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Preface 

Approach This text is intended for undergraduate students in mathematics, 
physics, and engineering. We have attempted to strike a balance between the pure 
and applied aspects of complex analysis and to present concepts in a clear writing 
style that is understandable to students at the junior or senior undergraduate level. 
A wealth of exercises that vary in both difficulty and substance gives the text flex­
ibility. Sufficient applications are included to illustrate how complex analysis is 
used in science and engineering. The use of computer graphics gives insight for 
understanding that complex analysis is a computational tool of practical value. The 
exercise sets offer a wide variety of choices for computational skills, theoretical 
understanding, and applications that have been class tested for two editions of the 
text. Student research projects are suggested throughout the text and citations are 
made to the bibliography of books and journal articles. 

The purpose of the first six chapters is to lay the foundations for the study of 
complex analysis and develop the topics of analytic and harmonic functions, the 
elementary functions, and contour integration. If the goal is to study series and the 
residue calculus and applications, then Chapters 7 and 8 can be covered. If con-
formal mapping and applications of harmonic functions are desired, then Chapters 
9 and 10 can be studied after Chapter 6. A new Chapter 11 on Fourier and Laplace 
transforms has been added for courses that emphasize more applications. 

Proofs are kept at an elementary level and are presented in a self-contained 
manner that is understandable for students having a sophomore calculus back­
ground. For example, Green's theorem is included and it is used to prove the 
Cauchy-Goursat theorem. The proof by Goursat is included. The development of 
series is aimed at practical applications. 

Features Conformal mapping is presented in a visual and geometric manner so 
that compositions and images of curves and regions can be understood. Boundary 
value problems for harmonic functions are first solved in the upper half-plane so 
that conformal mapping by elementary functions can be used to find solutions in 
other domains. The Schwarz-Christoffel formula is carefully developed and appli­
cations are given. Two-dimensional mathematical models are used for applications 
in the area of ideal fluid flow, steady state temperatures and electrostatics. Computer 
drawn figures accurately portray streamlines, isothermals, and equipotential curves. 

New for this third edition is a historical introduction of the origin of complex 
numbers in Chapter 1. An early introduction to sequences and series appears in 
Chapter 4 and facilitates the definition of the exponential function via series. A new 
section on the Julia and Mandelbrot sets shows how complex analysis is connected 

ix 
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to contemporary topics in mathematics. Many sections have been revised including 
branches of functions, the elementary functions, and Taylor and Laurent series. New 
material includes a section on the Joukowski airfoil and an additional chapter on 
Fourier series and Laplace transforms. Modern computer-generated illustrations 
have been introduced in the third edition including: Riemann surfaces, contour and 
surface graphics for harmonic functions, the Dirichlet problem, streamlines in­
volving harmonic and analytic functions, and conformal mapping. 
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1 

Complex 
Numbers 

1.1 The Origin of Complex Numbers 

Complex analysis can roughly be thought of as that subject which applies the ideas 
of calculus to imaginary numbers. But what exactly are imaginary numbers? Usu­
ally, students learn about them in high school with introductory remarks from their 
teachers along the following lines: "We can't take the square root of a negative 
number. But, let's pretend we can—and since these numbers are really imaginary, 
it will be convenient notationally to set i = v ^ ^ " Rules are then learned for doing 
arithmetic with these numbers. The rules make sense. If i = >/--T, it stands to reason 
that i2 = -1. On the other hand, it is not uncommon for students to wonder all 
along whether they are really doing magic rather than mathematics. 

If you ever felt that way, congratulate yourself! You're in the company of 
some of the great mathematicians from the sixteenth through the nineteenth centu­
ries. They too were perplexed with the notion of roots of negative numbers. The 
purpose of this section is to highlight some of the episodes in what turns out to be 
a very colorful history of how imaginary numbers were introduced, investigated, 
avoided, mocked, and, eventually, accepted by the mathematical community. We 
intend to show you that, contrary to popular belief, there is really nothing imaginary 
about "imaginary numbers" at all. In a metaphysical sense, they are just as real as 
are "real numbers." 

Our story begins in 1545. In that year the Italian mathematician Girolamo 
Cardano published Ars Magna (The Great Art), ZL 40-chapter masterpiece in which 
he gave for the first time an algebraic solution to the general cubic equation 

x3, + ax2 + bx + c = 0. 

His technique involved transforming this equation into what is called a depressed 
cubic. This is a cubic equation without the x2 term, so that it can be written as 

x3 + bx + c = 0. 

Cardano knew how to handle this type of equation. Its solution had been 
communicated to him by Niccolo Fontana (who, unfortunately, came to be known 
as Tartaglia—the stammerer—because of a speaking disorder). The solution was 
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2 Chapter 1 Complex Numbers 

also independently discovered some 30 years earlier by Scipione del Ferro of Bo­
logna. Ferro and Tartaglia showed that one of the solutions to the depressed cubic 
is 

K J V 2 V4 27 \ 2 V 4 27 

This value for x could then be used to factor the depressed cubic into a linear term 
and a quadratic term, the latter of which could be solved with the quadratic formula. 
So, by using Tartaglia's work, and a clever transformation technique, Cardano was 
able to crack what had seemed to be the impossible task of solving the general cubic 
equation. 

It turns out that this development eventually gave a great impetus toward the 
acceptance of imaginary numbers. Roots of negative numbers, of course, had come 
up earlier in the simplest of quadratic equations such as x2: + 1 = 0. The solutions 
we know today as x = ±7~^~» however, were easy for mathematicians to ignore. 
In Cardano's time, negative numbers were still being treated with some suspicion, 
so all the more was the idea of taking square roots of them. Cardano himself, al­
though making some attempts to deal with this notion, at one point said that quan­
tities such as ^--1 were "as subtle as they are useless." Many other mathematicians 
also had this view. However, in his 1572 treatise Algebra, Rafael Bombeli showed 
that roots of negative numbers have great utility indeed. Consider the simple de­
pressed cubic equation JC3 — 15JC — 4 = 0. Letting b = —15 and c = —4 in the 
"Ferro-Tartaglia" formula (1), we can see that one of the solutions for x is 

Bombeli suspected that the two parts of x in the preceding equation could be 
put in the form u + v 7 ~ l and — u + vJ—\ for some numbers u and v. Indeed, 
using the well-known identity {a + b)3 = a3 + 3a2b + 3ab2 + b3

9 and blindly 
pretending that roots of negative numbers obey the standard rules of algebra, we 
can see that 

(2) (2 + y ^ T ) 3 = 23 + 3(22) v ^ T + 3(2)0 
= 8 + 1 2 7 ^ 1 - 6 -
= 2 + l l v ^ T 
= 2 + 7 - 1 2 1 . 

Bombeli reasoned that if (2 + 7 - T ) 3 = 2 + 7 - 1 2 1 , it must be that 2 + 7 ~ T 
= Ijl + 7 - 7 2 L Likewise, he showed - 2 + 7 ^ 1 = ^ - 2 + 7 - 1 2 1 . But then 
we clearly have 

(3) Ul + J^UA - ^-2 + T 1 7 !^ = (2 + T 3 ! ) - (-2 + T^T) = 4, 

and this was a bit of a bombshell. Heretofore, mathematicians could easily scoff at 
imaginary numbers when they arose as solutions to quadratic equations. With cubic 
equations, they no longer had this luxury. That x = 4 was a correct solution to the 
equation x3 — 15* — 4 = 0 was indisputable, as it could be checked easily. However, 
to arrive at this very real solution, one was forced to detour through the uncharted 
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territory of ''imaginary numbers." Thus, whatever else one might say about these 
numbers (which, today, we call complex numbers), their utility could no longer be 
ignored. 

But even this breakthrough did not authenticate complex numbers. After all, 
a real number could be represented geometrically on the number line. What possible 
representation could these new numbers have? In 1673 John Wallis made a stab at 
a geometric picture of complex numbers that comes close to what we use today. He 
was interested at the time in representing solutions to general quadratic equations, 
which we shall write as x2 + 2bx + c2 = 0 so as to make the following discussion 
more tractable. Using the quadratic formula, the preceding equation has solutions 

x — -b- Jb2 and = -fc + JW 
Wallis imagined these solutions as displacements to the left and right from 

the point —b. He saw each displacement, whose value was Jb2 — c2, as the length 
of the sides of the right triangles shown in Figure 1.1. 

P] (-/7,0) P2 (0,0) 

FIGURE 1.1 Wallis' representation of real roots of quadratics. 

The points Pi and P2 in this figure are the representations of the solutions to 
our equation. This is clearly correct if b2 — c2 > 0, but how should we picture Pi 
and P2 in the case when negative roots arise—i.e., when b2 — c2 < 0? Wallis 
reasoned that if this happened, b would be less than c, so the lines of length b in 
Figure 1.1 would no longer be able to reach all the way to the x axis. Instead, they 
would stop somewhere above it, as Figure 1.2 shows. Wallis argued that P\ and P2 

should represent the geometric locations of the solutions x = — b — Jb2 — c2 and 
x = — b + Jb2 — c2 in the case when b2 — c2 < 0. He evidently thought that since 
b is shorter than c, it could no longer be the hypotenuse of the right triangle as it 
had been earlier. The side of length c would now have to take that role. 

(-b, 0) (0, 0) 

FIGURE 1.2 Wallis' representation of nonreal roots of quadratics. 
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Wallis' method has the undesirable consequence that — J— 1 is represented 
by the same point as is J^X. Nevertheless, with this interpretation, the stage was 
set for thinking of complex numbers as ''points in the plane." By 1800, the great 
Swiss mathematician Leonard Euler (pronounced "oiler") adopted this view con­
cerning the n solutions to the equation xn — 1 = 0. We shall learn shortly that these 
solutions can be expressed as cos 6 + J^-\ sin 6 for various values of 6; Euler 
thought of them as being located at the vertices of a regular polygon in the plane. 
Euler was also the first to use the symbol i for V^T. Today, this notation is still 
the most popular, although some electrical engineers prefer the symbol j instead so 
that i can be used to represent current. 

Perhaps the most influential figure in helping to bring about the acceptance of 
complex numbers was the brilliant German mathematician Karl Friedrich Gauss, 
who reinforced the utility of these numbers by using them in his several proofs of 
the fundamental theorem of algebra (see Chapter 6). In an 1831 paper, he produced 
a clear geometric representation of x 4- iy by identifying it with the point (x, y) in 
the coordinate plane. He also described how these numbers could be added and 
multiplied. 

It should be noted that 1831 was not the year that saw complex numbers 
transformed into legitimacy. In that same year the prolific logician Augustus De 
Morgan commented in his book On the Study and Difficulties of Mathematics, "We 
have shown the symbol J^a to be void of meaning, or rather self-contradictory 
and absurd. Nevertheless, by means of such symbols, a part of algebra is established 
which is of great utility." To be sure, De Morgan had raised some possible logical 
problems with the idea of complex numbers. On the other hand, there were sufficient 
answers to these problems floating around at the time. Even if De Morgan was 
unaware of Gauss' paper when he wrote his book, others had done work similar to 
that of Gauss as early as 1806, and the preceding quote illustrates that "raw logic" 
by itself is often insufficient to sway the entire mathematical community to adopt 
new ideas. Certainly, logic was a necessary ingredient in the acceptance of complex 
numbers, but so too was the adoption of this logic by Gauss, Euler, and others of 
"sufficient clout." As more and more mathematicians came to agree with this new 
theory, it became socially more and more difficult to raise objections to it. By the 
end of the nineteenth century, complex numbers were firmly entrenched. Thus, as 
it is with any new mathematical or scientific theory, the acceptance of complex 
numbers came through a mixture of sociocultural interactions. 

But what is the theory that Gauss and so many others helped produce, and 
how do we now think of complex numbers? This is the topic of the next few sections. 

EXERCISES FOR SECTION 1.1 
1. Give an argument to show that - 2 + y^T = ^/-2 + , / -121. 
2. Explain why cubic equations, rather than quadratic equations, played the pivotal role in 

helping to obtain the acceptance of complex numbers. 
3. Find all solutions to 27x3 - 9x — 2 = 0. Hint: Get an equivalent monic polynomial, 

then use formula (1). 
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4. By inspection, one can see that a solution to x3 - 6x + 4 = 0 is x = 2. To get an idea 
of the difficulties Bombeli had in establishing identities (2) and (3) in the text, try to 
show how the solution x = 2 arises when using formula (1). 

5. Explain why Wallis' view of complex numbers results in - ^ ^ 1 being represented by 
the same point as is y/--\. ' 

6. Is it possible to modify slightly Wallis' picture of complex numbers so that it ii con­
sistent with the representation we use today? To assist in your investigation of this 
question, we recommend the following article: Norton, Alec, and Lotto, Benjamin, 
"Complex Roots Made Visible," The College Mathematics Journal, Vol. 15 (3), June 
1984, pp. 248-249. 

7. Write a report on the history of complex analysis. Resources include bibliographical 
items 87, 105, and 179. 

1.2 The Algebra of Complex Numbers 

We have seen that complex numbers came to be viewed as ordered pairs of real 
numbers. That is, a complex number z is defined to be 

(1) z = (x,y), 

where x and y are both real numbers. 
The reason we say ordered pair is because we are thinking of a point in the 

plane. The point (2, 3), for example, is not the same as (3, 2). The order in which 
we write x and v in equation (1) makes a difference. Clearly, then, two complex 
numbers are equal if and only if their x coordinates are equal and their y coordinates 
are equal. In other words, 

(x, y) = (w, v) iff x = u and y = v. 

(Throughout this text, iff means if and only if.) 
If we are to have a meaningful number system, there needs to be a method for 

combining these ordered pairs. We need to define algebraic operations in a consis­
tent way so that the sum, difference, product, and quotient of any two ordered pairs 
will again be an ordered pair. The key to defining how these numbers should be 
manipulated is to follow Gauss' lead and equate (x, y) with x + iy. Then, by letting 
Z\ = (xi,y\) and z2 = (x2, y2) be arbitrary complex numbers, we see that 

z\ + zi = (xuy{) + (x2,y2) 

= (*\ + iy\) + to + iyi) 

= (*\ + *2) + Ky\ + yi) 

= (*\ + *2. y\ + yi)-

Thus, the following should certainly make sense: 

Definition for addition 

(2) Z\ + z2 = (xuyi) + (x2,y2) 

= (*, + x2, y\ + yi)-
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Definition for subtraction 

(3) z\ - z2 = (xuyi) ~ (x2,y2) 
= (x{ - x2, y\ - y2). 

E X A M P L E 1.1 If Z\ = (3, 7) and z2 = (5, - 6 ) , then 

z\ + zi - (3, 7) + (5, - 6 ) = (8, 1) and 
zx - 2 2 = ( 3 , 7 ) - ( 5 , - 6 ) = (-2,13). 

At this point, it is tempting to define the product z\Zi as Z\Zt = {xxx2, yiyi)- It 
turns out, however, that this is not a good definition, and you will be asked in the 
problem set for this section to explain why. How, then, should products be defined? 
Again, if we equate (JC, y) with x + iy and assume, for the moment, that i - V-l 
makes sense (so that i2 = -1), we have 

z\Zi = (xu yi)(x2, y2) 
= (x[ + iy\)(x2 + iy2) 
= xxx2 + ixxy2 + ixzyi + i2y\y2 

= x{x2 - y{y2 + i(xiy2 + x2yx) 
= (x\x2 - yiy2, xxy2 + x2yx). 

Thus, it appears we are forced into the following definition. 

Definition for multiplication 

(4) z\z2 = (xu yx)(x2, y2) 
= (x{x2 - ^,y2, xiy2 + x2y{). 

E X A M P L E 1.2 If Z\ = (3, 7) and z2 = (5, - 6 ) , then 

ziz2 = (3, 7)(5, - 6 ) = (15 + 42, - 1 8 + 35) = (57, 17). 

Note that this is the same answer that would have been obtained if we had used the 
notation z\ — 3 + li and z2 = 5 — 6/. For then 

zizi = (3, 7)(5, - 6 ) 
= (3 + 7/)(5 - 6/) 
= 15 - 18/ + 35/ - 42/2 

= 15 - 42(-1) + (-18 + 35)/ 
= 57 + 17/ 
= (57, 17). 
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Of course, it makes sense that the answer came out as we expected, since we used 
the notation x + iy as motivation for our definition in the first place. 

To motivate our definition for division, we will proceed along the same lines 
as we did for multiplication, assuming z2 ^ 0. 

Z]_ _ (* i , ; y i ) 

zi (x2, y2) 

= (x\ + iyi) 
(x2 + iy2)' 

At this point we need to figure out a way to be able to write the preceding quantity 
in the form x + iy. To do this, we use a standard trick and multiply the numerator 
and denominator by x2 — iy2. This gives 

z± = (x\ + iyi) (x2 - iy2) 
z2 (x2 + iy2) (x2 - iy2) 

_ *\*2 + y\yi m-xiy2 + *2y\ 
x\ + y\ xj + y\ 

x{x2 + yxy2 -xxy2 + x2y\ 
x\ + y\ x\ + y\ 

Thus, we finally arrive at a rather odd definition. 

Definition for division 

Z\ (xuyx) 
(5) 

z2 (x2, y2) 
{xxx2 + yxy2 -x\y2 + *2y\ , f , n 

E X A M P L E 1.3 If Z\ = (3, 7) and z2 = (5, - 6 ) , then 

z\ (3,7) / 1 5 - 4 2 18 + 35\ / - 2 7 53 

z2 (5, -6 ) \25 + 36 25 + 36/ \ 61 61 



8 Chapter 1 Complex Numbers 

As we saw with the example for multiplication, we will also get this answer if we 
use the notation x + iy: 

Zx _ (3, 7) 
z2 (5, -6 ) 

_ 3 + li 
~ 5 - 6/ 
_ 3 + li 5 + 6/ 

~~ 5 - 6/ 5 + 6/ 
_ 15 + 18/ + 35/ + 42/2 

~ 25 + 30/ - 30/ - 36/2 

_ 15 - 42 + (18 + 35)/ 
25 + 36 

- 2 7 53 
= + —/ 

61 61 

_ (zH *l\ 
~ \ 61 ' 6 1 / " 

The technique most mathematicians would use to perform operations on com­
plex numbers is to appeal to the notation x + iy and perform the algebraic manip­
ulations, as we did here, rather than to apply the complicated looking definitions we 
gave for those operations on ordered pairs. This is a valid procedure since the 
x + iy notation was used as a guide to see how we should define the operations in 
the first place. It is important to remember, however, that the x 4- iy notation is 
nothing more than a convenient bookkeeping device for keeping track of how to 
manipulate ordered pairs. It is the ordered pair algebraic definitions that really form 
the foundation on which our complex number system is based. In fact, if you were 
to program a computer to do arithmetic on complex numbers, your program would 
perform calculations on ordered pairs, using exactly the definitions that we gave. 

It turns out that our algebraic definitions give complex numbers all the prop­
erties we normally ascribe to the real number system. Taken together, they describe 
what algebraists call afield. In formal terms, a field is a set (in this case, the complex 
numbers) together with two binary operations (in this case, addition and multipli­
cation) with the following properties: 

(PI) Commutative law for addition: z\ + Zi = Zi + Z\. 

(P2) Associative law for addition: z\ + fe + Zs) — (zi + Zi) + Z3. 

(P3) Additive identity: There is a complex number co such that z + co = z for all 
complex numbers z- The number a> is obviously the ordered pair (0, 0). 

(P4) Additive inverses: Given any complex number z, there is a complex 
number r\ (depending on z) with the property that z + r| = (0, 0). 
Obviously, if z = (x, y) = x + iy, the number r| will be 
(-x, -y) = -x - iy. 
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(PS) Commutative law for multiplication: z\z2 = z2Z\. 

(P6) Associative law for multiplication: zAziz?) = (Z]Z2)zi. 

(P7) Multiplicative identity: There is a complex number £ such that z£> = z for 
all complex numbers z. It turns out that (1, 0) is the complex number £ with 
this property. You will be asked to verify this in the problem set for this 
section. 

(P8) Multiplicative inverses: Given any complex number z other than the 
number (0, 0), there is a complex number (depending on z) which we shall 
denote by z~l with the property that zz~l = (1,0). Given our definition for 

division, it seems reasonable that the number z~l would be z~] = —!— . 
z 

You will be asked to confirm this in the problem set for this section. 

(P9) The distributive law: z\{z2 + Z3) = Z\Z2 + Z\Z3. 

None of these properties is difficult to prove. Most of the proofs make use of 
corresponding facts in the real number system. To illustrate this, we give a proof of 
property PI. 

Proof of the commutative law for addition Let z\ = (xu yO and 

z2 ~ (*2> yi) he arbitrary complex numbers. Then, 

z\ + z2 = (*i,yi) + (*2, y2) 
= (X, + X2i Vi + V2) 

= (x2 + xl9y2 + 1̂) 
= (x29y2) + 0cuy\) 
= Z2+ Z\. 

The real number system can actually be thought of as a subset of our complex 
number system. To see why this is the case, let us agree that since any complex 
number of the form (t, 0) is on the x axis, we can identify it with the real number t. 
With this correspondence, it is easy to verify that the definitions we gave for ad­
dition, subtraction, multiplication, and division of complex numbers are consistent 
with the corresponding operations on real numbers. For example, if x\ and x2 are 
real numbers, then 

X\X2 = (jti, 0)(x2, 0) (by our agreed correspondence) 
= (x\X2 — 0, 0 + 0) (by definition of multiplication of complex numbers) 
= (x\X2, 0) (confirming the consistency of our correspondence). 

It is now time to show specifically how the symbol i relates to the quantity 
y 1 7 ! . Note that 

(0, 1)2 = (0, 1)(0, 1) 
= (0 — 1,0 + 0) (by definition of multiplication of complex numbers) 
= ( -1 ,0 ) 
= — 1 (by our agreed correspondence). 

(by definition of addition of complex numbers) 
(by the commutative law for real numbers) 
(by definition of addition of complex numbers) 
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If we use the symbol i for the point (0, 1), the preceding gives i2 = (0, 1)2 = - 1 , 
which means i = (0, 1) = J~—\. So, the next time you are having a discussion with 
your friends, and they scoff when you claim that J^-\ is not imaginary, calmly put 
your pencil on the point (0, 1) of the coordinate plane and ask them if there 
is anything imaginary about it. When they agree there isn't, you can tell them 
that this point, in fact, represents the mysterious ^f-\ in the same way that (1,0) 
represents 1. 

We can also see more clearly now how the notation x + iy equates to (x, y). 
Using the preceding conventions, we have 

/ m i /n i\/ r^ (by our previously discussed conventions, 
* + ,? = (*, 0) + (0, i)(y,o) ^ =

p
( J C > 0 X e t

y
c ) 

= (x, 0) + (0, y) (by definition of multiplication of complex numbers) 
= (x, y) (by definition of addition of complex numbers). 

Thus, we may move freely between the notations x + iy and (x, y), depending on 
which is more convenient for the context in which we are working. 

We close this section by discussing three standard operations on complex 
numbers. Suppose z = U, y) = x + iy is a complex number. Then: 

(i) The real part of z, denoted by Re(z), is the real number x. 

(ii) The imaginary part of z, denoted by Im(z), is the real number y. 

(iii) The conjugate of z, denoted by z, is the complex number (x, —y) = x — iy. 

EXAMPLE 1.4 

EXAMPLE 1.5 

EXAMPLE 1.6 

Re(-3 + 7/) = - 3 and Re[(9, 4)] = 9. 

Im( -3 + 70 = 7 and Im[(9, 4)] = 4. 

- 3 + li = - 3 - li and (9, 4) = (9, - 4 ) . 

The following are some important facts relating to these operations that you 
will be asked to verify in the exercises: 

(6) Re(z) = i ± i . 

z-z 
(7) Im(z) = 

2/ 

(8) ^ ) = ^ Xz2*0. 
V zi ) z2 



1.2 The Algebra of Complex Numbers 11 

(10) zizi = u zi-

(11) ! = z. 

(12) Re(fe) - - Im(z) . 

(13) Im(iz) = Re(z). 

Because of what it erroneously connotes, it is a shame that the term imaginary 
is used in definition (ii). Gauss, who was successful in getting mathematicians to 
adopt the phrase complex number rather than imaginary number, also suggested that 
we use lateral part of z in place of imaginary part of z. Unfortunately, this sugges­
tion never caught on, and it appears we are stuck with the words history has handed 
down to us. 

EXERCISES FOR SECTION 1.2 
1. Perform the required calculation and express the answer in the form a + ib. 

(a) (3 - 2/) - /(4 + 50 
(c) (1 + /)(2 + 0(3 + i) 
(e) ( i - 1)3 

1 + 2 / 4 - 3/ 
( g ) 3 - 4 / 2 - / 
^ (4 - /)(1 ~ 3/) 

- 1 + 2/ 
2. Find the following quantities. 

(a) Re[(l + 0(2 + 0] 

(0 Re(^f) 
(e) Re[(/ - \y\ 

(g) Re[(*i - iy\)2] 

(i) Re[(*, + /y,)(x, - /y,)] 

(b) (7 - 2/)(3/ + 5) 
(d) (3 + /)/(2 + 0 
(f) i5 

(h) (1 + 0 2 

(j) (1 + /x/3)(/ + J3) 

(b) Im[(2 + i)(3 + 01 

<- *H) 
(0 Im[(l + i)-2] 

( 1 \ 
(h) 1ml . 1 

\ * i - *Vi / 
(j) Im[(x, + /v,)3] 

3. Verify identities (6) through (13) given at the end of this section. 
4. Let z\ = Ui, Yi) and z2 = (x2, y{) be arbitrary complex numbers. Prove or disprove the 

following. 
(a) Re(z, + z2) = Refei) + Re(z2) (b) Re(z,z2) = Re(z,)Re(z2) 
(c) Im(z, + zi) = Im(zi) + Im(z2) (d) Im(ziz2) = Im(zi)Imfe) 

5. Prove that the complex number (1,0) (which, you recall, we identify with the real 
number 1) is the multiplicative identity for complex numbers. Hint: Use the (ordered 
pair) definition for multiplication to verify that if z = (x, y) is any complex number, 
then (jc,y)(l,0) = (x, y). 

6. Verify that if z = (x, y), with x and y not both 0, then z~l = —!— I i.e., z~] = — 
z \ z 

(1,0) 
Hint: Use the (ordered pair) definition for division to compute z~l = . Then, with 

(x, y) 
the result you obtained, use the (ordered pair) definition for multiplication to confirm 
thatzz-1 = (1,0). 

7. Show that zz is always a real number. 
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8. From Exercise 6 and basic cancellation laws, it follows that z~[ = — = -:- The nu~ 
z zz 

merator here, z, is trivial to calculate, and since the denominator zz is a real number 
(Exercise 7), computing the quotient z/(zz) should be rather straightforward. Use this 
fact to compute z ' if z = 2 + 3/ and again if z = 1 ~ 5/. 

9. Explain why the complex number (0, 0) (which, you recall, we identify with the real 
number 0) has no multiplicative inverse. 

10. Let's use the symbol * for a new type of multiplication of complex numbers defined by 
Z\ * Zi ~ {x\x2, y\y2)- This exercise shows why this is a bad definition. 
(a) Using the definition given in property P7, state what the new multiplicative identity 

would be for this new multiplication. 
(b) Show that if we use this new multiplication, nonzero complex numbers of the form 

(0, a) have no inverse. That is, show that if z = (0, a), there is no complex number 
z~l with the property that zz~l = ¢, where C, is the multiplicative identity you found 
in part (a). 

11. Show, by equating the real numbers X| and x2 with (xu 0) and (x2, 0), that the complex 
definition for division is consistent with the real definition for division. Hint: Mimic the 
argument the text gives for multiplication. 

12. Prove property P9, the distributive law for complex numbers. 
13. Complex numbers are ordered pairs of real numbers. Is it possible to have a number 

system for ordered triples, quadruples, etc., of real numbers? To assist in your investi­
gation of this question, we recommend bibliographical items 1, 132, 147, and 173. 

14. We have made the statement that complex numbers are, in a metaphysical sense, just 
as real as are real numbers. But in what sense do numbers exist? It may surprise you 
that mathematicians hold a variety of views with respect to this question. Write a short 
paper summarizing the various views on the theme of the existence of number. 

1.3 The Geometry of Complex Numbers 

Since the complex numbers are ordered pairs of real numbers, there is a one-to-one 
correspondence between them and points in the plane. In this section we shall see 
what effect algebraic operations on complex numbers have on their geometric 
representations. 

The number z = x + iy = (x, y) can be represented by a position vector in the 
xy plane whose tail is at the origin and whose head is at the point (x, v). When the 
xy plane is used for displaying complex numbers, it is called the complex plane, or 
more simply, the z plane. Recall that Re(z) = x and lm(z) = y. Geometrically, Re(z) 
is the projection of z = (x, y) onto the x axis, and Im(z) is the projection of z onto 
the y axis. It makes sense, then, that the x axis is also called the real axis, and the 
y axis is called the imaginary axis, as Figure 1.3 illustrates. 

Imaginary axis 
y 
A 

>^T\ I t—• x Real axis 

FIGURE 1.3 The complex plane. 
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Addition of complex numbers is analogous to addition of vectors in the plane. 
As we saw in Section 1.2, the sum of Z\ = x\ + iy\ = (xu y\), and zi = x2 + iy2 = 
(*2, yi) is (AI -f x2, y\ + V2). Hence, Z\ + Zi can be obtained vectorially by using 
the parallelogram law, which Figure 1.4 illustrates. 

-v [Copy of vector z{ 

((positioned at the tail of vector z2). 

Copy of vector z2 

(positioned at the tail of vector z}). 

FIGURE 1.4 The sum z, + z2 

The difference z\ — Zi can be represented by the displacement vector from the 
point zi = {x2, v2) to the point z\ = (x\, vO, as Figure 1.5 shows. 

(Copy of vector z, - z2 

f [(positioned at the tail of z2). 

Copy of vector -z2 

(positioned at the tail of vector z,). 

FIGURE 1.5 The difference z, - z2-

The modulus, or absolute value, of the complex number z = x 
nonnegative real number denoted by I z I and is given by the equation 

+ iy is a 

(1) |z| = y ^ T 7 . 
The number | z | is the distance between the origin and the point (x, y). The only 
complex number with modulus zero is the number 0. The number z = 4 + 3/ has 
modulus 5 and is pictured in Figure 1.6. The numbers | Re(z) | , | lm(z) |, and | z | 
are the lengths of the sides of the right triangle OPQ, which is shown in Figure 1.7. 
The inequality \z\\ < \zi\ means that the point z\ is closer to the origin than the 
point z2, and it follows that 

(2) |JC| - I Re(z) I < |z | and |;y| = | Im(z) | < | z | . 
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FIGURE 1.6 The real and imaginary 
parts of a complex number. 

) ; 
4 
4(o,>') 

o = = (0, 0) 

P = (x,y) = z 

lRe(z)l 

Um(z)l 

<2 = (JC,0) 

FIGURE 1.7 The moduli of z and its 
components. 

Since the difference z\ — Zi can represent the displacement vector from z2 to z\, it 
is evident that the distance between z\ and zi is given by \z\ — Zi \ • This can be 
obtained by using identity (3) of Section 1.2 and definition (1) to obtain the familiar 
formula 

(3) dist(zi, <:2> = \z\ - z2\ = J(xi - x2)
2 + (y\ - v2)

2. 

If z — (x, y) = x -\- iy, then — z = (—JC, —y) = —x — iy is the reflection of z 
through the origin, and z = (x, — v) = x — iy is the reflection of z through the x 
axis, as is illustrated in Figure 1.8. 

) 
i 

, ( 

A 

(-*To) / 

4 ( 
-z = (-x, -y) 

= -x - iy 

i 

V 

>-(0,y)"-J>z = (x,y) 
y^ j = x + iy 

r ± tar 
S . u*o> * x 

z = (x, -y) 
= x- iy 

FIGURE 1.8 The geometry of negation and conjugation. 

There is a very important algebraic relationship which can be used in estab­
lishing properties of the absolute value that have geometric applications. Its proof 
is rather straightforward, and it is given as Exercise 3. 

(4) \z r ~ zz. 
A beautiful application of equation (4) is its use in establishing the triangle 

inequality. Figure 1.9 illustrates this inequality, which states that the sum of the 
lengths of two sides of a triangle is greater than or equal to the length of the third 
side. 
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(5) The triangle inequality: \z\ + z2 | < \z\\ + | z2 \. 

Proof 

\Zx + Z 2 | 2 = (Zl + Zi) (Z\ + Z2) 

= fei + z2) (z? + zi) 
= Z]Zj + Z1Z2 + Z2Z] + Z2Z2 

Zl |2 + Z1Z2+Z1Z2 + l Z 2 p 

Zl | 2 + ZiZ2" + ( ^ ) + | Z 2 | 2 

Zi|2 + 2Re(z,z2)+ |z2 |2 

Zi|2 + 2|Re(zizi)| + |z2p 

(by equation (4)) 
(by identity (9) of Section 1.2) 

(by equation (4) and the commutative law) 
(by identities (10) and (11) of Section 1.2) 
(by identity (6) of Section 1.2) 

+ Zl\ 

< 

* |zi |2 + 2|Z lzi 

= ( N + |z2|)
2. 

Taking square roots yields the desired inequality. 

(by equations (2)) 

:, + ¾ 

FIGURE 1.9 The triangle inequality. 

EXAMPLE 1.7 To produce an example of which Figure 1.9 is a reasonable 
illustration, let z\ = 7 + / and z2 = 3 + 5/. Then |zi | = >/49 + 1 = ^50 and 
|z 2 | = J9 + 25 = 734- Clearly, z{ + Zi = 10 + 6i, hence |zi + z 2 | = 

7136. In this case, we can verify the triangle inequality without VlOO + 36 = 
recourse to computation of square roots since 

\zy + z2\ = 7136 = 2 ^ 3 4 = V34 + v / 3 4 < v / 5 0 + v / 34= |z i | + |z 2 | 

Other important identities can also be established by means of the triangle 
inequality. Note that 

|z i | = |(Z) +Z2 ) + (-22) I 
^ |zj + z2 | + I -zi\ 
= \z\ + z2 | + | z 2 | . 

Subtracting | zi | from the left and right sides of this string of inequalities 
gives an important relationship that will be used in determining lower bounds of 
sums of complex numbers. 
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(6) \zi + z2\ ^ \ z \ \ - \z2\. 

From equation (4) and the commutative and associative laws it follows that 

| Z\Z2 I
2 = (Z\Z2)(Z\Z2) = (Z\Z~\)(Z2Z2) = | Z\ P | Zl |2. 

Taking square roots of the terms on the left and right establishes another important 
identity. 

(7) | 2iZ2 | = |Z1 I I 22 I • 

As an exercise, we ask you to show 

(8) 
Z2 

provided zi ^ 0. 

E X A M P L E 1,8 If zi = 1 + 2/ and zi = 3 + 2i\ then \Z[ 

and \z2\ = J9 + 4 = JT$. We also see that z\Z2 = 
\ziz2\ = Vl + 64 = 765 = 7 5 7 1 3 = I zi J \z2\. 

= 7 1 + 4 = 7 5 
- 1 + 8/, hence 

Figure 1.10 illustrates the multiplication given by Example 1.8. It certainly 
appears that the length of the z\Z2 vector equals the product of the lengths of zi and 
z2, confirming equation (7), but why is it located in the second quadrant, when both 
Z\ and z2 are in the first quadrant? The answer to this question will become apparent 
in Section 1.4. 

y/ A H-\ 1 • X 

FIGURE,!.10 The geometry of multiplication. 

EXERCISES FOR SECTION 1.3 
1. Locate the numbers z\ and z2 vectorially, and use vectors to find z\ + Zi and z\ - Zi 

when 
(a) zi = 2 + 3/ and z2 = 4 + i 
(b) zi = - 1 + 2/ and z2 = ~2 + 3« 
(c) zi = 1 + ;73andz2 = - 1 + ijl 
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Find the following quantities. 

(a) |(1 + /)(2 + i)\ (b) ' " 
2 -

z -

(C) (1 + i)5' 

(d) | zz |, where z = x + iy (e) 
3. Prove identities (4) and (8). 

4. Determine which of the following points lie inside the circle | z — i \ = 1. 

(a) y + i (b) 1 + y 

\ is/2 - l 
(C) T + 2 (d) T + ' ^ 

5. Show that the point (zi + Z2V2 is the midpoint of the line segment joining z,\ to zi-
6. Sketch the set of points determined by the following relations, 

(a) \z + 1 - 2/1 = 2 (b) Re(z + 1) = 0 
(c) J z + 2/1 < 1 (d) Im(z - 20 > 6 

7. Show that the equation of the line through the points z\ and zi can be expressed in the 
form z = Z] + Kzi - Zi) where t is a real number. 

8. Show that the vector z\ is perpendicular to the vector zi if and only if ReUizT) = 0. 
9. Show that the vector z\ is parallel to the vector Z2 if and only if Im(ziZ2~) = 0. 

10. Show that the four points z, z, —z, and - z are the vertices of a rectangle with its center 
at the origin. 

11. Show that the four points z, iz, — z, and —iz are the vertices of a square with its center 
at the origin. 

12. Prove that Jl\z\ > | Re(z) | + | Im(z) | . 
13. Show that | z\ - zi | ^ \z\\ + | Z21. 
14. Show that |z iz 2^| = \z\\ \z2\ | * j | . 
15. Show that | z" | = | z |" where H is an integer. 

16. Show that \\z\\ - \zi\\ ^ |z\ - zi \. 

17. Prove that \z\ = 0 if and only if z - 0. 

18. Show that Z1Z2 + ~\Z2 is a real number. 

19. If you study carefully the proof of the triangle inequality, you will note that the reasons 

for the inequality hinge on Re(ziZ2> ^ \z\I2\ • Under what conditions will these two 

quantities be equal, thus turning the triangle inequality into an equality? 

20. Prove that | zi - z212 = | Zi | 2 - 2 Re(ziZi) + | z2 \2. 
21. Use mathematical induction to prove that 

A=l 
S z* =£ E 

i t = l 
ZA 

22. Let z\ and Z2 be two distinct points in the complex plane. Let K be a positive real con­
stant that is greater than the distance between z\ and z2. Show that the set of points 
{z: I z - z.\ I + I z — Z21 — K} is an ellipse with foci z\ and z2-

23. Use Exercise 22 to find the equation of the ellipse with foci ±2/ that goes through the 
point 3 + 2/. 

24. Use Exercise 22 to find the equation of the ellipse with foci ±3i that goes through the 
point 8 — 3/. 
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25. Let z\ and z2 be two distinct points in the complex plane. Let K be a positive real con­
stant that is less than the distance between z\ and zi- Show that the set of points 
{z: \\z — Z\\ — | z - Z21 | = K} is a hyperbola with foci z\ and z2-

26. Use Exercise 25 to find the equation of the hyperbola with foci ±2 that goes through 
the point 2 + 3/. 

27. Use Exercise 25 to find the equation of the hyperbola with foci ±25 that goes through 
the point 7 + 24/. 

28. Write a report on how complex analysis is used to understand Pythagorean triples. 
Resources include bibliographical items 94 and 97. 

1.4 The Geometry of Complex Numbers, Continued 

In Section 1.3 we saw that a complex number z = x + iy could be viewed as a 
vector in the xy plane whose tail is at the origin and whose head is at the point (x, 
y). A vector can be uniquely specified by giving its magnitude (i.e., its length) and 
direction (i.e., the angle it makes with the positive x axis). In this section, we focus 
on these two geometric aspects of complex numbers. 

Let r be the modulus of z (i.e., r = \z\), and let 9 be the angle that the line 
from the origin to the complex number z makes with the positive x axis. Then as 
Figure 1.11 shows, 

(1) z = (r cos 6, r sin 6) = r(cos 6 + i sin 6). 

= (r cos 6, r sin 9) - r(cos 6 + i sin 6) 

FIGURE 1.11 Polar representation of complex numbers. 

Identity (1) is known as dipolar representation of z, and the values r and 6 are called 
polar coordinates of z. The coordinate 6 is undefined if z = 0, and as Figure 1.11 
shows, 9 can be any value for which the identities cos 9 = x/r and sin 9 = y/r hold 
true. Thus, 9 can take on an infinite number of values for a given complex number 
and is unique only up to multiples of In. We call 9 an argument of z, and use the 
notation 9 = arg z. Clearly, 

(2) 9 = arg z = arctan — if x ^ 0, 
x 

but we must be careful to specify the choice of arctan(yA) so that the point z cor­
responding to r and 9 lies in the appropriate quadrant. The reason for this is that 
tan 9 has period 7C, whereas cos 9 and sin 9 have period 2n. 



1.4 The Geometry of Complex Numbers, Continued 19 

EXAMPLE 1.9 
A" n ^ • n UK ^ . 137C 

V 3 + i = 2 cos — + u sin — = 2 cos ——\- i2 sin —— 
6 6 6 6 

2 cos( — + 2nn I + /2 sin! — + 2nn ), 

where n is any integer. 

E X A M P L E 1.10 If z = - s/3 - i, then 

r = | z | = | — V^ — /1 = 2 and 
v - 1 7K 

8 = arctan — = arctan j= = — , so 
x - 7 3 6 

— V 3 - / = 2 cos — + /2 sin — 
6 6 

. / 7 * . \ .. • / 7 * . = 2 cosl — + 27C« I + i2 sinl — + 2nn 

where n is any integer. 

If 8o is a value of arg z, then we can display all values of arg z as follows: 

(3) arg z = B0 + 2nk, where k is an integer. 

For a given complex number z ^ 0, the value of arg z that lies in the range 
-71 < 6 < n is called the principal value of arg z and is denoted by Arg z. Thus, 

(4) Arg z = 6, where -n < 8 < n. 

Using equations (3) and (4) we can establish a relation between arg z and Arg z: 

(5) arg z = Arg z + 2nk, where & is an integer. 

As we shall see in Chapter 2, Arg z is a discontinuous function of z because it 
"jumps" by an amount of 2n as z crosses the negative real axis. 

In Chapter 5 we will define ez for any complex number z. You will see that 
this complex exponential has all the properties of real exponentials that you studied 
in earlier mathematics courses. That is, ez-\ ez^ = ez^+z^ and so forth. You will also 
see that if z = x + iy9 then 

(6) ez — ex+i>' = ex(cos y + i sin y). 

We will use these facts freely from now on, and will prove the validity of our actions 
when we get to Chapter 5. 

If we set x = 0 and let 8 take the role of y in equation (6), we get a famous 
equation known as Euler's formula: 

(7) eiB = ( c o s e + / s i n e) = (cos 8, sin 8). 
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If 6 is a real number, e'9 will be located somewhere on the circle with radius 
1 centered at the origin. This is easy to verify since 

(8) |e ' e | = Vcos20 + sin20 = 1. 

Figure 1.12 illustrates the location of the points eiQ for various values of 8. 

/ 2 = (0, 1) = 1 

"^2 ' 2 ' ~ 2 2l 

ei0n = ei2n=(\, 0) = 1 

\/-f = ,-(f = (^_v|) = v | _ v | . 
2'~ 2 ' ~ 2 ~ 2 

The unit circle 

FIGURE 1.12 The location of eiB for various values of 6. 

(9) 

Notice that when 6 = n, we get elK = (cos n, sin n) = ( -1 ,0 ) = - 1 , so 

ein + 1 = 0. 

Euler was the first to discover this relationship. It has been labeled by many as the 
most amazing equation in analysis, and with good reason. Symbols with a rich 
history are miraculously woven together—the constant n discovered by Hippocrates; 
e the base of the natural logarithms; the basic concepts of addition ( + ) and equality 
(=); the foundational whole numbers 0 and 1; and i, the number that is the central 
focus of this book. 

Euler's formula (7) is of tremendous use in establishing important algebraic 
and geometric properties of complex numbers. As a start, it allows us to express 
a polar form of the complex number z in a more compact way. Recall that if 
r = | z | and 8 = arg z, then z = r(cos 8 + i sin 0). Using formula (7) we can now 
write z in its exponential form: 

(10) z ~ re". 

EXAMPLE 1.11 
have z = 2eiiln/6). 

With reference to Example 1.10, with z ~ — V^ — /, we 

Together with the rules for exponentiation that we will verify in Chapter 5, 
equation (10) has interesting applications. If zi = rje'0' and z2 — r2e

1^, then 

(11) z\Zi = rie'B'r2e''62 = nr2e
(<ei+e2) = r]r2[cos(91 + 82) + i sin(6, + 92)]. 
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Figure 1.13 illustrates the geometric significance of equation (11). We have already 
seen that the modulus of the product is the product of the moduli; that is, 
\z\Zi\ = \z\\ \zi\* Identity (11) establishes that an argument of Z\Zi is an argument 
of Zi plus an argument of z2\ that is, 

(12) arg(zjz2) = arg z\ + arg z2. 

This fact answers the question posed at the end of Section 1.3 regarding why the 
product z\Zi was in a different quadrant than either z\ or z2- This also offers an 
interesting explanation as to why the product of two negative real numbers is a 
positive real number—the negative numbers, each of which has an angular displace­
ment of n radians, combine to produce a product which is rotated to a point whose 
argument is K + K = 2% radians, coinciding with the positive real axis. 

FIGURE 1.13 The product of two complex numbers z3 = z\Zj 

Using equality (11), we see that z~{ = — = —- = ~e~i%. In other words, 
z relU r 

(13) z~i = —[cos(-e) + i sin(-O)] = ~e~l\ 

r r 

Notice also that 

(14) z = r(cos 0 - i sin 0) = r[cos(-0) + i sin(-0)] = re~^ and 

(15) - = - [ c o s ( 0 j - 62) + i sin(8i - 02)1 = -<?<'<°i-«2>. 
Zi r2 r2 

If z is in the first quadrant, Figure 1.14 shows the numbers z, z9 and zl in the case 
where \z\ < 1. Figure 1.15 depicts the situation when \z\ > 1. 
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The unit circle 

FIGURE 1.14 Relative positions of z, z, and z~\ when |z | < 1. 

The unit circle 

FIGURE 1.15 Relative positions of z, z, and z_l, when |z| > 1. 

EXAMPLE 1 .12 If z = 5 4- 12/, then r = 13 and z~x = M ~ (12//13)] has 
modulus 73 . 

EXAMPLE 1.13 If zi = 8/ and z2 = 1 + *>/3, then the polar forms are 
Zi = 8[cos(7c/2) + i sin(7t/2)l and zi = 2[cos(7t/3) + i sin(rc/3)]. So we have 

Z2 2 

= 273 + 2/. 

71 7C 

cosl — I + i sin 
_7t_ 7i \ i _ 

2" ~ TJ J ~ 41 cos — + i sin — 
6 6 
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EXERCISES FOR SECTION 1.4 
1. Find Arg z for the following values of z. 

(a) 1 - i (b) - 7 3 + / (c) ( -1 - /73)2 

(d) (1 ~ 03 (e) , , , , - (0 
1 + /73 l " i - 1 

<«> ( i V ^ (h) (1 + /73)(1 + 0 
Represent the following complex numbers in polar form. 
(a) - 4 (b) 6 - 6/ (c) -li 

(d) - 2 7 3 - 2/ (e) (f) 
(1 - 02 w / + 7 3 

(g) (5 + 5/)3 (h) 3 + 4/ 
3. Express the following in a + ib form. 

(a) eM2 (b) 4e~'"/2 (c) 8e'7n/3 

(d) -2e ' W 6 (e) lie-'1™* (f) 6*''2,l/V" 
(g) eV* (h) e ^ V " 

4. Use the exponential notation to show that 
(a) ( 7 3 - 0(1 + /73) - 2 7 3 + 2/ (b) (1 + /)3 - - 2 + 2/ 
(c) 2/(73 + /)(1 + /73) = - 8 (d) 8/(1 + /) = 4 - 4/ 

5. Show that arg(ziZ2Z3) = arg z\ + arg zi + arg z3. f//nt: Use property (12). 
6. Let z = 73 + /. Plot the points z, /z, - z , and — iz and describe a relationship among 

their arguments. 
7. Let z\ = - 1 + / 7 3 and Z2 = — 7 3 + /. Show that the equation 

Arg(ziZ2) = Arg z\ + Arg Z2 does not hold for the specific choice of zt and zi-
8. Show that the equation Arg(ztzz) = Arg z\ + Arg zi is true if we require that 

-7i/2 < Arg zt < Ti/2 and -nil < Arg z2 < nil. 
9. Show that arg z.\ = arg z2 if and only if Z2 = cz\, where c is a positive real constant. 

10. Establish the identity arg(zi/z2) = arg z\ — arg zi-
11. Describe the set of complex numbers for which Arg(l/z) ^ — Arg(z). 
12. Show that arg(l/z) = -arg z. 
13. Show that arg(ziZz) = arg zi - arg z2. 
14. Show that 

(a) Arg(zz) = 0 (b) Arg(z + z) = 0 when Re(z) > 0. 
15. Let z 7̂  Zo. Show that the polar representation z - Zo = p(cos ty + i sin ¢) can be used 

to denote the displacement vector from zo to z as indicated in Figure 1.16. 
16. Let zi, Z2, and z3 form the vertices of a triangle as indicated in Figure 1.17. Show that 

a = argl — L) = arg(z2 - Z\) - arg(z3 - Zi) 
\Z3 - Zi / 

is an expression for the angle at the vertex z\. 
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FIGURE 1.16 Accompanies Exercise 15. FIGURE 1.17 Accompanies Exercise 16. 

1.5 The Algebra of Complex Numbers, Revisited 

The real numbers are deficient in the sense that not all algebraic operations on them 
produce real numbers. Thus, for ^f--\ to make sense, we must lift our sights to the 
domain of complex numbers. Do complex numbers have this same deficiency? That 
is, if we are to make sense out of expressions like J\ + /, must we appeal to yet 
another new number system? The answer to this question is no. It turns out that any 
reasonable algebraic operation we perform on complex numbers gives us complex 
numbers. In this respect, we say that the complex numbers are complete. Later we 
will learn how to evaluate complicated algebraic expressions such as ( - 1)'. For now 
we will be content to study integral powers and roots of complex numbers. 

The important players in this regard are the exponential and polar forms of a 
complex number, z = re'* = r(cos 6 + i sin 6). By the laws of exponents (which, 
you recall, we have promised to prove in Chapter 5!) we clearly have 

(1) zn = (rei*y _ fieim = ^[cos^B) + i sin(ttB)], and 

(2) z-n = (reiQ)~n = r~
ne-in» = r-"[cos(-rc6) + i sin(-rcO)]. 

EXAMPLE 1.14 Show that (-V3 - 0 3 = -8* in two ways. 

Solution 1 We appeal to the binomial formula and write 

(- V3 - 0 3 = ( -^3) 3 + 3(-V3)2(-/) + 3 ( -^3) ( - / ) 2 + (-/)3 = - 8 / . 

Solution 2 Using identity (1) and Example 1.11, we have 

(- V3-/)3 = ( 2 / ^ ) 3 = ( 2 ^ ) = 8 (cos ^ +.sin 215) = - 8 / . 

Which of these methods would you use if you were asked to compute 
(-V3 - 030? 
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EXAMPLE 1 .15 Evaluate ( - 7 3 ~ i)-<\ 

/ iiA~6 1 
Solution ( - 7 3 - / ) 6 = \2e 6 = 2-6e-f7lt = 2~6(~1) = . 

An interesting application of the laws of exponents comes from putting the 
equation (e'*)n = eine into its polar form. This gives 

(3) (cos 0 + / sin %)n = (cos n% + i sin «6), 

which is known as De Moivre's formula, in honor of the French mathematician 
Abraham De Moivre (1667-1754). 

EXAMPLE 1 .16 De Moivre's formula (3) can be used to show that 

cos 50 = cos56 - 10 cos30 sin2B + 5 cos 0 sin4B. 

If we let n = 5, and use the binomial formula to expand the left side of equation 
(3), then we obtain 

cos59 + /5 cos46 sin 6 - 1 0 cos30 sin26 - 10/ cos26 sin38 
+ 5 cos 6 sin40 + i sin58. 

The real part of this expression is 

cos56 - 10 cos36 sin26 + 5 cos 6 sin46. 

Equating this to the real part of cos 56 + i sin 58 on the right side of equation (3) 
establishes the desired result. 

A key ingredient in determining roots of complex numbers turns out to be a corollary 
to the fundamental theorem of algebra. We will prove the theorem in Chapter 6. 
Our proofs must be independent of conclusions we derive here since we are going 
to make use of the corollary now: 

Corollary 1.1 (Corollary to the fundamental theorem of algebra) IfP(z) is 
a polynomial of degree n (n > 0) with complex coefficients, then the equation 
P(z) = 0 has precisely n (not necessarily distinct) solutions. 

EXAMPLE 1.17 Let P(z) = z3 + (2 - 2i)z2 + (-1 - 4i)z - 2. This poly­
nomial of degree 3 can be written as P(z) - (z - i)2(z + 2). Hence, the equation 
P(z) = 0 has solutions z\ - /, z2 = /, and z3 = - 2 . Thus, in accordance with 
Corollary 1.1, we have three solutions, with Z\ and z2 being repeated roots. 
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The corollary to the fundamental theorem of algebra implies that if we can find n 
distinct solutions to the equation zn ~ c (or zn - c = 0), we will have found all the 
solutions. We begin our search for these solutions by looking at the simpler equation 
zn = 1. You will soon see that solving this equation will enable us to handle the 
more general one quite easily. 

To solve zn = 1, let us first note that from identities (5) and (10) of Section 
1.4 we can deduce an important condition determining when two complex numbers 
are equal. Let z\ = ne'6' and z2 = r2e'^. Then, 

(4) Z\ = z2 (i.e., r,e'ei = r2e^) iff r, = r2 and 0i = B2 + 2nk, 

where k is an integer. 
That is, two complex numbers are equal if and only if their moduli agree, and 

an argument of one equals an argument of the other to within an integral multiple 
of 2n. Now, suppose z = reie is a solution to z" = 1. Putting the latter equation in 
exponential form gives us r"e'"d = 1 • e'°, so relation (4) implies 

rn = 1 and «6 = 0 + 2nk, 

Ink 
where k is an integer. Clearly, for z = re'8, if r = 1, and 6 = , we can generate 

n 
n distinct solutions to z" = 1 (and, therefore, all solutions) by setting k = 0, 1,2, 
. . . , n — 1. (Note that the solutions for k = n, n + 1,. . . , merely repeat those 
for k = 0, 1, . . . , since the arguments so generated agree to within an integral 
multiple of 2%.) As stated in Section 1.1, the n solutions can be expressed as 

/I** 2nk Ink 
(5) Zk = e n — cos f- i sin , for k = 0, 1, . . . , n — 1. 

n n 
They are called the nth roots of unity. The value co„ given by 

/— 2ft 2n 
(6) a>n = e n = cos 1- i sin — 

n n 

is called a primitive nth root of unity. By De Moivre's formula, the nth roots of 
unity can be expressed as 

(7) l , o ) m ^ , . . . , 0 c 1 . 

Geometrical ly, the nth roots of unity are equally spaced points that lie on the unit 
circle (z: | z \ = 1} and form the vertices of a regular polygon with n sides. 

E X A M P L E 1 - 1 8 The solutions to the equation z8 = 1 are given by the 8 values 

/2M 2nk . 2nk r , 
Zk = e = c o s — — y 1 s m , for & = 0, 1, . . . , 7. 

8 8 
In Cartesian form these solutions are ±1, ±1, ±{^2 + i>/2)/2, and ±{J2 - ijl)!2. 
From expressions (7) it is clear that o)8 = z\. Figure 1.18 gives an illustration of 
this. 
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V2-fV2 ft-i<(2=mi 

FIGURE 1.18 The eight eighth roots of unity. 

The preceding procedure is easy to generalize in solving z" = c for any nonzero 
complex number c. If c = pe'* = p(cos <j) + /' sin ¢), our solutions are given by 

. ¢) + Ink 

(8) Zk = pUne " = pw"l cos 

k = 0, 1, . . . , n - 1. 

(|> + 2TT/: 
i sin 

<|> + 27C/: 
, for 

Each solution in equation (8) can be considered an nth root of c. Geometrically, the 
nth roots of c are equally spaced points that lie on the circle {v \z\ = p17"} and 
form the vertices of a regular polygon with n sides. Figure 1.19 pictures the case 
for n = 5. 

) 
i 

•z: 

• Z 3 

z
5 = c = p*1'* 

i : r M 

• Z 4 

FIGURE 1.19 The five solutions to the equation z5 = c. 

It is interesting to note that if t, is any particular solution to the equation 
zli = c, then all solutions can be generated by multiplying £ by the various nth roots 
of unity. That is, the solution set is 

(9) ^ , , , ½ . • • .;<-'. 
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The reason for this is that for any j , (^taj,)" = ^ ( c ^ ) " = ^"(co^y = £" = c, and that 

, ^ 2K 

multiplying a number by oo„ = e " increases the argument of that number by — , 

so that expressions (9) contain n distinct values. 

E X A M P L E 1 . 1 9 Let 's find all cube roots of 8« = 8[cos(rc/2) + i sin(7t/2)] 
using formula (8). By direct computation, we see that the roots are 

(71/2) + Ink . (71/2) + Ink, 
Zk f 

= 2 c o s • 
+ i sin for A; = 0, 1,2. 

3 3 

The Cartesian forms of the solutions are zo = v ^ + i, Z\ = — >/3 + /, and 

Zl = —2i, as shown in Figure 1.20. 

FIGURE 1.20 The point z = 8/ and its three cube roots z0, zi, and z2. 

EXERCISES FOR SECTION 1.5 

1. Show that (,/3 + 04 = - 8 + (8 7 3 in two ways: 
(a) by squaring twice (b) by using equation (3) 

2. Calculate the following. 

(a) (1 -<V3)3(v/3 + 02 
(b) 

(1 + if 
(c) (V3 + 06 

(1 - 0 s 

3. Use De Moivre's formula and establish the following identities. 
(a) cos 36 = cos39 - 3 cos 6 sin26 (b) sin 36 = 3 cos28 sin 6 - sin38 
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4. Let z be any nonzero complex number, and let n be an integer. Show that zn + (z)" is 
a real number. 

For Exercises 5-9, find all the roots. 

5. ( - 2 + 2/)173 6. (-64) ! / 4 7. ( - l ) i / 5 

8. (16/)!/4 9. (8) , /6 

10. Establish the quadratic formula. 
11. Find the solutions to the equation z2 + (1 + i)z + 5* = 0. 
12. Solve the equation (z + 1)3 = z \ 
13. Let P(z) = anz" + an_\zn~~] + • • • + a\z + a{) be a polynomial with r^a/ coefficients 

#„, <z„_i, . . . , an, An- If Zi is a complex root of P(z), show that zT is also a root. Hint: 
Show that P(zD = ^(zi) = 0. 

14. Find all the roots of the equation z4 — 4z3 + 6z2 - 4z + 5 = 0 given that z\ = / is a 
root. 

15. Let m and « be positive integers that have no common factor. Show that there are n 
distinct solutions ton'" = z'" and that they are given by 

m(G + Ink) m(8 + Ink) 
1_ i s m 

16. Find the three solutions to z3/2 = 4^/2 + /4^2. 

17. (a) If z ^ 1, show that 1 + z + z2 + • • • + z" = Z 

, / 1 - 1 . 

1 - z ' 
(b) Use part (a) and De Moivre's formula to derive Lagrange's identity: 

1 + cos 9 + cos 29 + • • • + cos nB = — + 
„+i>] 

where 0 < 6 < 2n. 
2 2 sin(8/2) 

18. Let Zk 7* 1 be an /ith root of unity. Prove that 

1 + zk + z\ + • • • + zT' = 0. 

19. If 1 = z0, zi, Z2, • • • , z„-\ are the /ith roots of unity, prove that 

(z - z\)(z - z2) • - • (z ~ z,,_i) - 1 + z + z2 + • • • + z"-'. 

20. Identity (3), De Moivre's formula, can be established without recourse to properties of 
the exponential function. Note that this identity is trivially true for n = 1, then 
(a) Using basic trigonometric identities, show the identity is valid for n — 2. 
(b) Use induction to verify the identity for all positive integers. 
(c) How would you verify this identity for all negative integers? 

21. Look up the article on Euler's formula and discuss what you found. Use bibliographical 
item 169. 

22. Look up the article on De Moivre's formula and discuss what you found. Use biblio­
graphical item 103. 

23. Look up the article on how complex analysis could be used in the construction of a 
regular pentagon and discuss what you found. Use bibliographical item 114. 

24. Write a report on how complex analysis is used to study roots of polynomials and/or 
complex functions. Resources include bibliographical items 50, 65, 67, 102, 109, 120, 
121, 122, 140, 152, 162, 171, 174, and 178. 
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1.6 The Topology of Complex Numbers 

In this section we investigate some basic ideas concerning sets of points in the plane. 
The first concept is that of a curve. Intuitively, we think of a curve as a piece of 
string placed on a flat surface in some type of meandering pattern. More formally, 
we define a curve to be the range of a continuous complex-valued function z(t) 
defined on the interval [a, b]. That is, a curve C is the range of a function given by 
z(t) = (x(t), y(t)) = x(t) + /y(f), for a < t < b, where bothx(t) and y(t) are continuous 
real-valued functions. If both x(t) and y(t) are differentiate, we say that the curve 
is smooth. A curve for which x(t) and y(t) are differentiable except for a finite number 
of points is called piecewise smooth. We specify a curve C as 

(1) C: z(t) = x(t) + iy(t) for a < t < b, 

and say that z(t) is a parametrization for the curve C. Notice that with this param­
eterization, we are specifying a direction to the curve C, and we say that C is a 
curve that goes from the initial point z(a) = (x(a), y(a)) = x(a) + iy(a) to the terminal 
point z(b) — (JC(6), y(b)) = x(b) + iy(b). If we had another function whose range 
was the same set of points as z(t) but whose initial and final points were re­
versed, we would indicate the curve this function defines by — C. For example, if 
Zo = *o + iyo and z\ — x\ + /vi are two given points, then the straight line segment 
joining z0 to z\ is 

(2) C: z(t) = [xo + (x, - xo)t] + i[yo + (>, - yl})t] for 0 < t < 1, 

and is pictured in Figure 1.21. One way to derive formula (2) is to use the vector 
form of a line. A point on the line is zo = XQ + iyo and the direction of the line is 
Z\ — Zo; hence the line C in formula (2) is given by 

C:z(t) = zo + (zi ~ z0)t f o r 0 < r < 1. 

Clearly one parametrization for — C is 

- C : y(r) = zi + (zo - zi)t for 0 < t < 1. 

It is worth noting that y(t) = z(I - t). This illustrates a general principle: If C is a 
curve parameterized by z(t) for 0 < t < 1, then one parameterization for — C will 
bez(l - t), 0 < t < 1. 

FIGURE 1.21 The straight line segment C joining z0 to Z[. 
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A curve C with the property that z(a) = z(b) is said to be a closed curve. 
The line segment (2) is not a closed curve. The curve *(t) = sin 2r cos t, and 
y(t) = sin 2t sin t for 0 < t < 2% forms the four-leaved rose in Figure 1.22. Observe 
carefully that as t goes from 0 to n/2, the point is on leaf 1; from 7c/2 to n it is on 
leaf 2; between n and 3TI/2 it is on leaf 3; and finally, for t between 3n/2 and 2n it 
is on leaf 4. Notice that the curve has crossed over itself at the origin. 

• x 

FIGURE 1.22 The curve x(t) = sin 2t cos t, v(t) = sin 2t sin t for 0 < t < 2TT, 
which forms a four-leaved rose. 

Remark In calculus the curve in Figure 1.22 was given the polar coordinate 
parameterization r = sin 26. 

We want to be able to distinguish when a curve does not cross over itself. 
The curve C is called simple if it does not cross over itself, which is expressed 
by requiring that z{t\) ^ zfo) whenever t\ 7̂  t2, except possibly when t\ = a and 
t2 = b. For example, the circle C with center zo = *o + iyo and radius R can be 
parameterized to form a simple closed curve: 

(3) C: z(t) = (x0 + R cos t) + i(y0 + R sin t) = z0 + Re" 

for 0 < t < 2 7i, as shown in Figure 1.23. As t varies from 0 to 271, the circle is 
traversed in a counterclockwise direction. If you were traveling around the circle in 
this manner, its interior would be on your left. When a simple closed curve is 
parameterized in this fashion, we say that the curve has a positive orientation. We 
will have more to say about this idea shortly. 
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Z(7t) z(0) = 2(2TT) 

FIGURE 1.23 The simple closed curve z(t) = zo + Re" for 0 < t < 2%. 

We need to develop some vocabulary that will help us describe sets of points 
in the plane. One fundamental idea is that of an E-neighborhood of the point z0> that 
is, the set of all points satisfying the inequality 

(4) \z-Zo\ < e . 

This set is the open disk of radius e > 0 about zo shown in Figure 1.24. In particular, 
the solution sets of the inequalities 

\z\ < 1, |z - i | < 2 , | z + 1 + 2i| < 3 

are neighborhoods of the points 0, / , - 1 - 2/, respectively, of radius 1, 2, 3, 
respectively. 

f***£N* 1 

FIGURE 1.24 An e-neighborhood of the point zo-

An e-neighborhood of the point z0 is denoted by De(zo), and is also referred 
to as the open disk of radius e centered at Zo- Hence, 

(5) Defe))= {z: \z- zo\ < e } . 

We also define the closed disk of radius e centered at zo, 

(6) 5E(zo)= {z: \z- Zo\ ^ eh 

and the punctured disk of radius e centered at zo, 

(7) D;(3>) = { Z : 0 < | Z - Z O | < e } . 
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The point zo is said to be an interior point of the set S provided that there 
exists an e-neighborhood of Zo that contains only points of S; zo is called an exterior 
point of the set S if there exists an 8-neighborhood of zo that contains no points of 
S. If zo is neither an interior point nor an exterior point of S, then it is called a 
boundary point of S and has the property that each e-neighborhood of zo contains 
both points in S and points not in S. The situation is illustrated in Figure 1.25. 

y 
k 

^ x 

FIGURE 1.25 The interior, exterior, and boundary of a set. 

The boundary of DR(zo) is the circle depicted in Figure 1.23. We denote this 
circle by C/?(zo)> and refer to it as the circle of radius R centered at zo< The notation 
C^(zo) is used to indicate that the parameterization we chose for this simple closed 
curve resulted in a positive orientation. C^(zo) denotes the same circle, but with a 
negative orientation. (In both cases counterclockwise denotes the positive direction.) 
Using notation we have already introduced, it is clear that C^(zo) = — CR(ZQ). 

EXAMPLE 1 .20 Let S = {z: \z\ < 1}. Find the interior, exterior, and 
boundary of S. 

Solution Let zo be a point of S. Then |zo| < 1 so that we can choose 
e = 1 — | zo | > 0. If z lies in the disk | z — Zo | < £, then 

\z\ = | zo + z - ZQ\ ^ |zo| + \z - zo I < I zo I + e = 1. 

Hence the e-neighborhood of zo is contained in S, and zo is an interior point of S. It 
follows that the interior of S is the set {z: | z | < 1}. 
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Similarly, it can be shown that the exterior of S is the set {z: \z\ > 1 }• The 
boundary of S is the unit circle {z: \z\ = 1}. This is true because if zo = ^/6n is any 
point on the circle, then any 8-neighborhood of ZQ will contain the point 
(1 — e/2)eie°, which belongs to S, and (1 + e/2)e'B», which does not belong to S. 

A set S is called open if every point of S is an interior point of S. A set S is 
called closed if it contains all of its boundary points. A set S is said to be connected 
if every pair of points z\ and z2 can be joined by a curve that lies entirely in 5. 
Roughly speaking, a connected set consists of a "single piece." The unit disk D = 
{z: \z\ < 1} is an open connected set. Indeed, if zi and zi lie in D, then the straight 
line segment joining them lies entirely in D. The annulus A = {z: 1 < \z\ < 2} is 
an open connected set because any two points in A can be joined by a curve C that 
lies entirely in A (see Figure 1.26). The set B = {z: \ z + 2 | < 1 or | z - 21 < 1} 
consists of two disjoint disks; hence it is not connected (see Figure 1.27). 

FIGURE 1.26 The annulus A {z: 1 < I z I < 2} is a connected set. 

We call an open connected set a domain. For example, the right half plane 
H = {z: Re(z) > 0} is a domain. This is true because if zo = *o + ^o is any point 
in H, then we can choose e = x0, and the e-neighborhood of zo lies in H. Also, any 
two points in H can be connected with the line segment between them. The open 
unit disk |z | < 1 is also a domain. However, the closed unit disk \z\ < 1 is not a 
domain. It should be noted that the term "domain" is a noun and is a kind of set. 
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y 
i 

-3 fe> > J-1 i t , - /3 

FIGURE 1.27 B = {z: \ z + 2 | < 1 or | z - 2 | < 1} is not a connected set. 

A domain, together with some, none, or all of its boundary points, is called a 
region. For example, the horizontal strip {z: 1 < lm(z) < 2} is a region. A set that 
is formed by taking the union of a domain and its boundary is called a closed region-, 
that is, the half plane {z: x < y} is a closed region. A set is said to be bounded if 
every point can be enveloped by a circle of some finite fixed radius, that is, there 
exists an R > 0 such that for each z in S we have \z\ ^ R. The rectangle given by 
{z: \x\ < 4 and |v | < 3} is bounded because it is contained inside the circle 
| z | = 5. A set that cannot be enclosed by a circle is called unbounded. 

We mentioned earlier that a simple closed curve is positively oriented if its 
interior is on the left when the curve is traversed. How do we know, however, that 
any given simple closed curve will have an interior and exterior? The following 
theorem guarantees that this is indeed the case. It is due in part to the work of the 
French mathematician Camille Jordan. 

Theorem 1.1 (The Jordan Curve Theorem): The complement of any simple 
closed curve C can be partitioned into two mutually exclusive domains I and 
E in such a way that I is bounded, E is unbounded, and C is the boundary for 
both I and E. In addition, I U E U C is the entire complex plane. (The domain 
I is called the interior of C, and the domain E is called the exterior of C.) 

The Jordan curve theorem is a classic example of a result in mathematics that 
seems obvious but is very hard to demonstrate. Its proof is beyond the scope of this 
book. Jordan's original argument, in fact, was inadequate, and it was not until 1905 
that a correct version was finally given by the American topologist Oswald Veblen. 
The difficulty lies in describing the interior and exterior of a simple closed curve 
analytically, and in showing that they are connected sets. For example, in which 
domain (interior or exterior) do the two points depicted in Figure 1.28 lie? If they 
are in the same domain, how, specifically, can they be connected with a curve? 
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Although an introductory treatment of complex analysis can be given without 
using this theorem, we think it is important for the well-read student at least to be 
aware of its significance. 

FIGURE 1.28 Are z\ and zi in the interior or exterior of this simple closed curve? 

EXERCISES FOR SECTION 1.6 
1. Sketch the curve z(i) = t1 + It + /(t + 1) 

(a) for - 1 < t < 0. (b) for 1 < t < 2. 
Hint'. Use x = t2 + 2f, y = t 4- 1 and eliminate the parameter t. 

2. Find a parameterization of the line that 
(a) joins the origin to the point 1 + L (b) joins the point i to the point 1 + i. 
(c) joins the point 1 to the point 1 + i. (d) joins the point 2 to the point 1 + i. 

3. Find a parameterization of the curve that is a portion of the parabola v = x2 that 
(a) joins the origin to the point 2 + 4i. (b) joins the point - 1 + i to the origin. 
(c) joins the point 1 + i to the origin. 
Hint. For parts (a) and (b), use the parameter t = x. 

4. Find a parameterization of the curve that is a portion of the circle \z\ = 1 that joins 
the point — i to i if 
(a) the curve is the right semicircle. (b) the curve is the left semicircle. 

5. Find a parameterization of the curve that is a portion of the circle | z \ = 1 that joins 
the point 1 to i if 
(a) the parameterization is counterclockwise along the quarter circle. 
(b) the parameterization is clockwise. 
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For Exercises 6-12, refer to the following sets: 

(a) {z:Re(z)> 1}. 
(c) {z: |z - 2 - «| < 2}. 
(e) {re*: 0 < r < 1 and - K/2 < 0 < ic/2} 
(g) {z: \z\ < l o r | z - 4 | < 1}. 

6. Sketch each of the given sets. 
8. Which of the sets are connected? 

10. Which of the sets are regions? 
12. Which of the sets are bounded? 
13. Let S = {zi, Z2, • • • , z„} be a finite set of points. Show that S is a bounded set 
14. Let S be the open set consisting of all points z such that | z + 2 | < 1 or 

I z — 2 | < 1. Show that 5 is not connected. 
15. 
16. 
17. 
18. 
19. 
20. 

(b) {z: - 1 <Im(z) < 2}. 
(d) {z: |z + 3i| > 1}. 
(f) {re*: r > 1 and 7i/4 < 0 < 7t/3}. 

7. Which of the sets are open? 
9. Which of the sets are domains? 

11. Which of the sets are closed regions? 

Prove that the neighborhood 
Prove that the neighborhood 

z ~ zo 
z - zo 

< e is an open set. 
< e is a connected set. 

Prove that the boundary of the neighborhood z - Zo < e is the circle z - zo = e. 
Prove that the set {z: 
Prove that the set {z: 

z\ > 1} is the exterior of the set S given in Example 1.20. 
z\ = 1} is the boundary of the set S given in Example 1.20. 

Look up some articles on teaching complex analysis and discuss what you found. Re­
sources include bibliographical items 7, 11, 24, 27, 33, 43, 74, 84, 90, 101, 102, 103, 
105, 114, 123, 134, 137, 160, 171, and 185. 
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2.1 Functions of a Complex Variable 

A function/of the complex variable z is a rule that assigns to each value z in a set 
D one and only one complex value w. We write 

(1) w = / ( z ) 

and call w the image of z under/. The set D is called the domain of definition off 
and the set of all images R = {w = f(z): z G D } is called the range off. Just as z 
can be expressed by its real and imaginary parts, z = x + iy, we write w = u + /v, 
where w and v are the real and imaginary parts of w, respectively. This gives us the 
representation 

(2) f(x + iy) = u + iv. 

Since w and v depend on x and y, they can be considered to be real functions of the 
real variables x and y; that is, 

(3) u = u(x, y) and v = v(x, y). 

Combining equations (1), (2), and (3), it is customary to write a complex function 
/ in the form 

(4) f(z) = f(x + iy) = u(x, y) + iv(*. y). 

Conversely, if w(>, y) and v(x, y) are two given real-valued functions of the real 
variables x and y, then equation (4) can be used to define the complex function/ 

EXAMPLE 2.1 Write/(z) = z4 in the form/(z) = u(x, y) + iv(x, y). 

Solution Using the binomial formula, we obtain 

f(z) = (x + iy)4 = x4 + 4jc3/y + 6JC2(/»2 + 4*(/y)3 + (iy)4 

= (x4 - 6x2y2 + y4) + /(4jc3y - 4xy3). 

38 
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E X A M P L E 2 . 2 Express/(z) = z Re(z) + z2 + Im(z) in the form of equations 
(2) and (3)/(z) = u(x9 y) + iv(x, y). 

Solution Using the elementary properties of complex numbers, it follows 
that 

f(z) = (x - iy)x + (x2 - y2 + i2xy) + y = (2x2 - y2 + y) + /(xy). 

These examples show how to find u(x, y) and v(x, y) when a rule for computing 
/ i s given. Conversely, if w(x, y) and v(x, y) are given, then the formulas 

z + z % z - z 
x = and y = 

2 y 2/ 

can be used to find a formula for/involving the variables z and z. 

E X A M P L E 2 . 3 Express/(z) = Ax2 + /4y2 by a formula involving the variables 
z and z. 

Solution Calculation reveals that 

= z2 + 2zz + z2 ~ /(z2 - 2zz + z2) 
= ( 1 - /)z2 + (2 + 2/)zz + ( 1 - i)z2. 

It may be convenient to use z = re'9 in the expression of a complex function 
/ This gives us the representation 

(5) /(z) = /(re'fl) = w(r, 6) + /v(r, 6), 

where u and v are to be considered as real functions of the real variables r and 6. 
Note that the functions u and v defined by equations (4) and (5) are different, since 
equation (4) involves Cartesian coordinates and equation (5) involves polar 
coordinates. 

E X A M P L E 2 . 4 Express /(z) = z5 + 4z2 — 6 in the polar coordinate form 
w(r, 6) + iv(r, 6). 

Solution Using equation (1) of Section 1.5, we obtain 

/(z) = ^(cos 56 + i sin 56) + 4r2(cos 26 + i sin 26) - 6 
= (r5cos 56 + 4r2cos 2 6 - 6 ) + zVsin 56 + 4r2sin 26). 
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EXERCISES FOR SECTION 2.1 
1. Let/fe) = f(x + iy) = x + y + /(x3y - y2). Find 

( a ) / ( - 1 + 3/) (b) / (3/ - 2 ) 
2. Let/(z) = z2 + 4zz - 5 Re(z) + Im(z). Find 

(a) / ( - 3 + 2/) (b) /(2/ - 1) 
3. Find/(1 + /) for the following functions. 

(a) f(z) = z + z~2 + 5 (b) f(z) = 

4. Find/(2/ - 3) for the following functions. 

(a) f(z) = (z + 3)-¾ - 5/)2 (b) f(z) = 

1 
z2 + 1 

z + 2 - 3/ 

z + 4 - / 
5. Let/(z) = z21 ~ 5z7 + 9z4. Use polar coordinates to find 

( a ) / ( - 1 + / ) _ ( b ) / ( l + /73) 
6. Express/(z) = z2 + (2 - 3/)z in the form u + /v. 

7. Express/(z) = : in the form u + /v. 
z - 1 + i 

8. Express/(z) = z5 + zMn the polar coordinate form w(r, 0) + iv(r, 0). 
9. Express/(z) = z5 + z3 in the polar coordinate form w(r, 0) + /v(r, 0). 

10. Let/(z) = fix + iy) — evcos y + /evsin y. Find 
(a) /(0) (b) /(1) (c) /(m/4) 
(d) /(1 + m/4) (e) /(/271/3) (f) /(2 + in) 

11. Let/(z) = / ( x + iy) = {111) \n(x2 + y2) + / arctan(yA). Find 
(a) /(1) (b) /(1 + /) (c) / ( 7 3 ) 
(d) / ( 7 3 + /) (e) /(1 + /73) (0 /(3 + 4/) 

12. Let/(z) = r2cos 20 + /r2sin 20, where z = r '̂fi. Find 
(a) /(1) (b) f(le^) 
(c)/(72e-/3) (d)/(73^/6) 

13. Let/(z) = In r + /0, where r = | z |, 0 = Arg z. Find 
(a) /(1) (b) /(1 + /) 
( c ) / ( - 2 ) (d) / ( - 7 3 + 0 

14. A line that carries a charge of <?/2 coulombs per unit length is perpendicular to the z 
plane and passes through the point zo. The electric field intensity E(z) at the point z 
varies inversely as the distance from zo and is directed along the line from zo to z. Show 
that 

E(z) - -
z - zo 

where k is some constant. ( In Section 10.11 we will see that the answer is in fact 

z - zo 
15. Suppose that three positively charged rods carry a charge of qll coulombs per unit length 

and pass through the three points 0, 1 - /, and 1 + /. Use the result of Exercise 14 and 
show that E(z) = 0 at the points z = (2/3) + /(72/3). 

16. Suppose that a positively charged rod carrying a charge of qll coulombs per unit length 
passes through the point 0 and that positively charged rods carrying a charge of q 
coulombs per unit length pass through the points 2 + / and —2 + /. Use the result of 
Exercise 14 and show that E(z) = 0 at the points z = ± y + i \ . 
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2.2 Transformations and Linear Mappings 

We now take our first look at the geometric interpretation of a complex function. If 
D is the domain of definition of the real-valued functions u(x, v) and v(x, v), then 
the system of equations 

(1) u = u(x, y) and v = v(x, y) 

describes a transformation or mapping from D in the xy plane into the uv plane. 
Therefore, the function 

(2) w = M = u(x, y) + iv(x, y) 

can be considered as a mapping or transformation from the set D in the z plane onto 
the range R in the w plane. This is illustrated in Figure 2.1. 

w =f(z) 
*-

u - u{x, y) 
v ~ v{x, y) 

FIGURE 2.1 The mapping w = f(z). 

If A is a subset of the domain of definition D, then the set B = {f(z): z E A} 
is called the image of the set A, and/is said to map A onto B. The image of a single 
point is a single point, and the image of the entire domain D is the range R. The 
mapping w = f(z) is said to be from A into S if the image of A is contained in S. 
The inverse image of a point w is the set of all points z in D such that w = f(z). The 
inverse image of a point may be one point, several points, or none at all. If the latter 
case occurs, then the point w is not in the range off. 

The function/is said to be one-to-one if it maps distinct points z\ ^ Zi onto 
distinct points f(z\) ^ f(12)- If H> = f(z) maps the set A one-to-one and onto the set 
B, then for each w in B there exists exactly one point z in A such that w = f(z). 
Then loosely speaking, we can solve the equation w = f(z) by solving for z as a 
function of w. That is, the inverse function z ~ g(w) can be found, and the following 
equations hold: 

(3) g(f(z)) = z for all z in A and 
f(g(w)) = w for all vv in B. 

Conversely, if w = f(z) and z = g(w) are functions that map A into B and B 
into A, respectively, and equations (3) hold, then w = f(z) maps the set A one-to-
one and onto the set B. The one-to-one property is easy to show, for if we have 
f(z\) = / f e ) , then g(f(Z])) = g(f(z2)); and using equation (3), we obtain z\ = z2-
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To show t h a t / i s onto, we must show that each point w in B is the image of some 
point in A. If w E B, then z = g(w) lies in A andf(g(w)) = n\ and we conclude that 
/ i s a one-to-one mapping from A onto B. 

We observe that if / is a one-to-one mapping from D onto /? and if A is a 
subset of D, t h e n / i s a one-to-one mapping from A onto its image B. One can also 
show that if ^ = f(z) is a one-to-one mapping from A onto 5, and w = g(£) is a one-
to-one mapping from S onto B, then the composition mapping w = g(/(z)) is a one-
to-one mapping from A onto B. 

It is useful to find the image B of a specified set A under a given mapping 
w = f(z). The set A is usually described with an equation or inequality involving x 
and y. A chain of equivalent statements can be constructed that lead to a description 
of the set B in terms of an equation or an inequality involving u and v. 

E X A M P L E 2 . 5 Show that the function/(^) = iz maps the line y = x + 1 onto 
the line v = —u— 1. 

So lut ion We can w r i t e / i n the Cartesian form u + iv = f(z) = i(x + ry) 
= — y + /jt, and see that the transformation can be given by the equations u = —y 
and v = x. We can substitute these into the equation y = x + 1 to obtain — u = v 
+ 1, which can be written as v = — u — 1. 

We now turn our attention to the investigation of some elementary mappings. 
Let B = a + ib denote a fixed complex number. Then the transformation 

(4) w = T(z) = z + B = x + a + i(y + b) 

is a one-to-one mapping of the z plane onto the w plane and is called a translation. 
This transformation can be visualized as a rigid translation whereby the point z is 
displaced through the vector a + ib to its new position w = T(z). The inverse 
mapping is given by 

(5) z = T~[(w) = w-B = u-a + i(v-b) 

and shows that T is a one-to-one mapping from the z plane onto the w plane. The 
effect of a translation is pictured in Figure 2.2. 

z ~ x 4- iy 

•z+B 

u ~ x + a 
v = y + b 

w = T(z) 

FIGURE 2.2 The translation w = T(z) = z + B = x + a + i(y + b). 
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Let a be a fixed real number. Then the transformation 

(6) w = R(z) = zeia = reiQeia = reiiH+a) 

is a one-to-one mapping of the z plane onto the w plane and is called a rotation. It 
can be visualized as a rigid rotation whereby the point z is rotated about the origin 
through an angle a to its new position w = R(z). If we use polar coordinates 
w — pe'* in the w plane, then the inverse mapping is given by 

(7) z = R~l(w) = we~ia = pe^e~ia = pe^-a ) . 

This shows that R is a one-to-one mapping of the z plane onto the w plane. The 
effect of rotation is pictured in Figure 2.3. 

¢ = 6 + a 

FIGURE 2.3 The rotation w = R(z) = rel{^ 

Let K > 0 be a fixed positive real number. Then the transformation 

(8) w = S(z) = Kz = Kx + iKy 

is a one-to-one mapping of the z plane onto the w plane and is called a magnification. 
If K > 1, it has the effect of stretching the distance between points by the factor K. 
If K < 1, then it reduces the distance between points by the factor K. The inverse 
transformation is given by 

1 1 1 
(9) z = S'](w) = —w = — u + i—v 

K K K 

and shows that S is one-to-one mapping from the z plane onto the w plane. The 
effect of magnification is shown in Figure 2.4. 
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y 
A 

Ki + Ki 

w ~ Kz 

u ^Kx 
v = Ky / + 

-h+-x 

"•!#•' •/••rj^-Hi^':-^'-'-^-^--'-**-'! 'OAA< 

.... i.v''i'.jjfJijj'ii.iYH ;>vifi'i>X»y''»»'»'» 

H >-w 

FIGURE 2.4 The magnification w = S(z) = Kz = Kx + iKy. 

