3} Reslf, 2] = * =D linl pre(Chy 20) (@)}

Proof If f has a simple pole at zo, then we write

a_)

4 flo= +ay+ a2 — ) taaz -yt

< <)

If we multiply both sides of equation (4) by (z — zo) and take the limit as 7 — z,
then we obtain

lim (z — zo)f(z) = lim {@ | + aWz — zp) + ay(z — 200 + - -]

I <=

= a_, = Reslf, z].

and equation (1) is established.
Since equation (2) is a special case of equation (3), let us suppose that f has

a pole of order k at z,. Then f can be written as
a_j A _fy] a-

) fo = - + + ot

=)t (@ — ) -

tagtaz—z)+ .

If we multiply both sides of equation (5) by (z — zo)*, then the result is

6) G-z =ax+---+alz -2 +afz -zt .

We can differentiate both sides of equation (6) k — 1 times to obtain
k-1

dzk~l

[z = 20 (@) = (k — Dla_; + klagz — 20)

k+ 1
2

(N

+

ai(z — z0)* + -

If we let z — 70 in equation (7), then

k-1

lim [z — 2)f)] = (k = Dlay = (k ~ D'Res[f, 2],

-3 dz+-!

and equation (3) is established.
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EXAMPLE 8.4 Find the residue of f(z) = czt 2t 7 = 0.

Solution We can write f(z) = (1 cos nz)/(z2sin ®z). Since z2sin nz has a
zero of order 3 at z, = 0, we see that f has a pole of order 3 at zp = 0. Therefore
using equation (3), we find that

2

I d
Res[f, 0] = — hm Z; 7z cot 1z

1 .o d
= = lim p (m cot mz ~ W2z cscinz)
=0 4z

= 12 lim (mz cot wz — 1) cse?nz

0

TZ COS MZ — SIN TZ

= 72 lim —
20 SIN Nz

This last limit involves an indeterminate form and can be evaluated by using
L Hépital’s rule:

—nZz sin mz
Res[f, 0] = n?2 lim ————————
=0 3T sin®nz cos Tz
—-n2 nz 1 -7
= — lim — Iim =
3 .50 sin 17 ;-0 COS TZ 3

EXAMPLE 8.5 Find [¢ [d2/(z* + 23 — 222)], where C is the circle

taken with the positive orientation.

=3

<

Solution The integrand can be written as f(z) = 1/[z3(z + 2)(z — 1)]. The
singularities of f that lie inside C are simple poles at the points 1 and —2 and a pole
of order 2 at the origin. We compute the residues as follows:

2
- L2 = ___:__ = _ =
Res[ f, 0] 11m [ f(2)] hm( oy 7

Res[ £ 1] = lim (z — 1)f(z) = hm;=
=] ) z44z

Res[f, —2] = 11m (~+2)f()= Iim °m E

The value of the integral is now found by using the residue theorem.

J’ dZ _2._?_1_+l _1__ =0
cA+ P22 ™ 3012f

The value O for the integral is not an obvious answer, and all of the preceding
calculations are required to find it.
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EXAMPLE 8.6 Find f¢ (z* + 4)"' dz, where C is the circle |z — 1| =
taken with the positive orientation.

Solution  The singularities of the integrand f(z) = 1/(z* + 4) that lie inside
C are simple poles that occur at the points 1 +i. (The points —1 %/ lie outside C.)
It is tedious to factor the denominator, so we use a different approach. If z; is any
one of the singularities of f, then L’Hopital’s rule can be used to compute Res
[ £, zo] as follows:
1 1

Res[f. 2] = lim —= = lim — = — .
es[ f, zo] Lmo:4+4 22,4& e

Since zg = —4, this can be further simplified to yield Res[ f, zg] = (—1/16)z,. Hence
Res[f, 1 +i] = (=1 — )/16, and Res[f. | — i] = (—1 + i)/16. The residue theorem
can now be used to obtain

f di o fzl-i Zl+iy  —m
ctr+a ™M 16 6 ) 4

The theory of residues can be used to expand the quotient of two polynomials
into its partial fraction representation.

Lemma 8.1 Ler P(2) be a polynomial of degree at most 2. If a, b, and c are
distinct complex numbers, then

_ P@) __A B <
& fz)= Z—~a)(z—b)(Z—C)‘Z°a+Z_b+Z_C
where
_ __ Pa
A——Res[f,a]—(a_b)(a_c),
B=Resifbl=— T8
= Res[ f, ]_(b—a)(b—c)’
_ 1o PO
C—Res[f,c]—(c_a)(c_b).

Proof It will suffice to prove that A = Res|f, a]. We can expand f in its
Laurent series about the point z = a by expanding the three terms on the right side
of equation (8) in their Laurent series about z = a and adding them. The term
Al(z — a) is itself a one-term Laurent series. The term B/(z — b) is analytic at z =
a, and its Laurent series is actually a Taylor series,

B -B 1
9 = =
S uzo(b a)"”

" —_ a)n'
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The expansion for the term C/(z — ¢) is given by

C — N _—C—_ (—v — )"
Z—-c e —ay' " @

(10)
We can substitute equations (9) and (10) into equation (8) to obtain
+ < ( )
z— a)
(b — a)ml (C — a)n+l
Therefore A = Res| f, a], and calculation reveals that

_ P(2) P(a)
Res[f, a] = hg,l C-be-0 (a ~ba—c)

flo =

EXAMPLE 8.7 Expressf(z) = ——% in partial fractions.

Solution Computing the residues, we obtain
Res[f,0] = 1, Res[f, 1] = =5, Res|[f. 2] = 4.
Therefore

3242 1 5 4

z-NDz—-2) z z-1 z-2°

If a repeated root occurs, then the process is similar.

Lemma 8.2 If P(z) has degree at most 2, then

1 7) = =
an  f@ z — a2z - b) (Z—(;)2+z—a+z—b

where A = Res[(z — a)f(z), a], B = Res[f, a], and C = Res[f, b].

2+ 3z

EXAMPLE 8.8 Expressf(z) = ﬁ

in partial fractions.

Solution  Calculating the residues we find that

2+ 3z+2
Res[zf(z), 0] = lim N = -2,
\ dz2+3z2+2
Res[f,0] = lim > —— >~ <
=0 d "—1
Rz AN~ D~ (F+ 324+ 2)
= lim = _s,
=0 (z— 17
2+ 3z+2
Res[f, 1] = lim ————— = 6.
1

-
<

8]

N
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Hence A = -2, B = —5,and C = 6, and we can use equation (11) to obtain

2+3+2 =2 5. 6

R -

EXERCISES FOR SECTION 8.2

Find Res| £,0} for the functions in Exercises 1-4,

1. (a) 2 lexpz (b) z cosh 4z
(c) cscz (d) (2 + 4z + 5/ L)
2. (a) cotz (b) 7 7cos z (c) z7'sin z (dy (22 + 4z + 5/
3. (a) exp(l + 1/2) (b) z*sin(1/z) (c) z7'esc z
4. (a) z7%cscz (b) (exp 4z — 1)/sin’z (¢) z-'esc’z

For Exercises 5-15, assume that the contour C has positive orientation.

5. I “ld J’ Whele Cis t]le Clrc]e | 1 — | =
. Fir . wihere 18 € circle ra
2&4 2) ) '

< d‘,
7. Find L e_x;p_+_- , where C is the circle 'z] =2,

dz
8. Fi df Sm_ > . where C is the circle |z]| = 2.

9. Find f sin 2 . where C is the circle |z| = 2.

10. Find f¢(z — 1) 2(z* + 4)"" dz along the following contours:

(a) the circle [:[ =4 (b) the circle |z - 1’ =
11. Find [ (z* + 1)-'dz along the following contours:

(a) thecircle |z — i = 1 (b) the circle [z — (1 + N/2| =

Hint: If z, is a singularity of f(z) = 1/(z® + 1), then show that Res[ £, zo] = (—1/6)z,.
12. Find fo (32 + 102 + 3)! dz along the following contours:

(a) the circle |z -iJ/3| = t— i3] =1
13. Find [ (z* — 2" — 22 ' dz alonb the following contours;
(a) the circle | | =+ (b) thecircle [z| = %

Iz
14. Findf —=—_ where C'is the circle |z| = 1.
-84

-
<

dz .
15. Find f —— . where C is the circle |z| = 1.
¢ zsmezg

16. Let fand g have an isolated singularity at z;. Show that Res[ f + g. zo] = Res[ /. 2] +
Resl g, zyl.
17. Let fand g be analytic at g,. If f(zy) # 0 and g has a simple zero at z;, then show that

Res[i . z()] = & .
g g'(z)
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18. Use residues to find the partial fraction representations of the following functions,

() 1 b) 3z-3 © 2 =T+ 4)

W2 R p—— @t d

@ 10z ) 28 =3z~ 1 )y 237 -+ 1
T e o AL e) —————=— TN
2+ A+ 9) © ey O T @

19. Let fbe analytic in a simply connected domain D, and let C be a simply closed positively
oriented contour in D. If z, is the only zero of fin D and z, lies interior to C, then show

that
1 (2
— | }:(—) dz =k
2ni Joo f(z)

where k 1s the order ot the zero at z,.
20. Let f be analytic at the points z = 0, 2], £2, . . . . If g(z) = nf(2) cot nz, then show
that

Res| g.n] = fin) forn =0,%1,4+2,. . ..

21. Write a report on how complex analysis is used in the study of partial fractions. Re-
sources include bibliographical items 10 and 63.

22. Write a report on residue theorem. Include ideas and examples that are not mentioned
in the text. Resources include bibliographical items 22, 116, and 153.

8.3 Trigonometric Integrals

The evaluation of certain definite integrals can be accomplished with the aid of the
residue theorem. If the definite integral can be interpreted as the parametric form of
a contour integral of an analytic function along a simple closed contour, then the
residue theorem can be used to evaluate the equivalent complex integral.

The method in this section can be used to evaluate integrals of the form

5

(1 L F(cos 0, sin 0) d8,

where F(u, v) is a function of the two real variables # and v. Let us consider the
contour C that consists of the unit circle |z| = 1, taken with the parameterization

(2) Ciz=cos® +isin®, dz=(—sin® +icos®dbd for0O <0 <2m

Using 1/ = cos 8 — i sin 6 and (2), we can obtain

1 1 1/ 1 iz
3) cosB=—<:+—>, sin9=?(z-—>. and db = =
i 7

z, iz

If we use the substitutions (3) in expression (1), then the definite integral is trans-
formed into a contour integral

-

) L F(cos 8, sin 8) d§ = f( f@) dz,

where the new integrand is
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L6-026-2)

Suppose that fis analytic for lzl < 1, except at the points z;, z2, . . ., 2, that
lie interior to C. Then the residue theorem can be used to conclude that

5 flay=

(6) fo ~ F(cos 0, sin 8) d6 = 21ti > Res|f, z].
k=1

The situation is illustrated in Figure 8.2,

z=cosf +isinb

F— 3+ 4 -
0 2n
{a) The interval [0, 27} of (b) The contour C of
integration for F(cos 9, sin ¢). integration for f(z).

FIGURE 8.2 The change of variables from a definite integral on |0, 27] 1o a
contour integral around C.

b _
1 + 3cosi@

EXAMPLE 8.9 Show that fn -

Solution  The complex integrand f of equation (5) is given by

1 —i4z
@) = ——— — -
iZ[l + ¢z + 2z 37+ 102+ 3
The singularities of f are poles that are located at the points where 3(z2)? +
10(z*) + 3 = 0. The quadratic formula can be used to see that the singular points
of f satisfy the relation z2 = (=10 + /100 — 36)/6 = (—5 £ 4)/3. Hence the only

singularities of fthat lie inside the circle C: ‘:[ = 1 are simple poles located at the
two points z; = il /3 and Z = -i/\/g. Theorem 8.2 with the aid of L Hépital's
rule can be used to calculate the residues of f at z; (for k = 1, 2) as follows:
. —idz(z — )
Res[f, z;] = lim —————
eslh &l En 37+ 102+ 3
= lim ~i4(2Z - )
ey ]213 + 20z

—i4Zk - —i
1253 + 20, 32+ 5°
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Since z; = *i//3 and 22 = —1/3, we see that the residues are given by Res[f, z;] =
—i/(3(—1/3) + 5) = —i/4. Equation (6) can now be used to compute the value of
the integral

jlﬂ do 7,'—i+—i .
—————=2mi|l—+— | =mn
0 1+ 3cos?0 "4 T3

EXAMPLE 8.9* Show that f dr

— =7
0 1+ 3 cos’t

Solution  Using a Computer Algebra System
The indefinite integral, or antiderivative can be obtained by using software such as
Mathematica or MAPLE. It 1s

—arctan(2 cot 1)

g = >

Since cot 0 and cot 2w are not defined, the computations for both g(0) and g(2n) are
indeterminate. The graph s = g(f) is shown in Figure 8.3 and reveals another
problem: g(f) has a discontinuity at + = w. This is a violation of the fundamental
theorem of calculus, which asserts that the integral of a continuous function over
(0, 2r) must be continuous. The integration algorithm used by computer algebra
systems (the Risch-Norman algorithm) gives the preceding antiderivative g(¢) and
all mathematicians should beware.

A
s=g(1)
/4
T T >
/ 7/ )
/4
dt —arctan(2 cot 1)
FIGURE 8.3 Graphofs = f = .
Taph ot 3 1+ 3 cost 2

The proper value for the definite integral can be obtained by using g(7) on the
open subintervals (0, ) and (w, 2m) where it is continuous. Limits must be used
over (0, ) and (n, 2%). Therefore, the value of the definite integral is
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jz" dt _J” dr +J2" dt
0 1+ 3cos’t 01+ 3cos?t = 1 + 3 cost

= lim g(t) — lim gty + lim g — 11m 140))

I—-n~ 1—2n [
n -7 n -7

—_ — — —— — =7
4 4 4 4

cos 20 do n

2
EXAMPLE 8.10 Show that [ Py E

Z=cos20 +isin20 and z % = cos 20 — isin 26.

Fa

We can solve for cos 20 and sin 20 to obtain the substitutions
1 ]
(7 cos20 = 5(:2 +z7?) and sin20 = % (2 -z
i

Using the substitutions in equations (3) and (7), we find that the complex integrand
fin equation (5) can be written as
@+ i+ 1)

f@ = iZls — 2z +z ) 22— 22z — 1)’

The singularities of f that lie inside C are poles that are located at the points
z1 = 0 and x; = + . Using Theorem 8.2 to calculate the residues results in

R 0]_1 iﬁf()_l d_i(.i“__-i-L
eslf. g I = M 202 — 52+ 2)

473(21~ —52+2)—(@z-5+ 1)
= Jimi{
50 21272 — S5z + 2)?

_
8

and
lim w2+ 17
—»1/2 424z — 2) 24

Therefore using equation (6), we conclude that

JZ“ cos 26 df —21:'2—-1-2 _n
0 S—dcos® T\8 24) 6"

Res[f, +] = -hri/]z (z— DD =
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EXERCISES FOR SECTION 8.3

Use residues to find the following:

1 J’2n de _E J’
"o 3cose+5_2 0 4sm6+5
14

3. L 15 sm’6+l 2 0 cos-9+4

5, J’ _sin8dé _=m 6. J' _sin’6do
05+4cosB 4 05—30059

g - N -
0 (5+ 3cosB8)> 32 0 (5+4cos 8)°

0. J' cos26d0 _ m 10 J’”‘ cos 26 49
05+3cos6 18 © o 13—12c099

Sn

o (1 + 3cos 8)? 8 o (14 8cos 0)2

23 9
13, J _cos?30d8 _ 3n 14[ _cos’30 d6

5—4c0520 ? 5—300576

J’ 2%

acose+bsm9+d d2 — a2 — b2’

where a, b. and d are real and a? + b2 < d°

j n de _ 2n

v acos’® + bsin®+d  JSa+ dib+d)

where a, b, and d arereal and a > dand b > d

17. Compare the complex analysis methods for evaluating trigonometric integrals and the
methods learned in calculus,

15.

16.

8.4 Improper Integrals of Rational Functions

An important application of the theory of residues is the evaluation of certain types
of improper integrals. Let f(x) be a continuous function of the real variable x on the
interval 0 < x < 0. Recall from calculus that the improper integral of f over [0, o)
is defined by

- b
j f(x) dx = lim f flx) dx
0 bsoo 40

provided that the limit exists. If f is defined for all real x, then the integral of f over
(—voo, o) is defined by

0 b
f f(x) dx = lim [ f(x) dx + lim Jo f(x) dx
a Bses

d——oo

provided that both limits exist. If the integral in equation (2) exists, then its value
can be obtained by taking a single limit as follows:

- R
3) J’ Jfx) dx = lim J fx) dx.
. R J =R
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However, for some functions the limit on the right side of equation (3) exists when
definition (2) does not exist.

R
EXAMPLE 8.11 lim | xdx = lim [R¥2 — (~R)¥2] = 0, but the improper

R—= J—R Roen
integral of f(x) = x over (—oo, o) does not exist. Therefore equation (3) can be used
to extend the notion of the value of an improper integral and motivates us to make
the following definition.

Let f(x) be a continuous real valued function for all x. The Cauchy principal
value (P.V.) of the integral (2) is defined by

o R
4 PV j f(x) dx = Iim J . fo) dx
e R J-
provided that the limit exists. Therefore Example 8.11 shows that

P.V.f xdx =0,

EXAMPLE 8.12

f” dx m R dx
=k
—ce Xz + 1 R—oo sz +1
= hm [arctan R — arctan(—R)]
n —x
=——— =71
2 2

If f(x) = P(x)/Q(x), where P and Q are polynomials, then fis called a rational
function. Techniques in calculus were developed to integrate rational functions. We
now show how the residue theorem can be used to obtain the Cauchy principal value
of the integral of f over (—oo, o0).

Theorem 8.3 Letf(z) = P(2)/Q(2) where P and Q are polynomials of degree
m and n, respectively. If Q(x) # 0 for all real x and n 2 m + 2, then

v © Px) P
(5) P.V. —dx = 2mi Res[ }
-~ Q) E o’
where 2y, z2. . . ., Zk_1, and 7 are the poles of P/Q that lie in the upper half

plane. The situation is illustrated in Figure 8.4.
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R
FIGURE 8.4 The poles z), 72, . . ., 7.1, z of P/Q that lie in the upper half plane.

Proof Since there are a finite number of poles of P/Q that lie in the upper
half plane, a real number R can be found such that the poles all lie inside the contour
C. which consists of the segment ~R < x < R of the x axis together with the upper
semicircle Cg of radius R shown in Figure 8.4. Property (17) in Section 6.2 can be
used to write

R P(x) Pz) P(z)
6 —dx = —dz — dz
© J—R ox f o @ J 00)

The residue theorem can be used to express equation (6) in the form

, ® P(x) P P(z)
(N f dx = 2mi Re@l: W] - J dz.
& Qx) /Z Q" e Q(2)
The result will be established if we can show that the integral of P(z)/Q(z)
along Cr on the right side of equation (7) goes to zero as R — . Since we have

n = m + 2, the degree of the polynomial ((z) is greater than the degree of zP(z).
Suppose that

PR)=an" + an i7" '+ - +az+ ap
and

Q@) = b" + by 2"+ - + bz + by.
Then

P(z) = 7"P\(2), where
l(&) = a, + am—lz—] + -+ a|z"’”' + apz™ ",

and

Q@) = "G1(2), where
QI(Z) = bn + bn—lzﬁ] + o+ blziml + b[]z—”'

Therefore we have

ZP(z) _ P
0 Qi)

(8)
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Since Pi(z) — a,, and Q(z) — b, as — oo and n = m + 2, we can use equation

(8) to see that

<~

ZQP((;) -0 aslz]—)oo.
Therefore for any € > 0 we may choose R large enough that
ZP(2) £
0| =
whenever z lies on Cg. Therefore we have
P@) 3

3 .
= — whenever 7 lies on Ci.
n|z| =R

9

Q@)
Using the ML inequality of Section 6.2 and the result of inequality (9), we obtain
the estimate

Pz
f Udzlsjidz =inR=£.
Cr Q(2) Cx TR nR

Since £ > 0 was arbitrary, inequality (10) shows that

(10)

. P(z)
11 1 f — dz = 0.
(n R]_Te Cr O(2)

We can use equation (11) in equation (7) and use definition (4) to conclude that

e R . 3
P.V.j L 1imf PO e = 2ni Y, Res[f,z,],
-~ (x) ke SR O(X) Py o

and the theorem is proven.

EXAMPLE 8.13 showuut | —2 %

Solution The integrand can be written in the form

1
(z+ Dz — Dz + 2Dz — 20

fla) =

We see that f has simple poles at the points z; = 7/ and z; = 2i in the upper half-
plane. Computing the residues, we obtain
—i i
Li] = — Res[f, 2i] = —.
Res[ f, i] 5 and Res[f, 2i] 13

Using Theorem 8.3, we conclude that

r dx (=i i
— = qil— +— ) =
e (2 + DG+ 4) 6 12

A
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dx 3n

EXAMPLE 8.14 Show thal[ -

Solution The integrand f(z) = 1/(z2 + 4)* has a pole of order 3 at the point
z; = 2i. Computing the residue, we find that

Res[ f, 2i] = l lim d—:;
. 2 -2 dZ? (g + 20
lyimd_ =3
2 s2idz(z + 207
Ly 12 =3
2 =20 (Z + 21)s 512
[
Therefore LTy = 27 512 256

EXERCISES FOR SECTION 8.4

Use residues to establish the values of the integrals in Exercises 1-15.

Lf“ﬁiﬁfzﬁ zf*,*
= (x2 + 16 8 —= x> + 16
= xdx = x4+ 3
3. f =0 4. f k
-+ 9y L™
~2+3  TIn j‘* dx
5 f 10 T8 & ). v va
7 f’" ¥dy _m g f‘” X dx
—wx“+4_2 Tee (2 + 4
T x +
- 10. f —_——
f,m o + l) (x2 + 4) 9 e (X7 )X + 9 dx
42 2 = d
11. J T == 12. f dx
e (xT + A)x: + D) 3 e x4+ 1
13. f r’dx _ E
14. f ,wherea > Qand b > 0
—e (x- + a* )(x + b ) ab(a + b)

15. j P )‘=8i; wherea > 0
- (2 + a?

8.5 Improper Integrals Involving Trigonometric Functions

Let P and Q be polynomials of degree m and n, respectively, where n = m + 1. If
Q(x) # 0 for all real x, then

P.V. f” Mcosxdx and P.V. fm @sinxdx
= ) - W)
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are convergent improper integrals. Integrals of this type are sometimes encountered
in the study of Fourier transforms and Fourier integrals. We now show how these
improper integrals can be evaluated.

It is of particular importance to observe that we will be using identities

(1) cos(ox) = Re[exp(fox)] and sin(ox) = Im[exp(iow)]

where o is a positive real number. The crucial step in the proof of Theorem 8.4 will
not hold if cos(ez) and sin(az) are used instead of exp(iaz). Lemma 8.3 will give
the details.

Theorem 8.4 Let P and Q be polvnomials with real coefficients of degree
m and n, respectively, where n = m + 1, and Q(x) # 0 for all real x. If

o> 0and
, exp(icez)P(2)
2 )= ———
2y f@ 00
then

(3) P.V. f a%cos(an dy = =2m Z lm(Rcs LA z,']) and

4) P.V. f ) g——) sin(ox) dx = —2m Z Re(Res L z,])

where z), Z2, . . ., Zx _ 1, Zx are the poles of f that lie in the upper half-plane
and where Re(Res[ £, z;]) and Im(Reslf, ;1) are the real and imaginary parts
of Res[ f. ¢,], respectively.

The proof of the theorem is similar to the proof of Theorem 8.3. Before we
turn to the proof, let us first give some examples.

EXAMPLE 8.15 Show that v, | ZSL1dr_ X

Solution The function f in equation (2) is f(z) = z exp(i)/(z2 + 4)
and has a simple pole at the point z; = 2/ in the upper half-plane. Calculating the
residue results in

z exp(iz) 2ie? 1

[]

o
s

Using equation (4), we find that

- xsinxd
P.V.J ISMXAY _ om Re{Resf, 2i]) = = .
e x- 4+ 4 e”
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EXAMPLE 8.16 Show tha | 9X%_Tcos 1 sin D
) - X+ 4 4e .

Solution The complex function f in equation (2) is f(z) = exp(iz)/(z* + 4)
and has simple poles at the points z; = 1 + i and z; = —1 + i in the upper half-
plane. The residues are found with the aid of L’Hopital’s rule.

(2= 1~ Dexptiz) _ 0

Res[f, 1+ i] = lim

o+ 7,4 + 4 0
.+ iz = 1 = Blexp(iz)

= lim

=i 413
_exp(—=1 +4) sinl —cosl —icos]+sinl)
T 16¢ )

Similarly,
Reslf —1 + i] = cos 1 —sinl — i(cos 1 + sin ])'

16e
Using equation (3), we find that

J"‘ cos x dx
-~ + 4

= —2x[Im(Res[f, 1 + i]) + Im(Res[f, —1 + i])]

_mlcos 1 + sin 1)
B 4e )

We now turn to the proof of Theorem 8.4, a theorem that depends on the
following result.

Lemma 8.3 (Jordan’s Lemma) Ler P and Q be polynomials with real
coefficients of degree m and n, respectively, where n = m + 1. If Cg is the
upper semicircle z = Re” for 0 < 0 < &, then

. expliaP) ,
3) }elill LR _—_—Q(z) dz =0,

Proof Sincen =m + 1, it follows that | P(2)/Q(z) | = 0 as |z|— oo. There-
fore for £ > 0 given there exists an R, > 0 such that
P(2)
0(2)
Using inequality (22) of Section 6.2 together with inequality (6), we obtain the

estimate

%lp_(z) ”’ f E iz - -
fCR () %)= c‘Rn‘e ||dz|, where R = R,.

<§ whenever |zl = R..

(6)

(7
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The parameterization of Cg leads to the equations
(8) |dz| =Rdd and || = e = Ksinn

Using the trigonometric identity sin(x — 8) = sin 8 and equations (8), we can express
the integral on the right side of inequality (7) as

n /2
9) f .E_ |(,i;Hd:,| = EJ e-Ryinbvp g = % e Rsnap 49
Cp TU TJo m Jo

On the interval 0 = 6 < n/2 we can use the inequality
20
(1Y 0= ;— < sin 6.

We can combine the results of inequalities (7) and (10) and equation (9) to conclude

that, for R = R,,

f exp(in)P(z) dz
Cr )

2e
S —_—
T
— _ Eevlkﬂ/n

n/2
f e ERH/nR do
0

n/2

o < E.

Since € > 0 is arbitrary, Lemma 8.3 is proven.

Proof of Theorem 8.4 Let C be the contour that consists of the segment
—R = x < R of the real axis together with the semicircle Cg of Lemma 8.3. Property
(17) of Section 6.2 can be used to write

(i JR exp(ian)P(x) dx _ f exp(in)P(z) dz f exp(io)P(2) dz .
-R O(x) ¢ o) Ce o)
If R is sufficiently large, then all the poles 7, z2, . . ., z; of fwill lie inside C, and
we can use the residue theorem to obtain
(12) j"‘ exp{io)P(x) dx exp(ioz)P(z) dz '
-R Q) o)

Since o is a positive real number, the change of variables Z = oz shows that Jordan’s
lemma holds true for the integrand exp(ictz)P(2)/Q(z). Hence we can let R — oo in
equation (12) to obtain

A
= 1 ; Res[f, 7] — f(.k

(13) P.V. j " [cos(owx) + ¢ sin(oux)]P(x) dx _

k
o -
N o0 2Ri ; Res[ f. z;]

k
= =21 > Im(Res[f, 3;])
=
k
+ 2mi >, Re(Res[f. z]).
Jj=1

Equating the real and imaginary parts of equation (13) results in equations (3) and
(4), respectively, and Theorem 8.4 is proven.
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EXERCISES FOR SECTION 8.5

Use residues to find the integrals in Exercises 1-12.
L J” cosxdr W . df”“ sin x dx _

29 3@l
= xcos xdx =~ X sin x dx
2. PV, ———and P.V. —_—

-~ X2+ 9 —~ X* 4+ 9
3 f” xsinxdr _m . j cos x dx
(x4 4? 4e? (2t 4P

f __cosxdx m " 1 6. f _cosxdx
@+ HE+ 9 5\2e 3 e (2 F D+ 4)

J' cosxds  mcos ] 8. J _cosxdx
—ex? = 2x + 5 2e? x~4x+
9. J xsvinxdx___nsinl 10. PVJ’“‘,\ sin x dx
2+ 4 2e - xt+4
. e 3
- j cos 2x dx ncc:sZ 1. P.V.J X 5}n 2x dx
ce T+ 2x 4+ 2 e’ -~ xr+4

13. Why do we need to use the exponential function when evaluating improper integrals
involving the trigonometric functions sine and cosine?

8.6 Indented Contour Integrals

If £ is continuous on the interval b < x < ¢, then the improper integral of f over
(b, c] is defined by

[['f(x) dx = hm f(x) dx
? r—b*

provided that the limit exists. Similarly, if f is continuous on the interval
a = x < b, then the improper integral of f over [a, b) is defined by

24 R

fx)ydx = lim | f(x)dx
a R—bh™ Jd
provided that the limit exists. For example,

° dx ° dx
—— = lim s — lim 7= 3.
J; 2\/_ -0 J7 \/X r—0* \/—l ] r-n” v

Let f be continuous for all values of x in the interval [a, c], except at the value
x = b, where a < b < ¢. The Cauchy principal value of f over [a, c¢] is defined by

b-r

[4 C
(3) P.V.J f(x) dx = lim [ J(x)dx + Jb §its) dx]
a r—0" d +r

provided that the limit exists.
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EXAMPLE 8.17

& dx -
P.V. B rl‘lgl [f 1/1 . xl/}]

3 3 3 9
ml2r3—Z4g-2,m=2
,1113[2' 2ty } 2

In this section we extend the results of Sections 8.4 and 8.5 to include the

case in which the integrand f has simple poles on the x axis. We now state how
residues can be used to find the Cauchy principal value for the integral of f over

(—oo, oo)_

Cy

(5)

(6)

(7N

Theorem 8.5 Ler f(2) = P(2)/Q(2) where P and Q are polynomials with
real coefficients of degree m and n, respectively, where n = m + 2. If Q has
simple zeros at the points t), t,, . . ., t; on the x axis, then

o k I
P.V. f POdr _ i S Reslf 51 + mi D Reslf, 4]
- Q) = j=

where 2y, Zz, . - . , % are the poles of f that lie in the upper half-plane.

Theorem 8.6 Let P and Q be polynomials of degree m and n, respectively,
where n = m + |, and let Q have simple zeros at the points t, 15, . . ., tjon
the x axis. If O is a positive real number and if

exp(ioz)P(2)

@) = (z)

e !
P.V. j %cos oxdx = - 27 Z Im(Res[f, z])—7 >, Im(Res[ £, 1,])
—ee =1 J=1

and

oo k {
P.V. f %) Gn o dx = 21 > Re(Res[f. z]) + 1 >, Re(Res[f, #]),
= Q(x) = F=

where 21, 22, . . ., 2 are the poles of f that lie in the upper half-plane.

Before we prove Theorems 8.5 and 8.6, let us make some observations and

look at some examples. First, the fornmilas in equations (4), (6), and (7) give the
Cauchy principal value in the integral. This answer is special because of the manner
in which the limit in equation (3) is taken. Second, the formulas are similar to those
in Sections 8.4 and 8.5, except that here we add one-half of the value of each residue
at the points #), £, . . ., t; on the x axis.
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EXAMPLE 8.18 show haipv. | 22 - 253

Solution  The complex integrand

- -
<

8 -G+ 1+iD e+ 1 i/3)

f@) ==

has simple poles at the points ¢; = 2 on the x axisand z; = —1 + i/3 in the upper
half-plane. Now equation (4) gives

x?

- xd
P.V. j "_xg = 2mi Res[f, 7] + mi Res[f, 1]

—-1-i/3 1 /3
=2 ————— 4 i~ =

12 6 6

EXAMPLE 8.18" show tha | -4 -T2

Solution  Using a Computer Algebra System
Mathematica and MAPLE give the following indefinite integral:

1+t
ama“( /3 ) L Logt = 2)  Log(® + 2+ 4)
23 6 12 '

g =

Log|(r — 2)°]

However, for real numbers, the second term should be rewritten as 17

and we can use the following equivalent formula:

1 +¢
arctan(f> . Logl(t — 2)?] N Log(#? + 2t + 4)

2.3 12 12

g =

5

‘} s =gt

1 dt
£ -8’

FIGURE 85 Graphofs = g(r) = f
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This choice produces a graph that is continuous in the extended real numbers,

i.e., lim g(#) = —eo, as shown in Figure 8.5. The limits when  approaches infinity
-2
are
-
T -n/3
lim g(t) = ~ and limg(r) = Y

PG 12 PR 12
and the Cauchy principal limit at t+ = 2, as r — 0 can be shown to be

lim[g2+r—g2—-n]=0

r—0"'

Therefore, the Cauchy principal value of the improper integral is

J“* tdt . jz"' tdt J“‘ tdt
PV. = lim = +
=B =8 oo |J= P -8 S -8

limg(Hh — lim [g(2 + ) — g2 — nN] — limg(n

It

e r—0" (A aab
LN T N N )
12 12 6
EXAMPLE 8.19 Show that P.V. j __ sinxdy = (cosl - i,).
——x=Dx*+4 5 e,

Solution  The complex integrand f(2) = exp(iz)/[(z — I)}(z> + 4)] has simple
poles at the points f; = 1 on the x axis and z; = 2/ in the upper half-plane. Now
equation (7) gives

P.V. f __sinxdr o ReReslf.u]) + T Re(ResLf, 1))
- D+ 4) o
- 7 Re(—z + i) + nRe(COS 1 + 7 sin l)
20e? 5
bid 1
= g (COS | B ;2'

The proofs of Theorems 8.5 and 8.6 depend on the following result.

Lemma 8.4 Let f have a simple pole at the point ty on the x axis. If the
contour is C: 2 =ty + re' for 0 < O < m, then

(8) lim - f(z) dz = im Res[ f, t].

r—0

Proof The Laurent series for f at 7 = f, has the form

_ Res{ f. to]

o f@
fo

+ g(z).
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where g is analytic at z = #,. Using the parameterization of C and equation (9), we
can write

™ ire® do N _—
Res[ f. 10] — + ir 0 glto + re)e® do

(10) L f2) dz

m

in Res| f, to] + il‘f gty + re®)e® do.

0

I

Since g is continuous at #,, there is an M > 0 so that | g(ty + re)| < M. Hence

(an

r—0 r—0 r—0

lim ir fo glto + re™e™ do ) < lim rL Mdo = limrM = 0.

When inequality (11) is used in equation (10), the resulting limit is given by equation
(8), and Lemma 8.4 is proven.

Proof of Theorems 8.5 and 8.6 Since f has only a finite number of
poles, we can choose r small enough so that the semicircles

Ciz=ti+re® for0O=8=mandj=12,..../

are disjoint and the poles z), 22, . . .. z of fin the upper half-plane lie above them
as shown in Figure 8.6.

R 1 1 i { R
FIGURE 8.6 The poles 1y. 72, . . . , 1, of f that lie on the x axis and the poles z;.
Zz,. . . , Zx that lie above the semicircles Cy, Co.. . . , Cp.