Let A = Ke'a and £ = a + /£>, where /£ > 0 is a positive real number. Then 
the transformation 

(10) w = W(z) = Az + B 

is a one-to-one mapping of the z plane onto the w plane and is called a linear 
transformation. It can be considered as the composition of a rotation, a magnifica­
tion, and a translation. It has the effect of rotating the plane through an angle given 
by a = Arg A, followed by a magnification by the factor K = | A |, followed by a 
translation by the vector B = a + ib. The inverse mapping is given by 

(11) z = W-'(viO = — w - — 
A A 

and shows that W is a one-to-one mapping from the z plane onto the w plane. 

E X A M P L E 2 . 6 Show that the 1 inear transformation w = iz + i maps the right 
half plane Re(z) > 1 onto the upper half plane Im(w) > 2. 

Solution We can write w = f(z) in Cartesian form u + iv = i(x + ry) + i 
— ~~y + *'(* + 1) and see that the transformation can be given by the equations 
u = —y and v = x + 1. The substitution x = v - 1 can be used in the inequality 
Re(z) = x > 1 to see that the image values must satisfy v - 1 > 1 or v > 2, which 
is the upper half plane Im(vv) > 2. The effect of the transformation w = f(z) is a 
rotation of the plane through the angle a = n/2 followed by a translation by the 
vector B = i and is illustrated in Figure 2.5. 
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FIGURE 2.5 The linear transformation w - f(z) = iz + /. 

It is easy to see that translations and rotations preserve angles. Since magni­
fications rescale distance by a factor AT, it follows that triangles are mapped onto 
similar triangles, and so angles are preserved. Since a linear transformation can be 
considered as a composition of a rotation, a magnification, and a translation, it 
follows that linear transformations preserve angles. Consequently, any geometric 
object is mapped onto an object that is similar to the original object; hence linear 
transformations can be called similarity mappings. 

EXAMPLE 2 .7 Show that the image of the open disk |z + 1 + / | < 1 under 
the transformation w = (3 — 4/)z + 6 + 2/ is the open disk | w + I — 3/1 < 5. 

Solution The inverse transformation is given by 

w — 6 — 2/ 
Z= 3 - 4 / ' 

and this substitution can be used to show that the image points must satisfy the 
inequality 

I w — 6 — 2/ I 
+ 1 + / < 1. 

I 3 — 4/ I 

Multiplying both sides by | 3 - 4/1 = 5 results in 

\w - 6 - 2/ + (1 + /)(3 - 4/) | < 5, 

which can be simplified to obtain the inequality 

\w + 1 - 3/1 < 5. 

Hence the disk with center — 1 — / and radius 1 is mapped one-to-one and onto the 
disk with center — 1 + 3/ and radius 5 as pictured in Figure 2.6. 
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i t i iv . 

•T 
I I 1 I — * - x 

FIGURE 2.6 The mapping w = S(z) = (3 - Ai)z + 6 + 2/. 

EXAMPLE 2 . 8 Show that the image of the right half plane Re(z) > 1 under 
the linear transformation w = ( — 1 + i)z — 2 + 3/ is the half plane v > u + 7. 

Solution The inverse transformation is given by 

_ w + 2 - 3/ _ ii + 2 + i(v - 3) 
Z " - 1 + / - 1 + / ' 

which can be expressed in the component form 

-u + v — 5 — u ~ v + 1 
x + iy = + /-

The substitution JC = ( - M + V - 5 ) / 2 can be used in the inequality Re(z) = JC > 1 
to see that the image points must satisfy ( —w + v — 5)/2 > 1. This can be simplified 
to yield the inequality v > u + 7. The mapping is illustrated in Figure 2.7. 

4 -4 -

w=f(z) 

f V„» t.,,i, \ \ > x *-*-« 

FIGURE 2.7 The mapping w = f(z) = (-1 + i)z - 2 + 3/. 
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EXERCISES FOR SECTION 2.2 
1. Let w = (1 - i)z + 1 - 2i. 

(a) Find the image of the half-plane Im(z) > 1. 
(b) Sketch the mapping, and indicate the points z\ = - 1 + i, Zi = i, and Z3 = 1 + i 

and their images wt, vv2, and w% 
2. Let w = (2 + /)z - 3 + 4/. Find the image of the line 

JC = r, jy = 1 — 2/ for -oo < t < «>. 

3. Let w = (3 + 4i)z - 2 + /. 
(a) Find the image of the disk \z - 1 | < 1. 
(b) Sketch the mapping, and indicate the points z\ = 0, z2 = 1 ~ h and z? = 2 and their 

images. 
4. Let w — (3 + 4/')z - 2 + /. Find the image of the circle 

JC = 1 + cos /, y = 1 + sin t for —n < t < TC. 

5. Let w = (2 + i)z — 2/. Find the triangle onto which the triangle with vertices 
Z\ = — 2 + /, z2 — - 2 + 2/, and ẑ  = 2 + / is mapped. 

6. Find the linear transformation w = /(z) that maps the points z\ = 2 and zi = —3/ onto 
the points w\ = 1 + i and w2 = 1, respectively. 

7. Find the linear transformation w = S(z) that maps the circle \z\ = 1 onto the circle 
| w — 3 + 2/1 = 5 and satisfies the condition 5( - / ) = 3 + 3/. 

8. Find the linear transformation w = f(z) that maps the triangle with vertices —4 + 2/, 
- 4 + 7/, and 1 + 2/ onto the triangle with vertices 1, 0, and 1 + i. 

9. Let S(z) = Kz, where K > 0 is a positive real constant. Show that the equation 
\S(z\) - Sizi) I = K\z\ — Z21 holds, and interpret this result geometrically. 

10. Give a proof that the image of a circle under a linear transformation is a circle. Hint: 
Let the given circle have the parameterization x = JC() + R cos t, y = y0 + R sin t. 

11. Prove that the composition of two linear transformations is a linear transformation. 
12. Show that a linear transformation that maps the circle | z — z0 | = ^i onto the circle 

| w - w{) | = R2 can be expressed in the form 

A(w — W[))R\ - (z — Zo) Ri, where \A\ = 1. 

2.3 The Mappings w= zn and w= zVn 

The function w — f(z) = z2 can be expressed in polar coordinates by 

(1) w=f(z) = z2 = r2ei2\ 

where r > 0 and — 7t < 8 < n. If polar coordinates, w = pe/(t) are used in the w 
plane, then mapping (1) can be given by the system of equations 

(2) p = r2 and ¢ = 26. 

If we consider the wedge-shaped set A = {re'e: r > 0 and — n/4 < 6 < 7C/4}, 
then the image of A under the mapping f is the right half plane described by the 
inequalities p > 0, — n/2 < (j) < TI/2. Since the argument of the product zz is twice 
the argument of z, we say tha t /doub les angles at the origin. Points that lie on the 
ray r > 0, G = a are mapped onto points that lie on the ray p > 0, <|> = 2a . 
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If the domain of definition D for/(z) = z2 is restricted to be the set 

(3) D = | relB: r > 0 and -~ < 6 < ~ L 

then the image of D under the mapping w = z2 consists of all points in the w plane 
(except the point w — 0 and all the points that lie along the negative u axis). The 
inverse mapping off is 

(4) z = f~\w) = wm = p1/2e'^2, where p > 0 and - n < § < n. 

The function f~](w) = wU2 in equation (4) is called the principal square root func­
tion and shows that f is one-to-one when its domain is restricted by set (3). The 
mappings w = z2 and z = w1/2 are illustrated in Figure 2.8. 

FIGURE 2.8 The mappings w = z2 and z = w]/2. 

Since /(—z) = (-z)2 = z2, we see that the image of the left half plane 
Re(z) < 0 under the mapping w = z2 is the w plane slit along the negative u axis as 
indicated in Figure 2.9. 

FIGURE 2.9 The mapping w z~. 
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Other useful properties of the mapping w = z2 can be investigated if we use 
the Cartesian form 

(5) w = f(z) = z2 = x2 - y2 + i2xy 

and the resulting system of equations 

(6) u = x2 - y2 and v = 2xy. 

EXAMPLE 2 .9 The transformation w = f(z) = z2 maps vertical and horizontal 
lines onto parabolas, and this fact is used to find the image of a rectangle. If a > 0, 
then the vertical line x = a is mapped onto the parabola given by the equations 

72 _ y2 and v = lay, which can be solved to yield the single equation 

(7) u ^ -
4a2' 

If b > 0, then the horizontal line y = b is mapped onto the parabola given by the 
equations u = x2 — b2 and v = 2xb, which can be solved to yield the single equation 

(8) u = -b2 + 
4b2 

Since quadrant I is mapped onto quadrants I and II by w = z2, we see that the 
rectangle 0 < x < a, 0 < y < b is mapped onto the region bounded by the parabolas 
(7) and (8) and the u axis. The four vertices 0, a, a + /Z>, and ib are mapped onto 
the four points 0, a2, a2 — b2 + ilab, and — b2, respectively, as indicated in Figure 
2.10. 

lib , 
24TTTT*-

a + i b 

« • x 

0.5 

FIGURE 2.10 The transformation w = z2 

The mapping w = z]/2 can be expressed in polar form, 

(9) w = f(z) = z — -71/2 = r\f2ja/2 
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where the domain of definition D fo r / i s restricted to be r > 0, — n < 6 < n. If 
polar coordinates w = pe^ are used in the w plane, then mapping (9) can be rep­
resented by the system 

(10) p = rm and ¢) = 

From equations (10) we see that the argument of the image is half the argument of 
z and that the modulus of the image is the square root of the modulus of z. Points 
that lie on the ray r > 0, 0 = a are mapped onto the ray p > 0, ty = a/2. The image 
of the z plane (with the point z = 0 deleted) consists of the right half plane 
Re(vv) > 0 together with the positive v axis, and the mapping is pictured in Figure 
2.11. 

„ * - X 

* v \ . : : ' : : : > * < ' / ' • 

1¾¾¾^ 0 =$ /2 
-7T < 0 <7T l;:-..V:.:.;:^::;;:;:;:X::::::, 

FIGURE 2.11 The mapping w = zU2 

The mapping w = zu2 can be studied through our knowledge about its inverse 
mapping z = w2. If we use the Cartesian formula 

(11) z = w2 = u2 - v2 + i'2wv, 

then the mapping z = w2 is given by the system of equations 

(12) = u2 - and 3? = 2uv. 

EXAMPLE 2 . 1 0 The transformation w = f(z) = zm maps vertical and hori­
zontal lines onto a portion of a hyperbola, enabling us to find images of half 
planes. Let a > 0. Then system (12) can be used to see that the right half plane 
given by Re(z) = x > a is mapped onto the region in the right half plane satisfying 
u2 - v2 > a and lies to the right of the hyperbola u2 - v2 = a. If b > 0, then system 
(12) can be used to see that the upper half plane Im(z) = y > b is mapped onto the 
region in quadrant I satisfying 2wv > b and lies above the hyperbola 2uv = b. The 
situation is illustrated in Figure 2.12. 
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1/2 

J 

y = b 

' 

y 

L9 

4 

x- a 

' * 

-£ 1 

z - w 1 

FIGURE 2.12 The mapping w = z] 

Let « be a positive integer and consider the function w = f(z) = zn, which can 
be expressed in the polar coordinate form 

(13) w = f(z) = 7? = rnein\ where r > 0 and - 71 < 6 < %. 

If polar coordinates w = pe'* are used in the w plane, then mapping (13) can be 
given by the system of equations 

(14) p = r" and 0 = n%. 

We see that the image of the ray r > 0, 6 = a is the ray p > 0, <() = na and that 
angles at the origin are increased by the factor n. Since the functions cos «6 and 
sin «8 are periodic with period 2n/n, we see that/is in general an n-to-one function; 
that is, n points in the z plane are mapped onto each point in the w plane (except 
w = 0). If the domain of definition D of / i n mapping (13) is restricted to be 

(15) D = re/e: r > 
- 7 1 A 71 1 

o, — < e < — , 
rc n ) 

then the image of D under the mapping w = f(z) = zn consists of all points in the 
w plane (except the origin w = 0), and the inverse function is given by 

(16) z = f'~l(w) = wVn = p^V*7", where p > 0 and - n< <f> < n. 

The function f~l(w) = wUn is called the principal nth root function and shows that 
f is one-to-one when it is restricted to be the domain set (15). The mappings 
w = zn and z = wl/n are shown in Figure 2.13. 
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tft«w ^ U 

FIGURE 2.13 The mappings w = z" and z = wl 

EXERCISES FOR SECTION 2.3 

1. Show that the image of the horizontal line y = 1 under the mapping w = z2 is the 
parabola u = v2/4 - 1. 

2. Show that the image of the vertical line x — 2 under the mapping w — z2 is the parabola 
u = 4 - v2/16. 

3. Find the image of the rectangle 0 < x < 2, 0 < y < 1 under the mapping w = z2. Sketch 
the mapping. 

4. Find the image of the triangle with vertices 0, 2, and 2 + 2/ under the mapping w = z2. 
Sketch the mapping. 

5. Show that the infinite strip 1 < x < 2 is mapped onto the region that lies between the 
parabolas u = 1 - v2/4 and u = 4 - v2/16 by the mapping w = z2. 

6. For what values of z does (z2)1/2 = z hold if the principal value of the square root is to 
be used? 

7. Sketch the set of points satisfying the following relations, 
(a) Re(z2) > 4 (b) Im(z2) > 6 

8. Show that the region in the right half plane that lies to the right of the hyperbola 
x2 — y2 = 1 is mapped onto the right half plane Re(w) > 1 by the mapping w = z2. 

9. Show that the image of the line x — 4 under the mapping w = zl/2 is the right branch 
of the hyperbola u2 — v2 = 4. 

10. Find the image of the following sets under the mapping w = zl/2. 
(a) {re1": r > 1 and n/3 < 0 < 7i/2} 
(b) {re1": l < r < 9 a n d O < 0 < 2TC/3} 
(c) {r^'e: r < 4 and -n < 9 < n/2] 
Find the image of the right half plane Re(z) > 1 under the mapping w = z2 + 2z + 1. 
Show that the infinite strip 2 < y < 6 is mapped onto the region in the first quadrant 
that lies between the hyperbolas uv = 1 and uv — 3 by the mapping w = zl/2. 
Find the image of the region in the first quadrant that lies between the hyperbolas 
xv = y and xy = 4 under the mapping w = z2. 
Show that the region in the z plane that lies to the right of the parabola x = 4 — y2/\6 
is mapped onto the right half plane Re(w) > 2 by the mapping w = zl/2. Hint: Use the 
inverse mapping z = w2. 

11. 
12. 

13. 

14. 
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15. Find the image of the following sets under the mapping w = z3. 
(a) {re*; 1 < r < 2 and - nIA < 6 < K/3} 

(b) {re'»: r > 3 and 2TC/3 < 6 < 3n/4] 
16. Find the image of the sector r > 2, 7i/4 < 0 < rc/3 under the following mappings, 

(a) w = z* (b) w = z4 (c) w = z6 

17. Find the image of the sector r > 0 , —7C<8< 2TC/3 under the following mappings, 
(a) w = zm (b) w = zm (c) w = zm 

18. Use your knowledge about the complex square root function and explain the fallacy in 
the following statement: 1 = 7 ( - 1 ) ( - 1 ) = J{-\)J{-\) = (/)(/) = - 1 . 

2.4 Limits and Continuity 

Let u = w(x, y) be a real-valued function of the two real variables x and y. We say 
that u has the limit u0 as (JC, y) approaches (JCO, yo) provided that the value of u(x, y) 
gets close to the value u0 as (x, y) gets close to (JC0, yo). We write 

(1) lim w(x, y) = w0. 
(jf,V)-»(-V0,V()) 

That is, u has the limit w0 as (x, y) approaches (x0, yo) if and only if | W(JC, y) — w0 | 
can be made arbitrarily small by making both \x — Xo | and \y — y0 | small. This 
is like the definition of limit for functions of one variable, except that there are two 
variables instead of one. Since (JC, y) is a point in the xy plane, and the distance 
between (x, y) and (JC0, yo) is J(x — XQ)2 + (y — y0)2, we can give a precise definition 
of limit as follows. To each number e > 0, there corresponds a number 8 > 0 such 
that 

(2) | u(x, y) - w01 < £, whenever 0 < J(x - x0)
2 + (y - y0)2 < 8. 

EXAMPLE 2.11 If u(x, y) = Jt3/C*2 + y2), then 

(3) lim w(x, y) = 0. 
tr,v)->(0,0) 

Solut ion If x = r cos 6 and y = r sin 0, then 

r3cos36 . 
u(x, y) = 2Q . 2Q = r cos36. 

r2cos2B + r2sin26 

Since J(x - 0)2 + (y ~ 0)2 = r, we see that 

| u(x, y) - 01 = r | cos38 | < e, whenever 0 < Jx1 + y2 = r < £. 

Hence for any e > 0, inequality (2) is satisfied for 8 = e; that is, u(x, y) has the 
limit wo = 0 as (JC, v) approaches (0, 0). 

The value uQ of the limit must not depend on how (x, y) approaches (x0, yo). 
So it follows that u(x, y) must approach the value w0 when (x, y) approaches (x0, yo) 
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along any curve that ends at the point (JC0, yo). Conversely, if we can find two curves 
Cx and C2 that end at (x0, Vo) along which u(xy y) approaches the two distinct values 
u\ and W2, respectively, then u{x, y) does not have a limit as (x, y) approaches 
C*o, Jo)-

E X A M P L E 2 . 1 2 The function u{x, y) = xy/(x2 + y2) does not have a limit as 
O, y) approaches (0, 0). If we let (x, y) approach (0, 0) along the x axis, then 

r , m r W ( Q ) n hm u(x, 0) = hm — — = 0. 
(.v,0)-K0,0) (.r,0)-»(0,0) X1 + 0^ 

But if we let (x, 3;) approach (0, 0) along the line y = x, then 

WW 1 
hm «(x, x) = hm — ~ — . 

(.vjr)-»(0,0) (.v.v)-»(0,0) XZ + X1 2 

Since the two values are different, the value of the limit is dependent on how (x, y) 
approaches (0, 0). We conclude that w(x, y) does not have a limit as (x, y) approaches 
(0, 0). 

Let/(z) be a complex function of the complex variable z that is defined for all 
values of z in some neighborhood of zo, except perhaps at the point z0- We say that 
/ has the limit w0 as z approaches zo, provided that the value f(z) gets close to the 
value wo as z gets close to z0; and we write 

(4) lim/U) = w0. 

Since the distance between the points z and zo can be expressed by | z — Zo |, we 
can give a precise definition of limit (4): For each positive number e > 0, there 
exists a 8 > 0 such that 

(5) \f(z) - wo I < e, whenever 0 < | z - Zo \ < 8. 

Geometrically, this says that for each e-neighborhood | w — wo | < e of the point 
w0 there is a deleted 8-neighborhood 0 < | z — Zo | < 8 of Zo such that the image 
of each point in the 8-neighborhood, except perhaps z0> l i e s in the e-neighborhood 
of WQ. The image of the 8-neighborhood does not have to fill up the entire e-neigh­
borhood; but if z approaches z0 along a curve that ends at zo, then w = f(z) ap­
proaches w0. The situation is illustrated in Figure 2.14. 

If we consider w = f(z) as a mapping from the z plane into the w plane and 
think about the previous geometric interpretation of a limit, then we are led to 
conclude that the limit of a function/should be determined by the limits of its real 
and imaginary parts u and v. This will also give us a tool for computing limits. 
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w=f(z) 

FIGURE 2.14 The limit/(z) -» w0 as z -> z0. 

Theorem 2.1 Let /(z) = u(x, y) + /v(X y) be a complex function that 
is defined in some neighborhood of zo, except perhaps at Zo = x0 + /y0. Then 

(6) lim/(z) = w0 = u0 + /v0 

//"ana1 o«/y //* 

(7) lim u(x, y) = w0 ana1 Urn v(x, y) ~ v0. 
(.v,y)->U0,y0) (.v,y)^U0,y0) 

Proof Let us first assume that statement (6) is true, and show that statement (7) 
is true. According to the definition of limit, for each £ > 0, there corresponds a 
8 > 0 such that 

\f(z) - wo I < £, whenever 0 < | z - z01 < 5. 

Since/(z) - w0 = w(x, y) - u0 + /(v(x, y) — v0), we can use equations (2) of Section 
1.3 to conclude that 

| u(x, y) ~ M0 | < \f(z) ~ wo | and | v(x, y) - v0 | < \f(z) - w0 | . 

It now follows that | u(x, y) - u01 < e and | v(x, y) - v01 < e whenever 
0 < | z — Zo | < 8 so that statement (7) is true. 

Conversely, now let us assume that statement (7) is true. Then for each 
e > 0, there exists 8j > 0 and 82 > 0 so that 

I u(x, y) - w0 I < — , whenever 0 < | z - Zo \ < 81 and 

I v(x, y) - v0 I < — , whenever 0 < | z - Zo | < 82. 

Let 8 be chosen to be the minimum of the two values 81 and 82. Then we can use 
the triangle inequality 

\f(z) - w0 I < I u(x9 y) - wo I + I v(x, y) - v0 | 
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to conclude that 

\f(z) ~ w0 I < — + ~ = £, whenever 0 < | z - z0 | < 8. 

Hence the truth of statement (7) implies the truth of statement (6), and the proof of 
the theorem is complete. 

For example, lim (z2 - 2z + 1 ) = - 1 . To show this result, we let 
z-> 1 f i 

f(z) = z2 - 2z + 1 = x2 - y2 - 2x + 1 + i(2xy - 2y). 

Computing the limits for u and v, we obtain 

lim u(x, )0 = 1 - 1 - 2 + 1 = - 1 and 
( j r , v ) - » ( l , l ) 

lim V(JC, y) = 2 - 2 = 0. 
(*,>•)->< 1,1) 

So Theorem 2.1 implies that lim f(z) = - 1 . 
c-> 1 i / 

Limits of complex functions are formally the same as in the case of real func­
tions, and the sum, difference, product, and quotient of functions have limits given 
by the sum, difference, product, and quotient of the respective limits. We state this 
result as a theorem and leave the proof as an exercise. 

Theorem 2.2 Let lim/(z) = A and lim g(z) = B. Then 

(8) lim [f(z) ± g(z)] =A±B. 

(9) lim/(2)*(z) = AB. 

(10) lim — = — , where B ^ 0. 
^ , g(z) B 

Let u(x, y) be a real-valued function of the two real variables x and y. We say 
that u is continuous at the point (JC0, v0) if the following three conditions are satisfied: 

(11) lim u(x, y) exists. 

u,v)->(Ao-yo> 

(12) u(x0, y0) exists. 

(13) lim u(x, y) = u(x0, y0). 
(jf,v)->(jr0<yo) 

Condition (13) actually contains conditions (11) and (12), since the existence of the 
quantity on each side of the equation there is implicitly understood to exist. For 
example, if u(x, y) = x3/(x2 + y2) when (JC, y) ¥- (0, 0) and if w(0, 0) = 0, then we 
have already seen that u(x, y) —> 0 as (x, y) —> (0, 0) so that conditions (11), (12), 
and (13) are satisfied. Hence u(x, y) is continuous at (0, 0). 
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Let/(z) be a complex function of the complex variable z that is defined for all 
values of z in some neighborhood of z0- We say that f is continuous at z0 if the 
following three conditions are satisfied: 

(14) limf(z) exists. 
Z->ZQ 

(15) /(¾)) exists. 

(16) l im/(2)=/(¾). 

A complex function/is continuous if and only if its real and imaginary parts 
u and v are continuous, and the proof of this fact is an immediate consequence of 
Theorem 2.1. Continuity of complex functions is formally the same as in the case 
of real functions, and the sum, difference, and product of continuous functions are 
continuous; their quotient is continuous at points where the denominator is not zero. 
These results are summarized by the following theorems, and the proofs are left as 
exercises. 

Theorem 2.3 Letf(z) = u(x, v) + iv(x, y) be defined in some neighborhood 
ofzo. Then/is continuous at zo — XQ + iyo if and only ifu and v are continuous 
at (*o, y0). 

Theorem 2.4 Suppose that f and g are continuous at the point zo. Then the 
following functions are continuous at Zo'. 

(17) Their sum f(z) + g(z). 

(18) Their difference f(z) - g(z). 

(19) Their product f(z)g(z). 

f(z) 
(20) Their quotient provided that g(zo) 9^ 0. 

g(z) 
(21) Their composition f(g(z)) provided that f{z) is continuous in a neighborhood 

of the point g(zo). 

E X A M P L E 2 . 1 3 Show that the polynomial function given by 

w = P(z) = a0 + a\z + a2z
2 + • • • + anz

n 

is continuous at each point z0 in the complex plane. 

Solution Observe that if a0 is the constant function, then lim ^ a0 = a0\ 
and if a\ # 0, then we can use definition (5) with f(z) = axz and the choice 
8 = e/|ai | to prove that lim,.^ axz = aiZo- Then using property (9) and mathe­
matical induction, we obtain 

(22) lim akz
k = akz^ for k = 0, 1, 2, . . . , n. 
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Property (8) can be extended to a finite sum of terms, and we can use the result of 
equation (22) to obtain 

(23) lim P(z) = lim ( J ) akz
k) = j ? akz* = P(zo). 

Z->ZQ Z->ZQ \k=Q / k=0 

Since conditions (14), (15), and (16) are satisfied, we can conclude that P is con­
tinuous at zo-

One technique for computing limits is the use of statement (20). Let P and Q 
be polynomials. If Q(zo) ^ 0, then 

r P(z) P(ZQ) 
lim = . 
z-*Zo Q(Z) (2(¾) 

Another technique involves factoring polynomials. If both P(zo) = 0 and 
Q(zo) = 0, then P and Q can be factored as P(z) = (z - Zo)P\(z) and 
Q(z) = (z - Zo)Qi(z). If Gi(zo) ^ 0, then the limit is given by 

r P(z) y (z - Zo)Pj(z) Pdzo) 
lim = lim = . 
z-*zo Q(Z) Z-+* (Z ~ Zo)Ql(z) (2,(¾)) 

E X A M P L E 2 . 1 4 Show that lim , Z" " 2i = 1 - / . 
z->\+n2 - 2z + 2 

Solut ion Here P and Q can be factored in the form 

P(z) = (z - 1 - i)(z + 1 + /) and Q(z) = (z - 1 - i)(z - 1 + /) 

so that the limit is obtained by the calculation 

r z2 - 2/ v (z - 1 - /)(z + 1 + 0 
lim — = lim 

z-i+ ; z2 - 2Z + 2 z - i + i (z - I - 0(z ~ 1 + 0 
= hm = 1 - 1 . 

z->\+i Z — 1 + I 

EXERCISES FOR SECTION 2.4 

1. Find lim (z2 ~ 4z + 2 + 5/). 2. Find lim Z + 4 z + 2 . 
^ 2 + / c /̂ Z + 1 

z4 - 1 z2 + z - 2 + / 
3. Find lim r • 4. Find lim — . 

z-+i Z ~ I z^\+i Z2 ~ 2z + 1 
z2 + z - 1 - 3i. X' 

5. Find lim — — by factoring. 6. Show that lim — = 0. 
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7. State why lim (e'cos y -f ix2y) ~ eX(,cos y0 + ixly(). 

8. State why lim [ln(*2 + y2) + /y] = lnC*2, + y(
2,) + /vo provided that | zo | ^ 0. 

I z P 
9. Show that lim = 0. 

--*<> z 
10. Let/(z) = -T-T; 7 — ^ . 

I z |- x~ 4- y-
(a) Find lim/(z) as z —> 0 along the line v = x. 

. - - 0 

(b) Find lim/(z) as z —» 0 along the line v = 2x. 
.-•• » 0 ' 

(c) Find lim/(z) as z --> 0 along the parabola y = x2. 
• » o ' 

(d) What can you conclude about the limit of/(z) as z —> 0? 
11. Let/(z) = zVz. Show that/(z) does not have a limit as z —» 0. 
12. Does u(x, y) = U3 - 3.ry2)/(x2 4- y2) have a limit as (x, y) -^ (0, 0)? 
13. Let/(z) - z1/2 = rl/2[cos(6/2) + / sin(0/2)], where r > 0 and -TC < 0 < TC. Use the 

polar form of z and show that 
(a) /(z) -> i as z —> — 1 along the upper semicircle r = 1, 0 < 0 < TC. 
(b) f(z) —> — / as z —» — 1 along the lower semicircle r = 1, — K < 0 < 0. 

14. Does lim Arg z exist? Why? Hint: Use polar coordinates and let z approach - 4 from 

the upper and lower half planes. 

15. Determine where the following functions are continuous. 

(a) z4 - 9z2 + iz ~ 2 (b) - y i - y (c) 

z4 + 1 x + i\ 
(d) , , . , 0 (e) =- (f) 

z- + 2z + 2 .v - 1 1 z j - 1 
16. Let/(z) = [z Re(z)]/1 z | when z / 0 , and let /(0) = 0. Show that/(z) is continuous for 

all values of z. 
17. Let/(z) = xey 4- (v2^ \ Show that /(z) is continuous for all values of z. 
18. Let/(z) = U2 4- /y2)/ | z | 2 when z ^ 0 , and let/(0) = 1. Show that/(z) is not continuous 

at zo = 0. 
19. Let/(z) = Re(z)/|z| when z ¥" 0, and let/(0) = 1. Is/(z) continuous at the origin? 
20. Let/(z) = [Re(z)]2/|z| when z 7̂  0, and let/(0) = 1. Is/(z) continuous at the origin? 
21. Let/(z) - zl/2 = r1/2[cos(6/2) 4- i sin(0/2)], where r > 0 and -TC < 0 < TC. Show that 

/(z) is discontinuous at each point along the negative x axis. 
22. Let/(z) = In I z I + / Arg z, where —TC < Arg z ^ TC. Show that /(z) is discontinuous at 

Zo = 0 and at each point along the negative x axis. 
23. Let A and B be complex constants. Use Theorem 2.1 to prove that 

lim (Az + B) = Azt) + #• 
24. Let Az = z - z<>. Show that lim f<z) = vv() if and only if lim /(z() + Az) = vv0. 

25. Let |g(z)| < M and lim/(z) = 0. Show that lim/(z)#(z) = 0. 

26. Establish identity (8). 27. Establish identity (9). 28. Establish identity (10). 
29. Let/(z) be continuous for all values of z. 

(a) Show that g{z) = fiz) is continuous for all z. 
(b) Show that h(z) = fiz) is continuous for all z. 

30. Establish the results of (17) and (18). 31. Establish the result (19). 
32. Establish the result (20). 33. Establish the result (21). 

z2 

z2 

X 

+ 6z + 5 

+ 3z + 2 
• + iy 
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2.5 Branches of Functions 

In Section 2.3 we defined the principal square root function and investigated some 
of its properties. We left some unanswered questions concerning the choices of 
square roots. We now look into this problem because it is similar to situations 
involving other elementary functions. 

In our definition of a function in Section 2.1 we specified that each value of 
the independent variable in the domain is mapped onto one and only one value of 
the dependent variable. As a result, one often talks about a single-valued function, 
which emphasizes the only one part of the definition and allows us to distinguish 
such functions from multiple-valued functions, which we now introduce. 

Let w = f(z) denote a function whose domain is the set D and whose range is 
the set R. If w is a value in the range, then there is an associated inverse function 
z = g(w) that assigns to each value w the value (or values) of z in D for which the 
equation/(z) = w holds true. But un less / takes on the value w at most once in Z), 
then the inverse function g is necessarily many valued, and we say that g is a 
multivalued function. For example, the inverse of the function w = f(z) = z2 is the 
square root function z = g(w) = wU2. We see that for each value z other than 
z = 0, the two points z and — z are mapped onto the same point w = f(z)\ hence g 
is in general a two-valued function. 

The study of limits, continuity, and derivatives loses all meaning if an arbitrary 
or ambiguous assignment of function values is made. For this reason we did not 
allow multivalued functions to be considered when we defined these concepts. When 
working with inverse functions, it is necessary to carefully specify one of the many 
possible inverse values when constructing an inverse function. The idea is the same 
as determining implicit functions in calculus. If the values of a function f are de­
termined by an equation that they satisfy rather than by an explicit formula, then 
we say that the function is defined implicitly or t h a t / i s an implicit function. In the 
theory of complex variables we study a similar concept. 

Let w = f(z) be a multiple-valued function. A branch o f / i s any single-valued 
function /0 that is continuous in some domain and, at each point z in the domain, 
assigns one of the values o f / ( z ) . 

E X A M P L E 2 - 1 5 Let us consider some branches of the two-valued square root 
function/(z) = z l /2. We define the principal square root function as 

ft ft 
(1) f{z) = r1/2cos — + /r1/2sin — = r1/2e'e/2, 

where we require that r > 0 and — n < 6 < n. The function/ is a branch of/ We 
can find other branches of the square root function. For example, let 

(2) f2(z) = r l /2cos 9 + 2n + /r1/2sin d + 2n = , 1 / 2 ^ + 2 ^ 

where r > 0 and —7t < 0 < 71. 
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If we use the identities cos 

then we see that 

e + 27i e e + in e 
— = —cos — and sin = —sin — 

2 2 2 

fi(z) — — rI/2cos e e = _ r l / V e / 2 = _ / l ( z ) > 
2 2 

so / i and / 2 can be thought of as " p l u s " and " m i n u s " square root functions. 

The negative real axis is called a branch cut for the functions f\ and/2- It is char­
acterized by the fact that each point on the branch cut is a point of discontinuity for 
both functions/1 and/2-

E X A M P L E 2 . 1 6 To show that the function f\ is discontinuous along the neg­
ative real axis, let zo = r{)e

±iK denote a negative real number. Now we compute the 
limit of/i(z) as z approaches zo through the upper half plane {z: Im(z) > 0} and the 
limit off\(z) as z approaches z0 through the lower half plane {z: Im(z) < 0 } . In polar 
coordinates these limits are given by 

ft ft 
lim /i(re'H) = lim r l /2l cos \- i sin — 

(r,e )-»(/•(). JC) (r,H)-»(r0,re) \ 2 2 
ir 

1/2 and 

lim /i(re 'e) = 
( / • ,e ) ->(r 0 . -7 i ) 

lim 
(r ,H)-»(r 0 , -7 t ) 

0 
cos h i sin — _ ,v i / -

Since the two limits are distinct, the function f\ is discontinuous at zo- Likewise, f2 

is discontinuous at ZQ. The mappings w = f\{z) and w = f2(z) and the branch cut are 
illustrated in Figure 2.15. 

m 

w=f,(z) 

HtWWWH.II' ^ X 

* • " > • * % * 

I 

i 

w =/2(z) - . ^ ^ 4 ' 

t;.;.;:;.l:,.l.M,.l;;Ml.!;M;.!Y,Y!!, » ^ 

FIGURE 2.15 The branches/, and/2 of/U) 
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Other branches of the square root function can be constructed by specifying 
that an argument of z given by 6 = arg z is to lie in the interval a < 0 < a + 271. 
Then the branch fa is given by 

A ft 
(3) fa(z) = r

1/2cos — + /rl/2sin — , where r > 0 and a < G < a + 2TC. 

The branch cut fo r / a is the ray r > 0, 6 = a, which includes the origin. The point 

z = o, common to all branch cuts for the multivalued function, is called a branch 
point. The mapping vv = fa(z) and its branch cut are illustrated in Figure 2.16. 

V 

I 

bp V 
J* 1 _ ^ u 

FIGURE 2.16 The branch/, of/(z) = z]n. 

The Riemann Surface for w = z1/2 

A method for visualizing a multivalued function is provided by using a Riemann 
surface. These representations were introduced by G. F. B Riemann (1826-1866) in 
1851. The idea is ingenious, a geometric construction that permits surfaces to be 
the domain or range of a multivalued function. 

Consider vv = f(z) = z1/2, which has two values for any given z (except, of 
course, for z = 0). Each function fx(z) and/2(z) , given in Example 2.15 is single-
valued on the domain formed by cutting the z plane along the negative x axis. Let 
Dx and D2 be the domain of fY(z) and f2(z), respectively. The range set /i(z) is 
the set Hx consisting of right half plane Hx plus the positive v axis, and the range 
set f2(z) is the set H2 consisting of left half plane Hi plus the negative v axis. The 
sets Hi and H2 are "glued together" along the poitive v axis and the negative 
v axis to form the vv plane with the origin deleted. 

Stack D\ to D2 directly above each other. The edge of Dx in the upper half 
plane is joined to the edge of D2 in the lower half plane, and the edge of D\ in the 
lower half plane is joined to the edge of D2 in the upper half plane. When these 
domains are "g lued ' ' together in this manner they form R, which is a Riemann 
surface domain for the mapping w = f(z) - zU2. The portion of Du D2, and R that 
satisfy \z\ < 1 are shown in Figure 2.17. 

i 1 'A. 
'&&?/<•••• 

•}:Mr.v 

OL 

™=fjz) • . 
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(a) A portion of D\ and its image under w = z]/2. 

(b) A portion of D2 and its image under w = z1 

(c) A portion of R and its image under w = zl/2. 

FIGURE 2.17 Formation of the Riemann surface for w - z]/2. 

EXERCISES FOR SECTION 2.5 
1. Let/i(z) and/2(z) be the two branches of the square root function given by equations 

(1) and (2), respectively. Use the polar coordinate formulas in Section 2.3 to 
(a) Find the image of quadrant II, x < 0 and v > 0, under the mapping w = f\(z). 
(b) Find the image of quadrant II, x < 0 and y > 0, under the mapping w = f2(z). 
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(c) Find the image of the right half plane Re(z) > 0 under the mapping w = f\(z). 
(d) Find the image of the right half plane Re(z) > 0 under the mapping w = fi(z). 

2. Let a = 0 in equation (3), and find the range of the function w = f(z). 
3. Let a = 2n in equation (3), and find the range of the function w = f(z). 
4. Find a branch of the square root function that is continuous along the negative x axis. 
5. Let/Hz) = rl/3cos(8/3) + ir,/3sin(6/3), where r > 0 and -TC < 6 < % denote the principal 

cube root function. 
(a) Show that/j is a branch of the multivalued cube root function/(z) = z1/3. 
(b) What is the range of/i? 
(c) Where is/i continuous? 

6. Let/2(z) = rl/3cos[(8 + 2n)/3] + *>1/3sin[(8 + 2rc)/3], where r > 0 and - 7 i < 6 < n. 
(a) Show that/2 is a branch of the multivalued cube root function/(z) = z1/3. 
(b) What is the range of/2? 
(c) Where is /2 continuous? 
(d) What is the branch point associated with/? 

7. Find a branch of the multivalued cube root function that is different from those in 
Exercises 5 and 6. State the domain and range of the branch you find. 

8. Let/(z) = z]/n denote the multivalued nth root function, where n is a positive integer. 
(a) Show that / is in general an n-valued function. 
(b) Write down the principal nth root function. 
(c) Write down a branch of the multivalued nth root function that is different from the 

one in part (b). 
9. Describe a Riemann surface for the domain of definition of the multivalued function 

w = f(z) = z,/3. 
10. Describe a Riemann surface for the domain of definition of the multivalued function 

w = / ( z ) = zm. 
11. Discuss how Riemann surfaces should be used for both the domain of definition and the 

range to help describe the behavior of the multivalued function w = /(z) = z2/3. 
12. Show that the principal branch of the argument Arg z is discontinuous at 0 and all points 

along the negative real axis. 

2.6 The Reciprocal Transformation w= Mz 
(Prerequisite for Section 9.2) 

The mapping w = Mz is called the reciprocal transformation and maps the z plane 
one-to-one and onto the w plane except for the point z = 0, which has no image, 
and the point w — 0, which has no preimage or inverse image. Since zz = \ z |2, we 
can express the reciprocal transformation as a composition: 

_ z 
(1) w — Z and Z = -—r-. 

\z\2 

The transformation Z = zl \ z |2 is called the inversion mapping with respect to the 
unit circle \z\ = 1. It has the property that a nonzero point z is mapped onto the 
point Z such that 

(2) | Z | | z | = 1 and arg Z = arg z. 

Hence it maps points inside the circle \z\ = 1 onto points outside the circle 
| Z | = 1, and conversely. Any point of unit modulus is mapped onto itself. The 

inversion mapping is illustrated in Figure 2.18. 
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FIGURE 2.18 The inversion mapping. 

The geometric description of the reciprocal transformation is now evident 
from the composition given in expression (1). It is an inversion followed by a re­
flection through the x axis. If we use the polar coordinate form 

(3) w = pe1^ = —e~iQ, where z = re'8, 
r 

then we see that the ray r > 0, 0 = a is mapped one-to-one and onto the ray 
p > 0, <|> = - a . Also, points that lie inside the circle | z | = 1 are mapped onto 
points that lie outside the circle \w\ — 1, and vice versa. The situation is illustrated 
in Figure 2.19. 

y v 

FIGURE 2.19 The reciprocal transformation w = 1/z. 

It is convenient to extend the system of complex numbers by joining to it an 
4 'ideal" point denoted by <» and called the point at infinity. This new set is called 
the extended complex plane. The point °o has the property that 

(4) lim zn = °° if and only if lim \zn\ = °°. 
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An £-neighborhood of the point at infinity is the set {z: \z\ > 1/e}- The usual way 
to visualize the point at infinity is accomplished by using the stereographic projec­
tion and is attributed to Riemann. Let 17 be a sphere of diameter 1 that is centered 
at the (0, 0, y) in the three-dimensional space where coordinates are denoted by the 
triple of real numbers (JC, y, £). Here the complex number z = x + iy will be asso­
ciated with the point Qc, y, 0). 

The point M = (0, 0, 1) on fl is called the north pole of O. Let z be a complex 
number, and consider the line segment L in three-dimensional space that joins z to 
the north pole K. Then L intersects Q in exactly one point i£. The correspondence 
z <-» ££ is called the stereographic projection of the complex z plane onto the 
Riemann sphere £1. A point z = x + iy of unit modulus will correspond to 

-S6 = ("T > "T > ~T )• ^ z n a s m o c U i m s grater than 1, then !£ will lie in the upper 

hemisphere where £ > y . If z has modulus less than 1, then X will lie in the lower 
hemisphere where £ < y . The complex number z = 0 corresponds to the south pole 
J = (0, 0, 0). It is easy to visualize that z ~^ °° if and only if i£ —> K. Hence M 
corresponds to the "ideal" point at infinity. The situation is shown in Figure 2.20. 

FIGURE 2.20 The Riemann sphere. 

Let us reconsider the mapping w = 1/z. Let us assign the images w = <*> and 
w = 0 to the points z = 0 and z = °°, respectively. The reciprocal transformation 
can now be written as 

( l/z when z ^ 0, z ^ °° 
0 when z = °° 
co when z = 0. 

It is easy to see that the transformation w = f(z) is a one-to-one mapping of the 
extended complex z plane onto the extended complex w plane. Using property (4) 
of the point at infinity, it is easy to show that / i s a continuous mapping from the 
extended z plane onto the extended w plane. The details are left for the reader. 
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EXAMPLE 2 . 1 7 Show that the image of the right half plane Re(z) > y , under 
the mapping w = 1/z, is the disk | w - 1 | < 1. 

Solution The inverse mapping z = 1/w can be written as 

1 u — iv 
(6) x + iy z = U2 + V2 ' 

Equating the real and imaginary parts in equation (6), we obtain the equations 

u . —v 
(7) 

u2 + v2 and y 
u2 + v2 

The requirement that x > y forces the image values to satisfy the inequality 

(8) 
u Jt_ 

u2 + v2 2 ' 

It is easy to manipulate inequality (8) to obtain 

(9) u2 - 2u + 1 + v2 < 1, 

which is an inequality that determines the set of points in the w plane that lie inside 
the circle with center H>0 = 1 and radius 1. Since the reciprocal transformation is 
one-to-one, preimages of the points in the disk | w — 1 | < 1 will lie in the right 
half plane Re(z) > y . The mapping is shown in Figure 2.21. 

FIGURE 2.21 The image of Re(z) > 1/2 under the mapping w = 1/z. 

EXAMPLE 2,18 Find the image of the portion of the right half plane 
Re(z) > y that lies inside the circle | z ~ y | < 1 under the transformation w = 1/z. 
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Solution Using the result of Example 2.17, we need only find the image 
of the disk I z — y I < 1 and intersect it with the disk \w — 1 I < 1. To start with, 
we can express the disk | z 

(10) x2 + y 2 - j c < | . 

< 1 by the inequality 

We can use the identities (7) to show that the image values of points satisfying 
inequality (10) must satisfy the inequality 

(ID 
1 u 3_ 

u2 + v2 < 4 " u2 + v2 

Inequality (11) can now be manipulated to yield 

(T)2 < (a + I)2 + v\ 

which is an inequality that determines the set of points in the w plane that lie exterior 
to the circle | w + y | = 
illustrated in Figure 2.22. 

Therefore, the image is the crescent-shaped region 

FIGURE 2.22 The mapping w = \lz that is discussed in Example 2.18. 

To study images of "generalized circles," let us consider the equation 

(12) A(x2 + y2) + Bx + Cy + D = 0 

where A, B, C, and D are real numbers. Then equation (12) represents either a circle 
or a line, depending on whether A ^ 0 or A = 0, respectively. If we use polar 
coordinates, then equation (12) has the form 

(13) Ar2 + r{B cos 6 + C sin 6) + D = 0. 

Using the polar coordinate form of the reciprocal transformation given in equation 
(3), we find that the image of the curve in equation (13) can be expressed by the 
equation 

(14) A + p(B cos $ - C sin ¢) + Dp2 = 0, 
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which represents either a circle or a line, depending on whether D ^ 0 or D = 0, 
respectively. Therefore, we have shown that the reciprocal transformation w = l/z 
carries the class of lines and circles onto itself. 

E X A M P L E 2 . 1 9 Find the images of the vertical lines x = a and the horizontal 
lines y = b under the mapping w = l/z. 

S o l u t i o n The image of the line x = 0 is the line u = 0; that is, the y axis 
is mapped onto the v axis. Similarly, the x axis is mapped onto the u axis. 

If a ¥" 0, then using equations (7), we see that the vertical line x = a is mapped 
onto the circle 

(15) 
u2 4- v2 

It is easy to manipulate equation (15) to obtain 

1 1 , , 
ul u H + vl = I u 

a Aa2 

±Y + ,= - (±v 

2a/ \2aj 
which is the equation of a circle in the w plane with center w0 = 1 / (2a ) and radius 
I 1/(2«) | . 

Similarly, the horizontal line y = bis mapped onto the circle 

u2 + v2 + —v + — = u2 + ( v + ~ 
b Ab2 \ 2b, 

2 
2b)' 

which has center w0 = -i/(2b) and radius | 1/(2Z?)|. The images of several lines are 
shown in Figure 2.23. 

I ! 

•b = \ j 
w = -

b = Vi z 

- • x 

b = - ½ 

£ = - 1 

FIGURE 2.23 The images of horizontal and vertical lines under the reciprocal 
transformation. 
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EXERCISES FOR SECTION 2.6 

For Exercises 1-8, find the image of the given circle or line under the reciprocal 
transformation w = IIz. 

1. The horizontal line Im(z) - y . 2. The circle | z + //2 | = y • 

3. The vertical line Re(z) = - 3 . 4. The circle \z + 2 | = 1. 

5. The line 2x + 2y = 1. 6. The circle | z - U2 | = 1. 

7. The circle \z - y | = 1. 8. The circle \z + 1 - i | = 2. 

9. (a) Show that lim (1/z) = 0. (b) Show that lim (\lz) = ~. 

10. Show that the reciprocal transformation w = \lz maps the vertical strip 0 < x < y onto 
the region in the right half plane Re(w) > 0 that lies outside the circle | w — 1 | = 1. 

11. Find the image of the disk | z + 2//3 | < y under the reciprocal transformation. 
12. Show that the reciprocal transformation maps the disk \z — 1 | < 2 onto the region that 

lies exterior to the circle | w + y | = y . 
13. Find the image of the half plane y > y — x under the mapping w = 1/z. 
14. Show that the half plane y < x - y is mapped onto the disk | w - 1 - i | < Jl by the 

reciprocal transformation. 
15. Find the image of the quadrant x > 1, y > 1 under the mapping w = 1/z. 
16. Show that the transformation w — 2/z maps the disk | z — i \ < 1 onto the lower half 

plane Im(w) < — 1. 
17. Show that the transformation w — (2 - z)lz = - 1 + 2 / ^ maps the disk | z - 11 < 1 

onto the right half plane Re(w) > 0. 
18. Show that the parabola 2x = 1 — y2 is mapped onto the cardioid p = 1 + cos $ by the 

reciprocal transformation. 
19. Limits involving °°. The function/(z) is said to have the limit L as z approaches oo, and 

we write 

lim/(z) = L 

if for every e > 0 there exists an R > 0 so that 

\f(z) - L\ < £, whenever \z\ > R. 

Use this definition to prove that 

20. Show that the complex number z = x + iy is mapped onto the point 

( x y x2 + y2 \ 

x2 + y2 + 1 ' x2 + y2 + 1 ' JC2 + y2 + 1/ 
on the Riemann sphere. 

21. Explain how are the quantities +°°, — «>, and °o different? How are they similar? 
22. Write a report on Mbbius transformation. Include ideas and examples that are not men­

tioned in the text. Resources include bibliographical items 12, 23, 24, 30, 36, and 43. 



Analytic and Harmonic 
Functions 

3.1 Differentiable Functions 

Let/be a complex function that is defined at all points in some neighborhood of zo-
The derivative of fat zo is written f'(zo) and is defined by the equation 

(1) / (zo) = lim 
z^z() Z — Zo 

provided that the limit exists. When this happens, we say that the function f is 
differentiable at zo- If we write Az = z — Zo, then definition (1) can be expressed in 
the form 

„ . -„ , r /(zo + Az) - / f a ) 
(2) / fa) = hm . 

AZ->O Az 

If we let w = f(z) and Aw = f(z) — / f a ) , then the notation dw/dz for the derivative 
is expressed by 

dw . Aw 
(3) /'fa) = —= hm— . 

dz A.:->O Az 

E X A M P L E 3-1 If/(z) = z3, show we can use definition (1) to get/'(z) = 3z2. 

Solution Calculation reveals that 

/ t a ) = l i m ^ J o = H m (z - frXz* + ^ + zg) = 3 4 

<--*~0 Z Zo :-^o Z Zo 

The subscript on zo can be dropped to obtain the general formula/'(z) = 3z2. 

We must pay careful attention to the complex value Az in equation (3), since 
the value of the limit must be independent of the manner in which Az —> 0. If we 
can find two curves that end at zo along which Aw/Az approaches distinct values, 
then Aw/Az does not have a limit as Az —> 0 and/does not have a derivative at zo-

71 
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E X A M P L E 3 .2 Show that the function w = f(z) = z = x - iy is nowhere 
differentiable. 

Solution To show this, we choose two approaches to the point zo = XQ + 
iyo and compute limits of the difference quotients. First, we approach zo = x0 + iyo 
along a line parallel to the x axis by forcing z to be of the form z = x + /y0: 

r /(2)-/(¾) r / (* + fro) ~ /Uo + iyo) hm = lim ;— :—--
Z-^ZQ z - Zo ui /V0)->(JC0 t (v0) (•* + iyo) - (x0 + ?yo) 

.. (x - iyo) - (xp - iy0) = lim -
U+/y0)~>U0wy0) (X — XQ) + /(Vo — yo) 

r X - Xp 
= lim 

(XI /y 0)-»( . f 0 t /V0) -^ ^ 0 

= 1. 
Second, we approach zo along a line parallel to the y axis by forcing z to be of the 
form z = xo + iy: 

y f(z)-f(zo) y /(^o + / y ) - / ( x 0 + /y0) hm = lim 
z-*zo z - zo Uo MV)-»U„ uy„) (̂ o + iy) - (xQ + iyo) 

(XQ - iy) - (x0 - iyo) 
= hm 

u0+/>•)-><*) "vo> (x0 - x0) + i(y - yo) 
r -Ky - yo) 
llm "̂  r 

u0f/y)->{.v0My0) i{y - yo) 

Since the limits along the two approaches are different, there is no computable limit 
for the right side of equation (1). Therefore/(z) = z is not differentiable at the point 
z0. Since zo was arbitrary,/(z) is nowhere differentiable. 

Our definition of the derivative for complex functions is formally the same as 
for real functions and is the natural extension from real variables to complex vari­
ables. The basic differentiation formulas follow identically as in the case of real 
functions, and we obtain the same rules for differentiating powers, sums, products, 
quotients, and compositions of functions. The proof of the differentiation formulas 
are easily established by using the limit theorems. 

Let C denote a complex constant. From definition (1) and the technique ex­
hibited in the solution to Example 3.1, the following are easily established, just as 
they were in the real case: 

d 
(4) — C = 0, where C is a constant, and 

dz 
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(5) — zn = nzn~K where n is a positive integer. 
dz 

Furthermore, the rules for finding derivatives of combinations of two differentiable 
functions/and g are identical to those developed in calculus: 

(6) y [Cf{z)} - C/(z), 
dz 

(7) -lf(z) + g(z)]=f'(z) + g'(z), 
dz 

(8) - lf(z)g(z)] = f(z)g(z) + f(z)g'{z\ 
dz 

( 9 ) J z ^ r W ^ • P—ded that ,fe) ^ 0 , 

(10) ^f(g(z))=f'{g{z))g\z). 
dz 

Important particular cases of (9) and (10), respectively, are 

d 1 -n 
(11) = , for z ¥* 0 and where n is a positive integer, 

dz zn zn+ 

(12) — [f(z)]n = n[f(z)]n~]f(z)> where n is a positive integer. 
dz 

E X A M P L E 3-3 If we use equation (12) with/(z) = z2 + ilz + 3 and/ 'U) = 
2z + 2i, then we see that 

™ (z2 + 1¾ + 3)4 = 8(z2 + ilz + 3)3(z + 0-

Several proofs involving complex functions rely on properties of continuous 
functions. The following result shows that a differentiable function is a continuous 
function. 

Theorem 3.1 Iffis differentiable at zo, then f is continuous at z0-

Proof Since/is differentiable at zo* from definition (1) we obtain 

hm = / {zo). 
Z^ZQ Z ~~ ZO 
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Using the multiplicative property of limits given by formula (9) in Section 2.4, we 
see that 

lim [f(z) - /(¾)] = Km f(z)2f(Z0) (z - z0) 
Z^ZQ z-+zi) Z Zo 

= hm lim (z - Zo) 
Z-^ZQ Z — Zo c->c<) 

= / ( ¾ ) . 0 = 0. 

Hence lim f(z) = /(¾), and/ i s continuous at zo-
Z-*ZQ 

Using Theorem 3.1, we are able to establish formula (8). Letting h(z) = 
f(z)g(z) and using definition (1), we write 

1tr , ,. h(z) - h(zo) r f{z)g(z) - f(zo)g(zo) 
h (¾) = lim = lim . 

Z->ZQ Z — Zo :~>r<) Z — Zo 

If we add and subtract the term/(zo)g(z) in the numerator, we can regroup the last 
term and obtain 

,,, , r f(z)g(z) - f(zo)g(z) f(zo)g(z) - f(zo)g(zo) 
h (zo) = hm + lim 

s->zo Z - " Zo z-*zi) Z ~ Zo 

y f(Z) ~ /(¾) g(z) - g(Z0) 
= hm hm g(z) + /(¾) hm . 

z->2o ^ ^0 s->ro c -^o Z Zo 

Using definition (1) for derivative and the continuity of g, we obtain h'(zo) = 
f'(zo)g(zo) + f(zo)g'(zo). Hence formula (8) is established. The proofs of the other 
formulas are left as exercises. 

The rule for differentiating a polynomial can be extended to complex vari­
ables. Let P(z) be a polynomial of degree n: 

(13) P(z) = a0 + aiz + a2z
2 + • • • + anz

n. 

Then mathematical induction can be used with formulas (5) and (7) to obtain the 
derivative of (13): 

(14) P'(z) = a{ + 2a2z + 3a3z
2 + • • • + nanz

n~l. 

The proof is left as an exercise. 
Properties of limits and derivatives can be used to establish L'Hopital's rule, 

which has the familiar form that is learned in calculus. 
Assume/and g are differentiable at zo- If/(¾) = 0, #(¾) = 0, and g'(zo) ^ 0, 

then 

hm — = hm - — . 
z-*zo g(Z) z^zo g (Z) 

Finding limits of the form "0 /0" by L'Hopital's rule is given in Exercise 7. 
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EXERCISES FOR SECTION 3.1 
1. Find the derivatives of the following functions. 

(a) f(z) = 5z3 - 4z2 + 7z - 8 
(b) g(z) = (z2 - iz + 9)5 

2z + 1 
(c)h(z) = - f o r z ^ - 2 

z + 2 
(d) F(z) = (z2 + (1 - 3/)z + l)(z4 + 3z2 + 5/) 

2. Use definition (1), and show that = -—- . 
dz z z-

3. If/ is differentiable for all z, then we say that/is an entire function. If/and g are entire 
functions, decide which of the following are entire functions. 
(a) [f(z)V (b) f(z)g(z) (c) f{z)lg(z) 
(d)/(l/z) ( e ) / ( z - 1) (0/(s(z)) 

4. Use definition (1) to establish formula (5). 
5. Let P be a polynomial of degree n given by P(z) = «o + «|Z + • • • + a„z". Show that 

P'(z) = A, + 2a2z + • • • + rtfl^'-'. 
6. Let P be a polynomial of degree 2, given by 

P(z) = (z - zi)(z - z2), 

where zi and zi are distinct. Show that 

P\z) 1 + 1 
P(z) z ~ z\ 

7. Use L'HopitaLs rule to find the following limits. 
z4 - 1 z2 - iz 

(a) lim (b) lim z - / Z-A (/ z2 - 2z + 2 
z6 + 1 , ,. z4 + 4 

(c) hm -—- (d) hm 
-_-/ Z" + 1 :->!+/Z~ - 2z + 2 

z6 - 64 ,. z9 - 512 

8. Let /be differentiable at z0. Show that there exists a function r|(z), such that 

/(z) = /(zo) + /'(zo)fe " 20) + TI(Z)(Z - z0), where r|(z) -> 0 as z -> z0. 

9. Show that — z~" = -nz "~! where n is a positive integer. 
dz 

10. Establish the identity 

- f(z)g(z)h(z) =f'(z)g(z)h(z) +f(z)g'(z)h{z) +f(z)g(z)h'(z). 
dz 

11. Show that the function/(z) = | z |2 is differentiable only at the point z<> - 0. Hint: To 
show that / is not differentiable at zo ^ 0, choose horizontal and vertical lines through 
the point zo, and show that Aw/Az approaches two distinct values as Az ~^ 0 along those 
two lines. 

12. Establish identity (4). 13. Establish identity (7). 
14. Establish identity (9). 15. Establish identity (10). 
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16. Establish identity (12). 
17. Consider the differentiable function/(z) = z3 and the two points z\ = 1 and z2 = '• 

Show that there does not exist a point c on the line y = 1 — x between 1 and i such that 

= f (c). 
£2 - Zi 

This shows that the mean value theorem for derivatives does not extend to complex 
functions. 

18. Let/(z) = z]/n denote the multivalued ' 'nth root function," where n is a positive integer. 
Use the chain rule to show that if g(z.) is any branch of the rcth root function, then 

g (z) = 
n z 

in some suitably chosen domain (which you should specify). 
19. Write a report on Rolle's theorem for complex functions. Resources include bibliograph­

ical items 64 and 127. 

3.2 The Cauchy-Riemann Equations 

Let / (z) = u(x, y) + /v(jt, y) be a complex function that is differentiable at the point 
ZQ. Then it is natural to seek a formula for computing / '(zn) in terms of the partial 
derivatives of u(xy y) and v(x, v). If we investigate this idea, then it is easy to find 
the required formula; but we will find that there are special conditions that must be 
satisfied before it can be used. In addition, we will discover two important equations 
relating the partial derivatives of u and v, which were discovered independently by 
the French mathematician A. L. Cauchy* and the German mathematician G. F. B. 
Riemann. 

First, let us reconsider the derivative of f(z) = z2- The limit given in formula 
(1) of Section 3.1 must not depend on how z approaches z0- We investigate two such 
approaches, a horizontal and a vertical approach to zo- Recall from our graphics 
analysis of w = z2 that the image of a square is a "curvilinear quadrilateral." For 
convenience, let the square have vertices z0 — 2 4- /, z\ = 2.01 + /, zi = 2 + 1.01/, 
and z3 = 2.01 + 1.01/. Then the image points are w0 = 3 + 4/, w\ = 3.0401 + 
4.02/, w2 = 2.9799 + 4.04/, and w3 = 3.02 + 4.0602/, as shown in Figure 3.1. 

*A. L. Cauchy (1789-1857) played a prominent role in the development of complex analysis, and 
you will see his name several times throughout this text. The last name is not pronounced as 
"kaushee." The beginning syllable has a long ' V sound, like the word kosher, but with the second 
syllable having a long "e'1 instead of "er" at the end. Thus, we pronounce Cauchy as "koshe^1 
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y 

k 
1.01 

1.005 z-plane 

2.005 

FIGURE 3.1 The image of a small square with vertex zo ~ 2 + i using w = z1-

^ u 

Approximations fo r / ' ( 2 + i) are made using horizontal or vertical increments 

in z: 

/(2.01 + i) - / ( 2 + 0 0.0401 + 0.02/ 
/ ( 2 + 0 - J\„. — ^ = — = 4.01 + 2/ (2.01 + i) - ( 2 + i) 0.01 

and 

/ (2 + 1.01/) - / ( 2 + i) -0 .0201 + 0.04/ 
/ ( 2 + i) - L — ' = T T T : = 4 + 2.01/. 

(2 + 1.01/) - ( 2 + 0 0.011 

These computations lead to the idea of taking limits along the horizontal and vertical 
directions, and the results are, respectively, 

. / ( 2 + /1 + 0 - / ( 2 + /) ,. 4h + h2 + /2h 
/ ' ( 2 + /) = lim — — — = lim = 4 + 2/ 

/i->o h h^o h 

and 

/ ( 2 + / + ih) - / ( 2 + /) - 2 h - h2 + /4h 
/ ' ( 2 + i) = lim — - = lim = 4 + 2/. 

/r->o in /i-»o /h 

We now generalize this idea by taking limits of an arbitrary complex function 
and obtain an important result. 

Theorem 3.2 (Cauchy-Riemann Equations) Let f(z) = fix + iy) = 
u(x, v) + /V(JC, v) be dijferentiable at the point zo = xo + Ô o- Then the partial 
derivatives of u and v exist at the point (x0, yo) and satisfy the equations 

(1) ux(x0, y0) = VvUo, yo) and i/v(x0, y0) = -vv(x0 , y0). 
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Proof We shall choose horizontal and vertical lines that pass through the point 
(x0, vo) and compute the limiting values of Aw/Az along these lines. Equating the 
two resulting limits will result in equations (1). For the horizontal approach to zo 
we set z ~ x + iyQ and obtain 

,,, , ,. / (* + /j0) - f(x0 + /jQ) 
f (zo) = tim — — , 

(-v,v<»)-u0,v0) x + iy0 - (XQ + iy0) 

w(x, Jo) - w(*o» j0) + i[v(x9 j0) - v(x0, j0)] 
= lim 

x - x0 

u(x, y0) - u(x0, j0) , . r vjx, Jo) - v(x0, y0) = hm 1- i hm . 
-v->.v0 X — X() -v-*.v0 X — JCo 

We see that the last limits are the partial derivatives of u and v with respect to x, 
and we obtain 

(2) /'(zo) = wv(x0, j0) + /vv(jc0, Jo). 

Along the vertical approach to zo, we have z = *o + / j . Calculation reveals that 

/(*o + oO ~ f(xo + <Jo) 
/'(zo) = lim 

(.*o,.v) 

= lim 

(.r0,v)->(.Y0,v0) *Q + 0 7 - ( * 0 + *J()) 

u(x0, J ) - U(XQ, y0) + /[yQ0, y) - v(x0, j0)] 

' ( j - jo ) 

v(x0, j ) - v(*o, Jo) . ,. w(*o, J ) - u(xo, jo) 
= hm i hm . 

v->v„ J - J() .v->v„ J - JO 

We see that the last limits are the partial derivatives of u and v with respect to j , 
and we obtain 

(3) /'(zo) = VyOo, Jo) ~ iuy(x0, Jo). 

Since/is differentiable at zo> the limits given by equations (2) and (3) must be equal. 
If we equate the real and imaginary parts in equations (2) and (3), then the result is 
equations (1), and the proof is complete. 

At this stage we may be tempted to use equation (2) or (3) to compute /'(zo)* 
We now investigate when such a procedure is valid. 

EXAMPLE 3 . 4 The function/(z) = z3 = x3 - 3xy2 + /(3JC2J - j 3 ) is known 
to be differentiable. Verify that its derivative satisfies equation (2). 

Solution We can rewrite the function in the form 

f(z) = w(x, j) 4- iv(x, y) = x3 - 3xy2 + /(3x2j - j 3 ) , 
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from which it follows that 

f{z) = w,(x, y) + ivx(x, y) = 3x2 - 3y2 + i6xy = 3(x2 - y2 + ilxy) = 3z2. 

E X A M P L E 3 .5 The function defined by 

_. ^ (z)2 -x3 - 3xy2 , y 3 ~3x 2 y 
z x2 + y2 x- + yz 

when z ^ O and /(0) = 0 is not differentiable at the point zo = 0. However, the 
Cauchy-Riemann equations (1) hold true at (0, 0). To verify this, we must use limits 
to calculate the partial derivatives at (0, 0). Indeed, 

x3 - 0 

w(x, 0) - w(0, 0) x2 + 0 
uM 0) = lim -^-1 -^-1 = lim = 1. 

x~H) X - 0 v^0 X 

In a similar fashion, one can show that 

wv(0, 0) = 0, v,(0, 0) = 0, and vv(0, 0) = 1. 
Hence the Cauchy-Riemann equations hold at the point (0, 0). 

We now show that/is not differentiable at zo = 0. If we let z approach 0 along 
the x axis, then 

f{x + 0/) - / ( 0 ) ,. x ~ 0 
lim — = lim = 1. 

uo)-»(o,0) x + 0/ — 0 x-^ox — 0 

But if we let z approach 0 along the line y = x given by the parametric equations 
x = t and y ~ t, then 

r fit + it) - /(0) r - t - it 
u m . _— - i i m _ = - 1 . 

(/,/)̂ (0,0) t + it — 0 /->o t + it 
Since the two limits are distinct, we conclude that/is not differentiable at the origin. 

Example 3.5 shows that the mere satisfaction of the Cauchy-Riemann equa­
tions is not a sufficient criterion to guarantee the differentiability of a function. The 
next theorem gives us sufficient conditions under which we can use equations (2) 
and/or (3) to compute the derivative/'(zo)- They are referred to as the Cauchy-
Riemann conditions for differentiability. 

Theorem 3.3 (Sufficient Conditions) Letfiz) = w(x, y) + /v(x, y) be a 
continuous function that is defined in some neighborhood of the point ZQ = 
Xo + fVo- If all the partial derivatives wv, uy, vx, and vy are continuous at the 
point (x0, Vo) and if the Cauchy-Riemann equations ^(xo, yo) = 
Vy(xo, yo) arid wv(x0, yo) = _v r(x0j yo) hold, then f is differentiable at Zo, 
and the derivative f'izo) can be computed with either formula (2) or (3). 
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Proof Let Az = AJC + iAy and Aw = Au + /Av, and let Az be chosen small 
enough that z lies in the e-neighborhood of zo in which the hypotheses hold true. 
We will show that Aw/Az approaches the limit given in equation (2) as Az approaches 
zero. The difference Au can be written as 

AM = u(x0 + Ax, y0 + Ay) - u(x0, y0). 

If we add and subtract the term w(x0, y0 + Ay), then the result is 

(4) AM = [w(x0 + Ax, y0 + Ay) - u(x0, y0 + Ay)] 

+ [w(x0, ?o
 + Ay) - u(x0, y0)]. 

Since the partial derivatives ux and uy exist, the mean value theorem for real func­
tions of two variables implies that a value JC* exists between x0 and xo + Ax such 
that the first term in brackets on the right side of equation (4) can be written as 

(5) u(x0 + Ax, y0 + Ay) - w(x0, y0 + Ay) = w^x*, y0 + Ay)Ax 

Furthermore, since ux and uy are continuous at (x0, yo), there exists a quantity £i 
such that 

(6) ux(x*, y0 + Ay) = ux(x0, y0) + £i, 

where e} —» 0 as x* —> x0 and Ay —> 0. Since Ax ~> 0 forces JC* —> x0, we can use 
the equation 

(7) u(x0 + Ax, y0 + Ay) - U(XQ, y0 + Ay) = [ux(xo, y0) + £i]Ax, 

where £i —> 0 as Ax —> 0 and Ay —> 0. Similarly, there exists a quantity £2 such that 
the second term in brackets on the right side of equation (4) satisfies the equation 

(8) w(x0, y0 + Ay) - w(x0, y0) = [uy(x0, y0) + £2]Ay, 

where £2 —» 0 as Ax —> 0 and Ay —» 0. 
Combining equations (7) and (8), we obtain 

(9) Au = (ux + £i)Ax + (MV + £2)Ay, 

where the partial derivatives ux and uy are evaluated at the point (x0, yo) and £i and 
£2 tend to zero as Ax and Ay both tend to zero. Similarly, the change Av is related 
to the changes Ax and Ay by the equation 

(10) Av = (v, + e3)Ax + (vy + £4)Ay 

where the partial derivatives vx and vv are evaluated at the point (JC0, yo) and £3 and 
£4 tend to zero as Ax and Ay both tend to zero. Combining equations (9) and (10), 
we have 

(11) Aw = uxAx + wvAy + i(vxAx + vvAy) + £)Ax + £2 Ay + /(£3 Ax + £4 Ay). 

The Cauchy-Riemann equations can be used in equation (11) to obtain 

Aw = uxAx — yvAy + i{vxAx + uxAy) 4- £]Ax + £2Ay + /(£3 Ax + £4 Ay). 
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Now the terms can be rearranged to yield 

(12) Aw = ux[Ax + iAy] + ivx[Ax 4- iAy] + t\Ax 4- t2Ay + /(£3Ax + £4Av). 

Since Az = Ax + /Av, we can divide both sides of equation (12) by Az and take the 
limit as Az —» 0: 

Aw 
(13) lim — = ux + ivx + lim 

AC-»0 A Z A~-»0 

£ j A x £ 2 A}' £3AJC £4 A y 
_j . 1_ y _ 1_ y 

Az Az Az Az 

Using the property of £j mentioned in equation (6), we have 

lim 
A.7-»0 

£.Ax 
Az 

= lim lei 
AC-»0 

AJC 

A^ 
< lim £i I = 0. 

A'-»0 

Similarly, the limits of the other quantities in equation (13) involving £2, £3, £4 are 
zero. Therefore the limit in equation (13) becomes 

Aw , 
l i m — = / (Zo) = W.r(*0i > o ) + «V r(jC0, V 0 ) , 

AZ-^O A z 

and the proof of the theorem is complete. 

E X A M P L E 3 .6 The function/(z) = e~vcos x + /e~vsin x is differentiable for 
all z, and its derivative is/'(z) = — e~vsin x + /e~vcos x. To show this, we first write 
u{x, y) = e~ vcos x and v(x, v) = e~vsin x and compute the partial derivatives: 

ux(x, y) = vv(x, v) = — e~vsin x and 
vv(x, v) = — uy(x, y) = e~vcos x 

We see that w, v, wv, wv, vv, and vv are all continuous functions and that the Cauchy-
Riemann equations hold for all values of (x, y). Hence, using equation (2), we write 

f'(z) = ux(x, y) + ivx(x, y) = — e vsin x + ie vcos x. 

The Cauchy-Riemann conditions are particularly useful in determining the set 
of points for which a function/is differentiable. 

E X A M P L E 3 .7 The function/(z) = x3 + 3xv2 + i(y3 + 3x2y) is differentiable 
only at points that lie on the coordinate axes. 

Solution To show this, we write u(x, y) = x3 + 3xv2 and v(x, y) = y3 + 
3x2y and compute the partial derivatives: 

ux(x, y) = 3x2 + 3v2, vv(x, y) = 3x2 + 3v2, 
wv(x, v) = 6xy, vv(x, y) = 6xy. 
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Here u, v, ux, HV, VX, and vv are all continuous, and ux(x, y) = vy(x, y) holds for all 
(JC, y). But uY(x, y) = — vx(x, y) if and only if 6xy = — 6xy, which is equivalent to 
\2xy = 0. Therefore the Cauchy-Riemann equations hold only when x = 0 or 
v = 0, and according to Theorem 3 . 3 , / i s differentiable only at points that lie on 
the coordinate axes. 

When polar coordinates (r, 6) are used to locate points in the plane, it is 
convenient to use expression (5) of Section 2.1 for a complex function; that is, 

f(z) = fire1") = u(r, 6) + /v(r, 6). 

In this case, u and v are real functions of the real variables r and 6. The polar form 
of the Cauchy-Riemann equations and a formula for f inding/ ' (z) in terms of the 
partial derivatives of u(r, 6) and v(r, 9) are given in the following result which is 
proved in Exercise 13. 

Theorem 3.4 (Polar Form) Letf(z) = w(r, 6) + /v(r, 6) be a continuous 
function that is defined in some neighborhood of the point ZQ — r0e'°°. If all 
the partial derivatives ur, w0, vn and ve are continuous at the point (r0, 6o) and 
if the Cauchy-Riemann equations 

(14) ur(r0, Bo) = — ve(r0, 90) and vr(r{h 80) = — wH(r0, 90) 

hold, then f is differentiable at zo, and the derivative f'(zo) can be computed 
by either of the following formulas: 

(15) / ( ¾ ) = e-'Huriro, 60) + ivr(r0, 6,,)] or 

(16) f'(z0) = - «-'Mv6(r0, 60) - i«,(r0, 60)]. 

E X A M P L E 3 . 8 Show that if / i s given by 

H ft 
f(z) = z\/2 = r l / 2 C Q S _ + / r l / 2 s i n _ ? 

where the domain is restricted to be r > 0 and — 71 < 6 < TC, then the derivative is 
given by 

l i m e . l 1/2 . e 
^-77: = - r 1/2cos - - J - r 1/zsin - , 
2z1/2 2 2 2 2 

where r > 0 and —n < 6 < n. 

fa = -.« 

S o l u t i o n To show this, we write 

6 ft 
w(r, 0) = r1/2cos - and v(r, 6) = r1/2sin - . 
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Here, 

i I B 
ur(r, 6) = - vfi0\ 8) = - r~1/2cos - and 

r 2 2 

vr(r, 6) = — w 6 ( r , 6) = - r - 1 / 2 s i n - . 
r 2 2 

Using these results in equation (15), we obtain 

( i a i o 

- r ~ 1 / 2 c o s - + / - r - 1 / 2 s i n -
= ^ - / e | _ r-1/2^(9/2 I _ _ r - 1/2^,-/0/2 _ 

\2 / 2 fc'*' 

EXERCISES FOR SECTION 3.2 
1. Use the Cauchy-Riemann conditions to show that the following functions are differ­

entiable for all z, and find/'(z). 
(a) f(z) = iz + 4i (b) f(z) = z3 

(c) /(z) = -2(xy + *) + *(x2 - 2y - y2) 
2. Let/(z) = e*cos y + /exsin v. Show that both/(z) and/'(z) are differentiable for all z. 
3. Find the constants a and b such that/(z) = (2x — y) + /(out + /?v) is differentiable for 

allz. 
4. Show that/(z) = (y + ix)/(x2 + y2) is differentiable for all z ^ O . 
5. Show that/(z) = e2xv[cos(y2 - x2) + / sin(v2 - x2)] is differentiable for all z. 
6. Use the Cauchy-Riemann conditions to show that the following functions are nowhere 

differentiable. 
(a) f(z) - z (b) g(z) = z + z 
(c) h(z) = evcos x + ieysin x 

7. Let/(z) = | z \2. Show that/ is differentiable at the point z0 = 0 but is not differentiable 
at any other point. 

8. Show that the function/(z) = x2 + y2 + ilxy has a derivative only at points that lie on 
the x axis. 

9. Le t /be a differentiable function. Establish the identity | f'(z) \2 = u2
x + v; = w2 + v2. 

10. Let/(z) = (In r)2 - 62 + /20 In r where r > 0 and -n < 0 < n. Show that / is 
differentiable for r > 0, —7C < 0 < rc, and find/'(z). 

11. Le t /be differentiable at zo = r0e'Qo. Let z approach zo along the ray r > 0, 0 = 0O, and 
use definition (1) of Section 3.1 to show that equation (15) of Section 3.2 holds. 

12. A vector field F(z) = U(x, y) + iV(x, y) is said to be irrotational if Uy(x, y) = Vx(x, y). 
It is said to be solenoidal if Ux(x, y) = —VY(x, y). If/(z) is an analytic function, show 
that F(z) = /(z) is both irrotational and solenoidal. 

13. The polar form of the Cauchy-Riemann equations. 
(a) Use the coordinate transformation 

x = r cos 0 and y = r sin 0 

and the chain rules 

dx dy , dx dy 
ur = ux— + uy— and w0 = ux — + uY — etc. 

dr dr d0 d0 
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to prove that 

ur — w.vcos 0 + wvsin 8 and we = — wvrsin 6 + wvrcos 8 and 
vr = v^cos 0 + vvsin 8 and vtt = -vvrsin 8 + vvrcos 8. 

(b) Use the results of part (a) to prove that 

rur = v0 and rvr — — we. 

14. Explain how the limit definition for derivative in complex analysis and the limit defi­
nition for the derivative in calculus are different. How are they similar? 

15. Write a report on Cauchy-Riemann equations and the other conditions that guarantee 
that/(z) is analytic. Resources include bibliographical items 21, 39, 62, 72, 86, 155, 
and 161. 

3.3 Analytic Functions and Harmonic Functions 

It is seldom of interest to study functions that are differentiable at only a single 
point. Complex functions that have a derivative at all points in a neighborhood of 
z0 deserve further study. In Chapter 7 we will learn that if the complex function/ 
can be represented by a Taylor series at z0> then it must be differentiable in some 
neighborhood of zo- The function/is said to be analytic at zo if its derivative exists 
at each point z in some neighborhood of z0- If/is analytic at each point in the region 
R, then we say that / is analytic on R. I f / i s analytic on the whole complex plane, 
then/ is said to be entire. 

Points of nonanalyticity are called singular points. They are important for 
certain applications in physics and engineering. 

E X A M P L E 3-9 The function/(z) = x2 + y2 + /2;cy is nowhere analytic. 

Solution We identify the functions w(x, y) = x2 + y2 and V(JC, y) = 2xy. 
The equation ux = vv becomes 2x = 2x, which holds everywhere. But the equation 
uy = —vx becomes 2y = — 2y, which holds only when y = 0. Thus/(x) is differ­
entiable only at points that lie on the x axis. However, for any point zo = *o + 0/ 
on the x axis and any 8-neighborhood of zo, the point z\ = x0 + /8/2 is a point where 
/ i s not differentiable. Therefore/is not differentiable in any full neighborhood of 
Zo, and consequently it is not analytic at z0-

We have seen that polynomial functions have derivatives at all points in the 
complex plane; hence polynomials are entire functions. The function f(z) = 
e*cos y + iexsin y has a derivative at all points z, and it is an entire function. 

The results in Section 3.2 show that an analytic function must be continuous 
and must satisfy the Cauchy-Riemann equations. Conversely, if the Cauchy-
Riemann conditions hold at all points in a neighborhood of zo, then/ is analytic at 
Zo- Using properties of derivatives, we see that the sum, difference, and product of 
two analytic functions are analytic functions. Similarly, the quotient of two analytic 
functions is analytic, provided that the function in the denominator is not zero. The 
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chain rule can be used to show that the composition g(f(z)) of two analytic functions 
/ a n d g is analytic, provided that g is analytic in a domain that contains the range 
off. 

The function/(c) = \fz is analytic for all z ¥" 0; and if P(z) and Q(z) are 
polynomials, then their quotient P(z)/Q(z) is analytic at all points where Q(z) ^ 0. 
The square root function is more complicated. If 

B f) 
(1) f(z) = zU2 = r l /2cos - + />,/2sin - , where r > 0 and -~n < 8 < n, 

t h e n / i s analytic at all points except zo = 0 and except at points that lie along the 
negative A axis. The function/(^) = z]/2 defined by equation (1) is not continuous 
at points that lie along the negative x axis, and for this reason it is not analytic there. 

Let (|)U, v) be a real-valued function of the two real variables x and y. The 
partial differential equation 

(2) <|),VU, y) + <j)vvU, v) = 0 

is known as Laplace's equation and is sometimes referred to as the potential equa­
tion. If ¢, ( .̂, <|)v, §xx, <|)vv, <|)vv, and (j)vv are all continuous and if §(x, y) satisfies 
Laplace's equation, then (|)(x, y) is called a harmonic function. Harmonic functions 
are important in the areas of applied mathematics, engineering, and mathematical 
physics. They are used to solve problems involving steady state temperatures, two-
dimensional electrostatics, and ideal fluid flow. An important result for our studies 
is the fact that if/(c) = u(x, y) + /V(A\ y) is an analytic function, then both u and v 
are harmonic functions. In Chapter 10 we will see how complex variable techniques 
can be used to solve some problems involving harmonic functions. 

Theorem 3.5 Let f(z) = u(x, y) + iv(x, y) be an analytic function in the 
domain D. If all second-order partial derivatives of u and v are continuous, 
then both u and v are harmonic functions in D. 

Proof S i n c e / i s analytic, u and v satisfy the Cauchy-Riemann equations 

(3) ux = \\ and uy = —\\. 

If we differentiate both sides of equations (3) with respect to x, we obtain 

(4) wVA = vvv and MVA = — vvv. 

Similarly, if we differentiate both sides of equations (3) with respect to y, then we 
obtain 

(5) M.VV = v'vv and wvv = — vvv. 

Since the partial derivatives wvv, «vv, vvv, and vvv are all continuous, a theorem from 
the calculus of real functions states that the mixed partial derivatives are equal; that 
is, 

(6) uxy = «vv and vvv = vvv. 
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If we use equations (4), (5), and (6), then it follows that wvv + wvv = vvv - vvv = 0, 
and vVA- + vvv

 = -«v.v + uXY = 0. Therefore both it and v are harmonic functions. 

Remark for Theorem 3.5 Corollary 6.2 in Chapter 6 will show that if f(z) is 
analytic, then all the partial derivatives of a and v are continuous. Hence Theorem 
3.5 holds for all analytic functions. 

On the other hand, if we are given a function w(x, y) that is harmonic in the 
domain D and if we can find another harmonic function v(x, y), where their first 
partial derivatives satisfy the Cauchy-Riemann equations throughout D, then we say 
that v(x, y) is the harmonic conjugate of w(x, y). It then follows that the function 
f(z) ~ u(x, y) + /v(x, v) is analytic in D. 

E X A M P L E 3 . 1 0 If W(A:, y) = x2 - y2, then w,v(x, y) + «vv(x, y) = 2 - 2 = 0; 
hence u is a harmonic function. We find that v(x, y) = 2xy is also a harmonic function 
and that 

w.v = vy ~ 2x and uy ~ — vv = — 2y. 

Therefore v is the harmonic conjugate of w, and the function/given by 

f(z) = x2 - y2 + ilxy = z2 

is an analytic function. 

Harmonic functions are easily constructed from known analytic functions. 

E X A M P L E 3 .11 The function/(z) = z} = x} - 3xy2 + i(3x2y - y3) is analytic 
for all values of z, hence it follows that 

w(x, y) = Re[/(z)] = x3 - 3xy2 

is harmonic, and 

v(x, y) = Im[/(z)] = 3x2y - y3 

is the harmonic conjugate of u(x, y). Their graphs are given in Figures 3.2 and 3.3. 
The partial derivatives are wv(x\ y) = 3x2 — 3y2, wv(x, y) = — 6xy, vv(x, y) = 6xy, 
and vv(x, y) = 3x2 — 3y2, and are easily shown to satisfy the Cauchy-Riemann 
equations. At the point (x, y) = (2, —1), we have w.v(2, - 1 ) = vv(2, —1) = 9, and 
these partial derivatives can be seen along the edges of the surfaces for u and v 
where x = 2 and y = - 1. Similarly, wv(2, - 1 ) = 12 and vv(2, - 1) = - 12 can also 
be seen along the edges of the surfaces for u and v where x = 2 and y = — 1. 
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FIGURE 3.2 Graph of u(x, y) = x3 - 3xy2. FIGURE 3.3 v(x, y) = 3x2y - y\ 

Complex variable techniques can be used to show that certain combinations 
of harmonic functions are harmonic. For example, if v is the harmonic conjugate of 
u, then their product <t>(x, y) = u(x, y)v(x, y) is a harmonic function. This can be 
verified directly by computing the partial derivatives and showing that equation (2) 
holds true, but the details are tedious. 

If we use complex variable techniques, we can start with the fact that/00 = 
nix, y) + iv(x, y) is an analytic function. Then we observe that the square o f / i s 
also an analytic function and is given by t/(z)]2 = [w(x, y)]2 — [v(x, V)]2 + ilu 
O, y)v(x, y). Hence the imaginary part of/2 is 2w(x, v)v(x, y) and is a harmonic 
function. Since a constant multiple of a harmonic function is harmonic, it follows 
that ¢) is harmonic. It is left as an exercise to show that if u\ and u2 are two harmonic 
functions that are not related in the preceding fashion, then their product need not 
be harmonic. 

Theorem 3.6 (Construction of a Conjugate) Let u(x, y) be harmonic 
in an E-neighborhood of the point (x0, y0). Then there exists a conjugate har­
monic function v(x, y) defined in this neighborhood, and f(z) = u(x, y) + 
iv(x, y) is an analytic function. 

Proof The harmonic function u and its conjugate harmonic function v will 
satisfy the Cauchy-Riemann equations ux = vy and uy = -vv . We can construct 
v(x, y) in a two-step process. First integrate vv (which is equal to wr) with respect to 
y> 

(7) v(x, y) = J ux(x9 y)dy + C(x), 

where C(x) is a function of x alone (that is, the partial derivative of C(x) with respect 
to y is zero). Second, we are able to find C{x) by differentiating equation (7) with 
respect to x and replacing vx with —uy on the left side: 

d f 
(8) -Uy(x, y) = — \ ux(x, y)dy + C(x). 
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Since u is harmonic, all terms except those involving x in equation (8) will 
cancel, and a formula for C'(x) involving x alone will be revealed. Now elementary 
integration of the single-variable function C'(x) can be used to discover C(x). 

This technique is a practical method for constructing V(JC, y). Notice that both 
Wjr(x, y) and uy(x, y) are used in the process. 

EXAMPLE 3 . 1 2 Show that u(x, y) = xy3 — x3y is a harmonic function and 
find the conjugate harmonic function v(x, y). 

Solution The first partial derivatives are 

(9) ux(x, y) = y3 — 3x2y and uy(x, y) = 3xy2 — x3. 

To verify that u is harmonic, we use the second partial derivatives and see that 
uXx(x, y) + uyy{x, y) = —6xy + 6xy = 0, which implies that u is harmonic. To 
construct v(x, y), we start with equation (7) and the first of equations (9) to get 

(10) v(*, 30 = J (y3 - 3x2y)dy + C(x) = ± y4 - i x2y2 + C(x). 

Differentiate the left and right sides of equation (10) with respect to x and use 
— uy(x, y) = vx(x, y) and equations (9) on the left side to get 

(11) -3xy2 + x3 = 0 - 3xy2 + C(x). 

Cancel the terms involving both x and y in equation (11) and discover that 

(12) C'(x) = x3. 

Integrate equation (12) and get C(x) — \xA + C, where C is a constant. Hence the 
harmonic conjugate of u is 

v(x, y) = i xA - 1 x2y2 + i y4 + C 

EXAMPLE 3 - 1 3 Let/be an analytic function in the domain D. If |/(z)| = K 
where AT is a constant, then / i s constant in D. 

Solution Suppose that K = 0. Then ] f(z) \2 = 0, and hence u2 + v2 = 0. 
It follows that both u = 0 and v = 0, and therefore/(z) = 0 in D. 

Now suppose that K ¥" 0; then we can differentiate the equation u2 + v2 = 
K2 partially with respect to x and then with respect to y to obtain the system of 
equations 

(13) 2uux + 2vvx = 0 and 2uuy + 2vvv = 0. 
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The Cauchy-Riemann equations can be used in equations (13) to express the system 
in the form 

(14) uux — vuy = 0 and vux + uuy = 0. 

Treating u and v as coefficients, we easily solve equations (14) for the unknowns 
ux and wv: 

10 
|o 
\ll 

\v 

— v| 
u\ 

— vl 
u\ 

= 0 and 

Uy - 7 

\u 
\v 
u 
V 

01 
0| 
— v 
w 

U2 + V2 
= 0. 

A theorem from the calculus of real functions states that the conditions ux = 0 and 
uy = 0 together imply that u(x, y) = Cj where ci is a constant. Similarly, we find 
that v(x, y) = c2, and therefore/(z) = cx + /c2. 

Harmonic functions are solutions to many physical problems. Applications 
include two-dimensional models of heat flow, electrostatics, and fluid flow. For 
example, let us see how harmonic functions are used to study fluid flows. We must 
assume that an incompressible and frictionless fluid flows over the complex plane 
and that all cross sections in planes parallel to the complex plane are the same. 
Situations such as this occur when fluid is flowing in a deep channel. The velocity 
vector at the point (x, y) is 

(15) V(x, y) = p(x, y) + iq{x, y) 

and is illustrated in Figure 3.4. 

FIGURE 3.4 The vector field V(JC, y) = p(x, y) + iq(x, y), which can be 
considered as a fluid flow. 
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The assumptions that the flow is irrotational and has no sources or sinks im­
plies that both the curl and divergence vanish, that is, qx - py = 0 and px + qy = 0. 
Hence p and q obey the equations 

(16) px(x, y) = -qy(x, y) and py(x9 y) = qx(xy y). 

Equations (16) are similar to the Cauchy-Riemann equations and permit us to define 
a special complex function: 

(17) f(z) = u(x, y) + iv(x, y) = p(x, y) - iq(x, y). 

Here we have ux = px, uy = py, vx = —qx, and vv = — qv. Now equations (16) can 
be used to obtain the Cauchy-Riemann equations for/(z): 

(18) ux(x, y) = px(x, y) = -qy(x, y) = vv(x, y), 
uy(x, y) = py(x, y) = qx(x9 y) = -vx(x, y). 

Therefore the function/(z) defined in equation (17) is analytic, and the fluid flow, 
equation (15), is the conjugate of an analytic function, that is, 

(19) V(*,y) = 7fe). 

In Chapter 6 we will prove that every analytic function f(z) has an analytic 
antiderivative F(z)\ hence we are justified to write 

(20) F(Z) = <K*, y) + aK*, v), where F'(z) = f(z). 

Observe that ty(x, y) is a harmonic function. If we use the vector interpretation of a 
complex number, then the gradient of §(x, y) can be written as follows: 

(21) grad <)>(x, y) = tyx(x9 y) + tyv(x, y). 

The Cauchy-Riemann equations applied to F(z) give us tyy = —1|/.0 and equa­
tion (21) becomes 

(22) grad <|>(*, y) = <|>v(x, y) - %(*, y) = ¢ ^ , y) + %(*, y). 

Theorem 3.2 says that ^(JC, y) + ityx(x, y) = F'(z), which can be substituted in 
equation (22) to obtain 

(23) grad $(x, y) = Ffe). 

Now use F'(z) ~ f(z) in equation (23) to conclude that (J)(x, y) is the scalar potential 
function for the fluid flow in equation (19), that is, 

(24) V(x, y) = grad 4>(*, y). 

The curves <|)(JC, y) = constant are called equipotentials. The curves \|/(JC, y) = 
constant are called streamlines and describe paths of fluid flow. In Chapter 10 we 
will see that the family of equipotentials is orthogonal to the family of streamlines 
(see Figure 3.5). 
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Streamline 

FIGURE 3.5 The families of orthogonal curves {¢0, y) = constant} and 
{i|/(>, v) = constant} for the function F(z) = ty(x, y) + i\\t(xy y). 

E X A M P L E 3 . 1 4 Show that the harmonic function ty(x, y) = x2 - y2 is the 
scalar potential function for the fluid flow 

\(x, y) = 2x - ily. 

Solution The fluid flow can be written as 

V(JC, y) = f(z) = lx + ily - 2z. 

The antiderivative of f(z) = lz is F(z) = z2, and the real part of F(z) is the desired 
harmonic function: 

<K*, y) = Re[F(z)] = Re[x2 - y2 + ilxy] = x2 - y2. 

Observe that the hyperbolas <|)(jt, y) = x2 — y2 = C are the equipotential curves, and 
the hyperbolas \\t(x, y) = 2xy = C are the streamline curves; these curves are or­
thogonal, as is shown in Figure 3.6. 
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y 
The fluid flow V(x,y) = 2x - i 2y. 

FIGURE 3.6 The equipotential curves x2 ~ y2 = C and streamline curves 
2xy = C for the function F(z) == z2. 

EXERCISES FOR SECTION 3.3 
1. Show that the following functions are entire. 

(a) f(z) = cosh x sin y - / sinh x cos y (b) g{z) = cosh x cos y + /* sinh * sin y 
2. State why the composition of two entire functions is an entire function. 
3. Determine where/(z) = A3 + 3xy2 + /(y3 + 3 :̂2y) is differentiable. Is /analytic? Why? 
4. Determine where/(z) = &x - x} - xy2 + i(x2y + y3 - 8y) is differentiable. Is/analytic? 

Why? 
5. L e t / ( z ) - JC2 - y2 + / 2 | j c y | . 

(a) Where does /have a derivative? (b) Where is/analytic? 
6. Show that W(JT, y) = evcos y and v(x, y) = e'sin y are harmonic for all values of {x, y). 
7. Let u{x, y) = ln(x2 + y2) for (.v, y) 7̂  (0, 0). Compute the partial derivatives of w, and 

verify that u satisfies Laplace's equation. 
8. Let </, b, and c be real constants. Determine a relation among the coefficients that will 

guarantee that the functions §(x, y) = ax2 + bxy + cy2 is harmonic. 
9. Does an analytic function /(z) = w(x, y) + /V(A\ y) exist for which v(x, y) = x3 + y3? 

Why? 
10. Find the analytic function/(z) = W(JC, y) + /V(A\ y) given the following, 

(a) u{x, y) = y3 - 3x2y (b) W(A\ y) = sin y sinh x 
(c) i'U\ y) = evsin x (d) t'O, y) = sin x cosh y 

11. Let V(A\ y) = arctan( y/x) for i ^ O , Compute the partial derivatives of v, and verify that 
v satisfies Laplace's equation. 

12. Let u(x, y) be harmonic. Show that U(x, y) = u(x, —y) is harmonic. Hint: Use the chain 
rule for differentiation of real functions. 
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13. Let W]U, y) = x2 - y2 and w2U, y) = x^ - 3xy2. Show that ii\ and u2 are harmonic 
functions and that their product U](x, y)u2(x, y) is not a harmonic function. 

14. Let v be the harmonic conjugate of u. Show that — u is the harmonic conjugate of v. 
15. Let v be the harmonic conjugate of u. Show that h = u2 - v2 is a harmonic function. 
16. Suppose that v is the harmonic conjugate of u and that u is the harmonic conjugate of 

i'. Show that u and v must be constant functions. 
17. Let / b e an analytic function in the domain D, If f'iz) = 0 for all z in D, then show that 

/ i s constant in D. 
18. Let / and g be analytic functions in the domain D. If f'(z) = g'iz) for all z in O, then 

show that/(z) = giz.) + C where C is a complex constant. 
19. Let / be a nonconstant analytic function in the domain D. Show that the function 

giz) - fiz) is not analytic in D. 
20. Let fiz) = fire'*) = In r + /0 where r > 0 and -TC < 0 < 7C. Show that / i s analytic in 

the domain indicated and that/'(z) = \lz. 
21. Let/(z) = fire'*) = w(r, 0) + /v(r, 0) be analytic in a domain D that does not contain 

the origin. Use the polar form of the Cauchy-Riemann equations wH = —rvr, and vH = 
n/,., and differentiate them with respect to 0 and then with respect to r. Use the results 
to establish the polar form of Laplace's equation: 

r2urr(r, 0) + rur(r, 0) + «HH(r, 0) = 0. 

22. Use the polar form of Laplace's equation given in Exercise 21 to show that i/(r, 0) = 
r"cos nQ and v(r, 0) = r"sin nB are harmonic functions. 

23. Use the polar form of Laplace's equation given in Exercise 21 to show that 

w(r, 0) = I r + - ) cos 0 and vir, 0 ) = ( r j sin 6 

are harmonic functions. 
24. Le t /be an analytic function in the domain D. Show that if Rei/(z)] = 0 at all points 

in £>, then/is constant in D. 
IS. Assume that Fiz) ~ <t>U, y) + iM** v) is analytic in the domain D and that F'iz) # 0 in 

O. Consider the families of level curves {<|)(.v, y) = constant} and {i|i(.w y) - constant}, 
which are the equipotentials and streamlines for the fluid flow VU, y) = F'iz). Prove 
that the two families of curves are orthogonal. Hint: Suppose that (JC0, y()) is a point 
common to the two curves §ix, y) = c\ and i|i(;c, y) = r :. Take the gradient of § and i[f, 
and show that the normals to the curves are perpendicular. 

26. The function Fiz) = \lz is used to determine a field known as a dipole. Express Fiz) in 
the form Fiz) = <j>U, y) + f"i|>U, v) a nd sketch the equipotentials § - 1, 1/2, 1/4 and the 
streamlines i|i = 1, 1/2, 1/4. 

27. The logarithmic function will be introduced in Chapter 5. Let Fiz) = log z = ln|z | + 
i arg z. Here we have ([>(JC, y) — ln |z | and \\i(x, y) — arg z. Sketch the equipotentials 
<|) = 0, In 2, In 3, In 4 and the streamlines \\J = &7C/8 for k = 0, 1 7. 

28. Discuss and compare the statements "/(z) is analytic'' and 4/(z) is differentiate/' 
29. Discuss and compare the statements "nix, y) is harmonic" and "u(x, y) is the imaginary 

part of an analytic function/' 
30. Write a report on analytic functions. Include a discussion of the Cauchy-Riemann equa­

tions and the other conditions that guarantee that fiz.) is analytic. Resources include 
bibliographical items 21, 39, 62, 72, 86, 155, and 161. 
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31. Write a report on harmonic functions. Include ideas and examples that are not mentioned 
in the text. Resources include bibliographical items 2, 14, 28, 61, 69, 70, 71, 76, 77, 
85, 98, 111, 113, 131, 135, 138, 158, and 165. 

32. Write a report on how computer graphics are used for graphing harmonic functions and 
complex functions and conformal mappings. Resources include bibliographical items 
33, 34, 109, and 146. 

33. Write a report on fluid flow and how it is related to harmonic and analytic functions. 
Include some ideas not mentioned in the text. Resources include bibliographical items 
37, 46, 91, 98, 124, 141, 145, 158, and 166. 

34. Write a report on the Polya vector field. Resources include bibliographical items 25, 26, 
27, and 83. 



4 

Sequences, Series, and 
Julia and Mandelbrot Sets 

In this chapter we learn the basics for complex sequences and series. We also explore 
an application of these ideas in what has popularly come to be known as chaotic 
processes. 

4.1 Definitions and Basic Theorems 
for Sequences and Series 

In formal terms, a complex sequence is a function whose domain is the positive 
integers and whose range is a subset of the complex numbers. The following are 
examples of sequences: 

(1) f(n) = I2 - X-\ + Is + Mi {n = 1, 2, 3, . . . ), 

(2) g(n) = e'<™/4> (n = 1,2, 3, . . . ), 

(3) h{n) = 5 + 3 /+ ( :) (n = 1, 2, 3, . . . ), 

(4) r(n)= Q + 0 7 (« = 1^2,3, . . . ). 

For convenience, we at times use the term sequence rather than complex se­
quence. If we wish a function s to represent an arbitrary sequence, we could specify 
it by writing s( 1) = z\, s(2) = z2, s(3) = Z3> and so on. The values z\, Zi, z$, . . , 
are called the terms of a sequence, and mathematicians, being generally lazy when 
it comes to things like this, often refer to zu Zi-> £3» etc., as the sequence itself, even 
though they are really speaking of the range of the sequence when they do this. You 
will usually see a sequence written as {z«}^=!, {zn}°\, or, when the indices are un­
derstood, as {zn}- Mathematicians are also not so fussy about starting a sequence at 
Z\, so that {zw}^=_!, {z*}Lo> etc-> would also be acceptable notation, provided all 

95 
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terms were defined. For example, the sequence r given by equation (4) could be 
written in a variety of ways: 

{(H'l-re,c-
The sequences/and g given by equations (1) and (2) behave differently as n 

gets larger and larger. The terms in equation (1) approach 2 + 5* = (2, 5), while 
those in equation (2) do not approach any one particular number, as they simply 
oscillate around the eight eighth roots of unity on the unit circle. Informally, the 
sequence {zn}°i has £ as its limit as n approaches infinity, provided the terms zn can 
be made as close as we please to £ by making n large enough. When this happens, 
we write 

(5) lim z„ = £» or zn -» £ as n -» «>. 

If lim zn = C» w e s a v t n a t m e sequence {z„}7 converges to £. 

We need a rigorous definition for statement (5), however, if we are to do honest 
mathematics. Thus, we have the following. 

Definition 4.1 lim zn = £ means that for any real number e > 0 there 
rt—»» 

corresponds a positive integer Ne (which depends on e) such that zn € £>e(Q 
whenever n > Ne. 

Note: The reason we use the notation Afe is to emphasize the fact that this 
number depends on our choice of e. Sometimes it will be convenient to drop the 
subscript. Figure 4.1 illustrates a convergent sequence. 

FIGURE 4.1 A sequence that converges to £. 

In form, Definition 4.1 is exactly the same as the corresponding definition for 
limits of real sequences. In fact, there is a simple criterion that casts the convergence 
of complex sequences in terms of the convergence of real sequences. 
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Theorem 4.1 Let zn = xn + iyn and t, = u + iv. Then, 

(6) lim in ~ C if and only if 

(7) lim xn — u and 
n->°° 

(8) lim yn = v. 
n—>«= 

Proof First we will assume statement (6) is true, and from this deduce the truth 
of statements (7) and (8). Let e be an arbitrary positive real number. To establish 
statement (7), we must show that there is a positive integer Ne such that the inequality 
| xn - u | < e holds whenever n > NB. Since we are assuming statement (6) to be 

true, we know according to Definition 4.1 that there is a positive integer Afe such 
that zn e D,(C) if n > N£. Recall that zn e De(Q is equivalent to the inequality 
| zn - £ | < £• Thus, whenever n > Nei we have 

| xn - u | = | Re(zn - 0 | 
^ | Zn ~" £ | (by inequality (2) of Section 1.3) 
< e, 

and this proves statement (7). In a similar way, it can be shown that statement (6) 
implies statement (8), and we leave this verification as an exercise. 

To complete the proof of this theorem, we must show that statements (7) and 
(8) jointly imply statement (6). Let e > 0 be an arbitrary real number. By statements 
(7) and (8) there exists positive integers 7Ve and M£ such that 

(9) J xn - u | < - , whenever n > N£, and 

£ 
(10) | y„ - v | < - , whenever n > M£. 

Let Le = max{A ê, Mc}. Then if n > Le, we see that 

| Zn ~ £ | = | (*n + iyn) ~ (w + iV) | 

= | (Xn ~ U) + l(yn ~ V) | 

< | (xn — u) | 4- I i(yn - v) | (What is the reason for this step?) 
= | (xn — u) | + | i | | (y„ — v) | (by properties of absolute value) 
= \(xn - u)\ + \{yn - v)\ (since \i\ = 1) 

£ £ 

< - + - (by statements (9) and (10)) 
= £. 

We needed to show the strict inequality | zn — t\ < £, and the next to the last 
line in the preceding proof gives us precisely that. Note also that we have been 
speaking of the limit of a sequence. Strictly speaking, we are not entitled to use this 
terminology, since we have not proved that a given complex sequence can have 
only one limit. The proof of this, however, is almost identical to the corresponding 
result for real sequences, and we have left it as an exercise. 
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E X A M P L E 4 . 1 Cons iders , = [Jn + i(n + \)]ln. Then we write 

1 n + 1 
Zn = *n + iyn = ~7= + ' • 

y/n n 
Using results about sequences of real numbers, which are studied in calculus, we 
find that 

1 . n + 1 
lim xn = lim —— = 0 and lim y„ = hm = 1. 

Therefore 

r Jn + /(n + 1) . 
lim zn = hm = i. 

E X A M P L E 4 . 2 Let us show that {(1 + /)"} diverges. In this case, we have 

r~ nn r- nn 
zn = (1 + i)" = (v^)wcos — + /(V^)"sin — . 

4 4 
Since the real sequences {(^/2)ncos(nn/4)} and {(y2)wsin(n7E/4)} both diverge, we 
conclude that {(1 + 0"} diverges. 

As is the case with the real numbers, we also have 

Definition 4.2 The sequence {zn} is said to be a Cauchy sequence if for 
every £ > 0 there exists a positive integer Ne such that if n, m > Ne, then 
| zn ~ zm | < £, or, equivalently, zn ~ zm belongs to the disk D? (0). 

The following should now come as no surprise. 

Theorem 4.2 If {zn} is a Cauchy sequence, {zn} converges. 

Proof Let in = *K + OV Using the techniques of Theorem 4.1, it is easy to 
show that both {xn} and {yn} are Cauchy sequences of real numbers. Since Cauchy 
sequences of real numbers are convergent, we know that 

lim x„ = XQ and lim y„ — v0 

for some real numbers xo and v0. By Theorem 4.1 , this means 

Hm Zn = zo, 
/7—>°° 

where zo = x0 + /v0. In other words, the sequence {zn} converges to z0-
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Let {zn} be a complex sequence. We can form a new sequence {5,,}, called 
the sequence of partial sums, in the following way: 

(11) 5 , = c , , 
S2 = :, + :.2, 

Sn — :,\ + "2 + • * * + zn — 2J Zh 

The formal expression 2 zk = z\ + c-> + • • • + ;:„ + • • • is called an infinite 
A - = l 

series, and z]? z2, etc., are called the terms of the series. If there is a complex number 
S for which 

n 

(12) 5 = limS„ = l i m 2 ^ . 

we will say that the infinite series 2 "A converges to 5, and that S is the sum of the 

infinite series. When this happens, we write 

(13) 5 = 2 ¾ . 

JU1 

The series ^ -A *S said t 0 be absolutely convergent provided that the (real) 

series of magnitudes 2 I Zk I converges. If a series does not converge, we say that it 

k=\ 

diverges. 
It is important to note that the first finitely many terms of a series do not affect 

its convergence or divergence and that in this respect the beginning index of a series 
is irrelevant. Thus, we will without comment conclude that if a series 2 Zk con-

k=N> I 

verges, then so does 2^ Zk, where z0, z,\, . . . , ZN is a^v finite collection of terms. 
k = Q 

A similar remark holds for determining divergence of a series. 
As one might expect, many of the results concerning real series carry over to 

the complex case. We give several of the more standard theorems along with ex­
amples of how they are used. 
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T h e o r e m 4.3 Let zn = x„ 4- iyn and S = U + iV. Then 

5 = 2 ^ = 2 (•*« + '-v«) 
« = i / i = i 

if and only if both 

» = 1 / / = 1 

Proof Let £/„ = 2 L i *A a n d v» = 2 u i .v* a n d £' = ^ « + /V"- W e c a n u s e 

Theorem 4.1 to conclude that 

lim S„ = lim (Un + iV„) = U + iV = S 

if and only if both I im, ,^ Un = U and lim,,^, Vn = V, and the completion of the 
proof follows easily from definitions (12) and (13). 

T h e o r e m 4.4 If ^ ~ = , zn is a convergent complex series, then lim z„ = 0-

The proof of Theorem 4.4 is left as an exercise. 

E X A M P L E 4 . 3 Show that the series 

1 ^ .(-1)"] 
— + i 
n~ n J 

is convergent. 

S o l u t i o n From calculus it is known that the series 

2 -; and 2 
//=1 nz /j=i n 

are convergent . Hence Theorem 4.3 implies that the given complex series is 
convergent. 

EXAMPLE 4.4 The series 

(-1)" J ] 
h l -

n n\ 
is divergent. 

Solution From the study of calculus it is known that the series 2»=i (1/^) 
is divergent. Hence Theorem 4.3 implies that the given complex series is divergent. 

y 1 + //1(- 1)W _ y 
n=\ n2 / ? = ! 

/ 7 = 1 « / 7 = 1 

EXAMPLE 4 . 5 The series ^7,., (1 
+ /)" is divergent. 
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S o l u t i o n Here we set -„ = ( 1 + i)", and we observe that lim„_.. |-„ | = 
lim,,̂ ™ (v/2)" = co. Hence lirn,, ,, zn ^ 0, and Theorem 4.4 implies that the given 
series is not convergent; hence it is divergent. 

Theorem 4.5 Let 2 -// cmd 2 H'// be convergent series, and let c be a 
,i=\ / /= i 

complex number. Then 

2 CZn = ^ 2 Z» iind 

/ / = 1 / / = 1 

2 (Zn + H'„) = 2 Z» + 2 *'/»• 
» = 1 / /=1 // = 1 

Proof The proof of this theorem is left as an exercise. 

Definition 4.3 Let 2 an und 2 bn be convergent series, where an and bn 
n = () // = 0 

are complex numbers. The Cauchy product of the two series is defined to be 

the series 2 c'm where c„ = 2 °kbn~k-
/ / - - ( ) A = () 

Theorem 4.6 If the Cauchy product converges, then 

2 c» = 2 an 2 b,A . 
// = () \//-=0 / \n = 0 J 

Proof The proof can be found in a number of texts, for example, Infinite 
Sequences and Series, by Konrad Knopp (translated by Frederick Bagemihl; New 
York: Dover, 1956). 

Theorem 4.7 (Compar i son Test ) Let 2 L i Mn be a convergent series of 
real nonnegative terms. If {z,,} is a sequence of complex numbers and | zl} | < 
M„ holds for all n, then 

2 - » = 2 <*«+ '>«> 
/ / = i / / = i 

c<9nver#es. 

Proof Using equations (2) of Section 1.3, we see that | .v„ | < | zn | ^ Mn and 
I y„ I ̂  | z„ | — ^/,, holds for all n. The comparison test for real sequences can be used 

to conclude that 

2 |-Y„| and 2 |>'«| 
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are convergent. A result from calculus states that an absolutely convergent series is 
convergent. Hence 

2 xu and X yn 
/ / = i / ; = i 

are convergent. We can use these results together with Theorem 4.3 to conclude that 
2/,= i Zn = 2«=i xn + ''2«=i yn is convergent. 

Corollary 4.1 If 2a Z„ converges absolutely, then 2 zn converges. 
n = Q // = 0 

We leave the proof of this corollary as an exercise. 

EXAMPLE 4 . 6 Show that ]£,7= I (3 + 4i)"/(5"w2) converges. 

Solution Calculating the modulus of the terms, we find that \zn\ = 
| (3 + 4/)'7(5'7r) | = \ln2 = Mn. We can use the comparison test and the fact that 
27= I (l/^2) converges to conclude that 27= I (3 + 4i)n/(5nn2) converges. 

Suppose that we have a series 2 zm where zn — c„(z — oc)". If ot and the 
// = 0 

collection of cn are fixed complex numbers, we will get different series by selecting 

different values for z. For example, if a = 0, and c„ = — for all n, we get the series 
n\ 

ZJ ~t\~) ^ z = - and 2 — (4 + 0" if z = 4 + /. The collection of points for 
H=O «! \ 2 / 2 /,=o n! 

which the series 2 C»U "~ a ) " converges will thus be the domain of a function 
// = 0 

f(z) = 2J cniz — oc)", which is called a power series function. Technically, this 
// = 0 

series is undefined if z = a and n = 0, since 0° is undefined. We get around this 

difficulty by stipulating that the series 2 cn(z — a)" is really compact notation 
// = 0 

for Co + 2 cn(z - a)". 
/ / = i 

If a = 0 and cn = 1 for all n in the preceding, our series becomes 2 z". We 
// = 0 

call this a geometric series, one of the most important series in mathematics. 
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Theorem 4.8 (Geometric Series) If \z\ < 1, the series 2) z" 
/i = 0 

converges 

tof(z) = • That is, if \z\ < 1, then 
1 - z 

(14) 2 z" = 1 + z + r + • • • + zk + • • • = . 
»=o 1 — z 

If I z I ^ I, the series diverges. 

P r o o f Suppose \z\ < 1. According to equation (12), we must show 

lim Sn = , where 
n-*~ 1 - Z 

(15) S„ = 1 + z + z2 + • • • + z"-1. 

Multiplying both sides of equation (15) by z gives 

(16) zS„ = z + z2 + z3 + ••• + z"~l + z". 

Subtracting equation (16) from equation (15) yields 

(17) (1 -z)Sn= 1 - z \ 

so that 

1 z" 
(18) Sn = - . 

1 - z 1 - z 
Since \z\ < 1, lim z" = 0. (Can you prove this? You will be asked to do so in the 

exercises!) Hence lim S„ = . 
w-»~ 1 — z 

If | z I ^ 1, then clearly lim \z"\ ¥= 0. Hence lim zn ^ 0 (see problem 24), so 
/7-H»°o /1^>«> 

by the contrapositive of Theorem 4.4, ^z" must diverge. 

Corollary 4.2 / / I z I > 1, the series 2 z~" converges tof(z) = . That 
/1=1 Z - 1 

is, if | z | > 1, then 

(19) 2 z~" = z"1 + z - 2 + • • • + z~n + • • * = , or equivalently, 
/ i = l Z — 1 

(20) - X r " = -z~] - z'2 z~n = - . 
«=i l — z 

If I z I ^ 1, the series diverges. 
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Proof If we let - take the role of z in equation (14), we get 
z 

<2» 2 I T -
/1=0 \Z/ 

1 
7> i f 

1 

1 

z 1 -

< 1. 

Multiplying both sides of equation (21) by - gives 

(22) i S W — ^ . * 
Z n=0 \Z/ Z — 1 

which, by Theorem 4.5, is the same as 

< 1, 

(23) ±r-
n=0 \Z 

/ j+1 1 
z - 1 

, if < 1. 

00 AY l 
But this is equivalent to saying that Y - = , if 1 < I d , which is what 

n=\ \Z/ Z - 1 ' ' 
the corollary claims. 

It is left as an exercise to show that the series diverges if \z\ ^ 1. 

Corollary 4.3 Ifz # 1, then for all n 

1 zn 

= 1 + z + z2 + • • • + z"~] + 1 -z - - - - \ -z 

Proof This follows immediately from equation (18). 

E X A M P L E 4 . 7 Show that 2«=o [0 ~ 0"/2rt] = 1 - / . 

Solution If we set z = (1 - /)/2, then we see that \z\ = Jill < 1, so we 
can use representation (14) for a geometric series. The sum is given by 

1 2 2 

1 
1 - / 2 - 1 + / 1 + / 

= 1 - / . 

E X A M P L E 4 . 8 Evaluate 2 ( -
n-3 \ 2 

Solution We can put this expression in the form of a geometric series: 
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- m-u$a 
; V-3 

(by Theorem 4.5) 

(by reindexing) 

1 = - < 
2 

by Theorem 4.8, since 

(by standard simplification procedures) 

The equality given by equation (24) illustrates an important point when eval­
uating a geometric series whose beginning index is other than zero. The value of 

5) zn will equal . If we think of z as the "ratio*' by which a given term of 
n=r 1 Z 

the series is multiplied to generate successive terms, we see that the sum of a geo-
1 first term . , , . . . 

metric series equals — , provided ratio < 1. 
1 - ratio ' ' 

The geometric series is used in the proof of the following theorem, known as 
the ratio test. It is one of the most commonly used tests for determining the con­
vergence or divergence of series. The proof is similar to the one used for real series, 
and is left for the reader to establish. 

Theorem 4.9 (d'Alembert's Ratio Test) If 2 C« is a complex series 
with the property that 

,. lu.l . 
hm ic-l ' 
then the series is absolutely convergent if L < 1 and divergent if L > 1. 

EXAMPLE 4 . 9 Show that ^ L o td " i)n/nl] converges. 

Solution Using the ratio test, we find that 

|(1 ~ 0n+1 | 
n\\ 1 - 11 |1 - i\ ^/2 

= \[m = i j m = \[m = o = L. 
n̂ oo (n + 1)! „->» n + 1 « ^ n + 1 

lim 
(n + 1)! 

(1 - i)n 

n\ 

Since L < 1, the series converges. 
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EXAMPLE 4 . 1 0 Show that the series ^ L o tfe ~ 0"/2«] converges for all 
values of z in the disk | z — i \ < 2 and diverges if | z — /1 > 2. 

Solution Using the ratio test, we find that 

| ( z - 0"+11 

lim 
(z - ty 

2" 

v \z~ '1 \z' {\ T = | i m = _ = Lt 

If \z — i\ < 2, then L < 1 and the series converges. If |z — /| > 2, then L > 1, 
and the series diverges. 

Our next result, known as the root test, is slightly more powerful than the 
ratio test. Before we state this test, we need to discuss a rather sophisticated idea 
that it uses—the limit sup re mum. 

Definition 4,4 Let {tn} be a sequence of positive real numbers. The limit 
supremum of the sequence {denoted by lim sup tn) is the smallest real number 

L with the property that for any 8 > 0 there are at most finitely many terms 
in the sequence that are larger than L + e. If there is no such number L, then 
we set lim sup tn = «>. 

n—>« 

EXAMPLE 4.11 The limit supremum of the sequence 

{t„} = {4.1, 5.1, 4.01, 5.01, 4.001, 5.001, . . . } is lim sup tn = 5, 

because if we set L = 5, then for any £ > 0, there are only finitely many terms in 
the sequence larger than L + £ = 5 + E. Additionally, if L is smaller than 5, then 
by setting £ = 5 — L, we can find infinitely many terms in the sequence larger than 
L + £, since L + £ = 5. 

EXAMPLE 4 . 1 2 The limit supremum of the sequence 

{t„} = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . } is lim supt„ = 3, 

because if we set L = 3, then for any £ > 0, there are only finitely many terms 
(actually, there are none) in the sequence larger than L + £ = 3 + £. Additionally, 

3 - L 
if L is smaller than 3, then by setting £ = —-— we can find infinitely many terms 

in the sequence larger than L + £, since L + £ < 3. 

( 3 - L 3 + L 3 L 3 3 ^ 
L + £ = L + = = - + - < - + - = 3. 

V 2 2 2 2 2 2 
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EXAMPLE 4 - 1 3 The limit supremum of the Fibonacci sequence 

{t„} = {1, 1, 2, 3, 5, 8, 13, 21, 34, . . . } is lim supt„ = «>. 

(The Fibonacci sequence has the property that for every n > 2, tn = tn_\ + tn_i.) 

The limit supremum is a powerful idea because the limit supremum of a se­
quence always exists, which is not true for the limit. However, Example 4.14 illus­
trates the fact that if the limit of a sequence does exist, it will be the same as the 
limit supremum. 

EXAMPLE 4 . 1 4 The sequence 

(U = {i + 1 } 
= {2, 1.5, 1.33, 1.25, 1.2, . . . } has lim sup r„= 1. 

We leave the verification of this as an exercise. 

Theorem 4.10 (The Root Test) Given the series 2> d» suppose 
« = 0 

lim sup |£„ | l / n = L 
/?—>«• 

Then the series is absolutely convergent if L < 1 and divergent if L > 1. 

Proof We give a proof assuming lim | £„ \l/n exists. (A proof of the more 

general case using the limit supremum can be found in a number of advanced texts.) 
Since the limit supremum is the same as the limit when the latter exists, we have 

(25) lim i q"" = /, 

Suppose first that L < 1. We can select a number r such that L < r < 1. By equation 
(25) there exists a positive integer N such that for all n > N we have \£,n\y" < ?•> 

and so I^J < rn. Since r < 1, Theorem 4.8 implies 2 r" converges. But then 

by Theorem 4.7 and Corollary 4.1 2 I C« I converges, hence so does 2 I C* I • 
n=N+\ w = 0 

Now suppose L > 1. We can select a number r such that 1 < r < L. Again, 
using equation (25) we conclude that there exists a positive integer N such that for 
all n > N we have | C,n \Un > r, and so | £n | > rn. But since r > 1, this implies that 
£w does not converge to 0, and so by Theorem 4.4, 2 £« does n o t converge. 

AJ = 0 
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Note that in applying either Theorems 4.9 and 4.10, if L = 1, the convergence 
or divergence of the series is unknown, and further analysis is required to determine 
the true state of affairs. 

EXERCISES FOR SECTION 4.1 
1. Find the following limits. 

i \ _ ,. « + (/)" 
(b) lim (a) 

(c) 

lim 

lim 

IT 
n2 + 

+ — 
4 

/2" 
(d) lim 

n 
{n + 0(1 + ni) 

2" ,,— n2 

2. Show that lim„^„ (/) l /" ~ 1, where (/)u" is the principal value of the nth root of /. 
3. Let lim„_^ zn = Zu- Show that lim„__ z„ = Zo-
4* Let 27= i z« = 5- S h o w t h a t 27= I 2« = -̂

°" / 1 V 3 - / 
5. Show that X 

6. Show that 2 

2 + / / 2 
1 1__ 

,;=o \n + 1 + / « + / 

7. Show that 21 I ^ - diverges 
i \ n 

n—•« 

l + /\" 
8- Does lim ( — p - I exist? Why? 

9. Let {r,,} and {8,,} be two convergent sequences of real numbers such that 

lim r„ = r{) and lim 0,, = 8f). 

Show that lim„->«rne'e» = ri}e'*". 

10. Show that 2 ( =1+/. 
/7 = 0 2 " 

11. Show that X/7=o fe + /)"/2"] converges for all values of z in the disk | z + i \ < 2 and 
diverges if | z + / | > 2. 

" (4/)» 
12. Is the series 2 convergent? Why? 

13. Use the ratio test and show that the following series converge. 

(a) Z - T - ( b ) ^ ^T~ ( c ) ^ i — ( d ) ^ /o ^ n i 

14. Use the ratio test to find a disk in which the following series converge. 

wio-Kw w i ^ - <c>££=£ (d) t{z - \:40" 
,7=o ,£o (3 + 40" >7~o (3 + 4/)" ^~o 2" 

15. Show that if 2 7 = I »̂ converges, then lim„ „ z„ = 0. //mt: z„ = S„ - 5„_|. 
16. Is the series 2 — convergent? Why? 

» = i n 

17. Let 27=i (•*« + 0^) = ^ + 'V. If c = a + /6 is a complex constant, show that 

2 (a + #>)(*„ + (v„) = (a + /fc)(f/ + iV). 
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18. Let/(z) = z + z2 + z4 + Show that/(z) = z + f(z2). 

19. If Y^Zn converges, show that X z« ^ S |z n | . 
«=0 ' n=0 ' n=0 

20. Prove that statement (6) implies statement (8) in Theorem 4.1. 
2 1 . You were asked to justify one of the inequalities in the proof of Theorem 4.1. Give the 

justification. 
22. Prove that a sequence can have only one limit. Hint: Suppose there is a sequence {z,,} 

such that z„ —> £i and z„ —> ^2- Show this implies £| = ^2 by proving that for all e > 0, 

|C - k| <e. 
23. Prove Corollary 4.1. 

24. Prove lim z„ = 0 iff lim \z„\ = 0. 

25. Establish the claim in the proof of Theorem 4.8 that if \z\ < 1. then lim z" - 0. 

26. In the geometric series, show that if \z\ > 1, then lim \S„\ = °o. Hint: 

1 > z" 
1 - z 

-
1 -~ <, 

/l—too 

1 

1 - z 
-

1 

1 - z 
< 1. 

| 5 " ' ' 1 - z 1 - z , 
27. Prove the series in Corollary 4.2 diverges if 
28. Prove Theorem 4.9. 
29. Give a rigorous argument to show that lim sup t„ — 1 in Example 4.14. 

30. (a) Use the formula for geometric series with z = reiQ where r < 1 to show that 

v^ 1 - r cos 9 + ir sin 0 X rV'" = ; . 
,i=i) 1 + r 2r cos 8 

(b) Use part (a) to obtain 

1 — r cos 8 
2^ r"cos nQ 
,, = {) 

2^ r"$'m n% = 

1 + r2 — 2r cos 8 

r sin 8 

and 

1 + r2 - 2r cos 8 

31 . Show that 2«=o '̂"~ converges for Im z > 0. 

4.2 Power Series Functions 

In this section we list some results that will be useful in helping us establish prop­
erties of functions defined by power series. 

Theorem 4.11 Suppose f(z) = 2 c»(z ~ a ) " - The set of points zfor which 
n = i) 

the series converges is one of the following: 

(i) The single point z = a. 
(ii) The disk D p (a) {z: | z — a | < p} , along with part (either none, some, or 

all) of the circle Cp(a) = {z: | z - a | = p } . 
(iii) The entire complex plane. 
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Proof We give a proof assuming lim | cn \
]/n exists. (A completely general 

proof making use of the limit supremum can be found in a number of advanced 
texts.) By Theorem 4.10, the series converges absolutely at those values of z for 
which lim | cn(z - a)rt |1/M < 1. This is the same as requiring 

(1) \z ~ cc| lim|c„|l/;7 < 1. 

There are three possibilities to consider for the value of lim | cn \
Un: If the limit equals 

°o, inequality (1) holds true iff z = oc, which puts us in case (i). We will be in case 
(ii) if 0 < lim j c„ |1/w < °°, since inequality (1) then holds iff \z — oc | < 

:—r— , i.e., iff z € DJa), where p = ;—— . Finally, if the limit equals 0, 
lim | cw |1/n p lim|cM|1/fl 

n—>°° n—H» 

we will be in case (iii), as the left-hand side of inequality (1) will be 0 for any value 
of z. Notice we are unable to say for sure what happens with respect to convergence 
on Cp(oc). You will see in the exercises that there are various possibilities. 

Another way to phrase case (ii) of Theorem 4.11 is to say that the power series 

f(z) = 2 cn(z ~ °0" converges if I z - a I < p, and diverges if I z — ot I > p. We 

call the number p the radius of convergence of the power series (see Figure 4.2). If 
we are in case (i) of Theorem 4.11, we say that the radius of convergence is zero, 
and that the radius of convergence is infinity if we are in case (iii). 

y 

Divergence 

What happens on the 
boundary may be unknown. 

FIGURE 4.2 The radius of convergence of a power series. 
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Theorem 4.12 The radius of convergence, p, of the power series function 

f(z) = 2 c»(z ~ a ) " can be found by any of the following methods: 

(i) Cauchy's root test: p = ; — (Provided the limit exists). 
K lim |c7l l

1^ 
1 

(ii) Cauchy-Hadamard formula: p = :—— . (This limit always 
lim sup I cn I

Xln 

exists.) 

(iii) d'Alembert's ratio test: p = lim (Provided the limit exists). 
Cn+ 1 

In cases (i) and (ii) we set p = °o //" the /ira/t equals 0, a/id p = 0 z/ the i/mit 
equals ©o. 

Proof If you examine carefully the proof of Theorem 4.11, you will see 
that we have already proved case (i). It follows directly from inequality (1). Case 
(ii) is left for more advanced courses, and case (iii) can be established by appealing 
to the ratio test. 

EXAMPLE 4 . 1 5 Find the radius of convergence of 
^ ( n + 2 Y 

/(2) = S(^TTJ(z-4)n-
Solut ion By Cauchy's root test, lim|ctt|

l//? = lim = - , so the 

radius of convergence is 3. 

EXAMPLE 4 . 1 6 The series 2 c„zM = 1 + 4z + 52z2 + 43z3 + 5 V + 45z5 

«=o 

+ . . . has radius of convergence - by the Cauchy-Hadamard formula because 

lim sup I cn |iy" = 5. 

EXAMPLE 4 . 1 7 Find the radius of convergence of f(z) = 2 ~T zn-
n = 0 HI 

lim 

Solution By the ratio test, the radius of convergence is 
(n + 1)! 

n\ 
= lim (n + 1) = oo. Thus, the series converges for all values of z. 
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We come now to the main result of this section. 

Theorem 4.13 Suppose the function f(z) = ZJ cn(z — oc)" has radius of 
convergence p > 0. Then 

(i) f is infinitely differentiate for all z e Dp(oc), in fact 

(ii) for all k,fik)(z) = 2 n(n - I) • • • (n - k + \)cn(z - a)""*, and 

(iii) ck 
/(*}(a) where f{k) denotes the kth derivative off. (When k = 0 , / • < * ) 

denotes the function f itself so thatf{0\z) — f(z) for all z.) 

Proof If we can establish case (ii) for k = 1, the cases for k = 2, 3, . . . 
will follow by induction. For instance, the case when k = 2 follows by applying the 

result for & = 1 to the series/'(z) = 2 nCn(z ~ cc)n~l. 

We begin by defining the following functions: 

g(z) = 2 ^n(z " oc)"-], S;(z) = 2 cn{z - <x)n, /?,-(z) = 2 c*(z - «)". 
«=1 /! = 0 /7=7+1 

Here 5y(z) is simply the (j + l)st partial sum of the series f(z), and ^-(z) is the sum 
of the remaining terms of that series. We leave as an exercise that the radius of 
convergence for g(z) is p, the same as that off(z)- For a fixed zo e Dp(a)9 we must 

prove f\zo) = g(zo), that is, we must prove lim = g(zo). This can be 
z-^z() Z ~ Zo 

done by showing that for all £ > 0, there exists 5 > 0 such that if z e Dp(a) with 

- g(zo) < £. 0 < \z - zo I < 5 then 
I z - zo 

Let zo e Dp(a) and £ > 0 be given. Choose r < p so that zo € Dr(a). Choose 
8 to be small enough so that D8(zo) C Dr(a) C Z>p(a) (see Figure 4.3), and also 
small enough to satisfy an additional restriction, which we shall specify in a moment. 

The disk D5(z0) 

The disk Dr(a) 

The disk Dp(oc) 

FIGURE 4.3 Choosing 6* to prove f'(zo) = g(zo)-
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Since/(z) = Sj(z) + Rj(z), simplifying the right-hand side of the following 
equation reveals that for all y, 

(2) m - fizo) 
z - Zo 

g(Zo) 
Sj(z) - Sj(zo) 

z - zo 

IS'jizo) ~ g(zo)] + 

- Sfo) 
Rj(z) - Rjizo) 

z - Zo 

where Sj(zo) is the derivative of the function Sj evaluated at zo- Equation (2) has the 
general form A = B + C + D. By the triangle inequality, 

|A| = | £ + C + D | < | 5 | + \C\ + | D | , 

so our proof will be complete if we can show that for a small enough value of 8 
£ 

each of the expressions | B |, | C |, and | D | can be shown to be less than - . 

Calculation for \ D | 

Rjiz) - Rjizo) 

z - zo 

1 
2 cn[(z - a)" - (zo ~ a)"] 

Z ~ ZQ \n-,/' 

(z - a)" - (zo- a)" 
=2 2 K , 

/i=7+l I Z Zo 

(Compare with exercise 19 of Section 4.1). 

As an exercise, we ask you to establish 

I (z - a)" - (zo - ay I n x 

(3) < nrn l. 
I z ~ Zo I 

Assuming this to be the case, we get 

Rjiz) ~ Rjizo) 
(4) 

z - zo 
=£ 2 \cn\nrn 

n=j+ 1 

Since r < p, the series 2 \cn\ nrtl~l converges (can you explain why?). This means 
«=1 

that the tail part of the series, which is the right-hand side of inequality (4), can 
e 

certainly be made less than - if we choosey large enough, say j > iVi. 

Calculation for IC 

Since Sj(zo) = 2 ncn(zo - a)" - 1 , it is clear that lim S)(zo) = g(zo). This means there 
n= 1 ./-»«> 

is an integer N2 such that if j > N2, then Sj(zo) - g(zo) 
e 

< - . 
3 
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Calculation for | B | 
Define N = max{iVi, No}. Because S^(z) is a polynomial, S'N(zo) exists. Thus, we 
can find 5 small enough so that it complies with the restriction previously placed 
on it as well as ensuring 

SN(z) - SN(zo) 
- ?>N(ZQ) 

Zo 
< - whenever z e Dp(a) with 0 < | z — Zo | < 8. 

Using this value of N for j in equation (2) together with our chosen 8 yields con­
clusion (ii) of our theorem. 

To prove (iii), note that if we set z = a in (ii), all the terms drop out except 
when n = k, giving us/(A)(oc) = k(k — \) • • - (k — k + 1 ) Q . Solving for ck completes 
the proof of our theorem. 

E X A M P L E 4 . 1 8 Show that 2 (n + l)z" = for all z e D,(0). 
«=o (l — zY 

S o l u t i o n We know from Theorem 4.8 that f(z) = = 2 z" for all 
l - z «=o 

1 
z € Di(0) . If we set k = 1 in Theorem 4.13, case (ii), f'(z) = 

- 7V (1 - z) 

2 nzn~{ = 2 (" + Dz" for all z e £>i(0). 
/ i= l « = 0 

E X A M P L E 4 . 1 9 The Bessel function of order zero is given by 

, /, _ v LIZ (if _ , *.JL ^ . . 
MZ) ~ h (»!)2 \2) ~ l " 22 + 2*4* " 2 W + ' ' " ' 

and termwise differentiation shows that its derivative is given by 

J'°(Z) = „?o «!(« + 1)! ( 2 J = ~2 + 7l2! (2) " 2!3! (2) + ' ' ' ' 

We leave as an exercise that the radius of convergence of these series is infinity. 
The Bessel function J\(z) of order one is known to satisfy the differential equation 
Mz) = -J'0(z). 

EXERCISES FOR SECTION 4.2 
1. Prove case (iii) of Theorem 4.12. 

2. Consider the following series: ^ z"* 2 ~ > anc* 2 — • 
, i = o / i= i n- „ = i n 

(a) Using Theorem 4.12, show that each series has radius of convergence 1. 
(b) Show that the first series converges nowhere on Cj(0). 
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(c) Show that the second series converges everywhere on Ci(0). 
(d) It turns out that the third series converges everywhere on C|(0) except at the point 

z = l. This is not easy to prove, but see if you can do so. 

3. Show that 2 (« + D2 z" = —, . 
/r = 0 (1 — Z) 

4. Find the radius of convergence of the following. 

(a) g(z) - 2 ( - ^ " T T T ; (b) Mz) = 2 w! z" 
«=0 ( 2 / 7 ) ! TTo 

^ / 4n2 6/72 V ^, (H!)2 

(c) f(z) = X 7—-T - 7 — 7 z" (d) *(z) = 2 7TT? z" 
/,=0 \ 2 « + 1 3/7 + 4 / „=0 (2/7)! 

/7(/7 — l)z' ! 

(e) h(z) = 2 <2 " ( " I)")"*" (0 /(^) = 2 /¾ (3 + 4/)" 

(g) g(z) = % (^}Z" (h) Kz) = I, TT^" 
(i) g(z) = 2 ^7 z" . //wt: Hm [1 + (I//7)]" - *. 

/ ,=0 /7! ,j_,™ 

(j) g(z) = S z-" 
/,=() 

4 z2 z3 z 4 z5 z 6 z7 

( k ) s i n h ( z ) + _ _ = 1 + , + _ + _ + _ + _ + _ + _ + . . . . 

5. Suppose that 2J cnZ" has radius of convergence R. Show that 2 6»z" has radius of 
/, = 0 // = 0 

convergence #2. 

6. Does there exist a power series ^ c»£" that converges at z,\ = 4 - i and diverges at 
/ , = 0 

z2 = 2 + 3/? Why? 
7. Verify part (ii) of Theorem 4.13 for all k by using mathematical induction. 
8. This exercise will establish that the radius of convergence for g given in Theorem 4.13 

is p, the same as that of the function/. 
1 

(a) Explain why the radius of convergence tor g is . 
lim sup I nc„ |""' 

1 

(b) Show that lim sup | n | "_ l = 1. Hint: The lim sup equals the limit. Show that 

hm = 0. 
„^~ n - 1 

_ J _ I 

(c) Assuming that lim sup | cn |"~' = lim sup | cn |" , show that the conclusion for 

this exercise follows. 
(d) Establish the truth of the assumption made in part (c). 

9. This exercise will establish the validity of inequality (3) given in the proof of Theorem 
4.13. 
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(a) Show that 

= | .v" ' + .v" -r + s" V + - - • + st""2 + /"-' | 

< \ s n l \ + \x" : t \ 4- | .v"--V2 | + • • • + | A ? " - ' | + | Z1"-' | , 

where s and t are arbitrary complex numbers, s ¥" t. 
(b) Argue why in inequality (3) we know that | z — a | < r and | zo — oc | < /\ 
(c) Let s = z — OL and t = z.u ~ a in part (a) to establish inequality (3). 

10. Show that the radius of convergence is infinity of the series for Juiz) and Jl)(z) given in 
Example 4.19. 

11. Explain what you think might happen if the complex number z is substituted for x in 
the Maclaurin series for sin x that is studied in calculus? 

12. Write a report on series of complex numbers and/or functions. Include ideas and ex­
amples not mentioned in the text. Resources include bibliographical items 10, 83, 116, 
and 153. 

4.3 Julia and Mandelbrot Sets 

An impetus for studying complex analysis is the comparison of properties of real 
numbers and functions with their complex counterparts. In this section we take a 
look at Newton's method for finding solutions to the equation /(c) — 0. We then 
examine the more general topic of iteration. 

Recall from calculus that Newton's method proceeds by starting with a func­
tion fix) and an initial "guess ' ' A0 as a solution to fix) = 0. We then generate a new 

f( v ) 
guess A'I by the computation .V| = AU —— . Using x{ in place of A(), this process 

f Uo) 
fi X ) 

is repeated, giving us x2 = A'I • . We thus obtain a sequence of points {.\k}, 
t Ui) 

where xk. t = x k — —r . The points {A'A}JT_(, are called the iterates of x{). For 
i (-VA) 

functions defined on the real numbers, this method gives remarkably good results, 
so that the sequence \xCi often converges to a solution off(x) = 0 rather quickly. 
In the late 1800s the British mathematician Arthur Cayley investigated the question 
as to whether Newton's method can be applied to complex functions. He wrote a 
paper giving an analysis for how this method works for quadratic polynomials and 
indicated his intention to publish a subsequent paper for cubic polynomials. Unfor­
tunately, Cayley died before producing this paper. As you will see, the extension of 
Newton's method to the complex domain and the more general question of iteration 
are quite complicated. 

E X A M P L E 4 . 2 0 Trace out the next five iterates of Newton's method given 
an initial guess of Co = -j + T' ; a s a solution to the equation f{z) = 0. where/(c) = 
z2 + 1. 

s" - t" 
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-,2 _ 

Solution Given z as an initial guess, our next guess will be z ;— = 
f(z) 

With the aid of a computer algebra system, we can easily produce Table 
2z 

4.1, where values are rounded to five decimal places. 

TABLE 4.1 The iterates of z0 = T + \/ for Newton's method applied 
to f(z) = z2 + 1. 

zk f(Zk) 

0 
1 
2 
3 
4 
5 

0.25000 + 0.25000/ 
-0.87500 + 1.12500/ 
-0.22212 + 0.83942/ 
0.03624 + 0.97638/ 

-0.00086 + 0.99958/ 
0.00000 + 1.00000/ 

1.00000 + 0.12500/ 
0.50000 - 1.96875/ 
0.34470 - 0.37290/ 
0.04799 + 0.07077/ 
0.00084 - 0.00172/ 
0.00000 + 0.00000/ 

Figure 4.4 shows the relative positions of these points on the z plane. Notice 
that the points z4 and Z5 are so close together that they appear to coincide and that 
the value for z$ agrees to five decimal places with the actual solution z = L 

1.2 + 

X 
zf 0.8 + 

0.6 + 

0.4 

0.2 

z4 and z5 

-\ • * 
^0.75 -0.5 -0.25 

-0.2 

0.25 0.5 0.75 

FIGURE 4.4 The iterates of zu - \ + \i for Newton's method applied to 
/(z) = z2+ 1. 
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The complex version of Newton's method appears also to work quite well. 
You may recall, however, that with functions defined on the reals, it is not the case 
that every initial guess produces a sequence that converges to a solution. Example 
4.21 shows that the same is true in the complex case. 

E X A M P L E 4 . 2 1 Show that Newton's method fails for the function 
f(z) = z2 + 1 if our initial guess is a real number. 

Solution From Example 4.20 we know that given any guess z as a solution 
f(z) z2 - 1 

of z2 + 1 = 0, the next guess at a solution is N(z) = z — —— = —-— . Let zo be 
f (z) 2z 

any real number, and let {zk} be the sequence of iterations produced by the initial 
seed zo- If for any k, Zk = 0, the iteration terminates with an undefined result. If all 
the terms of the sequence {zk} are defined, an easy induction argument shows that 
all the terms of the sequence will be real. Since the solutions of z2 + 1 = 0 are ±/, 
the sequence {zk} cannot possibly converge to either solution. In the exercises we 
ask you to explore in detail what happens when zo is in the upper or lower half 
plane. 

The case for cubic polynomials is more complicated than that for quadratics. 
Fortunately, we can get an idea of what's going on by doing some experimentation 
with computer graphics. Let us begin with the cubic polynomial f(z) = z3 + 1. 
/ 1 73 1 V^ \ 
I Recall, the roots of this polynomial are at —1, - + —r~i, and —i. I We as­
sociate a color with each root (blue, red, and green, respectively). We form a rect­
angular region R, which contains the three roots of f(z), and partition this region 
into equal rectangles Rir We then choose a point Zjj at the center of each rectangle 
and for each one of these points we apply the following algorithm: 

f(z) 
1 • With N(z) ~ z ;— , compute N(zii). Continue computing successive iterates 

f (z) 
of this initial point until we either are within a certain preassigned tolerance 
(say e) of one of the roots of f(z) = 0, or until the number of iterations has 
exceeded a preassigned maximum. 

2. If step 1 left us within e of one of the roots of f(z), we color the entire rectangle 
Rjj with the color associated with that root. Otherwise, we assume the initial 
point Zij does not converge to any root and color the entire rectangle yellow. 

Notice that the preceding algorithm does not prove anything. In step 2, there 
is no a priori reason to justify the assumption mentioned, nor is there any necessity 
for an initial point zr, to have its sequence of iterates converging to one of the roots 
of f(z) = 0 just because a particular iteration is within e of that root. Finally, the 
fact that one point in a rectangle behaves in a certain way does not imply that all 
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the points in that rectangle behave in a like manner. Nevertheless, we can use this 
algorithm to motivate mathematical explorations. Indeed, computer experiments like 
the one described have contributed to a lot of exciting mathematics in the past 15 
years. Color plate 1 at the end of this section shows the results of applying our 
algorithm to the cubic polynomial f(z) = z3 + 1. The points in the blue, red, 
and green regions are those "initial guesses" that will converge to the roots — 1, 
1 73 1 73 
- H——i, and -— /, respectively. (The roots themselves are located in the 
2 2 2 2 
middle of the three largest colored regions.) The complexity of this picture becomes 
apparent when we observe that wherever two colors appear to meet, the third color 
emerges between them. But then, a closer inspection of the area where this third 
color meets one of the other colors reveals again a different color between them. 
This process continues with an infinite complexity. 

Not all initial guesses will result in a sequence that converges to a solution 
(let zo be anY real number, as in Example 4.21). On the other hand, there appear to 
be no yellow regions with any area in color plate 1, indicating that most initial 
guesses zo at a solution to z3 + 1 — 0 will produce a sequence (¾} which converges 
to one of the three roots. Color plate 2 illustrates that this is not always the case. It 
shows the results of applying the preceding algorithm to the polynomial f(z) ~ 
z3 + (-0.26 + 0.02/)z + (-0.74 + 0.02/). The yellow area shown is often referred 
to as the rabbit. It consists of a main body and two ears. Upon closer inspection 
(color plate 3) we see that each one of the ears consists of a main body and two 
ears. Color plate 2 is an example of a fractal image. Mathematicians use the term 
fractal to indicate an object that is self-similar and infinitely replicating. 

In 1918 the French mathematicians Gaston Julia and Pierre Fatou noticed this 
fractal phenomenon when exploring iterations of functions not necessarily con­
nected with Newton's method. Beginning with a function/(z) and a point zo, they 
computed the iterates z\ =/(zo), Z2 =/Ui) , • • . , ^ , i = / f o ) , . . ., and investigated 
properties of the sequence {zk}- Their findings did not receive a great deal of atten­
tion, largely because computer graphics were not available at that time. With the 
recent proliferation of computers, it is not surprising that these investigations were 
revived in the 1980s. Detailed studies of Newton's method and the more general 
topic of iteration were undertaken by a host of mathematicians including Curry, 
Douady, Garnett, Hubbard, Mandlebrot, Milnor, and Sullivan. We now turn our 
attention to some of their results by focusing on the iterations produced by quad­
ratics of the form/(z) = z2 + c. 

EXAMPLE 4 . 2 2 Given f({z) = z2 + c, analyze all possible iterations for the 
function f0(z) = z2 + 0. 

Solution In the exercises we will ask you to verify that if |zo| < 1 the 
sequence will converge to 0, if | zo | > 1 the sequence will be unbounded, and if 
| Zo | = 1 the sequence will either oscillate chaotically around the unit circle or 
converge to 1. 
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Given the function fc(z) = z2 + c, and an initial seed z0> the set of iterates 
given by z\ = /<-(Zo)» Zi = Mzi), etc., are also called the orbits of zo generated by 
fc{z). Let Kc denote the set of points with bounded orbits for/(z). Example 4.22 
shows that K0 is the closed unit disk £>i(0). The boundary of Kc is known as the 
Julia set for the function fc(z). The Julia set for f0(z) is the unit circle Ci(0). It turns 
out that Kc is a nice simple set only when c = 0 or c = — 2. Otherwise, Kc is fractal. 
Color plate 4 shows K_\.25- The variation in colors indicate the length of time it 
takes for points to become "sufficiently unbounded" according to the following 
algorithm, which uses the same notation as our algorithm for iterations via Newton's 
method: 

1. Compute fc(Zij). Continue computing successive iterates of this initial point 
until the absolute value of one of the iterations exceeds a certain bound (say 
L), or until the number of iterations has exceeded a preassigned maximum. 

2. If step 1 left us with an iteration whose absolute value exceeds L, we color 
the entire rectangle Ry with a color indicating the number of iterations 
needed before this value was attained (the more iterations required, the 
darker the color). Otherwise, we assume the orbits of the initial point z,y do 
not diverge to infinity and we color the entire rectangle black. 

Notice, again, that this algorithm does not prove anything. It merely guides 
the direction of our efforts to do rigorous mathematics. 

Color plate 5 shows the Julia set for the function/(z), where c = —0.11 — 
0.67/. The boundary of this set is different from that of the other sets we have seen 
in that it is disconnected. Julia and Fatou independently discovered a simple crite­
rion that can be used to tell when the Julia set for/(z) is connected or disconnected. 
We state their result, but omit the proof, as it is beyond the scope of this text. 

Theorem 4.14 The boundary of Kc is connected if and only if 0 € Kc. In 
other words, the Julia set for f(z) is connected if and only if the orbits ofO 
are bounded. 

EXAMPLE 4 . 2 3 Show that the Julia set for/(z) is connected. 

Solution We apply Theorem 4.14 and compute the orbits of 0 for/(z) = 
z2 + /. We have/<0) = / , /(/) = - 1 + / , / ( - 1 + /) = - / , / - ( - 0 = - 1 + / , . . . . 
Thus, the orbits of 0 are the sequence 0 , - 1 + / , - / , - 1 + /, —/, —1 + /, —/, 
. . . , which is clearly a bounded sequence. Thus, by Theorem 4.14, the Julia set 
for/(z) is connected. 

In 1980, the Polish-born mathematician Benoit Mandelbrot used computer 
graphics to study the following set: 

M = {c: the Julia set for/(z) is connected} 
= {c: the orbits of 0 determined by/(z) are bounded}. 
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The set M has come to be known as the Mandelbrot set. Color plate 6 shows 
its intricate nature. Technically, the Mandelbrot set is not fractal since it is not self-
similar (although it may look that way). It is, however, infinitely complex. Color 
plate 7 shows a zoom over the upper portion of the set shown in color plate 6, and 
likewise color plate 8 zooms in on the upper portion of color plate 7. Notice that 
we see in color plate 8 the emergence of another structure very similar to the Man­
delbrot set we began with. It is not an exact replica. Nevertheless, if we zoomed in 
on this set at the right spot (and there are many such choices), we would eventually 
see yet another "Mandelbrot clone*' and so on ad infinitum! The remainder of this 
section looks at some of the properties of this amazing set. 

E X A M P L E 4.24 Show that Ic : | c | < £ l C M. 

Solution Let | c | < y, and let {a„}~=0 be the orbits of 0 generated by 
f(z) = z2 + c. Thus, 

ao = 0, 
«i = /£-(flo) = a\ + c = c, 
«2 = fM\) = a\ + c, and in general, 

an+\ = /<-(aw) = a\ + c. 

We shall show that {an} is bounded. In particular, we shall show that \a„\ < y for 
all n by mathematical induction. Clearly \an\ < y if n = 0 or 1. Assume \an\ < 
y for some value of n > 1 (our goal is to show | an+\ | < y ). Now 

| a n + i | = \al + c\ 
< | a2

n | + | c | by the triangle inequality 

^ -4- + \ by our induction assumption and the fact that \c\ < \. 

In the exercises, we ask you to show that if \c\ > 2, then c 4. M. Thus, the 
Mandelbrot set depicted in color plate 6 contains the disk Di/4(0), and is contained 
in the disk Z52(0). 

There are other methods for determining which points belong to M. To see 
what they are, we need some additional vocabulary. 

Definition 4.5 The point ZQ is a fixed point for the function f(z) iffizo) = 

Definition 4.6 The point Zo is an attracting point for the function f(z) if 

|/ '(zo)| < 1-

The following theorem explains the significance of these terms. 
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Theorem 4.15 Suppose zo is an attracting fixed point for the function f(z). 
Then there is a disk Dr(zo) about zo such that the iterates of all the points in 
Dr(zo) are drawn towards the point zo in the sense that 

ifz € Z)*(z0), then \f(z) - ZQ\ < | z - Zo |. 

Proof Since Zo is an attracting point for/, we know that |/'(zo) | < 1- Since 
/ i s differentiable at zo, we know that given any e > 0 there exists some r > 0 such 

that if z is any point in the disk D*(zo), then | — f(zo) I < e. If we set 
z - zo 

e = 1 — |/'(zo) |, then we have for all z in D*(ZQ) that 

f(z)-f(z0) 
Z ~ Zo 

which gives 

f(z)-f(zo) 

z - zo 

| / ' ( z 0 ) | < m-f(zo) 
z - zo 

• / ' (zo) < 1 | / ' ( Z 0 ) | , 

< 1. 

Thus, 

1/(2)-/(¾) | < | Z - Z 0 | . 

Since zo is a fixed point fo r / this implies 

| / ( z ) - z 0 | < | z - z 0 | . 

In 1905, Fatou showed that if the function/c(z) has attracting fixed points, the 
orbits of 0 determined by fc(z) must converge to one of them. Since a convergent 
sequence is bounded, this implies that c must belong to M. In the exercises we ask 
you to show that the main cardioid-shaped body of M in color plate 6 is composed 
of those points c for which fc(z) has attracting fixed points. You will find that The­
orem 4.16 is a useful characterization of them. 

Theorem 4.16 The points cfor which fc(z) has attracting fixed points satisfy 
| 1 + (1 - Ac)m | < 1 or | 1 - (1 - 4c)1/2 | < 1, where the square root is the 

principal square root function. 

Proof The point zo is a fixed point for/£.(z) if and only if /(zo) = Zo- In 
other words, if and only if zl — Zo + c = 0. The solutions to this equation are 

1 + ( 1 - 4c)1/2 1 - ( 1 - Ac)m 

Zo = and z0 = ~ , 

where again the fractional exponent is the principal square root function. Now, if 
Zo is an attracting point, then \f'c(Zo) \ = | 2¾ | < 1. Combining this with the solutions 
for zo gives our desired result. 
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Definition 4.6 An n-cycle for a function f is a set {to, Z\, . . . , zn-\) ofn 
complex numbers such that Zk — f(Zk-i) far k = 1, 2, . . . , « — 1, and 

f(Zn-\) = Zo-

Definition 4.7 An n-cycle {z0, Z\, . . . , zn-\} far a function f is said to be 
attracting if \g'n{zo) | < 1> where gn is the composition of f with itself n times. 
For example y if n = 2, then gj(z) = f(f(z)). 

E X A M P L E 4 . 2 5 Example 4.23 shows that { - 1 + / , - / } is a 2-cycle for the 
function f(z). It is not an attracting 2-cycle since g2(z) = z4 + 2iz2 + / - 1, and 
giiz) = 4z3 + 4fc Hence, \g'2(-\ + / ) | = |4 + 4 / | , so \g2(-l + /) | > 1. 

In the exercises, we ask you to establish that if {z0, Zi, . . . , zn-\) is an 
attracting n-cycle for a function/, then not only does z0 satisfy | g'„(zo) \ < 1, but in 
fact we also have that | g^fe) | < 1, for k = 1, 2, . . . , n — 1. 

It turns out that the large disk to the left of the cardioid in color plate 6 consists 
of those points c for which fc(z) has a 2-cycle. The disk to the left of this, as well 
as the large disks above and below the main cardioid disk, are those points c for 
which/c(z) has a 3-cycle. 

Continuing with this scheme, we see that the idea of n-cycles explains the 
appearance of the " b u d s " that you see on color plate 6. It does not, however, begin 
to do justice to the enormous complexity of the entire set. Even color plates 7 and 
8 are a mere glimpse into its awesome beauty. In the exercise section, we suggest 
several references for projects that you may like to pursue for a more detailed study 
of topics relating to those covered in this section. 

EXERCISES FOR SECTION 4.3 
1. Prove that Newton's method always works for polynomials of degree 1 (functions of 

the form f(z) = az + b, where a # 0). How many iterations are necessary before 
-b 

Newton's method produces the solution z = — to/(z) = 0? 
a 

f(z) z2 - 1 
2. Consider the function f(z) = z2 + 1, where N(z) = z — 777- = —-— = 

f (z) 2z 
1 I 1̂  

(a) Show that if Im(zo) > 0, the sequence {zk} formed by successive iterations of zo via 
N(z) lies entirely within the upper half plane. 

Hint: If z = r(cos 0 + i sin 9), show N(z) = - ( r - - )cos 0 + 1'̂  ( r + - ) sin 0. 

(b) Show a similar result holds if Im(z0) < 0. 
(c) Discuss whether (¾} converges to i if Im(z0) > 0. 
(d) Discuss whether {zk} converges to —i if Im(z0) < 0. 

•iR) 
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(e) Use induction to show that if all the terms of the sequence (¾} are defined, then the 
sequence (¾} is real provided z<> is real. 

(f) For which real numbers will the sequence {z*} be defined? 
3. Formulate and solve analogous questions to Exercise 2 for the function/(z) = z2 — 1. 
4. Consider the function/0(z) = z2, and an initial point zo- Let {zk} be the sequence of 

iterates of zo generated by />(z). That is, z\ = /o(zo), Zi = /o(zi), and so forth. 
(a) Show that if | zo | < 1, the sequence {z*} converges to 0. 
(b) Show that if jzo j > 1, the sequence {z*} is unbounded. 
(c) Show that if U0 | = 1, the sequence {zk} either converges to 1 or oscillates 

around the unit circle. Give a simple criterion that can be applied to zo that will 
dictate which one of these two paths the sequence {z*} takes. 

5. Show that the Julia set for f2(z) is connected. 
6. Determine the precise structure of the set K_2. 
7. Prove that if z = c is in the Mandelbrot set, then its conjugate c is also in the Mandelbrot 

set. Thus, the Mandelbrot set is symmetric about the x axis. Hint: Use mathematical 
induction. 

8. Find a value c in the Mandelbrot set such that its negative, - c , is not in the Mandelbrot 
set. 

10. Show that if c is any real number greater than 1/4, then c is not in the Mandelbrot set. 
Note: Combining this with Example 4.23 shows that the cusp in the cardioid section of 
the Mandelbrot set occurs precisely at c = 1/4. 

11. Use Theorem 4.16 to show that the point -£V3/ belongs to the Mandelbrot set. 
12. Show that the points c that solve the inequalities of Theorem 4.16 form a cardioid. This 

cardioid is the main body of the Mandelbrot set shown in color plate 6. Hint: It may be 
helpful to write the inequalities of Theorem 4.16 as 

I i + (i - c) '« | < \ or | 1 - ( | - c ) ' * | < i . 

13. Suppose that {zo, Z\} is a 2-cycle for/. Show that if zo is attracting for g2{z), then so is 
the point z\. Hint: Differentiate g2(z) = /( /(z)) using the chain rule, and show that 
giizu) = giizi). 

14. Generalize Exercise 13 to n-cycles. 

The remaining exercises are suggested projects for those wishing to engage in a more 
detailed study of complex dynamics. 

15. Write a report on how complex analysis is used in the study of dynamical systems. 
Resources include bibliographical items 53, 54, 55, 58, and 143. 

16. Write a report on how complex analysis is used in the study of fractals. Resources 
include bibliographical items 7, 8, 9, 11, 55, 57, 58, 78, 84, 101, 125, 126, 134, 139, 
143, 167, 175, and 188. 

17. Write a report on how complex analysis is used to study the Julia set. Resources include 
bibliographical items 144 and 177. 

18. Write a report on how complex analysis is used to study the Mandelbrot set. Include 
ideas and examples that are not mentioned in the text. Resources include bibliographical 
items 31, 45, 56, 74, 125, 126, and 177. 

19. Write a report on how complex functions are used in the study of chaos. Resources 
include bibliographical items 11, 53, 54, 55, 57, 58, 142, and 168. 



Elementary Functions 

How should complex-valued functions such as ez, log z, sin z, etc., be defined? 
Clearly, any responsible definition should satisfy the following criteria: (l)The 
functions so defined must give the same values as the corresponding functions for 
real variables when the number z is a real number. (2) As far as possible, the prop­
erties of these new functions must correspond with their real counterparts. For ex­
ample, we would want ez^z^ = eZieZn- to be valid regardless of whether z were real 
or complex. 

These requirements may seem like a tall order to fill. There is a procedure, 
however, that offers promising results. It is to put in complex form the expansion 
of the real functions ex, sin x, etc., as power series. 

5.1 The Complex Exponential Function 

A standard result from elementary calculus is that the exponential function can be 

represented by the power series ex — ^ — xn. Thus, it is only natural to define the 
/7=0 n\ 

complex exponential ez (also written as exp z) in the following way: 

Definition 5.1 ez = exp(z) = ^ — z". 
/7=0 n\ 

Clearly this definition agrees with that of the real exponential function when 
z is a real number. We now show that this complex exponential has two of 
the key properties we associate with its real counterpart, and verify the identity 
e'e — cos 6 + i sin 6, which we promised to establish back in Chapter 1. 

Theorem 5.1 The function exp(z) is an entire function satisfying: 

(i) exp'(z) = exp(z) = ez. {In other words, —• ez = ez.) 
dz 

(ii) exp(zi + zi) = exp(zi)exp(z2). (In other words, e:^:* = e~>e^.) 
(iii) IfQ is a real number, then e'B = cos 0 + i sin 8. 

Proof From Example 4.17, we see that the series in Definition 5.1 has an 
infinite radius of convergence, so exp(z) is entire by Theorem 4.13, (i). 

125 
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(i) By use of Theorem 4.13, (ii), 

exp'(z) = 2 -. zn~l = E : r^ z '" ! = 5) T *" = exP^>-

n=\ Til n=\ in - 1 ) ! n = 0 HI 

(ii) Let £ be an arbitrary complex number, and define g(z) by 

g(z) = exp(z) exp(£ - z). 

Using the product rule, chain rule, and part (i), we have 

g'(z) = exp(z) exp(£ - z) + exp(z)[-exp(£ - z)] = 0 for all z. 
This implies that the function g must be constant (see Exercise 17 of Section 3.3). 
Thus, for all z, g(z) = g(0). Since exp(O) = 1 (verify!), we deduce 

g(z) = g(0) = exp(O) exp(£ - 0) = exp(Q. Hence, 
exp(z) exp(£ - z) = exp(Q. 

If we set z = Z\, and let £ = z\ + Zi, we get exp(zi)exp(zj + zi - z\) = 
exp(zi + Z2), which simplifies to our desired result. 

(iii) If 6 is a real number, then by Definition 5.1, 

e'e = exp(/6) 

= 1-7(/8)-

(1) =2 
1 

(2/i)! (2/1 + 1)! 
i+ t (/6)2" H (/9)2"+1 (by separating odd and even exponents) 

(2) = 2 ( " 1)" T^TT + i S ( " 0" , , , n . (verify!) 
n=o (2n)\ /j=o (2« + 1)! 

= cos 9 + i sin 0 (by the series representations for the real-valued sine and cosine 
functions). 

Note that parts (ii) and (iii) of the Theorem 5.1 combine to verify De Moivre's 
formula, which we gave in Section 1.5 (see identity (3) of that section). 

If z = x + ry, we also see from conclusions (ii) and (iii) that 

(3) exp(z) = ez = ev+/v = exeiy = e^(cos y + i sin y). 

Some texts start with equation (3) as their definition for exp(z). In the exer­
cises, we show that this is a natural approach from the standpoint of differential 
equations. 

The notation exp(z) is preferred over ez in some situations. For example, 
exp(|) = 1.22140275816017 . . . is the value of exp(z) when z = 1/5, and equals 



5.1 The Complex Exponential Function 127 

the positive fifth root of e = 2.71828182845904. . . . The notation eU5 is ambig­
uous and might be interpreted as any of the complex fifth roots of the number e that 
were discussed in Section 1.5: 

e1/5- 1.22140275816017 ( c o s — + /sin — J, for k = 0, 1, . . . , 4. 

To prevent this confusion, we often use exp(z) to denote the single-valued expo­
nential function. 

Properties ofexp{z) 

Since identity (3) involves the periodic functions cos y and sin v, any two points in 
the z plane that lie on the same vertical line with their imaginary parts differing by 
an integral multiple of 2TT are mapped onto the same point in the w plane. Thus, the 
complex exponential function is periodic with period 2%i. 

EXAMPLE 5.1 The points 

z„ = 7 + i[ —- + 2nn), for n = 0, ±1, ±2, . . . 

in the z plane are mapped onto the single point 

w0 = exp(z„) = e-V4l cos ——I- i sin —— 
\ 6 

V3 ,5/4 _ L „5IA 

2 2 
= 3.022725669 . . . - /1.745171479 . . . 

in the w plane, as indicated in Figure 5.1. 

FIGURE 5.1 The points {z„} in the z plane (i.e., the xy plane) and their image 
H'O = exp(zM) in the w plane (i.e., the uv plane). 
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Some of the properties of the transformation w = ez ~ exp(z) are: 

(4) ez+2nni = ez for all z, provided n is an integer. 

(5) ez = 1 if and only if z = 2n7t/, where n is an integer. 

(6) ez> = ¾̂ if and only if z2 = Z\ + 2mi/, where n is an integer. 

Properties (4) through (6) are left for the reader to establish. 
Let us investigate the modulus and argument of w = ez. If z = x + iy, and we 

write w in its exponential form as w = pe'*, equation (3) gives us 

Using property (4) of Section 1.5, the preceding implies 

(7) p = ex and <|> = y 4- 2mr, where n is an integer. Therefore, 

(8) p = | ez | = eA and 

(9) <j) = arg ez = Arg ez 4- 2n7i, where n is an integer. 

If we solve the equations in statement (7) for x and y, we get 

(10) JC = In p, and y = (|) + 2n7i, where n is an integer. 

Thus, for any complex number w # 0, there are infinitely many complex numbers 
z = x + iy such that w = ez. From statement (10), we see that the numbers z are 

(11) z = JC + iy = In p + /(()) + 2mt) 

= In | w | + /(Arg w + 2/ITI:), where n is an integer. 

Hence 

exp[ln | w | + /(Arg w + 2n7i)] = w. 
In summary, the transformation w = ez maps the complex plane (infinitely often) 
onto the entire set S = {w: w ^ 0} of nonzero complex numbers. 

If we restrict the solutions in statement (11) so that only the principal value 
of the argument, —n< Arg w < TC, is used, we can also see that the transformation 
w = ez = ex+iy maps the horizontal strip —n < y < n one-to-one and onto the range 
set S = {w: w 7½ 0}. This strip is called the fundamental period strip and is shown 
in Figure 5.2. Furthermore, the horizontal line z ~ t 4- iby for -°° < t < °° in the 
z plane, is mapped onto the ray w — e{eih = e'(cos b + i sin b) that is inclined at an 
angle § = b in the w plane. The vertical segment z = a + /6, for — JT < 8 < n in 
the z plane, is mapped onto the circle centered at the origin with radius ea in the w 
plane. That is, w = eaeiB = e"(cos 0 4- i sin 0). In Figure 5.2, the lines ru r2, and r3 

are mapped to the rays r*, r\, and r\, respectively. Likewise, the segments su s2t and 
3̂ are mapped to the corresponding circles, s], s*2, and s*3, respectively. 
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The z plane. The w plane. 

FIGURE 5.2 The fundamental period strip for the mapping w = exp(z). 

E X A M P L E 5.2 Consider a rectangle R = {(x, y): a < x < b and c < y < d], 
where d — c < 2%. Show that the transformation w = ez = ex+iy maps R onto a 
portion of an annular region bounded by two rays. 

Solution The image points in the w plane satisfy the following relation­
ships involving the modulus and argument of w: 

< \e b + iy j — pb 

c = argOx+/r) < arg(eA+'v) < arg(eA+"0 < d, 

which is a portion of the annulus {pe'*: ea < p < eb} in the w plane subtended by 
the rays <j) = c and § = d* In Figure 5.3, we show the image of the rectangle 

R = UJC, y): - 1 < x < 1 and 
- 7 1 7 t l 

< y < - k 
4 } 3J 
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The z plane. The w plane. 

FIGURE 5.3 The image of R under the transformation w = exp(z). 

EXERCISES FOR SECTION 5.1 
1. Using Definition 5.1, explain why exp(0) = e° = 1. 
2. Give a careful justification for statements (1) and (2) in the proof of Theorem 5.1, part 

(iii). 
3. An alternate definition for exp(z): Many texts take the approach of starting with identity 

(3) as the definition for f(z) = exp(z). This exercise shows this is a natural approach 
from the standpoint of differential equations. Our starting point is that we require f(z) 
to be the solution to an initial-value problem satisfying the following three properties: 
( l ) / i s entire, (2)/'(z) = f(z) for all z, and (3)/(0) = 1. Suppose/(z) = f(x + iy) = 
"(*, y) + iv(x, y) satisfies properties (1), (2), and (3). 
(a) Use the result/'(z) = ux(x, v) + ivx(x, y) and the requirement/'(z) = f(z) from 

property (2) to show that ux(x, y) — u(x, y) = 0. 
d 

(b) Show the result in part (a) implies — [W(JC, y)e~x] = 0. Note that integrating this 
dx 

last equation partially with respect to x gives u(x, y)e~x = p(y), where p(y) is a 
function of y alone. 

(c) Using a similar procedure for V(JC, >), show we wind up getting the pair of solutions 
u(x, y) = p(y)ex, and v(x, y) = q(y)e\ wherep(y) and g(y) are functions of y alone. 

(d) Now use the Cauchy-Riemann equations to conclude from part (c) that p(y) = 
q'{y) and p'(y) = -q(y). 

(e) Show the result in part (d) implies p"{y) + p(y) = 0 and q"(y) + q(y) = 0. 
(f) Given that/(0) = / ( 0 + 00 = w(0, 0) + iv(0, 0) = 1 + 0/, together with the known 

solutions to the equations in part (e), conclude that identity (3) follows. 
4. Verify properties (4) through (6) given in the text. 
5. The questions for this problem relate to Figure 5.2. The shaded portion in the w plane 

indicates the image of the shaded portion in the z plane, with the darkness of shading 
indicating the density of corresponding points. 
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(a) Why is there no shading inside the circle s\l 
(b) Explain why the images of rt, r2, and r3 appear to make, respectively, angles of 

-77C/8, 7C/4, and 3n/4 radians with the positive u axis. 
(c) Why does the shading get lighter in the w plane as the distance from the origin 

increases? 
(d) Describe precisely where the images of the points ±in (in the z plane) should be 

located in the w plane. 
6. Show that exp(z + in) = exp(z - in) holds for all z. 
7. Find the value of ez ~ u + iv for the following values of z-

-in 1 in 
(a) — (b) - - - (c) - 4 + i5 

Bn i5n n 
(d) - 1 + — (e) 1 + — ( 0 - - 2i 

8. Find all values of z for which the following equations hold, 
(a) e7 = - 4 (b) e = 2 + 2i 
(c) ez = 7 3 - / (d) ^ = - 1 + ijl 

9. Express exp(z2) and exp(l/z) in Cartesian form u(x, y) + iv(x, y). 
10. Show that: 

(a) exp(z) = exp z holds for all z and that 
(b) exp(z) is nowhere analytic. 

11. Show that |*-- | < 1 if and only if Re(z) > 0. 
12. Show that: 

,. e: - 1 t ,. <*• + 1 
(a) lim = 1 (b) hm — = - 1 

z->o z z^in z ~ in 
13. Show that f(z) = ze: is analytic for all z by showing that its real and imaginary parts 

satisfy the Cauchy-Riemann equations. 
14. Find the derivatives of the following: 

(a) eiz (b) z4exp(z3) 
(c) eu,+ih)z (d) exp(l/z) 

15. Let n be a positive integer. Show that: 

(a) (expz)" = exp(nz) (b) = exp(-nz) 
(exp z)n 

16. Show that the image of the horizontal ray x > 0, y = TT/3 under the mapping w = 
exp z is a ray. 

17. Show that the image of the vertical line segment x = 2, y - t, where n/6 < t < 7n/6 
under the mapping w = ez is half of a circle. 