Let R be chosen large enough so that the poles of fin the upper half-plane lie
under the semicircle Cg: z = Re™ for 0 < 6 < m and the poles of f on the x axis lie
in the interval —R < x < R. Let C be the simple closed positively oriented contour
that consists of Cg and —C,, —C>, . . ., —C, and the segments of the real axis that
lie between the semicircles as shown in Figure 8.6, The residue theorem can be used
to obtain
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© k
(12) J(« fl2)dz = 2wi E Res{f. z)1.
=1

Equation (12) can be written as

k i
(13) f, fx) dx = 2mi Z} Res[f, 7] + ZI L flz) dz — L A2) dz
K /= I= i R

where Ig is the portion of the interval —R < x < R that lies outside the intervals
(G, —r.t;+ nNforj=1,2,. . .,1 The proofs of Theorems 8.3 and 8.4 show that

(14  lim _J(‘ floydz = 0.
K

R
If we let R — oo and r — 0 in equation (13) and use the result of equation (14) and
Lemma 8.4, then we obtain

oo 13 !
(15) P.V. J f) dx = 2mi D, Reslf. 5] + mi ), Res(f. 1],
— oo J=1 J=1

If fis given in Theorem 8.5, the equation (15) becomes equation (4). If fis given
in Theorem 8.6, then equating the real and imaginary parts of equation (15) results
in equations (6) and (7), respectively. and the theorems are established.

EXERCISES FOR SECTION 8.6

Use residues to compute or verify the integrals in Exercises 1-15.

Ix = d
1. P.V.j — __0 2. P.V. .
o x(x ~ D(x — 2) e x¥ 4+ x
3. f xdx _ T 4. P.V. f dx
¥l 3 ]
xdx n » o oxdx
. == 6. P.V.f
5 j -1 2 o x0 — 1
7. P.V. f Si”d'xzn 8. P.V. fw cos x dx
- X — X
d 2 = S x dx
9. pvj sinxdc 2 10. P.v,f cSx M
- r(n- -x) n e 12— 4x2
IL PV, J sin x dx _ _l) 12, P.V.j :rcosxdx
x(x? + 1) 4 e x4 3x + 2
13. P.V. J Smxdi o~ cos D) 14. P.V. fm cosxdx _nmsing
~xxl—x) - g7 = X o

sin? x dx . ) o g
15. P.V. f . = §. Hinr: Use the trigonomelric identity sin’x = 3+ — & cos 2x.
- X
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8.7 Integrands with Branch Points

We now show how to cvaluate certain improper real integrals involving the inte-
grand x“P(x)/Q(x). Since the complex function z® is multivalued, we must first
specify the branch that we will be using.

Let o be a real number with 0 < o0 < 1. Then in this section we will use the
branch of z* defined as follows:

(1) v =ewthhr+® = re(cos o + {sin of), where 0 < 6 < 27,
Using definition (1), we see that z* is analytic in the domain r > 0, 0 < 8 < 27,
Theorem 8.7 Let P and Q be polynomials of degree m and n. respectively,

where n = m + 2. If Q(x) # 0 for x > 0 and Q has a zero of order at most |
at the origin and

Z"P(2)
(2) fla= . where 0 < o <1,
o
then
= x4 P(x) dx 2ni k
3) P J , = — Reslf. 3
3 0 o " T e X Reslfig)

where 2y, 22, . . . . . Iy are the nonzero poles of P/Q.

Proof Let C denote the simple, closed, positively oriented contour that con-
sists of the portions of the circles || = rand |z| = R and the horizontal segments
joining them as shown in Figure 8.7. A small value of r and a large value of R can
be selected so that the nonzero poles 2y, 22, . . ., 7z of P/Q lie inside C.

FIGURE 8.7 The contour C that encloses all the nonzero poles
2. . ., of PIQ.

Tis
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Using the residue theorem, we can write

)
(4) L f(z) dz = 2mi Z Res| £, z,).
=

If we let r — 0 in equation (4) and use property (17) of Section 6.2 to express the
limiting value of the integral on the lower segment, we find that equation (4)
becomes

R y«P(x) dx 3 J' R xveieinP(x) dx
v Q) v 0(x)
which can be written as
R x2P(x) dx i &
5 J’ = L) -
® | o ST ew ; Reslf. ] = 5

Letting R — e in equation (5) results in equation (3), and Theorem 8.7 is established.

k
= 2mi Zl Reslf. z] — j( f(2)dz,

f(z) dz.

- elu2n Cp

,where 0 < a < |,

EXAMPLE 8.20 Show that P.V. j x dx

0 x(x + 1) " sinam

Solution  The complex function f{z) = z%/[z(z + 1)] has a nonzero pole at

the point z; = — 1. Using equation (3) we find that
J' “ x“dx 2ni Restf. —1] 2mi el
= , es|f, —1] = ——
0 .X'(X + ]) ] __ elu.”n l — eliln ._1
n T

gl — emm sin am

2i

The preceding ideas can be applied to other multivalued functions.

“Inxdx ®ha

EXAMPLE 8.21 Show that Py, | JE4 B0 e

Solution Here we use the complex function f(z) = Log z/(z* + a?). The
path C of integration will consist of the segments [—R, —r] and [r, R] of the x axis
together with the upper semicircles C,: z = re® and Cg: z= Re* for0 < 8 < w as
shown in Figure 8.8.
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FIGURE 8.8 The contour C for the integrand f(z) = (Log z)/(z* + a?).

The residue theorem can be used to write

filna 7w
+i—.

(6) fc f(2) dz = 2ni Res[ f, ai] =

2a
The inequality
"InR+iB : R(n R + m)m
IRE D Ren dol < <"3_7L
0 R + g R-— o

and L’Hopital’s rule can be used to show that

(7) lim . f2)dz = 0.

R->eo

A similar computation will show that

8 lm | flzydz=0.
r—0 G,
We can use the results of equations (7) and (8) in equation (6) to obtain

0 In{x| + im o . 2
9) P.V.(J Infx| + i dx + lnxd*):’”"‘“w“—.

; i
e X2+ o x2 + a? a 2a

Equating the real parts in equation (9), we obtain

NZlnxdx_nlna

P.V. — =
0 X+ a a

and the result is established.
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EXERCISES FOR SECTION 8.7

Use residues to compute or verify the integrals in Exercises 1-11,

1.

10.

11.

= dy 2 < dx
P.V.j,—z— .P.v.ff—
ol +x 3 2 0 X121 + x)
oo .,I/Z d oo /2
v.f Lot I 4.P.V.JA x
o1 +x2 2 01+ 52
= In(x2 + 1) dx Log(z +
P.V. J' n(l—v)— =nln2 Usef(z) = —%—l)
o x+1 =+ 1
f“ In x dx
Vo | —
o (1 4+ x7)2
“In(} + .
P.V. f DD T here0 < a < |
0 x!+a a sin Ta

" Inxd
P.V,j vnx x,.wherea>0
0 (x + a)

~ sin
P.V.f ==

Hint: Use the integrand f(z) = exp(iz)/z and the contour C in Figure 8.8, and let
r—0and R - oo

P.V.j M i =n
i

Hint: Use the integrand f(z) = [1 — exp(i22))/z° and the contour C in Figure 8.8, and
let r = 0 and R — oo,
The Fresnel integrals

- RPN Jr
P.V. J; cos(x®) dx = P.V. L sin(x?) dx = 5

are important in the study of optics. Use the integrand f(z) = exp(—z°) and the contour
C shown in Figure 8.9, and let R — oo then establish these integrals. Also use the fact
from calculus that P.V. [5 e~ dx = J/n/2.

FIGURE 8.9 Accompanies Exercise 11.
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8.8 The Argument Principle and Rouché’s Theorem

We will now derive two results based on Cauchy’s residue theorem. They have
important practical applications and pertain only to functions all of whose isolated
singularities are poles.

Definition 8.1 A funciion f(2) is said to be meromorphic in a domain D
provided that the only singularities of fiz) are isolated poles (and removable
singularities).

Observe that analytic functions are a special case of meromorphic functions.
Rational functions f(z) = P(z)/Q(z). where P(z) and Q(z) are polynomials, are
meromorphic in the entire complex plane. A meromorphic function does not have
essential singularities!

Suppose that f(z) is analytic at each point on a simple closed contour C and
f(2) is meromorphic in the domain that is the interior of C. An extension of theorem
7.14 can be made that shows that f(z) has at most finitely many zeros that lie inside
C. Since the function g(z) = 1/f(z) is also meromorphic, it can have only finitely
many zeros inside C. Therefore f(z) can have at most a finite number of poles that
lie inside C.

An application of the residue theorem that is useful in determining the number
of zeros and poles of a function is called the argument principle.

Theorem 8.8 (Argument Principle) Ler f(z) be meromorphic in the
simply connected domain D. Let C be a simple closed positively oriented con-
tour in D along which f(z) # 0 and f(z) # o. Then

1 (z
) B ARV

2ri Jo f(z)

where N is the number of zeros of f{2) that lie inside C and P is the number

of poles that lie inside C.

Proof 1leta, as, . . ., ay be the zeros of f(z) inside C counted according
to multiplicity and let by, b;. . . ., bp be the poles of f(z) inside C counted according
to multiplicity. Then f(2) has the representation
. . (z—az—a2) - (z— ay)

(2) f@@) = (),

/ (Z—bl)(z—bz)"'(l_bﬂ)g

where g(z) is analytic and nonzero on C and inside C. An elementary calculation
shows that

f‘v(Z)z i 1 +”._'__1__

[ z—a) (- ay) I~ ay)
L e

(z—b) (- b (z—bp) g

3)
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According to Example 6.14, we have

dz
f =2 forj=12,...,N
Cz-a)

and

dz
f =2ni fork=12, ..., 6 P
c(z— by

Since g'(z)/g(z) is analytic inside and on C, it follows from the Cauchy-Goursat
theorem that

J g@dz _

¢ g@

These facts can be used to integrate both sides of equation (3) over C. The result is
equation (1), and the theorem is proven.

Corollary 8.1  Suppose that f(7) is analytic in the simply connected domain
D. Let C be a simple closed positively oriented contour in D along which
f(z) # 0. Then

1@, _
@) 2mi f( f@ dz =N

where N is the number of zeros of f(2) that lie inside C.

Theorem 8.9 (Roché’s Theorem) Let f(z) and g(z) be analytic functions
defined in the simply connected domain D. Let C be a simply closed contour
in D. If the strict inequality

5 lf(Z) - g(2) | < lf(z)[ holds for all z on C,

then f(z) and g(z) have the same number of zeros inside C (counting
multiplicity).

Proof The condition |f(z) — g(z)| < |f(z)| precludes the possibility of
f(z) or g(z) having zeros on the contour C. Therefore division by f(z) is permitted,
and we obtain

8@
f@)

Let F(z) = g(2)/f(z). Then F(C), the image of the curve C under the mapping
w = F(z2), is contained in the disk |w — 1| < 1 in the w plane. Therefore F(C) is

a closed curve that does not wind around w = 0. Hence !/w is analytic on the curve
f(C), and we obtain

(6)

]I<l for all z on C.

) @=0

IO w
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Using the change of variable w = f(z) and dw = F'(z)dz, we see that the
integral in equation (7) can be expressed as

F@ , _
®) jc F(z) dz=0.
Since F'(2) = [g')f(2) — (gD f(2)}% it follows that

Fi g@ f©
9) —L = o
©) Fo g f

Hence equations (8) and (9) can be used to obtain

1 2 1 (z
(10) — ];(—)dz=—,J £ 4

2ni Jc f(2) 2mi Je g(2)
Corollary 8.1 and equation (10) imply that the number of zeros of f(z) inside C
equals the number of zeros of g(z) inside C, and the theorem is proven.

One can use Rouché’s theorem to gain information about the location of the
zeros of an analytic function.

EXAMPLE 8.22 Show that all four zeros of the polynomial

g =7 -7:-1
lie in the disk ]:| < 2.

Solution  Let f(z) = 2% then f(z) ~ g(z) = 7z + 1. At points on the circle
|z] = 2 we have the relation

f@) —g@| = |7+ 1|=|7z) + 1 =72+ 1=15<16 = |f()].

The function f(z) has a zero of order 4 at the origin, and the hypothesis of Rouché’s
theorem holds true for the circle |z| = 2. Therefore g(z) has four zeros inside
|z] = 2.

EXAMPLE 8.23 Show that the polynomial g(z) = z* — 7z — | has one zero
in the disk I:l < 1.

Solution Let f(z) = =7z — 1, then f(z) — g(z) = —z*. At points on the
circle [z| = 1 we have the relation

f@ —g@]| = |- =1<6=|T-1]=||7z] - | -1]|
< 72~ 1] = |f)].
The function f(z) has one zero at z = —1/7 in the disk |z\ < 1, and the hypothesis
of Rouché’s theorem holds true on the circle |z| = 1. Therefore g(z) has one zero

inside |:{ = 1.
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Certain feedback control systems in engineering must be stable. A test for
stability involves the function G(z) = 1 + F(z), where F(7) is a rational function.
If G(z) does not have any zeros for Re(z) = 0, then the system is stable. The number
of zeros of G(z) can be determined by writing F(z) = P(2)/Q(z), where P(z) and
Q(z) are polynomials with no common zero. Then G(z) = [Q(z) + P(2)}/0(z). We
can check for zeros of Q(z) + P(z) using Theorem 8.8. A value R is selected so that
G(z) # 0 for |z| > R. Contour integration is then performed along the contour
consisting of the right half of the circle |:| = R and the line segment between iR
and —iR. The method is known as the Nyquist stability criterion.

The Winding Number

Suppose that C: z(r) = x(¢) + iy(t) for ¢ < t < b is a simple closed contour. Let
a =1t <t <.--<t,=bbe apartition of the interval and let z; = z(#;) (for k =
0, 1,. . ., n) denote points on C where z5 = z,. If z* lies inside C, then z(r) winds
around z* once as 1 goes from a to b (see Figure 8.10).

FIGURE 8.10 The points z; on the contour C that winds around z*.

Now suppose that f(z) is analytic at each point on C and meromorphic inside
C. Then f(C) is a closed curve in the w plane that passes through w;, = f(z,) (for
k=0,1,. . .,n), where wy = w,. The subintervals [#;_,, #;] can be chosen small
enough so that a continuous branch log w = In|w| + iarg w = In p + i¢ can be
defined on the portion of f(C) between w;_, and w; (see Figure 8.11). Then

(1D log flzp) — log flzs—) = Inpr — In py_y + iAdy,

where Ad; = ¢ — 0,_; measures the amount that the portion of the curve f(C)
between w; and w;_, winds around the origin w = 0.
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i/

Wiy

FIGURE 8.11 The points w; on the coutour f(C) that winds around 0.

Formula (1) will now be shown to be the number of times that f(C) winds
around w = 0. The parameterization given above together with the appropriate
branches of log w are used to write

f@, _ % [rraw

M v d
¢ fo “ T &b ey T

= > [log wi — log wi_)],
k=1

which in turn can be written as

f@ , < _ &
c fla) o= E, [Inpi = Inp, ] + 1; Ady.

(12)

By using the fact that py = p, the first summation in equation (12) vanishes. The
summation of the quantities A¢, is the total amount that f(C) winds around w = 0
in radians. When the quantities in equation (12) are divided by 27i, we are left with
an integer that is the number of times f(C) winds around w = (. For example, the
image of the circle C:|z| = 2 under the mapping w = f(z) = 22 + z is the curve
x=4cos2t+ 2cost,v=4sin2t+ 2sintfor 0 <t < 2xn that is shown in Figure
8.12. Notice that the image curve f(C) winds twice around the origin w = 0,
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FIGURE 8.12 The image curve f(C) of the circle C: |z| = 2 under the mapping
w=fly=22+2z

EXERCISES FOR SECTION 8.8

For Exercises 1-5, use Rouché’s theorem to show that the roots lie in the indicated region.
1. Let P(z) = z° + 4z — 15.
(a) Show that there are no roots in |z] < 1. Hint: Use f(z) = 15.
(b) Show that there are five roots in |z| < 2. Hint: f(z) = °.

Remark: A factorization of the polynomial using numerical approximations for the co-
efficients is

7z — 1.546)(z° — 1.340z + 2.857)(z* + 2.885z + 3.397).

2. Let P() = 2 + 9z + 27.
(a) Show that there are no roots in |z| < 2. Hinr: Use f(2) = 27.
(b) Show that there are three roots in |z| < 4. Hint: f(z) = 2%

Remark: A factorization of the polynomial using numerical approximations for the
coefficients is

(z + 2.047)(z% — 2.047z + 13.19).
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Let P(z) = 2 + 622 + 2; + 1.

(a) Show that there are two roots in |z| < 1. Hint: Use f(z) = 622,
(b) Show that there are five roots in [zl < 2.

Let P(z) = z* — 5z* + 10.

(a) Show that there are no roots in |z| < I.

(b) Show that there are four roots in |z| < 2. Hinz: Use f(z) = 5z*.
(c) Show that there are six roots in |:| < 3.

Let P(2) = 323 — 2iz2 + iz — 7.

(a) Show that there are no roots in |z| < 1.

(b) Show that there are three roots in [z [ < 2.

Use Rouché’s theorem to prove the fundamental theorem of algebra. Hint: Let

()= —a,2”and g(z) = ap + a2 + -+ + a,_yz"". Then show that for points z on the

circle |z| = R we have
lao| + Jar| +-- + Jau]|
]a,,lR

8@
f@

and see what happens when R is made large.

Use Rouché’s theorem to prove the following. If A(z) is analytic and nonzero and
| A(z)| < 1for |z|< 1, then A(z) — z” has n roots inside the unit circle |z| = 1.
Suppose that f(z) is analytic inside and on the simple closed contour C. If f(z) is a one-
to-one function at points z on C, then prove that f(z) is one-to-one inside C. Hint:
Consider the image of C.

Look up the articles on Rouché’s theorem and discuss what you found. Resources in-
clude bibliographical items 68 and 172.

Write a report on the winding number. Include ideas and examples not mentioned in the
text. Resources include bibliographical items 6, S1, 88, 141, and 166.
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Conformal Mapping

9.1 Basic Properties of Conformal Mappings

Let f be an analytic function in the domain D, and let z, be a point in D. If
f'(z9) # 0, then we can express f in the form

() f(2) = flw) + f2o)z — 20) + Mz — ), where n(z) — 0 as 7 — 2.
If z is pear z,, then the transformation w = f(2) has the /inear approximation
(2) S(2)=A + B(z — z5), where A = f(zy) and B = ().

Since n(z) — 0 when z — z,, it is reasonable that for points near z; the transformation
w = f(2) has an effect much like the linear mapping w = S§(z). The effect of the
linear mapping S is a rotation of the plane through the angle o = arg[ f'(zy)]. fol-
lowed by a magnification by the factor If’(zo) | , followed by a rigid translation by
the vector A — Bzp. Consequently, the mapping w = §(z) preserves angles at the
point zo. We now show that the mapping w = f(z) also preserves angles at zp,.

Let C: z(5) = x(#) + iv(), —1 <t < | denote a smooth curve that passes
through the point z(0) = z;,. A vector T tangent to C at the point z;, is given by

3 = Z'(0),

where the complex number z'(0) has assumed its vector interpretation.
The angle of inclination of T with respect to the positive x axis is

4y P = arg Z'(0).

The image of C under the mapping w = f(z) is the curve K given by the formula
K. w(®) = u(x(1), y(#)) + iv(x(r), ¥(£)). The chain rule can be used to show that a
vector T* tangent to K at the point wy = f(zy) is given by

S) T* = w(0) = f(z)z'(0).

281
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The angle of inclination of T* with respect to the positive  axis is
(6) y=arg[f'(zp)] + arg[z'(®] = o + B, where o0 = arg[ f'(zp)].

Therefore the effect of the transformation w = f(z) is to rotate the angle of incli-
nation of the tangent vector T at zo through the angle o = arg[f’(zp)] to obtain the
angle of inclination of the tangent vector T* at wy. The situation is illustrated in
Figure 9.1.

FIGURE 9.1 The tangents at the points zy and wp, where f is an analytic function
and f'(z0) # 0.

A mapping w = f(2) is said to be angle preserving, or conformal at z,, if it
preserves angles between oriented curves in magnitude as well as in orientation.
The following result shows where a mapping by an analytic function is conformal.

Theorem 9.1 Let f be an analytic function in the domain D, and let 7y be
a peint in D. If f'(zp) # O, then fis conformal at 2.

Proof Let C, and C; be two smooth curves passing through z, with tangents
given by T, and T, respectively. Let B, and B, denote the angles of inclination of
T; and T;, respectively. The image curves K, and K> that pass through the point
wo = f(zp) will have tangents denoted by T, and T, respectively. Using equation
(6), we see that the angles of inclination y, and Y, of T| and T are related to B, and
B2 by the equations

(7) 'Y]=(X+B] and 'Y2=a+’32.
where o = arg f'(zy). Hence from equations (7) we conclude that
® -7 =B -8B

That is, the angle v» — v, from K to K> is the same in magnitude and orientation
as the angle B, — B, from C, to C,. Therefore the mapping w = f(z) is conformal
at zp. The situation is shown in Figure 9.2.
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FIGURE 9.2 The analytic mapping w = f(z) is conformal at the point z,, where
flzy) # 0.

EXAMPLE 9.1 Show that the mapping w = f(z) = cos z is conformal at the
points z; = /, 2> = 1, and z3 = n + i, and determine the angle of rotation given by
o = arg f'(z) at the given points.

Solution  Since f'(z) = —sin z, we conclude that the mapping w = cos z is
conformal at all points except z = nx, where n is an integer. Calculation reveals
that

fii)y=~isinh1, f(1)=—sinl, and f(m + i) =isinh I.

Therefore the angle of rotation is given by

Il

o = arg f'(i) = ~—2_n o, = arg f(1) = n, and

Il

n
oy =argf(n+ i) = 5 respectively.

Let fbe a nonconstant analytic function. If f'(zg) = 0, then z, is called a critical
point of f, and the mapping w = f(z) is not conformal at zo. The next result shows
what happens at a critical point.

Theorem 9.2 Let f be analvtic at 2o If f'(z0) = 0, ..., f*"z0) = 0, and
f*zp) # 0, then the mapping w = f(z) magnifies angles at the vertex zy by
the fuctor k.
Proof Since fis analytic at zo, it has the representation

9 fO=fla) +alz - )+ @G-+

From (9) we conclude that

10y f(2) — flzo) = (2 — 2o)gla)
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where g is analytic at zo and g(zp) # 0. Consequently, if w = f(z) and wy = f(zo).
then using equation (10), we obtain

(1) arg(w — wy) = arg[f(2) — flzp)] = k arg(z — zp) + arg[g(2)].

Let C be a smooth curve that passes through zp. If z = zp, along C, then
w — wy along the image curve K, and the angle of inclination of the tangents T to
C and T* to K are given, respectively, by the following limits:
(12) P = limarg(z — zp) and y= lim arg(w — wy).

I3 H Uy
From equations (11) and (12) it follows that

(13) y=1lim (k arg(z — 20) + arg[g()]) = kB + O,

[
where 8 = arg [g(zo)] = arg a;.

Let C, and C» be two smooth curves that pass through z,, and let X; and K>
be their images. Then from equation (13) it follows that

(14) Ay =17y —vi = kB: — Bi) = KA.

That is, the angle Ay from X, to K; is & times as large as the angle AB from C; to
C>. Therefore angles at the vertex g, are magnified by the factor k. The situation is
shown in Figure 9.3.

FIGURE 9.3 The analytic mapping w = f(2) at a point z;, where
flzey=0.. . ., f% N(zy) = 0 and fO(zy) # 0.

EXAMPLE 9.2 The mapping w = f(z) = z* maps the square § = {x + iy:
0 <x<1,0<y<1} onto the region in the upper half plane Im(w) > 0, which
lies under the parabolas

2

u=1-5?2 and u= -1+ 572

as shown in Figure 9.4. The derivative is f'(z) = 2z, and we conclude that the
mapping w = z° is conformal for all z # 0. It is worthwhile to observe that the right
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angles at the verticesz; = 1,z = | + i, and z; = i are mapped onto right angles
at the vertices w; = 1, wy = 2i, and w3y = —1, respectively. At the point z; = 0 we
have f'(0) = 0 and f"(0) # 0. Hence angles at the vertex 7o = 0 are magnified by
the factor & = 2. In particular, we see that the right angle at z; = 0 is mapped onto
the straight angle at wy = 0.

FIGURE 9.4 The mapping w = z° that is discussed in Example 9.2.

Another property of a conformal mapping w = f(z) is obtained by considering
the modulus of f'(zp). If z) is near zp, we can use equation (1) and neglect the term
Mz Xz) — zn). We then have the approximation

(15)  w; — wy = flz)) — flzo) = 2oz — 20).

Using equation (15), we see that the distance ‘w] - w(,l between the images of the
points z; and zo is given approximately by |f(z)| |21 — zo|. Therefore we say that
the transformation w = f(z) changes small distances near z, by the scale factor
|/'(z0)| . For example, the scale factor of the transformation w = f(z) = z* near the
pointzo = 1 + iis |[f'(1 + 0| = |20 + )| =22

It is also necessary to say a few things about the inverse transformation
z = g(w) of a conformal mapping w = f(z) near a point zy, where f'(zy) # 0. A
complete justification of the following relies on theorems studied in advanced cal-
culus.* Let the mapping w = f(2) be expressed in the coordinate form

(16) u=ux,y) and v = v(x, ).

*See, for instance, R. Creighton Buck, Advanced Calculus, 3rd ed. (New York, McGraw-Hill Book
Company), pp. 358-361. 1978.
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The mapping in equations (16) represents a transformation from the xy plane
into the uv plane, and the Jacobian determinant J(x, ¥) is defined by

= [ Y) wdxy)
an Jx oy = nn ) w |
It is known that the transformation in equations (16) has a local inverse provided
that J(x, v) # 0. Expanding equation (17) and using the Cauchy-Riemann equations.
we obtain

(I8)  J(xp, yo) = uxo, Yo)vulxo, Yo) — vilxo. Yo)u,(xo, ¥o)
= 13(x0. Yo) + Vilxp. Yo) = lf'(lu)l 2# 0.

Consequently, equations (17) and (18) imply that a local inverse z = g(w) exists in
a neighborhood of the point wy. The derivative of g at wy is given by the familiar
computation

lim glw) — glwy)

Wiy W — Wy

(19)  g'(wy)

I— I ] 1

= lim

@ = fe fe Fgnn

EXERCISES FOR SECTION 9.1

1. State where the following mappings are conformal.
(a) w=expz (b) w = sinz (c) w=¢
) [ z
(d) w = exp(c? + 1) (&) w=- (hw=-—"
For Exercises 2-5, find the angle of rotation o = arg f'(z) and the scale factor |f'(z)| of
the mapping w = f(z) at the indicated points.

2, w= l/zatthe points 1,1 + i, and /

w =Inr + {8, where —7/2 < 8 < 3n/2 at the points 1, 1 + i, /., and —1

w = r'Zcos(8/2) + ir'*sin(6/2), where —m < 0 < m, at the points i, 1, —i, and 3 + 4/
w = sin z at the points ©/2 + i, 0, and —7w/2 + i

Consider the mapping w = z°. If @ # 0 and b # 0, show that the lines x = gand v = b
are mapped onto orthogonal parabolas.

7. Consider the mapping w = z'”>, where z}*> denotes the principal branch of the square
root function. If @ > 0 and & > 0, show that the lines x = @ and y = b are mapped onto
orthogonal curves.

8. Consider the mapping w = exp z. Show that the lines x = a and y = b are mapped onto
orthogonal curves.

9. Consider the mapping w = sin z. Show that the line segment —n/2 < x < W/2, v = 0.
and the vertical line x = a, where |a| < /2 are mapped onto orthogonal curves.

10. Consider the mapping w = Log z, where Log z denotes the principal branch of the
logarithm function. Show that the positive x axis and the vertical line x = | are mapped
onto orthogonal curves.

w

anse
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11. Let f be analytic at zo and f'(zo) # 0. Show that the function g(z) = f(z) preserves the
magnitude, but reverses the sense, of angles at z,.

12. If w = f(z) is a mapping. where f(z) is not analytic, then what behavior would one expect
regarding the angles between curves.

13. Write a report on conformal mapping. Your research could be theoretical and develop
ideas not found in the text or practical and involve applications and/or computers. Re-
sources include bibliographical items 33, 34, 35, 37, 41, 47, 48, 75, 92, 93, 96, 130,
136, 146, 154, 159, 164, 176, 180, and 182.

9.2 Bilinear Transformations

Another important class of elementary mappings was studied by Augustus Ferdi-
nand Mobius (1790-1868). These mappings are conveniently expressed as the quo-
tient of two linear expressions and are commonly known as linear fractional or
bilinear transformations. They arise naturally in mapping problems involving the
function arctan z. In this section we will show how they are used to map a disk one-
to-one and onto a half plane.

Let a, b, c. and d denote four complex constants with the restriction that
ad # bc. Then the function

az + b
cz+d

I w=350@=

is called a bilinear transformation or Mobius transformation or linear fractional
transformation. 1f the expression for § in equation (1) is multiplied through by
the quantity ¢z + d, then the resulting expression has the bilinear form ewz — az +

dw — b = 0. We can collect terms involving z and write z(cw — a) = —dw + b.
For values of w # a/c the inverse transformation is given by

—dw + b
@ =5 =—2

cw — a

We can extend S and S-' to mappings in the extended complex plane. The
value S(e0) should be chosen to equal the limit of $(z) as z — cc. Therefore we define

, . at b)) a
3) S(e0) = lim S(z) = lim———— = —,
) (=) l_,nl @ ;T: c+ Wz ¢
and the inverse is $~'(a/c) = oo. Similarly, the value §~!(e0) is obtained by
, ) . —d+ (blw)y —d
4 S 'eo)=1lim S 'W) = lim —— = —,
Wopon wow € — (alw) c

and the inverse is S(—d/c) = . With these extensions we conclude that the trans-
formation w = S(z) is a one-to-one mapping of the extended complex z plane onto
the extended complex w plane.

We now show that a bilinear transformation carries the class of circles and
lines onto itself. Let S be an arbitrary bilinear transformation given by equation (1).
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If ¢ = 0, then S reduces to a linear transformation, which carries lines onto lines
and circles onto circles. If ¢ # 0, then we can write S in the form

bc—ad 1
c cz+d’

_a(cz+d)+bc—ad_g
5) S = ez + d) = C+

The condition ad # bc precludes the possibility that S reduces to a constant. It is
easy to see from equation (5) that § can be considered as a composition of functions.
It is a linear mapping & = cz + d, followed by the reciprocal transformation
Z = 1/¢, followed by w = (a/c) + [(bc — ad)/c]Z. It was shown in Chapter 2 that
each function in the composition maps the class of circles and lines onto itself, it
follows that the bilinear transformation S has this property. A half plane can be
considered a family of parallel lines and a disk as a family of circles. Therefore it
is reasonable to conclude that a bilinear transformation maps the class of half planes
and disks onto itself. Example 9.3 illustrates this idea.

EXAMPLE 9.3 Show that w = S(z) = i(1 — 2/(1 + 2) maps the unit disk
|z| < 1 one-to-one and onto the upper half plane Im(w) > 0.

Solution  Let us first consider the unit circle C: |z| = 1, which forms the
boundary of the disk, and find its image in the w plane. If we write S(z) =
(—iz + i)/(z + 1), then we see thata = —i, b = i,c = |, and d = 1. Using equation
(2), we find that the inverse is given by

—dw+b_—w+i

cWw ~— a w+i

6) z=S5'w=

If |z| = 1, then equation (6) implies that the images of points on the unit
circle satisfy the equation

N |w+i|=|—w+i|.

Squaring both sides of equation (7), we obtain u? + (1 + v)? = u? + (1 — v)?, which
can be simplified to yield v = 0, which is the equation of the # axis in the w plane.

The circle C divides the z plane into two portions, and its image is the u axis,
which divides the w plane into two portions. Since the image of the point z = 0 is
w = §(0) = i, we expect that the interior of the circle C is mapped onto the portion
of the w plane that lies above the u axis. To show that this is true, we let |z| < 1.
Then equation (6) implies that the image values must satisfy the inequality
| =w + i| < |w + i|, which can be written as

® d = |w—i| < |w—(—i)| = d,.

If we interpret d, as the distance from w to i and d, as the distance from w to —i,
then a geometric argument shows that the image point w must lie in the upper half
plane Im(w) > 0, as shown in Figure 9.5. Since S is one-to-one and onto in the
extended complex plane, it follows that S maps the disk onto the half plane.
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FIGURE 9.5 The image of |z| < 1 under w = i(1 — zM/(1 + 2).

The general formula (1) of a bilinear transformation appears to involve four
independent coefficients a, b, ¢, d. But since S(z) # K, either a # 0 or ¢ 5 0, the
transformation can be expressed with three unknown coefficients and can be written
either

z + bla azlc + blc
Sg)=——7 o Sg)=—"7—,
( czfa + dla @ 2+ dle
respectively, This permits us to uniquely determine a bilinear transformation if three
distinct image values S(z;) = wy, S(z2) = ws, and S(z3) = w; are specified. To
determine such a mapping, it is convenient to use an implicit formula involving z
and w.

Theorem 9.3 (The Implicit Formula) There exists a unique bilinear
transformation that maps three distinct points 7\, z,, and z3 onto three distinct
points wy, wz, and ws, respectively. An implicit formula for the mapping is
given by the equation

=233 73 W — Wy W — W3

) =

T—mn—L W—waw, —wp

Proof Equation (9) can be algebraically manipulated, and we can solve for
w in terms of z. The result will be an expression for w that has the form of equation
(1), where the coefficients a, b, ¢, and d involve the values z;, 72, z3, Wy, w2, and wa.
The details are left as an exercise.

If we set z = z; and w = w, in equation (9), then both sides of the equation
are zero. This shows that w; is the image of z;. If we set z = z; and w = w; in
equation (9), then both sides of the equation take on the value 1. Hence w: is the
image of z,. Taking reciprocals, we can write equation (9) in the form

2 — 23 — 2 W — Wi W2 — W)

10) =—= =

- I - 3 W — W Wy — W3

4 1 32

)

t
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If we set z = z3 and w = w3 in equation (10), then both sides of the equation are
zero. Therefore, w; is the image of z3, and we have shown that the transformation
has the required mapping properties.

EXAMPLE 9.4 Construct the bilinear transformation w = §(z) that maps the
points z; = —i,z2 = 1, z3 = i onto the points w, = —1, w; = 0, w3 = 1, respectively.
Solution We can use the implicit formula (10) and write

z—il+i_w—10+l_—w+1
cH+il—i w+10—-1  w+1

(h

Working with the left and right sides of equation (11), we obtain

(12) A+ dw+ (1 —-iw+(1+DHz+(~10)
=(—1+dDw+ (-1 —-dw+ (1 - dHz+ 1+

Collecting terms involving w and zw on the left results in
(13) 2w + 2zw = 2i — 2iz.

After the 2’s are cancelled in equation (13), we obtain w(1 + z) = i(1 ~ z). Therefore
the desired bilinear transformation is

i1 —2

W= =TT

EXAMPLE 9.5 Find the bilinear transformation w = S(z) that maps the points
z21=-2,70=-1—1i,andzz; = 0ontow, = —1, w, = 0, and w; = 1, respectively.
Solution We can use the implicit formula (9) and write
z—=(=2) —-1-i-0 w=(=1) 0-1
-0 —1-i~(=2) w-1 0-(-1"

(14)

From the fact that (—1 — #)/(1 — {) = 1/i, equation (14) can be written as

z+2_l+w
1 —w’

(15)

Equation (15) is equivalent to z + 2 — zw — 2w = iz + izw, which can be solved
for w in terms of z, giving the solution
1-nNz+2

=S = Ty

Let D be a region in the z plane that is bounded by either a circle or a straight
line C. Let zy, z;, and z3 be three distinct points that lie on C with the property that
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an observer moving along C from z; to z3 through z finds the region D on the left.
In the case that C is a circle and D is the interior of C we say that C is positively
oriented. Conversely, the ordered triple z,, z2, 2: uniquely determines a region that
lies on the left of C.