18. Use the fact that exp(z2) is analytic to show that ex~~>'~ sin 2xy is a harmonic function. 
19. Show that the image of the line x = /, v = 2n + t, where — °o < t < °° under the mapping 

w = exp z is a spiral. 
20. Show that the image of the first quadrant JC > 0, y > 0 under the mapping w = exp z is 

the region \w\ > 1. 
21. Let a be a real constant. Show that the mapping w = exp z maps the horizontal strip 

a < y < a + 2TI one-to-one and onto the range | w | > 0. 
22. Explain how the complex function e: and the function ex studied in calculus are different. 

How are they similar? 
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5.2 Branches of the Complex Logarithm Function 

If w is a nonzero complex number, then the equation w = exp z has infinitely many 
solutions. Because the function exp(z) is a many-to-one function, its inverse (the 
logarithm) is necessarily multivalued. Special consideration must be made to define 
branches of the logarithm that are one-to-one. 

Definition 5.2 (Multivalued Logarithm) For z # 0, we define the func­
tion log(z) as the inverse of the exponential function', that is, 

(1) log(z) = w if and only if z — exp(w). 

If we go through the same steps as we did in equations (10) and {11) of Section 
5.1, we will see that the values of w that solve equation (1) are 

(2) log(z) = In | z | + i arg(z) (z ^ 0), 

where arg(z) is an argument of z and In | z | denotes the natural logarithm of 
the positive number | z | - Using identity (5) in Section 1.4, we can write 

(3) log(z) = In | z | + /[Arg(z) + 2nn], where n is an integer. 

We call any one of the values given in equations (2) or (3) a logarithm of z-
Notice that the different values of log(z) all have the same real part and that their 
imaginary parts differ by the amount 2nn, where n is an integer. 

Definition 5.3 (Principal Value of the Logarithm) For z ^ 0, we define 
the principal value of the logarithm as follows: 

(4) Log(z) = In | z | + i Arg(z), where | z \ > 0 and —n< Arg(z) < TC. 

The domain for/(z) = Log(z) = w is the set of all nonzero complex numbers 
in the z plane, and its range is the horizontal strip — n < Im(vv) < K in the w plane. 
Notice that Log(z) is a single-valued function and corresponds to setting n = 0 in 
formula (3). This is the choice used by popular software programs such as Mathe-
matica™, which we used to produce Figure 5.4. Parts (a) and (b) of this figure give 
the real and imaginary parts (u and v, respectively) for Log(z) = Log(x + /y) = 
u(x, y) + iv(x, y). Figure 5.4(b) illustrates a phenomenon inherent in constructing a 
logarithm function: It must have a discontinuity! This is the case because as we saw 
in Chapter 2, any branch we choose for arg(z) is necessarily a discontinuous func­
tion. The principal branch, Arg(z), is discontinuous at each point along the negative 
x axis. 
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(a) u = Re[Log(z)] (b) v = Im[Log(z)] 

FIGURE 5.4 The real and imaginary parts of Log(z). 

EXAMPLE 5 .3 By standard computations, we have 

log(l + 0 = In | 1 + 11 + / arg(l + i) = — + /I - + 2 7W 

where n is an integer; the principal value is 

l n 2 -K 

Log(l + 0 = — + «4. 

Properties of /og(z) ancfLog(z) 
From equations (1) and (4), it follows that 

(5) exp[Log(z)] = z for all z ^ 0, 

and that the mapping w — Log z is one-to-one from the domain D = {z'- \z\ > 0} 
in the z plane onto the horizontal strip — n < Im(w) < n in the w plane. The mapping 
w = Log(z) and its branch cut are shown in Figure 5.5. 

w = Logz .„: -j 
* • 

M M ! 4 * , 

z — exp vv ' •' ': 

— ' - * • — 

1 

i 

iir 

—iir 

) 

w — — -

• ' ! " ! ' ' 

: . ' • ' • • • 

*——-

FIGURE 5.5 The single-valued mapping w = Log(z). 
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Even though Logfe) is not continuous along the negative real axis, it is still 
possible to compute the logarithm of negative numbers. 

EXAMPLE 5-4 By using equation (4) we see that 

(a) Log(-e) = In | - e | + i Arg(-e) = 1 + in, and 
(b) Log( - l ) = In | -11 + i Arg( - l ) = in. 

When z = x + /0, where x is a positive real number, the principal value of the 
complex logarithm of z is 

(6) Log(jc + /0) = In x, where x > 0. 

Hence Logfe) is an extension of the real function In x to the complex case. To find 
the derivative of Logfe), we use polar coordinates z = re'9, and formula (4) becomes 

(7) Logfe) = In r + /6, where —n < 0 < n and r > 0. 

In equation (7) we have «(r, 0) = In r and v(r, 6) = 6. The polar form of the 
Cauchy-Riemann equations are 

1 1 - 1 
(8) ur = - v6 = - and vr = — wfl = 0 

r r r 

and appear to hold for all z ^ 0. But since Log(z) is discontinuous along the nega­
tive x axis where 6 = 7t, the Cauchy-Riemann equations (8) are valid only for 
—n < 6 < n. The derivative of Log(z) is found by using the results of equations 
(8) and identity (15) of Section 3.2, and we find that 

(9) — Log(z) = e-i6(ur + ivr) = - e-'° = - , where -rc < 6 < n and r > 0. 
dz r z 

Let z\ and zi be nonzero complex numbers. The multivalued function log z 
obeys the familiar properties of logarithms: 

(10) logfe!Z2) = logfei) + logfe), 

(11) log(zi/z2) = logfei) - logfe), and 

(12) \og{\lz) = -logfe). 

Identity (10) is easy to establish. Using identity (12) in Section 1.4 concerning the 
argument of a product, we write 

logfeiZ2) = ln|zi | \z2\ + /arg(ziz2) 
= In | z\ j + In | z21 + *' argfej) + i argfe2) 
= [In | z\ | + i arg fe,)] + [In | z21 + i argfe2)] = logfe]) + logfe). 

Identities (11) and (12) are easy to verify and are left as exercises. 
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It should be noted that identities (10)-(12) do not in general hold true when 
og(z) is replaced everywhere by Log(z). For example, if we make the specific 
rhoices z\ = - >/3 + / and zi = - 1 + / , / 3 , then their product is z\Zi = - 4 / . Com-
)uting the principal value of the logarithms, we find that 

Log(z,z2) = Log(-4/) = In 4 - — 

The sum of the logarithms is given by 

LogU,) + Logfo) = Log(- ^ 3 + /) + Log(- 1 + /73) 
, ~ /571 , ^ /271 ^ A /371 

= ln2 + + ln2 + = ln4 + , 
6 3 2 

ind identity (10) does not hold for these principal values of the logarithm. 
We can construct many different branches of the multivalued logarithm func-

ion. Let a denote a fixed real number, and choose the value of 6 = arg(z) that lies 
n the range a < 6 < a + 2K. Then the function 

13) f(z) = In r + /6, where r > 0 and a < 6 < a + In 

s a single-valued branch of the logarithm function. The branch cut for / is the ray 
) = a, and each point along this ray is a point of discontinuity of f. Since 
'xp[/(z)] = z, we conclude that the mapping w = f(z) is a one-to-one mapping of 
he domain | z \ > 0 onto the horizontal strip a < Im(vv) < a + 2TC. If a < c < 
/ < a + 2TT, then the function w = f(z) maps the set D = {re'": a < r < b, c < 
) < d) one-to-one and onto the rectangle R = {u + /v: In a < u < In b, c < v < d}. 
The mapping w = f(z), its branch cut 6 = a, and the set D and its image R are 
ihown in Figure 5.6. 

y v 

FIGURE 5.6 The branch w = f(z) of the logarithm. 
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Any branch of the logarithm function is discontinuous along its branch cut. 
In particular,/(z) = Log(z) is discontinuous at z = 0 and at points on the negative 
x axis. Hence the derivative of Log(z) does not exist at z = 0 and at points on the 
negative x axis. However, if we focus our attention on the multivalued function 
w = log(z), then implicit differentiation will permit us to use the formula dw/dz = 
\iz. This can be justified by starting with the second formula in equations (1) and 
differentiating implicitly with respect to z to get 

dw 
(14) 1 = exp(w) — . 

dz 

We can substitute exp(w) = z in equation (14) and obtain 

dw_ 1 _ \_ 

dz exp(w) z 

Therefore we have shown that 

(15) j-log(z) = i 
dz z 

holds for all z ^ 0. 
It is appropriate to consider the Riemann surface for the multivalued function 

w = log(z). This requires infinitely many copies of the z plane cut along the negative 
x axis, which we will label S* for £ = . . . , —n, . . . , —1, 0, 1, . . . , n, . . . . 
Now stack these cut planes directly upon each other so that the corresponding points 
have the same position. Join the sheet S* to Sk + \ as follows. For each integer k the 
edge of the sheet S* in the upper half plane is joined to the edge of the sheet Sk+\ 
in the lower half plane. The Riemann surface for the domain of log(z) looks like a 
spiral staircase that extends upward on the sheets Si, S2> • • • and downward on the 
sheets S_i, S_2, . . . , as shown in Figure 5.7. Polar coordinates are used for z on 
each sheet: 

(16) on S^ use z = r(cos 0 + i sin 8), where 

r = | z | and Ink - n < 9 < n 4- Ink. 

The correct branch of log(z) on each sheet is 

(17) on Sk, use log(z) = In r + /6, where 
r - I z I and Ink - n < 0 < n + Ink. 
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V 

3n 

-3n 

• • u 

FIGURE 5.7 The Riemann surface for the mapping w = log(z). 

EXERCISES FOR SECTION 5.2 
Find the principal value Log(z) = u + iv for the following: 
(a) LogOe2) (b) Log(V3 - 0 
(c) Log(i72 - 7 ¾ (d) Log[(l + 04] 
Find all the values of log(z) for the following: 
(a) log(-3) (b) log(4i) 
(c) log8 (d) i 0 g ( - V 3 - i ) 

Find all the values of z for which the following equations hold: 

2. 

3. 

9. 

10. 

(a) Log(z) = 1 - ^ - (b) Log(z - 1) = -

(c) exp(z) = -ie (d) exp(z + 1) = i 
Use properties of arg(z) in Section 1.4 to establish identity (11). 
Use properties of arg(z) in Section 1.4 to establish identity (12). 
Show that log(z) = Log(z) + ilnn where n is an integer. 
Let w — log(/(z)). Use implicit differentiation to find dw/dz at points where f(z) is 
analytic and nonzero. 
Use implicit differentiation to find dw/dz for the following: 
(a) w = log(z2 - z + 2) (b) w = z log(z) 
Show that/(z) = LogO'z) is analytic everywhere except at points on the ray given by 
y > 0, x = 0. Find/'(z). 
Show that/(z) = [Log(z + 5)]/(z2 + 3z + 2) is analytic everywhere except at the points 
- 1 , - 2 and at points on the ray x < — 5, y = 0. 

11. Show that if Re(z) > 0, then Log z = y ln(x2 + y2) + i arctan(_y/x), where the principal 
branch of the real function arctan t is used; that is, -nil < arctan t < nil. 
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12. Show that: 
(a) ln(jc2 + v2) (b) arctan(yA) 
are harmonic functions in the right half plane Re(z) > 0. 

13. Show that z" - txp[n log(z)] where n is an integer. 
14. (a) Show that Log(ziZ2> = Log(zi) + Log(z2) holds true provided that Re(zi) > 0 and 

Re(z2) > 0. 
(b) Does Log[(- l + i)2} = 2 Log(- l + 0? 

15. (a) Is it always true that Log(l/z) = -Log(z)? Why? 
d 1 

(b) Is it always true that — Log(z) = - ? Why? 
dz z 

16. Construct branches of log(z + 2) that are analytic at all points in the plane except at 
points on the following rays: 
(a) x > - 2 , y = 0 (b) x = - 2 , y > 0 (c) x = - 2 , y < 0 

17. Construct a branch of log(z + 4) that is analytic at the point z = —5 and takes on the 
value 7ni there. 

18. Using the polar coordinate notation z — re'9, discuss the possible interpretations of the 
function/(z) = In r + i8. 

19. Show that the mapping w = Log(z) maps the ray r > 0, 6 = TC/3 one-to-one and onto 
the horizontal line v = TI/3. 

20. Show that the mapping w = Log(z) maps the semicircle r ~ 2, -7t/2 < 6 < TC/2 one-
to-one and onto the vertical line segment w = In 2, — TT/2 < v < rc/2. 

21. Find specific values of z\ and z2 so that Log(zi/z2) ^ Log(zi) - Logfe). 
22. Show that log[exp(z)] = z + i2nn, where n is an integer. 
23. Show why the solutions to equation (1) are given by those in equation (2). Hint: Mimic 

the process used in obtaining identities (10) and (11) of Section 5.1. 
24. Explain why the function Log(z) is not defined when z = 0. 

5.3 Complex Exponents 

In Section 1.5 we indicated that the complex numbers are complete in the sense that 
it is possible to make sense out of expressions such as V l + i or (—1)' without 
having to appeal to a number system beyond the framework of complex numbers. 
We are now in a position to come up with a meaningful definition of what is meant 
by a complex number raised to a complex power. 

Definition 5.4 Let c be a complex number. We define zc by the equation 

(1) z° = exp[c log(z)]. 

This definition makes sense, since if both z and c are real numbers with 
z > 0, equation (1) gives the familiar (real) definition for zr. 

Since log(z) is multivalued, the function zc will in general be multivalued. The 
funct ion/given by 

(2) f(z) = exp[c Log(z)] 

is called the principal branch of the multivalued function zc- Note that the principal 
branch of zc is obtained from equation (1) by replacing log(z) with the principal 
branch of the logarithm. 
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E X A M P L E 5 .5 Find the principal values of jTT~i and (-1) ' . 

Solution From Examples 5.3 and 5.4, 

Logd + 0 = ^ ~ + i j = In 2m + £, and 

Log(- l ) = in. 

By using equation (1), therefore, we see that the principal values of Jl + i and 
( -1) ' are 

y m = (l + Dm 

= exp i (in 2^ + ,-5 
2 \ 4 

= exp(ln2 I /4 + / ^ ) 

^1//. ( K • n 

= 2m cos - + i sin -
\ 8 8 

- 1.09684 + 0.45509/, and 
(-1)'" = exp(/(m)) 

= exp(-7C) 
«0.04321. 

It is interesting that the result of raising a real number to a complex power 
may be a real number in a nontrivial way. 

Let us now consider the various possibilities that may arise when we apply 
formula (1): 

Case (i): Let us suppose c = k, where k is an integer. Then if z — reid, 

k log(z) = k ln(r) + /£(6 + 2nri), 

where n is an integer. Recalling that the complex exponential function has period 
2rc/, we have 

(3) zk = exp[£ log(z)] 
= cxp[k ln(r) + /fc(6 + 2nn)] 
= rk exp(/&6) = r*(cos £6 4- i sin £6), 

which is the single-valued kih power of z that was studied in Section 1.5. 
Case (ii): If c = Ilk, where k is an integer, and z = rei%, then 

1 1 /(6 + 2nn) 
_ l o g 2 = _ l n r + ^ _ _ , 
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where n is an integer. Hence, formula (1) becomes 

(4) zUk = exp 

exp 

7 log(z) 
k 

1 6 + Inn 
_ l n ( r ) + , _ _ 

= rVk exp I i 
6 + Inn 6 + 2%n\ /6 + 2nn 

cos( : I + i sin 

Using again the periodicity of the complex exponential function, we see that equa­
tion (4) gives k distinct values corresponding to n = 0, 1, . . . , k — 1. Therefore, 
the fractional power zVk is the multivalued kth root function. 

Case (iii): If j and k are positive integers that have no common factors, and 
c = j/k, then formula (1) becomes 

(5) zj/k = rJ/k exp 
, (6 + 2nn)j 

= ri/k\ 
(6 + 2nn)j l , . 

cos I : | + i sin 
(9 + 27m) A 

* / 

and again there are k distinct values corresponding to n = 0, 1, . . . , k — 1. 
Case (iv): If c is not a rational number, then there are infinitely many values 

for zc. 

E X A M P L E 5 .6 The values of 21/9+'/5° are given by 

2i/9+//5o ^ e x p | ( I + _L j ( l n 2 + i2%n) 

= exp 

_ 2xl9e~nKl25 

In 2 nK /in 2 2nn 

~9~~ 25 + A~50~ + ~9~ 
In 2 2nn\ . /In 2 2TO 

cos| —— + —— + i sin — - + —— 
50 9 / \ 50 9 

where n is an integer, and the principal value of 21/9+'/5° is given by 

21/9 + /750 _ 21/9 
l n 2 \ /In 2 

cos| —— I + i sin — -
50 / I 50 

- 1.079956 + 0.014972/. 

Terms for the multivalued expression with /i = — 9, — 8, . . . , 8, 9 are shown 
in Figure 5.8, and exhibit a spiral pattern that is often present in complex powers. 
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y 

1 

• * • X 

FIGURE 5.8 Some of the values of 21 

Some of the rules for exponents carry over from the real case. If c and d are 
complex numbers and z / 0 , then 

(6) z-<- = ~ ; 

(7) ?T* = zc+d ; 

(9) (zc)n = zcn, where « is an integer. 

Identity (9) does not hold if n is replaced with an arbitrary complex value. 

EXAMPLE 5.7 

(/2y = exp[/ log(—1)] = e-(\+2n)K^ where n is an integer and 
(02' = exp(2/ log i) — e~ii+4n)n, where n is an integer. 

Since these sets of solutions are not equal, identity (9) does not always hold. 
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The derivative of f(z) = exp[c Log(z)] can be found by using the chain rule, 
and we see that 

(10) f'(z) = - exp[c Log(z)]. 
z 

If we use zc = expfc Log(z)], then equation (10) can be written in the familiar form 
we learn in calculus. That is, 

d c 
(11) - ? = -?, 

dz z 

which holds true when zc is the principal value, when z lies in the domain r > 0, 
—n < 0 < rc, and when c is a complex number. 

We can use definition (1) to define the exponential function with base b where 
b T* 0 is a complex number, and we write 

(12) b~ = exp[z log(b)]. 

If a value of log(Z?) is specified, then bz in equation (12) can be made single-valued, 
and the rules of differentiation can be used to show that the resulting branch of bz 

is an entire function. The derivative of bz is then given by the familiar rule 

(13) ~b^ = 62log(6). 

EXERCISES FOR SECTION 5.3 
1. Find the principal value of the following: 

(a) 4'' (b) (1 + i)" (c) (-l) , / i r (d) (1 + ij3)i/2 

2. Find all values of the following: 
(a) V (b) ( - 1 )^ 7 (c) (02/rt (d) (1 + O2-' 

3. Show that if z # 0, then °̂ has a unique value. 
4. Find all values of (-1)3/4 and (i)2/\ 
5. Use polar coordinates z = reiQ, and show that the principal branch of t is given by the 

equation 

z' = £rB[cos(ln r) + i sin(ln r)], where r > 0 and -K < 6 < n. 

6. Let a be a real number. Show that the principal branch of za is given by the equation 

za = ra cos a9 + ira sin a0, where -n < 6 < n. 

Find (d/dz)za. 
7. Establish identity (13); that is, (d/dz)bz = bz log(2>). 
8. Let zn - (1 + 0" for n = 1, 2, . . . . Show that the sequence {zn} is a solution to the 

linear difference equation 

zn = 2z„-i - 2zn-2 for n = 3, 4, . . . . 

Hint: Show that the equation holds true when the values zn> zn-\* and zn-i are substituted. 
9. Verify identity (6). 10. Verify identity (7). 

11. Verify identity (8). 12. Verify identity (9). 
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13. Is 1 raised to any power always equal to 1 ? Why? 
14. Construct an example that shows that the principal value of {z\Z2)in need not be equal 

to the product of the principal values of z\B z\B. 

5.4 Trigonometric and Hyperbolic Functions 

Given the success we have had in using power series to define the complex expo­
nential, we have reason to believe this approach will be fruitful for other elementary 
functions as well. The power series expansions for the real-valued sine and cosine 
functions are 

00 X^n + ' °° T 2 " 
sin* = Y (-1)" and cos ;c = Y (-1)" . 

«-oV (2n+ 1)! ~ 0
V (2/i)! 

Thus, it is natural to make the following definitions. 

Definition 5.5 

sinz = 2 (-0"-—r~rr^ cosz = 2 (-1)" ,1¾ (2n + 1)! ,to (2n)! 

Clearly, these definitions agree with their real counterparts when z is real. 
Additionally, it is easy to show that cos z and sin z are entire functions. (We leave 
the argument as an exercise.) Their derivatives can be computed by appealing to 
Theorem 4.13, part (ii): 

(1) --sin z = - -
dz dz 

,2/7+1 

2(-n»-(2n + 1)! 
— V r - i v (2^ + l)z2" (Exercise: Explain why the index n 
" ^1) (2/2+1)! stays at 0 here.) 

-In 

= 2 ( - 0 - ^ 
/7=0 (2 / i ) ! 

= cos z. 
It is left as an exercise to show that 

d 
(2) — cos z = —sin z. 

dz 

We also ask you to establish that for all complex values z, 

(3) sin2 z + cos2 z — I. 

The other trigonometric functions are defined in terms of the sine and cosine 
functions and are given by 

sin z cos z 
(4) tan z = , cot z = —.— ; 

cos z sin z 
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1 1 
(5) sec z = , esc z - —— . 

cos z sin z 

The rules for differentiating a quotient can now be used in equations (4) and 
(5) together with identity (3) to establish the differentiation formulas 

(6) — tan z = sec2 z, — cot z = -csc2z; 
dz dz 

d d 
(7) — sec z = sec z tan z, ~ esc z = —esc z cot z. 

dz dz 

Many algebraic properties of the sine and cosine extend to the complex 
domain. It is easy to show by appealing to Definition 5.5 that 

(8) sin(-z) = -sin z and cos(-z) = cos z for all z. 

To establish other properties, it will be useful to have formulas to compute cos z 
and sin z that are of the form u -f iv. (Additionally, the applications in Chapters 9 
and 10 will use these formulas.) We begin by observing that the argument given to 
prove part (iii) in Theorem 5.1 easily generalizes to the complex case with the aid 
of Definition 5.5. That is, 

(9) eiz = cos z + i sin z 

for all z, whether z is real or complex. Hence, 

(10) e~iz = cos(-z) + i sin(-z) = cos z — i sin z. 

Subtracting equation (10) from equation (9) and solving for sin z gives 

(11) sin z = — (eiz - e~lz) = — (e~y+ix - £?>-''*). 
2/ 2/ 

Now we appeal to Theorem 5.1, parts (ii) and (iii), to get 

sin z = — [e~v(cos x + i sin x) — ev(cos x — i sin x)] 
2/ 

e-v + e~y e-v - e~y — s m x — 1_ i c o s x ^ 

Similarly 

(12) cos z = \{eiz + e~iz) = \(e~y+ix + ey~ix) 
ley + e~y\ (ey - e-y 

= cos x\ I — i sin x 

You may recall that the hyperbolic cosine and hyperbolic sine of the real 
variable y are 

ey + e~y ey — e~y 

(13) cosh y = and sinh y — . 

Substituting identities (13) into the proper places of equation (12) gives 
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(14) sin z = sin x cosh y + i cos x sinh y. 

A similar derivation leads to the formula for cos z: 

(15) cos z = cos x cosh y — i sin x sinh y. 

A graph of the mapping w = sin z = sin(x + iy) = sin x cosh y + / cos x sinh 
y can be obtained parametrically. Consider the vertical line segments in the z plane 

- 7 1 JOZ 

obtained by successively setting x = ~—I—- for k = 0, 1,. 12, and for each 

x value letting y vary continuously, — 3 < y < 3. The image of these vertical seg­
ments are hyperbolas in the uv plane, as Figure 5.9 illustrates. We will give a more 
detailed investigation of the mapping w = sin z in Chapter 9. 

-71/2 

y 

A 

3 

2 

1 

nil -10 _ ^ 5 

FIGURE 5.9 Vertical segments are mapped onto hyperbolas by w = sin(z). 

Identities (14) and (15) can be used to investigate the periodic character of 
the trigonometric functions, and we have 

(16) cos(z + 2n) = cos z and sin(z + 2n) = sin z 

and 

(17) cos(z + K) = -cos z and sin(z + n) = -s in z. 

Identities (17) can be used to show that 

(18) tan(z + 71) = tan z and cot(z + n) - cot z. 

A solution of the equation f(z) = 0 is called a zero of the given function f. 
The zeros of the sine and cosine function are real, and we find that 

(19) sin z = 0 if and only if z = «7t, 

where n = 0,+1, +2, . . . , and 

(20) cos z = 0 if and only if z = (n + y)7t where n = 0, ±1, ±2, . . . . 
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E X A M P L E 5 .8 Let us verify identity (20). We start with equation (15) and 
write 

(21) 0 = cos x cosh y — i sin x sinh v. 

Equating the real and imaginary parts of equation (21), we obtain 

(22) 0 = cos x cosh y and 0 = sin x sinh y. 

Since the real-valued function cosh y is never zero, the first equation in (22) implies 
that 0 = cos x, from which we obtain x = (n + y)7t for n = 0, ±1, ±2, . . . . By 
using these values for x the second equation in (22) becomes 

0 = sin[(/7 + y)n] sinh y = (—1)" sinh y. 

Hence y = 0, and the zeros of cos z are the values z = in + y)7i where n = 0, ±1, 
±2, . . . . 

The standard trigonometric identities are valid for complex variables: 

(23) sin(zi -f- zi) = sin z\ cos z2 + cos z\ sin z2 and 

(24) cos(zi + z2) ~ cos z\ cos z2 — sin zi sin z2. 

When zi = z2, identities (23) and (24) become 

(25) sin 2z = 2 sin z cos z and cos 2z — cos2 z — sin2 z. 

Other useful identities are 

(26) sin(—z) = — sin z and cos( —z) = cos z, 

(27) sin( - + z I = sinf - - z I and sinl - - z I = cos z. 

E X A M P L E 5 .9 Let us show how identity (24) is proven in the complex case. 
We start with the definitions (3) and (4) and the right side of identity (24). Then we 
write 

(28) cos z\ cos z2 = T [«?''<''j Z2) + <?''<"i-2> + (̂--2-=1 > + ^~'̂ i • -2)] and 

- s inz! sinz2 = } [e 'u,t : : ) - e'("> ^) - eHz2 -=i ) + ¢ -^¾) ] . 

When these expressions are added, we obtain 

cos z\ cos z2 - sin zi sin z2 = y [ei(:-t' "2) + ^-'<-i *'2)] = cos(zi + z2), 

and identity (24) is established. 
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Identities involving moduli of cosine and sine are also important. If we start 
with identity (14) and compute the square of the modulus of sin z, the result is 

| sin z |2 = | sin x cosh y + i cos x sinh y |2 

= sin2 x cosh2 v + cos2 x sinh2 v 
= sin2 x(cosh2 y - sinh2 v) + sinh2 y(cos2 x + sin2 x). 

Using the hyperbolic identity cosh2 y — sinh2 y ~ 1 yields 

(29) | sin z \2 = sin2 x + sinh2 y. 

A similar derivation shows that 

(30) | cos z |2 = cos2 x + sinh2 y. 

If we set z = x0 + /y in equation (29) and let y —> <», then the result is 

lim | sin(xo + iy) \2 = sin2 x0 + lim sinh2 y = ©o. 

This shows that sin z is not a bounded function, and it is also evident that cos z is 
not a bounded function. This is one of the important differences between the real 
and complex cases of the functions sine and cosine. 

From the periodic character of the trigonometric functions it is apparent that 
any point w — cos z in the range of cos z is actually the image of an infinite number 
of points. 

E X A M P L E 5 - 1 0 Let us find all the values of z for which the equation 
cos z = cosh 2 holds true. Starting with identity (15), we write 

(31) cos x cosh y — i sin x sinh y = cosh 2. 

Equating the real and imaginary parts in equation (31) results in 

(32) cos x cosh y = cosh 2 and sin x sinh y ~ 0. 

The second equation in (32) implies either that x ~ nn where n is an integer or that 
y = 0. Using the latter choice y = 0 and the first equation in (32) leads to the 
impossible situation cos x = (cosh 2/cosh 0) = cosh 2 > 1. Therefore x — nn where 
n is an integer. Since cosh y > 1 for all values of y, we see that the term cos x in 
the first equation in (32) must also be positive. For this reason we eliminate the odd 
values of n and see that x = 2nk where k is an integer. 

We now solve the equation cosh y cos Ink — cosh y = cosh 2 and use the 
fact that cosh y is an even function to conclude that y = ±2. Therefore the solutions 
to the equation cos z = cosh 2 are z = Ink ± 2i where k is an integer. 

The hyperbolic functions also find practical use in putting the tangent function 
into u + iv form. By earlier results, we have 

sin(x + iy) sin x cosh y + i cos x sinh y 
tan z = tan(x + iy) = — , , . >, = Z ~ ~T~ * 

cos(;t + iy) cos x cosh y — i sin x sinh y 
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If we multiply each term on the right by the conjugate of the denominator, the 
simplified result will be 

(33) tan z = 
cos x sin x + i cosh y sinh y 

cos2 x cosh2 y + sin2 x sinh2 y 

We leave as an exercise that the identities cosh2 y — sinh2 y = 1, and sinh 2y 
cosh y sinh y can be used in simplifying equation (33) to get 

(34) tan z = 
sin 2x 

+ /-
sinh 2y 

cos 2x + cosh 2y cos 2x + cosh 2y 

As was with the case with sin z, a graph of the mapping w = tan z can be 
obtained parametrically. Consider the vertical line segments in the z plane obtained 

— 7t IcTZ 
by successively setting x = ——I for /: = 0, 1,. . . , 8, and for each x value 

4 16 
letting y vary continuously, — 3 < y < 3. The image of these vertical segments are 
circular arcs in the uv plane, as Figure 5.10 shows. We will give a more detailed 
investigation of the mapping w — tan z in Chapter 9. 

v 

A 
3r 
2r 
i L 

-71/4 
• u 

FIGURE 5.10 Vertical segments are mapped onto circular arcs by 
w = tan z. 

The hyperbolic cosine and hyperbolic sine of a complex variable are defined 
by the equations 

(35) cosh z = \{ez + e~z) and 

(36) sinh z = \{ez — e~z). 

The other hyperbolic functions are given by the formulas 

(37) tanh z = 
sinh z 
cosh z 

and coth z = 
cosh z 
sinh z 
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(38) sech z = and csch z = . 
cosh z sinh z 

The derivatives of the hyperbolic functions follow the same rules as in calculus: 

(39) 

(40) 

(41) 

— cosh z ~ sinh z and — sinh z = cosh z; 
dz dz 

—- tanh z = sech2 z and — coth z = —csch2 

dz dz 

— sech z = — sech z tanh z and — csch z = 
dz dz 

-csch z coth z. 

The hyperbolic cosine and hyperbolic sine can be expressed as 

(42) cosh z = cosh x cos y + i sinh x sin y and 

(43) sinh z = sinh x cos y + i cosh * sin >>. 

The trigonometric and hyperbolic functions are all defined in terms of the 
exponential function, and they can easily be shown to be related by the following 
identities: 

(44) cosh(/z) = cos z and sinh(/z) = i sin z; 

(45) sin(/z) = i sinh z and cos(iz) = cosh z-

Some of the identities involving the hyperbolic functions are 

(46) cosh2 z — sinh2 z = 1, 

(47) sinh(zi + zi) = sinh z\ cosh zi + cosh z\ sinh 22, 

(48) cosh(z) + zi) = cosh zi cosh zi + sinh zi sinh zi, 

(49) cosh(z + 2ni) = cosh z, 

(50) sinh(z + 2ni) = sinh z, 

(51) cosh(-z) = cosh z, and 

(52) sinh(—z) = — sinh z. 

We conclude this section with an example from electronics. In the theory of 
electric circuits it is shown that the voltage drop ER across a resistance R obeys 
Ohm's law: 

(53) ER = IR, 

where I is the current flowing through the resistor. It is also known that the current 
and voltage drop across an inductor L obey the equation 

dl 
(54) EL = L-r. 

dt 
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The current and voltage drop across a capacitor C are related by 

(55) Ec = 7 f /(T) dr. 
C A> 

The voltages £L, £#, and Ec and the impressed voltage E(t) in Figure 5.11 
satisfy the equation 

(56) EL + ER + Ec = E(t). 

Ec 

r - ^ 

FIGURE 5.11 An LRC circuit. 

Suppose that the current I{t) in the circuit is given by 

(57) I(t) = /0 sin cot. 

Using equations (53), (54), and (57), we obtain 

(58) ER = RI0 sin cot and 

(59) EL = ioL/o cos cot, 

and we can set to = n/2 in equation (55) to obtain 

(60) Ec = - — / o cos cot. 

coC 

If we write equation (57) as a complex current 

(61) /* = V w 

and use the understanding that the actual physical current I is the imaginary part of 
/*, then equations (58)-(60) can be written 
(62) ER = / ?V W = /?/*, 

(63) El = mLI0e
itot = /coL/*, and 

(64) Ec = ^-I0e^ = - W * . 
ioiC /coC 

Substituting equations (62)-(64) into equation (56) results in 

(65) £* = £* + El + E"c = \R + /( coL 
\ coC 



5.4 Trigonometric and Hyperbolic Functions 151 

and the complex quantity Z defined by 

(66) Z = R + il toL 

is called the complex impedance. Using equation (66), we can write 

(67) £* = Z/*, 

which is the complex extension of Ohm's law. 

EXERCISES FOR SECTION 5.4 
1. By making use of appropriate theorems in Section 4.2, show that sin z and cos z are 

entire functions. 
d 

2. Establish that — cos z = —sin z. 
dz 

3. This exercise will demonstrate that for all z, sin2 z + cos2 z = 1. 
(a) Define the function g{z) = sin2 z + cos2 z. Explain why g is entire. 
(b) Show that g is constant. Hint: look at g'(z). 
(c) Use part (b) to establish that for all z, sin2 z + cos2 z = 1. 

4. Show by appealing to Definition 5.5 that sin(-z) = -sin z, and cos(-z) = cos z for all 
z. 

5. Verify identity (9). Hint: Use a similar argument to the one used in the proof of Theorem 
4.14, part (iii). 

6. Show that equation (33) simplifies to equation (34). Hint: Use the facts that 
cosh2 y — sinh2 y = 1, and sinh 2v = cosh y sinh y. 

7. Explain why the pictures in Figures 5.6 and 5.7 came out the way they did. 
8. Show that: 

(n \ 
(a) sin(7t - z) = sin z (b) sinl - - z I = cos z 

9. Express the following quantities in u + iv form: 

(a) cos(l + i) (b) s i n l — - — I (c) sin2j 

(d) cos(-2 + /') (e) t a n H ^ J (f) tanf - ^ -

10. Find the derivatives of the following: 
(a) sin(l/z) (b) z tan z (c) sec z2 (d) z esc2 z 

11. Establish identity (15). 
12. Show that: 

(a) sin z = sin z holds for all z and that (b) sin z is nowhere analytic. 
13. Show that: 

cos z — 1̂ 
(a) lim = 0 and that 

: - » ( ) Z 

(b) lim tan(jc0 + iy) = i, where JCO is any fixed real number. 

14. Find all values of z for which the following equations hold: 
(a) sin z = cosh 4 (b) cos z = 2 (c) sin z = i sinh 1 

15. Show that the zeros of sin z are z = nit where n is an integer. 
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16. Establish identity (23). 17. Establish identity (30). 
18. Establish the following relation: | sinh y\ < | sin z \ ^ cosh y. 
19. Use the result of Exercise 18 to help establish the inequality | cos z \2 + | sin z |2 ^ 1, 

and show that equality holds if and only if z is a real number. 
20. Show that the mapping w = sin z maps the y axis one-to-one and onto the v axis. 
21. Use the fact that sin iz is analytic to show that sinh x cos y is a harmonic function. 
22. Show that the transformation w — sin z maps the ray x = 7i/2, y > 0 one-to-one and 

onto the ray u > 1, v = 0. 
23. Express the following quantities in u + iv form. 

. t /t in (A - in 
(a) sinh(l + in) (b) cosh— (c) cosh l—-— 

24. Establish identity (46). 
25. Show that: 

(a) sinh(z + in) = -sinh z (b) tanh(z + in) = tanh z 
26. Find all values of z for which the following equations hold: 

(a) sinh z = ill (b) cosh z = 1 
27. Find the derivatives of the following: 

(a) z sinh z (b) cosh z2 (c) z tanh z 
28. Show that: 

(a) sin iz = i sinh z (b) coshO'z) = cos z 
29. Establish identity (42). 
30. Show that: 

(a) cosh z = cosh z and that (b) cosh z is nowhere analytic. 
31. Establish identity (48). 
32. Find the complex impedance Z if R = 10, L = 10, C = 0.05, and co = 2. 
33. Find the complex impedance Z if R = 15, L = 10, C = 0.05, and co = 4. 
34. Explain how sin z and the function sin x studied in calculus are different. How are they 

similar? 
35. Look up the article on trigonometry and discuss what you found. Use bibliographical 

item 80. 

5.5 Inverse Trigonometric and Hyperbolic Functions 

The trigonometric and hyperbolic functions were expressed in Section 5.4 in terms 
of the exponential function. When we solve for their inverses, we will obtain for­
mulas that involve the logarithm. Since the trigonometric and hyperbolic functions 
are all periodic, they are many-to-one. Hence their inverses are necessarily multi­
valued. The formulas for the inverse trigonometric functions are given by 

(1) arcsin z = -i log[/z + ( 1 - z2)ml 

(2) arccos z = —i log[z + /(1 - z2)1/2], and 

(3) arctan z ~ - log! 
2 \i - z 

The derivatives of the functions in formulas (1)-(3) can be found by implicit dif­
ferentiation and are given by the formulas: 
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d 1 
(6) — arctan z = — — - . 

dz 1 + zl 

We shall establish equations (1) and (4) and leave the others as exercises. 
Starting with w = arcsin z, we write 

1 
z = sin w = — (elw — e~lw), 

2/ 

which also can be written as 

(7) eiw - 2iz - e~iw = 0. 

If each term in equation (7) is multiplied by e'w, the result is 

(8) (elw)2 - 2izeiw - 1 = 0, 

which is a quadratic equation in terms of eiw. Using the quadratic equation to solve 
for eiw in equation (8), we obtain 

2/7 + ( 4 - 4z2)l/2 

( 9 ) &W =
 Z f Z + ^ 4 Z J = iz + ( 1 - 1̂/2̂  

where the square root is a multivalued function. Taking the logarithm of both sides 
of equation (9) leads to the desired equation 

w = arcsin z = — i log[/z + ( 1 - z2)1/2], 

where the multivalued logarithm is used. To construct a specific branch of arcsin z, 
we must first select a branch of the square root and then select a branch of the 
logarithm. 

The derivative of w = arcsin z is found by starting with the equation sin 
w = z and using implicit differentiation to obtain 

dw 1 

dz cos w 

When the principal value is used, w = Arcsin z = —i Log[/z + ( 1 - z2)1/2] maps 
the upper half plane, Im(z) > 0, onto a portion of the upper half plane Im(vv) > 0, 

— 71 K 

that lies in the vertical strip -— < Re(w) < — . The image of a rectangular grid in 

the z plane is a "spider web" in the w plane, as Figure 5.12 shows. 
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w = Arcsin z 

10 

-10 - 8 - 6 - 4 - 2 2 4 6 8 10 -rc/2 " TI/2 

FIGURE 5.12 A rectangular grid is mapped onto a spider web by w = Arcsin z. 

EXAMPLE 5.11 The values of arcsin Jl are given by 

(10) arcsin Jl = -i \og[iJl + ( 1 - (7¾2)172] = ~i log {ijl ± /). 

Using straightforward techniques, we simplify equation (10) and obtain 

arcsin Jl = -i log[( Jl ±1)/] 

= i ln(V2± 1) + iyz + 27tn) 

= —V Inn — i ln(V2 ± 1), where n is an integer. 

If we observe that 

HJ2 - 1) = in ( ^ - / i ) ( ^ + 1 ) = in - ^ - , = - ln( Jl + 1), Jl + 1 Jl + 1 

then we can write 

arcsin >/2 = — 4- Inn ± / ln( Jl + 1), where n is an integer. 

EXAMPLE 5 . 1 2 Suppose that we make specific choices in equation (10). We 
select + / as the value of the square root [1 — (^/2)2]y2 and use the principal value 
of the logarithm. The result will be 

f(y/2) = arcsin Jl = -i Log(iJl + /) = - - / ln(y2 + 1), 
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and the corresponding value of the derivative is given by 

/'(V2) = K^-. = ~ = -/. 
[1 - (V2)2]"2 i 

The inverse hyperbolic functions are given by the equations: 

(11) arcsinh z = log[z + (z2 + 1),/2], 

(12) arccosh z = \og[z + (z2 - 1),/2], and 

(13) arctanh z = - log 
2 \\ - z/ 

The derivatives of the inverse hyperbolic functions are given by 

(14) | arcsinh z = ^ ^ , 

d 1 
(15) — arccosh z = — — , and 

dz ( r - 1)1/2 

(16) — arctanh z = r . 
dz 1 - z2 

To establish identity (13), we start with w = arctanh z and obtain 
ew _ £-w €2w _ J 

z = tanh w = 
ew 4- e~w e2w + 1 ' 

which can be solved for e2w to yield e2w = ( 1 + z)/(l - z). After taking the loga­
rithms of both sides, we obtain the result 

1 i ({ + z w = arctanh z = - log , , 
2 \1 - z/ 

and identity (13) is established. 

E X A M P L E 5-13 Calculation reveals that 

1 1 4 - 1 + 2 / 1 
arctanh(l + 2/) = - log = - log(-1 + /) 

2 1 - 1 — 2 « 2 
1 / 3 \ 

= - In 2 + /I - + n I 7T, where n is an integer. 
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EXERCISES FOR SECTION 5.5 
1. Find all values of the following: 

(a) arcsin -f- (b) arccos y (c) arcsin 3 
(d) arccos 3/ (e) arctan 2/ (f) arctan i 

2. Find all values of the following: 
(a) arcsinh i (b) arcsinh -f- (c) arccosh i 
(d) arccosh y (e) arctanh i (f) arctanh/\/3 

3. Establish equations (2) and (5). 
4. Establish equations (3) and (6). 
5. Establish the identity arcsin z + arccos z = (n/2) + 2nn where n is an integer. 
6. Establish equation (16). 
7. Establish equations (11) and (14). 
8. Establish equations (12) and (15). 



Complex Integration 

6.1 Complex Integrals 

In Chapter 3 we saw how the derivative of a complex function is defined. We now 
turn our attention to the problem of integrating complex functions. We will find that 
integrals of analytic functions are well behaved and that many properties from cal­
culus carry over to the complex case. To introduce the integral of a complex func­
tion, we start by defining what is meant by the integral of a complex-valued function 
of a real variable. Let 

/(f) = u(t) + iv(t) for a < t < b, 

where u(t) and v(t) are real-valued functions of the real variable t. If u and v are 
continuous functions on the interval, then from calculus we know that u and v are 
integrable functions of t. Therefore we make the following definition for the definite 
integral of/: 

(1) f(t)dt= u{i)dt+i\ v(t)dt 
Ja Ja Ja 

Integrals of this type can be evaluated by finding the antiderivatives of u and 
v and evaluating the definite integrals on the right side of equation (1). That is, if 
U'(t) = u{t) and V'(t) = v(t), then we write 

f 
J a 

(2) f(t) dt = U(b) - U(a) + i[V(b) - V{a)]. 
Jtl 

E X A M P L E 6.1 Let us show that 

P - 5 
(3) (t - 03 * = — . 

Jo 4 
Since the complex integral is defined in terms of real integrals, we write the inte­
grand in equation (3) in terms of its real and imaginary parts: f{t) = (t — /)3 = 
t3 - 3t + i( -3 t2 + 1). Here we see that u and v are given by u(t) = t3 - 3t and 
v(t) = — 3t2 + 1. The integrals of u and v are easy to compute, and we find that 

(t3 - 30 dt = — and (-3t2 + 1) dt = 0. 
Jo 4 Jo 

157 
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Hence definition (1) can be used to conclude that 

(t - 03 dt = u(t) dt + i\ v(t) dt = — . 
Jo Jo Jo 4 

Our knowledge about the elementary functions can be used to find their 
integrals. 

E X A M P L E 6-2 Let us show that 

fn/2 1 i 
Jo exp(t + it) dt = - {ea - 0 + - ien/2 + 1). 

Using the method suggested by equations (1) and (2), we obtain 

pr/2 CK/2 frc/2 

exp(t + it) dt = \ e* cos t dt + i \ el sin t dt. 

The integrals can be evaluated via integration by parts, and we have 

f 
Jo 

/-71/2 

/=0 

= ~(eK/2 - 1 ) + l-(e«a + 1). 

Complex integrals have properties that are similar to those of real integrals. 
Let/(t) = u(t) + iv(t) and g(t) = p(t) + iq(t) be continuous on a < t < b. Then the 
integral of their sum is the sum of their integrals; so we can write 

(4) [ [f(t) + g(t)] dt = J f{t) dt + J git) dt. 
J a J a J a 

It is convenient to divide the interval a < t < b into a < t < c and c < t < b and 
integrate/(t) over these subintervals. Hence we obtain the formula 

(5) I" fit)dt= [' fit) dt+ [ fit)dt 
J a J a Jc 

Constant multiples are dealt with in the same manner as in calculus. If c + id denotes 
a complex constant, then 

(6) (c + id)fit) dt = (c + id) fit) dt. 
Jo Ja 

If the limits of integration are reversed, then 

(7) \[fit)dt= ~\bJit)dt. 
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Let us emphasize that we are dealing with complex integrals. We write the integral 
of the product as follows: 

(8) J f(t)g(t) dt = I [u(t)p(t) - v(t)q(t)] dt + 
Ja Jii 

i [u{t)q(t) + v(t)p(t)] dt. 
Ja 

E X A M P L E 6 - 3 Let us prove equation (6). We start by writing 

(c + id)f(t) = cu(t) - dv(t) + i[cv{t) + du(t)l 

Using definition (I) , the left side of equation (6) can be written as 

P P P P 
(9) c u{t) dt - d v{t) dt + ic v(t) dt 4- id u(t) dt, 

Ja Ja Ja Ja 

which is easily seen to be equivalent to the product 

(10) (c + id)\ u(t) dt + i \ v(t) dt 
J J a J a 

It is worthwhile to point out the similarity between equation (2) and its 
counterpart in calculus. Suppose that U and V are differentiable on a < t < b and 
F(t) = U(t) + iV(t)9 then F'(t) is denned to be 

F'(t) = U'(t) + iV'(t\ 

and equation (2) takes on the familiar form 

(11) ) f(t) dt = Fib) - Fia), where F'(t) = fit). 
J a 

This can be viewed as an extension of the fundamental theorem of calculus. In 
Section 6.5 we will see how the extension is made to the case of analytic functions 
of a complex variable. For now, note that we have the following important case of 
equation (11): 

(12) f f(t)dt=f(b)-f(a). 
J a 

E X A M P L E 6 . 4 Let us use equation (11) to show that / J exp (it) dt = 2L 

Solut ion If we let Fit) = —i exp (it) = sin t - i cos t and / ( t ) = exp(/f) 
= cos t -I- i sin t, then F'(t) = fit), and from equation (11) we obtain 

I expiit)dt = J f(t) dt = Fin) - F(0) = -/e<* + ie° = 11 
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EXERCISES FOR SECTION 6.1 
For Exercises 1-4, use equations (1) and (2) to find the following definite integrals. 

1. (3f - i)2 dt 2. (t + 2/)3 dt 3. cosh(if) dt 4. —— dt 
Jo Jo Jo Jo t + i 

fn/4 

5. Find t exp(/r) dt. 
6. Let m and n be integers. Show that 

(2n ,W ,,„ J fO when m ¥> n, 
eim!e-'nt dt = <L 

Jo [2TT when m ~ n. 

7. Show that J e~zt dt = 1/z provided that Re(z) > 0. 

P 
8. Let f{t) = w(t) + iv{t) where w and v are differentiable. Show that f(t)f'(t) dt = 

i[/0>)]2 - \U(a)Y. 
9. Establish identity (4). 10. Establish identity (5). 

11. Establish identity (7). 12. Establish identity (8). 

6.2 Contours and Contour Integrals 

In Section 6.1 we learned how to evaluate integrals of the form $b
af{t) dt, where/ 

was complex-valued and [a, b] was an interval on the real axis (so that t was real, 
with t e [a, b]). In this section we shall define and evaluate integrals of the form 
Icf(z) dzy where/ is complex-valued and C is a contour in the plane (so that z is 
complex, with z e C). Our main result is Theorem 6.1, which will show how to 
transform the latter type of integral into the kind we investigated in Section 6.1. 

We will use concepts first introduced in Section 1.6, where we defined the 
concept of a curve in the plane. Recall that to represent a curve C we used the 
parametric notation 

(1) C: z{t) = x(i) + iy(t) for a < t < b, 

where x(t) and v(t) are continuous functions. We now want to place a few more 
restrictions on the type of curve that we will be studying. The following discussion 
will lead to the concept of a contour, which is a type of curve that is adequate for 
the study of integration. 

Recall that C is said to be simple if it does not cross itself, which is expressed 
by requiring that z(t\) ¥^ z(t2) whenever t\ ¥" t2. A curve C with the property that 
z(b) = z(a) is said to be a closed curve. If z(b) = z(a) is the only point of intersection, 
then we say that C is a simple closed curve. As the parameter t increases from the 
value a to the value b, the point z(t) starts at the initial point z(a), moves along the 
curve C, and ends up at the terminal points z(b). If C is simple, then z(t) moves 
continuously from z(a) to z(b) as t increases, and the curve is given an orientation, 
which we indicate by drawing arrows along the curve. Figure 6.1 illustrates how 
the terms "simple" and "closed" can be used to describe a curve. 
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z(b) 

z(a) zit) 

(a) A curve that is simple. 

z(t) 

z{a) = zih) 

(b» A simple closed curve. 

lib) 

z{u) 

(c) A curve that is not simple 
and not closed. 

zit) 
zia) - zib) 

id) A closed curve that is not simple. 

FIGURE 6.1 The terms "simple" and "closed" used to describe curves. 

The complex-valued function z(t) in equation (1) is said to be differentiable 
if both x(t) and y(t) are differentiable for a < t < b. Here the one-sided derivatives* 
of x(t) and y(t) are required to exist at the endpoints of the interval. The derivative 
z'(t) with respect to t is defined by the equation 

(2) z'(t) = x'{t) + iy'(f) for a < t < b. 

The curve C defined by equation (1) is said to be smooth if zf(t), given by 
equation (2), is continuous and nonzero on the interval. If C is a smooth curve, then 
C has a nonzero tangent vector at each point z(t), which is given by the vector z'(t). 
If jc'(to) = 0, then the tangent vector z'(to) = 0>'(to) is vertical. If x'(t0) ^ 0, then 
the slope dyldx of the tangent line to C at the point z(to) is given by y'(t<))/x'(to). 
Hence the angle of inclination 0(t) of the tangent vector z'{t) is defined for all values 
of t and is the continuous function given by 

6(r) = arg[z'(f)] = arg[(x'(f) + i/(f)]. 

Therefore a smooth curve has a continuously turning tangent vector. A smooth curve 
has no corners or cusps. Figure 6.2 illustrates this concept. 

z(t) 
z'(t) 

z(b) 

2(a) 

(a) A smooth curve. 

z(b) 

z(a) 

(b) A curve that is not smooth. 

FIGURE 6.2 The term "smooth" used to describe curves. 

*The derivative on the right x'(ah) and on the left x'(b ) are defined by the following limits: 

x'(a+) = lim 
x(t) - x(a) 

and x'(b~) = lim 
x(t) - x(b) 
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If C is a smooth curve, then ds, the differential of arc length, is given by 

(3) ds = v V ( t ) P + [y'(t)p dt = \ z'(t) | dt 

Since x{t) and y'(t) are continuous functions, then so is the function 
-J[x'(t)]2 + [y'(t)]2, and the length L of the curve C is given by the definite integral 

(4) L = j " V[*'(t)]2 + [/(f)]2 * = Ja | z'(f) | dt. 

Now consider C to be a curve with parameterization 

C: zi(0 = x(t) + ry(t) for a < t < £. 

The opposite curve — C traces out the same set of points in the plane but in the 
reverse order, and it has the parameterization 

- C : z2(t) = x(-t) + iy(-t) for -b < t < -a . 

Since z2(0 = ^i(—t), it is easy to see that — C is merely C traversed in the opposite 
sense. This is illustrated in Figure 6.3. 

zx(t) 

{ c ^^ 
z j (a) 

FIGURE 6.3 

z2(t) 

-*<* f~C*^ «* 
z2{~a) 

The curve C and its opposite curve -C. 

A curve C that is constructed by joining finitely many smooth curves end to 
end is called a contour. Let C\, Cj, . . . , Cn denote n smooth curves such that the 
terminal point of C* coincides with the initial point of Ck t \ for k = 1 ,2 , . . . , 
n — 1. Then the contour C is expressed by the equation 

(5) C = Ci + C2 + • • • + Cn. 

A synonym for contour is path. 

EXAMPLE 6-5 Let us find a parameterization of the polygonal path C from 
— 1 + i to 3 — /, which is shown in Figure 6.4. 

3 - i 

FIGURE 6.4 The polygonal path C = C] + C2 + C3 from -1 + i to 3 - i. 
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Solution The contour is conveniently expressed as three smooth 
curves C — C\ + C2 + C3. A formula for the straight line segment joining two 
points was given by equation (2) in Section 1.6. If we set z0 = — 1 + i and 
Z\ — — 1, then the segment C\ joining z0 to z\ is given by 

C,: zi(t) = zo + t(zi - zo) = ( -1 + 0 + f [ - l - ( - 1 + /)1, 

which can be simplified to obtain 

Cx\ z\{t) = - 1 + / ( 1 - / ) forO < t < 1. 

In a similar fashion the segments C2 and C3 are given by 

C2: z2(0 = ( - 1 + 20 + it for 0 < t < 1 and 
C3: z3(0 = (1 + 2t) + /(1 - 2 0 for 0 < t < 1. 

We are now ready to define the integral of a complex function along a contour 
C in the plane with initial point A and terminal point B. Our approach is to mimic 
what is done in calculus. We create a partition Pn = {z0 = A, z\, Zi, . . . , zn = B] 
of points that proceed along C from A to B and form the differences Azk = Zk — Zk-\ 
for k — 1, 2, . . . , n. Between each pair of partition points Zk-\ and zA we select a 
point c* on C, where the function f(ck) is evaluated (see Figure 6.5). These values 
are used to make a Riemann sum for the partition: 

/; n 

(6) S(Pn) = 2 f(ck)(zk - ZA-I) = 2 /(Q)Ast. 
£ = 1 * = 1 

; =B 

FIGURE 6.5 Partition points {ik}, and function evaluation points {ck} for a 
Riemann sum along the contour C from z = A to z = B. 

Assume now that there exists a unique complex number L that is the limit of 
every sequence {S(Pn)} of Riemann sums given in equation (6), where the maximum 
of I Azk I tends toward 0, for the sequence of partitions. We define the number L as 
the value of the integral of f(z) taken along the contour C We thus have the 
following. 
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Definition 6.1 Let C be a contour, then f(z) dz = lim 2 f(Ck)&Zk, 

provided the limit exists in the sense previously discussed. 

You will notice that in this definition, the value of the integral depends on the 
contour. In Section 6.3 the Cauchy-Goursat Theorem will establish the remarkable 

property that iff(z) is analytic, then f(z) dz is independent of the contour. 

EXAMPLE 6-6 Use a Riemann sum to construct an approximation for the 
contour integral jc exp z dz, where C is the line segment joining the point A = 0 to 

Solution Set n = 8 in equation (6) and form the partition P8: Zk = ~ + 

nk 
i— for k = 0, 1, 2, . . . , 8. For this situation, we have a uniform increment Azk = 
32 

1 .n D . , . fr-i + ¾ 2fe- 1 t .TC(2*- 1) . 
- + i—. For convenience we select ck — = h i for 
4 32 2 8 64 
k = 1, 2, . . . , 8. The points {zk} and {c*} are shown in Figure 6.6. 

1 2 

FIGURE 6.6 Partition and evaluation points for the Riemann sum S(P^). 

One possible Riemann sum, then, is 
8 8 

S(P*) = 2 /(<*) ^¾ = 2 exp 
2X: - 1 71(2/: - 1) 

+ i— 
8 64 

1 . 7 T , 

4 + « 3 2 ; -

By rounding the terms in this Riemann sum to two decimal digits, we obtain an 
approximation for the integral: 

S(P8) « (0.28 + 0.13/) + (0.33 + 0.19/) + (0.41 + 0.29/) + (0.49 + 0.42/) 
+ (0.57 + 0.6/) + (0.65 + 0.84/) + (0.72 + 1.16/) + (0.78 + 1.57/), 

5(/>8) « 4.23 + 5.20/. 
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This compares favorably with the precise value of the integral, which you will soon 

see equals exp 2 + i 1 = 4- e2— + ie2~ 
2 2 

4.22485 4- 5.22485/. 

In general, obtaining an exact value for an integral given by Definition 6.1 is 
a daunting task. Fortunately, there is a beautiful theory that allows for an easy 
computation of many contour integrals. Suppose we have a parameterization of the 
contour C given by the function z(t) for a < t < b. That is, C is the range of the 
function z(t) over the interval [a, b], as Figure 6.7 shows. 

a t._, T r 

FIGURE 6.7 A parameterization of the contour C by z(t) for a < f < b. 

It follows that 

lim 2 f(ck)Azk = Hm 2 /(c*)fo - z*-i) 

= lim2/fe(T*))b(ft)-z(fc-i)]. 

where the T* and t* are those points contained in the interval [a, b] with the property 
that Cjt = z(Tjt) and zjt = £(**), as is also shown in Figure 6.7. If for all k we multiply 

4 — 4- 1 
the £th term in the last sum by , we get 

lim 2 f(z(Tk)) 
w-»oo k= 1 

4 ~ 4-1 

2(¾) ~ 2(4-1) 

tk ~ 4-
(4 - 4-i) = lim 2 / ( Z ( T * ) ) 

z(4) ~ z(4-i) 
4 ~ 4-i 

At*. 

The quotient inside the last summation looks suspiciously like a derivative, and the 
entire quantity looks like a Riemann sum. Assuming no difficulties, this last ex­
pression should equal 

r 
Jo 

f(z(t))z'{t) dtf as defined in Section 6.1. 
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It would be especially nice if we were to get the same limit regardless of how we 
parameterize the contour C. As the following theorem states, this is indeed the case. 

Theorem 6.1 Suppose f(z) is a continuous complex-valued function defined 
on a set containing the contour C. Let z(t) be any parameterization of C for 
a < t < b. Then 

(7) £ f(z) dz = \a f(z(t))zr(t) dt 

Proof We omit the proof of this theorem since it involves ideas (such as 
the theory of the Riemann-Stieltjes integral) that are beyond the scope of this book. 
A more rigorous development of the contour integral based on Riemann sums is 
found in advanced texts such as L. V. Ahlfors, Complex Analysis, 3rd ed. (New 
York: McGraw-Hill, 1979). 

There are two important facets of Theorem 6.1 that are worth mentioning. 
First, the theorem makes the problem of evaluating complex-valued functions along 
contours easy since it reduces our task to one that requires the evaluation complex-
valued functions over real intervals—a procedure we studied in Section 6.1. Second, 
according to the theorem this transformation yields the same answer regardless of 
the parameterization we choose for C, a truly remarkable fact. 

EXAMPLE 6 .7 Let us give an exact calculation of the integral in Example 
6.6. That is, we want j c exp z dz, where C is the line segment joining A = 0 to 

B = 2 + i— . According to equation (2) of Section 1.6, we can parameterize C by 

z(t) = (2 + /7 k for 0 < t < 1. Since z'(t) = ( 2 + /7 J, according to Theorem 

6.1 we have that 

2 + ,= 1, 2 + / - ) dt J c e X p z * = Jo C X P [ 
= (2 + / - ) 1 e2teiMdt 

= (2 + / ^ 1 ( e2/[cos(rct/4) + / sin(7it/4)] dt 

= (2 + / ^ ) 1 e2'cos(7tt/4) dt + i\ e2t sin(;ct/4) dt 
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Each integral in the last expression can be done using integration by parts. We leave 

as an exercise that the final answer simplifies to exp I 2 + / - J — 1, as claimed in 

Example 6.6. 

EXAMPLE 6 .8 Evaluate j c dz, where C is the upper semicircle with 
z - 2 

radius 1 centered at x = 2 oriented in a position (i.e., counterclockwise) direction. 

Solution The function z(t) = 2 4- e'\ for 0 < t < n is a parameterization 

for C. We apply Theorem 6.1 with f(z) = . (Note: f(z(t)) = , and 
z - 2 z(t) - 2 

z(t) = iei!.) Hence, 

dz = — : ie" dt = i dt = in. 
Jcz - 2 Jo (2 + e") - 2 Jo 

To help convince yourself that the value of the integral is independent of the param­
eterization chosen for the given contour, try working through this example with 
z(t) = 2 + eint, forO < t < 1. 

There is a convenient bookkeeping device that helps us remember how to 
apply Theorem 6.1. Since fc f(z) dz = j[] f(z(t)) z'{t) dt, we can symbolically equate 
z with z(t) and dz with z'(t) dt. This should be easy to remember because z is 

dz 
supposed to be a point on the contour C parameterized by z(t), and — = z(t) ac­
cording to the Leibniz notation for the derivative. 

If z(t) = x(t) + /v(t), then by the preceding paragraph we have 

(8) dz = z(t) dt = [jc'(t) + /v'(t)] dt = dx + / dy, 

where dx and dy are the differentials for x(t) and _v(t), respectively. (That is, dx is 
equated with x'(t) dt and dy with y'(t) dt.) The expression dz is often called the 
complex differential of z. Just as dx and dy are intuitively considered to be small 
segments along the x and y axes in real variables, we can think of dz as representing 
a very tiny piece of the contour C. Moreover, if we write 

(9) | * | = | [*'(*) + / /(01 dt\ =\ [x\t) + //(/)] | dt = V[*'(t)]2 + [/(012 du 

then we know from calculus that the length of the curve C, L(C), is given by 

(10) L(C) = I VU'(t)]2 + [/(t)]2 dt = j \dz\. 

so we can think of | dz | as representing the length of dz. 
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Suppose f(z) = u(z) + /v(z), and z{t) = x(t) + iy(t) is a parameterization for 
the contour C. Then 

(11) \c f(z)dz = }af(z(t))z'(t)dt 

= J [u{z(t)) + iv(z(t))][x'(t) + iy'(t)] dt 
J a 

= ja [u(z(t))x'{t) - v(z(t))y'(t)] dt 

+ i\ [v(z(t))x'(t) + u{z(t))y'(t)]dt 
J a 

= (ux' - vyf) dt + / (vx' + uy') dt, 
J a J a 

where we are equating u with u(z(t)), x' with x'(t), etc. 
If we use the differentials given in equation (8), then equation (11) can be 

written in terms of line integrals of the real-valued functions u and v, giving 

\cKz)dz = \cu (12) I f(z)dz ' J c y ' dx — v dy + i \ v dx + u dy, 

which is easy to remember if we recall that symbolically 

f(z) dz = {u + iv)(dx + i dy). 

We emphasize that equation (12) is merely a notational device for applying 
equation (7) in Theorem 6.1. We recommend you carefully apply the theorem as 
illustrated in Examples 6.7 and 6.8 before using any shortcuts suggested by equation 
(12). 

E X A M P L E 6 .9 Let us show that 

J"c,ZWe z dz = 4 + 2/, 

where C\ is the line segment from —1 — / to 3 + i and C2 is the portion of the 
parabolas = y2 + 2y joining —1 — i to 3 + /, as indicated in Figure 6.8. 

- 1 -i 

(b) The portion of the parabola. 

FIGURE 6.8 The two contours C\ and C2 joining — 1 - i to 3 + i. 
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The line segment joining ( - 1 , - 1 ) to (3, 1) is given by the slope intercept 
formula y = \x - \ , which can be written as x = 2y + 1. It is convenient to choose 
the parameterization y = t and x = It -f 1. Then the segment C\ can be given by 

C,: z(t) = 2t + 1 + it and dz = (2 + i) dt for - 1 < t < 1. 

Along Ci, we have/(z(t)) = 2t + 1 + /t. Computing the value of the integral in 
equation (7), we obtain 

Jc zdz = J (2f + 1 + it)(2 + /) a7, 

which can be evaluated by using straightforward techniques to obtain 

J z dz = J ] (3t + 2) dr + i J ^ (4r + 1) dt = 4 + 2/. 

Similarly, for the portion of the parabola x ~ y2 + 2y joining ( - 1 , - 1 ) to 
(3, 1), it is convenient to choose the parameterization y = t and x = t2 + It. Then 
C2 can be given by 

C2: z(r) = t2 + 2t + /t and dz = {It + 2 + /) A for - 1 < t < 1. 

Along C2 we have f(z(t)) = t2 + 2t + /t. Computing the value of the integral in 
equation (7), we obtain 

- / : 

(t2 + 2t + /t)(2t + 2 + /) A 

1 (2t3 + 6t2 + 3t) dt + 1 (3t2 + 4t) rfr = 4 + 2i. 

In this example, the value of the two integrals is the same. This does not hold in 
general, as is shown in Example 6.10. 

EXAMPLE 6 . 1 0 Let us show that 

zdz = -niy but zdz = - 4i, 
Jc, Jc2 

where C\ is the semicircular path from — 1 to 1 and C2 is the polygonal path from 
— 1 to 1, respectively, that are shown in Figure 6.9. 

m _1 

J 

+ i ' 

k 

1 

1 4 

l 

- / 

, c 2 

(a) The semicircular path. (b) The polygonal path. 

FIGURE 6.9 The two contours C, and C2 joining - 1 to 1. 
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Solution The semicircle C\ can be parameterized by 

C\\ z{t) = -cos t + i sin t and dz = (sin t + / cos t) dt for 0 < t < 71. 

Along C\ we have/(z(t)) = —cos t — / sin t. Computing the value of the integral 
equation in (7), we obtain 

z dz - (—cos t — i sin t)(sin t + i cos t) dt 
JC| JO 

= — / (cos2 t + sin2 t) dt = — 7U. 
Jo 

The polygonal path C2 must be parameterized in three parts, one for each line 
segment: 

z\(f) = - 1 + it, dz\ = idt, f(z\(t)) = - 1 - it, 
ziit) = — 1 + 2 / + /, dz2 = 2 dt, f(z2(t)) = - 1 + 2f - /, 
z3(t) = 1 + / ( 1 - t), dzi = -i dt, / to(0) = 1 - / ( 1 - t), 

where all of the parameters t are to be taken on the interval 0 < t < 1. The value 
of the integral in equation (7) is obtained by adding the three integrals along the 
above three segments, and the result is 

1 ( - 1 - it)i dt + J (-1 + It - /)2 dt + J [1 - /(1 - 01(-0 dt 

A straightforward calculation now shows that 

z dz = (6t - 3) dt + i\ ( -4) </t = -4i . 
Jc2 Jo Jo 

We remark that the value of the contour integral along C\ is not the same as the 
value of the contour integral along C2, although both integrals have the same initial 
and terminal points. 

Contour integrals have properties that are similar to those of integrals of a 
complex function of a real variable, which were studied in Section 6.1. If C is given 
by equation (1), then the contour integral for the opposite contour — C is given by 

(13) J_c f(z) dz = JJ/(Z(-T))[-Z'(-T)] dr. 

Using the change of variable t = — T in equation (13) and identity (7) of Section 
6.1, we obtain 

(14) j cf(z)dz= -jcf(z)dz. 
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If two functions/and g can be integrated over the same path of integration C, then 
their sum can be integrated over C, and we have the familiar result 

(15) \c lf(z) + g(z)] dz = j c f(z) dz + \c g(z) dz. 

Constant multiples are dealt with in the same manner as in identity (6) in Section 
6.1: 

(16) fc (c + id)f(z) dz = (c + id) j c f(z) dz. 

If two contours C\ and C2 are placed end to end so that the terminal point of C\ 
coincides with the initial point of C2j then the contour C = C\ + C2 is a continuation 
of C], and we have the property 

(17) f r f(z) dz = f f(z) dz + f f(z) dz. 

If the contour C has two parameterizations 

C: z\(i) = xx(t) + iy\(t) for a < t < b and 

C: Z2(T) = X2(T) + iy2(T) for a < T < (i, 

and there exists a differentiable function T = ¢(0 such that 

(18) a = (|>(a), P = <)>(£), and (J)'(t) > 0 for a < t < />, 

then we say that Z2(T) is a reparametenzation of the contour C. I f / i s continuous 
on C, then we have 

(19) \hJ(zi(t))z\{t) dt = jJ(Z2(T))Z'2(T) dr. 

Identity (19) shows that the value of a contour integral is invariant under a change 
in the parametric representation of its contour if the reparameterization satisfies 
equations (18). 

There are a few important inequalities relating to complex integrals, which 
we now state. 

Lemma 6.1 (Integral Triangle Inequality) Iff(t) = u{t) + /v(t) is a 
continuous function of the real parameter t, then 

(20) f"f(t)dt\* f | /(01 dt. 

Proof Write the value of the integral in polar form: 

(21) roe^o = f(t)dt and r0 = e~l^f(t) dt. 
J a J a 
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Taking the real part of the second integral in equations (21), we write 

>o f 
Jo 

Re[e-'V(0] dt. 

Using equation (2) of Section 1.3, we obtain the relation 

Re[e"'V(0] ^ \e-^fif)\ < | / ( 0 |. 

The left and right sides can be used as integrands, and then familiar results from 
calculus can be used to obtain 

>o 
J a 

Re[e-°of(t)] dt< I | /(0 | dt. 

Since 

>o = 
J a 

fit) dt 

we have established inequality (20). 

(22) 

(23) 

Lemma 6.2 (ML Inequality) Iff(z) = u(x, y) + /V(JC, y) is continuous on 
the contour C, then 

J f(z)dz\ <MU 

where L is the length of the contour C and M is an upper bound for the 
modulus | f(z) | on C. 

Proof When inequality (20) is used with Theorem 6.1, we get 

£ f(z) dz\ = | | f(z(t))z\t) dt\ < | | f(z(t))z'(t) I dt 

Let M be the positive real constant such that 

| / (z) | < M for all z on C. 

Then equation (9) and inequality (23) imply that 

J^ f(z) dz\ < Jt M | z'(t) | dt = ML. 

Therefore inequality (22) is proved. 
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EXAMPLE 6.11 Let us use inequality (22) to show that 

i c z2 + 1 
dz 

ijl" 
where C is the straight line segment from 2 to 2 4- i. Here | z2 + 1 | = | z — i | X 
| z + i | , and the terms ) z — i | and | z + i | represent the distance from the point z 

to the points i and —/, respectively. We refer to Figure 6.10 and use a geometric 
argument to see that 

I z — i I ^ 2 and I z + /1 ^ V^ for z on C. 

FIGURE 6.10 The distances I z - i I and I z + /1 for z on C. 

Here we have 

|/fe)| = 
1 1 

| z - / | | z + / | 2^/5 

and L = 1, so inequality (22) implies that 

= M, 

i i 

C Z2 + 1 
* < ML = 

1 

2V5' 

EXERCISES FOR SECTION 6.2 
1. Sketch the following curves. 

(a) z{t) = t2 - 1 + i(t + 4) for 1 < t < 3 
(b) z(t) = sin t + i cos 2t for -TC/2 < t < 7C/2 
(c) ^(r) = 5 cos r - /3 sin r for nil < r < 2?t 

2. Give a parameterization of the contour C - C\ + C2 indicated in Figure 6.11. 
3. Give a parameterization of the contour C = C\ + C2 + C3 indicated in Figure 6.12. 
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2/ 2 + 2/ 

- 3 - 2 - l 1 2 3 -3 - 2 - 1 

! C 3 

1 2 3 

FIGURE 6.11 Accompanies 
Exercise 2. 

FIGURE 6.12 Accompanies 
Exercise 3. 

4. Consider the integral jcz
2dz, where C is the positively oriented upper semi-circle of 

radius 1, centered at 0. 
(a) Given a Riemann sum approximation for the above integral by selecting n = 4, and 

the following points: zk - eiknl4] ck = ei(2k~*)m for appropriate values of k. 
(b) Compute the integral exactly by selecting a parameterization for C and applying 

Theorem 6.1. 

5. Show that the integral in Example 6.7 simplifies to expl 2 + /— j — 1. 

6. Evaluate fc y dz for — i to i along the following contours as shown in Figures 6.13(a) 
and 6.13(b). 
(a) The polygonal path C with vertices - / , - 1 - /, — 1, and i. 
(b) The contour C that is the left half of the circle \z\ = 1. 

-4- i 

d— 
- 1 - i 

(a) (b) 

FIGURE 6.13 Accompanies Exercise 6. 

7. Evaluate / c x dz from - 4 to 4 along the following contours as shown in Figures 6.14(a) 
and 6.14(b). 
(a) The polygonal path C with vertices —4, — 4 + 4r, 4 + 4/, and 4. 
(b) The contour C that is the upper half of the circle \z\ = 4. 

-4 + 4/ 4/ 

2/+ 
I l l 

- 4 - 7 

(a) 

4 + 4/ 

I \ 4 
2 4 

FIGURE 6.14 Accompanies Exercise 7. 
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8. Evaluate fc z dz, where C is the circle | z \ = 4 taken with the counterclockwise ori­
entation. Hint: Let C: z{t) = 4 cos t + /4 sin f for 0 < r < 2TC. 

9. Evaluate JV z dz, where C is the circle | z | = 4 taken with the counterclockwise orien­
tation. 

10. Evaluate fc (z + 1) dz, where C given by C: z(r) = cos t + i sin t for 0 < f < 7i/2. 
11. Evaluate JY z dz, where C is the line segment from i to 1 and z(t) = t + (1 - t)f for 

0 < / < 1. 
12. Evaluate JY z2 dz, where C is the line segment from 1 to 1 + / and z(0 = 1 + it for 

0 < f < 1. 
13. Evaluate JY U2 — /y2) ^ , where C is the upper semicircle C: z(/) = cos t + / sin t for 

0 < t < K. 

14. Evaluate / r | z21 t/z, where C given by C: z(t) = t + /t2 for 0 < t < 1. 
15. Evaluate fc \ z - 1 |2 t/z, where C is the upper half of the circle | z | = 1 taken with the 

counterclockwise orientation. 
16. Evaluate fc (1/z) dz, where C is the circle \z\ =2 taken with the clockwise orientation. 

Hint: C: z{t) = 2 cos t - /2 sin f for 0 < r < 2K. 
17. Evaluate JV (1/z) /̂z, where C is the circle | z \ = 2 taken with the clockwise orientation. 
18. Evaluate JV exp z dz, where C is the straight line segment joining 1 to 1 + in, 
19. Show that JV cos z dz = sin(l + /), where C is the polygonal path from 0 to 1 + / that 

consists of the line segments from 0 to 1 and 1 to 1 + /. 
20. Show that JV exp z dz = exp( 1 + /) — 1, where C is the straight line segment joining 

0 to 1 + /. 
21. Evaluate JV z exp z dz, where C is the square with vertices 0, 1, 1 + / , and i taken with 

the counterclockwise orientation. 
22. Let z{t) = x(t) + (y(0 for a < r < b be a smooth curve. Give a meaning for each of the 

following expressions. 

(a) z(t) (b) | z ' (0 | dt (c) £ *'(/)<// (d) | |z '(t)| </t 

23. Let / be a continuous function on the circle | z - Zo | — R. Let the circle C have the 
parameterization C: z(8) = z<> + /te/H for 0 < 8 < 2it. Show that 

Jcf(z) dz = iR J(j /(z„ + / t e ' V /̂6. 

24. Use the results of Exercise 23 to show that 

(a) dz = 2TC/ and 
Jc z - Zo 

^ ) rfz — Q̂  where n ¥" 1 is an integer, 
J<' (z - zc»)" 

where the contour C is the circle | z — zo | = R taken with the counterclockwise 
orientation. 

25. Explain how contour integrals studied in complex analysis and line integrals studied in 
calculus are different. How are they similar? 

26. Write a report on contour integrals. Include some of the more complicated techniques 
in your discussion. Resources include bibliographical items 5, 16, 81, 82, and 157. 

6.3 The Cauchy-Goursat Theorem 

The Cauchy-Goursat theorem states that within certain domains the integral of an 
analytic function over a simple closed contour is zero. An extension of this theorem 
will allow us to replace integrals over certain complicated contours with integrals 
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over contours that are easy to evaluate. We will show how to use the technique of 
partial fractions together with the Cauchy-Goursat theorem to evaluate certain in­
tegrals. In Section 6.4 we will see that the Cauchy-Goursat theorem implies that an 
analytic function has an antiderivative. To start with, we need to introduce a few 
new concepts. 

We saw in Section 1.6 that with each simple closed contour C there are as­
sociated two disjoint domains, each of which has C as its boundary. The contour C 
divides the plane into two domains. One domain is bounded and is called the interior 
of C, and the other domain is unbounded and is called the exterior of C. Figure 6.15 
illustrates this concept. This result is known as the Jordan Curve Theorem. 

Interior 

FIGURE 6.15 The interior and exterior of simple closed contours. 

In Section 1.6 we saw that a domain D is an open connected set. In particular, 
if Z\ and zi are any pair of points in D, then they can be joined by a curve that lies 
entirely in D. A domain D is said to be simply connected if it has the property that 
any simple closed contour C contained in D has its interior contained in D. In other 
words, there are no "holes" in a simply connected domain. A domain that is not 
simply connected is said to be a multiply connected domain. Figure 6.16 illustrates 
the use of the terms "simply connected" and "multiply connected." 

^ < t ^ ' 
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(a) A simply connected domain. 
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(b) A simply connected domain. 
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Let the simple closed contour C have the parameterization C: z(t) = x(t) + 
iy(t) for a < t < b. If C is parameterized so that the interior of C is kept on the left 
as z(t) moves around C, then we say that C is oriented in the positive (counterclock­
wise) sense; otherwise, C is oriented negatively. If C is positively oriented, then 
— C is negatively oriented. Figure 6.17 illustrates the concept of positive and neg­
ative orientation. 

*~x 

-C 

-+-x 

(a) A positively oriented contour. (b) A negatively oriented contour. 

FIGURE 6.17 Simple closed contours that are positively and negatively oriented. 

An important result from the calculus of real variables is known as Green's 
theorem and is concerned with the line integral of real-valued functions. 

Theorem 6.2 (Green's Theorem) Let C be a simple closed contour with 
positive orientation, and let R be the domain that forms the interior of C. If P 
and Q are continuous and have continuous partial derivatives Px, Py, Qx, and 
Qx at all points on C and R, then 

(1) l P(x, y) dx + Q(x, y) dy = / / [QAx, y) - Pv(*, y)\ dx dy 

Proof for a Standard Region* If R is a standard region, then there exist 
functions y = g\(x) and y = g2(x) for a < x < b whose graphs form the lower and 
upper portions of C, respectively, as indicated in Figure 6.18. Since C is to be given 
the positive (counterclockwise) orientation, these functions can be used to express 
C as the sum of two contours C\ and C2 where 

d : z\(t) = t + ig,(r) 
C2; z2(t) = -t + ig2(-t) 

for a < t < b and 
for -b < t < -a. 

We now use the functions g\(x) and g2{x) to express the double integral of 
— Py(x, y) over R as an iterated integral, first with respect to y and second with 
respect to JC, as follows: 

(2) - J J /\(JC, y)dxdy=-\ \ " Px(x, y) 
J J J a \ J git*) 

dy dx. 

*A standard region is bounded by a contour C, which can be expressed in the two forms C = C\ + C2 

and C = C?, + CJ, that are used in the proof. 
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i 
! y=g,{x) 

FIGURE 6.18 Integration over a standard region where C = C\ + C2 

Computing the first iterated integral on the right side of equation (2), we obtain 

(3) - J J /\(JC, 30 dx dy = J^ P(x, g,U)) dx - J P(x, g2(x)) dx. 
R 

In the second integral on the right side of equation (3) we can use the change of 
variable x = — t and manipulate the integral to obtain 

(4) -J J /\(x, v) dx dy = ja P{x, gx(x)) <k+ j h P{-U g 2 ( - 0 ) ( - 1) du 

When the two integrals on the right side of equation (4) are interpreted as contour 
integrals along C\ and C2, respectively, we see that 

(5) ~\\ Py(x, y) dx dy = I P(x, y) dx + \ P(x, y) dx = I P(x, v) dx. 

To complete the proof, we rely on the fact that for a standard region, there 
exist functions x — h\(y) and x = h2(v) for c < v < d whose graphs form the left 
and right portions of C, respectively, as indicated in Figure 6.19. Since C has the 
positive orientation, it can be expressed as the sum of two contours C3 and C4, where 

Cy. z3(f) = hi(-t) - it for -d < t < -c and 
C4: z4(t) = h2(t) + it for c < t < d. 

J 
J 

d-

c -

i 

c Jn\\ 1 J\\ 

J , . ^*XI 1 If 
A — n A y ) ^*^t\\ 

\ ( J 111 M I I IX 

:/? H 1 IT 

13^ Y — h ( V 

FIGURE 6.19 Integration over a standard region where C = C3 + C 
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Using the functions h{{y) and h2(y), we express the double integral of 
QK(x, y) over R as an iterated integral: 

(6) J }QX (*, y) dx dy = j j j ^ Qx(x, v) dx dy. 

A similar derivation will show that equation (6) is equivalent to 

(7) J J QAx, y) dx dy = Jc Q(x, y) dy. 
R 

When equations (5) and (7) are added, the result is equation (1), and the proof is 
complete. 

We are now ready to state our main result in this section. 

Theorem 6.3 (Cauchy-Goursat Theorem) Let f be analytic in a simply 
connected domain D.IfC is a simple closed contour that lies in D, the« 

I (8) )cf(z)dz = 0. 

Proof If we add the additional hypothesis that the derivative f(z) is also contin­
uous, the proof is more intuitive. It was Augustin Cauchy who first proved this 
theorem under the hypothesis that/'(z) is continuous. His proof, which we will now 
state, used Green's theorem. 

Proof Using Green's Theorem We assume that C is oriented in the 
positive sense and use equation (12) in Section 6.2 to write 

(9) f(z) dz = J u dx — v dy + i I v dx + u dy. 

If we use Green's theorem on the real part of the right side of equation (9) with 
P — u and Q = — v, then we obtain 

(10) u dx — v dy = I J ( — v* — ux) dx dy, 

where R is the region that is the interior of C. If we use Green's theorem on the 
imaginary part, the result will be 

(11) I v dx + u dy = I I (ux — vv) dx dy. 
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The Cauchy-Riemann equations ux = vv and uy = —vx can be used in equations (10) 
and (11) to see that the value of equation (9) is given by 

J f(z) dz = J J 0 dx dy + i J J 0 dx dy = 0, 
R R 

and the proof is complete. 

A proof that does not require the continuity of f(z) was devised by Edward 
Goursat (1858-1936) in 1883. 

Goursat's Proof Of Theorem 6.3 We first establish the result for a 
triangular contour C with positive orientation. Construct four positively oriented 
contours C1, C2, C \ and C4 that are the triangles obtained by joining the midpoints 
of the sides of C as shown in Figure 6.20. 

y 
i 

FIGURE 6.20 The triangular contours C and C , C2, C -\ CA 

Since each contour is positively oriented, if we sum the integrals along the 
four triangular contours, then the integrals along the segments interior to C cancel 
out in pairs. The result is 

(12) f/(z)& = 2 Lf(z)dz. 

Let C\ be selected from C\ C2, C3, and C4 so that the following relation holds true: 

(13) |c/U)*U|lt/k)*U4|/Ci/(z)* 

We can proceed inductively and carry out a similar subdivision process to obtain a 
sequence of triangular contours {C,,}, where the interior of Cn+\ lies in the interior 
of C„ and the following inequality holds: 

(14) II. f(z) dz\ \L fit) dz\ for n = 1,2, . . . . 
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Let Tn denote the closed region that consists of Cn and its interior. Since the length 
of the sides of Cn go to zero as n —> °°, there exists a unique point z0 that belongs 
to all of the closed triangular regions Tn. Since f is analytic at the point zo, there 
exists a function r\(z) with 

(15) f(z) = f(zo) + f(z0)(z - zo) + TI(Z)(Z - z0). 

Using equation (15) and integrating /along Cm we find that 

(16) £ f(z) dz = £ /(zo) dz + £ /'(z0)(z - zo) dz 

+ J c r|(zXz - zo) dz 

= Ifizo) - f'{Zo)Zol Jc 1 dz + /(zo) £ z * 

1 TI (z)(z ~ zo) dz 

-L T|(z)(z - Zo) dz. 

If e > 0 is given, then a 8 > 0 can be found such that 

(17) | z - zo | < 8 implies that | r|(z) | < 
L 2 ' 

where L is the length of the original contour C. An integer n can now be chosen so 
that Cn lies in the neighborhood | z - Zo | < 8, as shown in Figure 6.21. 

FIGURE 6.21 The contour Cn that lies in the neighborhood | z — Zo I < 8. 

Since the distance between a point z on a triangle and a point z0 interior to the 
triangle is no greater than half the perimeter of the triangle, it follows that 

(18) | z - zo | < y U for all z on C„, 

where Ln is the length of the triangle Cn. From the preceding construction process, 
it follows that 

(19) Ln = {\)nL and | z - z0 | < (T)" + 1 L for z on Cn. 
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We can use equations (14), (17), and (19) of this section and equation (23) of Section 
6.2 to obtain the following estimate: 

l f(z) dz < 4 " J \r](z)(z-

^\,m 
-*?J>I 

2"-'e / l \ " 

" L \2) L = 

- zo)11 dz 
l 

L\dz\ 

e 
2' 

Since e was arbitrary, it follows that equation (12) holds true for the triangular 
contour C. If C is a polygonal contour, then interior edges can be added until the 
interior is subdivided into a finite number of triangles. The integral around each 
triangle is zero, and the sum of all these integrals is equal to the integral around the 
polygonal contour C. Therefore equation (12) holds true for polygonal contours. 
The proof for an arbitrary simple closed contour is established by approximating 
the contour ''sufficiently close" with a polygonal contour. 

EXAMPLE 6 . 1 2 Let us recall that exp z, cos z, and zn, where n is a positive 
integer are all entire functions and have continuous derivatives. The Cauchy-Goursat 
theorem implies that for any simple closed contour we have 

JcexPZ<fe = 0, l cos z dz = 0, 
Jc Z" dz = 0. 

EXAMPLE 6 . 1 3 If C is a simple closed contour such that the origin does not 
lie interior to C, then there is a simply connected domain D that contains C in which 
f(z) = \lztl is analytic, as is indicated in Figure 6.22. The Cauchy-Goursat theorem 
implies that 

Jcz
n dz = 0 provided that the origin does not lie interior to C. 

FIGURE 6.22 A simple connected domain D containing the simple closed 
contour C that does not contain the origin. 
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It is desirable to be able to replace integrals over certain complicated contours 
with integrals that are easy to evaluate. If C\ is a simple closed contour that can be 
continuously deformed into another simple closed contour C2 without passing 
through a point where/ is not analytic, then the value of the contour integral of/ 
over Ci is the same as the value of the integral of/over C2. To be precise, we state 
the following result. 

Theorem 6.4 (Deformation of Contour) Let C{ and C2 be two simple 
closed positively oriented contours such that C\ lies interior to C2. Iff is 
analytic in a domain D that contains both C\ and C2 and the region between 
them, as shown in Figure 6.23, then 

jcj(z)dZ = lnz)dz. 

FIGURE 6.23 The domain D that contains the simple closed contours C\ and C2 
and the region between them. 

Proof Assume that both Cj and C2 have positive (counterclockwise) ori­
entation. We construct two disjoint contours or cuts L\ and L2 that join C\ to C2. 
Hence the contour C\ will be cut into two contours C\ and C**, and the contour C2 

will be cut into C\ and C*2*. We now form two new contours: 

K{ = - C * + L{ + C\ - L2 and K2 = ~ C " + L2 + C*2* - Lu 

which are shown in Figure 6.24. The function / will be analytic on a simply con­
nected domain Dj that contains Ku and/will be analytic on the simply connected 
domain D2 that contains K2, as is illustrated in Figure 6.24. 
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(a) The contour Kl and domain Dy (b) The contour K2 and domain Dr 

FIGURE 6.24 The cuts L, and L2 and the contours K\ and K2 used to prove the 
Deformation Theorem. 

The Cauchy-Goursat theorem can be applied to the contours K\ and K2, and 
the result is 

JK} L (20) f(z) <fe = 0 and f(z) dz = 0. 

Adding contours, we observe that 

(21) Kt+K2= -C\ + U + C\- L2- C** + L2 + CT - L, 

We can use identities (14) and (17) of Section 6.2 and equations (20) and (21) given 
in this section to conclude that 

\ c m dZ - JC| Az) dz = £ ( m dZ + jKm dZ = o, 

which completes the proof of Theorem 6.4. 

We now state an important result that is proven by the deformation theorem. 
This result will occur several times in the theory to be developed and is an important 
tool for computations. 

EXAMPLE 6-14 Let z0 denote a fixed complex value. If C is a simple closed 
contour with positive orientation such that zo lies interior to C, then 

(22) 
f dz 

JC Z - Zn 

I 
Z ~ ZQ 

dz 
c (z - ZoT 

2ni and 

0 where n ^ 1 is an integer. 
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Solution Since Zo lies interior to C, we can choose R so that the circle CR 

with center zo and radius R lies interior to C. Hence f(z) = \l(z- ZQ)" is analytic in 
a domain D that contains both C and CR and the region between them, as shown in 
Figure 6.25. Let CR have the parameterization 

CR\ z(6) = zo + ReiB and dz = i Reid dQ for 0 < 6 < 2n. 

FIGURE 6.25 The domain D that contains both C and CR. 

The deformation theorem implies that the integral off over CR has the same value 
as the integral of/over C, and we obtain 

and 

f dz ( dz f2URe<» Jfl . P« Jfl ^ . 
= = —— dd = i d% = 2TT; 

Jc 2 - zo J Q z - zo Jo /?e/e Jo 

f dz __ f dz _ f2n i Re* 

J c (z ~ Zo)n " JQ (Z - Zo)" ~ Jo #V"H ^ 6 = * ' 
•I/IH -r 

Jo 

^•(1-«)e ^ 9 

^ i ( l - n ) e | — 

1 - n 
z?1 

e=o \ — n \ — n 
= 0. 

The deformation theorem is an extension of the Cauchy-Goursat theorem to a 
doubly connected domain in the following sense. Let D be a domain that contains 
Cx and C2 and the region between them, as shown in Figure 6.25. Then the contour 
C = C2 — C\ is a parameterization of the boundary of the region R that lies between 
C\ and C2 so that the points of R lie to the left of C as a point z{t) moves around C 
Hence C is a positive orientation of the boundary of /?, and Theorem 6.4 implies 
that 

1 f{z) dz = 0. 

We can extend Theorem 6.4 to multiply connected domains with more than one 
"hole." The proof, which is left for the reader, involves the introduction of several 
cuts and is similar to the proof of Theorem 6.4. 
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Theorem 6.5 (Extended Cauchy-Goursat Theorem) 
Let C, C], C2, . • . , C„ Z?e simple closed positively oriented contours with the 
property that Ck lies interior to C for k = 1, 2, . . . , ft, and the set interior 
to Cf, has no points in common with the set interior to Cj if k # j . Let f be 
analytic on a domain D that contains all the contours and the region between 
C and C/ 4- C2 + • • • + Cny which is shown in Figure 6.26. Then 

(23) j f(z) * = i f f(z) dz. 
JC £=1 JQ 

FIGURE 6.26 The multiply connected domain D and the contours C and 
Ci, C2, • . . , Cn in the statement of the Extended Cauchy-Goursat Theorem. 

EXAMPLE 6 . 1 5 If C is the circle \z\ = 2 taken with positive orientation, 
then 

<*> UT5-« 
Solution Using partial fractions, the integral in equation (24) can be written 

as 

, w [ 2zdz [ dz [ & 

z - 1V5 * 

Since the points z = ± /*V2 lie interior to C, Example 6.14 implies that 

f dz 
Jcz±ij2 

(26) I — ^ = 2ni. 

The results in (26) can be used in (25) to conclude that 

f 2zdz 
~; ~ = 2ni + 2JU = 4TC«. 

Jc z2 + 2 
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EXAMPLE 6-16 If C is the circle \z - i\ 
then 

1 taken with positive orientation, 

(27) 

as 

(28) 

l 2z dz 
271/. ]cz

2 + 2 

Solution Using partial fractions, the integral in equation (27) can be written 

f 2zdz _ f <fe | f &_ 
72* 

In this case, only the point z = ijl lies interior to C, so the second integral on the 
right side of equation (28) has the value 2TC/. The function/(z) = l/(z + ijl) is 
analytic on a simply connected domain that contains C. Hence by the Cauchy-
Goursat theorem the first integral on the right side of equation (28) is zero (see 
Figure 6.27). Therefore 

/ . 

2z dz 
cz

2 + 2 
= 0 + 2n/ = 2ni. 

FIGURE 6.27 The circle \z - i\ = 1 and the points z = ±ijl. 

EXAMPLE 6.17 Show that 

z - 2 I dz = — 6ni 

where C is the ''figure eight" contour shown in Figure 6.28(a). 

& • 
€f 

(a) The figure eight contour C. (b) The contours C, and C2. 

FIGURE 6.28 The contour C = Cx + C2. 
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S o l u t i o n Partial fractions can be used to express the integral as 

(29) 
Jc z2 - z Jc z JC z -z - 1 

dz. 

Using the Cauchy-Goursat theorem and property (14) of Section 6.2 together with 
Example 6.13, we compute the value of the first integral on the right side of equation 
(29): 

(30) 2 \ -dz = 2 \ - dz + 2 - dz 
Jc z Jct z Jci z 

= - 2 - dz + 0 = -2(271/) = -471/. 
J -c . z 

In a similar fashion we find that 

dz 
(31) 

Jc 7 - 1 JC, 7 - 1 JC2 

dz 
= 0 - 2TI/ = -27 i / . 

z - 1 Jc, z - 1 J c 2 Z - 1 

The results of equations (30) and (31) can be used in equation (29) to conclude that 

z-2 L C72 _ • dz = —Am - 2ni = -6rti. 

EXERCISES FOR SECTION 6.3 
1. Determine the domain of analyticity for the following functions, and conclude that 

fcfiz) dz = 0, where C is the circle | z \ = 1 with positive orientation. 
z 1 

(a) f(z) = 
z2 + 2 

(b) f(z) = 
z2 + 2z + 2 

(d) f(z) = Log(z + 5) 
27i/, where C is the square with vertices 1 ± /, 1 ± i with 

(c) f(z) = tan z 

2. Show that fc z~[ dz 
positive orientation. 

3 . Show that Jc (4z2 — 4z + 5)" ' dz = 0, where C is the unit circle | z \ = 1 with positive 
orientation. 

4. Find fc (z2 — zY] dz for the following contours. 
(a) The circle | z — 1 | = 2 with positive orientation. 
(b) The circle j z — 1 | = \ with positive orientation. 

5. Find / c (2z - l)(z2 - z ) _ l dz for the following contours. 
(a) The circle | z 
(b) The circle j z 

6. Evaluate / c (z2 -
7. Evaluate / c (2z -

6.28(a). 
8. Eva lua te /c (4z2 + 4z - 3 ) - ' dz = fc(2z ~ l )" ' (2z + 3)- 1 dz for the following contours. 

= 2 with positive orientation. 
= y with positive orientation. 

z) ' dz, where C is the figure eight contour shown in Figure 6.28(a). 
l)(z2 — z) ' dz, where C is the figure eight contour shown in Figure 

(a) The circle 
(b) The circle 
(c) The circle 

9. E v a l u a t e / c (z
2 

z I = 1 with positive orientation. 
z + y I = 1 with positive orientation. 
z | = 3 with positive orientation. 
- l ) _ l dz for the contours given in Figure 6.29. 
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(a) (b) 

FIGURE 6.29 Accompanies Exercise 9. 

10. Let C be the triangle with vertice 0, 1, and i with positive orientation. Parameterize C 
and show that 

i J ldz = 0 and \ z dz = 0. 

11. Let the circle \z\ = 1 be given the parameterization 

C: z(t) = cos t + * sin t for — n < t < n. 

Use the principal branch of the square root function: 

f) ft 

z\/2 — ri/2C0S - + /r1/2sin - for -n < 6 < 71 
2 2 

and find fc zU2 dz. 
12. Evaluate / c | z p exp z dz, where C is the unit circle | z | = 1 with positive orientation. 
13. Let/(z) = u(r, 6) + iv(r, G) be analytic for all values of z = re'Q. Show that 

I [w(r, 6) cos 0 - v(r, 6) sin 6] dQ = 0. 

Hint: Integratef around the circle \z\ = 1. 
14. Show by using Green's theorem that the area enclosed by a simple closed contour C is 

y fc x dy - v dr. 

15. Compare the various methods for evaluating contour integrals. What are the limitations 
of each method? 

6.4 The Fundamental Theorems of Integration 

Let f be analytic in the simply connected domain D. The theorems in this section 
show that an antiderivative F can be constructed by contour integration. A conse­
quence will be the fact that in a simply connected domain, the integral of an analytic 
funct ion/a long any contour joining z\ to zi is the same, and its value is given by 
F(zi) — F(z\). Hence we will be able to use the antiderivative formulas from calculus 
to compute the value of definite integrals. 

Theorem 6.6 (Indefinite Integrals or Antiderivat ives) Let f be ana­
lytic in the simply connected domain D. If zo is a fixed value in D and if C is 
any contour in D with initial point Zo and terminal point z, then the function 
given by 
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(1) Hz)= \ /(&</£ = [ M)dt, 
JC J z(> 

is analytic in D and 

(2) F'(z)=f(z). 

Proof We first establish that the integral is independent of the path of integration. 
Hence we will need to keep track only of the endpoints, and we can use the notation 

I™*-1 M) d% = M) d(i). 

Let C\ and Ci be two contours in Z), both with the initial point zo and the 
terminal point z, as shown in Figure 6.30. Then C = C\ — C2 is a simple closed 
contour, and the Cauchy-Goursat theorem implies that 

Ic/®^-L/©^=L./®^=°-
Therefore the contour integral in equation (1) is independent of path. Here we have 
taken the liberty of drawing contours that intersect only at the endpoints. A slight 
modification of the foregoing proof will show that a finite number of other points 
of intersection are permitted. 

FIGURE 6.30 The contours C\ and C2 joining za to z. 

We now show that F\z) = f(z). Let z be held fixed, and let Az be chosen small 
enough so that the point z + Az also lies in the domain D. Since z is held fixed, 
f(z) = K where K is a constant, and equation (12) of Section 6.1 implies that 

(3) £ + A 7fe) di = £A< Kd£ = KAz= f(z) Az. 

Using the additive property of contours and the definition of F given in equation 
(1), it follows that 

(4) F(z + Az) - F(z) = r + A 7 ( © dk - f /(€) dk 
J Z() J Z{) 

= jcM) di - jc M) di = jcM) di, 
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where the contour C is the straight line segment joining z to z + Az and C\ and C2 

join zo to z and zo to z + Az, respectively, as shown in Figure 6.31. 

z + Az 

FIGURE 6.31 The contours C, and C2 and the line segment C = -C] + C2. 

Since / i s continuous at z, then if e > 0, there is a 8 > 0 so that 

(5) \M) ~ f(z) | < e whenever | 5 - z | < 8. 

If we require that | Az | < 8, then using equations (3) and (4), inequality (5), and 
inequality (22) of Section 6.2, we obtain the following estimate: 

(6) 
F(z + Az) - F(z) 

Az 
-f(z) "|i| | /c^*-/c^>* 

Consequently, the left side of equation (6) tends to 0 as Az —> 0; that is, F'(z) = 
/(z), and the theorem is proven. 

It is important to notice that the line integral of an analytic function is inde­
pendent of path. An easy calculation shows 

Jc'Wc, z dz = 4 + 2/, 

where C\ and C2 were contours joining — 1 — i to 3 + i. Since the integrand 
f(z) = z is an analytic function, Theorem 6.6 implies that the value of the two 
integrals is the same; hence one calculation would suffice. 

If we set z = Z\ in Theorem 6.6, then we obtain the following familiar result 
for evaluating a definite integral of an analytic function. 
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Theorem 6.7 (Definite Integrals) Letf be analytic in a simply connected 
domain D. If ZQ and Z\ are two points in D, then 

(7) f ' / fe) dz = F(zi) ~ F(z0) 

where F is any antiderivative off. 

Proof If F is chosen to be the function in equation (1), then equation (7) 
holds true. If G is any other antiderivative of/, then H(z) = G(z) — F(z) is analytic, 
and H'(z) = 0 for all points z in D. Hence H(z) = K where A' is a constant, and 
G(z) = F(z) + K. Therefore G{z\) ~ G(zo) = F(zi) - F(zo), and Theorem 6.7 is 
proven. 

Theorem 6.7 is an important method for evaluating definite integrals when the 
integrand is an analytic function. In essence, it permits us to use all the rules of 
integration that were introduced in calculus. For analytic integrands, application of 
Theorem 6.7 is easier to use than the method of parameterization of a contour. 

EXAMPLE 6 . 1 8 Show that /J cos z dz = -s in 1 + i sinh 1. 

Solution An antiderivative of f(z) = cos z is F(z) = sin z. Hence 

cos zdz — sin / — sin 1 = — sin 1 + i sinh 1. / ; 

EXAMPLE 6 . 1 9 Evaluate ( 2 + j ) P eV"*4 dt. 

Solution In Example 6.7, we broke the integrand up into its real and imag­
inary parts, which then required integration by parts. Using Theorem 6.7, however, 
we see that 

= e ( 2 + /7i/4) _ e0 

~ e(2-+iit/4) _ I 
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EXAMPLE 6.20 Show that 

I* 2zm / : 1 + i\ 

where zin is the principal branch of the square root function and the integral is to 
be taken along the line segment joining 4 to 8 + 6/. 

Solution Example 3.8 showed that if F(z) = zu\ then F'(z) = U(2zl/2\ 
where the principal branch of the square root function is used in both the formulas 
for F and F'. Hence 

J'8 + 6/ 

4 

dz_ 
2zm = (8 + 6/)1/2 ™ 41/2 = 3 + / - 2 = 1 + /. 

EXAMPLE 6.21 Let D = {z = reiB: r > 0 and -n < 6 < re} be the simply 
connected domain shown in Figure 6.32. Then F(z) = Log z is analytic in D, and 
its derivative is F'(z) = 1/z. If C is a contour in D that joins the point z\ to the point 
z2, then Theorem 6.7 implies that 

fZ2 dz f * T 
~ = I ~~ == L°g & - Log z\. 

Jzi Z JC z 

(a) The path C joining zx and zr (b) The path that is a portion 
of the unit circle \z\= 1. 

FIGURE 6.32 The simply connected domain D in Examples 6.21 and 6.22. 

EXAMPLE 6 . 2 2 As a consequence of Example 6.21, let us show that 

— = 27i/, where C is the unit circle | z | = 1, 

taken with positive orientation. 

Solution If we let zi approach - 1 through the upper half plane and z\ 
approaches - 1 through the lower half plane, then we can integrate around the por­
tion of the circle shown in Figure 6.32(b) and take limits to obtain 
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— = lim — = lim Log z2 - lim Log z\ 
Jc z -,^-i Jz\ z z2^-\ .-!->-! 

z2-»-1 lm(z2)>0 lm(z})<0 

= in — ( — in) = 2ni. 

EXERCISES FOR SECTION 6.4 

For Exercises 1-14, use antiderivatives to find the value of the definite integral. 
fin/2 

exp z dz 

~2i z 

f2+/ V 1 + z V 
1. z2dz 2. dz (use Log z) 3. 

J]+i J i z J2 

4. J (z2 + z~2)dz 5. I cos zdz 6. Jo sin ~ dz 

f2+ici f l+2 / p 

7. z exp zt/z 8. z exp(z2) dz 9. z cos z dz 
J_|_iV2 JI-2/ r JO 

r r , + / r2+/ dz 
10. Ĵ  sin2 zdz 11. J] Log z dz 12. J2 - ^ -

f2+/ 2z - l r2+/ 

13. -7 -dz 14. 
J2 z2 - z h • 

z'2-dz 

zL - z n zf- - Z 

15. Show that J:2 \ dz = zi ~ z\ by parameterizing the line segment from z\ to z2. 
16. Let zi and Z2 be points in the right half plane. Show that 

r ̂  dz i i 

Z 2 Z | Z2 ' 

17. Find 

P^Jz_ 
h 2zm' 

where z,/2 is the principal branch of the square root function and the integral is to be 
taken along the line segment from 9 to 3 + 4z. 

18. Find /2'2, z,/2 dz, where zl/2 is the principal branch of the square root function and the 
integral is to be taken along the right half of the circle \z\ = 2. 

19. Using the equation 

1 i 1 i \ 

z2 + 1 2 z + i 2z- i' 

show that if z lies in the right half plane, then 

[z d^ i i 
= arctan z — ~ Log(z + 0 - — Log(z - /)• 

h ¥ + 1 2 & 2 

20. Le t / ' and g' be analytic for all z. Show that 

J*f(z)g'(z)dz = f(z2)g(z2) -fizi)g(zi) - }*f'(z)g(z)dz. 

21. Compare the various methods for evaluating contour integrals. What are the limitations 
of each method? 

22. Explain how the fundamental theorem of calculus studied in complex analysis and the 
fundamental theorem of calculus studied in calculus are different. How are they similar? 
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6.5 Integral Representations for Analytic Functions 

We now present some major results in the theory of functions of a complex variable. 
The first result is known as Cauchy's integral formula and shows that the value of 
an analytic function f can be represented by a certain contour integral. The nih 
derivative, f"\z), will have a similar representation. In Chapter 7 we will show how 
the Cauchy integral formulae are used to prove Taylor's theorem, and we will es­
tablish the power series representation for analytic functions. The Cauchy integral 
formulae will also be a convenient tool for evaluating certain contour integrals. 

Theorem 6.8 (Cauchy's Integral Formula) Let f be analytic in the 
simply connected domain D, and let C be a simple closed positively oriented 
contour that lies in D. If zo is a point that lies interior to C, then 

m * ^ l f f(z)
 A 

(1) f(zo) = — I dz. 
2ni Jc z - zo 

Proof Since/is continuous at zo, if £ > 0 is given, there is a 8 > 0 such 
that 

(2) \f(z) - f(zo) | < e whenever | z - z0 | < 5. 

Also the circle C0: | z - Zo | = y 5 lies interior to C as shown in Figure 6.33. 

FIGURE 6.33 The contours C and C0 in the proof of Cauchy's integral formula. 

Since/(zo) is a fixed value, we can use the result of Exercise 24 of Section 6.2 to 
conclude that 

, - , „ , f(zo) f dz I f /(zo) , 
(3) /(zo) = — L = 7TT. L ~ *• 

2ni J Co z - Zo 2ni JC{) Z ~ Zo 
Using the deformation theorem we see that 
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Using inequality (2), equations (3) and (4), and inequality (22) of Section 6.2, we 
obtain the following estimate: 

(5) IJL f / f e ) dz f(J\ = I— [ f(z) dz - — f /(Zo) dz 

\2ni Jc z - zo I \2ni Jc„ z - ZQ 2ni Jc„ z - Zo zQ 2m Jcn z - Zo 

1 f |/(z)-/(zt>) -L f • dz 
| z - zo I 

< n g _ £ 
271(1/2)5 

Since e can be made arbitrarily small, the theorem is proven. 

EXAMPLE 6-23 Show that 

exp z i • dz = Hue, 
Jcz- 1 

where C is the circle | z | = 2 with positive orientation. 

Solution Here we have/(z) = exp z and/(1) = e. The point zo = 1 lies 
interior to C, so Cauchy's integral formula implies that 

1 f expz J = /(1) = —- -dz, J 2ni Jcz - 1 z 

and multiplication by 2ni will establish the desired result. 

EXAMPLE 6 . 2 4 Show that 

L sin z — ^/ini 
• dz = 

ic4z + 7i 4 

where C is the circle | z | = 1 with positive orientation. 

Solution Here we have/(z) = sin z. We can manipulate the integral and 
use Cauchy's integral formula to obtain 

f sinz = j . f sin z = J. f /(z) 
JC4Z + TC Z 4Jc z-h(7r/4) Z 4 J c z - ( - 7 t / 4 ) Z 

= 4 ( 2 KnTj=7 s i n(TJ=-^-
We now state a general result that shows how differentiation under the integral 

sign can be accomplished. The proof can be found in some advanced texts. See, for 
instance, Rolf Nevanlinna and V. Paatero, Introduction to Complex Analysis 
(Reading, Massachusetts: Addison-Wesley Publishing Company, 1969), Section 
9.7. 
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Theorem 6.9 (Leibniz's Rule) Let D be a simply connected domain, and 
let I: a < t < b be an interval of real numbers. Let f(z, t) and its partial 
derivative /:(z, t) with respect to z be continuous functions for all z in D and 
all t in I. Then 

(6) F(z) - | / fc t) dt 
Ja 

is analytic for z in D, and 

F'(z) = f f(z, t) dt 
Ja 

We now show how Theorem 6.8 can be generalized to give an integral rep­
resentation for the nth derivative, f{n)(z). Leibniz's rule will be used in the proof, 
and we shall see that this method of proof will be a mnemonic device for remem­
bering how the denominator is written. 

Theorem 6.10 (Cauchy's Integral Formulae for Derivatives) Let f 
be analytic in the simply connected domain D, and let C be a simple closed 
positively oriented contour that lies in D.Ifz is a point that lies interior to C, 
then 

<7> ' " ' w - i / c F ^ r * 2niJc(i - Z)n 

Proof We will establish the theorem for the case n = 1. We start by using 
the parameterization 

C: £ = £(t) and d£ = £'(t) dt for a < t < b. 

We use Theorem 6.8 and write 

2m Jc £ — z 2ni Ja t;(t) — z 

The integrand on the right side of equation (8) can be considered as a function 
/(z, t) of the two variables z and t, where 

(9) / f c 0 ^ l ^ T "* te» = m=#-
Using equations (9) and Leibniz's rule, we see that/'(z) is given by 

1 {Z) 2ni Ja (£(t) - z)2 2ni Jc (£ - z)
2' 

and the proof for the case n = 1 is complete. We can apply the same argument to 
the analytic function/' and show that its derivative/" has representation (7) with 
n = 2. The principle of mathematical induction will establish the theorem for any 
value of n. 
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EXAMPLE 6 . 2 5 Let zo denote a fixed complex value. If C is a simple closed 
positively oriented contour such that zo lies interior to C, then 

(10) f - ^ - = 271/ and f /
 d\n+{ = 0, 

Jcz-Zo Jc(z-zo)n+l 

where n > 1 is a positive integer. 

Solution Here we have/(z) = 1 and the nth derivative is/(n)(z) = 0. The­
orem 6.8 implies that the value of the first integral in equations (10) is given by 

l dz = 2nif(zo) = 2TT/, 
•>cz - zo 

and Theorem 6.10 can be used to conclude that 

1 c^-^™-* 
We remark that this is the same result that was proven earlier in Example 6.14. It 
should be obvious that the technique of using Theorems 6.8 and 6.10 is easier. 

EXAMPLE 6.26 Show that 

exp z2 —471 L •dz = 
)c (z - if 3e ' 

where C is the circle | z | = 2 with positive orientation. 

Solution Here we have f(z) = exp z2, and a straightforward calculation 
shows that/ (3)(z) = (12z + 8z3) exp z2- Using Cauchy's integral formulae with 
n = 3, we conclude that 

i exp z2 , 2TU* w .x 2 T I / 4 / -4TC 

c (z - 0 3! 6 e 3e 

EXAMPLE 6.27 Show that 

exp(mz) az 27i i ic 2z2 - 5z + 2 3 ' 

where C is the circle | z \ = 1 with positive orientation. 
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S o l u t i o n By factoring the denominator we obtain 2z2 — 5z + 2 = 
(2z - l)(z - 2). Only the root zo = y lies interior to C. Now we s e t / ( z ) = 
[exp(mz)]/(z — 2) and use Theorem 6.8 to conclude that 

L exp(mz) dz 
2z2 - 5z + 2 

-If 
2 Jr 

3 ' 

f(z) dz 
z ~ (1/2) 

1 . exp(m/2) 

2 J 2 ( 1 / 2 ) - 2 

We now state two important corollaries to Theorem 6.10. 

Corollary 6.1 tffis analytic in the domain D, then all derivatives f\ f'\ 
. . . , / (" } , . . . exist and are analytic in D. 

Proof For each point zo in D, there exists a closed disk | z — Zo \ ^ R that 
is contained in D. The circle C: \z — zo\ = R can be used in Theorem 6.10 to show 
that/ ( '?,(zo) exists for all n. 

This result is interesting, since the definition of analytic function means that 
the der iva t ive / ' exists at all points in D. Here we find something more, that the 
derivatives of all orders exist! 

Corollary 6.2 If u is a harmonic function at each point (x, y) in the domain 
D, then all partial derivatives ux, wv, wvv, wvv, and wvv exist and are harmonic 
functions. 

Proof For each point (JCO, yo) in D there exists a closed disk | z — Zo \ ^ R 
that is contained in D. A conjugate harmonic function v exists in this disk, so the 
function/(z) = u + iv is an analytic function. We use the Cauchy-Riemann equa­
tions and see tha t / ' (z ) = ux + /VA = vv — ius. S i n c e / ' is analytic, the functions ux 

and ux are harmonic. Again, we can use the Cauchy-Riemann equations to see that 

f'{Z) = UXX + lVxx = VyX - iUyX = -Uyy - IVvv. 

S i n c e / " is analytic, the functions uxx, uxy, and wvv are harmonic. 

EXERCISES FOR SECTION 6.5 

For Exercises 1-15, assume that the contour C has positive orientation. 

1. Find Jc (exp z + cos z)z~l dz, where C is the circle 
2. Find fc (z + l)_l(z - l)"1 dz, where C is the circle 
3. Find J> (z + 1) '(z - 1)~2 dz, where C is the circle 

z - 1 
z - 1 

= 1. 
= 1. 

4. Find } c (z
3 - 1)_1 dz, where C is the circle \z ~ 1 = 1. 
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5. Find fc (z cos zK1 dz, where C is the circle \z\ = 1. 
6. Find fcZ~4 sin z dz, where C is the circle \z\ = 1. 
7. Find fc z~3 sinh(z2) dz, where C is the circle \z\ = 1. 
8. Find fc z'2 sin z </z along the following contours: 

(a) The circle \z - (TC/2) | = 1. (b) The circle \z - (TT/4) | = 1. 

9. Find / c z~" exp z dz, where C is the circle | z | = 1 and n is a positive integer. 
10. Find fc z~2(z2 — 16)-1 exp z dz along the following contours: 

(a) The circle \z\ = 1. (b) The circle \z - 4 | = 1. 
11. Find JY (z4 + 4)-1 dz, where C is the circle |z - 1 - / | = 1. 
12. Find fc (z2 + 1)"' dz along the following contours: 

(a) The circle \z - i\ = 1. (b) The circle \z + / | = 1. 
13. Find fc (z2 + 1)-1 sin z dz along the following contours: 

(a) The circle \z - «| = 1. (b) The circle \z + / | = 1. 
14. Find fc (z2 + 1)~2 dz, where C is the circle | z - 11 = 1. 
15. Find / c r ' ( z ~ 1) ' exp z dz along the following contours: 

(a) The circle \z\ = 1/2. (b) The circle \z\ = 2. 

For Exercises 16-19, assume that the contour C has positive orientation. 

16. Let P(z) = ao 4- a\z + a2z
2 + a^z3 be a cubic polynomial. Find fc P(z)z~" dz, where C 

is the circle | z | = 1 and n is a positive integer. 
17. Let/be analytic in the simply connected domain £>, and let C be a simple closed contour 

in D. Suppose that zo lies exterior to C. Find fcf(z)(z ~ Zo)~* dz. 
18. Let Z] and zi be two complex numbers that lie interior to the simple closed contour C. 

Show that J c (z - z^^iz - z2Y
x dz = 0. 

19. Le t /be analytic in the simply connected domain D, and let z\ and zi be two complex 
numbers that lie interior to the simple closed contour C that lies in D. Show that 

/(¾) - / ( z . ) 1 f f(z)dz 
2ni Jc (z -Zi ~ Z\ 

State what happens when Z2 —> Zi-
20. The Legendre polynomial P„(z) is defined by 

1 d" 
2"n\ dzn 

Use Cauchy's integral formula to show that 

p(, ± f (g2 - 1)" dj 
,AZ) 2niJc2»($-zr+l' 

where z lies inside C. 
21. Discuss the importance of being able to define an analytic function/(z) with the contour 

integral in formula (1). How does this differ from other definitions of a function that 
you have learned? 

22. Write a report on Cauchy integral formula. Include examples of complicated examples 
discussed in the literature. Resources include bibliographical items 13, 59, 107, 110, 
118, 119, and 187. 
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6.6 The Theorems of Morera and Liouville 
and Some Applications 

In this section we investigate some of the qualitative properties of analytic and 
harmonic functions. Our first result shows that the existence of an antiderivative for 
a continuous function is equivalent to the statement that the integral off is inde­
pendent of the path of integration. This result is stated in a form that will serve as 
a converse to the Cauchy-Goursat theorem. 

Theorem 6.11 (Morera's Theorem) Let f be a continuous function in a 
simply connected domain D. If 

Jc f(z) dz = 0 

for every closed contour in D, then f is analytic in D. 

Proof Select a point Zo in D and define F(z) by the following integral: 

F(z)= P/(©<*£ 

The function F(z) is uniquely defined because if C\ and C2 are two contours in D, 
both with initial point zo and terminal point z, then C = C\ — C2 is a closed contour 
in A and 

0 = \c M) dt = JCi M) di - Jcj/(© dg. 

Since f(z) is continuous, then if £ > 0, there exists a 8 > 0 such that | £ - z \ < 8 
implies that | /¾) — f(z) | < £. Now we can use the identical steps to those in the 
proof of Theorem 6.6 to show that F'(z) = f(z). Hence F(z) is analytic on D, and 
Corollary 6.1 implies that F'(z) and F'\z) are also analytic. Therefore/'(z) = F"(z) 
exists for all z in D, and we have proven that/(z) is analytic on D. 

Cauchy's integral formula shows how the value f(zo) can be represented by a 
certain contour integral. If we choose the contour of integration C to be a circle with 
center zo, then we can show that the value f(zo) is the integral average of the values 
of f(z) at points z on the circle C. 

Theorem 6.12 (Gauss's Mean Value Theorem) Iff is analytic in a 
simply connected domain D that contains the circle C: \z — Zo\ = R, then 

(1) /(¾) = ^ [*f(zo + Re1") d6. 
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Proof The circle C can be given the parameterization 

(2) C: z(0) = zo + Re* and dz = / Re* dQ for 0 < 0 < 2TT. 

We can use the parameterization (2) and Cauchy's integral formula to obtain 

1 f2nf(zo + Re*)iRe* d$ I f 2 " n .^ m 

and Theorem 6.12 is proven. 

We now prove an important result concerning the modulus of an analytic 
function. 

Theorem 6.13 (Maximum Modulus Principle) Let f be analytic and 
nonconstant in the domain D. Then \f(z) | does not attain a maximum value 
at any point zo in D-

Proof by Contradiction Assume the contrary, and suppose that there 
exists a point zo in D such that 

(3) |/(z)| < | / fe) | holds for all z in D. 

If C0: | z — Zo | = R is any circle contained in D, then we can use identity (1) and 
property (22) of Section 6.2 to obtain 

(4) |/(zo)| = 1 ^ jjfizo + re*) Jel < ~ jj \f(Zo + re*) | <ffl for 0 < r < /?. 

But in view of inequality (3), we can treat | f(z) | = | f(zo + re*) | as a real-valued 
function of the real variable 0 and obtain 

(5) ^ jj | / f e + re*) | d6 < ^ J ^ )/(¾) | </8 = )/(¾) | for 0 < r < R. 

If we combine inequalities (4) and (5), the result is the equation 

I/(¾) | = ^ J'J 1/(10 + re*) \ d», 

which can be written as 

(6) jj (\f(zo)\ - |/(zo + re<e)|)Je = 0 f o r 0 < r < / ? . 

A theorem from the calculus of real-valued functions states that if the integral of a 
nonnegative continuous function taken over an interval is zero, then that function 
must be identically zero. Since the integrand in equation (6) is a nonnegative real-
valued function, we conclude that it is identically zero; that is, 

(7) 1/(¾) | = )/(¾ + re*) ] for 0 < r < R and 0 < 6 < 2TC. 
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If the modulus of an analytic function is constant, then the results of Example 3.13 
show that the function is constant. Therefore identity (7) implies that 

(8) f(z) = f(zo) for all z in the diskD0: \z~ z0\ ^ R. 

Now let Z denote an arbitrary point in A and let C be a contour in D that joins 
ZQ to Z Let 2d denote the minimum distance from C to the boundary of D. Then we 
can find consecutive points zo, Zu Zi, • • • » z„ = Z along C with ) ¾ \ - zu\ ^ d, 
such that the disks Dk: \z - Zk\ ^ d for k = 0, 1, . . . , n are contained in D and 
cover C, as shown in Figure 6.34. 

Since each disk Dk contains the center Zh+\ of the next disk Dk^u it follows 
that z\ lies in D0, and from equation (8) we see that/(zi) = f(zo). Hence \f(z) | also 
assumes its maximum value at z\. An argument identical to the one given above 
will show that 

(9) f(z) = /fei) = f(z0) for all z in the disk £>,. 

We can proceed inductively and show that 

(10) f(z) = f(zk+,) = f(Zk) for all z in the disk Dk+,. 

By using equations (8), (9), and (10) it follows that/(Z) = f(z{)). Therefore f is 
constant in D. With this contradiction the proof of the theorem is complete. 

FIGURE 6.34 The "chain of disks" D0, D,, . . . , Dn that cover C. 

The maximum modulus principle is sometimes stated in the following weaker 
form. 

Theorem 6.13* (Maximum Modulus Principle) Let f be analytic and 
nonconstant in the bounded domain D. Iffis continuous on the closed region 
R that consists of D and all of its boundary points B, then \f(z) | assumes its 
maximum value, and does so only at point(s) ZQ on the boundary B. 
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EXAMPLE 6-28 Let f(z) = az + b, where the domain is the disk D = 
{z: \z\ < 1}. Then / i s continuous on the closed region R = {z: | z | < 1}. Prove 
that 

max | / fe) | = \a\ + | * | 
\z\*\ 

and that this value is assumed b y / a t a point z0 = e'9<> on the boundary of D. 

Solution From the triangle inequality and the fact that | z | < 1 it follows 
that 

| / ( z ) | = \az + b\ < \az\ + \b\ < \a\ + | * | . 

If we choose zo = e'\ where 60 = arg b — arg a, then 

arg azo = arg a + (arg b — arg a) = arg b, 

so the vectors azo and b lie on the same ray through the origin. Hence 
| azo + b | = | azo | + \b\ = \a\ + \b\, and the result is established. 

Theorem 6.14 (Cauchy's Inequalities) Let f be analytic in the simply 
connected domain D that contains the circle C: \z — Zo\ = R. If \ f(z) | ^ M 
holds for all points z on C, then 

(11) |/<«>&>) | < — / 0 r n = l , 2 , . . . . 

Proof Let C have the parameterization 

C: z(6) = z0 + Re** and dz = i Re* dd for 0 < 9 < 2n. 

We can use Cauchy's integral formulae and write 

(12) fin), ) = -^-1 f(z) dz = -5L rfizo + R^JR^dB 

Using equation (12) and property (22) of Section 6.2, we obtain 

< —— M dQ = - — M2n = — - , 
2%Rn Jo 2nRn Rn 

and Theorem 6.14 is established. 
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The next result shows that a nonconstant entire function cannot be a bounded 
function. 

Theorem 6.15 (LiOUVille'S Theorem) If f is an entire function and is 
bounded for all values of z in the complex plane, then f is constant. 

Proof Suppose that |/(z) | < M holds for all values of z. Let zo denote an 
arbitrary point. Then we can use the circle C: | z — Zo | = R, and Cauchy's inequality 
with n = 1 implies that 

M 
(13) | / ' (z0) | £ — . 

If we let R —> oo in inequality (13), then we see that/'(zo) = 0. Hence/'(z) = 0 for 
all z. If the derivative of an analytic function is zero for all z, then it must be a 
constant function. Therefore/is constant, and the theorem is proven. 

EXAMPLE 6 . 2 9 The function sin z is not a bounded function. 

Solution One way to see this is to observe that sin z is a nonconstant entire 
function, and therefore Liouville's theorem implies that sin z cannot be bounded. 
Another way is to investigate the behavior of real and imaginary parts of sin z. If 
we fix x = nil and let y -» ©o, then we see that 

hm sinl —h ty I = hm sin — cosh y + i cos — sinh y 

= lim cosh y = +°°. 

Liouville's theorem can be used to establish an important theorem of elemen­
tary algebra. 

Theorem 6.16 (The Fundamental Theorem of Algebra) If P(z) is a 
polynomial of degree n, then P has at least one zero. 

Proof by Contradiction Assume the contrary and suppose that P(z) ¥> 0 
for all z. Then the function/(z) = l/^(z) is an entire function. We show tha t / i s 
bounded as follows. First we write P(z) = anz

n + a„_iz"_1 + • • • + ajZ + ao and 
consider the equation 

1 1 1 
(14) l /fe)l = i^i=]7F 

an H 1 — + • • • + — - + — 
z z2 zn~l zn 
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Since \ak\/\ zn~k | = \ak\ lrn~k -> 0 as \z\ = r ^ oo, it follows that 

(15) an H 1 r - + • • • H —> an as \z -» °°. 

z r z" 

If we use statement (15) in equation (14), then the result is 

| / ( z ) | -> 0 as \z\ -» oo. 

In particular, we can find a value of R such that 

(16) \f(z)\ < 1 for all \z\ > R. 

Consider 

| / ( z ) | =([u(x,y)]2 + Mx, y)]2)m, 
which is a continuous function of the two real variables x and v. A result from 
calculus regarding real functions says that a continuous function on a closed and 
bounded set is bounded. Hence | f(z) | is a bounded function on the closed disk 

x2 + y2 < R2; 

that is, there exists a positive real number K such that 

(17) \f(z)\ <K for all | z | < R. 

Combining inequalities (16) and (17), it follows that \f(z)\ < M = max{AT, 1} 
holds for all z. Liouville's theorem can now be used to conclude t h a t / i s constant. 
With this contradiction the proof of the theorem is complete. 

Corollary 6.3 Let P be a polynomial of degree n. Then P can be expressed 
as the product of linear factors. That is, 

P(z) = A(z - Z\)(z - z2) • • • (z - in) 

where z\, Zi, • . . , zn are the zeros ofP counted according to multiplicity and 
A is a constant. 

EXERCISES FOR SECTION 6.6 
For Exercises 1-4, express the given polynomial as a product of linear factors. 

1. Factor Pfe) = z4 + 4. 2. Factor P(z) = z2 + (1 + i)z + 5i. 
3. Factor P(z) = z4 - 4z3 + 6z2 - 4z + 5. 
4. Factor P{z) = z3 - ( 3 + 3i)z2 + ( - 1 + 6/)z + 3 - / . Hint: Show that P(i) = 0. 
5. Let/(z) = az" + b, where the region is the disk R = {z: \z\ ^ 1}. Show that 

max I f(z) I = I a I + \b\. 

6. Show that cos z is not a bounded function. 
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7. Let f(z) = z2, where the region is the rectangle R = {z = x + iy: 2 < x < 3 and 
1 < y < 3 } . 
Find the following: 
(a) max I f{z) I (b) min I f{z) I 

R K 

(c) max Re [f(z)] (d) min Im [f(z)] 
R K 

Hint for (a) and (b): \z\ is the distance from 0 to z. 
8. Let F{z) = sin z, where the region is the rectangle 

fl = j z = x + <y: 0 < x < - and 0 < y < 2 

Find max/? |/(z) | . //mf: | sin z p = sin2x + sinh2y. 
9. Le t /be analytic in the disk \z\ < 5, and suppose that |/(£) | < 10 for values of £ on 

the circle | £ — 1 | = 3. Find a bound for |/ (3 ,(1) |. 
10. Le t /be analytic in the disk \z\ < 5, and suppose that |/(£) | < 10 for values of £ on 

the circle | £ - 1 | = 3. Find a bound for |/ ,3)(0) | . 
11. Let /be an entire function such that \f(z) | < M | z | holds for all z. 

(a) Show that/"(z) = 0 for all z, and (b) conclude that/(z) = az + b. 
12. Establish the following minimum modulus principle. Le t /be analytic and nonconstant 

in the domain D. If \f(z) | ^ m, where m > 0 holds for all z in D, then | f(z) | does not 
attain a minimum value at any point zo in D. 

13. Let u(x, y) be harmonic for all (x, v). Show that 

1 P* 
u(xo, v0) = — w(̂ 0 + R cos 0, y0 + R sin 6) of0, where R > 0. 

1% M) 

Hint. Consider/(z) = u(x, y) + iv(x, y). 
14. Establish the following maximum principle for harmonic functions. Let u(x, y) be har­

monic and nonconstant in the simply connected domain D. Then u does not take on a 
maximum value at any point (jto, y0) in D. Hint: Let/(z) = u(x, y) + iv(x, y) be analytic 
in D, and consider F(z) = exp|/(z)] where |F(z)| = euU-x). 

15. Let / be an entire function that has the property | f(z) | ^ 1 for all z. Show that / is 
constant. 

16. Let / b e a nonconstant analytic function in the closed disk R = {z: \z\ ^ 1}. Suppose 
that \f(z) | = Â  for all z on the circle \z\ = 1. Show that/has a zero in D. Hint: Use 
both the maximum and minimum modulus principles. 

17. Why is it important to study the fundamental theorem of algebra in a complex analysis 
course? 

18. Look up the article on Morera's theorem and discuss what you found. Use bibliograph­
ical item 163. 

19. Look up the article on Liouville's theorem and discuss what you found. Use biblio­
graphical item 117. 

20. Write a report on the fundamental theorem of algebra. Discuss ideas that you found in 
the literature that are not mentioned in the text. Resources include bibliographical items 
6, 18, 29, 38, 60, 66, 150, 151, 170, and 184. 

21. Write a report on zeros of polynomials and/or complex functions. Resources include 
bibliographical items 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162, 171, 174, and 
178. 
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Taylor and Laurent Series 

Throughout this text we have compared and contrasted properties of complex func­
tions with functions whose domain and range lie entirely within the reals. There are 
many similarities, such as the standard differentiation formulas. On the other hand, 
there are some surprises, and in this chapter we will encounter one of the hallmarks 
distinguishing complex functions from their real counterparts. 

It is possible for a function defined on the real numbers to be differentiable 
everywhere and yet not be expressible as a power series (see Exercise 27 at the end 
of Section 7.2). In the complex case, however, things are much simpler! It turns out 
that if a complex function is analytic in the disk Dr(a), its Taylor series about a 
will converge to the function at every point in this disk. Thus, analytic functions 
are locally nothing more than glorified polynomials. 

We shall also see that complex functions are the key to unlocking many of the 
mysteries encountered when power series are first introduced in a calculus course. 
We begin by discussing an important property associated with power series— 
uniform convergence. 

7.1 Uniform Convergence 

Recall that if we have a function/(z) defined on a set T, the sequence of functions 
{Sn(z}} converges to the function/at the point z = Zo e T provided lim Sn(zo) = 

n—>« 

/(zo). Thus, for the particular point zo> this means that for each e > 0, there exists 
a positive integer A^ro (which depends on both £ and zo) such that 

(1) if n > N^ then | S„(ZQ) - /fa>) \ < e. 

If Sn(z) is the nth partial sum of the series 2^ ck(z — ct)\ statement (1) becomes 
k=0 

(2) if n > N^, then 2 ck(zo - a)k - f(z0) < e. 

It is important to stress that for a given value of £, the integer NEnZQ we need to 
satisfy statement (1) will often depend on our choice of zo- This is not the case if 

208 
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the sequence {Sn(z)} converges uniformly. For a uniformly convergent sequence, it 
is possible to find an integer JVe (which depends only on £) that guarantees statement 
(1) no matter which value for z0 e T we pick. In other words, if n is large enough, 
the function S„(z) is uniformly close to f(z). Formally, we have the following 
definition. 

DEFINITION 7.1 The sequence {Sn(z)} converges uniformly to f(z) on the 
set T if for every £ > 0, there exists a positive integer N£ (which depends only 
on £) such that 

(3) ifn > N€, then \ S„(z) - f(z) | < £ for all z e T. 

If in the preceding, Sn(z) is the nth partial sum of a series 2 c*(z "" °0*» w e s aY t n a t 

A = 0 

the series 2 c*(£ ~~ °0A converges uniformly to/(z) on the set T. 
£=0 

E X A M P L E 7.1 The sequence {Sn(z)} = \ez + -> converges uniformly to 

f(z) = ez on the entire complex plane because for any £ > 0, statement (3) is satisfied 
for all z if Nt is any integer greater than 1/e. We leave the details for showing this 
as an exercise. 

A good example of a sequence of functions that does not converge uniformly 
is the sequence of partial sums comprising the geometric series. Recall that the 

geometric series has S„(z) = 2J zk = — converging to f(z) = for all 
*=o 1 — z 1 — z 

z e D\(0). Since the real numbers are a subset of the complex numbers, we can show 
statement (3) is not satisfied by demonstrating it does not hold when we restrict 
our attention to the real numbers. In that context, D\(0) becomes the open interval 
( - 1 , 1), and the inequality \Sn(z) — f(z)\ < £ becomes \Sn(x) - f(x) | < £, which 
for real variables is equivalent tof(x) — £ < S„(x) <f(x) + £. If statement (3) were 
to be satisfied, then given £ > 0, Sn(x) should (for large enough values of n) be 
within an £-bandwidth of the function f(x) for all x in the interval (— 1, 1). Figure 
7.1 illustrates that there is an £ such that no matter how large n is, we can find 
XQ e (— 1, 1) such that Sn(xo) is outside this bandwidth. In other words, this figure 
illustrates the negation of statement (3), which in technical terms is 
(4) there exists £ > 0 such that for all positive integers N, there is some n > N 

and some zo e T such that | Sn(zo) — f(zo) | ^ £. 

We leave the verification of statement (4) when applied to the partial sums of a 
geometric series as an exercise. 
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y = Six) 

0.5 x l 

y=f(x)-E 

FIGURE 7.1 The geometric series does not converge uniformly on 
( -1 , 1). 

There is a useful procedure known as the Weierstrass M-test, which can help 
determine whether an infinite series is uniformly convergent. 

Theorem 7.1 (Weierstrass Af-Xest): Suppose the infinite series 2 uk(z) 
k = 0 

has the property that for each k, | uk(z) | ^ Mkfor all zeT. If2j Mk converges, 

then 2 uk(z) converges uniformly on T. 

k = 0 

/:=0 

Proof Let S„(z) = 2 uk(z) be the nth partial sum of the series. If n > m, 
k = 0 

n-\ 

\S„(z) - Sm(z)\ = \um(z) + w,„, \(z) + • • • + MW_I(Z)| < 2 Mk-

Since the series 2 Mk converges, the last expression can be made as small as we 
k = 0 

wish by choosing m large enough. Thus, given £ > 0, there is a positive integer N£ 

such that if n, m > N£i then | Sn(z) — Sm(z) \ < £. But this means that for all z e T, 
{Sn(z)} is a Cauchy sequence. According to Theorem 4.2, this sequence must con­
verge to a number which we might as well designate by f(z). That is, 

f(z) = lim S„(z) = 2 uk(z). 
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This gives us a function to which the series 2 uk(z) converges; it remains to be 

shown that the convergence is uniform. Let e > 0 be given. Again, since 2 Mk 

converges, there exists NE such that if n > NZ9 then ^ Mk< z. Thus, if n > 7Ve, we 

have for all z e T that 

\f(z)-Sn(z)\ 2 «A(Z) - 2 M*(Z) 
*=0 * = 0 

2 uk(z) 
k=n 

< e, which completes the argument. 

As an application of the Weierstrass M-test, we have the following. 

Theorem 7.2 Suppose the power series 2J Ck(z — a)* has radius of con-

vergence p > 0. Then for each r, 0 < r < p, the series converges uniformly 
on the closed disk Dr(a) = {z: | z — a | < r} . 

Proof Given r with 0 < r < p, choose z0 c £>P(o0 such that j zo — oc | = r. 

Since ^ c*(z " oO* converges absolutely for z e Dp(a) (Theorems 4.9 and 4.11, 

part ii), we know that ^] I ck(zo - a)k\ = 2 1^1 r* converges. For all z e Dr(a) 

it is clear that 

\ck(z- a)k\ = \ck\ \z- a | * < \ck\r
k. 

The conclusion now follows from the Weierstrass M-test with Mk = \ck\ rk. 

Corollary 7.1 For each r, 0 < r < 1, the geometric series converges uni­
formly on the closed disk Dr(0). 

The following theorem gives important properties of uniformly convergent 
sequences. 

Theorem 7.3 Suppose {Sk} is a sequence of continuous functions defined 
on a set T containing the contour C. If {Sk} converges uniformly to f on the 
set T, then 

(i) f is continuous on T, and 
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(ii) lim Sk(z) dz = lim Sk(z) dz = f(z) dz. 
£_»«, JC JC £_>«, JC 

Proof (i) Given zo e T, we must prove lim/(z) = f(zo). Let e > 0 be given. 
Z-*ZQ 

Since Sk converges uniformly on T, there exists a positive integer N£ such that 
i i £ 

for all z e T, \f{z) — Sk(z) \ < - whenever k > N£. Since SNg is continuous at zo, 
£ 

there exists 8 > 0 such that if | z — Zo \ < 8, then | SN((z) - SM£(ZQ) \ < ~z • Hence, if 

| z — Zo I < 8, we have 

| f(z) - /(zo) | = | f(z) - SNt(z) + SNt(z) - SNg(zo) + SNe(zo) - /(¾) | 

* \f(z) ~ SN((z)\ + \SNe(z) - SNe(z0)\ + \SN£(z0) - / ( ¾ ) | 

e e e 
< - + - + - = £. 

3 3 3 
(ii) Let e > 0 be given, and let L be the length of the contour C. Since {Sk} 

converges uniformly to /on T, there exists a positive integer Ne such that if k > JVe, 
then | S*(z) - /(z) I < - for all z e T. Since C C T, max I Sk(z) - f(z)\ < 7 , so if 

N£, 

j c Sk(z) dz - \c f(z) dz\ = \\c [Sk(z) ~ f(z)] dz 

< max I Sk(z) ~ f(z) I L (by Lemma 6.2) 
ZeC 

Corollary 7.2 7/" the series 2 c„(z ~~ oc)w converges uniformly to f(z) on 
n = 0 

the set T, and C is a contour contained in T, then 

n = 0 JC JC „ = Q JC 

^ 1 
EXAMPLE 7.2 Show that -Log(l - z) = X " z" f o r a11 * G D ' (°)-

Solution Given z0 e Di(0), choose r such that 0 < | zo | < r < 1, thus 

ensuring that zo e £>r(0). By Corollary 7.1, the geometric series 2 zrt converges 
n=0 
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uniformly to on Dr(0). If C is any contour contained in D r(0), Corollary 7.2 

gives 

dz = 2 \ zn dz. 

Now, the composite function -Log( l - z) is an antiderivative for on Df(0), 
1 - z 

where Log is the principal branch of the logarithm. Clearly, zn + ] is an anti-
n + 1 

derivative for the function zn. Hence, if C is the straight line segment joining 0 to 
z0, Theorem 6.7 gives 

- L o g ( i - z ) | ; = i _ i - i Z - [;, 

which becomes 

- L o g ( l - z 0 ) = X - ^ z o " + 1 = J U z S 
»=o n + 1 n=i « 

Since zo e Di(0) was arbitrary, we are done. 

EXERCISES FOR SECTION 7.1 
1. This question relates to Figure 7.1. 

(a) For x near — 1, is the graph of Sn(x) above or below /(*)? Explain. 
(b) Is the index n in Sn(x) odd or even? Explain. 
(c) Assuming the graph is accurate to scale, what is the value of n in Sn(x)l 

2. Complete the details to verify the claim of Example 7.1. 
" - I 1 _ 7« J 

3. Show that statement (4) holds if S„(z) = 2 ^ = ~; ./fe) = ; . and T = D,(0). 
*=o 1 - z 1 - z 

Hint: Given e > 0, and a positive integer w, consider zn = e'7"-
4. Prove that the following series converge uniformly on the sets indicated. 

( a ) £ - L ' o n A ( 0 ) = { z : | z | ^ 1 } 

*=o (Z If 

(c> X -; TT o n #/?(0), where 0 < R < °o 
A=O z2 + Ar 

7A — 

(d) X ^ 7 on A-(O), where 0 < r < 1. 
jt=o z + 1 

5. Why can't we use the arguments of Theorem 7.2 to prove that the geometric series 
converges uniformly on all of £>i(0)? 

6. By starting with the series for cos z given in Section 5.4, choose an appropriate contour 
and use the methodology of Example 7.2 to obtain the series for sin z. 
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7. Suppose that {fn(z)} and {gn(z)} converge uniformly on the set T. 
(a) Show that the sequence {f„(z) + g„(z)} converges uniformly on the set T. 
(b) Show by example that it is not necessarily the case that {fn(z)gn(z)} converges uni­

formly on the set T. 
8. On what portion of £>i(0) does the sequence {nzn}^x converge, and on what portion 

does it converge uniformly? 

7.2 Taylor Series Representations 

In Section 4.2 we saw that functions defined by power series have derivatives of all 
orders. In Section 6.5 we saw that analytic functions also have derivatives of all 
orders. It seems natural, therefore, that there would be some connection between 
analytic functions and power series. As you might guess, the connection exists via 
the Taylor and Maclaurin series of analytic functions. 

Definition 7.2 Iff(z) is analytic at z = a, the series 

/ (a) + f'(a)(z - a) + J-^- (z- a)2 + ^-^- (z - a)3 + . . . 

* = o K\ 

is called the Taylor series for f centered around a. When the center is a = 0, 
the series is called the Maclaurin series for f 

To investigate when the preceding series converges we will need the following 
lemma. 

Lemma 7.1 If z, Zo» and a are complex numbers with z ^ zo, and z ^ a, 
then 

z - zo z - a (z - a)2 (z - ay 

| (zo- a)" | 1 feo~ a)"+1 

(z- a)"+1 z- z0 (z- a)"41 ' 

where n is a positive integer. 

1 1 Proof 
z - zo (z - a) - (zo - a) 

1 1 

z - a 1 - (¾ - OL)/(Z - a) 

The result now follows from Corollary 4.3 if in that corollary we replace z by 

. We leave the verification details as an exercise. 
z - a 
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Theorem 7.4 (Taylor's Theorem) Suppose f is analytic in a domain G, 
and that DR(a) is contained in G. Then the Taylor series for f converges to 
f(z) for all z in DR(a); that is, 

(2) f(z) = 2 f(k)(a) 
G) k\ 

(z - a)k for all z e DR(a). 

Furthermore, this representation is valid in the largest disk with center a that 
is contained in G, and the convergence is uniform on any closed subdisk 
5,(a) = {z: | z - a | < r} for 0 < r < R. 

Proof We observe first that if we can establish equation (2), the uniform 
convergence on Dr(a) for 0 < r < R will follow immediately from Theorem 7.2 by 

/a)(oc) 
equating ck of that theorem with —• . 

Let zo € DR(a) be given, and let r designate the distance between zo and a, so 
that | zo — ot | = r. We note that 0 < r < J?, since zo belongs to the open disk DR(a). 
Choose p such that 

(3) 0 < r < p < R, 

and let C = C * (a) be the positively oriented circle centered at a with radius p as 
shown in Figure 7.2. 

FIGURE 7.2 The constructions for Taylor's theorem. 

Since C is contained in G, we can use the Cauchy integral formula to get 

2ni Jc z — Zo 

Replacing 
1 

z - Zo 
in the integrand by its equivalent expression in Lemma 7.1 gives 
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(4) / (¾) - - fP - + «LZJL + 
(z 

( zo - a ) " " 

+ 
(zo - a ) " 

2ni Jc 

+ 

z - zo (z - a)" + 

/fe) dz zo 

z - a 

(zo - a) 

a)2 (z 

f(z) dz 

f(z) dz 

a)"+ l 

271/ 

- a y + 1 f 

2rc/ JC(Z -

(z - a ) 2 

f(z) dz 

~h • 

(z - zo)(z - a) ' 

+ 
(zo ~ a ) 

2TC/ 

^ f /(z) & 
J c ( z - a)"4 

,/i+j ' 

where n is a positive integer. The last term in this expression can be put in the form 

, < , „ , , I f (zo-aT'f{z)dz 
(5) En(zo) = — ~ —7 • 

2ni Jc(z - zo)(z - a)nhl 

Recall also by the Cauchy integral formula that for k = 0, 1, 2, . . . , 

= f . f(z) dz 
Jc \ 

(6) 
2ni 

fk)(a) 
k\ J K"' Jc(z - a )*+ l ' 

Substituting equations (5) and (6) into equation (4) now gives 

(7) /(zo) = 2 S ^ &> " a^ + £ ' ^ ' 

The summation on the right-hand side of equation (7) is the first n + 1 terms of the 
Taylor series. Our proof will be complete if we can show that the remainder, En(zo), 
can be made as small as we please by taking n to be sufficiently large. 

We will use the ML inequality (Lemma 6.2) to get a bound for | En(zo) \ • 
According to our constructions shown in Figure 7.2, we have 

(8) | zo - oc | = r and | z - a | = p. 

By inequality (6) of Section 1.3, we also have 

(9) | z - z 0 | = | ( z - a) - ( zo - a ) | 

> j z - a | - | zo - a | 
= p - r. 

If we set M = max \f(z) | for z on C, equations (8) and (9) allow us to conclude 

(10) (zo - <xr lm 
(z - zo)(z - a ) " 

1 

p - r 
M for z e C. 

The length of the circle C is 2np, so using the ML inequality in conjunction with 
equations (5) and (10) gives 

(11) l ^ z o ) ! ^ ! 1 
1 ' 2ic \ P 

Mi 1 1 

P " ^ 
M(27ip). 
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According to equation (3), the fraction - is less than 1, so I - I (and hence 
P \Py 

the right side of equation (11)) goes to zero as n goes to infinity. Thus, given any 
e > 0, we can find an integer Ns such that | En(zo) \ < £ for n > NE, and our proof 
is complete. 

I f / is an entire function, then/has no singular points, and equation (2) holds 
for all complex numbers z, making the radius of convergence of the Taylor series 
equal to infinity. The fact that equation (2) is valid in the largest disk with center a 
that is contained in G is made clear by the following corollary. 

Corollary 7.3 Suppose that f is analytic in the domain G that contains 
the point z = ot. Let z0 be a singular point of minimum distance to a. If 
| zo — ot I = /?, then 

(i) the Taylor series (2) converges to f(z) on all of DR(a), and 

(ii) ifS>R, the Taylor series (2) does not converge tof(z) on all ofDs(a). 

Proof 
(i) The argument for (i) is identical to the proof of Theorem 7.2. 
(ii) If | zo - a | = Ry then zo e Ds(a) whenever S > R. If for some S > R, 

the Taylor series converged to/(z) on all of £>s(a), then according to Theorem 4.13, 
/would be differentiable at ZQ, contradicting the fact that zo is a singular point. 

EXAMPLE 7 .3 Show that = 2) (" + Oz" is valid for z e £>i(0). 
(1 - zr «=o 

Solution We established this identity with the use of Theorem 4.13 

in Example 4.18. We will now do so via Theorem 7.4. If f(z) — — - , a 

standard induction argument (which we leave as an exercise) will show that 

fn\z) = — —; • Thus,/(w)(0) = (n + 1)!, and identity (2) gives (with n taking 
(1 - z)n+I 

the role of k) 

(1 - zY "=o n\ «=o n\ n=o 

Furthermore, since the point zo = 1 is the closest singularity to the point 
a = 0, Corollary 7.2 assures us that equation (12) must be valid for all z e Dj(0). 
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EXAMPLE 7 . 4 Show that for z e ZMO), 

(13) —^~2 = 2 z2» and —]—2 - 2 (-Ifz2". 
1 - zl n=o 1 + r «=o 

Solution We know that for z e Dj(0), 

(14) —!— = E z"-

1 — z *=o 

If we let z2 take the role of z in equation (14), we get that = 2 (^2)" = 

1 ~ Zl n=0 
£ z2" for z2 e D^O). But z2 e D,(0) if and only if z e D^O). Letting -z2 take the 
K=0 

role of z in (14) gives the second part of equation (13). 

Corollary 7.3 clears up what often seems to be a mystery when series are first 
introduced in calculus. The calculus analog of equation (13) is 

(15) - ^ = 2 ^ and - ^ = 2 ( - 1 ) ^ for x € ( - 1 , 1 ) . 

For many students, it makes sense that the first series in equation (15) converges 

only on the interval (—1, 1) because is undefined at the points x = ±1. It 
1 — x1 

seems unclear as to why this should also be the case for the series representing 

, since the real-valued function f(x) = is defined everywhere. The 
1 + xl 1 + xl 

explanation, of course, comes from the complex domain. The complex function 

f(z) = is not defined everywhere. In fact, the singularities o f / a r e at the 
1 + zl 

points ±/, and the distance between them and the point a = 0 equals 1. According 
to Corollary 7.3, therefore, equation (13) is valid only for z e D\(0), and thus equa­
tion (15) is valid only for x € ( - 1 , 1). 

Alas, there is a potential fly in this ointment. Corollary 7.3 applies to Taylor 
series. To form the Taylor series of a function, we must compute its derivatives. 
Since we did not get the series in equation (13) by computing derivatives, how do 
we know they are indeed the Taylor series centered about a = 0? Perhaps the Taylor 
series would give completely different expressions than the ones given by equation 
(13). Fortunately, the following theorem removes this possibility. 

Theorem 7.5 (Uniqueness of Power Series) Suppose that in some disk 
Dr(a) we have 

f(z) = 2 an(z ~ ay = 2Wz - a)". 
/7 = 0 « = 0 

Then an = bnfor n = 0, 1, 2, . . . . 
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Proof By Theorem 4.12, a„ = ^ - ^ = b„ for n = 0, 1, 2, . . . . 
n\ 

Thus, any power series representation off(z) is automatically the Taylor series. 

EXAMPLE 7 .5 Find the Maclaurin series off(z) = sin3z. 

Solution Computing derivatives for/(z) would be an onerous task. Fortu­
nately, we can make use of the trigonometric identity 

3 . 1 
sinJz = — sin z — 7 sin 3z. 

4 4 
Recall that the series for sin z (valid for all z) is 

, 2 « + l 

sinz = 2 (-!)"• 
,7¾ (2n + 1)! 

Using this identity, we obtain 

4„4t) ' (2n+ 1)! 4;K> (2n + 1)! 

= y , lYW~Wl_f 3 ( l - 9 " ) z ^ ' 
„tt)V 4 ( 2 n + l ) ! „~, 4 (2«+1) ! ' 

By the uniqueness of power series, this last expression is the Maclaurin series for 

The preceding argument used some obvious results of power series represen­
tations that we have not yet formally stated. The requisite results are part of the 
following. 

Theorem 7.6 Let f and g have the power series representations 

f(z) = | > „ ( z - a)" forze Dr,(a) and 

g(z) = S b„(z - a)" for z e D,2(a). 

If'r = min {ru r2), and (3 is any complex constant, then 

(16) p/(z) = J pa„(z - a)" for z e Dr,(a) 

(17) f(z) + g(z) =^(a„ + bn){z - a)" forzt Dr(a) and 
n=Q 
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(18) f(z)g(z) = 2 cn(z - OLY for z e A-(a), where cn = ]£ a*V*. 
// = 0 Jt = 0 

Identity (18) w known as the Cauchy product o/the series for f(z) and g(z). 

Proof We leave the details for (16) and (17) as an exercise. To establish 
(18) we observe that the function h(z) = f(z)g(z) is analytic in Dr(a). Thus, for 
z e Dr(oc), 

h'{z) = f(z)g'{z) + f(z)g(z\ h\z) = f"(z)g(z) + If (z)g\z) + /(z)g"(z). 

By mathematical induction, the preceding pattern can be generalized to the nth 
derivative, giving Leibniz's formula for the derivative of a product of functions: 

(19) W\z) = 2 TTT^TTT fk(z)g{n~k)(z). 

k=ok\(n - k)\ 

(We will ask you to show this as an exercise.) 

By Theorem 4.13, we know that 
/*«x) g^-k\a) 

k\ (n - k)\ 

so equation (19) becomes 

„ m h{n)(a) ^ /*(a) gin~k\a) v i. 
(2°) — T " = ^ ~7T~ 7 777 = 2 , ***«-*• 

n! *=o &! (« - A:)! *=o 
Now, according to equation (2), we know that 

^ h(tt)(a) 
(21) h{z) = 2 — 7 ^ fe - a)-. 

Substituting equation (20) into equation (21) gives equation (18) because of the 
uniqueness of power series. 

EXAMPLE 7-6 Use the Cauchy product of series to show that 

7~-~Vi = 2 (" + W fo r z e D ' (°)-
(l - zr »=o 

Solution Let/(z) = g(z) = = 2 zn for z e Z),(0). In terms of The-
1 — z «=o 

orem 7.6, we have an — bn — \ for all n, and thus equation (18) gives 

1 ^ / ^ (1 - z)-
= h(z) = /(z)g(z) = 2 ( 2 akK-k )zn = 2 (" + 0 ^ , as required. 

w-0 \ *=0 / n = 0 
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EXERCISES FOR SECTION 7.2 

1. Show that sinh z = X ~^ ', f° r a ^ Z-
«=o (2/1 + 1)! 

» z2" 
2. Show that cosh z = 2 f° r a ^ £* 

n=o (2«)! 
3. Show that Log( 1 + z) = 2 " "— zn f o r a11 z e #i(0). 

«=1 /i 

4. Find the Maclaurin series for arctan z. Hint: Choose an appropriate contour and integrate 
the appropriate series given in Example 7.4. 

5. Find the Maclaurin series for cos3z. Hint: Use the trigonometric identity 4 cos3z = 
cos 3z + 3 cos z, 

6. Find the Taylor series for/(z) = centered about a = 1. Where does this series 
z - 2 

converge? Hint: = = (z — 1) . Expand the last expression 
z - 2 I - (z - 1) 1 - (z - 1) 

using a geometric series. 

7. Find the Taylor series for/(z) = centered about a = 1. Where does this series 
z _ 3 

oi/- 1 ~ Z A \ Z - l 
converge? If,„r. — = ^ - J j _ [ ( , _ 1 ) / 2 ] • 

8. Let/(z) = — , and set/(0) = 0. 
z 

(a) Explain why/ is analytic at z = 0. 
(b) Find the Maclaurin series for/(z). 

(c) Find the Maclaurin series for g(z) = l>̂ -
9. Find the Maclaurin series for/(z) = (z2 + l)sin z. 

10. Let p denote a fixed complex number, and let/(z) = (1 + z)p = expfp Log(l + z)\ be 
the principal branch of (1 + z)p. Establish the binomial expansion 

(1 + Zf = 1 + Pz + Z- + Z3 + • • • 

^ , B(B - 1)(B - 2 ) - - - ( 3 - / 1 + 1 ) 
= 1 + 2 — — -, " z" to all z e D,(0). 

11. Show that/(z) = has its Taylor series representation about the point a = i given 
1 - z 

by 

f(z)= 2 n
( Z " ' y

+ 1 for all Z€{z: | z - / | < ^2} 
n=0 (1 - 0 

12. Use the identity cos z = - (e'c + e '") to find the Maclaurin series for/(z) = e~cos z = 

-ei] f i}:- + - e ( 1 -''>". 
2 2 
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13. Suppose that/(z) = 2 , cnZ" is an entire function. 
/i = 0 

(a) Find a series representation for f(z) using powers of z. 
(b) Show that f(z) is an entire function. 
(c) Does 7 ( I ) = / ( z ) ? Why? 

14. Find/(3)(0) for the following functions. 

(a)/(z> = 5) (3 + ( - i m n 

/7 = 0 

(b)g(Z) = I ( - i ^ z » 

(c) Hz) " /t=t)(^3 + 0" 

15. Let/(z) = S « " = 1 + z + 2z2 + 3z3 + 5z4 + 8z5 + 13z6 + • • • , where the coefficients 
n = 0 

cn are the Fibonacci numbers defined by c{) = 1, ci = 1, and c„ = cn_\ + c„_2 for n > 2. 

(a) Show that/(z) = r for all z in the disk DR(0) for some number /?. Hint: 
\ - z - z2 

Show that/satisfies the equation/(z) = 1 + z/(z) + z2f(z). 
(b) Find the value of R in part a for which the series representation is valid. Hint: 

Find the singularities of f(z). 
16. Complete the details in the verification of Lemma 7.1. 
17. We used Lemma 7.1 in establishing identity (4). However, Lemma 7.1 is valid provided 

z # Z{) and z ^ a . Explain why in identity (4) this is indeed the case. 

18. Prove by mathematical induction that fn)(z) = — ; in Example 7.3. 

19. Establish identities (16) and (17). 
20. Use Maclaurin series and the Cauchy product in identity (18) to verify the identity 

sin 2z = 2 cos z sin z up to terms involving z5. 
21. The Fresnel integrals C(z) and S(z) are defined by 

C(z) = JT'cos(g2) di and S(z) = £ sin«2) </g, 

and F(z) is defined by the equation F(z) = C(z) + iS(z). 
(a) Establish the identity 

F(z) = £ exp(/a dt 

(b) Integrate the power series for exp(^2) and obtain the power series for F{z). 
(c) Use the partial sum involving terms up to z9 to find approximations to C(1.0) and 

5(1.0). 
22. Compute the Taylor series for the principal logarithm /(z) = Log z expanded about the 

center z0 = - 1 + i". Hint: Use f'(z) = [z - ( - 1 + / ) + ( - 1 + /)] ' and expand/'(z) 
in powers of [z — ( — 1 + i)], then apply Corollary 7.2. 

23. Le t /be defined in a domain that contains the origin. The function/is said to be even 
iff(~z) = /(z), and it is called odd i f / ( - z ) = - / (z) . 
(a) Show that the derivative of an odd function is an even function. 
(b) Show that the derivative of an even function is an odd function. 
Hint: Use limits. 
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24. (a) If f(z) is even, show that all the coefficients of the odd powers of z in the Maclaurin 
series are zero, 

(b) If f{z) is odd, show that all the coefficients of the even powers of z in the Maclaurin 
series are zero. 

25. Establish identity (19) by using mathematical induction. 
26. Consider the following function: 

f(z) = 
- when z ^ - , 

2 1 - z 

Q when z = 

(a) Use Theorem 7.4 to show that the Maclaurin series for/(z) equals ^ z". 

(b) Obviously, the radius of convergence of this series equals 1 (ratio test). However, 
the distance between 0 and the nearest singularity off equals y . Explain why this 
does not contradict Corollary 7.3. 

27. Consider the real-valued function/defined on the real numbers as follows: 

/ ( • * ) = 

1/r when x ^ 0 , 
0 when x = 0. 

(a) Show that for all n > 0 , /^ (0) = 0, where fn) is the nth derivative off. Hint. Use 
the limit definition for the derivative to establish the case for n = 1, then use math­
ematical induction to complete your argument. 

(b) Explain why this gives an example of a function that, although differentiable every­
where on the real line, is not expressible as a Taylor series about 0. Hint: Evaluate 
the Taylor series representation for/(x) when JCT^O, and show that the series does 
not equal f(x). 

(c) Explain why a similar argument could not be made for the complex-valued function 
g defined on the complex numbers as follows: 

[e~^ 
I ° 

when z ^ 0 , 
* u ; ' n When z = 0. 

Hint: Show that g(z) is not even continuous at z = 0 by taking limits along the real 
and imaginary axes. 

28. Explain how Laurent series and series solutions for differential equations studied in 
calculus are different. How are they similar? 

29. Write a report on series of complex numbers and/or functions. Include ideas and ex­
amples not mentioned in the text. Resources include bibliographical items 10, 83, 116, 
and 153. 

3D. Write a report on the topic of analytic continuation. Be sure to discuss the chain of 
power series and disks of convergence. Resources include bibliographical items 4, 19, 
46, 51, 52, 93, 106, 128, 129, 141, 145, and 166. 

7.3 Laurent Series Representations 

Suppose f(z) is not analytic in D/?(a), but is analytic in D^(a) = {z: 0 < | z - a | 

< /?}. For example, the function/(z) = — ez is not analytic when z = 0 but is 
z 
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analytic for \z\ > 0. Clearly, this function does not have a Maclaurin series rep­
resentation. If we use the Maclaurin series for g(z) = ez, however, and formally 
divide each term in that series by z3, we obtain the representation 

1 1 1 1 1 z z2 z3 

f(z) = - ez = _ + _ + — + - + - + - + - + . . . 
JK) z3 z3 z2 l\z 3! 4! 5! 6! 

that is valid for all z such that \z\ > 0. 
This example raises the question as to whether it might be possible to gener­

alize the Taylor series method to functions analytic in an annulus 

A(r, R, a) = {z: r < |z - a | < R}. 

Perhaps we can represent these functions with a series that employs negative powers 

of z in some way as we did with/(z) = — ez. As you will see shortly, this is indeed 
z 

the case. We begin by defining a series that allows for negative powers of z. 

Definition 7.3 Let cn be a collection of complex numbers for n = 0, ±1, 

±2, ±3, . . . . The doubly infinite series 2 cn(z ~ cc)", also called a Laurent 

series, is defined by 

(1) 2) cn(z - a)" = 2 c_n(z - a)-" + 2) cn(z ~ «)"• 

provided the series on the right-hand side of this equation converge. 

Note: You may recall that by 2 cn(z — Oi)n we really mean 
/( = 0 

c0 + 2 cn(z ~ °0"- At times it will be convenient to write 2^ cn(z — OL)" as 
/1=1 / 1 = - 0 0 

2 cn(z - a)" = 2 cn(z - a)" + X c„(z ~ a)" 
« = - « » » = - 0 0 n = 0 

rather than using the expression given in equation (1). 

Definition 7.4 Given 0 < r < R, we define the annulus centered at a with 
radii r and R by 

A(r, R, a) = {z: r < \ z - a | < R}. 

The closed annulus centered at a with radii r and R is denoted by 

A(r, R, a) = (z: r < | z - a | < R). 

Figure 7.3 illustrates these terms. 
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FIGURE 7.3 The closed annulus A(r, R, a). The shaded portion is the open 
annulus A(r, R, a). 

Theorem 7.7 Suppose the Laurent series 2 cn(z ~~ a)n converges on an 

annulus A(r, R, a). Then the series converges uniformly on any suhannulus 
A(s, r, a), where r < s < t < R. 

Proof According to Definition 7.3, 

2 cn(z - a)n = 2 c-n(z - a)-" + 2 cn(z - ay. 
i = - «> n - 1 /2 - 0 

By Theorem 7.2, the series 2 c"(£ ~~ a ) " m u s t converge uniformly on Dt(a). 

* Weierstrass M-test, it is easy to show that the series 2 c-n(z — a)~n con-
n - l 

> uniformly on {z: \z\ ^ s} (we leave the details as an exercise). Combining 
two facts yields the required result. 

The main result of this section specifies how functions analytic in an annulus 
; expanded in a Laurent series. In it, we will use symbols of the form Cp

+ (a), 
we remind you designate the positively oriented circle with radius p and 
a. That is, Cp (a) = {z: | z - a | = p} , oriented in the positive direction. 

Theorem 7.8 (Laurent's Theorem) Suppose 0 < r < R, and that f is 
analytic in the annulus A = A(r, R, a) = {z'. r < \z — ft < R} shown in 
Figure 7.3. If p is any number such that r < p < R, then for all Zo e A, f has 
the Laurent series representation 

%zo) = 2 cnizo - ft)" = 2 c-n(zo - a)~n + 2 Cnizo - ay 
n—~<?° /1=1 / 2 = 0 

where for n = 0, 1, 2, . . . , the coefficients c_n and cn are given by 
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(3) 
1 f /(z) . , I f /(z) . 

C-n = ~— z T dz and cn = — : dz. 
2ni Jcy (z - ay

n+l 2ni Jcy (z - a)"+1 

Moreover, the convergence in equation (2) is uniform on any closed suban-
nulus A(s, t, a) = {z: s < | z — a | < t}, where r < s < t < R. 

FIGURE 7.4 The annulus A (shaded) and in its interior the circles C0, C\, and C2. 

Proof If we can establish equation (2), the uniform convergence on 
A(s, t, a) will follow from Theorem 7.7. Let zo be an arbitrary point of A. Choose 
r0 small enough so that the circle C0 = C^Q(ZO) is contained in A. Since/is analytic 
in Dro(zo), the Cauchy integral formula gives 

(4) f(z 
:o) = il m 

2ni Jc0(z - zo) 
dz. 

Let C{ = Cr
r(a) and C2 = C^(a), where we choose r{ and r2 so that C0 lies in the 

region between C\ and C2, and r < r\ < r2 < R, as shown in Figure 7.4. Let D be 
the domain consisting of the annulus A except for the point Zo- The domain D in­
cludes the contours C0, C\, and C2, as well as the region between C2 and C0 + C\. 

f(z) 
(z - zo) 

In addition, since Zo does not belong to D, the function 

by the extended Cauchy-Goursat theorem we obtain 

(5) ±t r ^ - ^ = ^ f - ^ - & + -*-[ - ^ - ^ , 
27t! Jc2 (z - zo) 2ni Jc0(z- zo) Ini Jc, (z - zo) 

Combining equation (5) with equation (4) and rearranging terms gives 

is analytic on D, so 

(6) /(zo) 
2ni Jc 

M 
c2 (z ~ Zo) 

dz 
Ini J( 

f(z) 
2ni ic] (z - zo) 

dz. 
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If z e C2, then | zo - ex | < | z - a | so by use of the geometric series (Theorem 4.8) we have 

1 1 
(7) 

Zo (Z a) - (z0 - a) 
1 

(z " a) 1 
Zo a 

a 
= f o f ^ (Provided Z eC 2 ) . 

Moreover, by the Weierstrass M-test, it is possible to show that the preceding series 
converges uniformly for z e C2. We leave the details as an exercise. 

Likewise, if z e Cu we leave as an exercise for you to show by Corollary 4.2 
that 

(8) 
1 

z - zo 
= -2 (z - a)" 

n-ofe - a)"' 

and that the convergence is uniform for z e C\. 
Substituting the series for equations (7) and (8) into equation (6) yields 

(9) /(¾ tT7/<*>* + 
1 I f f (zo - cc)" 

2ni Jc2 ^0 (z- a)n^J w "^ 2TI/ JC, ,¾ (z0 - a) 12 (z~a)n / r w —/fe) <fc 

Since the series in equation (9) converge uniformly on Ci and C[y respectively, we 
can interchange the summations and the integrals in accord with Corollary 7.2 to 
obtain 

(10) /(zo) = £ 
1 f f(z) dz 

' Jc2(z - a)" ' 

• 1 

2ni Jc2(z ~ a)J 

271¾ 

(zo 

f(z)(z - a)" dz 

a)" + 

1 
(zo - a)" 

If we move some terms around in the second series of equation (10) and reindex, 
we get 

(11) f(zo) = 2 J 
2ni 

_ f f(z) dz 
iJc2(z - a ) " f l _ 

L f /W 
ni JC\ (z -

(zo - a)" + 

dz (zo - a)-". 
( z - a ) - " n 

We apply the extended Cauchy-Goursat theorem once more to conclude that the 
integrals taken over C2 and C\ in equation (11) give the same result if they are taken 
over the contour Cp(a), where p is any number such that r < p < R. This yields 

" J _ f f(z)dz 
2ni Jc^(z - a)" f l_ 

2TT/ 

(12) /(zo) = S 
/1=0 

i 
(zo - a)" + 

(z - ay 
dz (zo - a)-". 
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Finally, writing the second series first in equation (12) gives 

2ni icy(z - a)-"+ 1 

f(z) dz 

(13) /(¾) = 2 

1 
dz (¾ - a) -" + 

J-f 
2TU J9-.' (z - a)y — r/V+l ta> - a)". 

Since zo e A was arbitrary, this establishes equations (2) and (3), and our proof of 
Theorem 7.8 is complete. 

What happens to the Laurent series if / i s analytic in the disk DR(a)l If we 
look at equation (11), we see that the coefficient for the positive power (z0 — oc)" 
equals f{n)(zo)/n\ by using Cauchy's integral formula for derivatives. Hence, the 
series in equation (2) involving the positive powers of (zo — oc) is actually the Taylor 
series for f. The Cauchy-Goursat theorem shows us that the coefficients for the 
negative powers of (zo — oc) equal zero. In this case, therefore, there are no negative 
powers involved, and the Laurent series reduces to the Taylor series. 

Our next theorem delineates two important aspects of the Laurent series. 

Theorem 7.9 Suppose that f is analytic in the annulus A(r, R, a), and has 

Laurent series f(z) = 2J C^Z ~ oc)"/or all z e A(r, /?, a). 
/ 7 = - 0 0 

(i) Iff(z) = 2 b»(z - a)n for all z e A(r, R, a), then bn = cnfor all n. (In 
/ 7 = - 0 0 

other words, the Laurent series for f in a given annulus is unique.) 
(ii) For all z e A(r, R, a), the derivatives for f(z) may be obtained by termwise 
differentiation of its Laurent series. 