Let G be aregion in the w plane that is bounded by either a circle or a straight
line K. Let wy, w,, and ws be three distinct points that lie on K such that an observer
moving along K from w; to w; through w» finds the region G on the left. Since a
bilinear transformation is a conformal mapping that maps the class of circles and
straight lines onto itself, we can use the implicit formula (9) to construct a bilinear
transformation w = S(2) that is a one-to-one mapping of D onto G.

EXAMPLE 9.6 Show that the mapping

(0 — i)z +2

=8 =
W= = T T 2

maps the disk D: |z + 1 | < 1 onto the upper half plane Im(w) > 0.

Solution For convenience we choose the ordered triple 7z, = —2,
72 = —1 — 1, z3 = 0, which will give the circle C: ': +1 | = ] a posilive orientation
and the disk D a *‘left orientation.”” We saw in Example 9.5 that the corresponding
image points are

wp = 8(z)) = =1, wy=358(z) =0, and w3 =S = 1.

Since the ordered triple of points w,, w», and w lie on the u axis, it follows that the
image of the circle C is the u# axis. The points wy, w,, and w3 give the upper half
plane G: Im(w) > 0 a ‘'left orientation.’” Therefore w = S(z) maps the disk D onto
the upper half plane G. To check our work, we choose a point 7, that lies in D
and find the half plane where its image wy lies. The choice zy = —1 yields
wp = S(—1) = i. Hence the upper half plane is the correct image. The situation is
illustrated in Figure 9.6.

FIGURE 9.6 The bilinear mapping w = S(z) = [(1 — i)z + 2)/[(]1 + i)z + 2].
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In equation (9) the point at infinity can be introduced as one of the prescribed
points in either the z plane or the w plane. For example, if ws = oo, then we are
permitted to write

Wy — W3 Wy — oo

(16) - = =1,

W~ w; w — oo

and substitution of equation (16) into equation (9) yields

2 — {3 w = w,
(17) = , where w; = oo,
Z 3 — 2 Wy — W

2
&
tJ

IR}

o3
~

<

Equation (17) is sometimes used to map the crescent-shaped region that lies between
tangent circles onto an infinite strip.

EXAMPLE 9.7 Find a bilinear transformation that maps the crescent-shaped
region that lies inside the disk |z — 2| < 2 and outside the circle |z — 1| =1
onto a horizontal strip.

Solution For convenience we choose 2, = 4, z, = 2 + 2i, and z; = 0 and
the image values wy = 0, w, = 1, and w3 = oo, respectively. The ordered triple
2y, Z2. and I3 gives the circle |z — 2| = 2 a positive orientation and the disk
|z - 2| <C 2 has a ''left orientation.”” The image points w,, w;, and wy all lie on
the extended u axis, and they determine a left orientation for the upper half plane
Im(w) > 0. Therefore we can use the implicit formula (17) to write

z—42+2i—()_w—0
:=024+2i—-4 1-0"

(18)

which determines a mapping of the disk Iz - 2| < 2 onto the upper half plane
Im(w) > 0. We can simplify equation (18) to obtain the desired solution
—iz+ 4
w= 8(z) = —_ .
<
A straightforward calculation shows that the points 73 = 1 — i, z5 = 2, and
7 = 1 + i are mapped respectively onto the points

wy=8(1-0N==-2+4i ws=S852)=4i and we=S1+)=2+i

The points wa, ws, and wg lie on the horizontal line Im(w) = 1 in the upper half
plane. Therefore the crescent-shaped region is mapped onto the horizontal strip
0 < Im(w) < 1 as shown in Figure 9.7.
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FIGURE 9.7 The mapping w = 5(2) = (—iz + 4i)/z.

Lines of Flux

In the study of electronics, images of certain lines represent lines of electric flux,
which are the trajectory of an electron that is placed in an electric field. Consider
the bilinear transformation

Z aw

and z = Slw) = .
I—a w—1

w = S(:) =

The half rays {arg(w) = ¢}, where ¢ is a constant, that meet at the origin w = 0,
represent the lines of electric flux produced by a source located at w = 0 (and a
sink at w = o). The preimage of this family of lines is a family of circles that pass
through the points z = 0 and 7 = a. We visualize these circles as the lines of electric
flux from one point charge to another. The limiting case as ¢ — 0 is called a dipole
and is discussed in Exercise 6 in Section 10.11. The graphs for the cases g = 1,
a = 0.5, and ¢ = 0.1 are shown in Figure 9.8

v y M

bk a=05

FIGURE 9.8 Images of arg(w) = ¢ under the mapping z =
w
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EXERCISES FOR SECTION 9.2

b=

Let w = S(2) = [(1 — iz + 2Y/[(1 + Dz + 2). Find 5~ '(w).

Let w = S(z) = (i + 2)/(i — z). Find S~'(w).

Find the image of the right half plane Re(z) > 0 under w = i(1 — 2)/(1 + 2).

Show that the bilinear transformation w = (1 — 2)/(1 + z) maps the portion of the disk
|z’ < 1 that lies in the upper half plane Im(z) > 0 onto the first quadrant 4 > 0,
v > 0.

5. Find the image of the upper half plane Im(z) > O under the transformation
1-nNz+2
W= ——"T""—""""72.
(1 +Dz+2
6. Find the bilinear transformation w = S(z) that maps the points z; = 0, z; = i, and
za = —iontow; = —1, wy = 1, and w3 = 0, respectively.
7. Find the bilinear transformation w = 5(z) that maps the points z; = —i, z = 0, and
zz=idontow;, = —1, w, =i, and wy = 1, respectively.
8. Find the bilinear transformation w = S(z) that maps the points z; = 0, z, = 1. and
za = 2ontow, = 0, w, = 1, and ws = oo, respectively.
9. Find the bilinear transformation w = S(z) that maps the points z; = 1, z» = i, and
za= —lontow, =0, w, =1, and w3 = oo, respectively.
10. Show that the transformation w = (1 + z)/(i — z) maps the unit disk ’ZI << 1 onto the
right half plane Re(w) > 0.
11. Find the image of the lower half plane Im(z) < Q under w = (/ + 2)/(i — 2).
12, Let $i(z) = (z — 2)/(z + 1) and 82(2) = z/(z + 3). Find §,(52(2)) and 52(S,(z2)).
13. Find the image of the quadrant x > 0, y > Qunder w = (z — 1)/(z + 1).
14. Find the image of the horizontal strip 0 <y < 2 under w = z/(z — 7).
15. Show that equation (9) can be written in the form of equation (1).
16. Show that the bilinear transformation w = §(z) = (az + b)/(cz + d) is conformal at all
points z # —d/c.
17. A fixed point of a mapping w = f(z) is a point 2o such that f(zg) = zo. Show that a

18.

19.

9.3

bilinear transformation can have at most two fixed points.

(a) Find the fixed pointsof w = (z — 1)/(z + 1).

(b) Find the fixed points of w = (47 + 3)/(2z — 1).

Write a report on bilinear transformations. Include some ideas not presented in the text.
Resources include bibliographical items 12, 23, 24, 30, 36, and 43,

Mappings Involving Elementary Functions

In Section 5.1 we saw that the function w = f(z) = exp z is a one-to-one mapping
of the fundamental period strip —n < ¥ < 7 in the z plane onto the w plane with
the point w = 0 deleted. Since f'(z) # 0, the mapping w = exp z is a conformal
mapping at each point z in the complex plane. The family of horizontal lines y = ¢
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FIGURE 9.10 The composite transformation w = (e — i)/(e* + i).

EXAMPLE 9.9 The transformation w = f(z) = Log[(1 + 2)/(1 — z)] is a one-
to-one conformal mapping of the unit disk ';| < 1 onto the horizontal strip
|v| << /2. Furthermore, the upper semicircle of the disk is mapped onto the line
v = ©/2 and the lower semicircle onto v = —m/2.

Solution The function w = f(z) is the composition of the bilinear trans-
formation Z = (1 + z)/(1 — z) followed by the logarithmic mapping w = Log Z.
The image of the disk |z| < 1 under the bilinear mapping Z = (1 + 2)/(1 — 2) is
the right half plane Re(Z) > 0; the upper semicircle is mapped onto the positive Y
axis; and the lower semicircle is mapped onto the negative Y axis. The logarithmic
function w = Log Z then maps the right half plane onto the horizontal strip; the
image of the positive Y axis is the line v = 1/2; and the image of the negative Y
axis is the line v = —~n/2. Figure 9.11 shows the composite mapping.
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A

w = Log Z

FIGURE 9.11 The composite transformation w = Log[(] + 2)/(1 — 2)].

EXAMPLE 9.10 The transformation w = f(z) = (1 + 2)?/(1 — z)? is a one-
to-one conformal mapping of the portion of the disk |z| < 1 that lies in the upper
half plane 1m(z) > 0 onto the upper half plane Im(w) > 0. Furthermore, the image
of the semicircular portion of the boundary is mapped onto the negative u axis, and
the segment —1 < x < 1, y = 0 is mapped onto the positive u axis.

Solution The function w = f(z) is the composition of the bilinear trans-
formation Z = (1 + z)/(1 — z) followed by the mapping w = Z2. The image of
the half-disk under the bilinear mapping Z = (1 + z)/(1 — z) is the first quadrant
X > 0, Y > 0; the image of the segment y = 0, —1 < x < 1, is the positive X axis;
and the image of the semicircle is the positive Y axis. The mapping w = Z? then
maps the first quadrant in the Z plane onto the upper half plane Im(w) > 0, as shown
in Figure 9.12.



298 Chapter 9 Conformal Mapping

FIGURE 9.12 The composite transformation w = [(1 + 2)/(1 — )8

EXAMPLE 9.11 Consider the function w = f(z) = (z> — 1)/, which is the
composition of the functions Z = z* — 1 and w = Z'2, where the branch of the
square root is Z'"? = R'?[cos(6/2) + i sin(8/2)], (6 = arg Z and 0 < 6 < 2m). Then
the transformation w = f(z) maps the upper half plane Im(z) > 0 one-to-one and
onto the upper half plane Im(w) > 0 slit along the segment u = 0,0<v=l

Solution The function Z = z> — | maps the upper half plane Im(z) > 0
one-to-one and onto the Z-plane slit along the ray ¥ = 0, X = —1. Then the function
w = Z'2 maps the slit plane onto the slit half plane. as shown in Figure 9.13.
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FIGURE 9.13 The composite transformation w = f{z) = (zZ — D' and the
intermediate steps Z = > — 1 and w = Z'"2,

Remark The images of the horizontal lines y = b are curves in the w plane that
bend around the segment from O to i. The curves represent the streamlines of a fluid
flowing across the w plane. We will study fluid flows in more detail in Section 10.7.

The Mappingw = (22 — 7)7Z2

The double-valued function f(z) = (z2 — 1)"/? has a branch that is continuous for
values of z distant from the origin. This feature is motivated by our desire for the
approximation (z* — 1)"? =  to hold for values of z distant from the origin. Let us
express (z° — 1)'? in the following form:

(h w=A0=(@- D"+ D7

where the principal branch of the square root function is used in both factors. We
claim that the mapping w = f(z) is a one-to-one conformal mapping from the domain
set D) consisting of the z plane slit along the segment —1 < x < 1, y = 0, onto the range
set H, consisting of the w plane slit along the segment u = 0, —1 < v < 1.
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To verify this we investigate the two formulas on the right side of equation (1), and
express them in the form

Q) - D72= Jrev? wherer = |z—1].6,

(3) (z+ DV = /re®?, wherer

Arg(z — 1), and
|z +1],8, = Argz + 1.

The discontinuities of Arg(z — 1) and Arg(z + 1) are points on the real axis such
that x <1 and x < —1, respectively. We now show that f(z) 1s continuous on the
rayx < -1,y = 0.

Let zy = xp + iy denote a point on the ray x < —1, ¥y = 0, then we obtain the
following limits as z approaches z, from the upper half plane and the Jower half
plane, respectively:

(4 lim i = lm Jre"? hm  Jret?

s = |vo-1] rzoe |1
Im{z)=0 8)—-n 63- 70
= Vm =10V ]+ 1] 6
= -V |xj— 1|, and
(5)  lim iy = lim Jre"? lim  /re??
Iy 1 ,x,)—l , ra— |,q,¢ I |
Im(z)<0 8)—mn [ R R dat

[xo = 1] (=0 V |x + 1| (=D

el

Since both limits agree with the value of f1(z¢) it follows that f,(z) is continuous
along theray x < —1,y = 0.
The inverse mapping is easily found and can be expressed in a similar form:

6) z=giw) =W + )2 = (w+ D2w — N2,
where the branches of the square root function are given by

(N w+ 2= Jpe®? wherep, = [w+i|, 6, = argw + D),

-7 . —-3n
and - <argw + i) < - and

(8) (w = )2 = /pe?, wherep, = |w—i|, ¢ = arg(w — i),
-7 4 —3r
and —2—' < arg(w 1) < —5— !
A similar argument will show that g,(w) is continuous for all w except those
points that lie on the segment ¥ = 0, —1 < v < 1. It is straightforward to verify
that

9 g(fi@) =z and filgi(w) = w,

hold for z in D| and w in H|, respectively, Therefore we conclude that w = fi(z) is
a one-to-one mapping from D, onto H,. It is tedious to verify that fi(z) is also
analytic on the ray x < —1, ¥y = 0. We leave this verification as a challenging
exercise,
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12. Find the image of the upper half plane Im(z) > 0 under w = Log(1 — z°).

13. Find the branch of w = (z> + 1)"2 that maps the right half plane Re(z) > 0 onto the
right half plane Re(w) > 0 slit along the segment 0 <y < 1,v =0,

14. Show that the transformation w = (z> — 1)/(z> + 1) maps the portion of the first quadrant
x > 0, ¥ > 0. that lies outside the circle |z| = | onto the first quadrant 4 > 0, v > 0.

15. Find the image of the sector r > 0,0 < 8 << m/4, under w = (i — zH/(i + z%).

16. Write a report on Riemann surfaces. Resources include bibliographical items 99, 128,
and 129.

17. Show that the function f(z) in equation (1) is analyticon theray x < —1,y = 0.

9.4 Mapping by Trigonometric Functions

The trigonometric functions can be expressed with compositions that involve the
exponential function followed by a bilinear function. We will be able to find images
of certain regions by following the shapes of successive images in the composite

mapping.

EXAMPLE 9.12 The transformation w = tan z is a one-to-one conformal
mapping of the vertical strip |x| < 7/4 onto the unit disk |w| < 1.

Solution  Using identities (11) and (12) in Section 5.4, we write

N . e —e = —ief? +
y=1tang = — — - = -

Y i e+ e * e+ 1
From equation (1) it is easy to see that the mapping w = tan z can be considered as
the composition

—iZ+ i
2) w=—— and Z=¢"

Z+ 1

The function Z = exp(i2z) maps the vertical strip |x| < 7/4 one-to-one

and onto the right half plane Re(Z) > 0. Then the bilinear transformation
w = (—iZ + i)/(Z + 1) maps the half plane one-to-one and onto the disk as shown

in Figure 9.16.
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\ g
Z =exp(ilz)

FIGURE 9.16 The composite transformation w = tan z.

EXAMPLE 9.13 The transformation w = f(z) = sin z is a one-to-one con-
formal mapping of the vertical strip |x| < /2 onto the w plane slit along the rays
us—l,v=0andu=1,v=0.

Solution  Since f'(z) = cos z # 0 for values of 7 satisfying the inequality
—n/2 < Re(z) < n/2, it follows that w = sin z is a conformal mapping. Using
equation (14) in Section 5.2, we write

(3) u+iv=sinz=sinxcoshy+ icosxsinh y

If |a| < m/2, then the image of the vertical line x = a is the curve in the w plane
given by the parametric equations

(Y] =sinacoshy and v = cosasinhy

for —eo <y << oo, We can rewrite equations (4) in the form

(5) coshy=— and sinhy =

sin a cosa
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We can eliminate y in equations (5) by squaring and using the hyperbolic identity
cosh? y — sinh? y = 1, and the result is the single equation

u? v
(6) — = 1.

) ]
sm- a cos~ da

The curve given by equation (6) is identified as a hyperbola in the (#, v) plane that
has foci at the points (1, 0). Therefore the vertical line x = a is mapped in a one-
to-one manner onto the branch of the hyperbola given by equation (6) that passes
through the point (sin a, 0). If 0 < a < ®/2. then it is the right branch; and if
—7n/2 < a < 0, it is the left branch. The image of the y axis, which is the line
x = 0, is the v axis. The images of several vertical lines are shown in Figure 9.17.

— L L L

FIGURE 9.17 The transformation w = sin z.

The image of the horizontal segment —n/2 < x << w/2, y = b is the curve in
the w plane given by the parametric equations

(7) u=sinxcoshb and v = cos.xsinhbd
for —n/2 < x < /2. We can rewrite equations (7) in the form

" d v
and cosx = — .
cosh b sinh b

(8) sinx=
We can eliminate x in equations (8) by squaring and using the trigonometric identity
sinx + cos®y = 1, and the result is the single equation

ol bl
u? v
cosh?h  sinh?b

9

The curve given by equation (9) is identified as an ellipse in the (i, v) plane that
passes through the points (fcosh b, 0) and (0, sinh &) and has foci at the points
(+1, 0). Therefore if b > 0, then v = cos x sinh b > 0, and the image of the horizontal
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segment is the portion of the ellipse given by equation (9) that lies in the upper half
plane Im(w) > 0. If b < 0, then it is the portion that lies in the lower half plane.
The images of several segments are shown in Figure 9.17.

We now develop explicit formulas for the real and imaginary parts of the
principal value of the arcsine function w = f(z) = Arcsin z. This mapping will be
used to solve certain problems involving steady temperatures and ideal fluid flow
in Section 10.7. The mapping is found by solving the equation

(10) x + iy =sinw = sinu cosh v + i cos u sinh v

for u and v expressed as functions of x and v. To solve for u, we first equate the real
and imaginary parts of equation (10) and obtain the system of equations

v

X )
(11) coshy=—— and sinhvy = .
sin u coSs u

Then we eliminate v in equations (11) and obtain the single equation

X2 37

(12) =1

sin‘u  cos‘u
If we treat u as a constant, then equation (12) represents a hyperbola in the (x, y)
plane, the foci occur at the points (£1, 0), and the traverse axis is given by 2 sin u.
Therefore a point (x, y) on the hyperbola must satisfy the equation

(13) 2sinu= Jx+ 1P+ 3y — Jx— 1+ v

The quantity on the right side of equation (13) represents the difference of the
distances from (x, ) to (— 1, 0) and from (x. y) to (1, 0).
Solving equation (13) for & yields the real part

Va3 - S -1+ .vl]

5

P4

(14)  wu(x, v) = arcsin [

The principal branch of the real function arcsin 7 is used in equation (14), where the
range values satisfy the inequality —m/2 < arcsin ¢ << /2.
Similarly, we can start with equation (10) and obtain the system of equations

15 i = and cosu = .
(15) sinu oy and cos u Sinh v

Then we eliminate « in equations (15) and obtain the single equation

¥ ¥
16 + — =1
(16) cosh’v  sinh?v

If we treat v as a constant, then equation (16) represents an ellipse in the (x, y) plane,
the foci occur at the points (1. 0), and the major axis has length 2 cosh v. Therefore
a point (x, ¥) on this ellipse must satisfy the equation

(17) 2coshv= Jx+ 12+ 2+ Jix — 17 + .
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The quantity on the right side of equation (17) represents the sum of the distances
from (x, y) to (—1, 0) and from (x, y) to (1, 0).

The function z = sin w maps points in the upper-half (lower-half) of the
vertical strip —1/2 << u < 1/2 onto the upper half plane (lower half plane), respec-
tively. Hence we can solve equation (17) to obtain v as a function of x and y:

Vot Ty + a1+ yl]
. ,

“

(18) v(x, ¥) = (sign y)arccosh [

where signy = +1if y = 0 and signy = ~1 if y < 0. The real function given by
arccosh ¢ = In(t + /2 — 1) with t = ] is used in equation (18).

Therefore the mapping w = Arcsin z is a one-to-one conformal mapping of
the z plane cut along the rays x < —1,y = 0 and x = I, y = 0 onto the vertical
strip —n/2 < u < /2 in the w plane. The Arcsine transformation is indicated in
Figure 9.17. The formulas in equations (14) and (18) are also convenient for eval-
uating Arcsin z as shown in Example 9.14.

Therefore, the mapping w = Arcsin z is one-to-one conformal mapping of the
z plane cut along therays x < —1,y = Oand x = I, y = 0 onto the vertical strip
5 =us g in the w plane, and this can be construed from Figure 9.17 if we
interchange the roles of the z and w planes. The image of the square 0 < x < 4,
0 <y < 4 under w = Arcsin z is shown in Figure 9.18 and was obtained by plotting
two families of curves {(u(c, ), v(c, )): 0 < ¢t < 4} and {(@u(r, ¢). w(£, ): 0 < ¢t

k
< 4}, where ¢ = -5- k=0,1,...,20. Formulas (14) and (18) are also convenient

for evaluating Arcsin z, as shown in Example 9.14.

y w = Arcsin g {‘
———
A
2
.
3
2 1
1
> x T > u
I 2 3 4 0 n/4 /2

FIGURE 9.18 The mapping w = Arcsin z.
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EXAMPLE 9.14 Find the principal value Arcsin(1 + i).
Solution Using formulas (14) and (18), we find that

-1
u(1, 1) = arcsin ——— = 0.666239432 and

S|

+ 1
v(l, 1) = arccosh——,}-— =~ 1.061275062.

Therefore we obtain

arcsin(i + 1) = 0.666239432 + i 1.061275062.

Is there any reason to assume that there exists a conformal mapping for some
specified domain D onto another domain G? The theorem concerning the existence
of conformal mappings is attributed to Riemann and can be found in Lars V. Ahlfors,
Complex Analysis (New York: McGraw-Hill Book Co.) Chapter 6, 1966.

Theorem 9.4 (Riemann Mapping Theorem) If D is anv simply con-
nected domain in the plane (other than the entire plane itself). then there

exists a one-to-one conformal mapping w = f(z) that maps D onto the unit
disk |w| < 1.

EXERCISES FOR SECTION 9.4

Find the image of the semi-infinite strip —n/4 < x < 0, y > 0 under the mapping
w = lan z.

Find the image of the vertical strip 0 < Re(z) < n/2 under the mapping w = lan z.
Find the image of the vertical line x = n/4 under the transformation w = sin z.

Find the image of the horizontal line y = | under the transformation w = sin z.

Find the image of the rectangle R = {x + iy: 0 < x < mw/4, 0 < y < 1} under the
transformation w = sin z.

Find the image of the semi-infinite strip —7/2 < x << (0, v > 0 under the mapping
w = sin z.

7. (a) Find lim Arg(sin[(n/6) + iy]).

Yt

—

RS

&

(b) Find lim Arg(sin[(—25/3) + iv]).

8. Use formulas (14) and (18) to find the following:
(a) Arcsin(2 + 2i) (b) Arcsin(—2 + 1)
(c) Arcsin(l — 3i) (d) Arcsin(—4 — i)

9. Show that the function w = sin z maps the rectangle R = {x + iy: —/2 < x < /2,
0 < y < b) one-to-one and onto the portion of the upper half plane Im(w) > 0 that lies
inside the ellipse

-

w? ¥
—t =y =1
cosh’b  sinh°b




10.
11.
12.

13.
14.
18,
16.
17.

18.
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Find the image of the vertical strip —a/2 < x < 0 under the mapping w = cos z.
Find the image of the horizontal strip 0 < Im(z) < n/2 under the mapping w = sinh z.

Find the image of the right half plane Re(z) > 0 under the mapping
i i+ z
w = arctan z = ELOgi— -

Find the image of the first quadrant x > 0, y > 0 under w = Arcsin z.

Find the image of the first quadrant x > 0, y > 0 under the mapping w = Arcsin z°.
Show that the transformation w = sin®z is a one-to-one conformal mapping of the semi-
infinite strip 0 < x < w/2. y > O onto the upper half plane Im(w) > 0.

Find the image of the semi-infinite strip |x| < m/2, y > O under the mapping
w = Log(sin z).

Write a report on Riemann mapping theorem. Resources include bibliographical items
4, 88, 106, 129, and 179.

Write a report on the topic of analytic continuation. Be sure to discuss the chain of
power series and disks of convergence. Resources include bibliographical items 4, 19,
46, 51, 52, 93, 106, 128. 129, 141, 145, and 166.
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Applications of Harmonic
Functions

10.1 Preliminaries

In most applications involving harmonic functions it is required to find a harmonic
function that takes on prescribed values along certain contours. We will assume that
the reader is familiar with the material in Sections 2.5, 3.3, 5.1, and 5.2.

EXAMPLE 10.1 Find the function u(x, v) that is harmonic in the vertical strip
a < Re(z) < b and takes on the boundary values

(1 wu(a,v)=U, and ub,y)= U,

along the vertical lines x = a and x = b, respectively.

Solution Intuition suggests that we should seek a solution that takes on
constant values along the vertical lines x = x; and that «(x, y) should be a function
of x alone; that 1s,

(2) wu(x,y) = P(x) fora < x < band forall v.

Laplace’s equation, u,,(x, ¥) + u,(x, ¥) = 0, implies that P"(x) = 0, so P(x) =
mx + ¢, where m and c are constants. The boundary conditions u(a, v) = P(a) =
U, and u(b, v) = P(b) = U, lead to the solution

U,

- U
3) ulx,yy=U, + =22 (x — a).
b—a

The level curves u(x, y) = constant are vertical lines as indicated in Figure 10.1.

EXAMPLE 10.2 Find the function ¥(x, y) that is harmonic in the sector
0 < Arg z < o, where o £ 7, and takes on the boundary values

4 Y&, 0=C forx>0 and
VY(x,y) = C, atpointsontherayr > 0,6 = o,

310
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u(x, ¥) = constant

} /

FIGURE 10.1 The harmonic function
u(x, vy = U, + (U, — Up(x — a)(b — a).

Solution  If we recall that the function Arg z is harmonic and takes
on constant values along rays emanating from the origin, then we see that a
solution has the form

(5) Wix,v)=a+ bArgg

where a and b are constants. Boundary conditions (4) lead to
C,—-C
6) Y, v=0C + “Tl Arg 2

The situation is shown in Figure 10.2.

y
] ¥ (x, ») = constant

4

Yix, y) = (72
along the ray
r>0,6=a

¥(x, 00 =C,
forx >0

FIGURE 10.2 The harmonic function
Yix,y) = C) + (C; — C(l/e) Arg z.

EXAMPLE 10.3 Find the function ®(x, y) that is harmonic in the annulus
I < |z| < R and takes on the boundary values

(7) P,y =K, when |z| =1, and
R.

S
o~
=
<
2
I
YJN
£
=
(1]
=]
M
i
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Py, )= I\"2
when lz] = R

& (x, ¥} = constant

Py, =K,

when [z} = 1

FIGURE 10.3 The harmonic function @(x, y) = K, + In ]- ] (K> — K)YIn R.

Solution  This is a companion problem to Example 10.2. Here we use
the fact that In [z| i1s a harmonic function for all z # 0. Let us announce that
the solution is

K, - K,

) = 4=
8 ®kx ¥ =K, TR In

2|

and that the level curves ®(x, y) = constant are concentric circles, as illustrated in
Figure 10.3.

10.2 Invariance of Laplace’s Equation
and the Dirichlet Problem

Theorem 10.1  Let ®(u, v) be harmonic in a domain G in the w plane. Then
P satisfies Laplace’s equation

n P fu, v+ D, =0
at each pointw = u + ivin G. If
2) w=Ff@ =uxy + ivix,¥)

is a conformal mapping from a domain D in the 7 plane onto G, then the
composition

(3 ox, y) = Plulx, y), v(x, y))
is harmonic in D, and b satisfies Laplace’s equation
@) oulxy) + dux.y) =0

at each point z = x + ivin D.
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Proof Equations (1) and (4) are facts about the harmonic functions ® and
¢ that were studied in Section 3.3. A direct proof that the function ¢ in equation (3)
is harmonic would involve a tedious calculation of the partial derivatives 0,, and
0, An easier proof uses a complex variable technique. Let us assume that there is
a harmonic conjugate W(u. v) so that the function

(5) gw) = B, v) + iV, v)

is analytic in a neighborhood of the point wy = f(zp). Then the composition
h(z) = g(f(2)) is analytic in a neighborhood of z, and can be written as

6) A2 = Oulx, v). vix, y)) + i Y(ulx, ¥), v(x, ¥)).

If we use Theorem 3.5, it follows that (u{x, y), v(x, ¥)) is harmonic in a neighbor-
hood of z,, and Theorem 10.1 is established.

EXAMPLE 10.4 Show that ¢(x, y) = arctan[2x/(x2 + y* — 1)] is harmonic in
the disk |z| < 1, where —7/2 < arctan t < 7/2.
Solution The results of Exercise 10 of Section 9.2 show that the function

t_l-x—-y i2x
A S Al Ve N G Vo

i+
M f& ==

is a conformal mapping of the disk z| << 1 onto the right half plane Re(w) > 0.
The results from Exercise 12 in Section 5.2 show that the function

(8) ®(u, v) = arctan Yo Arg(u + iv)
u

is harmonic in the right half plane Re{(w) > 0. We can use equation (7) to write

O e = =T g vy X

xy)=—""—"— and vx,y)=—T"—.

SRR (v — 1y BTy (v — 1)y
Substituting equation (9) into equation (8) and using equation (3), we see that
O(x, y) = arctan(v(x, Y)/u(x, v)) = arctan(2x/(x> + y> — 1)) is harmonic for
|z < 1.

Let D be a domain whose boundary is made up of piecewise smooth contours
joined end to end. The Dirichlet probiem is to find a function ¢ that is harmonic in
D such that ¢ takes on prescribed values at points on the boundary. Let us first study
this problem in the upper half plane.

EXAMPLE 10.5 Show that the function

1 4 1 v
(10)  ®(u, v) = — Arctan AR, Arg(w — ug)
Tt U — Uy T
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is harmonic in the upper half plane Im(w) > 0 and takes on the boundary values

an

(12)

P, 0 =0 foru>u, and
D, 0) =1 foru < ug.

Solution The function

| 1 i
gw) = - Log(w ~ up) = - Injw — u| + - Arg(w — up)

is analytic in the upper half plane Im(w) > 0, and its imaginary part is the harmonic
function (1/m) Arg(w — up).

Remark Let t be a real number. We shall use the convention Arctan(teo) = /2
so that the function Arctan ¢ denotes the branch of the inverse tangent that lies in
the range 0 < Arctan ¢ < ®. This will permit us to write the solution in equation
(10) as ®(u, v) = (1/m) Arctan(v/(u — ug)).

(13)

(14)

Theorem 10.2 (#-Value Dirichlet Problem for the Upper Half
Plane) Letu, <u; <. - <uy_) denote N — 1real constants. The function

N-1

DO, v) = ay_, + p ,Zl (ar_1 — a) Argw — wp)
N-1 ,
=qay_; + — 2 (ak,| - ak) Arctan
T k=1 U — U

is harmonic in the upper half plane Im(w) > 0 and takes on the boundary
values

D(u, 0) = ay Jor u < uy,
D(u, 0) = ay Joru, < u<uwu,, fork=12,...,N— 2,
D, 0) = ay_; foru > uy_,.

The situation is illustrated in Figure 10.4.

Proof Since each term in the sum in equation (13) is harmonic, it follows

that @ is harmonic for Im(w) > 0. To show that ® has the prescribed boundary
conditions, we fix j and let u; < u << u;,,. Using Example 10.5, we see that

(15)

1 1
; Arglu —u) =0 ifk<j and —Arglu —u)=1 ifk>j
4

Using equations (15) in equation (13) results in

(16)

D(u, 0

; Nl
ay-, + Z (@1 — a)0) + AE} (@i-y — a(l)

k=) +
=ay_  + @y —anv_ )+ -+ (G —au) + (g - ayy))
a; foru <u<u.,.
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The situation is illustrated in Figure 10.7.

FIGURE 10.7 The boundary values for ¢(x, v) for the Dirichlet problem in the
simply connected domain D.

One method for finding ¢ is to find a conformal mapping
19 w=Ff(2) = ulx,y) + ivix, V)

of D onto the upper half plane Im (w) > 0, such that the N points z;. z5, . . . . 2w
are mapped onto the points u; = f(z) fork = 1,2, . . . ,N — | and zy is mapped
onto uy = +eo along the u axis in the w plane.

Using Theorem 10.1, we see that the mapping in equation (19) gives rise to a
new N-value Dirichlet problem in the upper half plane Im(w) > 0 for which the
solution is given by Theorem 10.2. If we set ay = ay, then the solution to the
Dirichlet problem in D with boundary values (18) is

N-1

e
(20)  o(x, y) = ay_; + - ; (aoy — a) Arg[f(2) — w]
Ay v(x, )
= ay_| + — 1 — - .
an_1 . ,; (ai_; a;) Arctan m—

This method relies on our ability to construct a conformal mapping from D
onto the upper half plane Im(w) > 0. Theorem 9.4 guarantees the existence of such
a conformal mapping.

EXAMPLE 10.8 Find a function ¢(x. y) that is harmonic in the unit disk
|z| < 1 and takes on the boundary values

2l ox y)=0 forx+iv=1¢"0<6<m,
Ox, vy =1 forx+iv=e¢® 1<0<2n
Solution  Example 9.3 showed that the function

il —2) 2y +,l—x3—y3
= 1
l+z (+DX+y (+ 1?2+

22) u+iv=
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is a one-to-one conformal mapping of the unit disk |z| < 1 onto the upper half
plane Im(w) > 0. Using equation (22), we see that the points 7 = x + iv that lie on
the upper semicircle y > 0, | — x> — y? = 0 are mapped onto the positive u axis.
Similarly, the lower semicircle is mapped onto the negative u axis as shown in
Figure 10.8.

*(u, =0
foru <0 foru>0

¢ (x, v)=1

FIGURE 10.8 The Dirichlet problems for |z| < 1 and Im (w) > 0 in the solution
of Example 10.8.

The mapping (22) gives rise 1o a new Dirichlet problem of finding a harmonic
function ®(u, v) that has the boundary values

23) Pw, O =0foru>0 and D, O =1 foru <9,

as shown in Figure 10.8. Using the result of Example 10.5 and the function u and
v in the mapping (22), we find that the solution to equation (21) is

vix,y) 1 [ —x2 —
Moy 1 Arctan —
u(x,y) =w y

1
o(x, y) = ; Arctan

EXAMPLE 10.9 Find a function ¢(x, v) that is harmonic in the upper half-
disk H:y > 0, < 1 and takes on the boundary values

<

(24) ox,y) =0 forx+iy=¢"0<0<m,
ox, =1 for -1 <x<l.

Solution By using the result of Exercise 4 in Section 9.2 the function in
(22) is seen to map the upper half-disk H onto the first quadrant Q: « > 0, v > 0.
Using the conformal mapping (22), we see that points - = x + iy that lie on the
segmenty = 0, —1 < x < 1 are mapped onto the positive v axis.

Mapping (22) gives rise to a new Dirichlet problem of finding a harmonic
function ©(u, v) in @ that has the boundary values

25 ®w.0)=0 foru>0 and PO, v =1 forv>0,
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10.

11.

12.

13.

14.
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Find the function ¢(x, y) that is harmonic in the upper half plane Im(z) > 0 and has the
boundary values

O, 0)=3 forx< -3, 6(x,00=7 for-3<x<—1,
Ox, 00 =1 for—-1<x<2 o¢x0=4 forx>2.

Find the function ¢(x, y) that is harmonic in the first quadrant x > 0, ¥ > 0 and has the
boundary values

00, =0 fory>1 ¢0,y=1 forO<y<1l,
O, =1 for0<sx<1, 6(x,0)=0 forx>1.