Proof We will prove part (i) only, since the proof for part (ii) involves no 
new ideas beyond what you have already seen in the proof of Theorem 4.13. Since 

the series ^ bn(z — a)" converges pointwise on A(r, R, a), Theorem 7.7 guarantees 
/?=-oo 

that this series converges uniformly on Cp
+(oc) for 0 < r < p < R. By Laurent's 

theorem, 

Cn 271/Jc 

-if 
2ni Jc 

f(z) . 
dz 

cy(z - oc)"fl 

(z- a)-"- 1 2 M z - <*>rdz 
2ni Jc** 

— 2 T ^ fe ~ a)m~n~' dz (since the convergence is uniform). 
/«=— 2ni Jcy 

Since (z — a)"1-""1 has an antiderivative for all z except when m = n, all the 
terms in the preceding expression drop out except when m — n, giving us 

Cn = ^~. L (z ~ oc)-1 dz = bn. 
2m Jc^> 
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The uniqueness of the Laurent series is an important property because the 
coefficients in the Laurent expansion of a function are seldom found by using equa­
tion (3). The following examples illustrate some methods for finding the Laurent 
series coefficients. 

E X A M P L E 7 . 7 Find three different Laurent series representations for 
f(z) ~ 3/(2 + z — z2) involving powers of z. 

Solution The function /has poles at z = - 1 , 2, and is analytic in the disk 
D: | z | < 1, in the annulus A: 1 < | z \ < 2, and in the region R: \z\> 2. We will 
find a different Laurent series for / i n each of the three domains D, A, and R. We 
start by writing/in its partial fraction form: 

3 1_ 1 1 
(14) f(z) - ( 1 + z)(2 _ z) - j + z + 2 1 _ {d2). 

We can use Theorem 4.8 and Corollary 4.2 to obtain the following representations 
for the terms on the right side of equation (14): 

(15) = y (-\Yzn valid for \z\ < 1, 
1 + Z n=0 

j °° (_ j \n +1 

(16) — — = ^ w valid for Izl > 1, 
1 + £ w = i z" ' ' 

1 /2 °° 7W 

( 1 7 ) 7 ^ ^ = 5 ^ v a H d f o r | z | < 2 , and 

I / O °° —Jn-X 
( 1 8 ) T ^ 2 j % 5 ^ - valid for | Z | > 2. 

Representations (15) and (17) are both valid in the disk D, and thus we have 

(19) f(z) = 2 
« - 0 

(-1)" + —t zn valid for \z\ < 1, 

which is a Laurent series that reduces to a Maclaurin series. In the annulus A, 
representations (16) and (17) are valid; hence we get 

(20) f(z) = 2 ^ ^ + S ^ T v a l i d fori < | z | < 2 . 

Finally, in the region R we can use representations (16) and (18) to obtain 

(21) /(z) = 2 ' —„ valid for \z\ > 2. 
n=\ Z 

E X A M P L E 7 .8 Find the Laurent series representation for/(z) = (cos z - l)/z4 

that involves powers of z. 
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Solut ion We can use the Maclaurin series for cos z — 1 to write 

Z2 + —7? Z6 + • • • 
2! 4! 6! 

/(z) = z4 

We formally divide each term by z4 to obtain the Laurent series 

E X A M P L E 7 . 9 Find the Laurent series for e x p ( - \lz2) centered at z0 = 0. 

Solut ion The Maclaurin series for exp Z is given by 

00 Z" 
(22) exp Z = 2 — valid for all Z 

«=0 n\ 

Using the substitution Z = — z'2 in equation (22), we obtain 

expl —- I = y\ ——- valid for \z I > 0. 

EXERCISES FOR SECTION 7,3 

1. Find two Laurent series expansions for/(z) = l/(z3 - z4) that involve powers of z. 
2. Find the Laurent series for/(z) = (sin 2z)/z4 that involves powers of z. 
3. Show that 

/ ( , ) = ' l ! 

\ - z 1 - 1' z - i 
1 - i 

has a Laurent series representation about the point zo = i given by 

/ ( Z ) = ^ = - S 1 T F v a . i d f o r | Z - ^ 7 2 . 

4. Show that 

1 - z _ y 1 
z - 2 „~o (z - 1)" 

is valid for | z ~ 1 | > 1. Hint: Use the hint for Exercise 6 in Section 7.2. 
5. Show that 

l - z _ j . 2" 
z - 3 ,fTo(z - 1)" 

is valid for I z - 1 I > 2. //wt: Use the hint for Exercise 7 in Section 7.2. 
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6. Find the Laurent series for sin(l/z) centered at a = 0. 
7. Find the Laurent series for f(z) = (cosh z — cos z)/z5 that involves powers of z. 
8. Find the Laurent series for/(z) = l/[z4(l - z)2] that involves powers of z and is valid 

for | z | > 1. Hint: 1/[1 - (1/z)]2 = z2/(l - z)2. 
9. Find two Laurent series for z~ '(4 - z)~'2 involving powers of z. Hint: Use the result of 

Example 7.6. 
10. Find three Laurent series for (z2 - 5z + 6)_ l centered at a = 0. 
11. Let a and b be positive real numbers with b > a > 1. Show that 

z - a ^ b" - a" 

holds for | z | > b. Hint: Log(z - a)/(z ~ b) = Log[l - (a/z)] - Log[l - (b/z)l 
12. Use the Maclaurin series for sin z and then long division to show that the Laurent series 

for esc z with a = 0 is 

1 + Z JL 1Z" + 
esc z = - + - + — : + • • • . 

z 6 360 

13. Can Log z be represented by a Maclaurin series or a Laurent series about the point 
a = 0? Give a reason for your answer. 

14. Show that coshfz + (1/z)] = 2,7=--, ant\ where 

1 f2* 
a„ — — cos nd cosh(2 cos 0) d§. 

2% Jo 

Hint: Let the path of integration be the circle C: \z\ —I. 
15. The Bessel function Jn{z) is sometimes defined by the generating function 

exp H) = 2 -wz)'"-

Use the circle C: \z\ = 1 as the contour of integration, and show that 

1 f* 
J,,(z) = ~ cos(n6 - z sin 6) dQ. 

71 JO 

16. Consider the real-valued function w(0) = 1/(5 - 4 cos 6). 
(a) Use the substitution cos 0 = (l/2)(z + 1/z) and obtain 

(z - 2)(2z - 1) 3 1 - z/2 3 1 - 2z 

(b) Expand the function/(z) in part (a) in a Laurent series that is valid in the annulus 
1/2 < \z\ < 2 and get 

/fe) = - + - S 2-n(z" + z~n). 
3 3 «=i 

(c) Use the substitutions cos(n0) = (l/2)(z" + z~") in part (b) and obtain the Fourier 
series for «(0): 

"(0) = ; + ; E 2"+,cos(n0). 
3 3 n=i 
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17. Suppose that the Laurent expansion f(z) = 2/7=-» anZ" converges in the annulus 
n < \z\ < r2 where r\ < 1 and 1 < r2. Consider the real-valued function w(0) = f(e'Q). 
Show that w(6) has the Fourier series expansion 

1 f2* 
M(9) = / ( ^ ) = 2 «/̂ /fl» where #„ = - - ^ - ^ / ( ^ ) ^ . 

18. T/?e Z~transform. Let {«„} be a sequence of complex numbers satisfying the growth 
condition \an\ < MR" for « = 0, 1, . . . for some fixed positive values A/ and R. Then 
the Z-transform of the sequence {a,,} is the function F(z) defined by 

Z(K}) = F(z) = 2 a„z-». 
H = 0 

Prove that F(z) converges for | z | > R. 
19. With reference to Exercise 18, find Z({an}) for the following sequences: 

(a) an = 2 (b) an = l/nl (c) a„ = U(n + 1) 
(d) an = 1 when n is even, an = 0 when n is odd 

20. With reference to Exercise 18, prove the shifting property for the Z-transform: 

Z({tfH+!}) = z[Z({a„}) - a0]. 

21. Use the Weierstrass M-test to show that the series 2 c~n(z - a)"" of Theorem 7.7 
n = i 

converges uniformly on the set (z: \z\ ^ s) as claimed. 
22. Show that the series in equation (7) converges uniformly for z e C2. 
23. Establish the validity of equation (8) by appealing to Corollary 4.2. 
24. Show that the series in equation (8) converges uniformly for z e C\. 

7.4 Singularities, Zeros, and Poles 

The point a is called a singular point, or singularity, of the complex func t ion / i f 
f(z) is not analytic at z = oc, but every neighborhood DR(a) of a contains at least 
one point at w h i c h / i s analytic. For example, the function/(z) = 1/(1 — z) is not 
analytic at z = 1, but is analytic for all other values of z. Thus, the point z = 1 is a 
singular point of/(z). As another example, consider g(z) = Log z. We saw in Section 
5.2 that g is analytic for all z except at the origin and at the points on the negative 
real axis. Thus, the origin and each point on the negative real axis is a singularity 
of g. 

The point a is called an isolated singularity of a complex func t i on / i f / i s not 
analytic at a, but there exists a real number R > 0 such t h a t / i s analytic everywhere 
in the punctured disk DR(a). Our function/(z) = 1/(1 - z) has an isolated singularity 
at z = 1, but the singularity at z = 0 (or at any point of the negative real axis) is 
not isolated for g(z) = Log z. Functions with isolated singularities have a Laurent 
series, since the punctured disk D*R(a) is the same as the annulus A(0, R, a). We 
now look at this special case of Laurent's theorem in order to classify three types 
of isolated singularities. 
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Definition 7.5 Let f have an isolated singularity at a with Laurent series 
expansion 

Az) = 2 cn(z ~ oc)" valid for all z e A(0, /?, a). 

Then we distinguish the following types of singularities at a: 

(i) If cn = 0 for n = — 1, — 2, — 3, . . . , the/i we say that f has a removable 
singularity at a. 

(ii) If k is a positive integer such that c_* # 0 and cn = 0 for n = —A: — 1, 
— k — 2t—k — 39. . . , then we say that f has a pole of order k at a. 
(iii) If cn ¥" 0 for infinitely many negative integers n, then we say that f has 
an essential singularity at a. 

Let us investigate some examples in the three cases that arise. 
(i) If/has a removable singularity at a, then it has a Laurent series 

(1) f(z) = 2 cn(z - a)" valid for all z e A(0, R, a). 

By Theorem 4.13, we see that the power series in equation (1) defines an analytic 
function in the disk DR(a). If we use this series to define/(a) = cih then the function 
/becomes analytic at z = a, and the singularity is "removed." As an example, 

sin z 
consider the function f(z) = . It is undefined at z = 0, and has an isolated 

z 
singularity at z = 0. The Laurent series for/ is given by 

sin z 1 ( z3 z5 z1 

f{z) = — = -z\z~v.+jrv.+ 

° 4 6 

= 1 _ 3 ! + 5!"7! + '"' V a l i d f ° r 'Zl > 0 ' 

We can "remove" this singularity if we define/(0) = 1, for then/will be analytic 
cos z — 1 

at 0 in accordance with Theorem 4.13. Another example is g(z) = r , which 
r 

has an isolated singularity at z = 0. The Laurent series for/ is given by 
1 

g(Z) = -T 
z1 

= — + ±_ _ ±_ + . . . v a i i d for I z I > 0. 
2 4! 6! ' ' 

If we choose to define g(0) = —y , then g will be analytic for all z. 
(ii) If/ has a pole of order k at a, the Laurent series for / i s given by 

(2) /(z) = 2 cn(z - a)" valid for all z e A(0, R, a), where c_k ^ 0. 

2! 4! 
, z2 z4 

6! 
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For example,/(z) = - = - - - + - - ^ 

has a pole of order 2 at z — 0. 
I f /has a pole of order 1 at a, then we say that/has a simple pole at a. An 

example is 

1 1 z z2 

g(z) = - ^ = - + 1 + - + - + . . . , 
z z 2! 3! 

which has a simple pole at z = 0. 
(iii) If an infinite number of negative powers of (z — a) occur in the Laurent 

series, then/has an essential singularity. For example 

/(z) = z 2 s i n 7 = z " ^ + I i ? " ^ + ' - -
has an essential singularity at the origin. 

Definition 7.6 A function f(z) analytic in DR(a) is said to have a zero of 
order k at the point z = ot if and only if 

(3) fn\a) = 0 for n = 0, 1, . . . , k - 1, and fk\a) ¥^ 0. 

A zero of order one is sometimes called a simple zero. 

Theorem 7.10 A function f{z) analytic in DR(a) has a zero of order k at 

the point z = ex if and only if its Taylor series given by f(z) = 2 c^z ~ a ) w 

/7 = 0 

has 
(4) c0 = c\ = • • - = ck_\ = 0 and ck ^ 0. 

Proof Statement (4) follows immediately from equation (3) since we have 
fn)(a) 

cn = •— according to Taylor's theorem. 

EXAMPLE 7 . 1 0 We see from Theorem 7.10 that the function 

77 711 715 

/(z) = zs in z 2 = , 3 - - + _ _ _ + . . . 

has a zero of order 3 at z = 0. Furthermore, Definition 7.6 confirms this because 

f{z) = 2z2cos z2 + sin z2, 
/"(z) = -4z3sin z2 + 4z2cos z2 + 2z cos z2, 

f'"{z) = -8z4cos z2 - 12z2sin z2 - 8z3cos z2 

+ 8z cos z2 — 4z2sin z2 + 2 cos z2. 

Clearly we have/(0) = / ' ( 0 ) =/"(0) = 0, but 0 ^ / ' " ( 0 ) = 2. 
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Theorem 7.11 Suppose f is analytic in DR(a). Thenf(z) has a zero of order 
k at z = Ot if and only if f can be expressed in the form 

(5) f(z) = (z - a)kg(z), 

where g is analytic at z = a, and g(a) ¥=• 0. 

Proof Suppose that/(z) has a zero of order k at a. Using equation (4) of 
Theorem 7.10 we can write/(z) as 

(6) f(z) = 2 c„(z - oc)" 

= 2 cn(z - oc)" (by equations (4)) 
n = k 

= 2 cn+k(z - OL)n+k (by reindexing) 

= (z - a)* 2 cn+k(z - a)", where ck ¥^ 0. 
A7 = 0 

The series on the right side of equation (6) defines a function which we shall 
denote by g(z). That is, 

g(z) = 2 cnM - oc)" = ck + 2 cn+k(z - oc)" valid for all z in D/?(a). 

By Theorem 4.13, g is analytic in DR(a). Also, g(oc) = a ^ 0. 
Conversely, suppose that /has the form given by equation (5). Since g(z) is 

analytic at z = oc, it has the power series representation 

(7) g(z) = 2 b„(z - ex)", where g(a) = b0 ^ Oby assumption. 
/7 = 0 

If we multiply both sides of equation (7) by (z - oc)*, we obtain the following power 
series representation for/: 

f(z) = g{z)(z - oc)* = 2 b„(z - oc)"+* = 2 b„.k(z - a)". 

By Theorem 7.10,/(^) has a zero of order k at z = a, and our proof is complete. 

An immediate consequence of Theorem 7.11 is the following result. The proof 
is left as an exercise. 

Corollary 7.4 If f(z) and g(z) are analytic at z = oc, and have zeros of 
orders m and n, respectively, at z = oc, then their product h(z) = f(z)g(z) has 
a zero of order m + n at z = oc. 
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EXAMPLE 7-11 Let/(z) = z3sin z. Then f(z) can be factored as the product 
of z3 and sin z, which have zeros of order m = 3, and n = 1 at z = 0. Hence, 
z = 0 is a zero of order 4 of /(z). 

Our next result gives a useful way to characterize a pole. 

Theorem 7.12 A function f(z) analytic in the punctured disk D*R(a) has a 
pole of order k at z = ot if and only if f can be expressed in the form 

(8) / ( z ) = m 

(z - a)k' 

where h(z) is analytic at z = cc, and h(a) ¥= 0. 

Proof Suppose that/(z) has a pole of order k at z = a. The Laurent series 
for/can then be written as 

(9) /(z) = -k 2 c„-k(z - a)", where c_k ¥* 0. 
\Z 0C) «=0 

The series on the right side of equation (9) defines a function which we shall denote 
by h(z). That is, 

(10) h(z) = S cn-k(z - a)" for all z in D*R(a) = {z: 0 < \z - a I < R}. 
/1 = 0 

If we specify that h(a) = c_*, then h is analytic in all of DR(a), with h(a) ^ 0. 
Conversely, suppose that / h a s the form given by equation (8). Since h(z) is 

analytic at z = ot with h(a) ^ 0, it has a power series representation 

(11) Hz) = 2 Wz ~ «)", where b0 * 0. 
«=o 

If we divide both sides of equation (11) by (z — a)*, we obtain the following Laurent 
series representation for/: 

f(z) = 2 b„(z - a)"-* = 2 *W-(z - a)" = 2 c„(z - a)", where c„ = bn+k. 
n=0 n=-k n=~k 

Since c_* = b0 ^ 0,/(z) has a pole of order k at z = a. This completes the proof. 

The following results will be useful in determining the order of a zero or a 
pole. The proofs follow easily from Theorems 7.11 and 7.12 and are left as exercises. 

Theorem 7.13 
(i) Iff(z) is analytic and has a zero of order k at z = OL, then g(z) = Uf(z) 

has a pole of order k at z = OL. 
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(ii) Iff(z) has a pole of order k at z ~ a, then g(z) = l/f(z) has a removable 
singularity at z = a. If we define h(a) = 0, then h(z) has a zero of order 
k at z = OL. 

Corollary 7.5 Iff(z) and g(z) have poles of orders m and n, respectively, 
at z = OL, then their product h(z) = f(z)g(z) has a pole of order m + n at 
z = a. 

Corollary 7.6 Let f(z) and g(z) be analytic with zeros of orders m and n, 
respectively, at z = OC. Then their quotient h(z) = f(z)/g(z) has the following 
behavior: 

(i) If m > n, then h(z) has a removable singularity at z — ot. If we define 
h(a) = 0, then h(z) has a zero of order m — n at z = oc. 

(ii) If m < n, theft h{z) has a pole of order n — m at z = <X. 
(iii) If m = ft, theft h(z) has a removable singularity at z = Ot, and can be 

defined so that h(z) is analytic at z = a by h(a) = lim h(z). 
:.~>a 

EXAMPLE 7 . 1 2 Locate the zeros and poles of h(z) = (tan z)/z and determine 
their order. 

Solution In Section 5.4 we saw that the zeros of f(z) = sin z occur at the 
points z = nn, where n is an integer. Since f'(nn) = cos nn # 0, the zeros of/are 
simple. In a similar fashion it can be shown that the function g(z) = z cos z has 
simple zeros at the points z = 0 and z = (ft + y)7t where n is an integer. From the 
information given we find that h(z) = f(z)/g(z) has the following behavior, 

(i) h has simple zeros at z = nn where n = ±1, ±2, . . . . 
(ii) h has simple poles at z = (ft + \)n where n is an integer, 

(iii) h is analytic at 0 and lim h(z) ^ 0. 

EXAMPLE 7 . 1 3 Locate the poles of g(z) = l/(5z4 + 26z2 + 5), and specify 
their order. 

Solution The roots of the quadratic equation 5Z2 + 26Z + 5 = 0 occur at 
the points Z\ — —5 and Z2 = —1/5. If we use the substitution Z = z2, then we see 
that the function f(z) = 5z4 + 26z2 + 5 has simple zeros at the points ± /^5 and 
±/A/5- Theorem 7.13 implies that g has simple poles at ±i^/5 and ±iA/5. 

EXAMPLE 7 . 1 4 Locate the poles of g(z) = (n cot nz)iz2, and specify their 
order. 
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Solut ion The functions z2sin nz and f(z) = (z2 sin nz)/(n cos nz) have a 
zero of order 3 at z = 0 and simple zeros at the points z = ±1 , +2, . . . . Using 
Theorem 7.13, we see that g has a pole of order 3 at z = 0 and simple poles at the 
points z ~ ±1 , ±2, . . . . 

EXERCISES FOR SECTION 7.4 
Locate the zeros of the functions in Exercises 1 and 2, and determine their order. 

1. (a) (1 + z2)4 (b) sin2 z (c) z2 + lz + 2 
(d) sin z2 (e) z4 + 10z2 + 9 (f) 1 + exp z 

2. (a) z6 + 1 (b) z3 exp(z - 1) (c) z6 + 2z3 + 1 
(d) z3 cos2z (e) z8 + z4 (f) z2 cosh z 

Locate the poles of the functions in Exercises 3 and 4, and determine their order. 

3. (a) (z2 + \)~\z - I)"4 (b) z~\z2 - 2z + 2)~2 

(c) (z6 + 1)-1 (d) (z4 + z3 - 2 z 2 ) M 

(e) (3z4 + 10z2 + 3)- ' (f) (i + 2/z)-'(3 + 4/z)"1 

4. (a) z cot z (b) z~5sin z (c) (z2sinz)_1 

(d) z"'cscz (e) (1 - expz) - 1 (f) z_5sinh z 

Locate the singularities of the functions in Exercises 5 and 6, and determine their type. 

5. (a) z-\z - sinz) (b) sin(l/z) 
(c) z exp(l/z) (d) tan z 

6. (a) (z2 + z)_,sin z (b) z/sin z 
(c) (exp z ~ l)/z (d) (cos z - cos 2z)/z4 

For Exercises 7-10, use L'Hopital's rule to find the limit. 

z - 1 - i z1 - 2iz - 1 
7. hm — — 8. hm — —: 

- u / z4 + 4 ,^/ z4 + 2z2 + 1 
^ ,. 1 + z6 , ^ ,. sin z + sinh z - 2z 
9. hm- r 10. hm 

-_,/ 1 + Z" r.^0 Z5 

11. Le t / be analytic and have a zero of order k at z<). Show that/'(z) has a zero of order 
k - 1 at zo-

12. Let/and g be analytic at zo and have zeros of order m and rc, respectively, at zo- What 
can you say about the zero of/ + g at z0? 

13. Let/and g have poles of order m and «, respectively, at zo- Show that / + g has either 
a pole or removable singularity at zo-

14. Let /be analytic and have a zero of order k at ZQ. Show that/'(z)//(z) has a simple pole 
at zo. 

15. Let/have a pole of order k at zo- Show that/'(z) has a pole of order k + 1 at zo-
16. Establish Corollary 7.4. 17. Establish Corollary 7.5. 
18. Establish Corollary 7.6. 19. Find the singularities of cot z - 1/z. 

20. Find the singularities of Log z2. 21. Find the singularities of . 
sin(l/z) 

22. If/(z) has a removable singularity at z(), then prove that l//(z) has either a removable 
singularity or a pole at zo 

23. How are the definitions of singularity in complex analysis and asymptote studied in 
calculus different? How are they similar? 
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7.5 Applications of Taylor and Laurent Series 

In this section we show how Taylor and Laurent series can be used to derive im­
portant properties of analytic functions. We begin by showing that the zeros of an 
analytic function must be " isola ted" unless the function is identically zero. A point 
a of a set T is called isolated if there exists a disk £),(oO about a that does not 
contain any other points of T. 

T h e o r e m 7.14 Suppose f is analytic in a domain D containing at a and that 
f(a) ~ 0. Iff is not identically zero in D, then there exists a punctured disk Dr(a) in 
which f has no zeros. 

Proof By Taylor's theorem, there exists some disk DR(a) about a such that 

f(z) = 2 ^ - 7 ^ fe - <*)" for all z € D*«x). 

Now, if all the Taylor coefficients f(n\a)fn\ o f / w e r e zero, then / w o u l d be iden­
tically zero on DR{a). A proof similar to the proof of the maximum modulus prin­
ciple given in Section 6.6 would then show tha t / i s identically zero in D, contradicting 
our assumption abou t / 

Thus, not all the Taylor coefficients of / are zero, and we may select the 
smallest integer k such thatfik)(a)/k\ ^ 0. According to the results of the previous 
section, / has a zero of order k at a and can be written in the form 

f(z) = (z~ a)kg(z), 

where g is analytic at a and g(ot) ^ 0. Since g is a continuous function, there exists 
a disk Dr(cx) throughout which g is nonzero. Therefore, f(z) * 0 in the punctured 
disk£>*(a). 

The following corollaries are given as exercises. 

Corollary 7.7 Suppose that f is analytic in the domain D, and that a e D . 
If there exists a sequence of points {zn} in D such that zn —> oc, andf{zn) — 0, 
thenf(z) = Ofor all z e D. 

Corollary 7.8 Suppose f and g are analytic in the domain D, where a e D. 
If there exists a sequence {zn} in D such that zn —> oc, andf(zn) = g(zn) for all 
n, then f(z) = g(z) for all z € D. 

Theorem 7.14 allows us to give a simple argument for one version of L'Hopital 's 
rule. 

Corollary 7.9 (L'Hopital's Rule) Suppose f and g are analytic at a. If 
/ ( a ) = 0 and g(a) = 0, but g'(a) # 0, then 

y f(z) /'(a) 
hm = — . 
c-̂ a g(z) g (a) 
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Proof Since g'(OL) i^ 0, g is not identically zero, so by Theorem 7.14, 
there is a punctured disk D*(a) in which g(z) ^ 0. Thus, the quotient 
f(z) f(z) - /(a) . , , , , „ n*. , , 

_ 1S <jefinec[ for an z e D (a), and we can write 
g(z) g(z) - g(a) 

l i mM = l im /fe) -f^ = l im Viz) - f(a)V(z - a) = / ( a ) 
2->a g(z) =->« g(z) - g(a) ^ a te(z) - g(a)]/(z - a) g'(a)" 

The following theorem can be used to get Taylor series for quotients of ana­
lytic functions. Its proof involves ideas from Section 7.2, and we leave it as an 
exercise. 

Theorem 7.15 (Division of Power Series) Suppose/and g are analytic 
at a with power series representations 

f(z) = 2 <*n(z ~ a)" and g(z) = 2 b„(z - a)" far all z e DR(a). 

If g(a) ¥" 0, then the quotient f/g has the power series representation 

M ^ Cn{z _ ^ 
g(Z) « = 0 

where the coefficients satisfy the equations 

an = b0cn + b\cn_\ + • • • + 6„_ i ci + b„co. 

f(z) 
In other words, the series for the quotient can be obtained by the familiar 

g(z) 
process of dividing the series for f by the series for g using the standard long 
division algorithm. 

EXAMPLE 7-15 Find the first few terms of the Maclaurin series for the func-
71 

tion/(z) = sec z if | z \ < — , and compute/(4)(0). 

Solution Using long division, we see that 

sec z = = ; ~ 7 - 1 + - Z2 + — z4 + • • • . 
cos z _ ?! ?! _ ?! 2 24 

2! + 4! 6! + ' ' ' 
/4)(0) 5 

Moreover, using Taylor's theorem, we see that if/(z) = sec z, then = — , so 

/4>(0) = 5. 

We close this section with some results concerning the behavior of complex 
functions at points near the different types of isolated singularities. Our first theorem 
is due to the German mathematician G. F. Bernhard Riemann (1826-1866). 
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Theorem 7.16 (Riemann) Suppose that f is analytic in D*r(a). If f is 
bounded in Dr(a), then eitherf is analytic at a orf has a removable singularity 
at a. 

Proof Consider the function g defined as follows: 

_ Uz - ot)Y(z) when z ^ a , 
( 1 ) 8iz) ' 0 when; = a 

Clearly, g is analytic in at least D*r(a). By straightforward calculation, 

g'(a) = lim 8(Z) ~_ g ( ° ° = lim (z - a)/(z) = 0. 

The last equation follows because/is bounded. Thus, g is also analytic at a, with 
g'(a) = 0. 

By Taylor's theorem, g has the representation 

(2) g(z) = 2 ^-T2 (z - a)" for all z e D,(a) 
n = 2 nl 

We can divide both sides of equation (2) by (z — a)2 and use equation (I) to obtain 
the following power series representation for/: 

n-=i nl n=o (n + 2)! 

gf2)(oc) 
By Theorem 4.13, / i s analytic at a if we define/(a) = . This completes the 

proof. 

The following corollary is given as an exercise. 

Corollary 7.10 Suppose that f is analytic in Dr"(a). Then f can be defined 
to be analytic at a if and only if\\mf(z) exists (and is finite). 

Theorem 7.17 Suppose that f is analytic in D*r(a). The function fhas a pole 
of order k at a, if and only if lim \f(z) I = oc. 

Proof Suppose, first, that/has a pole of order k at a. Using Theorem 7.12, 
we can say that 

/(*) = 
h(z) 

(z - a)k' 

where h is analytic at a, and h(a) # 0. Since 

lim I h(z) I = I h(a) 1 ^ 0 and lim I (z ~ a)k\ = 0, 
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we conclude that 

1 
I im | / ( Z ) | =lim|fc(z) | Hm- _ . 

Conversely, suppose that lim \f(z) \ = °°. By the definition of a limit, there must 
z—>a 

be some 5 > 0 such that \f(z) \ > 1 if z e D8(a). Thus, the function g(z) = -— is 
j v~/ 

analytic and bounded (by equation 1) in Ds(oc). By Theorom 7.16, we may define g 
at a so that g is analytic in all of D5(a). In fact, 

|g«x)| = l im—7-7 = 0, 
Z^a. \f(z)\ 

so a is a zero of g. We claim that a must be of finite order, for otherwise we would 

have gln)(oQ = 0 for all n, and hence g(z) = \ i— (z ~ Oi)n = 0 for all z e D5(a). 

Since g(z) = -— is analytic in £>g(a), this is impossible, so we can let k be the order 
f(z) 

of the zero of g at a. By Theorem 7.13 it follows that/has a pole of order k, and 
this completes our proof. 

Theorem 7.18 The function f has an essential singularity at a if and only 
if lim \f(z) | does not exist. 

z^a 

Proof We see from Corollary 7.10 and Theorem 7.17 that the conclusion 
of Theorem 7.18 is the only option possible. 

EXAMPLE 7 . 1 6 Show that the function g defined by 

8(z) = [ 
is not continuous at z = 0. 

e~xlz" when z ^ O , 
0 when z - 0, 

Solution In Exercise 27 of Section 7.2, we asked you to show this by 
computing limits along the real and imaginary axes. Note, however, that the Laurent 
series for g(z) in the annulus D*(0) is 

^ ) = 1 + 2 ( - 1 ) - ^ , 
n= 1 Z 

so that 0 is an essential singularity for g. According to Theorem 7.18, lim \g(z) I 

does not exist, so g is not continuous at 0. 
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EXERCISES FOR SECTION 7.5 
1. Consider the function/(z) ~ z sin(l/z). 

(a) Show that there is a sequence (z«) of points converging to z ~ 0 such that 
f(zn) = 0 for n = 1,2, 3, . . . . 

(b) Does this contradict Corollary 7.7? 
2. Determine whether there exists a function/(z) that is analytic at z = 0 such that 

3. Determine whether there exists a function/(z) that is analytic at z = 0 such that 

ny-'TK ^-^----
4. Determine whether there exists a function/(z) that is analytic at z = 0 such that 

%HTH—" 
5. Prove Corollaries 7.7 and 7.8. 
6. Prove Theorem 7.15. 
7. Let/U) = tanz. 

(a) Use Theorem 7.15 to find the first few terms of the Maclaurin series for/(z) if 
. 1 n 
l Z l < 2 -

(b) What are the values of/<6>(0) and/(7)(0)? 
8. Prove Corollary 7.10. 
9. Show that the real function f(x) defined by 

when x 7^ 0, 

0 when x — 0, 

is continuous at x = 0, but that the corresponding function g(z) defined by 

g(z) = 
z sin - when z = 0, 

z 
0 when z ^ 0, 

is not continuous at z = 0. 
10. Write a report on analytic functions. Include a discussion of the Cauchy-Riemann equa­

tions and the other conditions that guarantee that/(z) is analytic. Resources include 
bibliographical items 21, 39, 62, 72, 86, 155, and 161. 

11. Write a report on infinite products of complex numbers and/or functions. Resources 
include bibliographical items 4, 19, 51, 129, 145, and 181. 

12. Write a report on the Bieberbach conjecture. Your report should be more of a narrative 
about the conjecture and its eventual proof. Resources include bibliographical items 49, 
73, 108, 148, and 189. 



Residue Theory 

8.1 The Residue Theorem 

The Cauchy integral formulae in Section 6.5 are useful in evaluating contour inte­
grals over a simple closed contour C where the integrand has the form f(z)/(z — Zo)k 

and/is an analytic function. In this case, the singularity of the integrand is at worst 
a pole of order k at zo- In this section we extend this result to integrals that have a 
finite number of isolated singularities and lie inside the contour C. This new method 
can be used in cases where the integrand has an essential singularity at z0 and is an 
important extension of the previous method. 

Let /have a nonremovable isolated singularity at the point zo- Then/has the 
Laurent series representation 

(1) f(z) = 2 an(z - zo)" valid for 0 < | z - Zo \ < R. 

The coefficient a_x of l/(z — zo) is called the residue o f / a t zo, and we use the 
notation 

(2) Res[/z0] = 0-i. 

EXAMPLE 8-1 If/(z) = exp(2/z), then the Laurent series (1) has the form 

/ 2 \ 2 22 23 

and we see that Res[ / 0] = 2. 

EXAMPLE 8 .2 If g(z) = : , show that Res[g, 0] = - . 
2z + zl — z5 2 

Solution Using Example 7.7, we find that g has three Laurent series rep­
resentations involving powers of z. The Laurent series of the form (1) is given by 

244 
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8(z) = 2 
n = 0 

(-D" + ^ 7 z"-' valid for 0 < \z\ < 1. 

Computing the first few coefficients, we obtain 

3 1 3 9 15 , 
^ = 2--4 + lZ~T6Z+----

Therefore Res[g, 0] = -f . 

Let us recall that the Laurent series coefficients in equation (1) are given by 

1_ 
( 3 ) ^ = ^ / c « ^ 7 T forn = 0 ,± l ,±2 

where C = C{:(zo) - {z:\z - Zo\ = r} is any positively oriented circle with r < R. 
This gives us an important fact concerning Res[/ zo\. If we set n = — 1 in equation 
(3), then we obtain 

L (4) J c M) dk = 27Ua_! = 2TC/ Res[/, zQ] 

where Zo is the only singularity of / that lies inside C. If we are able to find the 
Laurent series expansion for /given in equation (1), then equation (4) gives us an 
important tool for evaluating contour integrals. 

EXAMPLE 8 . 3 Evaluate / t exp(2/z) dz, where C is the unit circle | z | = 1 
taken with positive orientation. 

Solution We have seen that the residue of f(z) = exp(2/z) at z0 = 0 is 
Res[/ 01 = 2. Using equation (4), we find that 

/ceXP0) dz = 2ni Res[/ 0] = 4ni. 

Theorem 8.1 (Cauchy's Residue Theorem) Let D be a simply con­
nected domain, and let C be a simple closed positively oriented contour that 
lies in D. Iffis analytic inside C and on C, except at the points Z\, Zi, • • 
zn that lie inside C, then 

(5) f f(z) dz = 2ni J Res[/ zk] 

The situation is illustrated in Figure 8.1. 
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FIGURE 8.1 The domain D and contour C and the singular points 
Zi, Z2, • • • , zn in the statement of Cauchy's residue theorem. 

Proof Since there are a finite number of singular points inside C, 
there exists an r > 0 such that the positively oriented circles C* = C^(Zk) (for k = 
1, 2, . . . , rc) are mutually disjoint and all lie inside C. Using Theorem 6.5, the 
extended Cauchy-Goursat theorem, it follows that 

(6) \f(z)dz= 2 f f{z)dz. 
JC ft.i JQ. 

Since / is analytic in a punctured disk with center Zk that contains the circle C*, 
equation (4) can be used to obtain 

(7) f(z) dz = 2ni Res[/, z*] for k = 1, 2, . . . , n. 

Using equation (7) in equation (6) results in 

[ f(z) dz = 2ni J Res[/, zkl 

and the theorem is proven. 

8.2 Calculation of Residues 

The calculation of a Laurent series expansion is tedious in most circumstances. Since 
the residue at zo involves only the coefficient a^\ in the Laurent expansion, we seek 
a method to calculate the residue from special information about the nature of the 
singularity at zo-

I f / h a s a removable singularity at zo, then a_n = 0 for n = 1, 2, . . . . 
Therefore if zo is a removable singularity, then Res[/, zo] = 0. 
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Theorem 8.2 (Residues at Poles) 

(i) If f has a simple pole at zo, then 

(1) Res[/, zo] = lim(z - z0)/(z). 
Z->ZQ 

(ii) If f has a pole of order 2 at zo, then 

(2) Res[/, zo] = lim - (z - z0)
2/(z). 

z->za dZ 

(iii) If f has a pole of order k at zo, then 

(3) Res[/ z0] = _ lim ——[(z - z0)*/(z)]. 

Proof If/has a simple pole at zo, then we write 

(4) /(z) = - ^ - + ao + *i(z ~ zo) + fl2fe - ^o)2 + • • • . 
z - Zo 

If we multiply both sides of equation (4) by (z - Zo) and take the limit as z -> Zo, 
then we obtain 

lim (z - Zo)f(z) = lim [a_x + a0(z - Zo) + ax{z - z0)
2 + • • •] 

= a_i = Res[/, zo], 

and equation (1) is established. 
Since equation (2) is a special case of equation (3), let us suppose that/has 

a pole of order k at z0- Then/can be written as 

(5) /(z) = k—r + ^ + • • • + + a0 + a,(z - zo) + • • • . 
(z - zaY (z - ZoY ' z - zo 

If we multiply both sides of equation (5) by (z — Zo)k> then the result is 

(6) (z - ZoYf(z) = a„k + • • • + fl_,(z - zo)*"1 + a0(z - Zo)k + ••-. 

We can differentiate both sides of equation (6) k — 1 times to obtain 

(7) £ ^ 7 [(z - z0)
kf(z)] = (k- l)!fl_, + k\a0(z - zo) 

, (* + 1)! 
2 

If we let z —> zo in equation (7), then 

dk-i 

•al(z-Zo)2 + ----

lim ^ 7 [(z - zoffiz)] = (* - l)!a_, = ( / : - l)!Res[/, z0], 
7.-»z.0 u Z z*-1 

and equation (3) is established. 
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71 COt 717 
EXAMPLE 8 .4 Find the residue of f(z) = : — at z0 = 0. 

z2 

Solution We can write/(z) = (n cos 7i;z)/(z2sin rcz). Since z2sin nz has a 
zero of order 3 at zo = 0, we see that /has a pole of order 3 at zo = 0. Therefore 
using equation (3), we find that 

1 d2 

Res[/, 0] = — hm —r nz cot nz 
2! z->o dz1 

= - lim -— (n cot nz — n2z csc27tz) 
2 z^o dz 

— n2 lim (nz cot rcz — 1) CSC2TCZ 

. ,. ttz cos ttz - sinttz 
= tt2 lim — . 

z-*Q Sin^TtZ 

This last limit involves an indeterminate form and can be evaluated by using 
L'Hopital's rule: 

Res[/, 0] = n2 lim 
<7-»o 3tt sin2ttz cos ttz 

lim — lim 
3 j->o sin Ttz z-̂ o cos nz 

EXAMPLE 8-5 Find fc [dz/(z4 + z3 - 2z2)], where C is the circle | z | = 3 
taken with the positive orientation. 

Solution The integrand can be written as/(z) = l/[z2(z + 2)(z - 1)]. The 
singularities of/that lie inside C are simple poles at the points 1 and —2 and a pole 
of order 2 at the origin. We compute the residues as follows: 

Res[/ 0] = lim ~ [z2f(z)] = lim , ~^ " * = ^ , 
<:->o dz z->o (z2 + z - 2)2 4 

Rest/ 1] = lim (z - l)/(z) = lim * = J , 
z-*i z->i z2(z + 2) 3 

Res[/ - 2 ] - lim (z + 2)/(z) = lim * = ^ . 
z->-2 z^-2 Z2(Z - 1) 12 

The value of the integral is now found by using the residue theorem. 

I = 2ni 
cz

4 + z3 - 2z2 
zl I L 
4 3 12 

= 0. 

The value 0 for the integral is not an obvious answer, and all of the preceding 
calculations are required to find it. 
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EXAMPLE 8 .6 Find fc (z4 + 4)-1 dz, where C is the circle \z - 11 = 2 
taken with the positive orientation. 

Solution The singularities of the integrand/(z) = l/(z4 + 4) that lie inside 
C are simple poles that occur at the points 1 ± /. (The points — 1 ± / lie outside C.) 
It is tedious to factor the denominator, so we use a different approach. If zo is any 
one of the singularities of/, then L/Hopital's rule can be used to compute Res 
[/, zo] as follows: 

Res[/, zo] = lim _̂  i A = lim A _̂  - A 3 
z - Zo 1 _ 1 

;;;z4 + 4 ~ , . ™ 4 z 3 " 4 z ^ 

Since ZQ = - 4 , this can be further simplified to yield Res[/, ZQ] = ( - l/16)zo- Hence 
Res[/, 1 + /] = ( - 1 - /)/16, and Res[/ 1 - /] = ( - 1 + /)/16. The residue theorem 
can now be used to obtain 

L dz / - 1 - / - 1 + / \ -71/ 
2TT/ ——— + cz 4 + 4 \ 16 16 / 4 

The theory of residues can be used to expand the quotient of two polynomials 
into its partial fraction representation. 

Lemma 8.1 Let P(z) be a polynomial of degree at most 2. If a, b, and c are 
distinct complex numbers, then 

(8) j w .___fa__.^_ + _t_+
 c 

(z - a)(z - b)(z - c) z - a z ~ b z - c 
where 

P(a) 
A = Res[/ a] = 

B = Rest/ *>] = 

C = Rest/ c] = 

(a - Z>)(a - c) ' 
P(b) 

(b - a)(b - c) ' 
P(c) 

(c - a)(c - 6) ' 

Proof It will suffice to prove that A = Res [ / a]. We can expand/in its 
Laurent series about the point z = a by expanding the three terms on the right side 
of equation (8) in their Laurent series about z = a and adding them. The term 
A/(z — a) is itself a one-term Laurent series. The term B/(z — b) is analytic at z = 
a, and its Laurent series is actually a Taylor series, 

( 9 ) = - ^ — (z - a)". 
Z - b b - a z~a «=o (& - a)"+1 

Z? — a 
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The expansion for the term C/(z — c) is given by 

do) — = - J £ - — ^ - 7 (Z - ay. 
z - c «-o (c - a)n+l 

We can substitute equations (9) and (10) into equation (8) to obtain 

B z — a n=o + (b - a)n+l ' (c - a)n+x 

Therefore A = Res[/, a], and calculation reveals that 

P(z) P(a) 

(z - a)\ 

Res[f, a] = lim 
2-MI (z - i)(z - c) (a - b)(a - c) 

3z + 2 
EXAMPLE 8-7 Express f(z) = in partial fractions. 

z{z - \){z- 2) 

Solution Computing the residues, we obtain 

Res[/, 0] = 1, Res[/, 1] = - 5 , Res[/, 2] = 4. 

Therefore 

3z + 2 _ 1 5 4 
z(z - l)fe - 2) ~ z z - 1 z - 2 ' 

If a repeated root occurs, then the process is similar. 

Lemma 8.2 IfP(z) has degree at most 2, then 

(z - a)2(z - b) (z - a)1 z — a z - b 
where A = Res[(z - a)f(z\ a], B = Res[/, a], and C = Res[/, H 

EXAMPLE 8 .8 Express/(z) = — — in partial fractions. 
z2(z - 1) 

Solution Calculating the residues we find that 

z1 + 3z + 2 
Resb/fe), 0] = lim - ^ = - 2 , 

to[/t0I«^LLlLt2 
z->o az Z — 1 
.. (2z + 3)(z - 1 ) - (z2 + 3z + 2) 

= hm = —5, 
z-K) (Z - 1)2 

Res[/, 1] = lim f = 6. 
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Hence A = - 2 , B = - 5 , and C = 6, and we can use equation (11) to obtain 

z2 + 3z + 2 - 2 5 6 
+ z2(z - 1) z2 z z - 1 

EXERCISES FOR SECTION 8.2 
Find Res[/,0] for the functions in Exercises 1-4. 

1. (a) z_1expz (b) z_3cosh4z 
(c) esc z (d) (z2 + 4z + 5)/(z2 + z) 

2. (a) cot z (b) z"3cos z (c) z-'sin z (d) (z2 + 4z + 5)/z3 

3. (a) exp(l + 1/z) (b) z4sin(l/z) (c )z - ' cscz 
4. (a) z~2csc z (b) (exp 4z - l)/sin2z (c) z"'csc2z 

For Exercises 5-15, assume that the contour C has positive orientation. 

5. Find — , where C is the circle \z + 1 — i\ - 1. 
Jc z4 + 4 ' ' 

6. Find I —: — , where C is the circle I z - i I = 2. 
Jc z(z2 ~ 2z + 2) ' ! 

z dz 
7. Find I ,r *"—'•, where C is the circle I z I = 2. 

f expz 
• Jc z3 + 

f sin z <iz 
Jc 4z2 - 7i2 

f sin z flfc 

Jc z2 + 1 

8. Find - ^ - —:, where C is the circle z = 2. 

• d z 
9. Find I — ^ — , where C is the circle I z I - 2. 

Jc z2 + 1 ' ' 
10. Find / c (z - 1) 2(z2 + 4)- ' dz along the following contours: 

(a) the circle | z | = 4 (b) the circle | z - 1 | = 1 
11. Find fc (z6 + 1)~]dz along the following contours: 

(a) the circle \z - i\ = y (b) the circle |z - (1 + i)/2\ = 1 

Hint: If z(» is a singularity of/(z) = l/(z6 + 1), then show that Res[/, z0] = (-1/6)¾. 
12. Find / c (3z4 + 10z2 + 3)_t dz along the following contours: 

(a) the circle \z - i>/3| = 1 (b) the circle |z - i/>/3| = 1 
13. Find fc (z4 - z3 - 2z2)~] dz along the following contours: 

(a) the circle | z I = y (b) the circle I z I = y 

14. Find ——— , where C is the circle \z\ = 1. 
Jc z2sin z ' ' 
f dz 

15. Find — , where C is the circle \z\ = 1. 
Jc z sin2z ' ' * z sinzz 

16. Let/and £ have an isolated singularity at z0. Show that Res[/ + g, zo] = Res[/, z0] + 
Res[ ^, zo]. 

17. Let/and # be analytic at zo- If/fo)) ^ 0 and g has a simple zero at zo, then show that 

Res 
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18. Use residues to find the partial fraction representations of the following functions. 
1 3z - 3 z2 - Iz + 4) 

(a) , , - , . (b) (c) — 
z~ + 3z + 2 z~ - z - 2 z~(z + 4) 

J (z2 + 4)(z2 + 9) ( e J (z - I)3 z(z + l)2(z2 + 1) 
19. Let/be analytic in a simply connected domain D, and let C be a simply closed positively 

oriented contour in D. If zo is the only zero of/ in D and zo lies interior to C, then show 
that 

2ni Jc f( /•77 * = * 

where A; is the order of the zero at zo-
20. Le t /be analytic at the points z = 0, ±1, ±2, . . . . If g(z) = 7i/(z) cot nz, then show 

that 

Res[g, n] = f(n) for w = 0, ±1, ±2, . . . . 

21. Write a report on how complex analysis is used in the study of partial fractions. Re­
sources include bibliographical items 10 and 63. 

22. Write a report on residue theorem. Include ideas and examples that are not mentioned 
in the text. Resources include bibliographical items 22, 116, and 153. 

8.3 Trigonometric Integrals 

The evaluation of certain definite integrals can be accomplished with the aid of the 
residue theorem. If the definite integral can be interpreted as the parametric form of 
a contour integral of an analytic function along a simple closed contour, then the 
residue theorem can be used to evaluate the equivalent complex integral. 

The method in this section can be used to evaluate integrals of the form 

f2* 
(1) J F(cos 6, sin 0) d%, 

where F{u, v) is a function of the two real variables u and v. Let us consider the 
contour C that consists of the unit circle | z | = 1, taken with the parameterization 

(2) C: z = cos 6 + i sin 8, dz = ( - s i n 6 + i cos 6) dQ for 0 < 8 < 2n. 

Using \Iz = cos 9 — i sin 8 and (2), we can obtain 

(3) c o s e = - ( z + - | , s ine = — (z - - ) , and </8 = — . 
2 \ z) 2/ \ z) iz 

If we use the substitutions (3) in expression (1), then the definite integral is trans­
formed into a contour integral 

(4) Jo F(cos 8, sin 8) dd = J f(z) dz, 

where the new integrand is 
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(5) /(z) = 

+ i)-sH 
IZ 

Suppose that/is analytic for \z\ ^ 1, except at the points z\, Zi, • • • , zn that 
lie interior to C. Then the residue theorem can be used to conclude that 

(6) F(cos 0, sin 6) dd = 2ni 2 Res[/, zk]. 
J0 j . _ i 

The situation is illustrated in Figure 8.2. 

z - cos 6 + / sin 

2TT 

(a) The interval [0, 2ir] of 
integration for F(cos 6, sin 0). 

(b) The contour C of 
integration for/(z). 

FIGURE 8.2 The change of variables from a definite integral on [0, 2n] to a 
contour integral around C 

f2lC 

EXAMPLE 8-9 Show that 
Jo 

dd 

1 + 3 cos29 
= 71. 

Solution The complex integrand / o f equation (5) is given by 

1 -i4z 
f(z) = 

iz[\ + | ( z + z-')2] 3 ^ + 10z2 + 3 ' 

The singularities of f are poles that are located at the points where 3(z2)2 + 
10(z2) + 3 = 0. The quadratic formula can be used to see that the singular points 
of/satisfy the relation z2 = ( -10 ± J100 - 36)/6 = ( - 5 ± 4)/3. Hence the only 
singularities of/that lie inside the circle C: \z\ = 1 are simple poles located at the 
two points z\ = i/ y/3 and z2 = —//>/3. Theorem 8.2 with the aid of L'Hopital's 
rule can be used to calculate the residues of /a t zk (for k = 1, 2) as follows: 

Res[/ zk] = Km 

= lim 

-/4z(z - ^) 

3z4 + 10z2 + 3 

-»4(2z - Zk) 
12z3 + 20z 

-i4zk -i 
\2zl + 20¾ 3z2 + 5 
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Since Zk = ±i*A/3 and zl = —1/3, we see that the residues are given by Res[/, Zk] = 
- / / (3(-1/3) + 5) = - / / 4 . Equation (6) can now be used to compute the value of 
the integral 

f 
Jo 

d% / - / - i \ 

EXAMPLE 8.94 
Show that — = K. 

Jo 1 + 3 cos2t 

Solution Using a Computer Algebra System 
The indefinite integral, or antiderivative can be obtained by using software such as 
Mathematica or MAPLE. It is 

g(t) 
-arctan(2 cot t) 

Since cot 0 and cot 2K are not defined, the computations for both g(0) and g(2n) are 
indeterminate. The graph s = g(t) is shown in Figure 8.3 and reveals another 
problem: g(t) has a discontinuity at t = K. This is a violation of the fundamental 
theorem of calculus, which asserts that the integral of a continuous function over 
(0, 2TT) must be continuous. The integration algorithm used by computer algebra 
systems (the Risch-Norman algorithm) gives the preceding antiderivative g(t) and 
all mathematicians should beware. 

FIGURE 8.3 Graph of s /TT 
dt — arctan(2 cot t) 
3 cos2t 

The proper value for the definite integral can be obtained by using g(t) on the 
open subintervals (0, Tt) and (TT, 2K) where it is continuous. Limits must be used 
over (0, K) and (TC, 2K). Therefore, the value of the definite integral is 
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f2« dt f* dt f2" 
Jo 1 + 3 cos2t Jo 1 + 3 cos2t in 

Jl 
1 + 3 cos2t 

= lim g(t) - lim g(t) + lim g(t) - lim g{t) 

EXAMPLE 8.10 Show that T - ^ 
Jo 5 -

cos 26 d6 n 

4 cos 6 6 

Solution For values of z that lie on the circle C: | z \ = 1, we have 

z2 = cos 26 + / sin 26 and z~2 = cos 26 - i sin 26. 

We can solve for cos 26 and sin 26 to obtain the substitutions 

(7) cos 26 = - (z2 + z~2) and sin 26 = — (z2 - z~2). 
2 2/ 

Using the substitutions in equations (3) and (7), we find that the complex integrand 
/ i n equation (5) can be written as 

= * ( z* + Z~2)
 = & + ' > 

f{Z) iz[5 - 2(z + z~[)] 2z2(z - 2)(2^ - 1) ' 

The singularities of/that lie inside C are poles that are located at the points 
Z\ = 0 and x2 = -j . Using Theorem 8.2 to calculate the residues results in 

Res[/, 0] = lim j z2f(z) = lim j '(z* + l) 

z->o dz z->o az 2(2zz — 5z + 2) 

= , 4z3(2z2 - 5z + 2) - (4z - 5)(^4 + 1) _ Si 

™ f 2(2z2 - 5z + 2)2 8 
and 

/(z4 + 1) -17 / 
Res[/, ±] = lim (z - ±)/(z) = lim - ¾ £ = — - . 

z^i/2 S-H/2 4zz(z - 2) 24 

Therefore using equation (6), we conclude that 

l 
2n cos26d6 „ . / 5 / 17/\ 71 

= 2ni[ — 
o 5 - 4 cos 6 V 8 24 
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EXERCISES FOR SECTION 8.3 
Use residues to find the following: 

Jo 3 cos 6 + 5 2 h 
f2* dd _n f2 

Jo 15 sin26 + 1 2 "Jo 
f2" sin29 JO _ K p* sii 
Jo 5 4- 4 cos 6 ~ 4 Jo 5 -
f2* dO = 5K P 
Jo (5 + 3 cos 6)2 " 32 ' Jo (5 + 4 cos 0)2 

f2TC cos 26 </6 7C f2" cos 26 <i0 

Jo 5 + 3 cos 6 ~ 18 * Jo 13 - 12 

5 cos26 + 4 
sin26 dd 

3 cos 6 
d$ 

cos 6 
f2" dB _ 5TI f2* 

' J o (1 + 3 cos20)2 8 ' Jo (1 + 8 cos29)2 

f2* cos236 M _ 3TC f2* _cos230 <ffl 
* Jo 5 - 4 cos 20 " 8 " Jo 5 -

15. 

4 cos 20 8 Jo 5 - 3 cos 20 
f2* JO 271 

Jo a cos 0 + fc sin 0 + d ~ Jd1 - a2 - b2 ' 
where a, by and d are real and a2 + 2?2 < d2 

r-
Jo , 

_ , dd 2TI 
16. a cos20 + b sin20 + d J(a + rf)tf> + d)' 

where a, fc, and d are real and a > d and b > d 
17. Compare the complex analysis methods for evaluating trigonometric integrals and the 

methods learned in calculus. 

8.4 Improper Integrals of Rational Functions 

An important application of the theory of residues is the evaluation of certain types 
of improper integrals. Let / (x) be a continuous function of the real variable JC on the 
interval 0 < x < oo. Recall from calculus that the improper integral of / o v e r [0, <») 
is defined by 

(1) f /(*) <fe = lim [f(x)dx 
JO b-*°o JO 

provided that the limit exists. Iff is defined for all real x, then the integral o f / o v e r 
( —oo, oo) is defined by 

(2) f(x) dx = lim f(x) dx + lim /(JC) dx 
J-<~ fl^-oo Ja b^ JO 

provided that both limits exist. If the integral in equation (2) exists, then its value 
can be obtained by taking a single limit as follows: 

(3) f{x) dx = lim f(x) dx. 
J — £_>« J-R 
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However, for some functions the limit on the right side of equation (3) exists when 
definition (2) does not exist. 

EXAMPLE 8 .11 lim xdx = lim [R2/2 - (-R)2/2] = 0, but the improper 
/?_>« J-R /?_»« 

integral off(x) = x over (-00,00) does not exist. Therefore equation (3) can be used 
to extend the notion of the value of an improper integral and motivates us to make 
the following definition. 

Let/(x) be a continuous real valued function for all x. The Cauchy principal 
value (P.V.) of the integral (2) is defined by 

(4) P.V. f(x) dx = lim f(x) dx 
J-~ /?^« J~R 

provided that the limit exists. Therefore Example 8.11 shows that 

P.V. J x dx = 0. 

EXAMPLE 8.12 
f- dx ,. f* dx 

= lim [arctan R — arctan(—R)] 

K —It 

Iff(x) = P(x)/Qix), where P and Q are polynomials, then/is called a rational 
function. Techniques in calculus were developed to integrate rational functions. We 
now show how the residue theorem can be used to obtain the Cauchy principal value 
of the integral of/over ( —°°, °°). 

Theorem 8.3 Letfiz) = P(z)/Q(z) where P and Q are polynomials of degree 
m and n, respectively. If Qix) ¥" 0 for all real x and n > m + 2, then 

(5) PV- f 5^ dx = 2ni 2 ^s P 
7>>ZJ 

where Zu Zi, . . . , Zk-u and Zk are the poles of P/Q that lie in the upper half 
plane. The situation is illustrated in Figure 8.4. 
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-R • R 

FIGURE 8.4 The poles zi, z2, • • • , z*-i, Zk of P/Q that lie in the upper half plane. 

Proof Since there are a finite number of poles of P/Q that lie in the upper 
half plane, a real number R can be found such that the poles all lie inside the contour 
C, which consists of the segment —R < x < R of the x axis together with the upper 
semicircle CR of radius R shown in Figure 8.4. Property (17) in Section 6.2 can be 
used to write 

(6) ^ W c ^ " ' - ^ p(x) = r m. _ [ m 
Q{x) X JcQ(z)

 Z JcRQ(z)-

The residue theorem can be used to express equation (6) in the form 

P(z) 

fR p(x\ k 

w L T^H <** = 2 n i 2 ReS; N-i o G(z) <fc 

The result will be established if we can show that the integral of P(z)/Q(z) 
along CR on the right side of equation (7) goes to zero as R -> <». Since we have 
n > m •+- 2, the degree of the polynomial g(z) is greater than the degree of zP{z). 
Suppose that 

P(z) = amzm + am_\zm~l + • • • + axz + a0 

and 

Q(z) = bnz
n + bn-tfr~l + • • • + bxz + feo. 

Then 

/>(z) = zmPi(z), where 
/Mz) - am + a^iz"1 + • • • + axz~m+l + aoZ-

and 

G(z) = z?Q\(z\ where 
Gi(z) = *« + b„^z~x + • • • + ftlZ-«+i + £ 0 z^ 

Therefore we have 

zP(z) zm'lPi(z) 
(8) 

Q(z) znQt(z) 
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Since P\(z) —» am and Q\(z) —> bn as | z | —» oo and n > m + 2, we can use equation 
(8) to see that 

G(z) 
-> 0 as Iz I —> -

Therefore for any e > 0 we may choose R large enough that 

zP(z) 
Q(z) 

e 
< -

71 

whenever z lies on C/?. Therefore we have 

P(z) 
(9) 

Q(z) 
< —;—r = — whenever z lies on C#. 

K\z\ KR 

Using the ML inequality of Section 6.2 and the result of inequality (9), we obtain 
the estimate 

(10) 
JCR Q(Z) I JcR nR ' j nR 

Since e > 0 was arbitrary, inequality (10) shows that 

P(z) 
(11) lim 

fl^oo JCR Q(z) 
dz = 0. 

We can use equation (11) in equation (7) and use definition (4) to conclude that 

f°° P(x) fR P(x) k 

P.V. - ^ dx = lim - ^ dx = 2ni Y Res 

and the theorem is proven. 

Q 
,Zj 

EXAMPLE 8.13 Show that t* dx 
2 + l)(x2 + 4) 6 ' 

Solution The integrand can be written in the form 

1 
f(z) = 

(z + i)(z - i)(z + 2i)(z - 20 

We see that /has simple poles at the points z\ = i and zi = 2/ in the upper half-
plane. Computing the residues, we obtain 

Res[/, i] = ^ and Res[/, 2/] = -^- . 
o 12 

Using Theorem 8.3, we conclude that 

/ : — (*2 + l)(x2 + 4) = ni\~6 + 7 1 / 6 
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EXAMPLE 8.14 Show that j~ 
dx 371 

(x2 + 4 ) 3 256 ' 

Solut ion The integrand/(z) = l/(z2 + 4)3 has a pole of order 3 at the point 
Z\ = 2/. Computing the residue, we find that 

1 d2 1 
Res [/, 2/] = - lim 

2 ,-2/ dz2 (z + 2/)3 

1 d - 3 
= - lim 

2 .-2/ dz (z + 20 4 

_ 1 12 _ - - 3 / 

" 2^S(z + 2/)5 " 512 ' 

f°° dx —3/ 371 
Therefore — = 2KI = , 

J— (x2 + 4)3 512 256 

EXERCISES FOR SECTION 8-4 
Use residues to establish the values of the integrals in Exercises 1-15. 

r- _jtdx_ = K r - _ 

J-Or 2 + 16)2 8 J—JC2 
dz 

(x2 + 16)2 8 J—* 2 + 16 

(x2 + 9)2 " " J -~(x 2 + 9 ) 2 ' 
r°° x <̂ x r°° x + 

3-J-*T$r0 4 - L ^ 
n [°° x1 dx _%_ f ~ x2 dx 

' J-MJC4 + 4 " 2 * J - (JC2 + 4 ) 3 

f- dx = n f- x + 2 
J— (x2 + l)2(x2 + 4) 9 J — (x2 + 4)(x2 + 

_ f" 3x2 + 2 2TC f" dx 
1 1 . — dx = — 12 . — 

J— (JC2 + 4)(x2 + 9) 3 J—x6 + l 
_ f- x * d x 27C 
13. = — 

J—x6 + l 3 

14. — - ^ - — = — , where a > 0 and b > 0 
J— (x2 + a2)(x2 + b2) ab(a + £) 

*- [°° x2 dx n 
15. — = —— , where a > 0 

J— (x2 + a2)3 8a3 

9 ) * 

8.5 Improper Integrals Involving Trigonometric Functions 

Let P and Q be polynomials of degree m and «, respectively, where rc > m + 1. If 
2(x) 7̂  0 for all real x, then 

P-V. — r cos x dx and P.V. sin x dx 
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are convergent improper integrals. Integrals of this type are sometimes encountered 
in the study of Fourier transforms and Fourier integrals. We now show how these 
improper integrals can be evaluated. 

It is of particular importance to observe that we will be using identities 

(1) cos(our) = Re[exp(/ou)] and sin(ou) = Im[exp(/ocjc)] 

where a is a positive real number. The crucial step in the proof of Theorem 8.4 will 
not hold if cos(az) and sin(otz) are used instead of exp(/az). Lemma 8.3 will give 
the details. 

Theorem 8.4 Let P and Q be polynomials with real coefficients of degree 
m and n, respectively, where n > m + 1, and Q(x) ¥" 0 for all real x. If 
a > 0 and 

(2) f(z)^^(^m 
Q(z) 

then 

(3) P.V. — cos(our) dx = -2% 2 I m ( R e s [/. */] ) and 

J— Q{x) /=i \ / 

(4) P.V. J 2 ¾ sin(ox) dx = -2% 2 Re( Res [f zj\ ) 
J-~ Qw ./= J \ / 

where Z\, Zi, . . . , Zk - i» Zk are the poles off that lie in the upper half-plane 
and where Re(Res[/, Zj\) and Im(Res[/, Zj\) are the real and imaginary parts 
ofRes[f, Zj], respectively. 

The proof of the theorem is similar to the proof of Theorem 8.3. Before we 
turn to the proof, let us first give some examples. 

EXAMPLE 8.15 Show that P.V. J x sin x dx _ n 
x2 4-4 ~72' 

Solution The function f in equation (2) is f(z) = z exp(iz)/(z2 + 4) 
and has a simple pole at the point z\ — 2/ in the upper half-plane. Calculating the 
residue results in 

T. r /. .̂-, i- z exp(fe) 2/e~2 1 
Res[/, 2i = lim F V / = — - = — . 

z-*u z + 2i Ai 2eL 

Using equation (4), we find that 

f °° x sin x dx , „ ^ , TC 
P.V. ——-— = 2TI Re{Res[/, 2/]} = - . 

j - « jr + 4 e2 
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EXAMPLE 8.16 Show that J" 
cos x dx _ 7i(cos 1 + sin 1) 
x4 + 4 4e 

Solution The complex function/in equation (2) is f(z) = exp(/z)/(z4 + 4) 
and has simple poles at the points z\ = 1 + i and zi = - 1 + / in the upper half-
plane. The residues are found with the aid of L'Hopital's rule. 

Res[/, 1 + i] = lim — = -
z->i+/ z4 + 4 0 

r [1 + i(z - 1 - Q]exp(iz) 
= h m 71 

z->l + i 4 z 3 

exp(—l + /) _ sin 1 — cos 1 — /(cos 1 + sin 1) 

4(1 + 03 " 16* " 
Similarly, 

cos 1 — sin 1 — /(cos 1 + sin 1) 
Res[/, - 1 + i] = ^ • 

16e 

Using equation (3), we find that 

cos x dx I , ^ = -2n[Im(Res[/, 1 + i]) + Im(Res[/, - 1 + /])] 
XT -T 4 

n(cos 1 + sin 1) 
= 4~e ' 

We now turn to the proof of Theorem 8.4, a theorem that depends on the 
following result. 

Lemma 8.3 (Jordan's Lemma) Let P and Q be polynomials with real 
coefficients of degree m and «, respectively, where n ^ m + 1. If CR is the 
upper semicircle z ~ ReiQ for 0 < 8 < n, then 

lim 
exp(fe)P(z) (5) hmk—^rdz^°-

Proof Since n > m + 1, it follows that | P(z)/Q(z) | -> 0 as | z | -> ~. There­
fore for e > 0 given there exists an R£ > 0 such that 

(6) 
Q(z) 

< - whenever \z\ ^ Re. 
71 

Using inequality (22) of Section 6.2 together with inequality (6), we obtain the 
estimate 

(7) J^^Kii-iw-«-««**• 
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The parameterization of CR leads to the equations 

(8) \dz\ = R dd and | elz \ = e~>' = e~R sin fi. 

Using the trigonometric identity sin(7i - B) = sin 6 and equations (8), we can express 
the integral on the right side of inequality (7) as 

(9) - I eiz 11 dz I = - e~R sin »Rd% = — \ e~R sin 'R dd. 
JCR K ' " ' K -/0 K Jo 

On the interval 0 < 9 < n/2 we can use the inequality 

26 
(10) 0 < — < sin 6. 

71 

We can combine the results of inequalities (7) and (10) and equation (9) to conclude 
that, for R > R£, 

JCR Q(Z) | 71 JO 

= -ee~2R()/K\f < e. 

Since e > 0 is arbitrary, Lemma 8.3 is proven. 

Proof Of Theorem 8.4 Let C be the contour that consists of the segment 
—R < x < R of the real axis together with the semicircle CR of Lemma 8.3. Property 
(17) of Section 6.2 can be used to write 

fR cxp(iajc)P(x) dx _ f exp(iaz)P(z) dz f exp(r 
( H ) J-« Gto ~ Jc Q(z) JcR 

az)P(z) dz 

Q{x) Jc Q(z) JcR Q(Z) 

If R is sufficiently large, then all the poles zi, Zi, . . . , Zk of/will lie inside C, and 
we can use the residue theorem to obtain 

exp(/az)P(z) dz 

Q(z) 

(R exp(ioix)P(x) dx A f 
(12) L g(V "^g^/'^-Jc. 
Since a is a positive real number, the change of variables Z = az shows that Jordan's 
lemma holds true for the integrand exp(iaz)P(z)/Q(z). Hence we can let R —> °° in 
equation (12) to obtain 

f°° [cos(ou) + i sin(ou)]P(x) dx ^ ^ 
(13) P.V.J_ l—^ ^ = 2ni 2 Res[/, Zj\ 

k 

= -27i2lm(Res[/ ,z /]) 
./= i 

k 

+ 2K/ 2 Re(Res[/, z,-]). 
./= i 

Equating the real and imaginary parts of equation (13) results in equations (3) and 
(4), respectively, and Theorem 8.4 is proven. 
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cos x dx 

cos x dx 

x dx 

x3 sin 2x dx 

EXERCISES FOR SECTION 8.5 
Use residues to find the integrals in Exercises 1-12. 

f ~ cos x dx n (°° sin x dx 
LL7T7 = y a n d L7T7 = 0 

tp.v.r^^p.v.rii^ 
J — x2 + 9 J— jr + 9 

[" JC sin x d!x _ it f °° 

* J — (JC2 + 4)2 " 4 ? ' J — (JC2 + 4)2 

r°° cos ̂  dx _ n 11 l \ r°° 
" J— U2 + 4)(JC2 + 9) ~ 5 [le* ~ 3 ? / * J — (JC2 + l)(x2 + 4) 

f °° cos JC Jx ___ K cos 1 f M cos x dx 
J-<~ x2 - 2x + 5 " 2e2 ' J—JC2 - 4JC + 5 

Q f ~ •* sin x dx _ 7C sin 1 f°° x3 sin . 
J-~ x4 + 4 ~ 2e ' J— x4 + 
f- cos2x<fr _ rc cos 2 f 

J-~x2 + 2;t + 2 e2 J-~ jd + 4 
13. Why do we need to use the exponential function when evaluating improper integrals 

involving the trigonometric functions sine and cosine? 

8.6 Indented Contour Integrals 

I f / i s continuous on the interval b < x < c, then the improper integral o f / o v e r 
(b, c] is defined by 

(1) f{x)dx = lim f(x)dx 
Jb r->t>+ Jr 

provided that the limit exists. Similarly, if / is continuous on the interval 
a < x < b, then the improper integral o f / o v e r [a, b) is defined by 

(2) f(x) dx = lim f(x) dx 
Ja R^k~ Ja 

provided that the limit exists. For example, 

f9 dx f9 dx /-.Q r 

—7= = lim —•= = lim [^\9
r] = 3 - lim J? = 3. 

L e t / b e continuous for all values of x in the interval [a, c], except at the value 
x = b, where a < b < c. The Cauchy principal value o f / o v e r [a, c] is defined by 

(3) P.V. f(x) dx = lim f(x) dx + f(x) dx 
J a r->0+ JQ Jb + r 

provided that the limit exists. 
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EXAMPLE 8.17 
dx 

< I Xu 
= lim 

- lim 

f-' dx_ f8 dxl 
J-1 xm + J/ JCI/3J 

r2/3 _ + 6 - r2/3 9 
2 ' 

In this section we extend the results of Sections 8.4 and 8.5 to include the 
case in which the integrand f has simple poles on the x axis. We now state how 
residues can be used to find the Cauchy principal value for the integral of /over 
(—°°, °°). 

Theorem 8.5 Let f(z) = P(z)/Q(z) where P and Q are polynomials with 
real coefficients of degree m and n, respectively, where n > m + 2. If Q has 
simple zeros at the points t\, t2, . . . , t\ on the x axis, then 

f°° P(x) dx k ' 
<4> R V - "T^T" = 2ni 2 Resf/ zj] + ni 2 Res[/ tj[ 

where zu li, . 

7=1 7=1 

Zk are the poles off that lie in the upper half-plane. 

Theorem 8.6 Let P and Q be polynomials of degree m and n, respectively, 
where n ^ m -f 1, and let Q have simple zeros at the points ti, t2, • . . , t/ on 
the x axis. If a is a positive real number and if 

(5) f(z) = 

then 

(6) P.V 

and 

(7) P.V.J 

exp(faz)P(z) 

Q{i) 

[°° P(x) k l 

~ ^ c o s ax dx = - 2rc 2 Im(Res|/, zi\)-n 2 Im(Res[/, t,]) 
J - C W 7=1 7=1 

P(x) k l 

- ^ sin ax dx = 2n 2 Re(Res[/, zj\) + n 2 Re(Res[/, *,-]), 
8 W y-i 7=i 

where zi, Zi, , z* are the p^/ej c»// that //e m the upper half-plane. 

Before we prove Theorems 8.5 and 8.6, let us make some observations and 
look at some examples. First, the formulas in equations (4), (6), and (7) give the 
Cauchy principal value in the integral. This answer is special because of the manner 
in which the limit in equation (3) is taken. Second, the formulas are similar to those 
in Sections 8.4 and 8.5, except that here we add one-half of the value of each residue 
at the points tj, t2, . . . , t\ on the x axis. 
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EXAMPLE 8.18 Show that P.V 
x dx n^/3 f ~ x dx 

J-~x3 - 8 = 

Solution The complex integrand 

z z 
f(z) = 

z3 - 8 (Z - 2){z + 1 + iy/3) (z + 1 - /73) 

has simple poles at the points t\ — 2 on the x axis and z\ ~ — I + i 7 3 in the upper 
half-plane. Now equation (4) gives 

™-U dx 
x3 - 8 

= 2ni Res[/, Zi] + rc/ Res[/ ti] 

„ - 1 - iy/3 1 71 /̂3 
_ 2TT/ h ni- = 12 6 6 

EXAMPLE 8.18* Show that 
f ~ t<it _ 

J - t3 - 8 " 
dt TI>/3 

Solution Using a Computer Algebra System 
Mathematica and MAPLE give the following indefinite integral: 

arctan 
g(t) = 

2 ^ 3 

1 + t 

7 3 ) + Log(t - 2) + Log(t2 + 2t + 4) 

12 

However, for real numbers, the second term should be rewritten as 

and we can use the following equivalent formula: 

1 + t\ 

Logf(t - 2)2] 
12 

arctan 
g(t) = 

2 Jl> 
73 / + Log[(f - 2)2] + Log(t2 + 2t + 4) 

12 12 

s = g(t) 

• f 

FIGURE 8.5 Graph of s = g(t) = j-f^-
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This choice produces a graph that is continuous in the extended real numbers, 
i.e., lim g(t) = — °o, as shown in Figure 8.5. The limits when t approaches infinity 

are 

^ 7 3 _, ,. x -nj?> 
limg(t) = —— and limg(t) = in , 

and the Cauchy principal limit at t = 2, as r -> 0 can be shown to be 

lim [g(2 + r) - *(2 - r)] = 0. 

Therefore, the Cauchy principal value of the improper integral is 

n T [~ tdt ,. r p - r t</t r- tav 
p V . v—^T = lim + 

= lim #(t) - lim [g(2 + r) - #(2 - r)] - limg(t) 

_ 71,/3 71^3 __ 7iv/3 

~ ™ T 2 ~ " + IT" " ~~6~ ' 

f" sin x dx n I \ \ 
.V. ; = - cos 1 . 

J— (JC — \)(x2 + 4) 5 \ e2/ 
EXAMPLE 8 . 1 9 Show that P 

Solution The complex integrand/(z) = exp(/z)/[(z - \){z2 + 4)] has simple 
poles at the points t\ = 1 on the x axis and z\ = 2/ in the upper half-plane. Now 
equation (7) gives 

, f ~ _ s i r 
J — (JC ~ 1 

R V - I 7—S?w f l ^ = 2n R e ( R e s t / ZiJ) + * Re(Res[/, tj) l)(x2 + 4) 

/ - 2 + A /cos 1 + /sin 1 

- 2 * R e ( " M ^ " J + , l R C ( = 
W l 

= - c o s l - -

The proofs of Theorems 8.5 and 8.6 depend on the following result. 

Lemma 8-4 Let f have a simple pole at the point t0 on the x axis. If the 
contour is C: z = to + rei% for 0 < 0 < n, then 

lim 
r-»0 J C 

(8) lim f(z) dz = in Res[/, t0]. 

Proof The Laurent series for /at z = to has the form 

(9) /fe) = — + g(z), 
z - t0 
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where g is analytic at z - to- Using the parameterization of C and equation (9), we 
can write 

f fn ire'" dd [n 

(10) J c f(z) dz = Res[/, to] JQ — — + ir JQ g(t0 + re<Ve d% 

= in Res[/, t0l + ir Jo g(t0 + «?'Ve ^6. 

Since g is continuous at r0, there is an M > 0 so that | g(tQ + re'B) | < M. Hence 

(11) im ir g(t0 ^o Jo lim + re 'V 8 d6 Jo < lim r M JB = lim r7iM = 0. 

When inequality (11) is used in equation (10), the resulting limit is given by equation 
(8), and Lemma 8.4 is proven. 

Proof Of Theorems 8.5 and 8.6 Since f has only a finite number of 
poles, we can choose r small enough so that the semicircles 

Cj: z = t, + re* for 0 < 6 < n and j = 1 , 2 , . . . , / 

are disjoint and the poles z\, Zi, . • . , ¾ of/ in the upper half-plane lie above them 
as shown in Figure 8.6. 

FIGURE 8.6 The poles t,, t2, . • . ,t\ off that lie on the x axis and the poles zi, 
z2, . . . , ZA that lie above the semicircles C\, C2, . . . , C/. 

Let R be chosen large enough so that the poles of / i n the upper half-plane lie 
under the semicircle CR: z = Re'e for 0 < 6 < n and the poles of /on the x axis lie 
in the interval —R < JC < R. Let C be the simple closed positively oriented contour 
that consists of CR and —C\, - C 2 , . . . , — C/ and the segments of the real axis that 
lie between the semicircles as shown in Figure 8.6. The residue theorem can be used 
to obtain 
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(12) f f(z) dz = 2ni 2 Res[/, zj\. 
JC J=\ 

Equation (12) can be written as 

(13) J f(x) dx = 2n/ 2 Res[/, zj\ + 2 [ /(z) dz ~ \ f(z) dz 

where IR is the portion of the interval —R < x < R that lies outside the intervals 
(tj — r, tj + r) for,/ = 1, 2, . . . , / . The proofs of Theorems 8.3 and 8.4 show that 

(14) lim f(z)dz = 0. 

If we let R —» oo and r —» 0 in equation (13) and use the result of equation (14) and 
Lemma 8.4, then we obtain 

r~ k i 

(15) P.V. /(JC) dx = 2TI/ 2 Res[/ Z;] + *i E R e s U ';]-
J — > 1 y- l 

I f / i s given in Theorem 8.5, the equation (15) becomes equation (4). I f / i s given 
in Theorem 8.6, then equating the real and imaginary parts of equation (15) results 
in equations (6) and (7), respectively, and the theorems are established. 

EXERCISES FOR SECTION 8.6 
Use residues to compute or verify the integrals in Exercises 1-15. 

f" dx 
1. P.V. — = 0 

J ~x(x - \)(x - 2) 

'•"•f'-.TTiS 
«•'•»• f - 7 ^ - ! 
» _ , T f ~ sin x dx 
7. P.V. = n 

J — X 

J — JC(7C2 - X2) K 

f " sin x dx ( 1 \ 
11. P.V. ~ = K 1 - " 

J-~x(x2 + 1) \ e/ 
f°° sin x dx f°° cos x dx % sin a 

13. P.V. r = n(l - cos 1) 14. P.V. — = 
J — J C ( 1 - j c 2 ) J — a2 - x 2 a 

15. P.V. = n. Hint: Use the trigonometric identity sin2x = \ — y cos 2x. 
J — jc-

2. 

4. 

6. 

8. 

10. 

12. 

14 

P.V.J 

P.V. J 

P.V.J 

P.V.J 

P.V. J 

P.V.J 

P V 

dx 

X3 + X 

dx 

= X3 + 1 

x4 dx 

-x 6 - 1 
cos x dx 

x2 - x 
cos x dx 

= n2 - 4x2 

x cos x dx 

= x2 + 3x + 2 

cos x dx n sin a 
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8.7 Integrands with Branch Points 

We now show how to evaluate certain improper real integrals involving the inte­
grand xaP(x)/Q(x). Since the complex function za is multivalued, we must first 
specify the branch that we will be using. 

Let a be a real number with 0 < a < 1. Then in this section we will use the 
branch of za defined as follows: 

(1) z° = eailn r+/9) = ra(cos aO + i sin a6), where 0 < 6 < 2n. 

Using definition (1), we see that za is analytic in the domain r > 0, 0 < 6 < 2K. 

Theorem 8.7 Let P and Q be polynomials of degree m and n, respectively, 
where n > m 4- 2. If Q(x) ¥" 0 for x > 0 and Q has a zero of order at most 1 
at the origin and 

(2) /(^) = - ^ , where0<a< 1, 

then 

Jo Q(x) 1 - e'^pi U Jl 

where Zu Zi, . • • • , Zk cire the nonzero poles of P/Q. 

Proof Let C denote the simple, closed, positively oriented contour that con­
sists of the portions of the circles | z | = r and | z \ = R and the horizontal segments 
joining them as shown in Figure 8.7. A small value of r and a large value of R can 
be selected so that the nonzero poles z\, Zi, • • • , Zk of P/Q lie inside C 

FIGURE 8.7 The contour C that encloses all the nonzero poles 
zuzi, • . . ,zk of P/Q. 
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Using the residue theorem, we can write 
k 

(4) f(z) dz = 2ni 2 Res[/ Zjl 

If we let r —» 0 in equation (4) and use property (17) of Section 6.2 to express the 
limiting value of the integral on the lower segment, we find that equation (4) 
becomes 

fRxaP(x)dx fR xaeia2nP(x) dx A f 

which can be written as 

(5) 
\Rx-P(x)dx 2m * 1 f . . . . 
Jo " e u T = r ^ l R e s [ / ' ^1 - r ^ J,/w *• 2(JC) 1 - e^Px 

Letting R —» <» in equation (5) results in equation (3), and Theorem 8.7 is established. 

EXAMPLE 8 . 2 0 Show that P.V. f° *'dx = - A - , where 0 < a < 1. 
Jo ^(x + 1) sin a7C 

Solution The complex function/(z) = za/[z(z + 1)] has a nonzero pole at 
the point zi = — 1 - Using equation (3) we find that 

f" x" dx 
Jo x(x + 1 

2ni „ 27i/ 
Res[ / , -1] = ) 1 - e/a2jI 1 - e"'2* \ - l 

71 71 

oUm s,-ian sin aTl 

2/ 

The preceding ideas can be applied to other multivalued functions. 

EXAMPLE 8.21 Show that P.V. f" - ^ - ^ - = ^ , where a > 0. 
Jo x2 + a2 2a 

Solution Here we use the complex function/(z) = Log z/(z2 + a2). The 
path C of integration will consist of the segments [—R, —r] and [r, R] of the x axis 
together with the upper semicircles Cr\ z = rei% and Cy. z= Re'e for 0 < 6 < n as 
shown in Figure 8.8. 
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~R ' ~r I r R 

FIGURE 8.8 The contour C for the integrand/(z) = (Log z)l(z2 + a1). 

The residue theorem can be used to write 

i (6) | f(z) dz = 2ni Res[/, ai] = ^ ^ + i^-. 
a 2a 

The inequality 

f * In R + /6 I o R2ei2Q + a2 i Re* dQ 
R(\n R + 7i)7i 

R2 -a2 

and L'Hopital's rule can be used to show that 

(7) lim J f(z) dz = 0. 

A similar computation will show that 

(8) lim J f(z) dz = 0. 

We can use the results of equations (7) and (8) in equation (6) to obtain 

/ f o l n | x | + f r e [-\TLxdx\ n In a n2 

(9) P.V. , , . dx + r = + i— . 

\J— x2 + a2 Jo x2 + a2) a la 

Equating the real parts in equation (9), we obtain 

2 In x dx 71 In a ».v.r 
Jo JC2 + a2 a 

and the result is established. 
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EXERCISES FOR SECTION 8.7 
Use residues to compute or verify the integrals in Exercises 1-11. 

, P V f- * = 2* 2 p v f- dx 
•Jo xy\\ +x) 7 3 *• r-v"J0 ^i/2(1 + JC) 

K * Jo (1 + x? 2 4 ' R V ' Jo 1 + ^ 

5. P.V. - = 7t In 2. Use/(z) = — : . 
Jo x2 + 1 ^ z2 + 1 

6. P.V 
: dx f °° In x dx 

' Jo (1 + x2) 
fx ln( 1 + x) n 

7. P.V. - ^ - , where 0 < a < 1 
Jo x l+" a sin 7ca 

8. p.v. f-JLliL. 
Jo (* + a)-

! sin : 

where # > 0 

Hint: Use the integrand f(z) = exp(/z)/z and the contour C in Figure 8.8, and let 
r -» 0 and /?->«>. 

n 2 v 

10. P.V. 
f°° sin2; 

dx 

///nt: Use the integrand/(z) = [1 - exp(/2z)]/z2 and the contour C in Figure 8.8, and 
let r —» 0 and R —> «>. 

11. The Fresnel integrals 

'.V. J cos(x2) dx = P.V. I sin(x2) dx = 
2^2 

are important in the study of optics. Use the integrand/(z) = exp(-z2) and the contour 
C shown in Figure 8.9, and let R -» °o; then establish these integrals. Also use the fact 
from calculus that P.V. /~ e~xl dx = J%I2. 

FIGURE 8.9 Accompanies Exercise 11. 
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8.8 The Argument Principle and Rouche's Theorem 

We will now derive two results based on Cauchy's residue theorem. They have 
important practical applications and pertain only to functions all of whose isolated 
singularities are poles. 

Definition 8.1 A function f(z) is said to be meromorphic in a domain D 
provided that the only singularities off(z) are isolated poles (and removable 
singularities). 

Observe that analytic functions are a special case of meromorphic functions. 
Rational functions f(z) = P(z)/Q(z), where P(z) and Q(z) are polynomials, are 
meromorphic in the entire complex plane. A meromorphic function does not have 
essential singularities! 