Find the function ¢(x, y) that is harmonic in the unit disk |z | < 1 and has the boundary
values

Px, ) =0 forz=¢"0<0<m,
Pr. ¥y =5 forz=¢e"m <0 <2m

Find the function ¢(x, y) that is harmonic in the unit disk |z| < 1 and has the boundary
values

Px,y) =8 forz=¢"0<0<m,
Ox, V=4 forz=¢"n<0<2m

I

Find the function ¢(x, y) that is harmonic in the upper half-disk y > 0, |z| < 1 and has
the boundary values

o(x,v) =5 forz=¢e%0<8<m,
ox,0)= -5 for—-1<x<1,

Find the function ¢(x, v) that is harmonic in the portion of the upper half plane
Im(z) > O that lies outside the circle |z| = 1 and has the boundary values

Ox, ) =1 forz=2¢%0<9<m,
o, 0) =0 for x| > 1.

Hint: Use the mapping w = —1/z and the result of Example 10.9.
Find the function ¢(x, y) that is harmonic in the quarter disk x > 0.y > 0, |z| < I and
has the boundary values

o(x. ) =3 forz=¢"0<9 <72,
o(x,0)= -3 for0=sx<lI,
00,y)= -3 for0O<y<l,

Find the function ¢(x, y) that is harmonic in the unit disk |z| < 1 and has the boundary
values

o(x,y) =1 forz
O(x, ») =0 forz

e®, —m/2 < 6 < m/2,
e’ m/2 < 8 < 3n/2.

I

Look up the article on the Poisson integral formula and discuss what you found. Use
bibliographical item 115.

Write a report on how computer graphics are used for graphing harmonic functions,
complex functions, and conformal mappings. Resources include bibliographical items
33, 34, 109, and 146.
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10.3 Poisson’s Integral Formula for the Upper Half Plane

The Dirichlet problem for the upper half plane Im(z) > 0 is to find a function
¢(x, y) that is harmonic in the upper half plane and has the boundary values
o(x, 0) = U(x), where U(x) is a real-valued function of the real variable x.

Theorem 10.3 (Poisson’s Integral Formula) Ler U(r) be a real-valued
Sfunction that is piecewise continuous and bounded for all real 1. The function

v v v |~ Uty dt
() ey =21 P

is harmonic in the upper half plane 1m(z) > 0 and has the boundary values
{(2) o, 0y = Ux) wherever U is continuous.

Proof The integral formula (1) is easy to motivate from the results of The-
orem 10.2 regarding the Dirichlet problem. Lets) <t <--. < tydenote N points
that lie along the x axis. Let 1p, < f} < --- < r, be N + 1 points that are chosen so

thatf, , <t <t (fork = 1,2, ..., N)and U(s) is continuous at each value f,.
Then according to Theorem 10.2, the function

B
(3) ®x.y) = Uty + ~ AE} (UG _)) — UGl Arglz — 1)

is harmonic in the upper half plane and takes on the boundary values

4y @, 0y = Ul forx <y,
®(x, 0) = Ury) forty < x < .,
d(x, 0) = U(ty) forx > ty,

as shown in Figure 10.13.

FIGURE 10.13 The boundary values for ® in the proof of Theorem 10.3.
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We can use properties of the argument of a complex number in Section 1.4 to
write equation (3) in the form

| g L~ L
(5) ®(x,y) = = Ulty) Arglz ~ 1) + ~ >, Ut Arg| =———
T T k=1 I— 1
] .
+ L Uiln = Arglz = ty)).
The value @(x, y) in equation (5) is given by the weighted mean
1 & N
6) ®x,y) == > UK A8,
T 150
where the angles A8, (k = 0,1, . . . , N) sum up to ® and are shown in Figure

10.13.
Using the substitutions

ydt
(x — 62 + 3?2~

(7 6=Aglz—n-= Arctan( ) and db =

we can write equation (6) as

vy < U At
8 D( [, ¥) = =~ o 5
( ) (X ,\) n ;;) (x —_ t’()- + ya

The limit of the Riemann sum, equation (8), becomes an improper integral

Y[ U dt
¢(X, ,“) - T J’iw (X _ t)z + yz

and the result is established.

EXAMPLE 10.11 Find the function ¢(x, ) that is harmonic in the upper half
plane Im(z) > 0 and has the boundary values

9 ¢x,0)=1 for—1<x<1, O6x,0=0 for|x|>1.

Solution Using formula (1), we obtain

y ! di 1 ! vdt
TR (P Y (.
(10)  o(x, ») nlax—0+yv mlax-—P+y

Using the antiderivative in equation (7), we can write the solution in equation

(10) as
1 ¥ =1
— Arctan| — l
b4 X —~ 1) li=-1

1 / y i ¥
— Arctan — — Arctan .
T x -1 b/ x+1

il

o(x, ¥)

It
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is harmonic in the upper half plane and has the boundary values v(x, 0) = 0 for
|x’ < 1,v(x,0) = —1forx < —1, and v(x, 0) = 1 for x > 1. This function can be
added to the one in Example 10.12 to obtain the desired result, which is

y (X — 1)2 + yz x -1 y
) =1+ = + Arct
0 y) =1 2n In l:(x + 1) + yz] T retan 1

+1°

Arctan
X

Figure 10.15 shows the graph of ¢(x, y).

FIGURE 10.15 The graph of ¥ = ¢(x, ¥) with the boundary values ¢(x, 0) = x for
|x| <1,0(x,0) = —1forx < —1and ¢(x,0) = 1 forx > 1.

EXERCISES FOR SECTION 10.3

1. Use Poisson’s integral formula to find the harmonic function ¢(x, y) in the upper half
plane that takes on the boundary values

oL 0 =Un=0 forr<0,
0,0 =Un =t for0<r<l,
0, =U@n=0 forl <t

2. Use Poisson’s integral formula to find the harmonic function ¢(x, y) in the upper half
plane that takes on the boundary values

0, 0) = U =0 fors < 0.
0L =Un =1t forO<r<l,
0,0 =Un=1 forl <t

3. Use Poisson’s integral formula for the upper half plane to conclude that

e cos t dt
O(x, ¥) = eYcos x = lj —_—.
)= (x — 1) + y*
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4. Use Poisson’s integral formula {or the upper half plane to conciude that

. y[- sin ¢ dt
O(x, ¥) = e'sinx = = —_—.
o= (x — 1) + 32

5. Show that the function ¢(x. ¥) given by Poisson’s integral formula is harmonic by ap-
plying Leibniz’s rule, which permits us to write

SR R 1 (- NArEErE: v
— + =< |o(x. y) = — U -t — | | at
ax- ﬁy' TJ-~ ax- ,i)vv- (x — 1 + ¥

6. Let U(r) be a real-valucd function that satisfies the conditions for Poisson’s integral
formula for the upper half plane. If U(s) is an even function, that is, U(—¢) = U(r). then
show that the harmonic function §(x, ¥) has the property o(—x. v) = d(x, v).

7. Let U(r) be a real-valued function that satisfies the conditions for Poisson’s integral
formula for the upper half plane. If U(#) is an odd function, that is, U(—f) = —U(1).
then show that the harmonic function ¢(x. ¥) has the property ¢{ —x, ¥) = —o6(x, ).

8. Write a report on the Dirichlet problem and include some applications. Resources in-
clude bibliographical items 70. 71, 76, 77, 85, 98, 135, and 138.

10.4 Two-Dimensional Mathematical Models

We now turn our attention to problems involving steady state heat flow, electro-
statics, and ideal fluid flow that can be solved by conformal mapping techniques.
The method uses conformal mapping to transform a region in which the problem is
posed to one in which the solution is easy to obtain. Since our solutions will involve
only two independent variables, x and y, we first mention a basic assumption needed
for the validity of the model.

The physical problems we just mentioned are real-world applications and in-
volve solutions in three-dimensional Cartesian space. Such problems generally
would involve the Laplacian in three variables and the divergence and ¢url of three-
dimensional vector functions. Since complex analysis involves only x and v, we
consider the special case in which the solution does not vary with the coordinate
along the axis perpendicular to the xy plane. For steady state heat flow and electro-
statics this assumption will mean that the temperature 7, or the potential V, varies
only with x and y. For the flow of ideal fluids this means that the fluid motion is the
same in any plane that is parallel to the : plane. Curves drawn in the z plane are to
be interpreted as cross sections that correspond to infinite cylinders perpendicular
to the z plane. Since an infinite cylinder is the limiting case of a “long™ physical
cylinder, the mathematical model that we present is valid provided that the three-
dimensional problem involves a physical cylinder long enough that the effects at
the ends can be reasonably neglected.

In Sections 10.1 and 10.2 we learned how to obtain solutions ¢(x, y) for har-
monic functions. For applications it is important to consider the family of level
curves

(1)  {¢(x. y) = K;: K, is areal constant}
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and the conjugate harmonic function ¥(v, ¥) and its family of level curves
(2) {¥x, y) = K>: K> is a real constant }.

It is convenient to introduce the terminology complex potential for the analytic
function
(3) F(@ = o(x, ¥} + ib(x, v).

The following result regarding the orthogonality of the above mentioned families
of level curves will be used in developing ideas concerning the physical applications.

Theorem 10.4 (Orthogonal Families of Level Curves) Ler ¢(x, v) be
harmonic in a domain D. Let \(x, v) be the harmonic conjugate, and let
F(2) = o(x, v) + il(x, y) be the complex potential. Then the two fumilies of
level curves given in (1) and (2), respectively, are orthogonal in the sense that
if (a, b) is a point common to the two curves 0(x, v) = K, and ¥(x, ¥) = K>,
and if F'(a + ib) 5 0, then these two curves intersect orthogonally.

Proof Since ¢(x, ) = K, is an implicit equation of a plane curve, the gra-
dient vector grad ¢, evaluated at (a, b), is perpendicular to the curve at (a, b). This
vector is given by

@ N, =0oJa, b) + i0(a, b).
Similarly, the vector N- defined by
(5) N; =da, b) + iba, b)

is orthogonal to the curve U(x, v) = K; at (g, b). Using the Cauchy-Riemann equa-
tions, ¢, = U, and ¢, = —{,, we have

(6) Ni* N> = 0da. O)lYda. £)] + 0(a, bYW (a, b)]
= 0da, Bl—0.(a, b)] + dda, b)[0da, b)] = 0.

In addition, since F'{a + ib) # (), we have
(7 bda, b) + b (a, b) # 0.

The Cauchy-Riemann equations and inequality (7) imply that both N, and N; are
nonzero. Therefore equation (6) implies that N, is perpendicular to N;, and hence
the curves are orthogonal.

The complex potential F(z) = ¢(x, v) + ib(x, y) has many physical interpre-
tations. Suppose, for example, that we have solved a problem in steady state tem-
peratures; then a similar problem with the same boundary conditions in electrostatics
is obtained by interpreting the isothermals as equipotential curves and the heat flow
lines as flux lines. This implies that heat flow and electrostatics correspond directly.
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Or suppose we have solved a fluid flow problem; then an analogous problem
in heat flow is obtained by interpreting the equipotentials as isothermals and stream-
lines as heat flow lines. Various interpretations of the families of level curves given
in expressions (1) and (2) and correspondences between families are summarized
in Table 10.1.

Table 10.1 Interpretations for Level Curves

Physical

Phenomenon 0(x, y) = constant Y(x, y) = constant
Heat flow Isothermals Heat flow lines
Electrostatics Equipotential curves Flux lines
Fluid flow Equipotentials Streamlines
Gravitational field Gravitational potential Lines of force
Magnetism Potential Lines of force
Diffusion Concentration Lines of flow
Elasticity Strain function Stress lines
Current flow Potential Lines of flow

10.5 Steady State Temperatures

In the theory of heat conduction the assumption is made that heat flows in the
direction of decreasing temperature. We also assume that the time rate at which heat
flows across a surface area is proportional to the component of the temperature
gradient in the direction perpendicular to the surface area. If the temperature
T(x., y) does not depend on time, then the heat flow at the point (x, v) is given by
the vector

(1) V(x,y) = —Kgrad T(x, y) = —K[Tx, y) + iT\(x, ¥)].

where K is the thermal conductivity of the medium and is assumed to be constant.
If Az denotes a straight line segment of length As, then the amount of heat flowing
across the segment per unit of time is

(2) V-NAs,

where N is a unit vector perpendicular to the segment.

If we assume that no thermal energy is created or destroyed within the region,
then the net amount of heat flowing through any small rectangle with sides of length
Ax and Ay is identically zero (see Figure 10.16(a)). This leads to the conclusion that
T(x, y) is a harmonic function. The following heuristic argument is often used to
suggest that T(x, y) satisfies Laplace’s equation. Using expression (2), we find that
the amount of heat flowing out of the right edge of the rectangle in Figure 10.16(a)
is approximately

(3) V-N; As; = =K[T\(x + Ax, ») + iT(x + Ax, v)] - (1 + 0i) Ay
—KT.(x + Ax, y) Ay,
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0 aT* !

on

FIGURE 10.20 Steady state temperaturcs with one boundary portion insulated.

The new problem in G is 1o find the steady state temperature function
T*(u, v) so that along the rays we have the boundary values

(18 7T*0.v =T, forv>0 and T*(1l,v) =T, forv>0.

The condition that a segment of the boundary is insulated can be expressed math-
ematically by saying that the normal derivative of T*(u. v) is zero. That is,

E

(19) =T.u.0)=0

where n is a coordinate measured perpendicular to the segment.
Tt is easy to verify that the function

20 T*u.w=T + T, — T)Hu

satisfies the conditions (19) and (20) for the region G. Therefore using (17), we find
that the solution in D is

@D Tty =T, + (T2 — Toux, y).

The isothermals T(x, ¥) = constant, and their images under w = f(z) are illustrated
in Figure 10.20.

EXAMPLE 10.17 Find the steady state temperature T(x, y) for the domain D
consisting of the upper half plane Im(z) > 0 where T(x, y) has the boundary
conditions

22) Ttx,M =1 forx>1 and T(x,0) = -1 forx< —1 and
oT

— =Tx,00=0 for—-1<x<1,
an :
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Solution The mapping w = Arcsin z conformally maps D onto the semi-
infinite strip v > 0, —w/2 < u < 7/2, where the new problem is to find the steady
state temperature 7*(u, v) that has the boundary conditions

(23) T*(g,v)=l forv >0 and T*(_Tn,v'):——l forv >0

“ Fa

oT* . . - n
=T u.0)=0 for—<u<—,
n 2 2

and
By using the result of Example 10.1 it is easy to obtain the solution
2
24 T*w,v) = —u
n
Therefore the solution in D is
2
(25) T(x, y) = — Re(Arcsin ).
T

If an explicit solution is required, then we can use formula (14) in Section 9.4 to
obtain

(26) T(x,y) =

. [J(x VR ] Sl Vs .vz]
arcsin 5 ,

Al

where the real function arcsin ¢ has range values satisfying —n/2 < arcsin 1t < /2,
see Figure 10.21.

! 3
T=-02 7=02
T=-04 T=04
7=-06 T=06
7= 08\ T=08
\ /AV |
T'=-1.0 -1 1 T7=10

FIGURE 10.21 The temperature T(x, ¥) with T(x, 0) = O for —1 <x < 1,
and boundary values T(x, 0) = —1forx < -l and T(x,0) = 1 forx > 1.

























10.6 Two-Dimensional Electrostatics 343

EXAMPLE 10.18 Consider two parallel conducting planes that pass perpen-
dicular to the z plane through the lines x = @ and x = b, which are kept at the
potentials U, and U,, respectively. Then according to the result of Example 10.1,
the electrical potential is

U, U
@ ox,y»=U + 4

|
b (x — a).

EXAMPLE 10.19 Find the electrical potential ¢(x. v) in the region between
two infinite coaxial cylinders r = a and r = b, which are kept at the potentials U,
and U-, respectively.

Solution  The function w = log z = In |z| + i arg z maps the annular
region between the circles r = g and r = b onto the infinite striplna < u < In b
in the w plane as shown in Figure 10.36. The potential ®(«, v) in the infinite strip
will have the boundary values

(5) P(lna,vy=U, and D(Inb,v) = U, forallv.
If we use the result of Example 10.18, the electrical potential ®(u, v) is

U, — U,
6) Pu,v)y=U +———(w— Ina)
Inb—1lna

Since u = In |z|, we can use equation (6) to conclude that the potential ¢(x, y) is

oun v = Uy + 2= | —lna
X, V)= —(In {z| — Ina).

’ ' "Imb—1Ina
The equipotentials ¢(x, ¥) = constant are concentric circles centered at the origin,
and the lines of flux are portions of rays emanating from the origin. If U, < U,
then the situation is illustrated in Figure 10.36.

EXAMPLE 10.20 Find the electrical potential ¢(x, y) produced by two
charged half planes that are perpendicular to the z plane and pass through the rays
x < ~—1,y=0and x > 1, y = 0, where the planes are kept at the fixed potentials

(M ¢x,0)=-300 forx<<—1 and ¢, 0) =300 forx> 1.

Solution The result of Example 9.13 shows that the function w = Arcsin 2
is a conformal mapping of the z plane slit along the two rays x < —1, y = 0 and
x > 1, ¥y = 0 onto the vertical strip —n/2 < u < /2, where the new problem is to
find the potential ®(u, v) that satisfies the boundary values

(8) @("—;—,v) — —300 and q><§.v> =300 forallv.





















350 Chapter 10 Applications of Harmonic Functions

{x. 1y + A1y/1 (x + Ax. y + Ay)

Vix, v)

S

N

f /(\{3—\—1)\\

ikdy A 4 -
TN 7777

FIGURE 10.47 A two-dimensional vector field.

Since p and ¢ are continuously differentiable, the mean value theorem can be used
to show that

4 plx+ Ax, D — plx, 1) = pdx;, 1) Ax  and
q(t.y + Ay) — gq(t, ¥) = q.(1, ¥2) Ay,

where ¥ < x; < x + Axand y < y, < v + Ay. Substitution of the expressions in
equation (4) into equation (3) and subsequently dividing through by Ax Ay results
in

1

VAV l A+ AN
5 —J . ,tdt+—J' At vy dt = 0.
(&) Ay P (x1. A g,(t, ¥2)

The mean value theorem for integrals can be used with equation (5) to show that
©) pdxi,y) + gix2, ¥2) = 0,

where y < y; <y + Ay and x < x; < x + Ax. Letting Ax — 0 and Ay — 0 in
equation (6) results in

(M pdx.y) + gx. ) =0,

which is called the equation of continuity.
The curl of the vector field in equation (1) has magnitude

(8) |curl V(x, y)| =g, y) — pxy

and is an indication of how the field swirls in the vicinity of a point. Imagine that
a “‘fluid element’” at the point (x, ¥) is suddenly frozen and then moves freely in
the fluid. It can be shown that the fluid element will rotate with an angular velocity
given by

(9 7Gx, ») = Ipdx. ¥) = +|curl V(x, y) .

We will consider only fluid flows for which the curl is zero. Such fluid flows
are called jirrotational. This is more precisely characterized by requiring that the
line integral of the tangential component of V(x, y) along any simply closed contour
be identically zero. If we consider the rectangle in Figure 10.47, then the tangential
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component is given by p on the bottom edge, g on the right edge, —p on the top
edge, and —¢g on the left edge. Integrating and setting the resulting circulation
integral equal to zero yields the equation

(10) f gt + Ax D - gl il dr - | ety + Ay) — pl y)) dt = 0.

As before, we apply the mean value theorem and divide through by Ax Ay and obtain
the equation

I f | fl
1 Av X o W Vo = (),
(anh Ay Sy q.(x;, 1) dt s P (t. y2) dr 0

The mean value for integrals can be used with equation (11) to deduce the equation
g.x;, y1) — p(xa, v2) = 0. Letting Ax — 0 and Ay — 0 yields
(12)  q.x, ») — pdx, y) = 0.

Equations (7) and (12) show that the function f(z) = p(x, v) — ig(x, v) satisfies
the Cauchy-Riemann equations and is an analytic function. Let F(z) denote the
antiderivative of f(z). Then

(13)  F(z) = ¢x, ¥) + {lx, ¥)

is called the complex potential of the flow and has the property
(14 F'(2) = ¢.(x. ) — iWx, ¥) = plx, ) + ig(x. ¥) = V(x, y).
Since ¢, = p and ¢, = g, we also have

(15)  grad 0(x. ¥) = p(x. y) + iglx. y) = V(x. y),

s0 G(x, v) is the velocity potential for the flow, and the curves
(16)  o(x, ») = K,

are called equipotentials. The function {(x, y) is called the stream function, and the
curves

7y blx, y) = K;

are called streamlines and describe the paths of the fluid particles. To see this fact,
we can implicitly differentiate y(x, y) = K; and find that the slope of a vector tangent
is given by

ay _ —(ny)
U ™ ey

Using the fact that ¥, = ¢, and equation (18), we find that the tangent vector to the
curve is

(19) T = 0ux. y) = dhulx, y) = plx, y) + iglx, y) = V(x, y).
The salient idea of the preceding discussion is the conclusion that if

(20)  F(2) = O(x, y) + iblx, y)
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Proof From equation (13) we see that Fy(w) is an analytic function. Since
the composition in equation (25) is an analytic function, F5(z) is the complex po-
tential for an ideal fluid flow in D.

We note that the functions
(27)  o(x, ¥) = ®ulx, y), v(x, ¥)) and P(x, v) = P(ulx, y), v(x, y))

are the new velocity potential and stream function, respectively, for the flow in D.
A streamline or natural boundary curve

(28 P,y =K
in the z plane is mapped onto a streamline or natural boundary curve
29 Y¥u v =K

in the w plane by the transformation w = $(z). One method for finding a flow inside
a domain D in the 7 plane is to conformally map D onto a domain G in the w plane
in which the flow is known.

For an ideal fluid with uniform density p the fluid pressure P(x, y) and speed
]V(x, y)] are related by the following special case of Bernoulli’s equation:

P(x, y)

|
(30) + 3 | V(x, )| = constant.

It is of importance to notice that the pressure is greatest when the speed is least.

EXAMPLE 10.22 The complex potential F(z) = (a + ib)z has the velocity
potential and stream function given by

Bl o0, y)=ax — by and $(x,y) = bx + ay,

respectively, and gives rise to the fluid flow defined in the entire complex plane that
has a uniform parallel velocity given by

(32) Vin,y)=F()=a—ib

The streamlines are parallel lines given by the equation &x + ay = constant and are
inclined at an angle oo = —arctan(b/a) as indicated in Figure 10.49.

¥

FIGURE 10.49 A uniform parallel flow.
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The complex potential for a uniform horizontal flow parallel to the slit in the
w plane is given by Fi(w) = Aw, where A is a positive real number and where the
slit lies along the streamline ¥ (u, v) = Ay = 0. The composite function

(40)  Fa) = Fi(S() = A2 + D"

is the complex potential for a fluid flow in the domain D. The streamlines given by
Y(x, v) = cA for the flow in D are obtained by finding the preimage of the streamline
W(u, v) = cA in G given by the parametric equations

@1 v=c, u=1t for —oco <t <oo,

The corresponding streamline in D is found by solving the equation
42y t+ic=(F+ D”

for x and y in terms of ¢. Squaring both sides of equation (42) yields
43) £ —c2— 14 2ct=x>— v+ 2xy

Equating the real and imaginary parts leads to the system of equations
44y x> —y’=F-c>—=1 and xy=ct

Eliminating the parameter 7 in equations (44) results in ¢? = (x* + ¢*)(y* — ¢?), and
we can solve for y in terms of x to obtain

45) 1+ ¢+ x°
5 )= |———
by c? + x°

for streamlines in D. For large values of x this streamline approaches the asymptote
v = c and approximates a horizontal flow, as shown in Figure 10.52.

FIGURE 10.52 Flow around a segment.
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/ﬁ

FIGURE 10.58 Accompanies Exercise 8.

1

FIGURE 10.59 Accompanies Exercise 9.

10. Write a report on fluid flow and how it is related to harmonic and analytic functions.
Include some ideas not mentioned in the text. Resources include bibliographical items
37,46, 91, 98, 124, 141, 145, 158, and 166.

10.8 The Joukowski Airfoil

1
The function J(z) = z + — was studied by the Russian scientist N. E. Joukowski. It

will be shown that the image of a circle passing through z; = 1 and containing the
point z; = —1 is mapped onto a curve that is shaped like the cross section of an
airplane wing. We call this curve the Joukowski airfoil. If the streamlines for a flow
around the circle are known, then their images under the mapping w = J(z) will be
streamlines for a flow around the Joukowski airfoil, as shown in Figure 10.60.
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FIGURE 10.60 Image of a fluid flow under w = J(z} = z + 1/z.

1
The mapping w = J(z) is two-to-one, because J(z) = J(—), for z # 0. The
region |z| > 1 is mapped one-to-one onto the w plane slit along the portion of the
real axis —2 < u < 2. In order to visualize this mapping, we investigate the implicit

form, which is obtained by using the substitutions

2-2z+1 (- 1)

z,3+2z+1__(z+l)2

w—2=z-2+ and

wH2=z+2+

Sy [ 2y | =

= 7
< <

Forming the quotient of these two quantities results in the relationship
w—2 z— 1\

¢)) = .
w+ 2 z+1

The inverse of T(w) = 1
w

-2 2+ 2z
is Sv,(Z) = g

If we use the notation
+ 2 l — 4

v —
<

S = 41
Sp_, and 535
2) w=J2) = S5:(5:(51(2)))-

and S>(z) = 72, then J(z) can be expressed as the composition of S,

. 1 .
It is an easy calculation to show that w = J(z) = z + — maps the four points

z1==—i,o=1l,zz=i,andzg = ~lontow, =0, w, =2, wy =0, and wy = =2,
respectively. However, the composition functions in equation (2) must be consid-
ered in order to visualize the geometry involved. First, the bilinear transformation
Z = 5)(z) maps the region |z| > I onto the right half plane Re(Z) > 0, and the
points z; = —i, z2 = 1, z3 = i, and ¢4 = —1 are mapped onto Z, = —i, Z; = 0,
Zy = i, and Z; = i, respectively. Second, the function W = $,(Z) maps the right
half plane onto the W plane slit along its negative real axis, and the points Z; = —i,
Z, = 0, Zy = ¢, and Z; = jco are mapped onto W, = —1, W, = 0, W; = —1, and
W, = —oo, respectively. Then the bilinear transformation w = S:(W) maps the latter
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line Ly onto the ray Ry inclined at the angle 2. Finally the transformation given
by w = S3(W) maps the ray R, onto the arc of the circle A, that passes through the
points w» = 2 and wy = —2 and intersects the x axis at w» with angle 20y, where

n .. . .
5 < 20y < m. The restriction on the angle oy, and hence 20, is necessary in order

for the arc A, to have a low profile. The arc A lies in the center of the Joukowski
airfoil and is shown in Figure 10.62.

FIGURE 10.62 The images of the circles Cyy and C, under thc composition
mappings for J(z) = S3(S2(S1(z)).

Let b be fixed, 0 < b < I, then the larger circle C, with center given by
¢; = —h + i(1 + h)b on the imaginary axis will pass through the points z; = 1 and
z3 = —1 — 2h and have radius r; = (1 + h)/1 + b°. The circle C, also intersects
the x axis at the point - at the angle ¢ The image of this circle C, under Z = §,(z)
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is the circle K, that is tangent to L at the origin. The function W = §,(Z) maps the
circle K| onto the cardioid H,. Finally, w = S;(W) maps the cardioid H, onto the
Joukowski airfoil A; that passes through the point w; = 2 and surrounds the point
wy = —2, as shown in Figure 10.62. We remark that as an observer traverses C; in
the counterclockwise direction, the image curves XK, and H, will be traversed in a
clockwise direction, but A is traversed in the counterclockwise direction. This keeps
the points 24, Z4, Wy, and w, always to the observer’s left.

Now we are ready to visualize the flow around the Joukowski airfoil. We start
with the fluid flow around a circle that is shown in Figure 10.51. This flow is adjusted
with a linear transformation z* = az + b so that it flows horizontally around the
circle C;, as shown in Figure 10.63. Then the mapping w = J(z*) creates a flow
around the Joukowski airfoil, as Figure 10.64 illustrates.

Flow around the circle.

FIGURE 10.64 The horizontal flow around the Joukowski airfoil A,.

Flow with Circulation

s k
The function F(z) = sz + - + i log =, where s > 0 and £ is real, is the complex
z i

<

potential for a uniform horizontal flow past the unit circle = 1, with circulation

7
<
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strength & and velocity at infinity V., = s. For illustration purposes, we let s = |

and use the substitution a = Py Now the complex potential has the form

)
(3) Fly=z+-+ailogz,

and the corresponding velocity function is
@ Vo =F@=1-(2)*—ai(x)".

The complex potential can be expressed in F = ¢ + iy form:

v |
(5) F(2) = re + —e® + ja(In r + i®)
r

1 1
(r + —) cos B — ab + i[(r - ~>sin 6+ aln r] .
r ¥

The streamlines for the flow are given by § = ¢, where ¢ is a constant:

il

1
(6) P(rcos B, rsin9) = (r - —)sin 0 +alnr=c (streamlines).
4
Setting r = | in equation (6) we get U(cos 0, sin 8) = 0, so that the unit circle is a
natural boundary curve for the flow.
Points where the flow has zero velocity are called stagnation points. They are
found by solving F’(z) = 0, for the function in equation (3) this is

=0.

[T~

Multiplying through by 2 and rearranging terms, this becomes
?+aiz—1=0

Now the quadratic equation is invoked to obtain

—ait ST
2

stagnation point(s).

&

If 0 < |a| < 2. there are two stagnation points on the unit circle |z| = 1. If
a = 2, there is one stagnation point on the unit circle. If |a| > 2, the stagnation
point lies outside the unit circle. We are mostly interested in the case with two
stagnation points. When a = 0, the two stagnation points are z = *1, and this is the
flow that was discussed in Example 10.25. The cases a = 1, a = 3, a = 2, and
a = 2.2 are shown in Figure 10.65.
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Flow with circulation ¢ = 2 Flow with circulation a = 2.2

FIGURE 10.65 Flows past the unit circle with circulation a.

We are now ready to combine the preceding ideas. For illustration purposes,

consider a C, circle with center ¢ = —0.15 + 0.23i that passes through the points
22> = land 2y = —1.3 and has radius ry, = 0.23 ./13/2. The flow with circulation
k = —0.52p (or ¢ = 0.26) around |z] = 1 is mapped by the linear transformation

Z=5(z) = —0.15 + 0.23/ + ryz onto the flow around the circle C; shown in Figure
10.66.
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Flow with circulation.

FIGURE 10.66 Flow with circulation around C,.

367

1
Then the mapping w = J(Z) = Z + 7 is used to map this flow around the Joukowski

airfoil shown in Figure 10.67. This is to be compared with the flows shown in
Figures 10.63 and 10.64. If the second transformation in the composition given by
w = J(2) = S:(52(51(2))) is modified to be S$2(z) = ', then the image of the flow
in Figure 10.66 will be the flow around the modified airfoil in Figure 10.68. The
advantage of this latter airfoil is that the sides of its tailing edge form an angle of
0.15n radians or 27°, which is more realistic than the angle of 0° of the traditional

Joukowski airfoil.

Flow with circulation around
a traditional airfoil.

FIGURE 10.67 Flow with circulation around a traditional Joukowski airfoil.

Flow with circulation around
a moditied airfoil,

—

\

FIGURE 10.68 Flow with circulation around a modified Joukowski airfoil.
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EXERCISES FOR SECTION 10.8

1.
2.

Show that the inverse of the Joukowski transformationis z = w + (w? — 1)12,
Consider the Joukowski transformation is w = z + 1/z.
(a) Show that the circle C, = {|z| = r: r > 1} is mapped onto the ellipse

412 4y |
r+ Urn? (r— Ur?

(b) Show that the ray r > 0, 8 = o is mapped onto a branch of the hyperbola

2 ]

u- V-
rpvinibracavia il X
cos? o sin’ a

Let C, be a circle that passes through the points 1 and —1 and has center ¢y = ia.
(a) Find the equation of the circle C,.

(b) Show that the image of the circle Cy under w = z

7
<

1 is a line Ly that passes
through the origin.

T
(¢) Show that the line L; is inclined at the angle o, = 5 — arctan a.

Show that a line through the origin mapped onto a ray by the mapping w = z°.
Let Ry be a ray through the origin inclined at an angle [3,.

2+ 2z
(a) Show that the image of the ray R, under w = % is an arc A, of a circle that
-z

passes through 2 and -2.
(b) Show that the arc Ag is inclined at the angle [3o.
Show that a circle passing through the origin is mapped onto a cardioid by w = z°,
Show that the cusp in the cardioid forms an angle of 0°.
2+ 2z

<~

Let H, be a cardioid whose cusp is at the origin. The image of H, under w =

will be a Joukowski airfoil. Show that trailing edge forms an angle of 0°.

Consider the modified Joukowski airfoil when W = S$5(Z) = Z'°%5 is used to map the Z
plane onto the W plane. Use Figure 10.69 and discuss why the angle of the trailing edge
of this modified Joukowski airfoil A, forms an angle of 0.15x radians. Hint: The image
of the circle Cy is the line Ly, then two rays Ry ; and Ry > and then two arcs Ay, and Ag >
in the respective Z, W, and w planes. The image of the circle C, is the circle K, then
the *‘cardioid like™’ curve H), then the modified Joukowski airfoil A,.
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"~

w=J(z)

FIGURE 10.69 The images of the circles Cy and C, under the modified
Joukowski transformation J(z) = S3(52(5,(2))).

9. Write a report on Joukowski transformation. Include ideas and examples that are not
mentioned in the text. Resources include bibliographical items 37, 46, 91, 98, 124, 141,

145, 158, and 166.

10.9 The Schwarz-Christoffel Transformation

To proceed further, we must review the rotational effect of a conformal mapping
w = f(z) at a point z,. If the contour C has the parameterization z(f) = x(r) + iy(1),
then a vector 7 tangent to C at the point 2o is

(D 7=2'(ry) = X' (1) + iv'(t0).
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The image of C is a contour K given by w = u(x(#), ¥(1)) + iv(x(f), ¥(1)). and a vector
T tangent to K at the point wy = f(zg) is

(2) T =wiz =1zt

If the angle of inclination of 7 is § = arg z'(7y). then the angle of inclination of T
is
(3) arg T = arg f"(z0)z' () = arg f'(z0) + P.
Hence the angle of inclination of the tangent T 1o C at gz, is rotated through the angle
arg [ f’(zy)] to obtain the angle of inclination of the tangent T to X at the point wy.
Many applications involving conformal mappings require the construction of
a one-to-one conformal mapping from the upper half plane Im(z) > 0 onto a domain
G in the w plane where the boundary consists of straight line segments. Let us con-
sider the case where G is the interior of a polygon P with vertices wy, wa, ..., w,
specified in the positive (counterclockwise) sense. We want to find a function
w = f(z) with the property

@ wi=fxy for k=12 ... ,n—land
W, = f(ao), where X] < X2 < < ROES| < oo,

Two German mathematicians Herman Amandus Schwarz (1843-1921) and Elwin
Bruno Christoffel (1829-1900) independently discovered a method for finding f.
and that is our next theorem.

Theorem 10.6 (Schwarz-Christoffel) Les P be a polvgon in the w plane
with vertices wy, wa, . . ., w, and exterior angles o, where —1t < o; < T,
as shown in Figure 10.70. There exists a one-to-one conformal mapping
w = f(2) from the upper half plane Im(z) > 0 onto G that satisfies the boundary
conditions (4). The derivative f'(2) is

(5) F1D) = A = 1) G = x) (= x) e

and the function f can be expressed as an indefinite integral

6) fla=B+A J(Z — X)W = x) T X)) e dD

where A and B are suitably chosen constants. Two of the points {x;} may be
chosen arbitrarily, and the constants A and B determine the size and position

of P.

Proof The proof relies on finding how much the tangent
7 w=1+0i

(which always points to the right) at the point (x, 0) must be rotated by the mapping
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(a) A source at the origin. (b) A sink at the origin.