Suppose that/(z) is analytic at each point on a simple closed contour C and 
f(z) is meromorphic in the domain that is the interior of C An extension of theorem 
7.14 can be made that shows that/(e) has at most finitely many zeros that lie inside 
C. Since the function g(z) = Vf(z) is also meromorphic, it can have only finitely 
many zeros inside C. Therefore/(z) can have at most a finite number of poles that 
lie inside C. 

An application of the residue theorem that is useful in determining the number 
of zeros and poles of a function is called the argument principle. 

Theorem 8.8 (Argument Principle) Let f(z) be meromorphic in the 
simply connected domain D. Let C be a simple closed positively oriented con­
tour in D along which f(z) ^ 0 and f(z) ^ °°. Then 

<" S j c $ * - " - ' 27i/ Jc f(z) 

where N is the number of zeros off(z) that lie inside C and P is the number 
of poles that lie inside C. 

Proof Let ai, a2> • • . , ayv be the zeros of f(z) inside C counted according 
to multiplicity and let b\, b2,. . . , bP be the poles of/(z) inside C counted according 
to multiplicity. Then/(z) has the representation 

, _ ,, , (z - ai)(z - a2) • • • (z - aN) 

(z - bx)(z - b2) • • • (z ~ bP) 

where g(z) is analytic and nonzero on C and inside C. An elementary calculation 
shows that 

(3) /^»_L_ + _ ^ + , ' 
f(z) (z - a{) (z - a2) (z - aN) 

J ._ J 1 +g'(z) 
(z- bi) (z- b2) (z - bP) g{z) 
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According to Example 6.14, we have 

— = 2ni for; = 1, 2, . . . , TV 

and 

f H? 
2ni fork = 1,2, . . . , P. f dz 

)c (z - h) 

Since gf(z)lg(z) is analytic inside and on C, it follows from the Cauchy-Goursat 
theorem that 

\z)dz = 

g(z) 

These facts can be used to integrate both sides of equation (3) over C. The result is 
equation (1), and the theorem is proven. 

Corollary 8.1 Suppose thatf(z) is analytic in the simply connected domain 
D. Let C be a simple closed positively oriented contour in D along which 
f(z) # 0. Then 

<4> i / c T F * - " f(z) 

where N is the number of zeros off(z) that lie inside C. 

Theorem 8.9 (Roche's Theorem) Letf(z) and g(z) be analytic functions 
defined in the simply connected domain D. Let C be a simply closed contour 
in D. If the strict inequality 

(5) \f(z) - g(z) | < \f(z) | holds for all z on C, 

then f(z) and g(z) have the same number of zeros inside C (counting 
multiplicity). 

Proof The condition \f(z) ~ g(z)\ < \f(z)\ precludes the possibility of 
f(z) or g(z) having zeros on the contour C. Therefore division by/(z) is permitted, 
and we obtain 

(6) 
g(z) _ l 

f(z) 
< 1 for all z on C 

Let F(z) = g(z)/f(z)' Then F(C), the image of the curve C under the mapping 
w = F(z), is contained in the disk | w — 11 < 1 in the w plane. Therefore F{C) is 
a closed curve that does not wind around w = 0. Hence 1/w is analytic on the curve 
/(C), and we obtain 

(7) f ^ = 0. 
JF(C) W 
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Using the change of variable w = f(z) and dw = F'(z)dz, we see that the 
integral in equation (7) can be expressed as 

<•> L ^ * - * 

(9) 

F(z) 

Since F'(z) = [g'(z)f(z) ~ f'(z)g(z)]/[f(z)]2, it follows that 

F\z) g'(z) f'iz) 
F(z) g(z) f(z) 

Hence equations (8) and (9) can be used to obtain 

(10) ±(mdz = -L [1¾. 
} 2niJcf(z) 2niJcg(z) 

Corollary 8.1 and equation (10) imply that the number of zeros of f(z) inside C 
equals the number of zeros of g(z) inside C, and the theorem is proven. 

One can use Rouche's theorem to gain information about the location of the 
zeros of an analytic function. 

E X A M P L E 8 . 2 2 Show that all four zeros of the polynomial 

g(z) = z4 - Iz - 1 

lie in the disk \z\ < 2. 

Solution Let f(z) = z4, then/(z) - g(z) = lz + 1. At points on the circle 
\z\ = 2 we have the relation 

\f(z)-g(z)\ = \lz+ l\*\7z\ + 1 = 7 ( 2 ) + 1 = 15 < 16= \f(z) |. 

The function/(z) has a zero of order 4 at the origin, and the hypothesis of Rouche's 
theorem holds true for the circle | z | = 2. Therefore g(z) has four zeros inside 
| z | = 2 . 

E X A M P L E 8 . 2 3 Show that the polynomial g(z) = z4 - lz — 1 has one zero 
in the disk \z\ < 1. 

Solution Let/(z) = -lz - 1, then/U) - g(z) = -z4. At points on the 
circle \z\ = 1 we have the relation 

| / ( z ) - S ( z ) | = I"*41 = 1 < 6 = |7 - 1| = | \lz\ - | - 1 | | 
< | 7 z - 1| = \f(z)\. 

The functionf(z) has one zero at z = —1/7 in the disk \z\ < 1, and the hypothesis 
of Rouche's theorem holds true on the circle \z\ = 1. Therefore g(z) has one zero 
inside \z\ = 1. 
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Certain feedback control systems in engineering must be stable. A test for 
stability involves the function G(z) = 1 + F(z), where F(z) is a rational function. 
If G(z) does not have any zeros for Re(z) ^ 0, then the system is stable. The number 
of zeros of G{z) can be determined by writing F(z) = P(z)/Q(z), where P(z) and 
Q(z) are polynomials with no common zero. Then G(z) = [Q(z) + P(z)]/Q(z). We 
can check for zeros of Q(z) + P(z) using Theorem 8.8. A value R is selected so that 
G(z) ^ 0 for | z | > R. Contour integration is then performed along the contour 
consisting of the right half of the circle | z \ = R and the line segment between iR 
and — iR. The method is known as the Nyquist stability criterion. 

The Winding Number 
Suppose that C: z(t) = x(t) + iy(t) for a < t < b is a simple closed contour. Let 
a = to < ti < • • * < tn = b be a partition of the interval and let Zk = z{tk) (for k = 
0, 1, . . . , n) denote points on C where zo = zn> If z* lies inside C, then z(t) winds 
around z* once as t goes from a to b (see Figure 8.10). 

-*-x 

FIGURE 8.10 The points z* on the contour C that winds around z* 

Now suppose that/(z) is analytic at each point on C and meromorphic inside 
C. Then f(C) is a closed curve in the w plane that passes through wk = f(zu) (for 
k = 0, 1, . . . , ri), where w0 = wn. The subintervals [tk_\, tk] can be chosen small 
enough so that a continuous branch log w = In | w | + i arg w = In p + i§ can be 
defined on the portion of/(C) between wk-\ and w* (see Figure 8.11). Then 

(11) log/(¾) - log / fe^) = In pk - In p*_i + /A<|>jk, 

where A$k = §k — §k_l measures the amount that the portion of the curve/(C) 
between wk and wk_ \ winds around the origin w = 0. 
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+-U 

FIGURE 8.11 The points wk on the coutour/(C) that winds around 0. 

Formula (1) will now be shown to be the number of times that/(C) winds 
around w = 0. The parameterization given above together with the appropriate 
branches of log w are used to write 

f f(z) A f'« fXzii)) 

n 

= 2 [log w* - log w*_j], 

which in turn can be written as 

f f(z) n n 

(12) ~ 7 7 & = E Hn PA - In p*_,] + / 2 ^ -

By using the fact that p0 = f>n the first summation in equation (12) vanishes. The 
summation of the quantities A$k is the total amount that/(C) winds around w = 0 
in radians. When the quantities in equation (12) are divided by 2TT/, we are left with 
an integer that is the number of times/(C) winds around w = 0. For example, the 
image of the circle C:\z\ =2 under the mapping w = f(z) = z2 + z is the curve 
x = 4 cos 2t + 2 cos t, y = 4 sin 2t + 2 sin t for 0 < t < 271 that is shown in Figure 
8.12. Notice that the image curve/(C) winds twice around the origin w = 0. 
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FIGURE 8.12 The image curve/(C) of the circle C: \z\ = 2 under the mapping 
w = f(z) = z2 + z-

EXERCISES FOR SECTION 8.8 

For Exercises 1-5, use Rouche's theorem to show that the roots lie in the indicated region. 

1. Let P(z) = z5 + 4z - 15. 
(a) Show that there are no roots in | z | < 1. Hint: Use/(z) = 15. 
(b) Show that there are five roots in \z\ < 2. Hint: f(z) = z5. 
Remark: A factorization of the polynomial using numerical approximations for the co­
efficients is 

(z - 1.546)(22 - 1.340z + 2.857)fe2 + 2.885z + 3.397). 

2. Let P(z) = z3 + 9z + 27. 
(a) Show that there are no roots in \z\ < 2. Hint: Use/(z) = 27. 
(b) Show that there are three roots in \z\ < 4. Hint: f(z) = z3. 

Remark: A factorization of the polynomial using numerical approximations for the 
coefficients is 

(z + 2.047)(z2 - 2.047z + 13.19). 
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3. LetP(z) = z5 + 6z2 + 2z + 1. 
(a) Show that there are two roots in \z\ < 1. Hint: Use/(z) = 6z2. 
(b) Show that there are five roots in \z\ < 2. 

4. LetP(z) = z6 - 5z4 + 10. 
(a) Show that there are no roots in \z\ < 1. 
(b) Show that there are four roots in \z\ < 2. Hint: Use/(z) = 5z4. 
(c) Show that there are six roots in \z\ < 3. 

5. Let P(z) = 3z3 - 2iz2 + iz - 1. 
(a) Show that there are no roots in \z\ < 1. 
(b) Show that there are three roots in | z \ < 2. 

6. Use Rouche's theorem to prove the fundamental theorem of algebra. Hint: Let 
f(z) = —anz" and g(z) = a{) + a\Z + • • • + an„]Zn~]. Then show that for points z on the 
circle I z I = R we have 

£(Z) 
f(z) 

\a0\ + la, I + - • • + 
< _! ! ! ! 

1*1* 
and see what happens when R is made large. 

7. Use Rouche's theorem to prove the following. If h(z) is analytic and nonzero and 
|h(z) | < 1 for | z | < 1, then h(z) — z" has n roots inside the unit circle \z\ = 1. 

8. Suppose that/(z) is analytic inside and on the simple closed contour C. If/(z) is a one-
to-one function at points z on C, then prove that f(z) is one-to-one inside C. Hint: 
Consider the image of C. 

9. Look up the articles on Rouche's theorem and discuss what you found. Resources in­
clude bibliographical items 68 and 172. 

10. Write a report on the winding number. Include ideas and examples not mentioned in the 
text. Resources include bibliographical items 6, 51, 88, 141, and 166. 



Conformal Mapping 

9.1 Basic Properties of Conformal Mappings 

Let f be an analytic function in the domain Dy and let zo be a point in D. If 
fXzo) ^ 0, then we can express f in the form 

( 0 f(z) = f(zo) + f'izoXz - zo) + t|(z)(z - zo), where r|(z) -» 0 as z -> 26. 

If z is near zo, then the transformation w = /(z) has the linear approximation 

(2) S(z) = A + B(z- z0), where A = /(¾) and * = /feo). 

Since r|(z) —> 0 when z —> £o> it is reasonable that for points near ZQ the transformation 
w = f(z) has an effect much like the linear mapping w = S(z)* The effect of the 
linear mapping S is a rotation of the plane through the angle a = arg[/'(£o)l, fol­
lowed by a magnification by the factor |/'(zo) |» followed by a rigid translation by 
the vector A — Bz®. Consequently, the mapping w = S(z) preserves angles at the 
point zo- We now show that the mapping w = f(z) also preserves angles at z0-

Let C: z(t) = x(t) + /v(t), - 1 < t < 1 denote a smooth curve that passes 
through the point z(0) = ZQ. A vector T tangent to C at the point zo is given by 

(3) T = z'(0), 

where the complex number z'(0) has assumed its vector interpretation. 
The angle of inclination of T with respect to the positive x axis is 

(4) (3 = arg z'(0). 

The image of C under the mapping w = f(z) is the curve K given by the formula 
K\ w(t) = u(x(t), y{t)) + rv(jc(t), y(t)). The chain rule can be used to show that a 
vector T* tangent to K at the point w0 = f(zo) is given by 

(5) T* = w'(0) = f(zo)z'(0). 

281 
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The angle of inclination of T* with respect to the positive u axis is 

(6) y = arg[/'(zb)l + arg[z'(0)] = a + % where a = arg[/'(z0)]. 

Therefore the effect of the transformation w = f(z) is to rotate the angle of incli­
nation of the tangent vector T at Zo through the angle a = arg[/"'(zo)] to obtain the 
angle of inclination of the tangent vector T* at w0. The situation is illustrated in 
Figure 9.1. 

FIGURE 9.1 The tangents at the points z0 and w0, where/is an analytic function 
andf'(zo) * 0 . 

A mapping w = f(z) is said to be angle preserving, or conformal at zo, if it 
preserves angles between oriented curves in magnitude as well as in orientation. 
The following result shows where a mapping by an analytic function is conformal. 

Theorem 9.1 Let f be an analytic function in the domain D, and let zo be 
a point in D. Iff\zo) ^ 0, then f is conformal at Zo-

Proof Let C\ and C2 be two smooth curves passing through z0 with tangents 
given by Tj and T2, respectively. Let pi and p2 denote the angles of inclination of 
Ti and T2, respectively. The image curves Kx and K2 that pass through the point 
wo = f(zo) will have tangents denoted by T^ and T2, respectively. Using equation 
(6), we see that the angles of inclination yi and y2 of T* and T2 are related to Pi and 
p2 by the equations 

(7) Yl = a + p! and y2 = a + p2, 

where a = arg/'(^o)« Hence from equations (7) we conclude that 

(8) y2 ~ yi = P2 - Pi. 

That is, the angle y2 - yi from K\ to K2 is the same in magnitude and orientation 
as the angle p2 - pi from C\ to C2. Therefore the mapping w = f(z) is conformal 
at Zo- The situation is shown in Figure 9.2. 
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y v 

FIGURE 9.2 The analytic mapping w = f(z) is conformal at the point zo, where 

EXAMPLE 9-1 Show that the mapping w — f(z) = cos z is conformal at the 
points z\ = /, Zi = 1, and z3 = n + /, and determine the angle of rotation given by 
a = argf'(z) at the given points. 

Solution Since f'(z) — —sin z, we conclude that the mapping w — cos z is 
conformal at all points except z — nn, where n is an integer. Calculation reveals 
that 

/'(/) = -i sinh 1, /'(1) = -sin 1, and f(n + /) = i sinh 1. 

Therefore the angle of rotation is given by 

— K 

a, = arg/'(/) = — , oc2 = arg/ '(l) = 7t, and 

a3 = arg/'Ot + /) = - , respectively. 

Let/be a nonconstant analytic function. lff'(zo) = 0, then zo is called a critical 
point of/, and the mapping w = f(z) is not conformal at ZQ. The next result shows 
what happens at a critical point. 

Theorem 9.2 Let f be analytic at z0. IffXzo) = 0, . . . , / a _ I ) fe)) = 0, a«a* 
f(k)(zo) =^ 0, then the mapping w = /(z) magnifies angles at the vertex zo £y 
the factor k. 

Proof Since/is analytic at zo, it has the representation 

(9) /(z) = /(zo) + ak(z - zo)* + ak+l(z - z0)
k+l + • • • . 

From (9) we conclude that 

(10) / (z ) - / (z 0 ) = (z-zo)^(z), 
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where g is analytic at zo and g(zo) ^ 0. Consequently, if w = f(z) and w0 = f(zo), 
then using equation (10), we obtain 

(11) arg(w - wo) = arg[/(z) - f(z0)] = k arg(z - Zo) + arg[g(z)]. 

Let C be a smooth curve that passes through z0- If z -» 2o> along C, then 
w —> w0 along the image curve K, and the angle of inclination of the tangents T to 
C and T* to K are given, respectively, by the following limits: 

(12) (} = lim arg(z - ZQ) and y = lim arg(w - w0). 

From equations (11) and (12) it follows that 

(13) y = lim (k arg(z - z0) + argfcfc)]) = *|J + 8, 

where 5 = arg [g(z0)] = arg ak. 
Let Ci and C2 be two smooth curves that pass through zo, and let K{ and Ki 

be their images. Then from equation (13) it follows that 

(14) Ay = y 2 - y, = *(P2 - P,) = ftAp. 

That is, the angle Ay from K\ to K2 is k times as large as the angle A|3 from C\ to 
C2. Therefore angles at the vertex zo are magnified by the factor k. The situation is 
shown in Figure 9.3. 

w = / ( z ) 

FIGURE 9.3 The analytic mapping w = f(z) at a point z(), where 
/'(zo) = 0, . . . ,/<*-'>(z0) = 0 and/<*>(zo) * 0. 

EXAMPLE 9.2 The mapping w = f(z) = z2 maps the square S = {x + iy: 
0 < x < 1, 0 < v < 1} onto the region in the upper half plane Im(w) > 0, which 
lies under the parabolas 

u = 1 - iv2 and u = — 1 4- -jv2, 

as shown in Figure 9.4. The derivative is f'(z) = 2z, and we conclude that the 
mapping w = z2 is conformal for all z ^ 0. It is worthwhile to observe that the right 
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angles at the vertices z\ = 1, Zi = 1 + /, and z3 = i are mapped onto right angles 
at the vertices W\ = 1, w2 = 2/, and w3 = - 1 , respectively. At the point ZQ = 0 we 
have/'(0) = 0 and/"(0) # 0. Hence angles at the vertex zo = 0 are magnified by 
the factor k — 2. In particular, we see that the right angle at ZQ = 0 is mapped onto 
the straight angle at w0 = 0. 

y 

A 

zo = ° 

—f 

« - • X 

V 1 
• u 

FIGURE 9.4 The mapping w = z2 that is discussed in Example 9.2. 

Another property of a conformal mapping w = f(z) is obtained by considering 
the modulus offXzo)- If zi is near z0> we can use equation (1) and neglect the term 
T|(zi)(zi - Zo)- We then have the approximation 

(15) w\ - w0 =/(zi) - f(z0) ~f(zo)(z\ - Zo). 

Using equation (15), we see that the distance \w\ — w0 | between the images of the 
points z\ and zo is given approximately by |/'(zo)| \z\ - ZQ \. Therefore we say that 
the transformation w = f(z) changes small distances near zo by the scale factor 
\f'(zo) | • For example, the scale factor of the transformation w = f(z) = z2 near the 

point zo = 1 + i is |/'(1 + 0| = | 2(1 + i) | - ijl. 
It is also necessary to say a few things about the inverse transformation 

z = g(w) of a conformal mapping w = f(z) near a point zo, where f'(zo) ^ 0. A 
complete justification of the following relies on theorems studied in advanced cal­
culus.* Let the mapping w = f(z) be expressed in the coordinate form 

(16) u = u(x, y) and v = v(x, y). 

*See, for instance, R. Creighton Buck, Advanced Calculus, 3rd ed. (New York, McGraw-Hill Book 
Company), pp. 358-361, 1978. 
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The mapping in equations (16) represents a transformation from the xy plane 
into the uv plane, and the Jacobian determinant J(x, y) is defined by 

(17) J(x9y) = 
ux{x, y) uy(x, y) 

vx(x, y) vv(x, y) 

It is known that the transformation in equations (16) has a local inverse provided 
that J(x, y) ¥" 0. Expanding equation (17) and using the Cauchy-Riemann equations, 
we obtain 

(18) J(xo, yo) = ux(x0, yo)vy(xQ, y0) - vA(x0, yo)uy(x0, y0) 

= u2
x(x0, yo) + v'(x0, y0) = \f'(z0)\

2 * 0. 

Consequently, equations (17) and (18) imply that a local inverse z = g(w) exists in 
a neighborhood of the point WQ. The derivative of g at w0 is given by the familiar 
computation 

g(w) - g(w0) 
(19) g'(w0) = lim 

= lim 

w — Wo 

z - Zo 1 1 
z^fiz)-f(zo) /'(zo) f(g(w0)) 

EXERCISES FOR SECTION 9.1 
1. State where the following mappings are conformal. 

(a) w — exp z (b) w = sin z (c) w = z2 + 2z 
1 z + 1 

(d) w = exp(z2 + 1) (e) w = - (f) w = 
z z - \ 

For Exercises 2-5, find the angle of rotation a = arg/'(z) and the scale factor \f\z)\ of 
the mapping w = f(z) at the indicated points. 

2. w = \lz at the points 1,1 + / , and i 
3. w = In r + /0, where -n/2 < 6 < 3n/2 at the points 1,1 + i, iy and - 1 
4. w = r1/2cos(6/2) + *'rl/2sin(6/2), where -n < 0 < n, at the points f, 1, - / , and 3 + 4/ 
5. w = sin z at the points 7t/2 + /, 0, and -7C/2 + i 
6. Consider the mapping w = z2. If a ¥" 0 and Z? 7̂  0, show that the lines x = a and ;y = b 

are mapped onto orthogonal parabolas. 
7. Consider the mapping w = zl/2, where z1/2 denotes the principal branch of the square 

root function. If a > 0 and b > 0, show that the lines x = a and y = b are mapped onto 
orthogonal curves. 

8. Consider the mapping w = exp z. Show that the lines x = a and y = b are mapped onto 
orthogonal curves. 

9. Consider the mapping w = sin z. Show that the line segment —n/2 < x < n/2, y = 0, 
and the vertical line x = a, where | a | < n/2 are mapped onto orthogonal curves. 

10. Consider the mapping w = Log z, where Log z denotes the principal branch of the 
logarithm function. Show that the positive x axis and the vertical line x = 1 are mapped 
onto orthogonal curves. 
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11. Let /be analytic at z0 and/'(2o) ^ 0. Show that the function g(z) = f(z) preserves the 
magnitude, but reverses the sense, of angles at z0-

12. If w = f(z) is a mapping, where/(z) is not analytic, then what behavior would one expect 
regarding the angles between curves. 

13. Write a report on conformal mapping. Your research could be theoretical and develop 
ideas not found in the text or practical and involve applications and/or computers. Re­
sources include bibliographical items 33, 34, 35, 37, 41, 47, 48, 75, 92, 93, 96, 130, 
136, 146, 154, 159, 164, 176, 180, and 182. 

9.2 Bilinear Transformations 

Another important class of elementary mappings was studied by Augustus Ferdi­
nand Mobius (1790-1868). These mappings are conveniently expressed as the quo­
tient of two linear expressions and are commonly known as linear fractional or 
bilinear transformations. They arise naturally in mapping problems involving the 
function arctan z. In this section we will show how they are used to map a disk one-
to-one and onto a half plane. 

Let a, b, c, and d denote four complex constants with the restriction that 
ad 7̂  be. Then the function 

(1) * = 5(0 = ¾ 
cz + d 

is called a bilinear transformation or Mobius transformation or linear fractional 
transformation. If the expression for S in equation (1) is multiplied through by 
the quantity cz + d, then the resulting expression has the bilinear form cwz — az + 
dw — b = 0. We can collect terms involving z and write z(cw — a) = — dw + b. 
For values of w ^ ale the inverse transformation is given by 

—dw 4- b 
(2) z = S~\w) = . 

cw — a 

We can extend S and S_1 to mappings in the extended complex plane. The 
value SO) should be chosen to equal the limit of S(z) as z —> °°. Therefore we define 

(3) S ^ = limS(z) = l i m
a - ^ = a-, 

z^x c + (d/z) c 

and the inverse is S~\alc) = °o. Similarly, the value S~l(°°) is obtained by 

d + (b/w) -d (4) S~l(oo) = lim S~l(w) = lim 
c — (a/w) 

and the inverse is S(-dlc) = <~. With these extensions we conclude that the trans­
formation w = S(z) is a one-to-one mapping of the extended complex z plane onto 
the extended complex w plane. 

We now show that a bilinear transformation carries the class of circles and 
lines onto itself. Let S be an arbitrary bilinear transformation given by equation (1). 



288 Chapter 9 Conformal Mapping 

If c — 0, then S reduces to a linear transformation, which carries lines onto lines 
and circles onto circles. If c # 0, then we can write S in the form 

a{cz + d) + be — ad a be — ad 1 
(5) S(z) = - - ^ - r = - + — . 

c{cz + d) c c cz + d 
The condition ad =̂= be precludes the possibility that S reduces to a constant. It is 
easy to see from equation (5) that S can be considered as a composition of functions. 
It is a linear mapping £ = cz + d, followed by the reciprocal transformation 
Z = l/£, followed by w = {ale) + [{be - ad)/c]Z. It was shown in Chapter 2 that 
each function in the composition maps the class of circles and lines onto itself, it 
follows that the bilinear transformation S has this property. A half plane can be 
considered a family of parallel lines and a disk as a family of circles. Therefore it 
is reasonable to conclude that a bilinear transformation maps the class of half planes 
and disks onto itself. Example 9.3 illustrates this idea. 

E X A M P L E 9 . 3 Show that w = S{z) = /(1 - z)/(l + z) maps the unit disk 
| z | < 1 one-to-one and onto the upper half plane Im(w) > 0. 

Solution Let us first consider the unit circle C: \z\ == 1, which forms the 
boundary of the disk, and find its image in the w plane. If we write S{z) = 
{—iz + i)l{z + 1), then we see that a = —i9b — i,c = 1, and d = 1. Using equation 
(2), we find that the inverse is given by 

„ w , —dw + b —w + i 
(6) z = S~\w) = = — . 

cw — a w + i 

If \z\ = 1, then equation (6) implies that the images of points on the unit 
circle satisfy the equation 

(7) | w + i | = | — w H- / 1 . 

Squaring both sides of equation (7), we obtain u2 + (1 + v)2 = u2 + (1 - v)2, which 
can be simplified to yield v = 0, which is the equation of the u axis in the w plane. 

The circle C divides the z plane into two portions, and its image is the u axis, 
which divides the w plane into two portions. Since the image of the point z = 0 is 
w = 5(0) = /, we expect that the interior of the circle C is mapped onto the portion 
of the w plane that lies above the u axis. To show that this is true, we let \z\ < 1. 
Then equation (6) implies that the image values must satisfy the inequality 
| — w + i | < | w + i |, which can be written as 

(8) d\ = | w — i\ < | w — {—/)| = d2. 

If we interpret d\ as the distance from w to i and d2 as the distance from w to —/, 
then a geometric argument shows that the image point w must lie in the upper half 
plane Im(w) > 0, as shown in Figure 9.5. Since S is one-to-one and onto in the 
extended complex plane, it follows that S maps the disk onto the half plane. 
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* a i - — + - u 

FIGURE 9.5 The image of | z | < 1 under w = /(1 - z)/(l + z). 

The general formula (1) of a bilinear transformation appears to involve four 
independent coefficients a, b, c, d. But since S(z) & K, either a ¥= 0 or c T̂  0, the 
transformation can be expressed with three unknown coefficients and can be written 
either 

S(z) = 
Z + bla 

czla + dla 
or S(z) = 

az/c + &/<: 
z + die 

respectively. This permits us to uniquely determine a bilinear transformation if three 
distinct image values S(z\) = wu S(z2) = vv2, and Sfe) = w3

 a r e specified. To 
determine such a mapping, it is convenient to use an implicit formula involving z 
and w. 

(9) 

Theorem 9.3 (The Implicit Formula) There exists a unique bilinear 
transformation that maps three distinct points z\, Zi, and zi onto three distinct 
points wi, w>2, and w>3, respectively. An implicit formula for the mapping is 
given by the equation 

z - Z\ z2 
Zi W — W\ VV2 Ws 

Z - Z3 Zi — Z\ W — VV3 VV2 W\ 

Proof Equation (9) can be algebraically manipulated, and we can solve for 
w in terms of z- The result will be an expression for w that has the form of equation 
(1), where the coefficients a, b, c, and d involve the values zu Zi, z^ wu w2, and u>3. 
The details are left as an exercise. 

If we set z — Z\ and w = w\ in equation (9), then both sides of the equation 
are zero. This shows that w\ is the image of z\. If we set z = Zi and w = w2 in 
equation (9), then both sides of the equation take on the value 1. Hence w2 is the 
image of z2. Taking reciprocals, we can write equation (9) in the form 

(10) 
Z - Z3 Zi Z\ w W3 W>2 — W\ 

Z - Z\Zi Zi W — W[ W2 — H>3 
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If we set z = Z3 and w = w3 in equation (10), then both sides of the equation are 
zero. Therefore, u>3 is the image of z3, and we have shown that the transformation 
has the required mapping properties. 

EXAMPLE 9-4 Construct the bilinear transformation w = S(z) that maps the 
points z\ = —i,Zi= 1, Zi = i onto the points w\ = — 1, w>2 = 0, w^ = 1, respectively. 

(11) 

Solution We can use the implicit formula (10) and write 

z - i 1 + i w - 1 0 + 1 -w + 1 

z + / 1 - / w + 1 0 - 1 w + 1 

Working with the left and right sides of equation (11), we obtain 

(12) (1 + i)zw + ( 1 - i > + ( 1 + i)z + ( 1 - 0 

= ( -1 + i)zw + ( - 1 - i)w + ( 1 - i)z + (1 + 0-

Collecting terms involving w and zw on the left results in 

(13) 2w + 2zw = 2/ - 2/z. 
After the 2's are cancelled in equation (13), we obtain w(l + z) = /(1 - z). Therefore 
the desired bilinear transformation is 

w = S(z) = ——— . 
1 + z 

EXAMPLE 9-5 Find the bilinear transformation w = S(z) that maps the points 
Z\ = —2, Z2 = — 1 ~ /, and z3 = 0 onto wj = — 1, H>2 = 0, and vv3 = 1, respectively. 

Solution We can use the implicit formula (9) and write 

z - ( -2) - 1 - / - 0 w - ( - 1 ) 0 - 1 
(14) 
v } z - 0 - 1 - / - ( - 2 ) w - 1 0 - ( - 1 ) 

From the fact that (— 1 — /)/(1 — /) = 1//, equation (14) can be written as 

z + 2 1 + w (15) 
/z 1 — w 

Equation (15) is equivalent to z + 2 - zw - 2u> = /z + /zw, which can be solved 
for w in terms of z, giving the solution 

(1 - /)z + 2 
W = ^ ) = (l + /)z + 2 ' 

Let Z) be a region in the z plane that is bounded by either a circle or a straight 
line C. Let Zi, Z2, and Z3 be three distinct points that lie on C with the property that 
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an observer moving along C from z\ to z3 through zi finds the region D on the left. 
In the case that C is a circle and D is the interior of C we say that C is positively 
oriented. Conversely, the ordered triple zu z2, z?> uniquely determines a region that 
lies on the left of C. 

Let G be a region in the w plane that is bounded by either a circle or a straight 
line K. Let w\,w2, and w3 be three distinct points that lie on K such that an observer 
moving along K from wx to w3 through H>2 finds the region G on the left. Since a 
bilinear transformation is a conformal mapping that maps the class of circles and 
straight lines onto itself, we can use the implicit formula (9) to construct a bilinear 
transformation w = S(z) that is a one-to-one mapping of D onto G. 

E X A M P L E 9 . 6 Show that the mapping 

(1 - i)z + 2 

(1 + i)z + 2 

maps the disk D\ | z + 11 < 1 onto the upper half plane Im(vv) > 0. 

S o l u t i o n For convenience we choose the ordered triple Z\ = - 2 , 
zi = - 1 - U z3 = 0, which will give the circle C: | z + 1 | = 1 a positive orientation 
and the disk D a ' i e f t orientation." We saw in Example 9.5 that the corresponding 
image points are 

u>i = S(z\) = - 1 , w2 = S(zi) = 0, and w3 = 5(¾) = 1. 

Since the ordered triple of points w\, w2, and w>3 lie on the u axis, it follows that the 
image of the circle C is the u axis. The points vvt, vv2, and vv3 give the upper half 
plane G: Im(vv) > 0 a "left orientation." Therefore w = S(z) maps the disk D onto 
the upper half plane G. To check our work, we choose a point zo that lies in D 
and find the half plane where its image WQ lies. The choice Za = — I yields 
wo = S(-l) = i. Hence the upper half plane is the correct image. The situation is 
illustrated in Figure 9.6. 

w =S(z) 
:;:• A W 0 - / 

»v -» w3 = 1 
w2 - 0 

FIGURE 9.6 The bilinear mapping w = S(z) = [(1 - i)z + 2]/[(l + Oz + 2]. 
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In equation (9) the point at infinity can be introduced as one of the prescribed 
points in either the z plane or the w plane. For example, if w$ = °°, then we are 
permitted to write 

(j5j = _ ^ 

W — W3 w — 00 

and substitution of equation (16) into equation (9) yields 

(17) = , where w3 = 00. 

z - Zs Zi - Z\ w2 — w\ 

Equation (17) is sometimes used to map the crescent-shaped region that lies between 

tangent circles onto an infinite strip. 
E X A M P L E 9 .7 Find a bilinear transformation that maps the crescent-shaped 
region that lies inside the disk | z — 2 | < 2 and outside the circle | z — 1 | = 1 
onto a horizontal strip. 

Solution For convenience we choose z\ — 4, z2 = 2 + 2/, and z3 = 0 and 
the image values W\ = 0, w2 = 1, and W3 = 00, respectively. The ordered triple 
Zi, zi, and Z3 gives the circle |z — 2 | = 2 a positive orientation and the disk 
\z — 2 I < 2 has a "left orientation." The image points wi, w2, and w3 all lie on 

the extended u axis, and they determine a left orientation for the upper half plane 
Im(w) > 0. Therefore we can use the implicit formula (17) to write 

z - 4 2 + 2i - 0 _ w - 0 
( 1 } z ~ 0 2 + 2/ - 4 ~ 1 - 0 ' 

which determines a mapping of the disk \z — 2 | < 2 onto the upper half plane 
Im(w) > 0. We can simplify equation (18) to obtain the desired solution 

~iz + 4/ 
w = S(z) = . 

z 

A straightforward calculation shows that the points ZA = 1 — /, Z5 = 2, and 
Z6 = 1 + i are mapped respectively onto the points 

w4 = S(\ - i) = - 2 + /, H>5 = S(2) = /, and w6 = 5(1 + / ) = 2 + / 

The points W4, W5, and H>6 lie on the horizontal line Im(w) = 1 in the upper half 
plane. Therefore the crescent-shaped region is mapped onto the horizontal strip 
0 < lm(w) < 1 as shown in Figure 9.7. 
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= ? ^ ?#• 

w4 = - 2 + / 
#!!!.l-». : . . . - » I U - I . # . I . 

Wj = 0 
ir. ivftifc,v tottftfoi-itifaixtffflffifjffi.i••#:.• .YrifyiIi..jnYi » a 

FIGURE 9.7 The mapping w = S(z) = (-iz + 4i)/z. 

Z,//7£S Of FlUX 

In the study of electronics, images of certain lines represent lines of electric flux, 
which are the trajectory of an electron that is placed in an electric field. Consider 
the bilinear transformation 

7 aw 
w = S(z) = and z = S~\w) = . 

z — a w — \ 

The half rays {arg(w) = c}, where c is a constant, that meet at the origin w = 0, 
represent the lines of electric flux produced by a source located at w = 0 (and a 
sink at w = <*>). The preimage of this family of lines is a family of circles that pass 
through the points z = 0 and z = a. We visualize these circles as the lines of electric 
flux from one point charge to another. The limiting case as a —> 0 is called a dipole 
and is discussed in Exercise 6 in Section 10.11. The graphs for the cases a = 1, 
a = 0.5, and a = 0.1 are shown in Figure 9.8 

a = 0.1 

• x • X 

FIGURE 9.8 Images of arg(w) = c under the mapping z = 
w — 1 
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EXERCISES FOR SECTION 9.2 
1. Let w = S(z) = [(1 - i)z + 2]/[(l + i)z + 2]. Find S~\w). 
2. Let w = S{z) = (i + z)i(i - z). Find 5-'(w). 
3. Find the image of the right half plane Re(z) > 0 under w = i(l - z)/(l + z). 
4. Show that the bilinear transformation w = i(\ - z)/(l + z) maps the portion of the disk 

| z ] < 1 that lies in the upper half plane Im(z) > 0 onto the first quadrant u > 0, 
v > 0 . 

5. Find the image of the upper half plane Im(z) > 0 under the transformation 

(1 - i)z + 2 
w = . 

(1 + i)z + 2 
6. Find the bilinear transformation w = S(z) that maps the points z\ = 0, zi = i, and 

Z3 = —i onto vt>i = — 1, u>2 = 1, and w^ — 0, respectively. 
7. Find the bilinear transformation w — S(z) that maps the points z\ = — /, Zi = 0, and 

Z3 = / onto wi = — 1, w2 = /, and w^ = 1, respectively. 
8. Find the bilinear transformation w = S(z) that maps the points z\ = 0, z2 = 1, and 

Z3 = 2 onto W\ = 0, W2 = 1, and u>3 = «>, respectively. 
9. Find the bilinear transformation w = S(z) that maps the points z\ = 1, Z2 = '» and 

z3 = - 1 onto W| = 0, w2 = 1, and w$ ~ «», respectively. 
10. Show that the transformation w = (/ + z)/(/ — z) maps the unit disk | z | < 1 onto the 

right half plane Re(w) > 0. 
11. Find the image of the lower half plane Im(z) < 0 under w = (i + z)f(i - z). 
12. Let Si(z) = (z - 2)/(z + 1) and S2(z) = z/(z + 3). Find Si(S2(z)) and £2(S,(z)). 
13. Find the image of the quadrant x > 0, y > 0 under w = (z - l)/(z + 1). 
14. Find the image of the horizontal strip 0 < y < 2 under w = zf(z - /). 
15. Show that equation (9) can be written in the form of equation (1). 
16. Show that the bilinear transformation w = S(z) = (az + b)l(cz + d) is conformal at all 

points z 7̂  —die. 
17. A fixed point of a mapping w = /(z) is a point Zo such that f(zo) = Zo- Show that a 

bilinear transformation can have at most two fixed points. 
18. (a) Find the fixed points of w = (z - 1 )1 {z + 1). 

(b) Find the fixed points of w = (4z + 3)/(2z - 1). 
19. Write a report on bilinear transformations. Include some ideas not presented in the text. 

Resources include bibliographical items 12, 23, 24, 30, 36, and 43. 

9.3 Mappings Involving Elementary Functions 

In Section 5.1 we saw that the function w = f(z) = exp z is a one-to-one mapping 
of the fundamental period strip —n < y < n in the z plane onto the w plane with 
the point w = 0 deleted. S ince / ' ( z ) ^ 0, the mapping w = exp z is a conformal 
mapping at each point z in the complex plane. The family of horizontal lines y = c 
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and —n < c < 7i, and the segmentsx — a and —%<y<% form an orthogonal grid 
in the fundamental period strip. Their images under the mapping w = exp z are the 
rays p > 0 and ¢) = c and the circles \w\ = ea, respectively. These images form 
an orthogonal curvilinear grid in the w plane, as shown in Figure 9.9. If —n < c < 
d < 71, then the rectangle R = {x + iy: a < x < b, c < y < d} is mapped one-to-
one and onto the region G = {pe'*: ea < p < eb, c < § < d}. The inverse mapping 
is the principal branch of the logarithm z = Log w. 

FIGURE 9.9 The conformal mapping w = exp z. 

In this section we will show how compositions of conformal transformations 
are used to construct mappings with specified characteristics. 

E X A M P L E 9-8 The transformation w = f(z) = (ez - i)I{ez + 0 is a one-to-
one conformal mapping of the horizontal strip 0 < y < n onto the disk [ w\ < 1. 
Furthermore, the x axis is mapped onto the lower semicircle bounding the disk, and 
the line y = n is mapped onto the upper semicircle. 

Solution The function w = f(z) can be considered as a composition of 
the exponential mapping Z = exp z followed by the bilinear transformation 
w = (Z - i)l(Z + 0- The image of the horizontal strip 0 < y < n under the mapping 
Z = exp z is the upper half plane Im(Z) > 0; the x axis is mapped onto the positive 
X axis; and the line y = 71 is mapped onto the negative X axis. The bilinear trans-
formation w = (Z — i)/(Z + i) then maps the upper half plane Im(Z) > 0 onto the 
disk |w| < 1; the positive X axis is mapped onto the lower semicircle; and the 
negative X axis onto the upper semicircle. Figure 9.10 illustrates the composite 
mapping. 
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2 x = i ir 

z2 = 0 

L 

11 

Z = exp z ̂  — 

FIGURE 9.10 The composite transformation w = (ez — 0/(^" + 0-

EXAMPLE 9 .9 The transformation w = f(z) = Log[(l + z)/(l - z)] is a one-
to-one conformal mapping of the unit disk \z\ < 1 onto the horizontal strip 
| v | < n/2. Furthermore, the upper semicircle of the disk is mapped onto the line 
v = n/2 and the lower semicircle onto v = — n/2. 

Solution The function w = f(z) is the composition of the bilinear trans­
formation Z = (1 + z)/(l - z) followed by the logarithmic mapping w = Log Z 
The image of the disk | z \ < 1 under the bilinear mapping Z = (1 + z)l{\ ~ z) is 
the right half plane Re(Z) > 0; the upper semicircle is mapped onto the positive Y 
axis; and the lower semicircle is mapped onto the negative Y axis. The logarithmic 
function w = Log Z then maps the right half plane onto the horizontal strip; the 
image of the positive Y axis is the line v = n/2\ and the image of the negative Y 
axis is the line v = — n/2. Figure 9.11 shows the composite mapping. 
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FIGURE 9.11 The composite transformation w = Log[(l + z)/(l - z)]. 

EXAMPLE 9 . 1 0 The transformation w = f(z) = (1 + z)2/U - z)2 is a one-
to-one conformal mapping of the portion of the disk | z \ < 1 that lies in the upper 
half plane Im(z) > 0 onto the upper half plane Im(vv) > 0. Furthermore, the image 
of the semicircular portion of the boundary is mapped onto the negative u axis, and 
the segment - 1 < x < 1, y = 0 is mapped onto the positive u axis. 

Solution The function w = f(z) is the composition of the bilinear trans­
formation Z = (1 + z)/(l - z) followed by the mapping w = Z2. The image of 
the half-disk under the bilinear mapping Z = (1 + z)/(l - z) is the first quadrant 
X > 0, Y > 0; the image of the segment y = 0, - 1 < x < 1, is the positive X axis; 
and the image of the semicircle is the positive Y axis. The mapping w = Z2 then 
maps the first quadrant in the Z plane onto the upper half plane Im(w) > 0, as shown 
in Figure 9.12. 
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f 

1 + Z \ 2 

• \ 

r3 = 0 

Y 

t, ,,, ,,.. 
1-, - pi! 
1 + z V 

Wj = —1 
- ^ H J ^ w ^ ;A-,:,M:i..MiM:niiiiM.ii » « 

w2 = 0 iv3 = 1 

'w = Z2 

roj z3 = i - * 

FIGURE 9.12 The composite transformation w = [(1 + z)/(l - z)]2. 

EXAMPLE 9.11 Consider the function w = f(z) = (z2 - D1/2, which is the 
composition of the functions Z = z2 - 1 and w = Z1/2, where the branch of the 
square root is Zm = tf 1/2[cos(6/2) + i sin(9/2)], (6 = arg Z and 0 < 6 < 2n). Then 
the transformation w = /(z) maps the upper half plane Im(z) > 0 one-to-one and 
onto the upper half plane Im(vv) > 0 slit along the segment u = 0, 0 < v < 1. 

Solution The function Z = z2 - 1 maps the upper half plane Im(z) > 0 
one-to-one and onto the Z-plane slit along the ray Y = 0, X > - 1 . Then the function 
w = Zm maps the slit plane onto the slit half plane, as shown in Figure 9.13. 
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y 

k 

A 

I ! - • 

w=f(z) 

Z=z£ - 1 

FIGURE 9.13 The composite transformation w = /(z) = (z2 - Dl/2, and the 
intermediate steps Z = z2 - 1 and w = Zl/2. 

Rsmark The images of the horizontal lines y = b are curves in the w plane that 
bend around the segment from 0 to L The curves represent the streamlines of a fluid 
flowing across the w plane. We will study fluid flows in more detail in Section 10.7. 

The Mapping \N = (z* - 1)"* 
The double-valued function/(z) = (z2 — l) l / 2 has a branch that is continuous for 
values of z distant from the origin. This feature is motivated by our desire for the 
approximation (z2 - l) l / 2 « z to hold for values of z distant from the origin. Let us 
express (z2 — l) l / 2 in the following form: 

(I) w=fl{z) = {z- i ) i /2 ( z + iyn9 

where the principal branch of the square root function is used in both factors. We 
claim that the mapping w =f\(z) is a one-to-one conformal mapping from the domain 
set Dx consisting of the z plane slit along the segment - 1 < x < l, >> = 0, onto the range 
set H\ consisting of the w plane slit along the segment u = 0, — l < v < l. 
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To verify this we investigate the two formulas on the right side of equation (1), and 
express them in the form 

(2) (z - 1)1/2 = VnV6'72, where r, = \z - 1 |, Bi = Arg(z - 1), and 

(3) (z + 1)1/2 = J72e
1^2, where r2 = \z + 1 |, 62 = Arg(z + 1). 

The discontinuities of Arg(z - 1) and Arg(z + 1) are points on the real axis such 
that x <1 and x < - 1 , respectively. We now show that/Hz) is continuous on the 
ray x < — 1, y = 0. 

Let z0 = *o + iyo denote a point on the ray x < — 1, y = 0, then we obtain the 
following limits as z approaches zo from the upper half plane and the lower half 
plane, respectively: 

(4) lim /, (z) = lim JV^^a lim J72e
1^12 

z->Zo r , ^ | . v 0 - l | r2^ | .v0+l | 
lm(z)>0 ei~+7t e2-H>Jt 

= Vl^o- i| (o V h + i| (o 
= - V|*o— M > anQl 

(5) l im/i(z)= lim V^V9'72 lim J72e^12 

lm(z)<0 fij-^-K 62^-71 

= V |JCo — 1 | ( - 0 V|*o + 1| ( - 0 

= - / 1 ^ 1 7 ^ . 
Since both limits agree with the value of/Kzo) it follows that/i(z) is continuous 

along the ray x < — 1, y = 0. 
The inverse mapping is easily found and can be expressed in a similar form: 

(6) z = gi(w) = (w2 + 1),/2 = (w + 0i/2(w - /)1/2, 

where the branches of the square root function are given by 

(7) O 4- /)1/2 = Vpye'V2, where pi = | w + i |, (j>i = arg(w + /), 
-71 - 3 K 

and —— < arg(w + i) < ——-, and 
2 & 2 

(8) (w - i)m = J~$2e
1^12, where p2 = | w - i |, ¢2 = arg(w - /), 

, - 7 1 y ^ -371 
and < argtw + 1) < . 

2 & 2 

A similar argument will show that g\(w) is continuous for all w except those 
points that lie on the segment H = 0, — 1 < v < 1. It is straightforward to verify 
that 

(9) gi(/i(z)) = z and /,(gi(w)) = w, 

hold for z in Z)t and w in Hi, respectively, Therefore we conclude that w = f\(z) is 
a one-to-one mapping from D\ onto / / t . It is tedious to verify that f\(z) is also 
analytic on the ray x < — 1, y = 0. We leave this verification as a challenging 
exercise. 
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The Riemann Surface forv<i = (z2 - 1)r/2 

Using the other branch of the square root, we find that w = /2(1) = - / i d ) , is a one-
to-one conformal mapping from the domain set D2 consisting of the z plane slit 
along the segment - 1 < x < 1, y = 0, onto the range set H2 consisting of the w 
plane slit along the segment u ~ 0, - 1 < v < 1. The sets Dx and H2 for fx(z) and 
D2 and H2 for f2(z) are shown in Figure 9.14. 
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-iu 
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FIGURE 9.14 The mappings >v = f\(z) and w =/2(2)-

The Riemann surface for w = (z2 - 1)1/2 is obtained by gluing the edges of 
D\ and D2 together and H\ and H2 together in the following manner. In the domain 
set, glue edges A to a, B to b, C to c, and D to d. In the image set, glue edges Af to 
a', 5 ' to Z?\ C' to c \ and D' to J'. The result is a Riemann domain surface and 
Riemann image surface for the mapping, see Figures 9.15(a) and 9.15(b), 
respectively. 
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(a) Domain surface D joined to D . (b) Image surface H joined to Hr 

FIGURE 9.15 The Riemann surfaces for the mapping w = (z2 — l) l / 2 . 

EXERCISES FOR SECTION 9.3 
1. Find the image of the semi-infinite strip 0 < x < nil, y > 0, under the transformation 

w — exp iz. 
2. Find the image of the rectangle 0 < * < In 2, 0 < y < nil, under the transformation 

w = exp z. 
3. Find the image of the first quadrant x > 0, y > 0, under w = {21%) Log z. 
4. Find the image of the annulus 1 < | z I < e under w = Log z. 
5. Show that the multivalued function w = log z maps the annulus 1 < \z\ < e onto the 

vertical strip 0 < Re(vv) < 1. 
6. Show that w = (2 - z2)lz2 maps the portion of the right half plane Re(z) > 0 that lies 

to the right of the hyperbola x2 — y2 = 1 onto the unit disk | w | < 1. 
7. Show that the function w = (e7 - i)l{e: + i) maps the horizontal strip -n < Im(z) < 0 

onto the region 1 < | w |. 
8. Show that w = (ez - 1)/0= + 1) maps the horizontal strip |>' | < nil onto the unit disk 

| vv| < 1. 
9. Find the image of the upper half plane Im(z) > 0 under w = Log[(l + z)/(l - z)]. 

10. Find the image of the portion of the upper half plane Im(z) > 0 that lies outside the 
circle | z | = 1 under the transformation w = Log[(l + z)/(l - z)]. 

11. Show that the function w = ( 1 + z)2/(l - z)2 maps the portion of the disk | z | < 1 that 
lies in the first quadrant onto the portion of the upper half plane Im(vv) > 0 that lies 
outside the unit disk. 
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12. Find the image of the upper half plane Im(z) > 0 under w = Log(l — z2). 
13. Find the branch of w = (z2 + l) l / 2 that maps the right half plane Re(z) > 0 onto the 

right half plane Re(w) > 0 slit along the segment 0 < u < 1, v = 0. 
14. Show that the transformation w = (z2 - l)/(z2 + 1) maps the portion of the first quadrant 

x > 0, y > 0, that lies outside the circle | z | = 1 onto the first quadrant u > 0, v > 0. 
15. Find the image of the sector r > 0, 0 < 0 < 7C/4, under w = (i - zA)l(i + z4). 
16. Write a report on Riemann surfaces. Resources include bibliographical items 99, 128, 

and 129. 
17. Show that the function/] (z) in equation (1) is analytic on the ray x < — 1, y = 0. 

9.4 Mapping by Trigonometric Functions 

The trigonometric functions can be expressed with compositions that involve the 
exponential function followed by a bilinear function. We will be able to find images 
of certain regions by following the shapes of successive images in the composite 
mapping. 

E X A M P L E 9 - 1 2 The transformation w = tan z is a one-to-one conformal 
mapping of the vertical strip \x | < n/4 onto the unit disk \w\ < 1. 

So lut ion Using identities (11) and (12) in Section 5.4, we write 

1 eiz - e~iz -ie,2z + i 
(1) w = tan z = : = —ri — . 

i elz + e~lz el2z + 1 
From equation (1) it is easy to see that the mapping w = tan z can be considered as 
the composition 

(2) w = — and Z = ei2z. 
Z+ 1 

The function Z = exp(/2z) maps the vertical strip |JC| < n/4 one-to-one 
and onto the right half plane Re(Z) > 0. Then the bilinear transformation 
w = (-iZ + i)l(Z + 1) maps the half plane one-to-one and onto the disk as shown 
in Figure 9.16. 
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y v 

FIGURE 9.16 The composite transformation w = tan z. 

E X A M P L E 9 . 1 3 The transformation w = f(z) = sin z is a one-to-one con-
formal mapping of the vertical strip | x | < n/2 onto the w plane slit along the rays 
u < - 1 , v = 0 and u > 1, v = 0. 

Solution Since f'(z) = cos z # 0 for values of z satisfying the inequality 
—n/2 < Re(z) < n/2, it follows that w = sin z is a conformal mapping. Using 
equation (14) in Section 5.2, we write 

(3) u + iv = sin z — sin x cosh y + / cos x sinh 3;. 

If I a I < TI/2, then the image of the vertical line JC = a is the curve in the w plane 
given by the parametric equations 

(4) u = sin a cosh y and v = cos a sinh y 

for — °o < y < 00. We can rewrite equations (4) in the form 

u v 
(5) cosh y = —— and sinh y = . 

sin a cos a 
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We can eliminate v in equations (5) by squaring and using the hyperbolic identity 
cosh2 y — sinh2 y = 1, and the result is the single equation 

(6) = 1. 
cosz a 

The curve given by equation (6) is identified as a hyperbola in the (a, v) plane that 
has foci at the points (±1, 0). Therefore the vertical line x = a is mapped in a one-
to-one manner onto the branch of the hyperbola given by equation (6) that passes 
through the point (sin a, 0). If 0 < a < nil, then it is the right branch; and if 
-nil < a < 0, it is the left branch. The image of the y axis, which is the line 
x = 0, is the v axis. The images of several vertical lines are shown in Figure 9.17. 

FIGURE 9.17 The transformation w = sin z. 

The image of the horizontal segment —nil < x < nil, y = b is the curve in 
the w plane given by the parametric equations 

(7) u = sin x cosh b and v = cos x sinh b 

for —nil < x < nil. We can rewrite equations (7) in the form 

u 
(8) sinx = cosh b 

and cos x 
sinh b 

We can eliminate x in equations (8) by squaring and using the trigonometric identity 
sin2x + COS2JC = 1, and the result is the single equation 

(9) + cosh2& sinh26 
= 1. 

The curve given by equation (9) is identified as an ellipse in the (w, v) plane that 
passes through the points (±cosh b, 0) and (0, ±sinh b) and has foci at the points 
(±1,0). Therefore if b > 0, then v = cos x sinh b > 0, and the image of the horizontal 
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segment is the portion of the ellipse given by equation (9) that lies in the upper half 
plane Im(vv) > 0. If b < 0, then it is the portion that lies in the lower half plane. 
The images of several segments are shown in Figure 9.17. 

We now develop explicit formulas for the real and imaginary parts of the 
principal value of the arcsine function w = f(z) = Arcsin z. This mapping will be 
used to solve certain problems involving steady temperatures and ideal fluid flow 
in Section 10.7. The mapping is found by solving the equation 

(10) x + iy = sin w = sin u cosh v + i cos u sinh v 

for u and v expressed as functions of x and y. To solve for u, we first equate the real 
and imaginary parts of equation (10) and obtain the system of equations 

x y 
(11) cosh v = and sinh v = . 

sin u cos u 

Then we eliminate v in equations (11) and obtain the single equation 

x2 y2 

(12) — V = L 

If we treat u as a constant, then equation (12) represents a hyperbola in the (x, y) 
plane, the foci occur at the points (±1, 0), and the traverse axis is given by 2 sin u. 
Therefore a point (x, y) on the hyperbola must satisfy the equation 

(13) 2 sin u = J(x + 1)2 + y2 - J(x - 1)2 + y2. 

The quantity on the right side of equation (13) represents the difference of the 
distances from (x, y) to (— 1, 0) and from (x, y) to (1, 0). 

Solving equation (13) for u yields the real part 

(14) w(x, y) = arcsin 
V ( J C + 1)2 + y2 - J(x - 1)2 + y2 

The principal branch of the real function arcsin t is used in equation (14), where the 
range values satisfy the inequality —n/2 < arcsin t < nil. 

Similarly, we can start with equation (10) and obtain the system of equations 

x y 
(15) sin u = and cos u = cosh v sinh v 

Then we eliminate u in equations (15) and obtain the single equation 

x2 y2 

(16) - + -^-r= l. 
cosh2v sinhrv 

If we treat v as a constant, then equation (16) represents an ellipse in the (x, y) plane, 
the foci occur at the points (+1, 0), and the major axis has length 2 cosh v. Therefore 
a point (x, y) on this ellipse must satisfy the equation 
(17) 2 cosh v = V(JC + 1)2 + y2 + J{x - 1)2 + y2. 
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The quantity on the right side of equation (17) represents the sum of the distances 
from (x9 y) to ( - 1 , 0) and from (x, y) to (1, 0). 

The function z = sin w maps points in the upper-half (lower-half) of the 
vertical strip -n/2 < u < n/2 onto the upper half plane (lower half plane), respec­
tively. Hence we can solve equation (17) to obtain v as a function of JC and y: 

(18) V(JC, y) = (sign y)arccosh 
J(x + 1)2 + y2 + 7(JC - 1)2 + y2 

where sign y = 4-1 if y ^: 0 and sign y = - 1 if y < 0. The real function given by 
arccosh t = ln(t + Jt2 - 1) with t > 1 is used in equation (18). 

Therefore the mapping w — Arcsin z is a one-to-one conformal mapping of 
the z plane cut along the rays x < - 1 , y = 0 and x > 1, y = 0 onto the vertical 
strip -n/2 < u < n/2 in the w plane. The Arcsine transformation is indicated in 
Figure 9.17. The formulas in equations (14) and (18) are also convenient for eval­
uating Arcsin z as shown in Example 9.14. 

Therefore, the mapping w = Arcsin z is one-to-one conformal mapping of the 
z plane cut along the rays x < - 1 , y = 0 and * > 1, y = 0 onto the vertical strip 
—n n 
-— < u < — in the w plane, and this can be construed from Figure 9.17 if we 

interchange the roles of the z and w planes. The image of the square 0 < x < 4, 
0 < y < 4 under w = Arcsin z is shown in Figure 9.18 and was obtained by plotting 
two families of curves {(w(c, t), v(c, t)): 0 < t < 4} and {(w(t, c), v(t, c)): 0 < t 

k 
< 4}, where c = - , k = 0, 1, . . . , 20. Formulas (14) and (18) are also convenient 

for evaluating Arcsin z, as shown in Example 9.14. 

• 

i 
4 I I I I I I I I I I I I I I I I I I I 1 

3 \\T\\ 

2 I I I I 1 1 1 I I I I I I I I 1 I 1 I I I 

1 

I I I I 1 I I ' I I 1 I I I I I I I I I I » r • u 

FIGURE 9.18 The mapping w = Arcsin z. 
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E X A M P L E 9 - 1 4 Find the principal value Arcsin(l + /)• 

Solut ion Using formulas (14) and (18), we find that 

75 - l 
M(1, 1) = arcsin ^ - 0.666239432 and 

v(l, 1) = arccosh + « 1.061275062. 

2 

Therefore we obtain 

arcsin(l + i) « 0.666239432 + i 1.061275062. 

Is there any reason to assume that there exists a conformal mapping for some 
specified domain D onto another domain Gl The theorem concerning the existence 
of conformal mappings is attributed to Riemann and can be found in Lars V. Ahlfors, 
Complex Analysis (New York: McGraw-Hill Book Co.) Chapter 6, 1966. 

Theorem 9.4 (Riemann Mapping Theorem) If D is any simply con-
nected domain in the plane {other than the entire plane itself), then there 
exists a one-to-one conformal mapping w — f(z) that maps D onto the unit 
disk \w\ < 1. 

EXERCISES FOR SECTION 9.4 

1. Find the image of the semi-infinite strip -TC/4 < x < 0, y > 0 under the mapping 
w = tan z. 

2. Find the image of the vertical strip 0 < Re(z) < K/2 under the mapping w = tan z. 
3. Find the image of the vertical line x = K/4 under the transformation w = sin z. 
4. Find the image of the horizontal line v = 1 under the transformation w = sin z. 
5. Find the image of the rectangle R = {x + iy: 0 < x < n/4, 0 < y < 1} under the 

transformation w = sin z. 
6. Find the image of the semi-infinite strip — n/2 < x < 0, y > 0 under the mapping 

w = sin z-
7. (a) Find lim Arg(sin[(7i/6) + iy]). 

(b) Find lim Arg(sin[(-27i/3) + iy]). 

8. Use formulas (14) and (18) to find the following: 
(a) Arcsin(2 + 2/) (b) Arcsin(-2 + i) 
(c) Arcsin(l - 30 (d) Arcsin(-4 - i) 

9. Show that the function w = sin z maps the rectangle R = {x + iy: —K/2 < x < n/2, 
0 < y < b) one-to-one and onto the portion of the upper half plane Im(w) > 0 that lies 
inside the ellipse 

+ — - r = 1. cosh2& sinh2Z? 
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10. Find the image of the vertical strip -7i/2 < x < 0 under the mapping w = cos z. 
11. Find the image of the horizontal strip 0 < Im(z) < n/2 under the mapping w = sinh z. 
12. Find the image of the right half plane Re(z) > 0 under the mapping 

i ¥ i + z 
w = arctan z = r Log . 

2 i — z 
13. Find the image of the first quadrant x > 0, y > 0 under w — Arcsin z. 
14. Find the image of the first quadrant x > 0, y > 0 under the mapping w — Arcsin z2. 
15. Show that the transformation w = sin2z is a one-to-one conformal mapping of the semi-

infinite strip 0 < x < 7i/2, y > 0 onto the upper half plane Im(w) > 0. 
16. Find the image of the semi-infinite strip |JC| < Ti/2, v > 0 under the mapping 

w = Log(sin z). 
17. Write a report on Riemann mapping theorem. Resources include bibliographical items 

4, 88, 106, 129, and 179. 
18. Write a report on the topic of analytic continuation. Be sure to discuss the chain of 

power series and disks of convergence. Resources include bibliographical items 4, 19, 
46, 51, 52, 93, 106, 128, 129, 141, 145, and 166. 



w 
Applications of Harmonic 
Functions 

10.1 Preliminaries 

In most applications involving harmonic functions it is required to find a harmonic 
function that takes on prescribed values along certain contours. We will assume that 
the reader is familiar with the material in Sections 2.5, 3.3, 5.1, and 5.2. 

EXAMPLE 10.1 Find the function u(x, y) that is harmonic in the vertical strip 
a < Re(z) ^ b and takes on the boundary values 

(1) u(a, y) = U\ and u(b, y) = U2 

along the vertical lines x = a and x ~ b, respectively. 

Solution Intuition suggests that we should seek a solution that takes on 
constant values along the vertical lines x = x0 and that u(x, y) should be a function 
of x alone; that is, 

(2) u(x, y) = P(x) for a < x < b and for all v. 

Laplace's equation, uxx(x, y) + uyy(x, y) = 0, implies that P"(x) = 0, so P(x) = 
mx + c, where m and c are constants. The boundary conditions u(a, y) = P(a) = 
U\ and u(b, y) = P(b) = U2 lead to the solution 

U2 ~ Ui 
(3) u(x, y)=U{+ ~ L (x - a). 

b — a 

The level curves u(x, v) = constant are vertical lines as indicated in Figure 10.1. 

EXAMPLE 1 0 . 2 Find the function ^(JC, y) that is harmonic in the sector 
0 < Arg z < a, where a < 71, and takes on the boundary values 

(4) ^(JC, 0) = Cx for x > 0 and 
^ 0 , y) = C2 at points on the ray r > 0, 6 = a. 

310 
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u(x, y) = constant 
i 

a,. 

L 

a 
"'• "\ 

/ 

b * 

u(b, y) = 

FIGURE 10.1 The harmonic function 
u(x, y) = Ui + (U2 - Ut)(x - a)l{b - a). 

Solution If we recall that the function Arg z is harmonic and takes 
on constant values along rays emanating from the origin, then we see that a 
solution has the form 

(5) ¥(*, y) = a + b Arg z, 

where a and b are constants. Boundary conditions (4) lead to 

(6) ¥(*, y) = C, + Cl " C l Arg z. 

The situation is shown in Figure 10.2. 

y 
i ^(.TOO = constant 

FIGURE 10.2 The harmonic function 
*U, y) = C, + (C2 - C,)(l/a) Arg 2. 

EXAMPLE 10-3 Find the function 0(JC, y) that is harmonic in the annulus 
1 < \z\ < R and takes on the boundary values 

(7) <E>(x, y) = K\9 when | z | = 1, and 
0(JC, y) = K2, when \z\ = R. 
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4>(x, y) = constant 
when \z\ = R 

$>{x,y) = Kl 

when \z\ = 1 

FIGURE 10.3 The harmonic function <D(x, y) = tf, + In | z \ (K2 - AT,)/ln R. 

Solution This is a companion problem to Example 10.2. Here we use 
the fact that In | z | is a harmonic function for all z ^ O . Let us announce that 
the solution is 

(8) *(*,30 = *i + K\ ~fl In \z\ 
In R ' ' 

and that the level curves <f?(x, y) = constant are concentric circles, as illustrated in 
Figure 10.3. 

10.2 Invariance of Laplace's Equation 
and the Dirichlet Problem 

Theorem 10.1 Let <J>(w, v) be harmonic in a domain G in the w plane. Then 
O satisfies Laplace's equation 

(1) <&uu{u, v) + Ovv(u, v) = 0 

at each point w = u + iv in G. If 

(2) w = f(z) = u(xt y) + ivix, y) 

is a conformal mapping from a domain D in the z plane onto G, then the 
composition 

(3) <•(*, y) = *(«(*, y), v(*, y)) 

is harmonic in D, and § satisfies Laplace's equation 

(4) <|>.«(x, y) + <>„.(*, y) = 0 

at each point z — x + iy in D. 
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Proof Equations (1) and (4) are facts about the harmonic functions O and 
§ that were studied in Section 3.3. A direct proof that the function <j) in equation (3) 
is harmonic would involve a tedious calculation of the partial derivatives tyxx and 
<()vv. An easier proof uses a complex variable technique. Let us assume that there is 
a harmonic conjugate "^(w, v) so that the function 

(5) g(w) = 0(w, v) + iW(u, v) 

is analytic in a neighborhood of the point vv0 = /(zo)- Then the composition 
h(z) - g(f{z)) is analytic in a neighborhood of z0 and can be written as 

(6) h(z) = *(II(*, y), v(x, 30) + iV(u(x, v), v(x, y)). 

If we use Theorem 3.5, it follows that <2>(w(x, y), v(x, y)) is harmonic in a neighbor­
hood of z0, and Theorem 10.1 is established. 

EXAMPLE 1 0 . 4 Show that ¢0 , y) = arctan [2;e/(jt2 + y2 - 1)] is harmonic in 
the disk \z\ < 1, where — n/2 < arctan t < n/2. 

Solution The results of Exercise 10 of Section 9.2 show that the function 

i + Z I — x2 — y2 ilx 
(7) f(z) = —z = xi + (y_ i ) 2 " x2 + {y _ 1)2 

is a conformal mapping of the disk | z | < 1 onto the right half plane Re(vv) > 0. 
The results from Exercise 12 in Section 5.2 show that the function 

v 
(8) <I>0, v) = arctan - = Arg(w + iv) 

u 

is harmonic in the right half plane Re(vv) > 0. We can use equation (7) to write 

1 - x2 - y2
 t -2x 

(9) u(x, y) = -y-— — and v(x, y) = -j— — . 
x + (y — 1) x2 + (y — 1)2 

Substituting equation (9) into equation (8) and using equation (3), we see that 
<K*, y) = arctan(v(x, y)/u(x, y)) = arctan(2x/(jc2 + y2 - 1)) is harmonic for 

1*1 < !• 

Let D be a domain whose boundary is made up of piecewise smooth contours 
joined end to end. The Dirichlet problem is to find a function (() that is harmonic in 
D such that (|> takes on prescribed values at points on the boundary. Let us first study 
this problem in the upper half plane. 

EXAMPLE 1 0 . 5 Show that the function 

1 v 1 
(10) <!>(«, v) = - Arctan = - Arg(w - u0) 

K U — Uo K 
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is harmonic in the upper half plane Im(vv) > 0 and takes on the boundary values 

(11) <&(«, 0) = 0 for u > w0 and 

<E>(w, 0 ) = l for u < Mo-

Solution The function 

(12) g(w) = - Log(w — w0) = — In I w — w0 I H— Arg(w — w0) 
n K n 

is analytic in the upper half plane Im(w) > 0, and its imaginary part is the harmonic 
function (1/n) Arg(w - w0). 

Remark Let t be a real number. We shall use the convention Arctan(±°°) = n/2 
so that the function Arctan t denotes the branch of the inverse tangent that lies in 
the range 0 < Arctan t < n. This will permit us to write the solution in equation 
(10) as 4>(w, v) = (1/TC) Arctan(v/(w - w0)). 

Theorem 10.2 (/V-Value Dirichlet Problem for the Upper Half 
Plane) Let U\ < W2 < • • • < M;v-i denote N — 1 real constants. The function 

j N-\ 
(13) 0(w, v) = aN_x + - 2 (ak-\ ~ ak) Arg(w - uk) 

K k=\ 
1 ^ - 1 v 

= a/v-i + - 2 (fl*-i ~ ak) Arctan 
7t iUl U — Uk 

is harmonic in the upper half plane Im(vv) > 0 and takes on the boundary 
values 

(14) 0(w, 0) = a0 for u < uu 

<£(w, 0) = ak for uk < u < Uk+\ for k = 1,2, . . . , N — 2, 
<X>(w, 0) = aN_\ for u > uN_\. 

The situation is illustrated in Figure 10A. 

Proof Since each term in the sum in equation (13) is harmonic, it follows 
that O is harmonic for Im(w) > 0. To show that <3> has the prescribed boundary 
conditions, we fixy and let Uj < u < uJ+\. Using Example 10.5, we see that 

(15) - Arg(w - uk) = 0 if k < j and - Arg(w - uk) = 1 if k > j . 
71 K 

Using equations (15) in equation (13) results in 

j N-l 

(16) <D(w, 0) = aN.x + £ (**-i ~ **)«>) + 2 (<**-i " «*)(!) 
k= i k=j+1 

= aN_x + (aN_2 - a/v-i) + • • • + (fl/+i - aj+2) + (a/ - 0,-+1) 
= aj for Uj < u < Uj+\. 
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;M3;:: 

— v v v 

<J>(w, 0) = a0 I <J>(u, 0) = a2 

¢ ( 1 / , 0 ) = f l J 

^v;vw:;:ffi:m-:-miOiaa 

4>(i/5 0) = ^ _ 2 * ( w , 0 ) = a 7 V _ 1 

FIGURE 10.4 The boundary conditions for the harmonic function <£(«, v) in the 
statement of Theorem 10.2. 

The reader can verify that the boundary conditions are correct for u < U\ and 
u > UN-U a nd the result will be established. 

EXAMPLE 1 0 .6 Find the function ty(x, y) that is harmonic in the upper half 
plane Re(z) > 0, which takes on the boundary values indicated in Figure 10.5. 

4>(x,0) = 4 <|>(x,0) = 1 n (|)(x,0) = 3 4>(x,0) = 2 

FIGURE 10.5 The boundary values for the Dirichlet problem in Example 10.6. 

Solution This is a four-value Dirichlet problem in the upper half 
plane Im(z) > 0. For the z plane the solution in equation (13) becomes 

1 3 

(17) <K*, y) = a3 + - E («*-i " ak) Argfe - xk). 
K k=\ 

Here we have a0 = 4, ax = 1, a2 = 3, a3 = 2 and JCI = - 1 , x2 = 0, x3 = 1, which 
can be substituted into equation (17) to obtain 

<K*f y) = 2 + — — Argfe + 1 ) + — ^ Arg(z - 0 ) + Argfe - 1) 
71 71 TC 

3 v 
2 + - Arctan 

71 

2 y l A y 
- - Arctan - H— Arctan 

;t + 1 71 x 7 i x - 1 
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EXAMPLE 1 0 . 7 Find the function CJ>(JC, v) that is harmonic in the upper half 
plane Re(z) > 0, which takes on the boundary values 

§(x,Q) = 1 for | JC | < 1, 
ty(x,0) = 0 for j JC | > 1. 

Solution This is a three-value Dirichlet problem with a0 = 0, d\ = 1, 
a2 = 0 and X\ — — 1 and x2 = 1. Applying formula (13) the solution is 

0 - 1 1 - 0 
<K*, y) = 0 + Arg(z + 1 ) + Arg(z - 1) 

71 K 

1 y 1 y 
= — Arctan 1— Arctan , 

n x + 1 n x - 1 

and a three-dimensional graph u = §(x, y) is shown in Figure 10.6. 

FIGURE 10.6 The graph of u = <j>(jt, y) with the boundary values 
<|>(*, 0) = 1 for | JC| < 1 and <(>(*, 0) = 0 for \x\ > 1. 

We now state the N-value Dirichlet problem for a simply connected domain. 
Let D be a simply connected domain bounded by the simple closed contour C, and 
let z\, Zi, • • • , ZN denote JV points that lie along C in this specified order as C is 
traversed in the positive (counterclockwise) sense (see Figure 10.7). Let Q denote 
the portion of C that lies strictly between Zk and Zk+i (for & = 1, 2, . . . , N — 1), 
and let CN denote the portion that lies strictly between ZN and z\. Let aj, a2, . . . , 
aAf be real constants. We want to find a function §(x, y) that is harmonic in D and 
continuous on D U Ci U C2 U • • • U CN that takes on the boundary values: 

(18) §(x, y) = a\ for z ~ x + /y on C\, 
§(x, y) = a2 for z = JC + iy on C2, 



10.2 Invariance of Laplace's Equation 317 

The situation is i l lustrated in Figure 10.7. 

"N-l 

FIGURE 10.7 The boundary values for ¢ 0 , y) for the Dirichlet problem in the 
simply connected domain D. 

One method for finding <j) is to find a conformal mapping 

(19) w=f(z) = u{x,y) + iv(x,y) 

of D onto the upper half plane Im (w) > 0, such that the TV points z\* Zi, . . . , ZN 
are mapped onto the points uk = f(zk) for /: = 1, 2, . . . , AA — 1 and ZN is mapped 
onto uN = +oo along the u axis in the w p lane. 

Us ing Theorem 10.1 , we see that the mapping in equat ion (19) gives rise to a 
new Af-value Dirichlet p rob lem in the upper half plane Im(vv) > 0 for which the 
solution is given by Theorem 10.2. If we set a0 = aN, then the solution to the 
Dirichlet p roblem in D with boundary values (18) is 

(20) §(x, y) = aN_{ + - X («*-i ~ <ik) A r g [ / ( z ) - uk] 
K k=\ 

N-\ v(x, y) 
= aN_\ + - X (a*-i ~ a*) Arctan -

7C *= i u(x, y) — uk 

This method relies on our ability to construct a conformal mapping from D 
onto the upper half plane Im(vv) > 0. Theorem 9.4 guarantees the existence of such 
a conformal mapping. 

EXAMPLE 1 0 . 8 Find a function <|>(x, y) that is harmonic in the unit disk 
| z | < 1 and takes on the boundary values 

(21) (|)(JC, y) = 0 for x + iy = e'\ 0 < 6 < 71, 

(j)U y) = 1 for x + ry = el\ n < 6 < 2K. 

Solution Example 9.3 showed that the function 

(22) w + iv = 
/(1 - z) 2y 

+ i 
1 - JC2 - y 2 

1 + z (x + 1)2 + y2 (x + 1)2 + y2 
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is a one-to-one conformal mapping of the unit disk \z\ < 1 onto the upper half 
plane Im(w) > 0. Using equation (22), we see that the points z = x + iy that lie on 
the upper semicircle y > 0, 1 — x2 — y2 = 0 are mapped onto the positive u axis. 
Similarly, the lower semicircle is mapped onto the negative u axis as shown in 
Figure 10.8. 

$ (x, y) 

FIGURE 10.8 The Dirichlet problems for | z \ < 1 and Im (w) > 0 in the solution 
of Example 10.8. 

The mapping (22) gives rise to a new Dirichlet problem of finding a harmonic 
function 3>(w, v) that has the boundary values 

(23) 0(w, 0) = 0 for u > 0 and 0(w, 0) = 1 for u < 0, 

as shown in Figure 10.8. Using the result of Example 10.5 and the function u and 
v in the mapping (22), we find that the solution to equation (21) is 

1 v(x, y) 1 1 - x2 - y2 

(p(x, y) — - Arctan = — Arctan . 
7t u(x, y) K 2y 

EXAMPLE 1 0 . 9 Find a function (|)(JC, v) that is harmonic in the upper half-
disk H: y > 0, | z | < 1 and takes on the boundary values 

(24) <[>(JC, v) = 0 for x + iy = e[\ 0 < 6 < JC, 

(J)(JC, 0) = 1 for - 1 < x< 1. 

Solution By using the result of Exercise 4 in Section 9.2 the function in 
(22) is seen to map the upper half-disk H onto the first quadrant Q: u > 0, v > 0. 
Using the conformal mapping (22), we see that points z = x + iy that lie on the 
segment ^ = 0, — 1 < * < 1 are mapped onto the positive v axis. 

Mapping (22) gives rise to a new Dirichlet problem of finding a harmonic 
function <I>(w, v) in Q that has the boundary values 

(25) 0(«, 0) = 0 for u > 0 and 0(0, v) = 1 for v > 0, 
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as shown in Figure 10.9. In this case the method in Example 10.2 can be used to 
see that 0(w, v) is given by 

1 - 0 2 2 v 
(26) <!>(«, v) = 0 H Arg w = — Arg w = - Arctan - . 

7l/2 71 K U 

Using the functions u and v in mapping (22) in equation (26), we find that the 
solution of the Dirichlet problem in H is 

v(x, y) 
§(x, y) = — Arctan 

71 u(x, y) n 
= — Arctan 

1 — v z — v z 

2y 

<K*oO = o 
\ 

¢)(^,0)=1 for -1 <x< 1 O(w,0)=0 for w>0 

FIGURE 10.9 The Dirichlet problems for the domains H and Q in the solution of 
Example 10.9. 

A three-dimensional graph u = §(x, y), in cylindrical coordinates is shown in Figure 
10.10. 

2 (\ - x2 - v2 
FIGURE 10.10 The graph u = -Arctan — 

n \ 2y 

2 / 1 - r 2 > 
= - Arctan ;—-

% \ 2 r s i n 0 > 
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E X A M P L E 1 0 . 1 0 Find a function <j>(;t, y) that is harmonic in the quarter disk 
G: x > 0, y > 0, \z\ < l and takes on the boundary values 

(27) if(x, y) = 0 for z = el\ 0 < 9 < rc/2, 
<j>(jt, 0) = 1 forO < * < 1, 
¢(0, v) = 1 forO < y < 1. 

Solution The function 

(28) u + iv = z2 = x2 — y2 + z'2xy 

maps the quarter disk onto the upper half-disk H: v > 0, | w | < 1. The new Dirichlet 
problem in H is shown in Figure 10.11. From the result of Example 10.9 the solution 
<£(w, v) in H is 

(29) 4>(M, V) = - Arctan • 
7T 2v 

Using equation (28), one can show that u2 + v2 = (JC2 + v2)2 and 2v = 4xv, which 
can be used in equation (29) to show that the solution (() in G is 

2 1 - (x2 + v2)2 

(b(*, y) = - Arctan . 
71 4xy 

W , y ) = i 
for 0 < >- < 1 

0 <Kx,0)=l for 0 < ^ < l 1 O(w,0)=l for - 1 < W < 1 

FIGURE 10.11 The Dirichlet problems for the domains G and H in the solution 
of Example 10.10. 

A three-dimensional graph u = ())(x, y) in cylindrical coordinates is shown in Figure 
10.12. 
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FIGURE 10.12 The graph 

u — — Arctan 
n 

\l - (x2 + y2)2] 2 / 1 - r 4 

~; = ~~ Arctan — n . n 

4xy n \4r2cos 9 sin 8 

EXERCISES FOR SECTION 10.2 
For all of the following exercises, find a solution ¢0 , y) of the Dirichlet problem in the 
domain indicated that takes on the prescribed boundary values. 

1. Find the function ¢0 , y) that is harmonic in the horizontal strip 1 < Im(z) < 2 and has 
the boundary values 

¢0 , 1) = 6 for all x, ty(x, 2) = —3 for all x. 

2. Find the function ¢(^, y) that is harmonic in the sector 0 < Arg z < 7i/3 and has the 
boundary values 

<|>(jr, v) = 2 for Arg z = 7l/3, ¢0, 0 ) - 1 for x > 0. 

3. Find the function <|)(A\ y) that is harmonic in the annulus 1 < \z\ < 2 and has the 
boundary values 

(j)(x, y) = 5 when |z | = 1, <))(*, y) = 8 when \z\ = 2. 

4. Find the function <j)(x, y) that is harmonic in the upper half plane Im(z) > 0 and has the 
boundary values 

())(*, 0) = 1 for - 1 < x < 1, ¢0, 0) = 0 for I x I > 1. 
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5. Find the function ty(x, y) that is harmonic in the upper half plane Im(z) > 0 and has the 
boundary values 

$(x, 0) = 3 for x < - 3 , <|>(jt, 0) = 7 for - 3 < x < - 1 , 
<K*, 0) = 1 for - 1 < x < 2, 4>(JC, 0) = 4 for x > 2. 

6. Find the function §(x, y) that is harmonic in the first quadrant x > 0, y > 0 and has the 
boundary values 

¢)(0, y) = 0 for y > 1, ¢(0, y) = 1 for 0 < y < 1, 
<K*, 0) = 1 for 0 < x < 1, <|>(jt, 0) = 0 for x > 1. 

7. Find the function <J>(JC, y) that is harmonic in the unit disk | z \ < 1 and has the boundary 
values 

<K*, v) = 0 for z = el\ 0 < 8 < 7t, 
<K*, y) = 5 for z = ej\ n < 6 < 2K. 

8. Find the function <|>(;c, y) that is harmonic in the unit disk | z | < 1 and has the boundary 
values 

<K*, y) = 8 for z = eiB, 0 < 0 < 7t, 
<K*, y) = 4 for z = ef9,7i< 6 < In. 

9. Find the function <|>(JC, y) that is harmonic in the upper half-disk y > 0, \z\ < 1 and has 
the boundary values 

<K*, y) = 5 for z = <?'\ 0 < 6 < 7t, 
4>(*, 0) = - 5 for - 1 < x < 1. 

10. Find the function ty(x, y) that is harmonic in the portion of the upper half plane 
Im(z) > 0 that lies outside the circle | z | = 1 and has the boundary values 

<|>(JC, y) = 1 for z = ej\ 0 < 6 < n, 

<|»(JC, 0) = 0 for | * | > 1. 

Hint: Use the mapping w - - 1/z and the result of Example 10.9. 
11. Find the function §(x, y) that is harmonic in the quarter diskx > 0, y > 0, \z\ < 1 and 

has the boundary values 

<|>(x, y) = 3 for z = ej\ 0 < 9 < 7C/2, 
<J)(x, 0) = - 3 forO < x < 1, 
¢(0, y) = - 3 f o r 0 < y < 1. 

12. Find the function (|)(x, y) that is harmonic in the unit disk | z | < 1 and has the boundary 
values 

<KJC, y) = 1 for z = e'8, -TC/2 < 0 < 7i/2, 

<j>(x, y) = 0 for z = el\ nil < 6 < 37C/2. 

13. Look up the article on the Poisson integral formula and discuss what you found. Use 
bibliographical item 115. 

14. Write a report on how computer graphics are used for graphing harmonic functions, 
complex functions, and conformal mappings. Resources include bibliographical items 
33, 34, 109, and 146. 
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10.3 Poisson's Integral Formula for the Upper Half Plane 

The Dirichlet problem for the upper half plane Im(z) > 0 is to find a function 
ty(x, y) that is harmonic in the upper half plane and has the boundary values 
<J>(JC, 0) = U(x), where U(x) is a real-valued function of the real variable x. 

Theorem 10.3 (Poisson's Integral Formula) Let U(t) be a real-valued 
function that is piecewise continuous and bounded for all real t. The function 

(1) W&y) 
71 J -

U(t) dt 

(2) 

(x - tf + y2 

is harmonic in the upper half plane Im(z) > 0 and has the boundary values 

§(x, 0) = U(x) wherever U is continuous. 

Proof The integral formula (1) is easy to motivate from the results of The­
orem 10.2 regarding the Dirichlet problem. Let t\ < t2 < • • • < tN denote N points 
that lie along the x axis. Let t"0 < t\ < • • • < t*N be N + 1 points that are chosen so 
that f£_! < tk < ik (for k = 1, 2, . . . , N) and U{t) is continuous at each value t[. 
Then according to Theorem 10.2, the function 

1 N 

(3) <&(*, y) = U(t*N) + - 2 [t/(Ci) ~ tf(0l A*Z(z ~ tk) 

K k=\ 

is harmonic in the upper half plane and takes on the boundary values 

(4) <*>(*, 0) = U(t*0) for j t < tu 

*(*, 0)= Wl) fortk<x<tk + u 

0(x, 0) = U(t*N) for x > tN, 
as shown in Figure 10.13. 