FIGURE 10.93 Sources and sinks for an ideal fluid.

Source: A Charged Line

In the case of electrostatics a source will correspond to a uniformly charged line
perpendicular to the z plane at the point zy. If the line L is located at zo = 0 and

carries a charge density ofg coulombs per unit length, then the magnitude electric

4q

N

(3) E@y = =

and the complex potential is

4) F(z)= —qglogz and E(x,y) = —F'(2).

field is |E(x, y)| = , hence E is given by

»

IS (NN

A sink for electrostatics is a negatively charged line perpendicular to the z plane.

The electric field for electrostatic problems corresponds to the velocity field for fluid

flow problems, except that their corresponding potentials differ by a sign change.
To establish equation (3), start with Coulomb’s law, which states that two

CqQ

particles with charges ¢ and Q exert a force on one another with magnitude —/—,
2

where r is the distance between particles and C is a constant that depends on the
scientific units. For simplicity we assume that C = 1 and the test particle at the
point z has charge 0 = 1.
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Ah
The contribution AE, induced by the element of charge qT along the segment
of length Ah situated at a height h above the plane has magnitude |AE, | given by

(g/2)Ah
R

4B =

It has the same magnitude as AE, induced by the element (gAh)/2 located a distance
—h below the plane. From the vertical symmetry involved, their sum AE; + AE-
lies parallel to the plane along the ray from the origin, as shown in Figure 10.94.

Y
.

(0.0. /) I D

(0,0, -h) *'(q/Z)Ah

FIGURE 10.94 Contributions to E from the elements of charge (¢/2) Ah situated
at (0. 0, ), above and below the z plane.

By the principal of superposition we add all contributions from the elements
of charge along L to obtain E = X AE,. Using the vertical symmetry, it is evident
that E lies parallel to the complex plane along the ray from the origin through the
point z. Hence the magnitude of E is the sum of all components |AE | cos 7 that are
parallel to the complex plane, where ¢ is the angle between AE and the plane. Letting
Ah — 0 in this summation process produces the definite integral

- = (g/2
(5) IE(J(, V)l = J_ |AEI cos tdh = f —(Q/u)COS ! dh.

o rZ + h.‘z
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Next use the change of variable # = rtan t and dh = r sec’t df and the trigonometric

2

e r
identity sec’t =

— to obtain the equivalent integral:

/2 72
(g/2)cos tr* + h* J"
6 E(x, y =J' TS ==
6) |E@, »] I . —dt = cos t di =
Multiplying this magmtude = by the unit vector — establishes formula (3). If

<

g > 0 the field is directed away from zo = 0 and if g < 0 it is directed toward
zo = 0. An electric field located at zp # 0 is given by

gz —20) _ q

-,_wol 3_

(7)) Elx,y) =

al

()

and the corresponding complex potential is

(8) F(z) = —qlog(z — zp).

EXAMPLE 10.30 (Source and Sink of Equal Strength)

Let a source and sink of unit strength be located at the points +1 and —1, respec-
tively. The complex potential for a fluid flowing from the source at +1 to the sink
at —1lis

z—1
9 F@) = loglz = 1) ~ log(z + 1) = log(~ + 1)'

The velocity potential and stream function are

‘ and ¥ilx, v)—arg( — 1)

(10)  ¢x.y)=1In - ]

z+ 1

respectively. Solving for the streamline $(x, y) = ¢, we start with

(an -1 X+ ¥y =142y . ' 2y
c=ar = ar, = arctan | ————
o+ & (r+ 12+ 24—

and obtain the equation (tan ¢)(x* + y°> —1) = 2y. A straightforward calculation
shows that points on the streamline must satisfy the equation

(12) x* 4 (y — cotc)* = 1 + cot’c,

which is easily recognized as the equation of a circle with center at (0, cot ¢) that
passes through the points (£1, 0). Several streamlines are indicated in Figure
10.95(a).
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&

(a) Source and sink of equal strength.

1

(b) Two sources of equal strength.

FIGURE 10.95 Fields depicting electrical strength.

EXAMPLE 10.31 (Two Sources of Equal Strength) Let two
sources of unit strength be located at the points +1. The resulting complex potential
for a fluid flow is

(13) F(z) =log(z — 1) + log(z + 1) = log(z* — D).
The velocity potential and stream function are
(14) o(x,y) =In

respectively. Solving for the streamline yi(x, v) = ¢, we start with

2 - 1] and W, y) = arg@® - 1),

. - . __
(15) ¢ = arg(z’ — 1) = argx* — »* — 1 + i2xy) = arctan| — p—
x5 -y =
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and obtain the equation x2 + 2xy col ¢ — y* = 1. If we express this in the form
[x — ytan(c/2)][x + v cot(c/2)] = 1 or

(16) c . c . C + c . C ¢ sinc
xcos——vsin=}|lxsin-+ ycos= ] =sin=cos - =
2 2 2 2 2 2 2
and use the rotation of axes
(17 x* —C o ysin— and y* in —< + —¢
x* = xcos — + ysin— an = —xsin— + y cos —,
2 YT Y 2 Y

then the streamlines must satisfy the equation x*y* = (sin ¢)/2 and are easily rec-
ognized to be rectangular hyperbolas with centers at the origin that pass through the
points 1. Several streamlines are indicated in Figure 10.95(b).

Let an ideal fluid flow in a domain in the z plane be effected by a source
located at the point zp. Then the flow at points z, which lie in a small neighborhood
of the point zp, is approximated by that of a source with complex potential

(18) log(z — zo) + constant.

If w = 8(z) 1s a conformal mapping and wy = S(zp), then S(z) has a nonzero derivative
at zg, and

(9 w—wy =(z — 0[S (z0) + N()]
where N(z) — 0 as z — z,. Taking logarithms yields
(20)  log(w — wo) = log(z = z0) + Log[S'(zp) + (2].

Since S$'(zp) # 0, the term [Log S'(zp) + mM(z)] approaches the constant value
Log[S'(z0)] as z — zo. Since log(z — zp) is the complex potential for a source located
at the point zy, we see that the image of a source under a conformal mapping is a
source.

The technique of conformal mapping can be used to determine the fluid flow
in a domain D in the z plane that 1s produced by sources and sinks. If a conformal
mapping w = 5(z) can be constructed so that the image of sources, sinks, and
boundary curves for the flow in D are mapped onto sources, sinks, and boundary
curves in a domain G where the complex potential is known to be F,(w), then the
complex potential in D is given by Fx(z) = F(S(2)).

EXAMPLE 10.32 Suppose that the lines x = * n/2 are considered as walls of
a containing vessel for a fluid flow produced by a single source of unit strength
located at the origin. The conformal mapping w = S(z) = sin z maps the infinite
strip bounded by the lines x = * ®/2 onto the w plane slit along the boundary rays
























11

Fourier Series and the
Laplace Transform

11.1 Fourier Series

In this chapter we show how Fourier series, the Fourier transform, and the Laplace
transform are related to the study of complex analysis. We develop the Fourier series
representation of a real-valued function U(t) of the real variable . Complex Fourier
series and Fourier transforms are then discussed. Finally, we develop the Laplace
transform and the complex variable technique for finding its inverse. This chapter
focuses on applying these ideas to solving problems involving real-valued functions,
so many of the theorems throughout are stated without proof.
Let U(#) be a real-valued function that is periodic with period 2n, that is,

(hy U@+ 2m)=U@) foralle

One such functionis s = U(?) = sin(t — w/2) + 0.7 cos(2t — n — 1/4) + 1.7,
and its graph is obtained by repeating the portion of the graph in any interval of
length 2m, as shown in Figure 11.1.

-2n -n n 2n 3n an

FIGURE 11.1 A function U with period 27.

Familiar examples of real functions that have period 2z are sin nt and cos nt,
where #n is an integer. This raises the question whether any periodic function can be
represented by a sum of terms involving a,cos nt and b,sin nt, where a, and b, are
real constants. As we shall soon see, the answer to this question is often yes.

397
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Definition 11.1 (Piecewise Continuous) The function U is piecewise
continuous on the closed interval |a, b], if there exists values ty. t,, . . . . 1,
witha =ty <t <-..<t, = bsuchthat Uis continuous in each of the open
intervals t;, | <t<rnk=1,2,.. ., n)and has left- and right-hand limits

. L

at the values t, (k = 0,1, . . ., n).

We use the symbols U(a~) and U(a ') for the left- and right-hand limits, respectively,

of a function U(r) as t approaches the point a.
The graph of a piecewise continuous function is illustrated in Figure 11.2

where the function U(1) s

r 2
g r—l +1 when | < <2,
3 2 4
g—(r—z)2 when 2 <t < 3,
vin =<~ P13
1 + 4' when 3 < r < 4,
6
- —(t—=5)» when 4 <t < 6.
\ §
The left- and right-hand limits at t, = 2, t; = 3, and > = 4 are easy to determine:
Atr=2,wehave U2) =+ and UQR*") =3
Atr=3, wehave U3 ) =< and U3*) =1
Atr=4, wehave Ud4") =2 and U@ =4

0t T ; - 5 v ;
1 2 3 4 5 6

FIGURE 11.2 A piecewise continuous function {/ over the interval [1, 6].

Definition 11.2 (Fourier Series) If U(1) is periodic with period 21 and
is piecewise continuous on [—T, &), then the Fourier series S(f) for U(s) is

@ S =2+ Y (acos jt + bysin jo),
= ]

& j=

where the coefficients a; and b; are given by the so-called Euler’s formulae:

) I
3 a= ;f Ult) cos jtdt forj=0,1, ...
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and

1 e
H b= EJ Ul sinjtdr forj=1,2.. ...

l a . . .
The factor 5 in the constant term 70 on the right side of equation (2) has been

<

introduced for convenience so that ay could be obtained from the general formula
in equation (3) by setting j = 0. The reasons for this will be explained shortly. The
next result discusses convergence of the Fourier series.

Theorem 11.1 (Fourier Expansion) Assume that S(t) is the Fourier
series for U(t). If U'(t) is piecewise continuous on [—n, Tt], then S(t) is con-
vergent for all t € |—mn, n]. The relation S{t) = U(t) holds for all t € [—n, 7]
where U(t) is continuous. If t = a is a point of discontinuity of U, then

Ula™) + Ular)
a2

“

S(a) =

where Ula~) and U(a*) denote the left- and right-hand limits, respectively.
With this understanding, we have the Fourier expansion:

(5 U = % + Z {a,cos jt + b;sin jt).
fe

~

t
EXAMPLE 11.1 The function U(1) = 5 for 1 € (—m, m), extended periodically

by the equation U(r + 2m) = U{r), has the Fourier series expansion

_1'j+| ] it
Vo = S (I singt
i=1 J

Solution  Using Euler’s formulae (3) and integration by parts, we obtain

L[« rsinjr  cosjt i
6 =~J' —cosjrdt = —— + —— =0 forj=12, ...
© =) gesirdt = o L /
and
1 (™« ~tcosjt sinjt |~
b,-=—f -sinjtdt=%+——-,—{—;
| U 2nj 27 ) x
—cosjm (—=1)y+t
= ,J =( - forj=12,....
J

The coefficient g 1s computed by the calculation

"=

—-n

o = 27 T 4an

TTJS-n
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Using the results of equations (6) and (7) in equation (2) produces the required
solution. The graphs of U(#) and the first three partial sums §,(f) = sin t, So(f) =
sin 2t sin 2¢ N sin 3¢

sint — ,and S3(1) = sint — 5 are shown in Figure 11.3.

5

s = Ult)
/2 A

-7 /2
. 1 Y 1 > !
/2 hid

-/2 <

FIGURE 11.3 The function U(t) = #/2, and the approximations S,(r), $2(#), and
S1(2).

We now state some general properties of Fourier series that are useful for
calculating the coefficients. The proofs are left for the reader.

Theorem 11.2 If U(r) and V(r) have Fourier series representations, then
their sum W(t) = U(t) + V(1) has a Fourier series representation, and the
Fourier coefficients of W are obtained by adding the corresponding coeffi-
cients of U and V.

Theorem 11.3 (Fourier Cosine Series) Assume that U(x) is an even func-
tion. If U(f) has period 21t and U(t) and U'(t) are piecewise continuous, then

the Fourier series for U(t) involves only the cosine terms (i.e., b; = 0 for all j):

8 Up = % + E a; cos jt, where
=1
, 2" ) .
O a= ;J; Ut cosjtdt forj=20,1,.. ..

Theorem 11.4 (Fourier Sine Series) Assume that U(t) is an odd func-
tion. If U(t) has period 21 and if U(¢t) and U'(x) are piecewise continuous,
then the Fourier series for U(t) involves only sine terms (i.e., a, = 0 for
all j):

(10 U = 2 b, sin jt. where
=

2 e
(an b,=;'LU(t)sinjtdt forj=12....
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Theorem 11.5 (Termwise Integration) If U has a Fourier series rep-
resentation given in equation (5), then the integral of U has a Fourier series
representation which can be obtained by termwise integration of the Fourier
Series of U, that is,
! 5 | [a; + ao(—=1)/*Isin jr b cos jt
(12) JO U(T)d’r=2[[ i a2 D7 gt by ’],.
J J

i=1

R f
where we have used the expansion ag 5= 2
/=1 J

(l[)(— l)j‘ Isin jf .
——in
Example 11.1.

Theorem 11.6 (Termwise Differentiation) [fU'(r) has a Fourier series
representation, and U(t) is given by equation (5), then

(13) U'(1) = 2, (jb,cos jt — jasin jt).
=1

EXAMPLE 11.2 The function U(r) = || for 1 € (—n, ), extended periodi-
cally by the cquation U(f + 2m) = U(t), has the Fourier series representation

n 4G cos[(2f — D]
U = [ == -2 0
2 miaa (2j— 1)
Solution The function U(#) is an even function, hence we can use Theorem
11.3 to conclude that b, = 0 for all », and

2

2" 2tsinjt 2 cosjt|x
(14) ‘?/=‘1Efntcosjtdz= L J

T i’ o
2eosjm — 2  2(=1) — 2

3

i -

forj=12,....
The coefficient gy is computed by the calculation:

= m.
0

2 n 12
(15) an=—ert=—
nJo i

Using the results of equations (14) and (15) and Theorem 11.3 produces the required
solution.

The following intuitive proof will justify the Euler formulae given in equations
(3) and (4). To determine aq we integrate both U(f) and the Fourier series represen-
tation in equation (2) from —m to n, which results in

(16) f U dr = f [%—Q + > {a;cos jt + b;sin jt):| dt.
-n -n j=1
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We are allowed to perform integration term by term, and we obtain

g ap (" -
(17) f Ut dr = ff I dr + ,2. 4

cos jrdt + b,f sin jit di.
-n =1 e
The value of the first integral on the right side of equation (17) is 27 and all
the other integrals are zero. Hence we obtain the desired result:

] n
(18) ap = —j UGty di.
Tt/)-n

To determine a,,. we let m (sn > 1) denote a fixed integer and multiply both
U(t) and the Fourier series representation in equation (2) by the term cos mt, and
then we integrate and obtain

T

n a n o
(19) f U(t) cos mr dt = 70 j cos mt dr + z a cos mt cos jJt dt
-n L Jom j=1 -n

o n
+ E b; J cos mt sin jt dt.
i=1 -

The value of the first term on the right side of equation (19) is easily seen to be
Zero:

n

dy sin mt
_ = 0.

(20) @j cos mt dr =
2 J-n 2m

'

-7

The value of the term involving cos mt cos jt is found by using the trigonometric
identity:

cos mt cos jt = %{cos[('m + Dt} + cos[(m — jil}.
Calculation reveals that if m # j (and m > 0), then
2n g ﬁ[n cos mt cos jt dt = 2’;1 {fn cos[(m + )] dt
+ f"n cos|(m — ji] dl‘} = 0.
When m = j, the value of the integral becomes:

n
22) a, f cosimt dt = na,,.
-

The value of the term on the right side of equation (19) involving the integrand
cos m¢ sin jt is found by using the trigonometric identity

cos mt sin jt = %{sin[(m + jHt] + sin[(m — i)},
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and for all values of m and n, we obtain

n

T bfn . T .
(23) b J: cos mt sin jt dt = ? {f sin[(m + j)t] dt + f sin[(m — j)1] dt} =0.

Therefore, we can use the results of equations (20)—(23) in equation (19) to obtain
j Uiycosmtdt = ma,, form=20,1,.. .,

and equation (3) is established. We leave it as an exercise to establish Euler’s for-

mula for the coefficients {b,}. A complete discussion of the details of the proof of

Theorem 11.1 can be found in some advanced texts. See for instance, John W,

Dettman, Chapter 8 in Applied Complex Variables, The Macmillan Company, New
York, 1965.

EXERCISES FOR SECTION 11.1

For Exercises 1-2 and 6-11, find the Fourier series representation.

. 1 for0<:<mn .
(f) = ’
1. U(r) {—I for —m < < 0. See Figure 11.4.
5
s =Ult)
11

-7 ~n/2
1

T I 4
/2 n

[ -1

FIGURE 11.4 The graph of U(s) for Exercise 1.

n
E—t forO0<:t=<mnm,
2. V() =4, See Figure 11.5.
§+I for —n <1 <0.
5
y
™2
s = V()
-n/2 2
T T t
~T 4
—7/2 A

FIGURE 11.5 The graph of V(1) for Exercise 2.
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3. For Exercises 1 and 2. verify that U(#) = —V'(t) by termwise differentiation of the
Fourier series representation for V(#).

T pid = (=1)-!
4. For Exercise 1, sett = E and conclude that — = E ( - ) .
5. For Exercise 2, set t = 0 and conclude that i >
L
-1 for—-<r<m,
or 2 <<

6. Uy ={ 1 for123<t<g, See Figure 11.6.

o
-1 for -m<i<—.
2

s=Uft)

- R

-11

FIGURE 11.6 The graph of U(t) for Exercise 6.

. T
Al § for;<t<1c,
-7 3 )
7. Uy = {1t for——2—<t<-_£—, See Figure 11.7.
) -7
-T -1 fOf—TC<t<—27.

2 ] s = Ult)

-n ~T/2

/2 b4

F—n/2

FIGURE 11.7 The graph of U(s) for Exercise 7.



1.1

8. U(y) is given in Figure 11.8,

2 s = Uft)

f T T } !
- —n/2 /2 n

FIGURE 11.8 The graph of U(r) for Exercise 8.

n
1 for£<r<n,

-7 n
9. U = 0 forT <r<z. See Figure 11.9.
-7
-1 for—n<t<T.
N
s = U(t)
] —
- -n/2
1 . 1 T 4
w2 n
o1

FIGURE 11.9 The graph of U(7) for Exercise 9.

10. V(», given in Figure 11.10.

/2

s = V(1)

T v T T t
-n ~T/2 n/2 n

FIGURE 11.10 The graph of V{(r) for Exercise 10.

Fourier Series
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(3) u(rcosB,rsin@) = _‘32_0 + z (w; ricos j8 + b; r/sin j8),
i=1

where x + iy = re denotes a complex number in the closed disk =1

7
Z

It is easy to see that the series representation in equation (3) for u takes on
the prescribed boundary values in equation (1) at points on the unit circle [z = 1.
Since each term r"cos jO and r”sin j8 in series (3) is harmonic, it is reasonable to
conclude that the infinite series representing # will also be harmonic. The proof
follows after Theorem 11.8.

The following result gives an integral representation for a function u(x, y) that
is harmonic in a domain containing the closed unit disk. The result is the analog to
Poisson’s integral formula for the upper half plane.

Theorem 11.8 (Poisson Integral Formula for the Unit Disk) Let
u(x, y) be a function that is harmonic in a simply connected domain that
contains the closed unit disk |z| < 1. If u(x, y) takes on the boundary values

u(cos 0, sin 0) = U(B) for—m <0 <m,

then u has the integral representation

] . _1f (1 = rH U dt
(4) wul(rcos9, rsin@) = ) T 5 72 = 27 costr — )

that is valid for |z| < 1.

Proof Since u(x, y) is harmonic in the simply connected domain, there
exists a conjugate harmonic function v(x, y) such that f(z) = u(x, y) + iv(x, y) is
analytic. Let C denote the contour consisting of the unit circle; then Cauchy’s in-
tegral formula
I [ f§)dt
5 7)== | ——
ORFORS =l R
expresses the value of f(z) at any point z inside C in terms of the values of f(£) at
points £ that lie on the circle C.

If we set z* = (Z)~' then z* lies outside the unit circle C and the Cauchy-
Goursat theorem establishes the equation
L[ fE)dE

(6) O=2—m, CE— 2%

Subtracting equation (6) from equation (5) and using the parameterization £ = ¢”,

, L : o
d& = ie" dt and the substitutions z = re®, z* = — ¢" gives
,

(e il _ o |
7 fle = g j_" el — ret® ot — 1 i fe") dt.

4
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The expression inside the parentheses on the right side of equation (7) can be written

(8) eil f” 1 rei(l—f))
e’ — re® P PR B ref®-n 1 — reiti-®
el — —e
-

_ ] — 72
"1 4 72 = 2rcos(r — 8)

and it follows that

gk [ U
9 f@= =1+ r2—2rcos(t — 0)°

Since u(x, v) is the real part of f(z) and U(f) is the real part of f(e™), we can
equate the real parts in equation (9) to obtain equation (4), and proof Theorem 11.8
1s complete.

We now turn our attention to the proof Theorem 11.7. The real-valued function

1 —r2
I +r2— 2rcos(t — 0)

(1) P(r,t—0)=

is known as the Poisson kernel. Expanding the left side of equation (8) in a geometric
series gives

1 rei(!—l?)

1 - ,.eu'n—r) ] — re”’“”

(11) PG, t - 08)

I

= Z rneimﬂ—l) + 2 rnein(rAH)
n=0 n=1

1+ 2 Fr[einv-n 4 gmti-0] = ] 4 2 z rrcos[n(® ~ 1)
n=1 n=1

=1+ 2 2 ri(cos nf cos nt + sin a8 sin n)

n=1

il

1+ 2 z ricos nb cos nt + 2 Z rsin n8 sin nt.

n=1} n=1]

We now use the result of equation (11) in equation (4) to obtain

il

) m
u(r cos 9, r sin ) ;t J P(r,t — ) U() dt

1 jn ] o
= —_— + — n ’
) U dt i ’; r"cos nb cos nt U(h) dt
+ ; Z rsin n® sin nr U(1) dt
=T 4=

——LJ'K um 1t+i "cos OlJ’n t Uy dt
=om ) U n=1r os n = _ cosn

- ' 1 [v
+ Z risin nG — f sin nt U(t) dt
n=1 mTJ-r
dg ad s
==+ 2, a,r’cos n@ +
i

b, r’sin n®,
2 1= i

H=
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_ 1 for0 <0 <m,
1. U®) = {—1 for —m < 8 < 0.
E—B for0 <06 < m,
2. U) =
3 + 0 for—m<0<0  SeeFigure 11.14.
5
>}
TZA\ 5= U
-t -2 72 /,, 7
' e
Vil 7%
19 //ﬁ///
-n/2

FIGURE 11.14 Approximations for Us(8) and us(r cos 8, r sin 0) in Exercise 2.

T
(—1 for5<9<n,

-7 b
. ={ 1 for —<@<=,
3. U or 2 2

-7
-1 for —7t<9<7.

\

n
T—0 forzsesn,

-n 4
4. U®) =<¢0 for — <08 <—,

(6) or = >
-7
-n—0 for —w<O<—,
\ 2

r n
n—8 forESBSn,

-n n
for — =06 < —,

T
UG =<=
5. Ub) =13 > >

-T
Ln+9 for —n<9<T. See Figure 11.15.
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(0 for T<hsn
2
_ n
T8 fro<p<l.
2 2
7. U@ ={ | -
—ee for — = 0 <0
2 2
-7
KO for ——J'l:<9<7,
n
( 0 for ;”<9<na
i
—1 f0r0<9<;y
8. U®) = ¢ —n -
] for — <0 <O,
2
fi <9<r'7~I
\ 0 for —= 5

9. Write a report on the Dirichlet problem and include some applications. Resources in-
clude bibliographical items 70, 71, 76, 77, 85, 98, 135, and 138.
10. Look up the article on the Poisson integral formula and discuss what you found. Use
bibliographical item 115,

11.3 Vibrations in Mechanical Systems

Consider a spring that resists compression as well as extension, that is suspended
vertically from a fixed support, and a body of mass m that is attached at the lower
end of the spring. We make the assumption that the mass m is much larger than the
mass of the spring so that we can neglect the mass of the spring. If there is no motion
then the system is in static equilibrium, as illustrated in Figure 11.17(a). If the mass
is pulled down further and released, then it will undergo an oscillatory motion.

Suppose there is no friction to slow down the motion of the mass, then we say
that the system is undamped. We will determine the motion of this mechanical
system by considering the forces acting on the mass during the motion. This will
lead to a differential equation relating the displacement as a function of time. The
most obvious force is that of gravitational attraction acting on the mass m and is
given by

Yy F,=mg,

where g is the acceleration of gravity. The next force to be considered is the spring
force acting on the mass and is directed upward if the spring is stretched and down-
ward if it is compressed. It obeys Hooke’s law

(2) Fp=ks,

where s is the amount the spring is stretched when 5 > 0 and is the amount it is
compressed when 5 < 0,
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When the system is in static equilibrium and the spring is stretched by the
amount s, the resultant of the spring force and the gravitational force is zero, which
is expressed by the equation

(3) mg ~ ksp = 0.

Let s = U(r) denote the displacement from static equilibrium with the positive s
direction pointed downward as indicated in Figure 11.17(b).
The spring force can be written as

Fr = —k[so + U)] = —kso — kU1,
and the resultant force Fp is

(4) FR = F] + F: =mg — kS() — kU(f) = _l\’U(f)

Fy= ~ksp Fy = —ksy—kU(1)
Fl =mg s =Ult)
FI =mg

(a) System in static equilibrium. (b} System in motion.

FIGURE 11.17 The spring mass system.

The differential equation for motion is obtained by using Newton’s second
law, which states that the resultant of the forces acting on the mass at any instant
satisfies
(5) Fr= ma.

Since the distance from equilibrium at time r is measured by U(r), the accel-
eration g is given by @ = U"(1), and using equations (4) and (5) we obtain

(6) Fr= —kU(r) = mU"(1).

Hence the undamped mechanical system is governed by the linear differential
equation

(7Y mU"(H + kU@ = 0.
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The general solution to equation (7) is known to be

k
(8) U = A cos wr + Bsinwt, where w = \/:.
nt

Damped System

It we consider [rictional forces that slow down the motion of the mass, then we say
that the system is damped. This is visualized by connecting a dashpot to the mass,
as indicated in Figure 11.18. For small velocities it is assumed that the frictional
force F; is proportional to the velocity, that is,

9 Fy=—-cU'®.

The damping constant ¢ must be positive, for if U'(#) >> 0, then the mass is moving

downward and hence £3 must point upward, which requires that F; is negative. The
resultant of the three forces acting on the mass is given by

(1) F, + F> 4 Fi= kU@ — cU'(1) = mU"(t) = Fg.
Hence the damped mechanical system is governed by the differential equation

(1 mU"() + U () + kU@ = 0.

k Spring
m Mass
c Dashpot

FIGURE 11.18 The spring mass dashpot system.

Forced Vibrations

The vibrations discussed earlier are called free vibrations because all the forces that
affect the motion of the system are internal to the system. We extend our analysis
to cover the case in which an external force F; = F(z) acts on the mass, see Figure
11.19. Such a force might occur from vibrations of the support to which the top of
the spring is attached, or from the effect of a magnetic field on a mass made of iron.
As before, we sum the forces Fy, Fa, F3, and F, and set this equal to the resultant
force Fy and obtain

(12) F] + F: + F; + F4 = FR = _Kl/(f) - ('l]v(f) + F(f) = mU"(t).
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Therefore, the forced motion of the mechanical system satisfies the nonhomoge-
neous linear differential equation

(13) mU"(ty + cU'(1) + kUt = F(1).

The function F(t) is called the input or driving force and the solution U(t) is called
the output or response. Of particular interest are periodic inputs F(7) that can be
represented by Fourier series.

Fz = --1\'507.1(U(f)

F3 =-cU'y)

External force. Damping force.

FI =mg

FIGURE 11.19 The dashpot system with an external force.

For damped mechanical systems that are driven by a periodic input F(z), the
general solution involves a fransient part that vanishes as t — +oo, and a steady
state part that is periodic. The transient part of the solution U,(t) is found by solving
the homogeneous differential equation

14y mUD + cUn) + kUi = 0.

Equation (14) leads to the characteristic equation mA? + ¢A + k = 0, which
aes o
—ct Jc? — dmk ) ..
has roots A = V2 . The coefficients m, ¢, and k are all positive, and
m
there are three cases to consider.
If ¢ — 4mk > (), the roots are real and distinct, and since /@ — 4mk < c, it
follows that the roots A and A, are negative real numbers. Thus, for this case, we

have

lim Uyt) = lim (A)e*’ + Ae*?) = 0.

f— +oo f—+o0

If the roots are real and equal, then A; = A, = A\, where X is a negative real number.
Again, for this case we find that

lim Uy = lim (Ale"’ + Az[@'\’) = 0.

15 4o 13 4o
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If the roots are complex, then A = —a. = Bi, where o and B are positive real numbers,
and it follows that
lim Uy = lim (Aje~“cos Bt + Ae~¥sin Br) = 0.

f—+oc 1=+

In all three cases, we see that the homogeneous solution U,(¢) decays to O as
t = +oo,

The steady state solution U,(#) can be obtained by representing U,(¢) by its
Fourier series and substituting U(f), U,(#), and U,(¢) into the nonhomogeneous
differential equation and solving the resulting system for the Fourier coefficients of
U,(t). The general solution to equation (13) is then given by

U(t) = Ulz(t) + Up(t)-

EXAMPLE 11.4 Find the general solution to U"(s) + 2U’(t) + U(t) = F(1),

= s[(2n — 1)t
where F(f) is given by the Fourier series F(f) = z %—n—l)}l—]
n=1 -

Solution First we solve Uj(t) + 2UL(#) + U,(#) = 0 for the transient solu-
tion. The characteristic equation is A> + 2XA + 1 = 0, which has a double root
A = —1. Hence

(]/,(t) = A]f_’ + Az[{’_’.
The steady state solution is obtained by assuming that U,(¢) has the Fourier series

representation

a ad - .
Uyt) = ?O +Y a,cos nt+ Y b,sin nt,
n=1

n=1l

and that U,(#) and U} (7) can be obtained by termwise differentiation:

2U,(n =2 Y, nb,cos nt — 2y na,sin nt, and
n=1 n=1

Uy(t) = =3 n*a,cos nt =y, n’b,sin nt.

n=1 n=1

Substituting these expansions into the differential equation results in

F(t) = a_zo + z ((1 — n®a, + 2nb,] cos nt
n=1

+ > [-2na, + (1 = n?)b,] sin nr.

n=1

Equating the coefficients with the given series for F(r), we find that %0 = 0, and
that

l when # is odd,
(1 — nda, + 2nb, = 02
0 when nis even,
—2na, + (1 — n®b, =0 forall n.
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Solving this linear system for a, and b,, we find that

{ 1 —n for n odd,

ni(1 + n?)?

a’l =
0 for n even,
2n for n odd,
bn = Ilz(l + n2)3
0 for n even.

And the general solution is given by

oA . < [1 = (2n = 1] cos[(2n = 1)i]
Ult) = Ae™' + Aste' + 2} T~ T+ n = P

S 2(2n — Dsin[(2n — 1))
A @no— 121+ 2n — 12

417

EXERCISES FOR SECTION 11.3

For the exercises, use the results of Section 11.1.

1. Find the general solution to U"(t) + 3U'(1) + U(t) = F(1).

= (=1t _
@ F(n = = (b) F( = (—1y'cos[(2n — 1)1]
2 n= 2n -1

(¢) F(2)is shown in Figure 11.20.

N n
n—1 for - <t <m,
2
Fay = {1 for — < t< X
= or — -,
2 2

-7
-n—t fOI'_n<t<7

Hint: F(t) = %i (=1 sinl@ = A}
=

(2j — 1Y
s
w2 ] s=F(t)
- -n/2
A 1 T t
/2 n
F—m/2

FIGURE 11.20 The graph of F(r) for Exercise 1 pari c.
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2. Find the general solution to 2U"(¢) + 2U' (1) + U(n) = F(1),
) t ) = smf[(2n — 1]
(a) F( =3 (b) Fy = 3, Snl2n = 1
2 =1 2n — 1
(c) F(r)is shown in Figure 11.21.

. n 2 < cos[(2f— 1))
Hint: F) = —+ — ) —————
int: (O =g + 22, 2j— 17°

4 & ocos(2(2) — 1))
n 2325 — 1)
where a4, = 0 for all n.

ni2

s = F(t}

T — Y t

\-
-n -7/2 /2 T

FIGURE 11.21 The graph of F(#) for Exercise 2 part c.

11.4 The Fourier Transform

Let U(#) be a real-valued function with period 2 which is piecewise continuous
such that U'(#) also exists and is piecewise continuous. Then U(t) has the complex
Fourier series representation

(1) U@®= > cue™ where

N=—ovo

1 )
2 ¢, = —f Ue~" dt  for all n.
2w J-n

The coefficients {c,} are complex numbers. Previously, we expressed U(?) as a real
trigonomeltric series:

3y Um = %0 + 2 (a,cos nt + b,sin nt).
n=1

Hence, a relationship between the coefficients is

4y an=c,tcy forn=0,1,. .., and
b,=ic,—c_,) forn=1,2,....
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These relations are easy to establish. We start by writing

Co + Z C”einl + z C__”e*ml
=1

n=1

(5) U@

¢ + 2 c,(cos nt + isinnt) + 2 c.,(cos nt — isin nt)

=1 n=1

¢y + Z [(c, + ¢_,) cos nt + i(c, — ¢ _,) sin nt].

n=1
Comparing equation (5) with equation (3), we see that ap = 2¢y, a, = ¢, + c_,. and
I)N = f(cn - (?—PI)'

If U(t) and U’(t) are piecewise continuous and have period 2L, then U(r) has
the complex Fourier series representation

oo

6 U = E c,e™Wh - where

TEEE

1 L
N ¢ = 2 j_L U(t)e ™l dt  for all n.

We have seen how periodic functions are represented by trigonometric series.
Many practical problems involve nonperiodic functions. A representation analogous
to Fourier series for a nonperiodic function U(s) is obtained by considering the
Fourier series of U(r) for —L < r < L and then taking the limit as L — oo, The result
is known as the Fourier transform of U(f).

Start with a nonperiodic function U(#) and consider the periodic function U,(1)
with period 2L, where

(8 U =U® for —L <r=<1L, and
Ui(t) = Uyt + 2L) forallt.

Then U,(t) has the complex Fourier series representation

%) Uln = Z c,,e’“”’/l;

We introduce some terminology to discuss the terms in equation (9), first
(10y w, = nn/L is called the frequency.

If ¢ denotes time, then the units for w, ure radians per unit time. The set of all
possible frequencies is called the frequency spectrum, i.e.,

—3n -2n —n ®m 2n 3n

It is important to note that as L increases, the spectrum becomes finer and approaches
a continuous spectrum of frequencies. It is reasonable to expect that the summation
in the Fourier series for U,(7) will give rise to an integral over [—oe, oo]. This is
stated in the following important theorem.
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Theorem 11.9 (Fourier Transform) Ler U(r) and U'(t) be piecewise con-
tinuous, and

(11 f |U@)| dr < M,
for some positive constant M. The Fourier transform F(w) of U(1) is defined as
1~ v
(12) Fw) = —J U(tye=™" dr.
21 J -
At points of continuity, U(t) has the integral representation
(13) U@ = j F(w)e™ dw,
and at a point t = a of discontinuity of U, the integral in equation (13) con-
Ula™) + Ula")

2
into F by using the operator notation:

(149)  FUW®) = Fw).

verges to .Remark: It is common to show that U is transformed

fis 1 1 .
Proof Set Aw, = w,,; — w, = — and — = — Aw,. These quantities are
L 2L 2w

used in conjunction with equations (7) and (9) and definition (10) to obtain

bad L
(15) UI,(t) = 2 [LJ U(z)e—m'nr d{:le,'w”,

= —uo 2L 7"

o 1 1,

2 [—-— J Uye d(:lei“"v’ Aw,,
neme | 2 J-L

If we define F;(w) by

I )

16) Fw)=— f U(he ™ dt,
2n J-L

then equation (15) can be written as

(A7) Un = 2, Filwde™! Aw,.

As L gets large, F(w,) approaches F(w,) and Aw, tends to zero. Thus the limit
on the right-hand side of equation (17) can be viewed as an integral. This substan-
tiates the integral representation

oe

(18) U@ = J‘ F(w)e™ dw.

A more rigorous proof of this fact can be found in advanced texts. Table 11.1 gives
some important properties of the Fourier transform.
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TABLE 11.1  Properties of the Fourier Transform

Linearity FaU(1) + bU>(D) = a F(U (1)) + b F(UxA1))
1

Symmetry If §(U®) = F(w), then F(F()) = e U(—w)

. . o~ 1 w
Time scaling s(U(at)) = — F| —

la| \a

Time shifting FU@E — 1)) = e " F(w)
Frequency shifting Fe U = Flw — wyp)
Time differentiation FU(D) = iwF(w)
Frequency aFw)
differentiation dwn SU=in" v
Moment Theorem IfM, = f, 1'U(t) dt, then (—i)'M,, = 2nF"(0).

1
(1l + w?)’

EXAMPLE 11.5 Show that F(e-!"") =

Solution  Using formula (12), we obtain

1 oo
F(W) = — j e~ il|e-lwl d'
2r )

— i 0 e(l*iw)l dt + i JW e(—l—(n')l dt
2n - 2r Jo
= ___1_ ell—iw)l =0 + ____1—_ e(—l—iu')r ==
2n(l — iw) e 27(—1 — iw) =0
1 1 1

= + =
2n(l —iw)  2m(l +iw)  m(l + wd)’

and the result is established.

EXAMPLE 11.6 Show that %(71175> - %e"“".

Solution  Using the result of Example 11.5 and the symmetry property, we
obtain

(19) % 1 — _]_ e-l—n'[ - _l_e~|wf'
(1l + ) 2n 27

The linearity property is used to multiply each term in equation (19) by & and obtain

% ! —lfiw)
S\1+e) 2

and the result is established.
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EXERCISES FOR SECTION 11.4

1 for || <1, Find F(U(0)
0 for 1| >1. " '
sint for |t| = m, Show that S(U()) = i sin Tw

0 for |tl > . t ml —wh’

1- II' for |t’ < l,F, 4 W)
0 for |7] > 1. ne s ’

1. Let U(r) = {
2. LetU(n) = {
3. Let U(n) = {

e n'z,'Z'

4. Let U(r) = ¢~ Show that F(U(n) = T
;LT

Y
Hint: Use the integral definition and combine the terms in the exponent, then complete

the square and use the fact that j e dr = /2.

5. Use the time scaling property an(i the example in the text to show that
|4]
Fle=1hy = T
6. Use the symmetry and linearity properties and the result of Exercise 1 to show that
fsint 3 for [w| <L
w<T) B {0 for {w| > 1.
7. Use the symmetry and lineanty properties and the result of Exercise 2 to show that

i sin wt isinw for |w| =T,
E(l - t3) - 2
0 for |w| > m.

8. Use the time differentiation property and the result of Exercise 4 to show that

~iwe "

VIn

9. Use the symmetry and linearity properties and the results of Exercise 3 to show that

Flte=™) =

& e 4n

1
sin” 5 B 1 - |w] for |w| <1,
0 for [w] > 1.

10. Write a report on the Fourier transform. Discuss some of the ideas you found in the
literature that are not mentioned in the text. Resources include bibliographical items 15,
17, 100, 69, 149, and 159.

11.5 The Laplace Transform
From Fourier Transforms to Laplace Transforms

We have seen that certain real-valued functions f(f) have a Fourier transform and
that the integral

() s = | foerar
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defines the complex function g(w) of the real variable w. By multiplying the
integrand in formula (1) by ¢~*, we extend this and define a complex function
G(o + iw) of the complex variable 6 + iw:

@) ao+m=ﬁﬂmwwwm=fﬂmwwwn

The function G(G + iw) is called the two-sided Laplace transform of f(¢), and it
exists when the Fourier transform of the function f(7)e~* exists. From the Fourier
transform theory, we can state that a sufficient condition for G(G + iw) to exist is
that

3) j:., [fin|e =t dr < eo

shall exist. For a given function f{r), this integral is finite for values of © that lie in
some interval a < ¢ < b.

The two-sided Laplace transform uses the lower limit of integration t = —eo,
and hence requires a knowledge of the past history of the function f(1), i.e., t < 0.
For most physical applications, one is interested in the behavior of a system only
for r = 0. Mathematically speaking, the initial conditions f(0), f'(0), f"(0), . . .,
are a consequence of the past history of the system and are often all that is necessary
to know. For this reason, it is useful to define the one-sided Laplace transform of
f(1), which 1s commonly referred to simply as the Laplace transform of f(t), which
is also defined as an integral:

4) L) = Fs) = L " fe s di. wheres = 6 + iw.

If the defining integral (4) for the Laplace transform exists for so = 6y + iw,
then values of 6 with 6 > &, imply that ¢~ < ¢~°, and thus

(5) Lm |f(D] e dr < J: | /()| e o0 dr < eo,

and it follows that F(s) exists for s = ¢ + iw. Therefore, the Laplace transform
Z(f(1)) is defined for all points s in the right half-plane Re(s) > &,.

Another way to view the relationship between the Fourier transform and the
Laplace transform is to consider the function U(?) given by

for 1 = 0,
©® U(’)z{{)m for 1 <0

Then the Fourier transform theory shows us that

M U = ,,]—n f : Ul U(net dt]e’“” dw,

and since the integrand U(¥) is zero for t < 0, equation (7) can be written as

(&fmzﬁrlﬁmwwﬂwwm
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ds
Use the change of variable s = ¢ + iw and dw = —‘ where ¢ > Gp is held fixed,
i

then the new limits of integration are from s = 6 — im to s = G + iw. The resulting
equation is

2ni Jo-ie

% fin= L ) [J:f(t)e“' dt]e” ds.

From equation (9) it is easy to recognize that the Laplace transform is

(10)  LF) = Fls) = fo " fe di,

and that the inverse Laplace transform is

) 1 f” e
-1 = = — s
(1)  ZL-UF(s) = f(» vl F(s)e* ds.

Properties of the Laplace Transform

Although a function f(f) may be defined for all values of ¢, its Laplace transform is
not influenced by values of f(7), where < (. The Laplace transform of f(z) is actually
detined for the function U(f) given by

_JAn forr=0,
(12) U(’)‘{o for 1 < 0.

A sufficient condition for the existence of the Laplace transform is that (f(r)| does
not grow too rapidly as t — +o, We say that the function f is of exponential order
if there exists real constants M > 0 and X, such that

(13) |f(n) = MeX' holds for all = 0.

All functions in this chapter are assumed to be of exponential order. The next the-
orem shows that their Laplace transform F(o + i7) exists for values of s in a domain
that includes the right half-plane Re(s) > K.

Theorem 11,10 (Existence of the Laplace Transform) [ffis of ex-
ponential order, then its Laplace transform Z(f(t)) = F(s) is given by

(14) F(s) = Jo fine " dt, where s = 6 + iw.

The defining integral for F exists at points s = 6 + it in the right half plane
o>K

Proof Using s = ¢ + it we see that F(s) can be expressed as

(15) F(s) = wa(t)e“"cos Tt dt — if:f(t)e-“’sin Tt dt.
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Then for values of ¢ > K, we have

(16) J: lf(t)le“”]cos t| dr = MJ: ek-ordr < UIL/IK’ and

(17 Lw |f(t)|e‘°’|sin -rt| dt < MJ: eh ol dr < p—_—2

which imply that the integrals defining the real and imaginary parts of F exist for
values of Re(s) > K, and the proof is complete.

Remarks The domain of definition of the defining integral for the Laplace trans-
form Z£(f(1)) seems to be restricted to a half plane. However, the resulting formula
F(s) might have a domain much larger than this half plane. Later we will show that
F(s) is an analytic function of the complex variable 5. For most applications in-
volving Laplace transforms that we will study, the Laplace transforms are rational

P
functions that have the form LS) , where P and Q are polynomials, and some other

Q(s)
e P(s)

(s)

important ones will have the form

Theorem 11.11 (Linearity of the Laplace Transform) Lesfand g have
Laplace transforms F and G, respectively. If a and b are constants, then

(18)  Llaf(t) + bg(D) = aF(s) + bG(s).

Proof Let K be chosen so that both F and G are defined for Re(s) > K, then

(19)  Z(af(n) + bg®) f; laf() + bg(D]e ™ dt

=aq J: f(He ' dt + b Lw g(tye v dt
aF(s) + bG(s).

Theorem 11.12 (Uniqueness of the Laplace Transform) Letfand g
have Laplace transforms, F and G, respectively. If F(s) = G(5), then f(1) =
().

Proof If o is sufficiently large, then the integral representation, equation
(10), for the inverse Laplace transform can be used to obtain

§+ foo

1 (o= 1
' — -1 - Vet o = — st
20) f( = L XF(s) i J;_’w F(s)e' ds i J;,'m G(s)e ds
= £ NG(s)) = glo).

and the theorem is proven.
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EXAMPLE 11.7 Show that the Laplace transform of the step function given

by
1 for0st<e . I
fw = {0 forc <t is £(f(0) = s
Solution  Using the integral definition for F( (1)), we obtain
o - ¢ ~ v —e= 1= 1 — e~
Z(f() = f f(he ' dt = j e dt + f e - Odt = =
0 0 « M 1=0 S5
|
EXAMPLE 11.8 Show that £(¢") = —— , where g is a real constant.

Solution We will actually show that the integral defining £(e?") is equal

to the formula F(s) = for values of s with Re(s) > g, and the extension to

s—a
other values of s is inferred by our knowledge about the domain of a rational func-
tion, Using straightforward integration techniques we find that

o R
ﬂf(eat) - JO ee ' dt = hIm f) elo= g
{

Rt

e(u—,\')R 1

= lim + .
Rotw @ — S §—a

Let s = ¢ + iT be held fixed, or where ¢ > a. Then since a — ¢ is a negative real

number we have lim e'“~® = (0 and this is used in equation (10) to obtain the

R <o
desired conclusion.
The property of linearity can be used to find new Laplace transforms from
known ones.

a

EXAMPLE 11.9 Show that £(sinh ar) =

2 2"
s — a*

Solution  Since sinh at = +e¢ — Le~, we obtain

1 1 1 a

|
2s—a 2s+a §—da*

$(sinh at) = + L(e?) — + Lle=) =

The technique of integration by parts is also helpful in finding new Laplace
transforms.
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EXAMPLE 11.10 Show that £(1) = sl

Solution  Using integration by parts we obtain
R

lim te ¥ dt
0

Rt

) —t |
Ilm |—e™ — e
Rt \ S 5°

. —-R ] 1
lim (— ek — —,e""’) + 0+ —.
R+w § 5 Nt

£

1=0

For values of s in the right half plane Re(s) > 0, an argument similar to that
in Example 11.8 shows that the limit approaches zero, and the result is established.

EXAMPLE 11.11 Show that ¥(cos br) =

524 b
Solution A direct approach using the definition is tedious. Let us assume

that the complex constants /b are permitted and hence following the Laplace trans-
forms exist:

ety =

d :f/’ —ibry — .
s—ib an e s+ ib

Using the linearity of the Laplace transform we obtain

Plcos br) = + F (™) + L Lle )

| 1 1 1 s

- + 3 A o
2s—ib 2s+ib s+ b

Inverting the Laplace transform is usually accomplished with the aid of a table
of known Laplace transforms and the technique of partial fraction expansion.

EXAMPLE 11.12 Find y'(iﬁ—ﬁ) .
5+ 9

Solution  Using linearity and lines 6 and 7 of Table 11.2, we obtain

s+ 6 s 3
-1 -1 + 24!
* (53 + 9) 32 (53 + 9) 24 <s3 + 9)

3 cos 3t + 2 sin 31
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Table 11.2 gives the Laplace transforms of some well-known functions, and
Table 11.3 highlights some important properties of Laplace transforms.

TABLE 11.2 Table of Laplace Transforms

Line §{U) F(s) = L fOe s dt
1
1 1 -
5
n!
2 Jid "
S”+
. e—l"\'
3 U.(?) unit step —_—
S
1
4 (,u!
S —a
n!
5 rl1e{” —_—
(S — a)rHI
S
6 cos bt . -
s+ b7
b
7 sin bt
s o sz + bz
8 e“'cos bt —g-;a—f
(s —ay + b’
b
9 e“'sin bt —_
(s —a)y + b
2 _ p2
10 t cos bt %
(s + by
2b
11 t sin bt =
(s + b%)?
12 cosh at 5 d 5
s — a-
13 sinh af 2
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TABLE 11.3 Properties of the Laplace Transform
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Definition
Derivatives of f(?)

Integral of f(z)
Multiplication by ¢
Division by

Shifting on the s axis
Shifting on the ¢ axis
Convolution

Lf(D)) = F(s)

L) = sF(s) — f(0)

E(f() = s°F(s) - sf(0) — f1(0)
i(f fm d’r) = £s)
4] R

L@f() = —F'(s)

SN [T
i(t)—‘LF(o)do

L(evf(t)y = F(s — a)
FWDf(t — a)) = e ®F(s)fora >0
L(h(r)) = F(5)G(s)

h(t) = Lf(t — Tg(r) dr

EXERCISES FOR SECTION 11.5

1.

tad

W

. 1
Show that #(1) = — by using the integral definition for the Laplace transform. Assume

5

that s is restricted to values satisfying Re(s) > 0.

1 forl<i<2
Let Ur) = {0 otherwise,

t for0=s1<c,
Let U(n = {0 otherwise,

* find L(f(0)).

find E(f(1)).

that s is restricted to values satisfying Re(s) > 0.

_ e for) <1<
5. Let U(r) = {0 otherwise,

_ Jsm(n for0 =
6. Let U(n) = {0 otherwise,

1 find #(£0)).

=7,

find Z(f(1)).

For exercises 7—12 use the linearity of Laplace transform and Table 11.2.

7.
9.
11.

For exercises 13-18 use the linearity of the inverse Laplace transform and Table 11.3.

13.
15.

17.
19.

Find £33 — 41 + 5).
Find $(e-%).
Find Lt + 1)),

AL 1 .
s>+ 25

Find & |(1_+S_—_5>

s-’l

s
Find $- '(—‘——>
st —4

8. Find (2 cos 4).
10. Find $(6e~' + 3 sin 51).
12. Find Zicosh 21).

4 6
14. Find gf'(— - —).

5 52

25+ 9
16. Find §£*'( > )
s+ 9

2s + 1
18. Find&ff'( i >

ss+ 1)

. 2
. Show that (?) = — by using the integral definition for the Laplace transform. Assume
§

Write a report on how complex analysis is used in the study of Laplace transforms.
Include ideas and examples that are not mentioned in the text. Resources include bib-

liographical items 17, 40, 69,

129, 149, 159, and 186.
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11.6 Laplace Transforms of Derivatives and Integrals

Theorem 11.13 (Differentiation of £(£)) Ler f(1) and f'(¢) be continuous
for t = 0, and of exponential order. Then,

() £ = sFs — f(O).
where F(s) = L(f().

Proof Let K be chosen large enough so that both f(¢) and f'(r) are of ex-
ponential order K. If Re(s) > K, then J(f'() is given by

2y L(f( = L f (e dt.
Using integration by parts, we write equation (2) as
1=R ks
3 F(f) = lim [f(Ne ] ' + s L fle " dt.
R 1=0

Since f(#) is of exponential order K, and Re(s) > K, we have lim f(R)e ™} = 0,

R toe

hence equation (3) becomes

@) L) = —fl0) +s ‘[: fe dt = sF(s) — f(0),

and the theorem is proven.

Corollary 11.1  Iffit), f (1), and f"(1) are of exponential order, then
(5) LD = s2Es) — sfIO) — f1(0).

s+ 2

EXAMPLE 11.13 Show that $(cos?f) = —————.
s(s= + 4)

Solution Let () = cos?, then f(0) = 1 and f'(f) = —2 sin t cos { = —sin 2t.

'

Using the fact that #(--sin 21) = i+ 2 Theorem 11.13 implies that
5

SR = L' (1) = sL(cos’t) — 1,

-2 1 242
from which it follows that £(cos?t) = ——— + — = e
S{s-
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Theorem 11.14 (Integration of 7(#)) Let f(r) be continuous for t = 0,
and of exponential order and let F(s) be its Laplace transform, then

(6) i’(J” fir) d’r) = -l?

f
Proof Letg(n) = J; f(7) d7. then g'(r) = f() and g(0) = 0. If we can show

that g is of exponential order, then Theorem 11.13 implies that

L)) = F(g' (D) = sF (g — 0 = S.Ef(J;f(T) dT),

and the proof will be complete. Since f(1) is of exponential order, we can find
positive values M and K, so that

! . M .
lg(l)l < Lf('r)dfrs Mﬁ)e’“d~r=—l&—,(e"’— 1) < e,

so that g is of exponential order and the proof is complete.

EXAMPLE 11.14 Show that %() = sl and L) = S%

, 2
Solution  Using Theorem 11.14 and the fact that £(2r) = = we obtain
5

| v

; -

(5}

lv
58

F(P) = i{(fo 27 d'r) = l5f(2t) =
s

2
Now we can use the first result £(r?) = —to establish the second one:
5

! 1 16
L) = H’(f 372 d"r) =-43) =-—= -
0 , s 5 s’ s

One of the main uses of the Laplace transform is its role in the solution of
differential equations. The utility of the Laplace transform lies in the fact that the
transform of the derivative f'(f) corresponds to multiplication of the transform F(s)
by s and then the subtraction of f(0). This permits us to replace the calculus operation
of differentiation with simple algebraic operations on transforms.

This idea is used to develop a method for solving linear differential equations
with constant coefficients. Consider the initial value problem

(7) V') + ay' (D + by(r) = f).
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with initial conditions y(0) = y, and y'(0) = dp. The linearity property of the Laplace
transform can be used to obtain the equation

(8)  F('() + aZ(y' () + bL(y(1)) = L(f(1)).

Let Y(s) = £(y(n) and F(s) = £L( f(r)) and apply Theorem 11.13 and Corollary 11.1
in the form £(y'(1)) = sY(s) — ¥(0) and L(¥"(1)) = s2¥(s) ~ s¥(0) — v'(0) we can
rewrite equation (8) in the form

(9)  $2Y(s) + asY(s) + bY(s) = F(s) + sy(0) + y'(0) + ay(0).
The Laplace transform Y(s) of the solution y(¢) is easily found to be

F(s) + sy(0) + ¥'(0) + aw0)

(10) ¥(s) = ss+as+ b

For many physical problems involving mechanical systems and electric cir-
cuits, the transform F(s) is known, and the inverse of ¥(s) can easily be computed.
This process is referred to as the operational calculus and has the advantage of
changing problems in differential equations into problems in algebra. Then the so-
lution obtained will satisfy the specific initial conditions.

EXAMPLE 11.15 Solve the initial value problem
Y@ + y() = 0 with y(0) = 2 and y'(0) = 3.

Solution  Since the right-hand side of the differential equation is f(f) = 0
we have F(s) = 0. The initial conditions yield £(¥"(f}) = s’Y(s) — 2s — 3 and

25+ 3
~ and
5o+ 1

equation (9) becomes s?Y(s) + Y(s) = 25 + 3. Solving we get Y(s) =

the solution y(¢#) is assisted by using Table 11.2 and the computation

25+ 3 ' ]
v = g = =29 ——) + 39 = =2cost+ 3sint
s2+ 1 s+ 1 2+ 1

EXAMPLE 11.16 Solve the initial value problem
YO+ Y1) ~- 29D =0 withyw0) =1 and y'(0) = 4.

Solution 1In the spirit of Example 11.15, we use the initial conditions and
equation (10) becomes
s+H4+1 s+ 5

Y(s) = = = .
sTHs—=2 (s—=1}s+2)
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, , ) ) 2
Using partial fraction expansion Y(s) = —— —
s—1 s+2

1 ]
(f) = PF-1 — -1 — ) _ i — Yl — oo
¥ = £ 1Y) = 24 (s — 1) 2 (s " 2) 2e' — e,

and the solution y(r) is

EXERCISES FOR SECTION 11.6

1. Derive ¥(sin 1) from £(cos 1).
2. Derive ¥(cosh 1) from L(sinh 1).
3. Find $(sin?0).
|
4. Show that £(re) = 0 e Hint: Let f(t) = te" and f' () = te' + €.
S - -
! 1
5. Find i"( ) 6. Find £ '\ — .
s(s — 4) s(s? + 4)

. 1
7. Showthat ¥ "\ ——— ] =r—-1+ ¢.
sSs + 1D

-

) 1
. Show that ¥\ ———— ) =t—sint
ss” + 1),

For exercises 9-18, solve the initial value problem.
9. ¥'(n + 9v(1) = 0, with ¥(0) = 2 and ¥'(0) = 9
10. ¥v'(1) + y(1) = 1, with ¥(0) = 0 and y(0) = 2
11. ¥'(1) + 4x(1) = —8, with () = 0 and ¥'(0) = 2
12. y'(n + y(n) = 1. with ¥(0) = 2
13, ¥ — y(1) = =2, with ¥(0) = 3

14. v'(1) — 4v(r) = 0, with ¥(0) = | and y'(0) = 2

15. ¥'(1) — y(1) = 1, with (0) = O and ¥»'(0) = 2

16. y'(r) + 2y(1) = 3¢', with ¥(0) = 2

17. v'"(0) + ¥' (1) — 2¥() = 0, with ¥(0) = 2 and »'(0) = —1
18. y'(1) — ¥ () = 2v(1) = 0, with ¥(0) = 2 and ¥'(0) = |

11.7 Shifting Theorems and the Step Function

We have seen how the Laplace transform can be used to solve linear differential
equations. Familiar functions that arise in solutions to differential equations are
e"'cos bt and ¢"'sin bt. The first shifting theorem will show how their transforms are
related to those of cos br and sin bt by shifting the variable s in F(s). A companion
result, called the second shifting theorem, will show how the transform of f(t — a)
can be obtained by multiplying F(s) by e~*. Loosely speaking, these results show
that multiplication of f(r) by e corresponds to shifting F(s — a). and shifting
f(t — a) corresponds to multiplication of the transform F(s) by e,
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Theorem 11.15 (Shifting the Variable §) If F(s) is the Laplace trans-
form of f(t), then

Lev'f()) = F(s — a).

Proof Using the integral definition $£( f(1)) = F(s) = j() f(De " dt, we see

F(evf() = L ef(He > dr = ‘Ljf(t)e““"““ dt = F(s — a).

Definition 11.3 (Unit Step Function) Letu = 0, then the unit step func-
tion U (1) is

_ |0 fort <a,
U"(r)“{l fort>a.

The graph of U, (t) is shown in Figure 11.22.

v

v=U (1)
o

FIGURE 11.22 The graph of the unit step function y = U,(f) in Definition 11.3.

Theorem 11.16 (Shifting the Variable ¢) If F(s) is the Laplace trans-
form of f(t) and a = 0, then

E(UNDf(t — a)) = e “F(s),
where f(t) and U, ()(t — a) are illustrated in Figure 11.23.

Proof Using the definition of Laplace transform, we write

e “F(sy=¢ W JD f(De " dr = Ju fime e o dr,

Using the change of variable t = a + 7 and dr = dr, we obtain

(6)

e F(s) = j fit — a)e™ dt.
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Since Uy(1)f(t — a) = 0 fort < q, and U (1)f(r — a) = f(t — a) for t > a, we can
write equation (6) as

(D) e F(s) = ﬁ UG~ e di = LU = ),

and the proof is complete.

y=U,(0fit-a)

0 a

FIGURE 11.23 Comparison of the functions f(¢) and U,(£)f(t — «) in Theorem
11.16.

n!
(S — a)n‘l :

EXAMPLE 11.17 Show that (e =

!
Solution  Let f(1) = 1", then F(s) = L") = si—] . Applying Theorem 11.15,
we obtain the desired result:

n!

FL(tey = F(s — a) = (s——aﬁ .

oy

EXAMPLE 11.18 Show that L(U.(1) = eT

. 1
Solution Set f(#) = 1, then F(s) = %(1) = —. Now apply Theorem 11.16
5

and get

-8

L) = LUMOFD) = LUAD1) = e £(1) = 55—

EXAMPLE 11.19 Find £(f(1)) if f(¢) is given in Figure 11.24.
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y=f

T T T T T T T t

-1 1 2 3 4 5 6

FIGURE 11.24 The function y = f(¢) of Example 11.19.

Solution We can represent f(¢) in terms of step functions
f=1—=U0+ Uxt) = Us(r) + Uslr) — Us(D).

Using the result of Example 11.18 and linearity, we obtain

- 2

¥ 2 -3s —4y -5y
)=t e
) S

- -
K} ) s )

EXAMPLE 11.20 Use Laplace transforms to solve the initial value problem
V') + () = Ul) withy(0)=0 and y'(0) =0

Solution  As usual, let Y(s) denote the Laplace transform of v(#). Then we
get

—RS

s2Y(5) + Y(s) =

Solving for Y(s), we obtain

1
We now use Theorem 11.16 and the facts that — and > ] are the transforms of 1

s
and cos f, respectively. The solution ¥(f) is computed as follows:

W) = 58-'(6;“") - 33’( ey ) = U 1) — Undcoslt — T,

2+ 1

which can be written in the more familiar form:

) = 0 for t < =,
YWW=11 —cost fort>m.
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EXERCISES FOR SECTION 11.7

1. Find $(¢' — te). 2. Find &(e~¥sin 31).
3. Show that £(e“cos bt) = (T__s;—)_:c:-_b:
4. Show that ¥(e“'sin bt) = *‘#ﬁ
(s —ar + b
For exercises 5-8, find & 1(F(s)).
s+ 2
5. F(x) = ——— . Fis) = ———
) s+ 45+ 5 6. Fs) ss—25+5
s+ 3 2s + 10
7. F(s) = ————— . ==
® =T 8 = e 1 25
For exercises 9-14, find <( f(1)).
9. fln = Usnz — 272 10. f(t) = Uy(ne'~
11. f(r) = Us () sin(r — 3m) 12, fi6)y = 22U — Ua(r) — Us(n)

13. Let f(¢) be given in Figure 11.25,

y=fi1)

]

-1F i ————

FIGURE 11.25 The graph v = f(r) for Exercise 13.

14. Let f(t) be given in Figure 11.26.
Hint: The function is the integral of the one in Exercise 13.

y

y=fi1)

T 1 T T

-1 1 2 3 4

FIGURE 11.26 The graph y = f(r) for Exercise 14.

-8 4 =25 ' ] —e ¥ + -2
15. Find zl("——e—>. 16. Find :27'(—",—8)
N

437
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For exercises 17-23, solve the initial value problem.

17. y'() + 2y'() + 2y(1) = 0, with y(0) = —1 and y'(0) = 1

18. Y'() + 4y'(r) + 5y(1) = 0. with ¥(0) = 1 and y'(0) = -2

19. 2¥7(1) + 2¥' () + ¥(r) = 0. with y(0) = 0 and ¥'(0) = |

20. Y'(r) — 2y'() + y(r) = 2¢', with y(0) = 0 and ¥'(0) = O

21. V' + 2v'(D + y(n = 6te~', with y(0) = 0 and v'(0) = 0

22. Y'() + 2y'(D + y(r) = 2U,(He' ', with y(0) = 0 and y'(0) = 0
23, y'(H) + ¥(5) = U(6), with ¥(0) = 0 and v'(0) = |

11.8  Multiplication and Division by 7

Sometimes the solutions to nonhomogeneous linear differential equations with con-
stant coefficients involve the functions ¢ cos br, t sin bt, or t"¢%' as part of the solution.
We now show how the Laplace transforms of #f(¢) and f(t)/t are related to the Laplace
transform of f(¢). The transform of 1f(r) will be obtained via differentiation and the
transform of f(f)/t will be obtained via integration. To be precise, we state the fol-
lowing theorems.

Theorem 11.17 (Multiplication by f) If F(s) is the Laplace transform of
D). then

(1) 2Laf(y) = —F'(s).

Proof By definition we have F(s) = L f(t)e ' dt. Leibniz’s rule for partial

differentiation under the integral sign permits us to write

2) F(»

Il

N P .
afof(t)e dt ﬁas[f(f)e ] dt

0

f: [—tfe=) dt = — JO e i
—LAtf@),

and the result is established.

Theorem 11.18 (Division by #) Ler both f(t) and f(1)/t have Laplace
transforms and let F(s) denote the transform of f(1). If lim f(t)/t exists, then
—0*

3) se(’i(t‘—)> - f " F(o) do.

Proof Since F(o) = fof(t)e""’ dt, we integrate F(o) from s to e and obtain

@ f " F(o) do = f ! [ L fwe dt] do.
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The order of integration in equation (4) can be reversed, and we obtain

(5) J‘w F(o)do = L [rf(t)e“” do] dt
e
0 o

t
mf% e v dt = él’(ﬂT{)>

0

and the proof is complete.

2= p?

EXAMPLE 11.21 Show that £(f cos b1) = ————.
(s* + b2

Solution Let f(f) = cos br, then F(s) = $(cos bt) =

. Hence, we
st + b

can differentiate F(s) to obtain the desired result
s+ b =27 2=
(52 + b?)? (s2 + b2

Etcos by = —F'(s) = —

EXAMPLE 11.22 Show that y(“%”) - arctané.

. . sint
. Since lim — = 1, we can
1—0"

Solution Let f(r) = sin ¢ and F(s) = >
s+ 1

integrate F(s) to obtain the desired result:

i = d 1
4 sinf =f ,‘G = —arctan —
t s o2 + 1 o

S=oc

1
= arctan — .

o= S5

Some types of differential equations involve the terms ty'(r) or ty"(¢). Laplace
transforms can be used to find the solution if we use the additional substitutions

6) Ly'(1) = —sY'(s) — Y(s), and
(7 Ly () = —sY'(s) — 25Y(s) + y(0).

EXAMPLE 11.23 Use Laplace transforms to solve the initial value problem
®) "M — ' —y) =0 withy0) =0.

Solution Let Y(s) denote the Laplace transform of y(#), then using the sub-
stitutions (6) and (7) results in

(9 —sY'(s) — 2sY(s) + O + sY'(s5) + Y(5) — Y(5) = 0.
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Equation (9) itself can be written as a first-order linear differential equation:
, 2
(10)y Y'(s) + ———l Y(s) = 0.
5 —

The differential equation (10) can be solved by using an integrating factor:

2
an p= exp([ " ds> =exp[2In(s — 1) = (s — )%
g —
Multiplying equation (10) by p produces

d
(12) (s — 1)*Y'(s) + 2(s — DY(s) = o [(s = D?*Y(s)] = 0.

Integrating equation (12) with respect to s results in (s — 1)°Y(s) = C, where C is
the constant of integration. Hence the solution to equation (9) is

13) Y(s) = .
13 YO = 35
The inverse of the transform Y(s) in equation (13) is
y() = Cte'.

EXERCISES FOR SECTION 11.8

Find the Laplace transform for Exercises 1-10.

1. Find L(te-2). 2. Find $(2e").
3. Find £(7 sin 31). 4. Find (12 cos 20).
5. Find &£(¢ sinh (). 6. Find (1 cosh 1).
! G
7. Show that $(S—l> = 111( s )
t s—1
8. Show that 55(1 — oo ’) = 1n< i )
t 57+ 1
9. Find £(r sin bt). 10. Find £(te* cos br).
2 4
11. Find £'{m{ L)), 12. Find #-'{ In
(s — 1) s+ 1

For problems 13-21, solve the initial value problem.

13. y'(0) + 2y' (1) + y(1) = 2e~’, with y(0) = 0 and y'(0) = ]

14. Y'(") + y(r) = 2 sin ¢, with y(0) = 0 and y'(0) = —1

15. »"() — ' (1) — y(r) = 0, with y(0) = 0

16, ty"(0) + (+ ~ 1)y’ (1) — 2y(t) = 0, with ¥(0) = 0

17. ") + 1y’ () — y(r) = 0, with y(0) = 0

18. vy"(t) + (# — Dy'(n) + y(r) = 0, with y(0) = 0

19. Solve the Laguerre equation 1y"(¢) + (1 — y'(¢) + y(t) = 0, with y(0) = 1,
20. Solve the Laguerre equation ty"(t) + (1 — ny'() + 2¥(#) = 0, with y(0) = 1.
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11.9 Inverting the Laplace Transform

So far, most of the applications involving the Laplace transform involve a transform
(or part of a transform) that is expressed by

P(s)
( ¥s=-—=

ON
where P and  are polynomials that have no common factors. The inverse of Y(s)
is found by using its partial fraction representation and referring to Table 11.2. We
now show how the theory of complex variables can be used to systematically find
the partial fraction representation. The first result is an extension of Lemma 8.1 to
n linear factors. The proof is left for the reader.

Theorem 11.19 (Nonrepeated Linear Factors) Le: P(s) be a polyno-
mial of degree at most n — 1. If Q(s) has degree n, and has distinct complex

roots ay, az, . . . , a,, then equation (1) has the representation
P(s 2 ReslY, a
@) ¥ = - (s) [ k]
(S—ﬂl)(s—az)"'(f—an) = os - a

Theorem 11.20 (A Repeated Linear Factor) I/ P(s) and Q(s) are poly-
nomials of degree W and v. respectively, and 0 < v + n and Q(a) # 0, then
equation (1) has the representation

P(s) < A
—a)yQ(s) (s — a)
where R is the sum of all partial fractions that do not involve factors of the

form (s — a)i. Furthermore, the coefficients A, can be computed with the
formula

(3 Y(s) = ( + R(s),

1 i d” * P(S)
()7 - ]‘)l S ds" AQ( )

4 A= fork=1,2,. , n.

Proof We employ the method of residues. First, multiplying both sides of
equation (3) by (s — a)" gives

P(S) n

5 _— = A — =i+ R _ "
( ) Q(S) (:21 l(s a) (5)(5' a)
We can differentiate both sides of equation (5) n — k times to obtain
' dm* P(s) £ (n — ]) dr+*
= A —— k~j + R — n
© ds"*F Q) =Tk - _])' - a [ (s)s — )]

We now use the result in equation (6) and take the limit as s — a. It is left as an
exercise for the reader to fill in the steps to obtain

]' dn- k (S)
soa dS" k Q( )

which establishes equation (4).

=(n—-h!A,
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EXAMPLE 11.24 Let ¥(s) = -S—(E—f‘_ﬁ?)_—‘.pind F-1Y(s)).

Solution  From equations (2) and (3) we can write

— 45 + 1 A} Az A) B]
+ +=.
s(s -1 (s - l)z (s—1»¥ s-1 N

The coefficient B is found by the calculation

3 —4s + 1
B, = Res[Y, 0] = lim ———— — = —1.
s—0 (S— l)?

The coefficients A, A,, and Az are found by using Theorem 11.20. In this case,

P 3 —4s + 1
a=1and — (5) s__s_’ and we get
s

o(s)
P(s) sf—4s+ 1

A;=lim—=Ilm——m— = =2,
=1 08 s

P [

A, = 1Ii g——-(s—)—l)m 2s——)=l,
Il =1 ds Q(S) =1 $2
1 d2 P 1 2

A = = lim =-lim(2+3) =2
2! s—1 dS' Q( ) 2 ,xl—r*lll ( S3>

Hence, the partial fraction representation is
-2 1 2 1

Y=o te o o Ty

and the inverse is

() = —1e' + te! + 2¢' — 1.

Theorem 11.21 (Irreducible Quadratic Factors) Let P and Q be poly-
nomials with real coefficients such that the degree of P is at most 1 larger
than the degree of Q. If T does not have a factor of the form (s — a)> + b,

then
_ ﬂ:vl _ P(s) _2A(s —a) — 2Bb
O IO =00 T 6= a? + 0T W5 —ap + b7 R
v . Pla+ib)
(8) A+ iB= —__—Q’(a T b

Proof Since P, Q, and Q' have real coefficients, it follows that
(9) Pla—-ib)=Pa+ib and Q'(a—ib) = Q'@+ ib).
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The polynomial Q has simple zeros at s = a * ib, this implies that Q'(a + ib) # 0.
Therefore, we obtain
s—f(ati Plati
(10) Res(Y.a#ib] = lim ——@E®) p Patib)
soasih Q() — Q(a £ ib) Q'(a £ ib)
from which it is easy to see that
(11) Res[Y,a — ib] = Res[Y, a — ib).

If we set A + iB = Res[Y, a + ib] and use Theorem 11.19 and equations (8), (10),
and (11), then we find that
A+ B A — iB

2 =
(12) ¥ s—a—ib+s—a+ib+R(s).

The first two terms on the right side of equation (12) can be combined to obtain

A+ iB)s —a+ib)+ (A —iB)s —a—ib) 2A(s—a)—2Bb
[(s — ) + 7] Sl —aP b

and the proof of the theorem is complete.

5s . ~
EXAMPLE 11.25 Let ¥(s) = F T a e 19 Tind L-1(X(s)).

Solution Here we have P(s) = Ss and Q(s) = s* + 1352 + 36, and the roots
of Q(s) occur at 0 = 2/ and 0 £ 3i. Computing the residues we find that

P 5(20) 1
. o) = = =5
ReslY, 2i] Ql(zl) 4(2’)3 — 26(2i) 2’ and
o PGH _ 5G) -1
Res(Y, 3i] = 0'(30) - 4037 — 26(30) o2

1 1
We find that A, + iB, = 5 + 0iand A; + iB; = —5 + 0i, which correspond

toa, + iby = 0 + 2i and a; + ib, = 0 + 3i, respectively. Thus we obtain

2(z3)(s — 0) — 2(0)2 + 20060203 s s
2+ 4 49 s£+4 $£4+9°

Y(s) =

and

- '(Y(s) = 2'( s ) - §£'(s, jr 9> = cos 2t — cos 3t
= 2
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. - ) A i
EXAMPLE 11.26 Find £-'(Y(s)) if Y(5) = AT

Solution The partial fraction expression for Y(s) has the form

D C) C, 2A(s — 0) — 2B(1)
Y(s) = — + + -+ =
s s+1 (s+ 1) (s—02+1°

Since the linear factor s is nonrepeated, we have

D = Res[¥(s), 0] = Ii s+ 37 -5+ 1
SRS = X )

Since the factor s + 1 is repeated, we have

.odsS+ 357 — s+ 1 o =38t 4483 —
C, = Res[Y(s), —1] = lim — =

8 = lim —————— = -2.
yo—1 ds s(s2+ 1) so-1 s2(s + 1)?

C; =R + DY 11=1 SHdostl
"> = Res][(s )Y (s), ]—xlrf’] s(s2 + 1) -

=2.
The term s> + 1 is an irreducible quadratic, with roots *i, so that

) . s+ 357 -5+ 1 1 -
A + iB = Res[Y, i] = lim = — = s
s S(s+ 1)(s + 1) 2

and we obtain A = 1 and B = — . Therefore,

Y(s)=1+ -2 =2 +2%(s—0)—2(—%)(1)
s s+1 (s+1)? (s—02+ 1°
12 2 s+ 1
Ts s+l s+ s2+10

Now we use Table 11.2 to get

wt)=1—2¢' —2te’ + cost+sint

EXAMPLE 11.27 Use Laplace transforms to solve the system

¥ () =yt — x() with y0) =1,
x'(1) = Sy() — 3x(t) x(0) = 2.

Solution Let Y(s) and X(s) denote the Laplace transforms of v(#) and x(f),
respectively. If we take the transforms of the two differential equations and get

sY(s) — 1 = Y(s) — X(s5),
sX(s) — 2 = 5Y(s) — 3X(s),

which can be written as

il

(s — DY) + X(s) = 1,
SY(s) — (s + 3)X(5) = —2.
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Cramer’s rule can be used to solve for Y(s) and X(s):

] 1

2 —s—3 —s—-3+2 s+ 1
Y(s) = L= _ ;
s—1 1 I s—I—5s—3)—-35 s+ 1D+ 1
5 -5 —3
s—1 I}
5 -2 —25 42— 2s + D) +
X(s) = = d 5. _ 2 L_l
s—1 1 ‘ = D=s=H=-5 (s+ D +1
5 —s—3

The solution is obtained by computing the inverse transforms:

¥(t) = e~'cos t,
x() = e (2 cost + sint).

According to equation (10) of Section 11.5, the inverse Laplace transform is
given by the integral formula

)+ oo

(13) fin =L NF6) =5 F(s)e" ds,
o= I

where 0y is any suitably chosen large positive constant. This improper integral is a
contour integral taken along the vertical line s = Oy + it in the complex s =
¢ + it plane. We shall show how the residue theory in Chapter 8 is used to evaluate
it. Cases where the integrand has either infinitely many poles or has branch points
is left for the reader to research in advanced texts. We state the following more
elementary result.

Theorem 11.22 (Inverse Laplace Transform) Ler F(s) = 5(—) where

P(s) and Q(s) are polynomials of degree m and n, respectively, and n > m.
The inverse Laplace transformation F(s) is f(t) given by

(14)  f(1) = L UF(5)) = Z Res[F(s)e”, 5],

where the sum is taken over all of the residues of the complex function F(s)e®.

Proof Let o, be chosen so that all the poles of F(s)e* lie to the left of the
vertical line s = ¢, + i1. Let T’ denote the contour consisting of the vertical line
segment between the points Gy iR and the left semicircle Cz: s = 0y + Re', where

T 3n
5= 6 < 5 as shown in Figure 11.27. A slight modification of the proof of Jor-

dan’s lemma will show that

1 _g_) 57 —
(15 llmf Q(veds 0.

Rses
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The residue theorem and equation (15) can now be used to show that

P-YUF(s)) = lim L O} e ds = X Res[F(s)e*, si),
R 2T JTr O(S)

and the proof of the theorem is complete.

T

o 00+iR
L
C
R
G
0 (03
—J G, -iR

0

FIGURE 11.27 The contour I' in the proof of Theorem 11.22.

Theorem 11.23 (Heaviside Expansion Theorem) Ler P(s) and Q(s) be
polynomials of degree m and n, respectively, where n > m. If Q(s) has n

. . , P(s) |
distinct simple zeros at the points sy, 52, . . . , 8, then a—; is the Laplace
s

transform of the function f(r) given by

PY\ & Plsp
16 = P —
(16) /1) (Q(s)) D TR

Proof 1If P(s) and Q(s) are polynomials and sy is a simple zero of Q(s), then
P(s) 5 — 5 P(sy)

Res| —= e¥ —_ l —_— 1z e oS0l
[Q( )¢ S‘i Mmoo = 00 T Ot

This allows us to write the residues in equation (14) in the more convenient form
given in equation (16).

EXAMPLE 11.28 Find the inverse Laplace transform of the function given
4s + 3

$+27+s5+2°

by F(s) =
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Solution Here we have P(s) = 45 + 3 and Q(s) = (s + 2)(s% + 1) so that
Q has simple zeros located at the points 5y = —2, 5 = i, and 53 = ~j. Using
P(-2)  -8+3
0'(-2) 12-8+1

Q'(s) = 352 + 45 + 1, calculation reveals that = —1 and

Pd) $4i+3 |

Q') -2t4i 2
P(—2 PGQ) . P(—i

f) = 22 gy 2Oy HD
0'(-2) Q') (-0
= —e ¥+ (F — D’ + (3 + e
it —it i =i
el + e 40 [4 e
2 2i
= —¢ ¥+ cost+ 2sint

* 1. Applying formula (16), we see that f(r) is given by

~it

= —e ¥ 4

EXERCISES FOR SECTION 11.9

For exercises 1-6, use partial fractions to find the inverse Laplace transform of Y(s).

25 + 1 25t — 524+ 45s - 6
1. Y(s) = A 2. Yis) = —
457 — 65 — 12 3 —5s2+65—6
3. Y = 4. Y L —————————————————
® = 5T o6 -2 ) G — 20
2t + 5+ 3 4 -3
5. Y(s) 6. Y(s) =

Tt 26— 1 2+ 45+ 5

7. Use a contour integral to find the inverse Laplace transform of Y(s) = = 2
2

s+ 3

8. Use a contour integral to find the inverse Laplace transform of ¥(5) = ————
(s — s+ 1)

For exercises 9-12, use the heaviside expansion theorem to find the inverse Laplace
transform of Y(s).

RETEE P42 - s 42

9, y(s)zs____s;_L_ 10. y(s)zs___f___i__
s — 8 5§ - S

s+ 35— s 4 1 345+ 5+ 3

1L ¥ ="—"— " 12, ¥g) = ———— "
5 =5 =5

£+ 27 +4d5+ 2

13. Find the inverse of Y(s) = ERE e

For problems 14-19, solve the initial value problem.

14. v'(H) + y(r) = 3 sin 2, with ¥(0) = 0 and y'(0) = 3

18, ¥"(6) + 2y'(1) + Sy(r) = de~', with y(0) = | and »'(0) = |
16. y'(H + 2y'(1) + 2y(#) = 2, with ¥(0) = 1 and »'(0) = 1

17. Y'(1) + 4y(1) = 5S¢/, with ¥(0) = 2 and y'(0) = |

18. Y'(1) + 2y'(1) + y(1) = t, with ¥(0) = —1 and ¥'(0) = 0

19. y'(1) + 3y'(6) + 2y(t) = 2t + 5, with (0) = | and ¥"(0) = |
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For problems 20-25, solve the system of differential equations.

20. x'(6) = 10y(1) — 5x(0), y' (&) = v(&) — x(#), with x(0) = 3 and y(0) = |
21, x'(1) = 2y(t) — 3x(8), v’ (1) = 2y(r) — 2x(1), with x(0) = 1 and ¥(0) = —1
22. xX'(n = 2x(t) + 3y(0), ¥'(H = 2x(1) + y(r), with x(0) = 2 and y(0) = 3
23. X'(8) = 4y(t) — 3x(t), ¥'(1) = (1) — x(£). with x(0) = —1 and y(0) = 0
24, X'(H) = 4y(t) — 3x(1) + 5, ¥ () = ¥() — x(r) + 1, with x(0) = 0 and y(0)
25. X'(0) = 8y(r) — 3x(1) + 2, ¥ (1) = ¥(1) — (1) — 1, with x(0) = 4 and ¥(O)

11.10 Convolution

Let F(s) and G(s) denote the transforms of f(r) and g(7), respectively. Then the
inverse of the product F(s)G(s) is given by the function i(z) = (f * g)(¢?) and is
called the convolution of f(t) and g(t) and can be regarded as a generalized product
of f(#) and g(r). Convolution will assist us in solving integral equations.

Theorem 11.24 (Convolution Theorem) Let F(s) and G(s) denote the
Laplace transforms of f(t) and g(t), respectively. Then the product given by
H(s) = F(5)G(s) is the Laplace transformation of the convolution of f and g
and is denoted by h(t) = (f = g)(1), and has the integral representation

M A =(f+)D= Lf('r)g(t — 7) dt, or
2y h@® = (g+=Hl) = Lg(’r)f(t — 1) dT.

Proof The following proof is given for the special case when s is a real
number. The general case is covered in advanced texts. Using the dummy variables
o and 7 and the integrals defining the transforms, we can express their product as

3) FGs) = [wa(o)e“’ dc][f: glr)e d’rjl.

The product of integrals in equation (3) can be written as an iterated integral:
@)  F()G6) = L [L flo)e—stern dc]g(’r) dr.

Hold ~ fixed and use the change of variables t = ¢ + 7 and df = do, then the inside
integral in equation (4) is rewritten to obtain

(5) F(s)G(s) = J’ ) [ f - e dt:lg(T) dr

0

- Lw [ff(z ~ T)g(m)e-* dz] dr.

The iterated integral in equation (5) is taken over the wedge-shaped region in the
(t, 7) plane indicated in Figure 11.28. The order of integration can be reversed to
yield:

6) F(s)G(s) = fo ) [ fo £t = Tygr)e d'r] dt.
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EXAMPLE 11.30 Use the convolution theorem to solve the integral equation

fiH=2cost —~ J:(t - ) f(1) dr.

. . 1, .
Solution Letting F(s) = L(f(») and using ¥(s) = = in the convolution
52
theorem we obtain

o=

1
= - F(s).
2
Solving for F(s) we get

253 2 2s
2+ 12 241 (s24 1)

F(s) =

and the solution is

flyy =2cost — tsint.

Engineers and physicists sometimes consider forces that produce large effects
that are applied over a very short time interval. The force acting at the time an
earthquake starts is an example. This leads to the idea of a unit impulse function
8(1). Consider the small positive constant a, then the function 8,(r) is defined by

I
- for0<t<a,

)

(8) 8,1 = .
0 otherwise.

The unit impulse function is obtained by letting the interval in equation (8) go to
Zero, i.e.,
9 8@ = lim 3.

a0
Figure 11,29 shows the graph of §,(r) for a = 10, 40, and 100. Although &(¢) is
called the Dirac delta function, it is not an ordinary function. To be precise it is a
distribution, and the theory of distributions permits manipulations of 6(¢) as though
it were a function. For our work, we will treat &(r) as a function and investigate its
properties.
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y=f) y=U 0

T Y — [ T — |
a | 2 | 2

FIGURE 11.30 The integral of 8,(¢) is /,(), which becomes Uy(f) when a — 0.

The response of a system to the unit impulse function is illustrated in the next
example.

EXAMPLE 11.32 Solve the initial value problem

Y1) 4+ 4v'(1) + 13y() = 38(r) with y(0) = 0 and y'(0-) = 0.

Solution Taking transforms results in (52 + 45 + 13)Y(s) = 3%8(8(0) = 3,
so that

3 B 3
sSTHds+ 13 (s + 22+ 37

Y(s) =

and the solution is

v(r) = e~ sin 3r.

Remark The condition y'(07) = 0 is not satisfied by the *‘solution”" y(r). Recall
that all solutions using the Laplace transform are to be considered zero for values
of t < 0. Hence the graph of y(1) is given in Figure 11.31. We see that y'(?) has a
jump discontinuity of magnitude +3 at the origin. This happens because either y(f)
or y'(f) must have a jump discontinuity at the origin whenever the Dirac delta func-
tion occurs as part of the input or driving function.

y

T T ,\/,7 1
-0.5 1 2
0.1

FIGURE 11.31 The solution y = y(t) to Example 11.32.
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The convolution method can be used to solve initial value problems. The
tedious mechanical details of problem solving can be facilitated with computer soft-
ware such as Maple™. Matlab™., or Mathematica™,

Theorem 11.25 (IVP Convolution Method) 7The unique solution to the
initial value problem

(13)  ay"(n) + by (1) + cy(t) = g() with ¥(0) = yy and y'(0) =

is given by

(14) ¥ = u®) + (h* g)0,

where u(t) is the solution to the homogeneous equation

(15)  au’(r) + bu'(r) + cu(t) = 0 with u(0) = vpand u'(0) = v,.

|

and h(t) has the Laplace transform given by H(s) = ————— .
as> + bs + ¢

Proof The particular solution is found by solving the equation
(16)  av'(n) + bv' (1) + cv(t) = glr) with v(0) = 0 and »'(0) = 0.
Taking the Laplace transform of both sides of equation (16) produces

(17)  as*V(s) + bsV(s) + cV(s) = G(s).

Solving for V(s) in equation (17) yields V(s) = G(s). If we set

as? + bs + ¢

H(s) = . then V(s) = H(s) G(s) and the particular solution is given by

as? + bs + ¢
the convolution
(18) vty = (h* g)0.

The general solution is () = u(f) + v(f) = u(r) + (h * g)(#). To verify that the
initial conditions are met we compute

¥(0) = u(0) + v(0) = yy + 0 = g,
and
YO =u' O+ vV =y, +0=1y,

and the proof of the theorem is complete.

EXAMPLE 11.33 Use the convolution method to solve the IVP
Y1) + ¥(r) = tan ¢ with ¥(0) = | and v'(0) = 2.
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Solution  First solve 1"(f) + u(r) = 0 with u(0) = 1 and »'(0) = 2. Taking
the Laplace transform yields s2U(s) — s ~ 2 + U(s) = 0. Solving for U(s) gives
s+ 2

5241

Us) = and it follows that

u(t) = cost + 2sint.

and A(f) = sin ¢t so that

1
Second, observe that H(s) = —
s+ 1

4

v(it) = (h* o)) = f sin(f — s) tan(s) ds

0
—_ (1 _Coss ) in(t — )] =
= [cos(t) In 1+ sins sin( g =
= cos(t) In| ———— | + si

cos(t) ln[1 T sin t] sin(?)

Therefore, the solution is

cos ¢t
y(t) = u(@) + v(t) = cost + 3sint + cos(t) In —; .
. 1+ sin¢

EXERCISES FOR SECTION 11.10

For exercises 1-6, find the indicated convolution.

1, t %! 2. t*xsint
3, ¢ xe” 4. sint = sin 2t

For exercises 5-8, use convolution to find £-'(F(s)).

_ 2 6 Fisy=2

5. F(s) = G- Do =2 . F(s) = 3
7. Fls) = ——— 8 Fis)= ————
s¢s>+ D) (s> + (s + )

9. Prove the distributive law for convolution: f'x (g + h) = fx g + f* g.
10. Use the convolution theorem and mathematical induction to show that

1 1
;;f—l = t”_l il
((s - a)”) m-1n

11. Find £~ ——). 12. Find -'( ——).
s—1 s+ 1
13. Use the convolution theorem to solve the initial value problem:

V() 4+ v = 2sint with y(0) = 0 and ¥y'(0) = Q.



14.

15.
17.
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Use the convolution theorem to show that the solution to the initial value problem
Y'( + wy(8) = f(), with y(0) = 0 and y'(0) = 0 is

¥ = -]-j f(7) sin[w(t — )] dT.
w J

Find Sf(j() e~"cos(t — T) d-r). 16. Find SL’(J; (t — 7)% d-r).

Let F(s) = &£(f(#)). Use convolution to show that

!
i'(@) = L_f(n') dr.

For exercises 18-21, use the convelution theorem to solve the integral equation.

18.

20.

4

flio+ 4 L (t =) f(r)dr =2 19. fiy = e + j & f(7) dr

0
t

fi)y =2t + L sin(f — 7) f(1) d7 21, 6f(n =288 + J; t — 3 f(z) dr

For exercises 22-25, solve the initial value problem.

22.
23.
24,
25.

V(1) — 2v'()) + Sy() = 28(), with ¥(0) = 0 and y'(0) = 0
Y1) + 2yv'() + ¥(t) = 8(r). with y(0) = 0 and y'(0) = 0

V(1) + 4v'() + 3y(6) = 28(r), with (0) = 0 and y'(0) = 0
V(1) + 4v'(1) + 3v(r) = 28(t — 1), with w(0) = 0 and y'(0) = 0

For exercises 26-29, use the IVP convelution method to solve the initial value problem.

26.

27.
28.

29.

V() = 2v' (1) + Sy(r) = 8 exp(—1) with ¥(0) = 1 and ¥'(0) = 2.
Y1 A+ 2v'(1) + ¥(1) = ¢ with y(0) = 1 and y'(0) = 2.

¥ + 4y’ + 3y(r) = 247 exp(—1¢) with y(0) = 1 and y'(0) = 2.
Y6y + 4y'() + 3y(t) = 2t exp(—1) with y(0) = 1 and ¥'(0) = 2.



Appendix A
Undergraduate Student
Research Projects

The following list of journal articles and books is appropriate for undergraduate students.
For this reason, several advanced and graduate-level textbooks have been omitted. Journal
references include those accessible to students, such as, American Mathematical Monthly,
Mathematics and Computer Education, and Two Year College Mathematics Journal.
Instructors should encourage their students regarding research in the mathematical
literature. The following list of topics is a starting point for either independent or group
research projects.

Analytic continuation: 4, 19, 46, 51, 52, 93, 106, 128, 129, 141, 145, and 166

Analytic function: 21, 39, 62, 72, 86, 155, and 161

Bieberbach conjecture: 49, 73, 108, 148, and 189

Bilinear transformation: 12, 23, 24, 30, 36, and 43

Cauchy integral formula: 13, 59, 107, 110, 118, 119, and 187

Cauchy-Riemann equations: 21, 39, 62, 72, 86, 155, and 161

Chaos: 11, 53, 54, 55, 57, 58. 142, and 168

Computer graphics: 33, 34, 109, and 146

Computer technology: 25, 28, 33, 34, 41, 57, 90, 92, 109, 110, 111, 120, 123, 130, 131,
133, 140, 146, 152, 160, 162, 174, and 185

Conformal mapping: 33, 34, 35, 37, 41, 47, 48, 75, 92, 93, 96, 130, 136, 146, 154, 159,
164, 176, 180, and 182

Construction of a regular pentagon: 114

Contour integral: 5, 16, 81, 82, and 157

Curvature: 12

DeMoivre’s formula: 103

Dirichlet problem: 70, 71, 76, 77, 85, 98, 135, and 138

Dynamical systems: 53, 54, 55, 58, and 143

Euler’s formula: 169

Fluid flow: 37, 46, 91, 98, 124, 141, 145, 158, and 166

Fourier transform: 15, 17, 69, 100, 149, and 159

Fractals: 7, 8,9, 11, 55, 57, 58, 78, 84, 101, 125, 126, 134, 139, 143, 167, 175, and 188

Fundamental theorem of algebra: 6, 18, 29, 38, 60, 66, 150, 151, 170, and 184

Geometry: 8, 26, 35, 78, 99, 114, 121, 123, 125, and 160

Harmonic function: 2, 14, 28, 61, 69, 70, 71, 76, 77. 85, 98, 111. 113, 131, 135, 138, 158,
and 165

History: 87, 105, and 179

Infinite products: 4, 19, 51, 129, 145, and 181

Joukowski transformation: 37, 46, 91, 98, 124, 141, 145, 158, and 166

Julia set: 144 and 177

Laplace transform: 17, 40, 69, 129, 149, 159, and 186

Liouville’s theorem: 117

Mandelbrot set: 31, 45, 56, 74, 125, 126, and 177

Mobius transformation: 12, 23, 24, 30, 36, and 43

Morera's theorem: 163

Partial fractions: 10 and 63

Poisson integral formula: 115

Polya vector field: 25, 26, 27, and 83

Pythagorean triples: 94 and 97

Quaternions; 1, 132, 147, and 173

456
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Residue theorem: 22, 116, and 153

Riemann mapping theorem: 4, 88, 106, 129, and 179

Riemann surface: 99, 128, and 129

Rolle’s theorem: 64 and 127

Roots: 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162, 171, 174, and 178

Rouche’s theorem: 68 and 172

Schwarz-Christoffel transformation: 93, 159, and 164

Series: 10, 83, 116, and 153

Teaching: 7, 11, 24. 27, 33, 43, 74, 84, 90, 101, 102, 103, 105, 114, 123, 134, 137, 160,
171, and 185

Trigonometry: 80

Winding number: 6, 51, 88, 141, and 166

Zeros: 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162. 171, 174, and 178



19.
20.

21.
22.

23.
24.

25.

26.
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Answers to Selected Problems

Section 1.1, The 0r|g|n of Complex Numbers: page 4

| _ _
3 x=- z’v’fz——z,h—T

Section 1.2, The Algebra of Complex Numbers: page 11
1. (@ 8—6i (©) 6—8 (e) 2+2i (g =Z+4H @ =+Y% ¢ -4
2. @ 1 © % @ 2 ® -y O a+y @ 3xy -y

5

2 3 7
8. +3 '———— —5)) = =+
2 i) 3 1(7 0N 72 74/

Section 1.3, The Geometry of Complex Numbers: page 16
1. (a) 6+diand—2+2i (¢) i2/3and2

2. (@ JI0 (b) V5 (© 22 (d) x*+)

4, (a) inside (b) outside

Section 1.4, The Geometry of Complex Numbers, Continued: page 23
1. (@ -m4 (¢) 2n/3 (e) —-mw3 (g -6

L

) -7 -7 .
2, (a) 4cosm+ isinm) =4de™ (¢) 7(cos —~ + isin 7) = Te~ ™2

1 1 v
(e 7((:05 % + isin %) =S¢ () S(cos 6 + isin 0) = 5",

where 6 = arctan %
3@ i (© 4+i4/3 (@ S2-iJ2 (g —¢&
6. Arg(iz) = Arg(z) + (n/2), Arg(—2) = Arg z — @, Arg{—iz) = Arg(z) — (W/2).
whenz = /3 +i.
11. All z except z = 0 and the negative real numbers.

Section 1.5, The Algebra of Complex Numbers, Revisited: page 28

2. (a) —16 —i16/3 (¢) —64

T 2nk 2wk
5 — 4+ — ]+ — 4+ — = .
\2cos ) 3) 1\/251n<4 3)fork 0,1.2
6. 242/, -2+%2i
k kn

8. 2 cos(—g- + —;) + 2 sin(% + 7) fork=20,1,2,3

1. | —2iand=2+i 14. #iand2zi

16. 2.3+ 2i —4i, —2/3+ 2i

Section 1.6, The Topology of Complex Numbers: page 36
2. (@) ziH=rt+itfor0=tr <1
b) z(ih=t+ifor0=r=1
d z()=2—-t+itfor0=r=]
3. (8 zip=r+irtfor0=r=2
¢) zin=1—t+i(l —p*for0=t=1
4, (a) z(t) =cost + isintfor—m/2 =t =72
(b) z(t) = —cost + isintfor w2 =1t==x2
5. (a) z(r)=cosr+isintforO=t=n/2
(b) zZ()=cost —isintfor0 =t = 3n2
7. The sets (a), (d), (e), (f). and (g) are open. 8. The sets (a)—(f) are connected.
9. The sets (a). (d), (e), and (f) are domains. 10. The sets (a)-(f) are regions.
11. The set (c)is a closed region. 12. The sets (c), (e), and (g) are bounded.
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Answers to Selected Problems

Section 2.1, Functions of a Complex Variable: page 40

1.
3.

6.
9.

10.

11.

13.

(@ 2-12i (b) 1-33i 2. (a) 74 —12i (b) 24 — 4i
] 1 2i

(@ 6+ é ® 5 - 3' 5. (a) 1028 — 984i

X+ 2x 4+ 3y — ¥ + i(=3x — 2xy + 2y)

ricos 50 + ricos 30 + i(r’sin 58 — risin 38)

@ 1 () e (o) T+i— (&) 74_{% () _%4_,%\/?
) —e°
(@ 0 (b) %lnz+%n (© +m3 (@@ 1n2+%t (e) ]1]2+%Tf
(H InS5 + jarctan ¥

iSw

@ 0 (b) 111\/'54-% (© In2+in @ In2+="

Section 2.2, Transformations and Linear Mappings: page 47

S bW

7.

(a) thehalfplanev>1—u 2. thelineu= -4+ 41, v=6— 31
(a) thcdisk|w——l—5i|<5
the circleu = -3 + 3 cost—4sint,v=8 + 4cost + 3sint
the triangle with vertices —5 — 2i and —6. 3 + 2i
g 3t2 T+
w = flz) T T

w=flz)=-52+3-2/ 8. w=fl))=—z+

Section 2.3, The Mappings w= z"and w = z"”; page 52

3.

4.
7.

the region in the upper half plane Im(w) > 0 that lies between the parabolas

u=4 — (v/16)and u = (v¥/4) — 1

the region in the first quadrant that lies under the parabola u = 4 — (v/16)

(a) the points that lie to the extreme right or left of the branches of the
hyperbola x* — v = 4

467

(b) the points in quadrant I above the hyperbola xy = 3, and the points in quadrant

11l below xy = 3
@ p>Lrneo<d<mn/4 (b) 1<p<30<d<n/3
(¢) p<2, —w2<o<m/4

the region in the w plane that lies to the right of the parabola u = 4 — (v/16)

the horizontal strip 1 <v < 8

(@ 1<p<8 -3nmMd<d<n (b)y p=>272n<¢<9n/4
(a) p<83md<o<m (c) p<64,3m/2<¢<2m

@ p>0,—n2<¢<n3 (¢) p>0, —w4<¢<Tnlb

Section 2.4, Limits and Continuity: page 58

1.
10.
12.
14.
15.
19.

-3+5 2 (5+3)/2 3. —4i 4 1-—4i 5 1-—3i
(@) ¢ (b) (-3+4)/5 (¢) 1 (d) Thelimit does not exist.
Yes. The limit is zero.

No. Arg z is discontinuous along the negative real axis.

(a) forallz (b) alizexcept:i (c) allzexcept —1and -2
No. The limit does not exist.
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Section 2.5, Branches of Functions: page 63
1. (a) thesectorp >0, /4 <o < /2 (b) thesectorp > 0,5n/4 < ¢ < 3n/2
(c) thesectorp >0, —n/4 < ¢ < w/4 (d) thesectorp >0, 3n/4 < ¢ < 5Sn/4
4. for example, f(z) = r'?cos(8/2) + ir'?sin(6/2). where r > 0,0 < 6 = 2n
§ (b) thesectorp >0, — /3 < ¢ =n/3
(¢) everywhere except at the origin and at points that lie on the negative x axis

Section 2.6, The Reciprocal Transformation w = 1/z: page 70

1. the circle |w +4i| =<4 3. thecircle \w + %I =1
5. thecircle |w — 1 +i| = /2 7. thecircle |w - %' =4

Section 3.1, Differentiable Functions: page 75
1. (a) fi(z)=1522—=8z+7 (¢) h'(z) =3/(z+ 2)forz = -2
3. Parts (a). (b), (e), (f) are entire, and (c) is entire provided that g(z) #* O for all z.
7. (@) —-4i (¢) 3 (e) —16

Section 3.2, The Cauchy-Riemann Equations: page 83
1. (©) u,=v,= -2y + Dandu, = —v, = ~2x. Then f'(2) = u, + iv, =
=2y + Iy + i2x

2, fl(zy=f(z) =e'cosy +iesiny 3. a=landb=2
4. flz)y =i/zand f(2) = —i/F?
5. u, = v, =2e"[vcos(y’ — x7) + xsin(y* — x9)],
u, = —v, = 2e>[x cos(y® — 1) — ysin(y’ — x7)]
6. (¢) u, = —e'sinx, v, = ¢'siny, u, = e'cos x, ~v, = —e’cos x. The Cauchy-

Riemann equations hold if and only if both sin x = 0 and cos x = 0, which
is impossible.
8 u,=v,=2x u,= 2y and v, = 2y. The Cauchy-Riemann equations hold if and

only if v = 0.
21 1 1 286 -1 -1
10. u, = nr_ - Clnr=—v,v,=—=—(=20) = —u,
r r r r r r

) 2
(@) =e®u + iv,]=—e"*Inr+ i0).
r

Section 3.3, Analytic and Harmonic Functions: page 92

3. fis differentiable only at points on the coordinate axes. f is nowhere analytic.
4. fis differentiable only at points on the circle |: = 2. fis nowhere analytic.
5. (a) fis differentiable inside quadrants I and III.  (b) fis analytic inside
quadrants I and HI.
8. ¢=-a 9. No.visnorharmonic.
10. (a) vix, v)=x" =3y (¢) ulx,y) = —e’cos x

12, Uix, ) = uolx, =), Undx, ¥) = un(x, =), Uy, ¥) = —ulx, —¥).
LI\'\'(X; V) = ”v"v"(x' _‘) Hence, U,v.\' + U\'\’ = Uyy + Uy = 0.

Section 4.1, Definitions and Basic Theorems for Sequences

and Series: page 108
1. (@ 0 (b) 1 (¢) i (d) ¢ 8 No. 12, Yes. 16. Yes.

Section 4.2, Power Series Functions: page 114
4. (@ R== () R=0 (¢) R=+

Section 5.1, The Complex Exponential Function: page 130
5. (b) Horizontal lines given by the equation y = k are mapped under f(2) = exp z
10 rays having angles 8 = k with the positive real axis. In the figure, the
horizontal lines are approximately given by y = —=7n/8, vy = n/4, and v =
3n/4.
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Section 5.2, Branches of the Complex Logarithm Function: page 137

(a)
(a)
(b)
(a)
(a)
(a)
(a)
(a)
()

2+in/2 (¢) In2 + 3mi/4

In3 + i(1 + 2Zmw, where n is an integer

In 4 + i(3 + 2nmn, where n is an integer

(eV/§/2)(l =17 (e) 1 +i(—1/2 + 2n)n, where n is an integer
2z -2 —-z+2) (by 1+1logz

In(x> + y¥?) = 2 Re(log 2). Hence it is harmonic. 14. (b) No.
No. The equation does not hold along the negative x axis.

A2y =1n |z + 2| + iarg(z + 2), where 0 < arg(z + 2) < 2n

hzy =1n |z + 2| + iarg(z + 2), where —7/2 < arg(z + 2) < 3n/2

Section 5.3, Complex Exponents: page 142

—

L. (@) cos(ln4) + isin(ln4) (b) e * [cos(n In/2) + i sin(n In /2))
(¢) cosl +isinl
2. (a) e "'2*¥7 where n is an integer
(b) cos[\/f(l + 2n)m) + i sin[\/Z_(] + 2n)r], where n is an integer
(e) cos(1 + 4n) + isin(l + 4n), where n is an integer
4. (-1 = 1ti -1+0 H? = -1 .l_+ l'_l_. /3
) V22 2T 2 Y
6. or ' cos(o. — 1B + ior*!sin(o — 1)8, where — 1 <9 <&
13. No. 1¢4*%# = eu2mcos b2nn + ie“"™'sin b2Rn, where n is an integer
Section 5.4, Trigonometric and Hyperbolic Functions: page 151
9. (a) cos(l +i)=coslcoshl —isinlsinhl (¢) sin2i = isinh2
m+2i\ 1+ isinhl
(e) tan 4 " cosh 1
10. (a) [-cos(1/2))/z2 (e) 2z sec z2tan z2
14. (a) z = (i2 + 2n)m + 4i, where n is an integer
() z=2n+iandz = (2n + 1)r — i, where n is an integer
23. (a) sinh(l + ix) = —sinh 1 (¢) cosh(4 — m) = COS},I_I - S""f.l
4 V2 V2
26. (a) z= (W/6 + 27n)i, and z = (5Sn/6 + 2mn)i, where n is an integer
27. (a) sinhz 4 zcoshz (¢) tanhz + zsech’z
Section 5.5, Inverse Trigonometric and Hyperbolic Functions:
page 156
1. (a) (++ 2mn+iln2, where » is an integer
(b) 2mn i 1n 3, where n is an integer
{c) (% + 2mn+iIn(3 + ZV/E), where 7 is an integer
(& =+ mn+iln 3, where nis an integer
2. {(a) i+ + 2mn, where n is an integer
(b) In2 + i2mn, and —In 2 + i(2n + 1)@, where n is an integer
(© (2 + 1)+ i+ + 2mmand In(2 — 1) + i(—% + 2n)n, where # is an
integer
(e) i(% + n)m, where n is an integer

Section 6.1, Complex Integrals: page 160

2-3i 2. -¥—-6/ 3 1 4 2-amctan2 —iln/5
28+ SV ~ 1+ (S22 — J2m8)

1.
5.
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Section 6.2, Contours and Contour Integrals: page 173
2. Ciozi)y=2cost+i2sintfor0 <t <m/2, Coza(t) = —t +i(2 — 1) for
0<r<2
3. Criz)=(=-2+n+itfor0=1r=<2 Crza(t)=t+2ifor0=<1t=<2,
Cizz() =2+iR —nDfor0<st <2
4. (a) The Riemann sum approximation simplifies to =2 V2 + 2 =
—0.828427.
(b} The exact value is ~% .
6. (@ 32 () n2 7. (@ -32i (b) —8ni 8 0 9. 32m 10. /i-2
11. 1 12, -1+2¢/3 15, —-4—m 16. —-2mi 17. 0 18. -2¢

Section 6.3, The Cauchy-Goursat Theorem: page 188
4. @ 0 (b) 2ni 5 (a) 4mi (b) 2mi 6. 4mi 7. 0
8. (@ mi/4 (b) -mi/d () 0 9. (@ 0 (b) -2mi 11. —4i/3 12. 0

Section 6.4, The Fundamental Theorems of Integration: page 194
1. 543 2 —1+i(n+2)2] 3. i—e 4. -76+i2
6. 2—i2sinh 1 7. (m/2e) — e> — i(e’m + 2/e) 9. —1 —sinh 1 + cosh 1
10. (172 — (sinh 2)/4] 11. In /2 — w4 + i(In /2 + w4 — 1)
13. In \/-]_6 —In2 + iarctan 3 = In \/5/2 + i arctan 3 or
In /572 + i(n/4 + arctan 1/2)

Section 6.5, Integral Representations for Analytic Functions: page 199
1. 4mi 2. m 3. —m/2 4. 2mi/3 6. —mi/3 7. 2m
9. 2mi/(n — 1)! 10. (a) -—-mwi/8 (b) e*im/64) 11. (m — im)/8

12. (@ n (b) —n 13. (a) irnsinhl! (b) insinhl 14, n/2

Section 6.6, The Theorems of Morera and Liouville and Some
Applications: page 206
. 4+ 1+dD+1=-dDz=1+dz=1-49) 2. z-1+2)z+2-1
3. @+Dz—-Dz-2+Dz-2-0 4 @E-Dz-1-dz-2-1)
7. (@ 18 (b) 5 (¢) 8 (d 4 8 1 +sinh22 9, |f‘3>(l)| <
31100 20 3 (10) 15

= — (3) — e —
=5 10 /Y0 < >

Section 7.1, Uniform Convergence: page 213
1. (b) SinceS,(x) =1—-x+x>—x*+ .-+ (1) 'x*}, and since the graph of
S,(x) is above that of f(x), the last term, x"~', must have an even exponent
(explain.), so the index must be odd.

Section 7.2, Taylor Series Representations: page 221
7. The series converges for all z € D»(1). 14, (a) f3(0) = 48

Section 7.3, Laurent Series Representations: page 230

1. (@ Z 7 for |z <1 (b) -> an” for |[z]| > 1
n=0 n=1

hnd ( 1 )n2..n+ 1,2n-3
2. _ > . _—

n=0 2n + 1) for |Z] =0 6 ,,Eﬂ (2n + 1)! 2n+ 1 for |Zl >0
7 had 2Z411—7 f - O
T S @2 |l

1 < (1 + 2)" = n(4)
% et 2 e tor o] <43, P for 2] > 4
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Section 7.4, Singularities, Zeros, and Poles: page 238
1. (a) zerosoforderdatti (c¢) simple zerosat —1 %/
(e) simple zeros at £i and 3/ _
2. (a) simple zeros at (V3 +0/2, (— /3 £0)/2, and +i
(¢) =zeros of order 2 at (1 £ i\@)/Z and —1 _
(e} simple zeros at (1 & VJ2and (-1 ¢ 0/ /2. and a zero of order 4 at the
origin
3. (a) poles of order 3 at i, and a pole of order 4 at |
(¢) simple poles at (/3 +i)/2, (— J3+0)/2. and +i
(e) simple poles at +./3; and i/ /3
4. (a) simple poles atz = nn forn = %1, £2, .
(¢) simplepolesatz =nnforn =+*1,+2,. . . ,and a pole of order 3 at
the origin
(e) simple poles at z = 2nni forn = 0. £1, £2. .
5. (a) removable singularity al the origin (¢) essential singularity at the origin
6. (a) removable singularity at the origin, and a simple pole at —1
(¢} removable singularity at the origin
7. (=1 —-0/16 8. —-1/4 9. 3
20. a nonisolated singularity at the origin
21. simple poles at z = I/nn forn = £1,£2,. . . ., and a nonisolated singularity
at the origin

Section 7.5, Applications of Taylor and Laurent Series: page 243
2. No.
3. Yes.
4. No.
7. b, £O0) = 0, £0) = 272

Section 8.2, Calculation of Residues: page 251

1. (@ 1 (b 8 (© 1 (& 5 2. (@ 1 (b) -+ (© 0 @ 1
3. (@ e (b) US! (e) 0 4 (@ + ) 4 (¢) 2

5. (m+im)8 6. (mw+ im)/2

7. (1 —cos2ni 8 i 9. 2nsinh! 10. (a) 0 (b) —4wif25
11. @ W3 (b We3 —iJ3 12. (@ -WEBJD) (b) n3J38
13. (a) w2 (b) -mi/6 14. mi/3 15, 2mif3

1 1 2 1 2 3
18. - — + - — =+
(@) z+ 1 +2 (b z+1 z-2 © <z z+4
v 2z 2 2 1 2
(d) (e)

-‘i + 1— 3
Z+4 Z+9 =1 @-D @-1

Section 8.3, Trigonometric Integrals: page 256
2, 2n/3 4. w3 6. 2n/9 8. 10m/27 10. 8m/4S 12, 10m/27 14. 4w/27

Section 8.4, Improper Integrals of Rational Functions: page 260
2. m4 4. n/18 6. w/4 8. w64 10. n/1S 12. 2n/3

Section 8.5, Improper Integrals involving Trigonometric Functions:
page 264

3n nfl 1 2 I cos 2
2 0andZ 4 = 6 — -) 8 TS a0 T 20 REES
e 16¢* 3\e 2 e e e

Section 8.6, Indented Contour Integrals: page 269
2.0 4 /3 6. w3 8 m(l-—sinl)y 10. + 12. w2sin2 - sinl)
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Section 8.7, integrands with Branch Points: page 273
2. n 4 wJ2 6. -w4 8. (Inada

Section 9.1, Basic Properties of Conformal Mapping: page 286
1. (b) all zexceptz = —;— + 2o (d) all zexceptz =0 (f) allzexceptz =1

2.

o
3. o
|-

|| I
[
Q
I
a
N
8|

N—-'—‘
TR v

5. o= —n/

zsmh1|—smhl(x"0|1| l:oc='rt/2,|isinhl|=sinh1

Section 9.2, Bilinear Transformations: page 294

2w+ 2 iw — i
1. SS'\w)y=————— 2. S w)=——— 3, thedisk [w| <1
57w 1+iHw -1+ (w) w+ 1 e s lw‘
T —iz+ i [ — iz
5. theset |w| >1 6. w=" - 7. w=—— 9, w=
z—i z+ 1 I +z
-6

. i | < =
11. thedisk |w| <1 12, 5/(85:2) = 213

13. the portion of the disk |w| < 1 that lies in the upper half plane Im(w) > 0

Section 9.3, Mappings Involving Elementary Functions: page 302
1. the portion of the disk |w| < I that Jies in the first quadrant u > 0, v > 0
2. {pe: 1 <p<2,0<¢<m2} 3. thehorizontal strip 0 < Im(w) < 1
4, {(u+ v O0<u<l, —n<v=mn} 9. thehorizontal strip 0 < Im(w) < mn
10. the horizontal strip /2 < Im(w) < &
12. the horizontal strip J v| < m slit along the ray u << 0, v = 0
13. =z + 1, w = Z'?, where the principal branch of the square root Z'* is used
15.  the unit disk |w]| < 1

Section 9.4, Mapping by Trigonometric Functions: page 308
1. the portion of the disk |w| < 1 that lies in the second quadrant u < 0, v > 0
3. the right branch of the hyperbola 11> — v2 = &
5. the region in the first quadrant « > 0, v > 0 that lies inside the ellipse

[#¥/(cosh?1)] + [v¥/(sinh?1)] = 1 and to the left of the hyperbola ¥® — 1= = -

7. (a) =®=/3 (b) —3m6
8. (a) 0.754249145 + i1.734324521 (¢) 0.307603649 — i1.864161544

10. the right half plane Re(w) > 0 slit along the ray v = 0, u > 1

12. the vertical strip 0 < u < n/2

14. the semi-infinite strip —7w/2 < u < /2, v > 0

16. the horizontal sitrip 0 < v < mx

Section 10.2, Invariance of Laplace’s Equation and the Dirichlet
Problem: page 321
1. 15-9 3. 5+@GMm2)ln|z]

5. 4- A4 N F LA D - —A 2 =4 = 2 Arctan —2
. 4 - = z+3)+ = z - —Argz -2 =4 - — :
b & .o & bid &l i rcanx+3

6 3
+ — Arctan — — Arctan
n T

x4+ 1
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B

-1 1 -1
6. — Arg(z> + 1) + — Arg(z? — 1) = — Arctan
R & ) n Bz ) T X2 =y + 1
1 2

+—-Arctan+
T x =yt =1
4 =2 -2
8. 8—;Arctan x 2

~1 1 -2z ) 1 -z -1 1 —x2 —
12. — Arg|+ + 1]+ — Arg|# — 1) = — Arctan d ;\ ,
T + T z n 2y + (1 + x)° +y?

1
+ — Arclan -
e 2y ~ (1 + 0% — 2

Section 10.3, Poisson’s Integral Formula for the Upper Half Plane:

page 326
. -1 2 4 42 v — 1 ; x+ 1 )
1. L]n (X )7 Y 42 Arctan y 1 Arctan —— + 1
2 (x + 1) +y? i x—1 n x+1
; x— 1)+ ) : y
2. < %—;L + = Arctan —— — = Arctan =
2n X+ ¥t i x =1 X

Section 10.5, Steady State Temperatures: page 336
2. 25450 +y) 4 60+ %Arg(il — Z) - ‘;—OArg(il . 1)

1+ 2 1+z

200 | 50
6. lOO-——ArctanL\————- 8 100 - —Argz
T 2y o

100 2
10. —n- Re(Arcsin ef) 12, 50 + —29 Re(Arcsin iz)

Section 10.6, Two-Dimensional Electrostatics: page 346

100 100 100
1. 100+Eln lz| 2. lOO——TC—Arg(z—l)——T—E—Arg(z+ 1)
200, 50 50
30150 - —— 2 Arg(sinz — 1) + > Arg(sinz + 1)
x- + y hid b

200 200
5. 50+ T Re(Arcsinz) 6. T Arg(sin 2)

Section 10.7, Two-Dimensional Fluid Flow: page 357
3. (a) Speed = A|Z|. The minimum speedis A|1 — i| = A2
(b) The maximum pressure in the channel occurs at the point 1 + /.
5. (a) Y(r. 0) = Ar¥?sin(36/2)

Section 10.10, Image of a Fluid Flow: page 382

-2
. w=(@E-D" 2. w= [z(1 — 292 + Arcsin z)
I-o —
3. w=(@- D1+ ] o—tza 4, w= ';—l"”z(z -3
ST
5. w= -1+ J‘»]ng
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Section 10.11, Sources and Sinks: page 392
2. Fioy=1log(z* - 1) 3. F(z) =log(sinz) 4. F(z) = log(sin 7)

5 ) 1 —(z+ 1"~ )
S. Foy=log{z2—1) 7. w=2z+ D"+ Logl ——————=|+in

1+ (z+ D=
v (z+ -1 , i+ (z+ DH#
8. w=4d(z+ )"+ Log| ————— | — i Log| —————
w=4z+ 1 og[( FRFTTI S T
1 1 1+
9. w=—Arcsinz + —Arcem—— + —

-+ 1)*/2]

10. w=2+ D" - L"g[l + @+ D"

Section 11.1, Fourier Series: page 403

4 Z sin[(2f — D)
1. =— > —
T
4 & (=1y-!'sin[(2j — D]
7. U@ =—
O=Z2 -1y
2 & sin[(2f — D] 4 & sin[2(27 — D]
9, = — _— - _— X =
un - FZ 27— 1 rt ,:21 2% - 1) where by, = 0 forall n

Section 11.2, The Dirichlet Problem for the Unit Disk: page 409
1. u(rcos®,rsin0) = ——i_’ﬁzﬂ[(zll_J

1 —

_ z (—1y- rZ/hljc:)sg(zj - 1)8]

3. u(rcos®, rsin ) =

Section 11.4, The Fourier Transform: page 422

~ sin w
1. FUm) =
W

1 — cos 2 sin? %V

o — w

3 WU = S =
Tw?

!

Section 11.5, The Laplace Transform: page 429
Ce oy (; [}

3. XU =— - -
6
3

7. LB -4+ 5)=

e 3
9. 20-3) = ——
ZL(e¥%) P

u-&mﬂv—%+§+2+i+l

sto8? s

1 1 .
13. Sf"(sz " 25) = ? sin 5t

6
17. 521(52 = 4) = 3¢"¥ + 3¢% = 6 cosh 2t

2
4 5

Rt A
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Section 11.6, Laplace Transforms of Derivatives and Integrals:

page 433
1. Pisi =
(sin 1) e
3 Lsint) = ————
(sm°1) s(s? + 4)
o gl 1 \__ 1,1,
s(s — 4) 4 4
9. ¥ = 2cos 3t + 3sin 37
11, ¥(1) = =2 + 2 cos 2t + sin 21
13. y(»=2+¢
1 3 . ,
15. y(n=-1- ?e" + ?e’ = —1 +sinht+ e
17. ¥ =e >+ ¢

Section 11.7, Shifting Theorems and the Step Function: page 437
1.

-1 ]
Lie — 1" = +
(e te") e P
Foy =9 |22 ~2cos 1
) = S +as+S cos
s+3 s i
Fs) =% e ~'cos t + e -'sin ¢
(( + °) ‘1
LU
f‘m‘
F(Ur (1) sin{t — 3m)) = En
» ]_2;»_,_2 2 _ e
L) = ¢ - el
) =5 4 —25
.:/?-'(5——"—> = Us(n + Uip
s
¥(r) = —e 'cost
¥(1) = 2¢7"%sin(4/2)
¥(1) = e !

vy =11 =8¢ — n/2)]sint + (1 — sin HU (1)

Section 11.8, Multiplication and Division by #: page 440

1.

3.

F(te-) = G 2r
Pt sin 3) = 2
(s* + 9)

. 2bs
F(rsin bt) = EEWEE

» VGRS _ 2¢ —cost)
7 1>2)) ,

v = + e !
vy = Cre'

vt = Ct

¥y =1-—-1

475
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Section 11.9, Inverting the Laplace Transform: page 447

25 + 1
Lo 2] =<1 +3¢
sts — 1)

g ﬁl“ﬁ) I
s(s + 2 — 2),

1 1
7. T‘( — 4) = < sin 2
§- Fa

9 ;ffl(_“';_J“ v oS 3) -

Bed

s =5
-3+ e +e ' +costr+sinf=—3+ 2cosht+ cost+ sin/
15, y() = e '+ ¢ 'sin 21
17. y(r) = e’ + cos 2r + sin 2t
19, v =1+1
21, x(=2e Y —¢

1) = e — 2
23, x(1)= —e + 2te!
Y1) = te

Section 11.10, Convolution: page 454

t
1. Y+ =—
(r=0 5
3. Fe' * ) = —¢ + e
5. # _2__> ot e
(s — Dis — 2)

7. 9"<—I——> =1 —cost
s(s= + 1)

1. y;—'(sj ]) = ¢ + 81

13. v(t) = —tcost +sint
! .
IS.EEJ.—**‘— S E—
< , € costt T d’T) 6T et D
1
19. F(s) = and fir) = e~
s—2
21, F(s) = r—— and Air) = —sint + sinh ¢
st -

23, ¥ =te’
25, v = (=" + el YU
27, v(1) = 120 — 961 + 36+ — 8+ ¢+ — 119¢~" — 21te’

) 7 -
29. ¥ = 3¢ T= 27 — e

“















Index

A

Absolute convergence, 99, 102, 107

Absolute value, 13, 15, 16

Addition of complex numbers, 5

Additive identity, 8

Additive inverse, 8

Airfoil, 360

d'Alembert's ratio test, 105, 111

Analytic function, 84, 85, 189
derivative formula, 78, 82
identity theorem for, 218
integral of, 189
maximum principle for, 202, 203
mean value principle for, 201
zeros of, 218, 234

Angle of inclination, 282, 370

Annulus, 224, 225

Antiderivative, 189, 192

Arc
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simple, 31, 160

smooth, 30, 161
Arc length, 167
arcsin z, 152, 154, 305, 307, 335
arctan(y/x), 18,92, 137, 314
arctan z, 152
Argument

of a complex number, 18

of a conjugate, 21

of a quotient, 21

principle value of, 19
Argument principle, 274
Argz, 19,132,314
Associative law

for addition, 8

for multiplication, 9

Attracting point, 121

B
Bernoulli's equation, 353
Bessel function, 114, 231
Bilinear transformation, 287, 313
conformal, 294
fixed point of, 294

implicit formula for, 289, 292



inverse of, 287
Binomial series, 221
Bombeli, Rafael, 2
Boundary
insulated, 334, 338
point, 33
value problem, 314, 316, 406
Bounded function, 205
Bounded set, 35
Branch
of Arcsin, 153
of a function, 60, 132
integral around, 270
of logarithm, 132, 133, 135
of square root, 48, 60
Branch cut, 61
Branch point, 62

integrands with, 270-72

C

Cardano, Girolamo, 1, 2

Cauchy, A. L., 76

Cauchy-Goursat theorem, 179, 186
Cauchy-Hadamard formula, 111

Cauchy principle value, 257, 261, 265, 270



Cauchy product of series, 220
Cauchy-Riemann equations, 77, 79, 82
in polar form, 82
Cauchy sequence, 98
Cauchy's inequalities, 204
Cauchy's integral formulas, 195, 197, 216
Cauchy's residue theorem, 245
Cauchy's root test, 111
Cayley, Arthur, 116
Chain rule, 74, 171, 281
Charged line, 40, 342, 385
Circle, 31, 33, 68, 169, 184, 288
of convergence, 110
equation of, 31, 169, 184
Closed
contour, 31, 160
curve, 31, 160
region, 35
set, 34
Commutative law
for addition, 8
for multiplication, 9
Comparison test for series, 101
Complex

conjugate, 10



derivative, 71

differential, 167
exponents, 138

Fourier series, 418
function, 38

infinity, 65

integral, 157, 164, 166, 168
plane, 12

potential, 328, 351, 385

variable, 38
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Complex number, 1

absolute value of, 13

argument of, 18

conjugate of, 10

exponential form, 20

imaginary part of, 10

modulus of, 13

polar form of, 18

powers of, 24, 138

real part of, 10

roots of, 26, 27
Conformal mapping, 281, 317, 333, 352

angle of inclination, 282, 370

applications of, 329, 342, 349

bilinear, 287, 289, 292

inverse, 285, 287

properties of, 282, 285

scale factor of, 285

Schwarz-Christoffel formula, 370
Conjugate

of complex number, 10

of harmonic function, 87, 90, 329



Connected set, 34, 120, 176
Continuity, equation of, 350
Continuous function, 56, 57, 73, 398
Contour, 160, 162

closed, 31, 160

deformation of, 183

indented, 265

integral along, 164, 166, 168

length of, 167

simple closed, 31, 160
Convergence

absolute, 99, 102, 107

circle of, 110

of power series, 102, 109, 111, 112

radius of, 103, 110, 111, 112

of sequences, 96

of series, 99, 100, 103, 107, 110, 111, 112, 215, 225

uniform, 208

Weierstrass M-test, 210
Convolution theorem, 448
Cosine

Fourier series, 400

function, 143, 144, 260

cos z, 143, 144, 260



Critical point, 283

Cubic equation, 1, 2

Curve, 30, 160, 167, 171
closed, 31, 160
equipotential, 90, 342, 351
exterior of, 33, 176
interior of, 33, 176
length of, 167
level, 93, 328
opposite, 162, 170, 177
orthogonal families of, 90, 328
simple, 31, 160
smooth, 30, 161

Cycle, 123

n-cycle, 123

D

d'Alembert's ratio test, 105, 111
Damped system, 414

Definite integral, 192
Deformation of contour, 183
De Moivre's formula, 25

De Morgan, Augustus, 4
Derivative

definition of, 71



of exponential function, 125, 130
of hyperbolic function, 149
implicit, 136
of inverse hyperbolic functions, 155
of inverse trigonometric functions, 153
of logarithm function, 134
normal, 334
rules for, 73, 112
of series, 112
of trigonometric functions, 143, 144
Differential, 167
Differentiation, 71, 73, 78
definition of, 71
implicit, 136
rules for, 73, 112
of series, 112
Diffusion, 329
Dipole, 93, 393, 394
Dirichlet problem, 314, 406
N-value, 314, 316
unit disk | z | < 1, 406
upper half plane, 314
Disk, 32

Distance between points, 14



Distributive law, 9
Divergence
of sequences, 96
of series, 99
Division of complex numbers, 7, 8
Domain, 34
of definition of function, 38
multiply connected, 176

simply connected, 176

E

eif, 19, 20

ez, 125,294

Elasticity, 329

Electrostatic potential, 40, 329, 342, 385
Entire function, 84, 205

Equation

Bernoulli's, 353



Cauchy-Riemann, 77, 79, 82
of circle, 31
of continuity, 350
of curve, 31
Laplace's, 85, 312, 336
of line, 30, 162
parametric, 31, 160, 167, 171, 380
Equipotential curves, 90, 342, 351
Equivalence of x + iy with (x, ), 4, 5, 10
Essential singularity, 233, 242
Euler, Leonard, 4
Euler's formula, 19
Exponential form of complex number, 20
Exponential function, 125, 130, 294
derivative of, 125, 130
fundamental period strip, 128, 295
inverse of, 128, 132
mapping by, 129, 294
period of, 128
exp z, 125, 294
Extended Cauchy-Goursat theorem, 186

Extended complex plane, 66
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Exterior, of curve, 33, 176

Exterior point, 33

F

Fatou, Pierre, 119

Ferro, Scipione del, 2

Fibonacci numbers, 222

Fixed point of
bilinear transformation, 294
a function, 121

Fluid flow, 89, 329, 349, 352, 360, 380
in a channel, 395
complex potential, 351, 385
about a cylinder, 355, 357
about Joukowski airfoil, 360
about a plate, 356, 360
through a slit, 359, 360
over a step, 381
velocity of, 89, 329
at a wall, 393, 394

Fontana, Niccolo, 1

Forced vibrations, 414

Fourier expansion, 399

Fourier integral, 261

Fourier series, 231, 397



cosine series, 400
expansion, 399
properties, 421
sine series, 400
Fourier transform, 418, 420
Fractal, 119
Fresnel integral, 222, 273
Function
analytic, 84, 85, 189
Bessel, 114, 231
bilinear, 287, 289, 292
bounded, 205
branch of, 48, 60, 132
complex, 38
continuous, 56, 57, 73
cosine, 143, 144
differentiable, 71, 77, 79, 82
domain of definition, 38
entire, 84, 205
exponential, 125, 130
harmonic, 85, 90, 199, 310, 407
hyperbolic, 144, 148
image of, 38, 63

implicit, 60, 289



integral of rational, 257

inverse of, 43, 152, 285

limit of, 53, 55, 57

linear, 43, 287

logarithmic, 132

meromorphic, 274

multivalued, 60

one-to-one, 41, 287

period of, 128, 145

principal value of, 48, 50, 60, 132

range of, 38, 62

rational, 257, 274

sine, 143, 144

stream, 351

tangent, 143

trigonometric, 143

zeros of, 25,205, 234
Fundamental period strip, 128, 295
Fundamental theorem

of algebra, 25, 205

of integration, 189, 192

G
Gauss, Karl Friedrich, 4, 5, 11

Gauss's mean value theorem, 201



Geometric picture of complex numbers, 3, 5
Geometric series, 103
Goursat

Cauchy's theorem, 179, 186

Green's theorem, 177

H

Hadamard, Cauchy, formula, 111

Harmonic conjugate, 87, 90, 329

Harmonic function, 85, 199, 310, 407
applications of, 90, 310, 406
conjugate of, 87, 329

maximum principle for, 207



Heat flow, 329, 330
Heaviside expansion theorem, 446
L'Hopital's rule, 74, 239, 248, 262
Hyperbolic functions, 144, 148
derivatives of, 149
identities for, 149

inverses of, 155

|
Ideal fluid, 89, 329, 349, 380
Identity theorem
for analytic function, 218
for series, 218
Image
of flow, 352, 360, 380
of function, 38, 60, 62
of source, 389
Imaginary
axis, 12
part of complex number, 1, 10
unit, 1,9

Implicit differentiation, 136

Implicit form of bilinear transformation, 289, 292
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Implicit function, 60, 289
Im (z), 10
Indefinite integrals
table of, 372
theorem of, 189
Indented contour integral, 265
Inequality
Cauchy's, 204
ML, 172
triangle, 15, 17, 171
Infinity, 66, 241, 287, 292
Initial point, 160
Insulated boundary, 334, 338
Integral
around branch points, 270
Cauchy principal value of, 257, 261, 265, 270
Cauchy's formula, 195, 197, 216
complex, 157
contour, 164, 166, 168
definite, 192
Fourier, 261
Fresnel, 222, 273
improper, 256, 257, 261

indefinite, 189



Leibniz's rule for, 197
line, 164, 166, 168
Poisson, 323, 407
of rational function, 257
representation for f(z), 195
table of indefinite, 372
theorem of indefinite, 189
trigonometric, 260, 261
Interior of curve, 33, 176
Interior point, 33
Invariance
of flow, 352, 380
of Laplace's equation, 312
Inverse of
bilinear transformation, 287, 289, 292
function, 41, 152, 285
hyperbolic function, 155
Laplace transform, 441, 445
sine function, 152, 154, 335
trigonometric functions, 152, 255, 335
Inversion mapping, 64
Irrotational vector field, 83, 89, 350
Isolated

point, 218



singularity, 232
zeros, 218
Isothermals, 329, 330

Iterates, 116

J

Jacobian determinant, 286
Jordan curve theorem, 35
Jordan's lemma, 262
Joukowski airfoil, 360
Julia, Gaston, 119

Julia set, 116, 120

L
Lagrange's identity, 29
Laplace's equation, 85, 312, 336, 406
invariance of, 314
in polar form, 93, 406
Laplace transform, 422
convolution, 448
of derivatives, 430
existence, 424
Heaviside expansion, 446
of integrals, 430
inverse, 441, 445

linearity, 425



properties, 424, 429

shifting theorem, 434

table of, 428

uniqueness, 425

unit step function, 434
Laurent series, 225, 244
Laurent's theorem, 225
Legendre polynomial, 200
Leibniz's rule, 197, 220

for integrals, 197

for series, 220
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Length of contour, 167
Level curves, 90, 328, 342, 351
L'Hopital's rule, 74, 239, 248, 262
Limit

of a complex function, 53, 55, 57

at infinity, 66, 70

of a sequence, 96

superior, 106, 111, 115
Line

of charge, 40, 342, 385

equation of, 30, 162

of flux, 329, 342

heat flow, 329, 330

integral, 164, 166, 168
Linear

approximation, 281

fractional transformation, 287, 289, 292

transformation, 42, 287
Lines of flux, 293, 329, 342
Liouville's theorem, 205
Logarithmic function

branch of, 132, 133



derivative of, 134
mapping by, 133, 135, 297
principal value of, 132
Riemann surface, 137
Logz, 132, 221, 232, 297

LRC circuit, 150

M
Maclaurin series, 214, 219
Magnetism, 329
Magnification, 43, 285
Mandelbrot, Benoit, 120
Mandelbrot set, 116, 121
MapleTM, 254, 266
Mapping
bilinear, 287, 289, 292
conformal, 281, 317, 333, 352
by exp z, 129, 294
linear, 42, 287
by Log z, 133, 135, 297
Mabius, 287, 289, 292
one-to-one, 41, 287
by 1/z, 64
by sin z, 305

by trigonometric functions, 303



by zn, 47, 51, 285, 298
by z1/n, 47, 49, 52, 61, 63, 299
MathematicaTM, 254, 266
Mathematical models, 327, 342, 349, 385
electrostatics, 342, 385
ideal fluid flow, 89, 349, 380, 384
steady state temperatures, 329
Maximum principle
for analytic functions, 202, 203
for harmonic functions, 207
Mean value principle
for analytic functions, 201
Mechanical systems, 412
Meromorphic function, 274
ML inequality, 172
Mobius transformation, 287, 289, 292
Modulus, 13, 15, 16, 88, 202, 207
Morera's theorem, 201
M-test, 210
Multiplication of complex numbers, 6
Multiplicative inverse, 9
Multiply connected domain, 176

Multivalued function, 60



N
n-cycle, 123
Negative orientation, 162, 170, 177
Neighborhood, 32, 54, 84
Newton's method, 11618
Normal derivative, 334
nth root, 26, 27
principal value of, 51
N-value Dirichlet problem, 314, 316

Nyquist stability criterion, 277

o
One-to-one function, 41, 287
/2,9, 64
Open
disk, 32
neighborhood, 32, 54, 84
set, 34
Opposite curve, 162, 170, 177
Order of
pole, 233
zero, 234
Orientation, 31, 33, 160, 162, 170, 177

Orthogonal families of curves, 90, 328, 329, 342, 351



P
Parameterization of curve, 31, 160, 167, 171
Parametric equations, 31, 160, 167, 380
Partial fractions, 186, 249
Partial sums, 99
Path, 160, 168
Path of integration, 164, 166, 168
Period of function, 128, 145
Period strip, 128, 295
Piecewise continuous, 398
Point at infinity, 66
Poisson integral formula
unit disk, 407

upper half plane, 323
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Poisson kernel, 408
Polar coordinates, 18
Polar form of
Cauchy-Riemann equations, 82
complex number, 18
Laplace's equation, 93
Pole, 6,233,274
of order k, 233, 236, 237, 241, 247, 274
residue at, 247
simple, 237, 247
at singular point, 233
Polynomial
coefficients of, 29
factorization of, 206
Legendre, 200
roots of, 25, 205, 206
zeros of, 29, 205, 206
Positive orientation, 31, 33, 162, 170, 177
Potential, 90, 328
complex, 328, 351, 385
electrostatic, 40, 329, 342, 385

velocity, 329, 349, 351, 353



Powers, 24, 138
complex, 138
De Moivre's formula for, 25
rational, 140
Power series, 102, 109
Cauchy product of, 220
convergence of, 109, 111, 112
differentiation of, 112
division of, 240
multiplication of, 220
radius of convergence of, 109, 111, 112
uniqueness of, 218
Principal branch of
Argz, 19
log z, 132
square root, 48, 60
zc, 138
z1/n, 51
Principal nth root, 48, 51, 60
Principal value of
argz, 19
definite integrals, 257, 261, 265, 270
log z, 132

Principle



maximum, for harmonic functions, 207

maximum modulus, for analytic functions, 202, 203
Product of series, 220
Projects, 456

Punctured disk, 32

Q

Quotient
of numbers, 7, 8
of series, 240

R

Radius of convergence of power series, 109, 111, 112

Range of function, 38, 62

Rational function, 257, 274

Ratio test, 105, 111

Real axis, 12

Reciprocal transformation, 64

Region, 35

Removable singularity, 233

Reparameterization, 171

Research projects, 456

Residue, 244, 247
applications of, 257, 260, 261, 265, 270
calculation of, 247

at poles, 247



at singular points, 244
theorem, 245
Response, 415
Re (2), 10
Riemann
mapping theorem, 308
sphere, 66
sum, 16365
surface for log z, 137

surface for z1/2, 63

surface for JZ -_-]., 301
theorem of, 241
Risch-Normal algorithm, 254
RLC circuit, 150
Root
of numbers, 26, 27
test for series, 107, 111
of unity, 26
Rotation transformation, 43

Rouche's theorem, 275

S
Scale factor, 285
Schwarz-Christoffel

formula, 370



theorem, 370
transformation, 370
Sequence, 96
Cauchy, 98
Series
binomial, 221
comparison test, 101
convergence of, 99, 107, 111, 112, 215, 225
differentiation of, 112
divergence of, 99
Fourier, 231, 397
geometric, 103
identity theorem for, 218

Laurent, 225, 244
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Maclaurin, 214, 219

power, 102, 109
product of series, 220
quotient of series, 240
ratio test for, 105, 111
representation of f{z), 109, 214
Taylor, 214, 215, 217
uniqueness of, 218
Simple
closed curve, 31, 160
pole, 237, 247
zero, 234
Simply connected domain, 176
Sine
Fourier series, 400
function, 143, 144, 260, 305
inverse of, 152, 154
Singular point, 84, 232
essential, 233, 242
isolated, 232, 244
pole at, 233

removable, 233



residue at, 247
Sink, 385
sin z, 143, 144, 260, 305
Smooth curve, 30, 161
Solenoidal vector field, 83
Source, 385
image of, 389
Sphere, 66
Square root, 48, 50, 60, 299
branch of, 60
principal, 48, 60
Riemann surface, 63
Steady state
part, 415
temperatures, 329
Stereographic projection, 66
Streamlines, 90, 329, 351
Strip, period, 128, 295
Student research, 456
Subtraction of complex numbers, 6

Sum, partial, 99

T
Table

of integrals, 372



of Laplace transforms, 428
Tangent vector, 161, 281, 370
tan z, 143, 148, 304
Tartaglia, 1, 2
Taylor series, 214, 215,217
Taylor's theorem, 215
Temperature, steady state, 329
Terminal point, 160
Transformations

bilinear, 287, 289, 292

composition, 295, 304

conformal, 281, 317, 333, 352

by exp z, 294

Fourier, 418, 420

inversion, 64

Laplace, 424

linear, 42, 287

by log z, 133, 135, 297

Mobius, 287, 289, 292

by 1/z, 64

reciprocal, 64

rotation, 43

Schwarz-Christoffel, 370

by sin z, 305



by trigonometric functions, 303
by zn, 47, 51, 285, 298
by z1/n, 47, 49, 52, 61, 63, 299
Transient part, 415
Translation, 42
Triangle inequality, 15, 17
for integrals, 171
Trigonometric functions, 143
derivatives of, 143, 144
identities for, 146
integrals of, 25254, 26062
inverses of, 152, 154, 335
mapping by, 303
zeros of, 145
Two-dimensional
electrostatics, 342, 385
fluid flow, 89, 349, 380, 385

mathematical models, 327, 342, 349, 385

U

Unbounded set, 35

Undamped, 412

Uniform convergence, 208
Uniqueness of power series, 218

u(x, y), 38,77, 79, 157, 329



v
Veblen, Oswald, 35
Vector field
irrotational, 83, 350
solenoidal, 83
Vector form of a complex number, 12
Velocity
of fluid, 89, 349, 351, 353
potential, 351
Vibrations in mechanical systems, 412
Damped system, 414
Forced, 414

v(x, ), 38,77, 79, 157, 329
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Y
Wallis, John, 3, 5
Weierstrass M-test, 210

Winding number, 277

4

zn, 24, 47

zl/n, 26, 27, 51

zc, 138

1/z, 9, 64

Zero
of a function, 25, 205, 234, 274
isolated, 218, 274
of order k, 234, 236, 274
of polynomial, 25, 29, 205, 206
simple, 234
of trigonometric function, 145

Z-transform, 232
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