* = £/(/*) | 4> = £/( t*) ' ¢ = ^ / ( ^ . ^ $=U(t*) 

4> - U(t*) 

FIGURE 10.13 The boundary values for O in the proof of Theorem 10.3. 
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We can use properties of the argument of a complex number in Section 1.4 to 
write equation (3) in the form 

1 1 N - 1 17 - t 
(5) <D(x, y) = - U(t*0) Arg(z - t{) + - 2 ! / (# Arg ^ 

ft ft *=i \ z — tk 

4- - U(t*N)[n - Arg(z - tN)l 
ft 

The value <E>(x, y) in equation (5) is given by the weighted mean 

1 N 

(6) <D(x, y) = - 2 WD A6*, 
ft JUO 

where the angles A6* (k = 0, 1, . . . , AO sum up to ft and are shown in Figure 
10.13. 

Using the substitutions 

(7) 8 = Arg(z - t) = Arctanf - ^ - ) and dd = ^ , 

\x - t) (JC — t)1 + yl 

we can write equation (6) as 

y £ U(tl) Atk 

(8) 0(x,y) = ̂ 2 : % * 2. 
ft A=O (x - tk)

2 + yz 

The limit of the Riemann sum, equation (8), becomes an improper integral 
y f- U{t) dt 
ft J— (JC — 02 + yz 

and the result is established. 

E X A M P L E 1 0 , 1 1 Find the function ty(x, y) that is harmonic in the upper half 
plane Im(z) > 0 and has the boundary values 

(9) <KJC, 0 ) = 1 f o r - l < j c < l , ¢0 ,0 ) = 0 for |JC| > 1. 

Solution Using formula (1), we obtain 

v P dt 1 P (10) ^y) = iL{x-ty + f = ^ L ^ 
ydt 
t)2 + y2 * 

Using the antiderivative in equation (7), we can write the solution in equation 
(10) as 

i ( y 
§(x, y) - - Arctan I ft \x — t / = _ i 

= — Arctan I Arctan 
ft \x — 1 / ft \x + 1 
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E X A M P L E 1 0 . 1 2 Find the function §(x, y) that is harmonic in the upper half 
plane Im(z) > 0 and has the boundary values 

(11) <K*, 0) = x for - 1 < x < 1, <K*, 0) = 0 for | * | > 1. 

S o l u t i o n Using formula (1), we obtain 

1 tdt (12) <K*,)0 = Z I 
71 J-

- y - \ 
K J-

-1 (X ~ t)2 + V2 

1 (x ~ 0( -
i (x - t)2 + 

2 * + £P 
f yz n J-

ydt 

i (x - t)2 + y2 ' 

Using techniques of calculus and equations (7), we find that the solution in 
equation (12) is 

v (x — 1)2 + v2 x y x y 
<Hx, y) = — In — '— + - Arctan Arctan . Y ' • In (x + 1)2 + y2 7i x - I n x + 1 

The function (|)(x, v) is continuous in the upper half plane and on the boundary 
(|)(JC, 0) has discontinuities at x = ±1 on the real axis. The graph in Figure 10.14 
shows this phenomenon. 

FIGURE 10.14 The graph of u = <J>(JC, y) with the boundary values §(x, 0) = x for 
\x\ < 1 and ty(x, 0) = 0 for I*I > 1. 

E X A M P L E 1 0 . 1 3 Find <)>(*, y), harmonic in the upper half plane lm(z) > 0, 
that has the boundary values §(x, 0) = x for \x\ < 1, ())(x, 0) - — 1 for x < — 1, 
and §(x> 0) = 1 for x > 1. 

S o l u t i o n Using techniques from Section 10.2, the function 

1 v 1 v 
V(JC, v) = 1 Arctan — Arctan — : — 

K X + 1 71 X — 1 
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is harmonic in the upper half plane and has the boundary values v(x, 0) = 0 for 
| x | < 1, v(x, 0) = - 1 for x < -1, and v(x, 0) = 1 for x > 1. This function can be 

added to the one in Example 10.12 to obtain the desired result, which is 

271 

x + 1 

(X 

(x 

-
+ 

n 

i)2 

i)2 

y 

+ 
+ 

y2 

y2 
H Arctan 

71 Jt + 1 

Figure 10.15 shows the graph of <|)(JC, y). 

x - 1 

FIGURE 10.15 The graph of u = <J>(JC, y) with the boundary values (|)(x, 0) = x for 
| * | < 1, 4>(jt, 0) = - 1 for JC < - 1 and (|>(jt, 0) = 1 for x > 1. 

EXERCISES FOR SECTION 10.3 

1. Use Poisson's integral formula to find the harmonic function (|)(x, v) in the upper half 
plane that takes on the boundary values 

4>(f, 0) = U(t) - 0 for t < 0, 
¢¢, 0) = U(t) = t f o r 0 < f < 1, 
(|>(t, 0) = U(t) = 0 for 1 < L 

2. Use Poisson's integral formula to find the harmonic function ty(x, y) in the upper half 
plane that takes on the boundary values 

<|>(t, 0) = U(t) = 0 for t < 0, 
<|>(f,0) = U(t) = t f o r 0 < t< 1, 
¢(/, 0) = (7(0 = 1 for 1 < t 

3. Use Poisson's integral formula for the upper half plane to conclude that 

cos t dt 
ty(x, y) = e vcos x 

K J— (. :* - o2 + y2 
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4. Use Poisson's integral formula for the upper half plane to conclude that 

v f" sin t dt 
4>Cx, y) - e~ vsin x = '- \ , . 

7t J— (JC - r)- + y~ 

5. Show that the function §{x, y) given by Poisson's integral formula is harmonic by ap­
plying Leibniz's rule, which permits us to write 

d2 d2\ 1 f-
d;r dv~/ 7W-™ 

ii i: 
ax2 a y y (JC - o2 + v2 

j t . 

6. Let £/( r) be a real-valued function that satisfies the conditions for Poisson's integral 
formula for the upper half plane. If U{t) is an even function, that is, ¢/(-t) = ¢/(/), then 
show that the harmonic function <j)(x, y) has the property ty{—x, y) = ty{x, y). 

7. Let U(t) be a real-valued function that satisfies the conditions for Poisson's integral 
formula for the upper half plane. If U(t) is an odd function, that is, U( — t) = — ¢/(/), 
then show that the harmonic function §(x, y) has the property <J>( —A:, y) = —<|>(JC, y). 

8. Write a report on the Dirichlet problem and include some applications. Resources in­
clude bibliographical items 70, 71, 76, 77, 85, 98, 135, and 138. 

10.4 Two-Dimensional Mathematical Models 

We now turn our attention to problems involving steady state heat flow, electro­
statics, and ideal fluid flow that can be solved by conformal mapping techniques. 
The method uses conformal mapping to transform a region in which the problem is 
posed to one in which the solution is easy to obtain. Since our solutions will involve 
only two independent variables, x and y, we first mention a basic assumption needed 
for the validity of the model. 

The physical problems we just mentioned are real-world applications and in­
volve solutions in three-dimensional Cartesian space. Such problems generally 
would involve the Laplacian in three variables and the divergence and curl of three-
dimensional vector functions. Since complex analysis involves only x and y, we 
consider the special case in which the solution does not vary with the coordinate 
along the axis perpendicular to the xy plane. For steady state heat flow and electro­
statics this assumption will mean that the temperature T, or the potential V, varies 
only with x and y. For the flow of ideal fluids this means that the fluid motion is the 
same in any plane that is parallel to the z plane. Curves drawn in the z plane are to 
be interpreted as cross sections that correspond to infinite cylinders perpendicular 
to the z plane. Since an infinite cylinder is the limiting case of a 4 i o n g " physical 
cylinder, the mathematical model that we present is valid provided that the three-
dimensional problem involves a physical cylinder long enough that the effects at 
the ends can be reasonably neglected. 

In Sections 10.1 and 10.2 we learned how to obtain solutions c()(x, y) for har­
monic functions. For applications it is important to consider the family of level 
curves 

(1) {<t>(jt, y) = K\\ K\ is a real constant} 
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and the conjugate harmonic function i|/(;t, y) and its family of level curves 

(2) {I|/(JC, y) = K2: K2 is a real constant}. 

It is convenient to introduce the terminology complex potential for the analytic 
function 

(3) F(Z) = 4>(*, y) + W*, y). 

The following result regarding the orthogonality of the above mentioned families 
of level curves will be used in developing ideas concerning the physical applications. 

Theorem 10.4 (Orthogonal Families of Level Curves) Let <J>(x, y) be 
harmonic in a domain D. Let i|;(*, y) be the harmonic conjugate, and let 
F(z) — <|)(JC, y) + /I|;(JC, y) be the complex potential. Then the two families of 
level curves given in (l) and (2), respectively, are orthogonal in the sense that 
if (a, b) is a point common to the two curves ty(x, y) = K\ and i|i(x, y) = K2, 
and ifF'{a + ib) ^ 0, then these two curves intersect orthogonally. 

Proof Since ty(x, y) = K\ is an implicit equation of a plane curve, the gra­
dient vector grad ¢, evaluated at (a, b), is perpendicular to the curve at (a, b). This 
vector is given by 

(4) N, = U^ b) + /c|)v(a, b). 

Similarly, the vector N2 defined by 

(5) N2 = v|i.v(a, b) + nK(a, b) 

is orthogonal to the curve I|J(JC, y) = K2 at (a, b). Using the Cauchy-Riemann equa­
tions, tyx = \\f} and <|)v = —v(iv, we have 

(6) Nj • N2 - (|>,(a, b)[$Aa, b)] + <|)v(fl, b)Wyta, b)] 

= §M, b)[-Ua, b)] + $y(a, b)[$x(a, *)] = 0. 

In addition, since Ff(a 4- ib) ^ 0, we have 

(7) $x(a, b) + nJ/A(a, b) ¥> 0. 

The Cauchy-Riemann equations and inequality (7) imply that both N\ and N2 are 
nonzero. Therefore equation (6) implies that Nj is perpendicular to N2, and hence 
the curves are orthogonal. 

The complex potential F(z) = §(x, y) + /v|i(jc, y) has many physical interpre­
tations. Suppose, for example, that we have solved a problem in steady state tem­
peratures; then a similar problem with the same boundary conditions in electrostatics 
is obtained by interpreting the isothermals as equipotential curves and the heat flow 
lines as flux lines. This implies that heat flow and electrostatics correspond directly. 
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Or suppose we have solved a fluid flow problem; then an analogous problem 
in heat flow is obtained by interpreting the equipotentials as isothermals and stream­
lines as heat flow lines. Various interpretations of the families of level curves given 
in expressions (1) and (2) and correspondences between families are summarized 
in Table 10.1. 

Table 10.1 Interpretations for Level Curves 

Physical 
Phenomenon 

Heat flow 
Electrostatics 
Fluid flow 
Gravitational field 
Magnetism 
Diffusion 
Elasticity 
Current flow 

§(x,y) = constant 

Isothermals 
Equipotential curves 
Equipotentials 
Gravitational potential 
Potential 
Concentration 
Strain function 
Potential 

Mx> y) = constant 

Heat flow lines 
Flux lines 
Streamlines 
Lines of force 
Lines of force 
Lines of flow 
Stress lines 
Lines of flow 

10.5 Steady State Temperatures 

In the theory of heat conduction the assumption is made that heat flows in the 
direction of decreasing temperature. We also assume that the time rate at which heat 
flows across a surface area is proportional to the component of the temperature 
gradient in the direction perpendicular to the surface area. If the temperature 
T(x, y) does not depend on time, then the heat flow at the point (x, y) is given by 
the vector 

(1) Y(x, y) = -K grad T(x, y) = -K[Tx(x, y) + iTy(x, y)], 

where K is the thermal conductivity of the medium and is assumed to be constant. 
If Az denotes a straight line segment of length As, then the amount of heat flowing 
across the segment per unit of time is 

(2) V • N As, 

where N is a unit vector perpendicular to the segment. 
If we assume that no thermal energy is created or destroyed within the region, 

then the net amount of heat flowing through any small rectangle with sides of length 
Ax and Ay is identically zero (see Figure 10.16(a)). This leads to the conclusion that 
T(x, y) is a harmonic function. The following heuristic argument is often used to 
suggest that T(x, y) satisfies Laplace's equation. Using expression (2), we find that 
the amount of heat flowing out of the right edge of the rectangle in Figure 10.16(a) 
is approximately 

(3) V • Ni As, = -K[Tx(x + AJC, y) + iTy(x + Ax, y)] • (1 + 0/) Ay 
= -KTx(x + Ax, y) Ay, 
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and the amount of heat flowing out of the left edge is 

(4) V • N2 As2 - -K[TJ& y) + iTy(x, y)] - ( - 1 + 0/) Ay = KTx(x, y) Ay. 

\(x,y + Ay) V (x + Ax, y + Ay) 

V(x,v) V (x + Ax, y) 

T(x, y) = a 
Isothermals 

(a) The direction of heat flow. (b) Heat flow lines and isothermals. 

FIGURE 10.16 Steady state temperatures. 

If we add the contributions in equations (3) and (4), the result is 

Ax, y) - Tx(x, y) 
(5) -*p Ac 

Ax Ay ~ — KTxx(x, y) Ax Ay. 

In a similar fashion it is found that the contribution for the amount of heat 
flowing out of the top and bottom edges is 

(6) -K 
Ty{x, y + Ay) - Tv(x, y) 

Ay 
Ax Ay ~ —KTyy(xy y) Ax Ay. 

Adding the quantities in equations (5) and (6), we find that the net heat flowing out 
of the rectangle is approximated by the equation 

(7) -K[TJ?c y) + Tyy(x, y)] Ax Ay = 0, 

which implies that T(x, y) satisfies Laplace's equation and is a harmonic function. 
If the domain in which T(x, y) is defined is simply connected, then a conjugate 

harmonic function S(x, y) exists, and 

(8) F{z) = T(x, y) + iS(x, y) 

is an analytic function. The curves T(jc, v) = K{ are called isothermals and are lines 
connecting points of the same temperature. The curves S(x, y) = K2 are called the 
heat flow lines, and one can visualize the heat flowing along these curves from points 
of higher temperature to points of lower temperature. The situation is illustrated in 
Figure 10.16(b). 

Boundary value problems for steady state temperatures are realizations of the 
Dirichlet problem where the value of the harmonic function T(x, y) is interpreted as 
the temperature at the point (x, y). 
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EXAMPLE 1 0 . 1 4 Suppose that two parallel planes are perpendicular to the 
Z plane and pass through the horizontal lines y = a and y - b and that the temperature 
is held constant at the values TO, a) = Ti and T(x, b) = T2, respectively, on these 
planes. Then T is given by 

(9) T(xf y) 
T2 - T! 

Ti + ~ ~ (y - a). 
b — a 

Solution It is reasonable to make the assumption that the temperature at 
all points on the plane passing through the line y = y0 is constant. Hence T(x, y) = 
t(y), where t(y) is a function of y alone. Laplace's equation implies that f(y) = 0, 
and an argument similar to that in Example 10.1 will show that the solution T(x9 y) 
has the form given in equation (9). 

The isothermals T(jc, ;y) = a are easily seen to be horizontal lines. The con­
jugate harmonic function is 

S(x9 y) = 
T7 

b- a 

and the heat flow lines S(x, y) = (3 are vertical segments between the horizontal 
lines. If T\ > T2, then the heat flows along these segments from the plane through 
y = a to the plane through y = b as illustrated in Figure 10.17. 

T(x,b) 
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I S (x,y) = P heat flow lines 
*- x 

FIGURE 10.17 The temperature between parallel planes where T\ > T2. 

EXAMPLE 10 -15 Find the temperature T(x, y) at each point in the upper half 
plane lm(z) > 0 if the temperature along the x axis satisfies 

(10) T(x, 0) = Ti for x > 0 and J\x, 0) = T2 for x < 0. 

Solution Since T(x, y) is a harmonic function, this is an example of a 
Dirichlet problem. From Example 10.2 it follows that the solution is 

(11) TCx,y) = Ti + Tl " T] Arg z. 
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The isothermals T(x, y) = a are rays emanating from the origin. The conjugate 
harmonic function is S(x, y) = (l/n)(T\ - T2) l n | z | , and the heat flow lines 
S(x, y) = P are semicircles centered at the origin. If T\ > T2, then the heat flows 
counterclockwise along the semicircles as shown in Figure 10.18. 

T(xt0) = T2 for x < 0 F(x,0) = T{ for x > 0 

T(x,y) = a 
isothermals 

S(*,y) = P 
heat flow lines 

FIGURE 10.18 The temperature T(x, y) in the upper half plane where Tx > T2 

E X A M P L E 1 0 . 1 6 Find the temperature T(x, y) at each point in the upper half-
disk H: Im(z) > 0, \z\ < 1 if the temperature at points on the boundary satisfies 

(12) T(JC, y) = 100 for z = el\ 0 < 9 < n, 

T(x,Q) = 50 f o r - 1 <x< 1. 

S o l u t i o n As discussed in Example 10.9, the function 

(13) u + iv = i(l " z) 2y 
+ i 

. 1 - x2 - y2 

1 + z (x + 1)2 + y2 (x + l ) 2 + y2 

is a one-to-one conformal mapping of the half-disk H onto the first quadrant 
Q: u > 0, v > 0. The conformal map (13) gives rise to a new problem of finding 
the temperature T*(w, v) that satisfies the boundary conditions 

(14) T*(«, 0) = 100 for u > 0 and T*(0, v) = 50 for v > 0. 

If we use Example 10.2, the harmonic function T*(w, v) is given by 

(15) T*(w, v) = 100 + 5 ° " 1QQ Arg w = 100 - — Arctan - . 
71/2 71 U 
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Substituting the expressions for u and v in mapping (13) into equation (15) yields 
the desired solution 

100 1 - x2 - y2 

T(x, y) = 100 Arctan — . 
% 2y 

The isothermals T(x, y) = constant are circles that pass through the points ±1 as 
shown in Figure 10.19. 

y 
f T(xty) = 100 

-1 T(x,0) = 50 for - ! < * < ! 1 

FIGURE 10.19 The temperature T(x, y) in a half-disk. 

We now turn our attention to the problem of finding the steady state temper­
ature function T(jc, y) inside the simply connected domain D whose boundary con­
sists of three adjacent curves Cu Ci, and C3, where T(x, y) = T\ along C\, T(x, y) 
= T2 along C2, and the region is insulated along C3. Zero heat flowing across C3 
implies that 

(16) V(;t, y) • N(;ts y) = -KN(x, y) • grad T(x, y) = 0, 

where N(JC, y) is perpendicular to C3. This means that the direction of heat flow must 
be parallel to this portion of the boundary. In other words, C3 must be part of a heat 
flow line S(x, y) = constant and the isothermals T(x, y) = constant intersect C3 

orthogonally. 
This problem can be solved if we can find a conformal mapping 

(17) w=f(z) = u(x,y) + iv(x,y) 

from D onto the semi-infinite strip G : 0 < w < 1, v > 0 so that the image of the 
curve C\ is the ray u = 0, v > 0; the image of the curve C^ is the ray given by 
u = 1, v > 0; and the thermally insulated curve C3 is mapped onto the thermally 
insulated segment 0 < u < 1 of the u axis, as shown in Figure 10.20. 
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T(x, y) = T, I C, 

w=f(z) 

T(x,y) = T = 0 

r*<o, v) = T. 

o 

h**r 

l^ifvififr, . ^ ¾ . ¾ 

7 - ( 1 , ^ ) = ^ 

FIGURE 10.20 Steady state temperatures with one boundary portion insulated. 

The new problem in G is to find the steady state temperature function 
T*(w, v) so that along the rays we have the boundary values 

(18) T*(0, v) = Tj for v > 0 and T*(l, v) = T2 for v > 0. 

The condition that a segment of the boundary is insulated can be expressed math­
ematically by saying that the normal derivative of T*(w, v) is zero. That is, 

dT* 
(19) — = 7 > , 0 ) = 0 

dn 
where n is a coordinate measured perpendicular to the segment. 

It is easy to verify that the function 

(20) r*(n, v) = r, + (T2 - Tow 
satisfies the conditions (19) and (20) for the region G. Therefore using (17), we find 
that the solution in D is 

(21) T(x,y) = T{ + (T2 - T{)u(x, y). 

The isothermals T(x, y) = constant, and their images under w = f(z) are illustrated 
in Figure 10.20. 

EXAMPLE 1 0 - 1 7 Find the steady state temperature T(x, y) for the domain D 
consisting of the upper half plane Im(z) > 0 where T(x, y) has the boundary 
conditions 

(22) T(x, 0) = 1 for x > 1 and T(;c, 0) = - 1 for x < -1 and 

— = Tv(jc, 0) = 0 for - 1 < x < 1. 
dn 
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Solution The mapping w = Arcsin z conformally maps D onto the semi-
infinite strip v > 0, —n/2 < u < n/2, where the new problem is to find the steady 
state temperature T*(w, v) that has the boundary conditions 

(23) T*[|,vl = l f o r v > 0 and T*(^,v]==-1 for v > 0 

dT* —K K 
and = T>, 0) = 0 for < u < - . 

dn A 2 2 

By using the result of Example 10.1 it is easy to obtain the solution 

(24) T*(w, v) = - M. 

n 

Therefore the solution in D is 

(25) T(*, v) = - Re(Arcsin z). 
K 

If an explicit solution is required, then we can use formula (14) in Section 9.4 to 
obtain 

nf, T( 2 . [V ( *+ 1)2 + y2 " VC*" Q2 + ?2 

(26) T(x, y) = — arcsin 

where the real function arcsin t has range values satisfying — n/2 < arcsin t < n/2, 
see Figure 10.21. 

T =-0 .2 T=0.2 

T=0A 

T =-1.0 

= 0.8 

FIGURE 10.21 The temperature T(x, y) with Ty(xy 0) = 0 for - 1 < x < 1, 
and boundary values T{x, 0) = - 1 for JC < — 1 and T(xy 0) = 1 for x > 1. 
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EXERCISES FOR SECTION 10.5 
1. Show that H(x7 y, z) = \ljx2 4- v2 + z2 satisfies Laplace's equation Hxx + Hyy + 

Hzz = 0 in three-dimensional Cartesian space but that h(x, y) = lljx1 + y2 does not 
satisfy equation hxx + hyy = 0 in two-dimensional Cartesian space. 

2. Find the temperature function T(x, v) in the infinite strip bounded by the lines y = -x 
and y = 1 — x that satisfies the boundary values in Figure 10.22. 

T(x, —x) = 25 for all x, 
T(x, 1 - x) = 75 for all x. 

FIGURE 10.22 Accompanies Exercise 2. 

3. Find the temperature function T(x, y) in the first quadrant x > 0, y > 0 that satisfies the 
boundary values in Figure 10.23. Hint: Use w = z2. 

T(xy0) = 10 forx> 1, 
T(x,Q) = 20 f o r 0 < JC< 1, 
T(0,y) = 20 forO < y < 1, 
T(0, y) = 10 fory > 1. 

T= 10 

T=20 

T=20 ! r = 1 0 

FIGURE 10.23 Accompanies Exercise 3. 

4. Find the temperature function T(x, y) inside the unit disk | z | < 1 that satisfies the 
boundary values in Figure 10.24. Hint: Use w = /(1 - z)/(l + z). 

T(x, y) = 20 for z = el\ 0 < 0 < - , 

T(x, y) = 60 for z = e'\ ^ < 0 < In. 
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r=6o 

7=60 

r=20 

7=60 

FIGURE 10.24 Accompanies Exercise 4. 

5. Find the temperature function T(x, y) in the semi-infinite strip — K/2 < x < n/2, y > 0 
that satisfies the boundary values in Figure 10.25. Hint: Use w = sin z. 

T|-,y 1 = 100 fory > 0, 

T(x, y) = 0 lor < x < - , 
2 2 

r[^-,y\ = 100 fory > 0. 

r=ioo T= 100 

-Ji/2 7 = 0 K/2 

FIGURE 10.25 Accompanies Exercise 5. 

6. Find the temperature function T(x, y) in the domain r > 1, 0 < 0 < n that satisfies the 
boundary values in Figure 10.26. Hint: w = / ( 1 - z)/(l + z). 

7 = 100 

7 = 0 -l i 7 = 0 

FIGURE 10.26 Accompanies Exercise 6. 

T(x,0) = 0 for;t> 1, 
T(x, 0) = 0 forjc< - 1 , 
T(jc,y) = 100 if z = el\0< 0 < K. 
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7. Find the temperature function T(x, y) in the domain l < r < 2 , 0 < 6 < n/2 that satisfies 
the boundary conditions in Figure 10.27. Hint: Use w ~ Log z. 

dT 
dn 
dT 
dn 

T(x, v) = 0 for r = e'\ 0 < 0 < - , 
2 

T(x, y) = 50 for r = 2el\ 0 < 0 < - , 

= T}(x, 0 ) - 0 for 1 < x < 2, 

= Tv(0, y) = 0 for 1 < y < 2. 

dT 
dn 

m i l l > * 

FIGURE 10.27 Accompanies Exercise 7. 

8. Find the temperature function T(x, y) in the domain 0 < r < 1, 0 < Arg z < a that 
satisfies the boundary conditions in Figure 10.28. Hint: Use w = Log z. 

0 ' T= 100 1 

FIGURE 10.28 Accompanies Exercise I 

T(x, 0) = 100 forO < x< I, 
T(x, y) = 50 for z = reia, 0 < r < 1, 

dT 
— = 0 for z = el\ 0 < 0 < a. 
dn 
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9. Find the temperature function T(x, y) in the first quadrant x > 0, y > 0 that satisfies the 
boundary conditions in Figure 10.29. Hint: Use w = Arcsin z1. 

T(xtQ) = 100 for;c> 1, 
T(0,y) = - 5 0 fory > 1, 

dT 
— = Tv(x, 0 ) - 0 
dn 
dT 
— = TAP, y) = 0 
dn 

forO <x< 1, 

for0<>> < 1. 

T = -50 

t I I I MO » 
a r _ l r=ioo 

FIGURE 10.29 Accompanies Exercise 9. 

10. Find the temperature function T(x, y) in the infinite strip 0 < y < n that satisfies the 
boundary conditions in Figure 10.30. Hint: Use w = ez. 

T(x, 0) = 50 for x > 0, 
T(x, 71) = - 5 0 f o r x > 0, 

dT 
an 

= Ty(x, 0) = 0 

dT 
— = rvfe 71) = o 
dn 

for x < 0, 

for * < 0. 

3 r - n J 

dn U f /71 7=-50 
I I I I H I H O 

I I I I I I I I tO— 

lT =0 ° 
dn 

T=50 

FIGURE 10.30 Accompanies Exercise 10. 
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11. Find the temperature function 7(x, y) in the upper half plane lm(z) > 0 that satisfies the 
boundary conditions in Figure 10.31. Hint: Use w = 1/z. 

7Qc, 0) = 100 f o r 0 < * < 1, 
7(JC, 0) = -100 for - 1 < x < 0, 

£1 
dn 
dT_ 
dn 

= Ty(xt 0) = 0 

= Ty(x, 0) = 0 

fo rx> 1, 

for* < - 1 . 

-1 
M i n n » x 

dT
 = 0 r=-ioo r=ioo dT

 = 0 

FIGURE 10.31 Accompanies Exercise 11. 

12. Find the temperature function T(x, y) in the first quadrant x > 0, y > 0 that satisfies the 
boundary conditions in Figure 10.32. 

T(x, 0) = 50 for x > 0, 
7(0, y) = - 5 0 fory > 1, 

ar 
— = 7,(0, v) = 0 for 0 < y < 1. 
dn 

7 = -50 

iQ 

dn 

0 7=50 

FIGURE 10.32 Accompanies Exercise 12. 

13. For the temperature function 

100 1 - x2 - v2 

T(x9 y) = 100 arctan — 
71 2y 
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in the upper half-disk | z | < 1, Im(z) > 0, show that the isothermals T(x, v) = a are 
portions of circles that pass through the points +1 and - 1 as illustrated in Figure 10.33. 

T = 100 

-1 ^ = 5 0 i 

FIGURE 10.33 Accompanies Exercise 13. 

14. For the temperature function 

300 
T(x, y) = Re (Arc sin z) 

K 

in the upper half plane Im(z) > 0, show that the isothermals T(x, y) — a are portions of 
hyperbolas that have foci at the points ±1 as illustrated in Figure 10.34. 

T =-75 T =0 T =75 

150 

FIGURE 10.34 Accompanies Exercise 14. 

15. Find the temperature function in the portion of the upper half plane Im(z) > 0 that lies 
inside the ellipse 

= 1 
cosh2 2 sinh2 2 

and satisfies the boundary conditions given in Figure 10.35. Hint: Use w - Arcsin z-

dT 
dn 

T(x, y) = 80 for (JC, y) on the ellipse, 
T(X,0) = 40 for - 1 <x< 1, 

= Ty(x, 0) = 0 when 1 < I x I < cosh 2. 
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FIGURE 10.35 Accompanies Exercise 15. 

10.6 Two-Dimensional Electrostatics 

A two-dimensional electrostatic field is produced by a system of charged wires, 
plates, and cylindrical conductors that are perpendicular to the z plane. The wires, 
plates, and cylinders are assumed to be so long that the effects at the ends can be 
neglected as mentioned in Section 10.4. This sets up an electric field E(x, y) that 
can be interpreted as the force acting on a unit positive charge placed at the point 
O, y). In the study of electrostatics the vector field E(x, y) is shown to be conser­
vative and is derivable from a function ¢ 0 , y), called the electrostatic potential, as 
expressed by the equation 

(1) E(x, y) = -grad ¢0, y) = -((MX y) - ityy(x, y). 

If we make the additional assumption that there are no charges within the 
domain D, then Gauss' law for electrostatic fields implies that the line integral of 
the outward normal component of E(x, y) taken around any small rectangle lying 
inside D is identically zero. A heuristic argument similar to the one for steady state 
temperatures with TO, y) replaced by §(x, y) will show that the value of the line 
integral is 

(2) - MUx, y) + ¢,,.0, y)] Ax Ay. 

Since the quantity in expression (2) is zero, we conclude that <f>(jc, y) is a harmonic 
function. We let i|/0» y) denote the harmonic conjugate, and 

(3) F(z) = ¢0 , y) + AK*. y) 

is the complex potential (not to be confused with the electrostatic potential). 
The curves ¢0 , y) = Kx are called the equipotential curves, and the curves 

vp(x, y) = K2 are called the lines of flux. If a small test charge is allowed to move 
under the influence of the field E(x, y), then it will travel along a line of flux. 
Boundary value problems for the potential function ¢0 , y) are mathematically the 
same as those for steady state heat flow, and they are realizations of the Dirichlet 
problem where the harmonic function is ¢0 , y). 
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EXAMPLE 1 0 . 1 8 Consider two parallel conducting planes that pass perpen­
dicular to the z plane through the lines x = a and x = b, which are kept at the 
potentials U\ and U2, respectively. Then according to the result of Example 10.1, 
the electrical potential is 

(4) 4>(JC, y) = Ux+ - f L (x - a). 

EXAMPLE 1 0 . 1 9 Find the electrical potential <|)(x, y) in the region between 
two infinite coaxial cylinders r = a and r = b, which are kept at the potentials U\ 
and U2, respectively. 

Solution The function w = log z = In | z | + / arg z maps the annular 
region between the circles r — a and r — b onto the infinite strip In a < u < In b 
in the w plane as shown in Figure 10.36. The potential 4>(w, v) in the infinite strip 
will have the boundary values 

(5) <E>(ln a, v) = U\ and <J>(ln b, v) = U2 for all v. 

If we use the result of Example 10.18, the electrical potential 0(w, v) is 

(6) &(u, v) = Ux + }
 U2

U " ^ 1 (u - In a). 
In b — In a 

Since u = In | z \, we can use equation (6) to conclude that the potential ty(x, y) is 

4>(JC, y) = U{ + —I f - (In z - In a). 

In b - In a ' ' 
The equipotentials (|)(JC, y) = constant are concentric circles centered at the origin, 
and the lines of flux are portions of rays emanating from the origin. If U2 < U\, 
then the situation is illustrated in Figure 10.36. 

E X A M P L E 1 0 . 2 0 Find the electrical potential §(x, y) produced by two 
charged half planes that are perpendicular to the z plane and pass through the rays 
x < — 1, y = 0 and x > 1, y = 0, where the planes are kept at the fixed potentials 

(7) <|>(jt, 0) = - 3 0 0 for* < - 1 and <t)(x, 0) = 300 forx > 1. 

Solution The result of Example 9.13 shows that the function w = Arcsin z 
is a conformal mapping of the z plane slit along the two rays x < - 1 , y = 0 and 
x > 1, y = 0 onto the vertical strip —K/2 < u < nil, where the new problem is to 
find the potential 0(w, v) that satisfies the boundary values 

(8) of — , v) = -300 and 0>(- , v) = 300 for all v. 
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w = log z k 

<$> = U, 

In a 

<£=£/„ 

Inb 

FIGURE 10.36 The electric field in a coaxial cylinder where U2 < U\ 

Using the result of Example 10.1, we see that 0 ( M , V) is 

600 
(9) 0(w, v) = u. 

K 

As in the discussion of Example 10.17, the solution in the z plane is 

600 
(10) <t>(x, y) = Re(Arcsin z) 

71 
600 

Arc sin 
Vt* + I)2 + y2 ~ V(x - 1)2 + y2 

Several equipotential curves are shown in Figure 10.37. 

120 4» = -60 (() = 0 ¢ = 60 ( j )=120 

4> = 180 

FIGURE 10.37 The electric field produced by two charged half planes that are 
perpendicular to the complex plane. 
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EXAMPLE 10 .21 Find the electrical potential ¢0 , y) in the disk D: \z\ < 1 
that satisfies the boundary values 

(11) ¢0 , y) = 80 for z on d = \z = eid: 0 < 6 < - I 

¢0 , y) = 0 for z on C2 = | z = e'e: ^ < 0 < 2rc |. 

and 

Solution The mapping w = S(z) = [(1 - 0(^ "" 0V(z ~ 1) is a one-to-one 
conformal mapping of D onto the upper half plane Im(vv) > 0 with the property that 
C\ is mapped onto the negative u axis and C2 is mapped onto the positive u axis. 
The potential 0(w, v) in the upper half plane that satisfies the new boundary values 

(12) 0(w, 0) = 80 for u < 0 and 0(w, 0) = 0 for u > 0 

is given by 

80 80 v 
(13) 0(«, v) = — Arg w = — Arctan - . 

71 % U 

A straightforward calculation shows that 

nA, , . w , Q - 1)2 + (y - 1)2 - 1 + /(1 - ^ - yf) 
(14) M + lv = s(z) = . 

O - l) + y 

The functions w and v in equation (14) can be substituted into equation (13) to obtain 

80 1 - r2 - v2 

§(x> y) = — Arctan — 
71 (X 

1)2 + (y - 1)2 - T 

The level curve 3>(w, v) = a in the upper half plane is a ray emanating from 
the origin, and the preimage ¢0 , y) = a in the unit disk is an arc of a circle that 
passes through the points 1 and L Several level curves are illustrated in Figure 10.38. 

<D=20 

FIGURE 10.38 The potentials <|> and <I> that are discussed in Example 10.21. 
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EXERCISES FOR SECTION 10.6 
1. Find the electrostatic potential ({>(JC, y) between the two coaxial cylinders r — \ and 

r = 2 that has the boundary values as shown in Figure 10.39. 

ty(x,y) = 100 when \z\ = 1, 
4>(x, y) = 200 when \z\ = 2. 

¢) = 200 

FIGURE 10.39 Accompanies Exercise 1. 

2. Find the electrostatic potential <|>(jt, y) in the upper half plane Im(z) > 0 that satisfies 
the boundary values as shown in Figure 10.40. 

<t>(jc, 0) = 100 fo r*> 1 
<f>C*, 0) = 0 for - 1 < x < 1 
<|>(JC, 0) = -100 for x < - 1 

i 

- 1 
o 1 

. 

1 
' • 0 ^ 

(j) = -100 $ = 0 ¢) = 100 

FIGURE 10.40 Accompanies Exercise 2. 

3. Find the electrostatic potential <|>(jc, y) in the crescent-shaped region that lies inside the 
disk | z - 2 | < 2 and outside the circle | z - 1 | = 1 that satisfies the boundary values 
as shown in Figure 10.41. Hint: Use w = \lz. 
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FIGURE 10.41 Accompanies Exercise 3. 

<K*, y) = 100 for | z - 2 | = 2, z * 0, 
ty(x,y) = 50 for \z- l\ = hz^O, 

4. Find the electrostatic potential §(x, y) in the semi-infinite strip — TC/2 < x < K/2, y > 0 
that has the boundary values as shown in Figure 10.42. 

, y = 0 for y > 0, 

*(*, 0) = 50 for — < JC < - , 
2 2 

= 100 forv > 0. 

¢) = 100 

-K/2 <}> = 5 0 7i/2 

FIGURE 10.42 Accompanies Exercise 4. 

5. Find the electrostatic potential ¢0 , y) in the domain D in the half plane Re(z) > 0 that 
lies to the left of the hyperbola 2x2 - 2y2 = 1 and satisfies the boundary values as shown 
in Figure 10.43. Hint: Use w = Arcsin z. 

¢(0, y) = 50 for all y, 
¢0, y) = 100 when 2x2 - 2y2 = 1. 
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¢ = 100 

Ix1 - 2)<2 = 1 

FIGURE 10.43 Accompanies Exercise 5. 

6. Find the electrostatic potential §(x, y) in the infinite strip 0 < x < nil that satisfies the 
boundary values as shown in Figure 10.44. Hint. Use w = sin z. 

¢)(0, y) = 100 fory > 0, 
K 

• > ' 0 for all y, 

¢(0, y) = -100 fory < 0. 

: 100 

FIGURE 10.44 Accompanies Exercise 6. 

7. (a) Show that the conformal mapping w = S(z) = (2z — 6)1 (z + 3) maps the domain 
D that is the portion of the right half plane Re(z) > 0 that lies exterior to the circle 
| z — 5 | = 4 onto the annulus 1 < \w\ < 2. 

(b) Find the electrostatic potential <))(x, y) in the domain D that satisfies the boundary 
values as shown in Figure 10.45. 

¢(0, y) = 100 for all y, <|)(JC, y) = 200 when | Z - 5 | = 4. 

¢=100 
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8. (a) Show that the conformal mapping w = S(z) = (z - 10)/(2z - 5) maps the domain 
D that is the portion of the disk \z \ < 5 that lies outside the circle | z — 2 | = 2 
onto the annulus 1 < | vv | < 2. 

(b) Find the electrostatic potential §(x, v) in the domain D that satisfies the boundary 
values as shown in Figure 10.46. 

<|>(JC, V) = 100 when \z\ = 5, §(x, y) = 200 when | z - 2 | = 2. 

y \> 
| z - i o I 

FIGURE 10.46 Accompanies Exercise 8. 

10.7 Two-Dimensional Fluid Flow 

Suppose that a fluid flows over the complex plane and that the velocity at the point 
z = x + iy is given by the velocity vector 

(1) W(x,y)=p(x,y) + iq(x,y). 

We also require that the velocity does not depend on time and that the components 
p(x, y) and q(x, y) have continuous partial derivatives. The divergence of the vector 
field in equation (1) is given by 

(2) div V(x, y) = px(x, y) + qy(x, y) 

and is a measure of the extent to which the velocity field diverges near the point. 
We will consider only fluid flows for which the divergence is zero. This is more 
precisely characterized by requiring that the net flow through any simply closed 
contour be identically zero. 

If we consider the flow out of the small rectangle in Figure 10.47, then the 
rate of outward flow equals the line integral of the exterior normal component of 
V(x, y) taken over the sides of the rectangle. The exterior normal component is 
given by - a on the bottom edge, p on the right edge, q on the top edge, and — p on 
the left edge. Integrating and setting the resulting net flow equal to zero yields 

(3) Jv [p(x + Ax, r) - /7(JC, 0] dt 

fx+A.x 

+ [q(t, y + Ay) - q(t, y)] dt = 0. 
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FIGURE 10.47 A two-dimensional vector field. 

Since p and q are continuously differentiate, the mean value theorem can be used 
to show that 

(4) p(x 4- Ax, t) — />(x, 0 = px(x\, t) Ax and 

q(U y + Ay) - q(U y) = qy(t, y2) Ay, 

where x < x\ < x + Ax and y < y2 < y + Ay. Substitution of the expressions in 
equation (4) into equation (3) and subsequently dividing through by Ax Ay results 
in 

1 fy + Ay 1 Cx + Ax 

(5) — Jv px(x{, r ) * + - Ĵ  q>(U y2) dt = 0. 

The mean value theorem for integrals can be used with equation (5) to show that 

(6) pAx\, y{) + avfc, y2) = 0, 

where y < y\ < y + Ay and x < x2 < x + Ax. Letting Ax —> 0 and Ay —> 0 in 
equation (6) results in 

(7) pjx, y) + a,(x, y) = 0, 

which is called the equation of continuity. 
The curl of the vector field in equation (1) has magnitude 

(8) | curl V(*, y) \ = ?,(*, y) - Py(x9 y) 

and is an indication of how the field swirls in the vicinity of a point. Imagine that 
a "fluid element" at the point (x, y) is suddenly frozen and then moves freely in 
the fluid. It can be shown that the fluid element will rotate with an angular velocity 
given by 

(9) lav(x, y) - |/7,(x, y) = \ \ curl V(x, y) \. 

We will consider only fluid flows for which the curl is zero. Such fluid flows 
are called irrotational. This is more precisely characterized by requiring that the 
line integral of the tangential component of V(x, y) along any simply closed contour 
be identically zero. If we consider the rectangle in Figure 10.47, then the tangential 
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component is given by p on the bottom edge, q on the right edge, —p on the top 
edge, and -q on the left edge. Integrating and setting the resulting circulation 
integral equal to zero yields the equation 

fv + Av Cx + Ax 

(10) J" [q(x + Ax,t)~ q(x, Q] dt - ^ [p(t, y + Ay) - p(t, y)] dt = 0. 

As before, we apply the mean value theorem and divide through by Ax Ay and obtain 
the equation 

I fv+Av J fx + Ax 

(11) — qx(xu t)dt-—\ /?v(t, y2) dt = 0. 
Ay Jy Ax Jx 

The mean value for integrals can be used with equation (11) to deduce the equation 
qx(x\, >i) — pv(x2, V2) = 0. Letting Ax —> 0 and Ay —> 0 yields 

(12) qx(x,y) -py(x,y) = 0. 

Equations (7) and (12) show that the function f(z) = p(x, y) — iq(x, y) satisfies 
the Cauchy-Riemann equations and is an analytic function. Let F(z) denote the 
antiderivative off(z). Then 

(13) F(z) = <|>(JC, y) + /i|/(*,y) 

is called the complex potential of the flow and has the property 

(14) W(z) = <(>,(*, y) - %(*, y) = p(x, y) + iq(x, y) = V(JC, y). 

Since §x = p and <|>v = q, we also have 

(15) grad <j)U, y) = p(x, y) + iaU y) = V(*, y), 

so <|)(JC, y) is the velocity potential for the flow, and the curves 

(16) (K*,y) = * i 

are called equipotentials. The function vj/(x, y) is called the stream function, and the 
curves 

(17) iK*,30 = tf2 

are called streamlines and describe the paths of the fluid particles. To see this fact, 
we can implicitly differentiate I|I(JC, y) = K2 and find that the slope of a vector tangent 
is given by 

dy _ -tyx(x,y) ^ 
dx I|IV(JC, y) 

Using the fact that v(/v = §x and equation (18), we find that the tangent vector to the 
curve is 

(19) T = ¢,(^ y) ~ «M*. y) = p(x, y) + iq(x, y) = V(x, y). 

The salient idea of the preceding discussion is the conclusion that if 

(20) F(z) = <K*. y) + «K*. y) 
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is an analytic function, then the family of curves 

(21) Wife 7 ) - ¾ } 

represents the streamlines of a fluid flow. 
The boundary condition for an ideal fluid flow is that V should be parallel to 

the boundary curve containing the fluid (the fluid flows parallel to the walls of a 
containing vessel). This means that if equation (20) is the complex potential for the 
flow, then the boundary curve must be given by \\f(x, y) = K for some constant K; 
that is, the boundary curve must be a streamline. 

Theorem 10.5 (Invariance of Flow) Let 

(22) Fi(w) = 0(w, v) + **(w, v) 

denote the complex potential for a fluid flow in a domain G in the w plane 
where the velocity is 

(23) V!(M, v) = Fi(vv). 

If the function 

(24) w = S(z) = u(xt y) + iv(x, y) 

is a one-to-one conformal mapping from a domain D in the z plane onto G, 
then the composite function 

(25) F2(z) = F.iSiz)) = <&(u(x, y\ v(x, y)) + rP(u(x, y\ v(x, y)) 

is the complex potential for a fluid flow in D where the velocity is 

(26) V2(*f y) = Ff
2(z). 

The situation is shown in Figure 10.48. 

w = S(z) 

y(w, v) = K 

(a) Fluid flow in the z plane. (b) Fluid flow in the w plane. 

FIGURE 10.48 The image of a fluid flow under conformal mapping. 
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Proof From equation (13) we see that F\(w) is an analytic function. Since 
the composition in equation (25) is an analytic function, F2(z) is the complex po­
tential for an ideal fluid flow in D. 

We note that the functions 

(27) <|>(;t, y) = <S>(u(x, y), V(JC, y)) and i|i(jc, y) = *(w(x, y), v(x, y)) 

are the new velocity potential and stream function, respectively, for the flow in D. 
A streamline or natural boundary curve 

(28) I|I(JC, J) = K 

in the z plane is mapped onto a streamline or natural boundary curve 

(29) ¥(w, v) = K 

in the w plane by the transformation w = S(z). One method for finding a flow inside 
a domain D in the z plane is to conformally map D onto a domain G in the w plane 
in which the flow is known. 

For an ideal fluid with uniform density p the fluid pressure F(x, y) and speed 
| \(x, y) | are related by the following special case of Bernoulli's equation'. 

(30) ^ ^ + -1 V(JC, y) | = constant. 

It is of importance to notice that the pressure is greatest when the speed is least. 

EXAMPLE 1 0 . 2 2 The complex potential F(z) = (a + ib)z has the velocity 
potential and stream function given by 

(31) ty(x, y) = ax — by and v|/(x, y) = bx + ay, 

respectively, and gives rise to the fluid flow defined in the entire complex plane that 
has a uniform parallel velocity given by 

(32) V(x, y) = FO) = a - ib. 

The streamlines are parallel lines given by the equation bx + ay = constant and are 
inclined at an angle a = — arctan(£/a) as indicated in Figure 10.49. 

^ T 

FIGURE 10.49 A uniform parallel flow. 
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EXAMPLE 1 0 . 2 3 Consider the complex potential F(z) = (A/2)z2, where A is 
a positive real number. The velocity potential and stream function are given by 

(33) §(x, y) = — (x2 - y2) and \\}(x, y) = Axy, 

respectively. The streamlines \\t(x, y) = constant form a family of hyperbolas with 
asymptotes along the coordinate axes. The velocity vector V = Az indicates that in 
the upper half plane Im(z) > 0 the fluid flows down along the streamlines and 
spreads out along the x axis. This depicts the flow against a wall and is illustrated 
in Figure 10.50. 

FIGURE 10.50 The fluid flow with complex potential F(z) = (AI2)z2. 

EXAMPLE 10 -24 Find the complex potential for an ideal fluid flowing from 
left to right across the complex plane and around the unit circle \z\ = 1. 

Solution We will use the fact that the conformal mapping 

(34) w = S(z) = z + -
z 

maps the domain D = {z: \z\ < 1} one-to-one and onto the w plane slit along the 
segment — 2 < u < 2, v = 0. The complex potential for a uniform horizontal flow 
parallel to this slit in the w plane is 

(35) Fx(w) = Aw, 

where A is a positive real number. The stream function for the flow in the w plane 
is ifi(«, v) = Av so that the slit lies along the streamline ^(w, v) = 0. 

The composite function F2(z) = F\(S(z)) will determine a fluid flow in the 
domain D where the complex potential is 

(36) F2(z) = A ( z + - ), where A > 0. 
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Polar coordinates can be used to express F2(z) by the equation 

(37) F2(z) = A(r + - ] cos 6 + iAyr - - J sin 6. 

The streamline \\)(r, 0) = A(r — 1/r) sin 0 = 0 consists of the rays 

(38) r > 1,0 = 0 and r > 1, 0 = n 

along the x axis and the curve r — 1/r = 0, which is easily seen to be the unit circle 
r = 1. This shows that the unit circle can be considered as a boundary curve for the 
fluid flow. 

Since the approximation F2(z) = A(z + 1/z) ~ Az is valid for large values of 
z, we see that the flow is approximated by a uniform horizontal flow with speed 
| V | = A at points that are distant from the origin. The streamlines vji(x, y) = constant 

and their images ^(z/, v) = constant under the mapping w — S(z) — z + \lz are 
illustrated in Figure 10.51. 

FIGURE 10.51 Fluid flow around a circle. 

EXAMPLE 1 0 . 2 5 Find the complex potential for an ideal fluid flowing from 
left to right across the complex plane and around the segment from —i to i. 

Solution We will use the conformal mapping 

(39) w = S(z) = (z2 + 1)1/2 = (z + 01/2(z - i)m, 

where the branch of the square root of Z = z ± i in each factor is Z1/2 = RU2eiQ/2
t 

where R = | Z | , and 0 = arg Z, where —7i/2 < arg Z < 3n/2. The function given 
by vv = S(z) is a one-to-one conformal mapping of the domain D consisting of the 
z plane slit along the segment x — 0, — 1 < y < 1 onto the domain G consisting of 
the vv plane slit along the segment - 1 < u < 1, v = 0. 
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The complex potential for a uniform horizontal flow parallel to the slit in the 
w plane is given by F\(w) = Aw, where A is a positive real number and where the 
slit lies along the streamline ^(u, v) = Au = 0. The composite function 

(40) F2(z) = F{(S(z)) = A(z2 + l) l /2 

is the complex potential for a fluid flow in the domain D. The streamlines given by 
v|i(x, y) = cA for the flow in D are obtained by finding the preimage of the streamline 
^(w, v) = cA in G given by the parametric equations 

(41) v = c, u = t for — oo < t < oo. 

The corresponding streamline in D is found by solving the equation 

(42) t + ic = (z2 + \)m 

for x and v in terms of t. Squaring both sides of equation (42) yields 

(43) t2 - c2 - 1 4- Oct = x2 - y2 4- /2xy. 

Equating the real and imaginary parts leads to the system of equations 

(44) x2 - y2 = f - c2 — 1 and xy = ct 

Eliminating the parameter t in equations (44) results in c2 = (x2 + c2)(y2 — c2), and 
we can solve for y in terms of x to obtain 

/l + c2 + x2 

(45) ' = sh^T^ 
for streamlines in D. For large values of x this streamline approaches the asymptote 
y — c and approximates a horizontal flow, as shown in Figure 10.52. 

FIGURE 10.52 Flow around a segment. 
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EXERCISES FOR SECTION 10.7 
1. Consider the ideal fluid flow where the complex potential is F(z) ~ A(z + 1/z), where 

A is a positive real number. 
(a) Show that the velocity vector at the point (1, 0), z = reiB on the unit circle is given 

by V(l, 0) = A(\ - cos 20 - i sin 20). 
(b) Show that the velocity vector V(l, 0) is tangent to the unit circle | z | = 1 at all 

points except - 1 and +1 . Hint: Show that V • P = 0, where P = cos 0 + i sin 0. 
(c) Show that the speed at the point (1, 0) on the unit circle is given by |V | = 

2A | sin 0 | and that the speed attains the maximum of 2A at the points ±i and is zero 
at the points ±1. Where is the pressure the greatest? 

2. Show that the complex potential F(z) = ze~la + e,a/z determines the ideal fluid flow 
around the unit circle | z \ = 1 where the velocity at points distant from the origin is 
given approximately by V ~ eia; that is, the direction of the flow for large values of z is 
inclined at an angle a with the x axis, as shown in Figure 10.53. 

FIGURE 10.53 Accompanies Exercise 2. 

3. Consider the ideal fluid flow in the channel bounded by the hyperbolas xy — 1 and 
xy = 4 in the first quadrant, where the complex potential is given by F(z) = (A/2)z2 and 
A is a positive real number. 
(a) Find the speed at each point, and find the point on the boundary where the speed 

attains a minimum value. 
(b) Where is the pressure greatest? 

4. Show that the stream function is given by i|j(r, 0) = Ar3 sin 30 for an ideal fluid flow 
around the angular region 0 < 0 < n/3 indicated in Figure 10.54. Sketch several stream­
lines of the flow. Hint: Use the conformal mapping w ~ z3. 
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FIGURE 10.54 Accompanies Exercise 4. 

5. Consider the ideal fluid flow, where the complex potential is 

F(z) = Az3/2 = ArV2l cos — + i sin — ) , where 0 < 9 < 2K. 

(a) Find the stream function i|i(r, 9). 

(b) Sketch several streamlines of the flow in the angular region 0 < 9 < 4n/3 as indi­
cated in Figure 10.55. 

FIGURE 10.55 Accompanies Exercise 5. 

6. (a) Let A > 0. Show that the potential F(z) = A(z2 + Hz2) determines an ideal fluid 
flow around the domain r > 1, 0 < 9 < nil indicated in Figure 10.56, which shows 
the flow around a circle in the first quadrant. Hint: Use the conformal mapping 
w = z2. 

(b) Showr that the speed at the point (1, 9), z = re'Q on the quarter circle r = 1, 
0 < 9 < 7i/2 is given by V = 4 A \ sin 26 | . 

(c) Determine the stream function for the flow and sketch several streamlines. 
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FIGURE 10.56 Accompanies Exercise 6. 

7. Show that F(z) = sin z is the complex potential for the ideal fluid flow inside the semi-
infinite strip —n/2 < x < n/2, y > 0, as indicated in Figure 10.57. Find the stream 
function. 

-n/2 n/2 

FIGURE 10.57 Accompanies Exercise 7. 

8. Let w = S(z) = \[z + (z2 - 4),/2] denote the branch of the inverse of z - w + \fw that 
is a one-to-one mapping of the z plane slit along the segment - 2 < JC < 2, y = 0 onto 
the domain | vv | > 1. Use the complex potential F2(w) = we~ia + (eia/w) in the w plane 
to show that the complex potential F](z) = z cos a — i(z2 - 4)1/2 sin a determines the 
ideal fluid flow around the segment - 2 < x < 2 , y = 0, where the velocity at points 
distant from the origin is given approximately by V ~ eia, as shown in Figure 10.58. 

9. (a) Show that the complex potential F(z) = -i Arcsin z determines the ideal fluid flow 
through the aperture from - 1 to +1 , as indicated in Figure 10.59. 

(b) Show that the streamline I[/(JC, v) = c for the flow is a portion of the hyperbola 
(x2/sin2c) — (v2/cos2c) = 1. 
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FIGURE 10.58 Accompanies Exercise 8. 

FIGURE 10.59 Accompanies Exercise 9. 

10. Write a report on fluid flow and how it is related to harmonic and analytic functions. 
Include some ideas not mentioned in the text. Resources include bibliographical items 
37, 46, 91, 98, 124, 141, 145, 158, and 166. 

10.8 The Joukowski Airfoil 

The function J(z) = z 4- - was studied by the Russian scientist N. E. Joukowski. It 
z 

will be shown that the image of a circle passing through z\ = 1 and containing the 
point z2 = — 1 is mapped onto a curve that is shaped like the cross section of an 
airplane wing. We call this curve the Joukowski airfoil. If the streamlines for a flow 
around the circle are known, then their images under the mapping w = J(z) will be 
streamlines for a flow around the Joukowski airfoil, as shown in Figure 10.60. 
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FIGURE 10.60 Image of a fluid flow under w = J(z) = z + 1/z. 

The mapping w = J(z) is two-to-one, because J(z) = / ( - ), for z ^ 0. The 

region \z\ > 1 is mapped one-to-one onto the w plane slit along the portion of the 
real axis — 2 < u < 2. In order to visualize this mapping, we investigate the implicit 
form, which is obtained by using the substitutions 

I z2 _ 2z + 1 
w - 2 = z - 2 + - = 

z z 
„ 1 z2 + 2z + 1 

w + 2 = z + 2 + - = -

(z 

(z 

- 1 ) 2 

z 
+ 1)2 

and 

z z z 

Forming the quotient of these two quantities results in the relationship 

w — 2 ( z — 1 
(1) 

w + 2 z + 1 

w - 2 2 + 2z 
The inverse of T(w) = is S3(z) = w + 2 1 

If we use the notation 

Si(z) = 
z - 1 

z + 1 
52, and S3: 

and S2(z) = z2» t n e n /(^) c a n t»e expressed as the composition of S\, 

(2) w = /(z) = 53(52(5,fe))). 

It is an easy calculation to show that w = J(z) z + - maps the four points 

Z\ = —i, z2 - 1, Z3 = /, and Z4 = - 1 onto w\ = 0, w2 = 2, vv3 = 0, and w4 = - 2 , 
respectively. However, the composition functions in equation (2) must be consid­
ered in order to visualize the geometry involved. First, the bilinear transformation 
Z = S\(z) maps the region \z\ > 1 onto the right half plane Re(Z) > 0, and the 
points Z] = — /, Zi = 1,23 = /» and z\ = — 1 are mapped onto Z\ = —/, Z2 = 0, 
Z3 = /, and Z4 = /00, respectively. Second, the function W = S2(Z) maps the right 
half plane onto the W plane slit along its negative real axis, and the points Z\ = - / , 
Z2 = 0, Z3 = /, and Z4 = /00 are mapped onto W{ = - 1 , W2 = 0, W3 ~ - 1 , and 
W4 = -00, respectively. Then the bilinear transformation w = S3(W) maps the latter 
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region onto the w plane slit along the portion of the real axis — 2 < u < 2, and the 
points W{ = - 1 , W2 = 0, W3 = - 1 , and W4 = -oo are mapped onto w\ = 0, 
vv'2 = 2, w3 = 0, and w4 = - 2 , respectively. These three compositions are shown 

FIGURE 10.61 The composition mappings for J(z) = 53(52(5i(z))). 

The circle C0 with center c0 = /a on the imaginary axis passes through the 
points zi = 1 and z4 = - 1 and has radius r0 = J\ + a2. If we restrict 0 < a < 1, 

7T 

then this circle intersects the x axis at the point zi with angle oc0 = arctan a, 

7T 71 

with - < <x0 < - . We want to track the image of C0 in the Z, W, and w planes. 

First, the image of this circle C0 under Z = S\(z) is the line L0 that passes through 
the origin and is inclined at the angle oc0. Second, the function W = 52(Z) maps the 
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line L0 onto the ray R0 inclined at the angle 2a0. Finally the transformation given 
by w = 53(W) maps the ray R0 onto the arc of the circle A0 that passes through the 
points w2 = 2 and w4 = — 2 and intersects the x axis at w2 with angle 2oco, where 

- < 2oc0 < n. The restriction on the angle oc0, and hence 2oc0, is necessary in order 

for the arc A0 to have a low profile. The arc A0 lies in the center of the Joukowski 
airfoil and is shown in Figure 10.62. 

FIGURE 10.62 The images of the circles C() and C\ under the composition 
mappings for J(z) = S^(S2(S}(z)))-

Let b be fixed, 0 < b < 1, then the larger circle C\ with center given by 
c\ = — h + /(1 + h)b on the imaginary axis will pass through the points zi = 1 and 
Zi = — 1 — 2h and have radius rx = ( 1 + h)yi + b2. The circle C\ also intersects 
the x axis at the point z2

 a t the angle a0. The image of this circle C\ under Z = S\(z) 



364 Chapter 10 Applications of Harmonic Functions 

is the circle K\ that is tangent to L0 at the origin. The function W = S2(Z) maps the 
circle K{ onto the cardioid H\. Finally, w = 53(W) maps the cardioid H\ onto the 
Joukowski airfoil A\ that passes through the point w2 = 2 and surrounds the point 
w4 = — 2, as shown in Figure 10.62. We remark that as an observer traverses C\ in 
the counterclockwise direction, the image curves K\ and H\ will be traversed in a 
clockwise direction, but Aj is traversed in the counterclockwise direction. This keeps 
the points z4, Z4, W4, and w4 always to the observer's left. 

Now we are ready to visualize the flow around the Joukowski airfoil. We start 
with the fluid flow around a circle that is shown in Figure 10.51. This flow is adjusted 
with a linear transformation z* = az + b so that it flows horizontally around the 
circle C\, as shown in Figure 10.63. Then the mapping w = J(z*) creates a flow 
around the Joukowski airfoil, as Figure 10.64 illustrates. 

y 
f Flow around the circle. 

FIGURE 10.63 The horizontal flow around the circle C\. 

V 

\ Flow around the airfoil. 

FIGURE 10.64 The horizontal flow around the Joukowski airfoil A\. 

Flow with Circulation 
s k 

The function F(z) = sz H 1 log z, where s > 0 and k is real, is the complex 
z 2ft/ 

potential for a uniform horizontal flow past the unit circle \z\ = 1, with circulation 
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strength k and velocity at infinity V„ = s. For illustration purposes, we let .y = 1 
-k 

and use the substitution a — —-. Now the complex potential has the form 
271 

(3) F(z) = z + - + ai log z, 
z 

and the corresponding velocity function is 

(4) V(JC, y) = F<z) = 1 - (z) 2 - ai(z)-\ 

The complex potential can be expressed in F = ty + i\\t form: 

(5) F(z) = re'H + -e'e + /a(ln r + /6) 
r 

= I r + - | cos 6 - a6 + /| - |sin 6 + a In r 

The streamlines for the flow are given by \\t = c, where c is a constant: 

( »\ 
(6) v|i(r cos 6, r sin 6) = \r I sin 6 + a In r = c (streamlines). 

Setting r ~ I in equation (6) we get V|J(COS 0, sin 9) = 0, so that the unit circle is a 
natural boundary curve for the flow. 

Points where the flow has zero velocity are called stagnation points. They are 
found by solving F'(z) = 0, for the function in equation (3) this is 

zl z 

Multiplying through by z2 and rearranging terms, this becomes 

z2 + aiz - 1 = 0. 

Now the quadratic equation is invoked to obtain 

-ai ± J A - a1 

z = stagnation point(s). 

If 0 < |a | < 2, there are two stagnation points on the unit circle \z\ = 1. If 
a = 2, there is one stagnation point on the unit circle. If | a | > 2, the stagnation 
point lies outside the unit circle. We are mostly interested in the case with two 
stagnation points. When a = 0, the two stagnation points are z = ±1, and this is the 
flow that was discussed in Example 10.25. The cases a = 1, a = >/3, a = 2, and 
a = 2.2 are shown in Figure 10.65. 
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Flow with circulation a = 1 Flow with circulation a - 3 

Flow with circulation a = 2 Flow with circulation a = 2.2 

FIGURE 10.65 Flows past the unit circle with circulation a. 

We are now ready to combine the preceding ideas. For illustration purposes, 
consider a C\ circle with center c0 = —0.15 + 0.23/ that passes through the points 
Zi = 1 and ZA ~ -1 .3 and has radius r0 = 0.23 V13/2. The flow with circulation 
k = -0.52/7 (or a = 0.26) around \z\ = 1 is mapped by the linear transformation 
Z = S(z) = —0.15 + 0.23/ + r0z onto the flow around the circle C\ shown in Figure 
10.66. 
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Flow with circulation. 

FIGURE 10.66 Flow with circulation around C, 

Then the mapping w = J(Z) = Z + - is used to map this flow around the Joukowski 

airfoil shown in Figure 10.67. This is to be compared with the flows shown in 
Figures 10.63 and 10.64. If the second transformation in the composition given by 
w = J(z) = ST,(S2(S\(Z))) is modified to be S2(z) = zl-925, then the image of the flow 
in Figure 10.66 will be the flow around the modified airfoil in Figure 10.68. The 
advantage of this latter airfoil is that the sides of its tailing edge form an angle of 
0.15n radians or 27°, which is more realistic than the angle of 0° of the traditional 
Joukowski airfoil. 

Flow with circulation around 
a traditional airfoil. 

FIGURE 10.67 Flow with circulation around a traditional Joukowski airfoil. 

Flow with circulation around 
a modified airfoil. 

FIGURE 10.68 Flow with circulation around a modified Joukowski airfoil. 
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EXERCISES FOR SECTION 10.8 

1. Show that the inverse of the Joukowski transformation is z = w + (w2 ~ 1)1/2. 
2. Consider the Joukowski transformation is w = z + 1/z. 

(a) Show that the circle Cr = { \ z | = r: r > 1} is mapped onto the ellipse 

4 u2 4 v2 

(r + 1/r)2 (r - 1/r)2 

(b) Show that the ray r > 0, 6 = a is mapped onto a branch of the hyperbola 

u2 „2 

1. 
cos2 a sin2 a 

3. Let Co be a circle that passes through the points 1 and - 1 and has center c0 = ia. 
(a) Find the equation of the circle C0. 

z - 1 
(b) Show that the image of the circle C0 under w = is a line L0 that passes 

z + 1 
through the origin. 

71 

(c) Show that the line L0 is inclined at the angle a0 = - - arctan a. 
4. Show that a line through the origin mapped onto a ray by the mapping w = z2-
5. Let RQ be a ray through the origin inclined at an angle p0-

2 + 2z 
(a) Show that the image of the ray /?0 under w = is an arc A0 of a circle that 

1 - z 
passes through 2 and —2. 

(b) Show that the arc A0 is inclined at the angle fj0-
6. Show that a circle passing through the origin is mapped onto a cardioid by w = z2. 

Show that the cusp in the cardioid forms an angle of 0°. 
2 + 2z 

7. Let H\ be a cardioid whose cusp is at the origin. The image of H\ under w = 
will be a Joukowski airfoil. Show that trailing edge forms an angle of 0°. 

8. Consider the modified Joukowski airfoil when W = S2(Z) = Z1925 is used to map the Z 
plane onto the W plane. Use Figure 10.69 and discuss why the angle of the trailing edge 
of this modified Joukowski airfoil A\ forms an angle of 0.1571 radians. Hint: The image 
of the circle C0 is the line L(), then two rays /?0,i and RQ2 and then two arcs A0,i and A0,2 
in the respective Z, W, and w planes. The image of the circle C\ is the circle K\, then 
the "cardioid like" curve H\, then the modified Joukowski airfoil A\. 
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FIGURE 10.69 The images of the circles C0 and C\ under the modified 
Joukowski transformation J(z) = S^(S2(Si(z))). 

9. Write a report on Joukowski transformation. Include ideas and examples that are not 
mentioned in the text. Resources include bibliographical items 37, 46, 91, 98, 124, 141, 
145, 158, and 166. 

10.9 The Schwarz-Christoffel Transformation 

To proceed further, we must review the rotational effect of a conformal mapping 
w = f(z) at a point zo- If the contour C has the parameterization z(t) = x{t) + iy(t), 
then a vector T tangent to C at the point z0 is 

(1) T = Z'(to) = X'(to) + / / ( to). 
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The image of C is a contour K given by w = u(x(t)y y(t)) + iv(x(t), y{t)), and a vector 
T tangent to K at the point w0 = f(zo) is 

(2) T = w'(^)=/'(zo)z'(fo). 

If the angle of inclination of T is p == arg z'(t0), then the angle of inclination of T 
is 

(3) arg T = arg/ '(z0)zU) = arg/'(¾) + P-

Hence the angle of inclination of the tangent T to C at z0 is rotated through the angle 
arg [/'(zo)l to obtain the angle of inclination of the tangent T to K at the point wQ. 

Many applications involving conformal mappings require the construction of 
a one-to-one conformal mapping from the upper half plane Im(z) > 0 onto a domain 
G in the w plane where the boundary consists of straight line segments. Let us con­
sider the case where G is the interior of a polygon P with vertices w\, w2, . . . , w„ 
specified in the positive (counterclockwise) sense. We want to find a function 
w = f(z) with the property 

(4) wk = f{xk) for k = 1, 2, . . . , n — 1 and 
w„ = /(°°), where x\ < x2 < < x„ \ < °o. 

Two German mathematicians Herman Amandus Schwarz (1843-1921) and El win 
Bruno Christoffel (1829-1900) independently discovered a method for finding/, 
and that is our next theorem. 

Theorem 10.6 (Schwarz-Christoffel) Let P be a polygon in the w plane 
with vertices w\, vv2, . . . , wn and exterior angles 0^, where — 71 < a^ < 71, 
as shown in Figure 10.70. There exists a one-to-one conformal mapping 
w = f(z)from the upper half plane Im(z) > 0 onto G that satisfies the boundary 
conditions (4). The derivative f '(z) is 

(5) f'(z) = A(z - *,)"«>*(* - x2y*& •••(z- xn-XY«»-*\ 

and the function f can be expressed as an indefinite integral 

(6) f(z) = B + A J(z~ xxy
a^(z ~ x2y

a* • • • (z - Jcn_,)-««-iA dz 

where A and B are suitably chosen constants. Two of the points {x^} may be 
chosen arbitrarily, and the constants A and B determine the size and position 
of P. 

Proof The proof relies on finding how much the tangent 

(7) T; = 1 + 0/ 

(which always points to the right) at the point (x, 0) must be rotated by the mapping 
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w = f(z) so that the line segment Xj_\ < x < Xj is mapped onto the edge of P that 
lies between the points wj_i = f(xj_\) and Wj = f(Xj). Since the amount of rotation 
is determined by arg/'(*), formula (5) specifies f'(z) in terms of the values Xj and 
the amount of rotation a7 that is required at the vertex f(xj). 

If we let XQ = — oo and xn = «», then, for values of x that lie in the interval 
Xj_\ < x < Xj, the amount of rotation is 

(8) arg/'(x) = arg A [oti arg(x - xx) + a2 arg(x - x2) 
n 

+ • • • + an-\ arg(* - xn_x)\. 

Since Arg(x - xk) = 0 for 1 < k < j and Arg(;c - xk) = TI forj < fe < n - 1, 
we can write equation (8) as 

(9) argf(x) = arg A - a, - aJ+l - • • • - a„_,. 

The angle of inclination of the tangent vector T, to the polygon P at the point 
w = f(x) for Xj-\ < x < Xj is 

(10) Y; - Arg A - OLJ - aJ+l - • • - an,h 

The angle of inclination of the tangent vector T/+i to the polygon P at the point 
w = f(x) for x7 < A < Xj+\ is 

(11) y;+i = Arg A - cc;+i - ay+2 an_i. 

The angle of inclination of the vector tangent to the polygon P jumps abruptly by 
the amount a,- as the point w = f(x) moves along the side Wj-\Wj through the vertex 
Wj to the side WJWJ+I. Therefore the exterior angle to the polygon P at the vertex Wj 
is given by the angle ay and satisfies the inequality -n < a} < n forj = 1, 2 , . . . , 
n — 1. Since the sum of the exterior angles of a polygon equals 2%, we have 
an = 2K — <Xi — a2 — • • • — a«_i so that only n — 1 angles need to be specified. 
This case with /z = 5 is indicated in Figure 10.70. 

FIGURE 10.70 A Schwarz-Christoffel mapping with 
n - 5 and oti + oc-> + • • • + cc4 > rc. 
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If the case oti + 0:2 + • • • + a„_i < n occurs, then a„ > n, and the vertices 
wi, W2, . • . , vvn cannot form a closed polygon. For this case, formulas (5) and (6) 
will determine a mapping from the upper half plane lm(z) > 0 onto an infinite region 
in the w plane where the vertex wn is at infinity. The case n — 5 is illustrated in 
Figure 10.71. 

FIGURE 10.71 A Schwarz-Christoffel mapping with n = 5 and 
ai + oc2 + • • • + «4 ^ ft. 

Formula (6) gives a representation for/in terms of an indefinite integral. It is 
important to note that these integrals do not represent elementary functions unless 
the image is an infinite region. Also, the integral will involve a multivalued function, 
and a specific branch must be selected to fit the boundary values specified in the 
problem. Table 10.2 is useful for our purposes. 

TABLE 10.2 Indefinite Integrals 

IK 

\\m = l a r c s i n z = loS(- + ^ 2 " ^172) ~ T 

dz i 1 ( i 4 
; = arctan z = - log — 

dz 

f — 
J ( z 2 -

I 
/ 

/ 

/ a -

z(z2 - \)m 

dz 

z(z + 1)1/2 

1 - z 

= —arcsin - = i log 
z 

)l/2] = log 

\ 1/2 

" ' J . 
1 -iz 

J + (z 
+ 1)1/21 
+ 1)1/2J 

z2)l/2 J Z _ [ z ( 1 _ z2)l/2 + a r c s i n z] 

= -lz(z2 - 1)1/2 + log(z + (z2 - 1)1/2)] 
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EXAMPLE 1 0 . 2 6 Use the Schwarz-Christoffel formula to verify that the func­
tion vv = f(z) = Arcsin z maps the upper half plane Im(z) > 0 onto the semi-infinite 
strip — JI/2 < u < nil, v > 0 shown in Figure 10.72. 

VV = - 7 1 / 2 -Q » 

a2=K/2 

* 6 W T 
w=n/2 2 

FIGURE 10.72 The region in Example 10.26. 

Solution If we choose X\ = — 1, x2 = 1, W\ = —nil, and w2 = nil, 
then a.\ = nil and a2 — nil, and equation (5) for/'(z) becomes 

(12) f(z) = A(Z + \y^2Hz - i)-^/2)/rt -
•2 _ 1 \ l /2 ' (z2 - 1) 

Using Table 10.2 we see that the solution to equation (12) is 

(13) f(z) = Ai Arcsin z + B. 

Using the image va lues / ( - l ) = -nil and / ( l ) = nil, we obtain the system 

—n —in n in 
(14) — = A + £ and - = A— + £, 

2 2 2 2 

which can be solved to obtain B = 0 and A = — i. Hence the required function is 

(15) f(z) = Arcsin z. 

EXAMPLE 1 0 - 2 7 Verify that w = f(z) = (z2 - \)m maps the upper half 
plane Im(z) > 0 onto the upper half plane Im(vv) > 0 slit along the segment from 0 
to i. 

Solution If we choose x\ — — 1, x2 = 0, x$ = 1, w\ 
vv3 = d, then we see that the formula 

(16) g'{z) = A(z + l)-a^(z)-a^(z - 1 ) - ^ 

-d, w2 = i, and 

will determine a mapping vv = g(z) from the upper half plane lm(z) > 0 onto the 
portion of the upper half plane Im(vv) > 0 that lies outside the triangle with ver­
tices ±d, i as indicated in Figure 10.73(a). If we let d —> 0, then w\ —> 0, W3 —̂  0, 



374 Chapter 10 Applications of Harmonic Functions 

oti —» K/2, a2 —> —TC, and cc3 —> 7t/2. The limiting formula for the derivative in 
equation (16) becomes 

(17) f(z)=A(z+ irm(z)(z- 1) -1/2 

which will determine a mapping w = f(z) from the upper half plane lm(z) > 0 onto 
the upper half plane Im(vv) > 0 slit from 0 to i as indicated in Figure 10.73(b). An 
easy computation reveals tha t / (z) is given by 

(is) m = A 
zdz 

= A(z2 - l)m + £, 
(z2 - \ ) m 

and the boundary values / ( + 1 ) = 0 a n d / ( 0 ) = i lead to the solution 

(19) f(z) = (z2 - l ) " 2 . 

^-Jt 
w ~ -d w = d 

1 3 
(a) \ -3 (b) 

FIGURE 10.73 The regions in Example 10.27. 

vV -71 

i- cc = TC/2 

K tt/2 

E X A M P L E 1 0 . 2 8 Show that the function 

1 i 1 1 + / 
(20) w = f(z) = ~ Arcsin - + - Arcsin - + 

K K Z 2 

maps the upper half plane lm(z) > 0 onto the right angle channel in the first quadrant, 
which is bounded by the coordinate axes and the rays x > 1, v = 1 and 
y > 1, JC = 1 in Figure 10.74(b). 

w= 1 + i 

, , , . 0 *~ » » O '» M o 

o « < < 

H > = < / i ; 

r r ai 
w = 0 

1 
(a) b 

FIGURE 10.74 The regions in Example 10.28. 
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Solut ion If we choose X] = — 1, Jt2 = 0, x3 = 1, w\ = 0, w2 = d, and 
W3 = 1 + i, then the formula 

(21) g'(Z) = Ai(Z + i)-«<Hz)-a^(z - ira* 

will determine a mapping of the upper half plane onto the domain indicated in Figure 
10.74(a). 

If we let d —» °o, then a2 —> 7t and 0C3 —> —K/2. Then the limiting formula for 
the derivative in equation (21) becomes 

(22) f'(z) = Ai(z + i)-(n,2Hz)-(nVn(.z - iy(--M»« 
z - l A 1 (z - D1/2 , 

z(. 72 _ n i / 2 1)1 = A 
Z - 1 

2(1 z2)1 / 2 ' 
where A = -iAu which will determine a mapping w = f(z) from the upper half 
plane onto the channel as indicated in Figure 10.74(b). Using Table 10.2, we obtain 

(23) f(z)=A 

= A 

( dz f 

J (1 - z2)m l J . 
dz 

arcsin z + i arcsin 

:(z2 - 1) 

+ B. 

1/2 

If the principal branch of the inverse sine function is used, then the boundary values 
/ ( - 1 ) = 0 a n d / ( l ) = 1 + / lead to the system 

- 7 1 / - 7 1 

T +'IT B = 0, A i+<f)] + B = 1 + i, 

which can be solved to obtain A = l/n and B = (1 + /)/2. Hence the required 
solution is 

1 i 1 1 + / 
(24) w = / (z ) = - Arcsin z H— Arcsin - H . 

71 71 Z 2 

EXERCISES FOR SECTION 10.9 

1. Let a and K be real constants with 0 < K < 2. Use the Schwarz-Christoffel formula to 
show that the function w = f(z) = (z - a)K maps the upper half plane Im(z) > 0 onto 
the sector 0 < arg w < AJU, shown in Figure 10.75. 

FIGURE 10.75 Accompanies Exercise 1. 
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2. Let a be a real constant. Use the Schwarz-Christoffel formula to show that the function 
w = f(z) = Log(z - a) maps the upper half plane Im(z) > 0 onto the infinite strip 
0 < v < TT in Figure 10.76. Hint: Set x\ — a — \, x2 — a, W] — in, w2 ~ —d, and let 
d —» oo. 

. w = in 

A 
i 

w2=-d 

FIGURE 10.76 Accompanies Exercise 2. 

3. Use the Schwarz-Christoffel formula to show that the function 

w=/ (z ) ~[(z2~ l) , /2 + Log[z + ( z 2 - l)l/2] | 

maps the upper half plane onto the domain indicated in Figure 10.77. Hint: Set 
x\ = — 1, *2 = 1, W] = 0, and w2 = —i. 

w = -i O '»' » » 

FIGURE 10.77 Accompanies Exercise 3. 

4. Use the Schwarz-Christoffel formula to show that the function 

w = f(z) = -
7t 

(z2 - l) l /2 + Arcsin 

maps the upper half plane onto the domain indicated in Figure 10.78. Hint: Set x\ 
W] = — 1, x2 = 0, X3 = H>3 = 1, and vv2 = —zW and let d —> ©o. 

vv = -1 
1 

M , 3 = 1 

w = -id 

FIGURE 10.78 Accompanies Exercise 4. 
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5. Use the Schwarz-Christoffel formula to show that the function 

w=f(z) = | log(z2 - 1) = Log[(z2 - l)"2] 

maps the upper half plane Im(z) > 0 onto the infinite strip 0 < v < n slit along the ray 
u < 0, v = 7i/2, see Figure 10.79. Hint: Set x, = - 1 , x2 = 0, x3 = 1, W\ = in - d, 
W2 = in/2, and w?, = — d and let d —> <». 

w =-d + in , 

° " < ^ 

\ ^ 

\ 

w^-in/2 
' 2 

H'̂  = - d 

FIGURE 10.79 Accompanies Exercise 5. 

6. Use the Schwarz-Christoffel formula to show that the function 

- 2 
w = / (z ) = — U ( l - z2)m + Arcsin z] 

K 

maps the upper half plane onto the domain indicated in Figure 10.80. Hint: Set 
X\ — — 1, *2 = 1, w\ = 1, and vv2 = — 1. 

w 2 = * 
w = 1 

1 

FIGURE 10.80 Accompanies Exercise 6. 

7. Use the Schwarz-Christoffel formula to show that the function w = f(z) = z + Log z 
maps the upper half plane Im(z) > 0 onto the upper half plane Im(vv) > 0 slit along the 
ray u < - 1 , v = TC, shown in Figure 10.81. Hint: Set x\ — — 1, x2 = 0, W\ = —1 + in, 
and M>2 = — d and let d -^ °°. 

w = —1 + / 7C 

H'2=-C/ 

FIGURE 10.81 Accompanies Exercise 7. 
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8. Use the Schwarz-Christoffel formula to show that the function 

w = / (z ) = 2(z + l) l /2 + Log 
- (z + 1)]/21 
+ (z + 1)I/2J + m 

maps the upper half plane onto the domain indicated in Figure 10.82. Hint: Set 
X] = — 1, JC2 = 0, wi = in, and w2 = —d and let d ~> °°. 

FIGURE 10.82 Accompanies Exercise 8. 

9. Show that the function w = f(z) = (z - l)tx[l + ccz/(l - a) ] '~ a maps the upper half 
plane Im(z) > 0 onto the upper half plane Im(vv) > 0 slit along the segment from 0 to 
eian, as shown in Figure 10.83. Hint: Show that/'(z) = A[z + ( 1 - a)/a]~a(z)(z - l ) a _ 1 . 

FIGURE 10.83 Accompanies Exercise 9. 

10. Use the Schwarz-Christoffel formula to show that the function 

"(z + 1)I/4 - 1 
w =f(z) = 4(z + i)i/4 + l o g (z + 1)1/4 + 1 

+ i log 
i - (z + 1)1/41 
i + (z + 1),/4J 

maps the upper half plane onto the domain indicated in Figure 10.84. Hint: Set 
Zi — -1 ,22 = 0, wi = iic, and vv2 = — d and let d —> <». Use the change of variable 
z + 1 = 54 in the resulting integral. 

FIGURE 10.84 Accompanies Exercise 10. 
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11. Use the Schwarz-Christoffel formula to show that the function 

w = / ( z ) = y z l / 2 ( z - 3 ) 

maps the upper half plane onto the domain indicated in Figure 10.85. Hint: Set x\ = 0, 
x2 = 1, w\ = —d, and vv2 = / and let d —> 0. 

FIGURE 10.85 Accompanies Exercise 11. 

12. Show that the function 

w = /(z) J (1 - z2)3' 

maps the upper half plane Im(z) > 0 onto a right triangle with angles 7C/2, 7C/4, 
and 7T/4. 

13. Show that the function 

w=f(z) 
J (1 - z2)2' 

maps the upper half plane onto an equilateral triangle. 
14. Show that the function 

w=f(z) = / 
dz 

(z - z')1' 

maps the upper half plane onto a square. 
15. Use the Schwarz-Christoffel formula to show that the function 

w=/(z) = 2fe+ 1)'' Log 
1 - (z + l)1' 

1 + (z + l)1' 

maps the upper half plane Im(z) > 0 onto the domain indicated in Figure 10.86. Hint: 
Set X] = - 1 , x2 = 0» JC3 = 1, W] = 0, vv2 = d, and w3 = 2^2 - 2 ln(>/2 - 1 ) + m and 
let d -» c«. 
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3<r 

6 » » » 
w = 0 w = d 

FIGURE 10.86 Accompanies Exercise 15. 

16. Write a report on the Schwarz-Christoffel transformation. Include ideas and examples 
not mentioned in the text. Resources include bibliographical items 93, 159, and 164. 

10.10 Image of a Fluid Flow 

We have already examined several two-dimensional fluid flows and have discovered 
that the image of a flow under a conformal transformation is a flow. The conformal 
mapping vv = f(z) = u(x, y) + iv(x, y), which is obtained by using the Schwarz-
Christoffel formula, will allow us to find the streamlines for flows in domains in the 
w plane that are bounded by straight line segments. 

The first technique is finding the image of a fluid flowing horizontally from 
left to right across the upper half plane Im(z) > 0. The image of the streamline 
—oo< t<oo, y = c will be a streamline given by the parametric equations 

(1) W(t, c ) , V = V(f, C) fo r —oo < t < oo 

and will be oriented in the counterclockwise (positive) sense. The streamline 
u = u(t, 0), v = v(t, 0) is considered to be a boundary wall for a containing vessel 
for the fluid flow. 

EXAMPLE 1 0 . 2 9 Consider the conformal mapping 

(2) w = f(z) = - [ ( r - 1)1/2 + Log(z + (z2 - 1)1/2)], 
71 

which is obtained by using the Schwarz-Christoffel formula, to map the upper half 
plane Im(z) > 0 onto the domain in the w plane that lies above the boundary curve 
consisting of the rays w < 0, v = 1 and u > 0, v = 0 and the segment u = 0, 
- 1 < v < 0. 
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The image of horizontal streamlines in the z plane are curves in the w plane 
given by the parametric equation 

(3) w = f(t + id) = - (t2 - c2 - 1 + ilct)m 

K 

+ - Log[r + ic + (t2 - c2 - 1 + /2ct)1/2] 
71 

for ~oo < t < o=>. The new flow is that of a step in the bed of a deep stream and is 
illustrated in Figure 10.87(a). The function w = f(z) is also defined for values of z 
in the lower half plane, and the images of horizontal streamlines that lie above or 
below the x axis are mapped onto streamlines that flow past a long rectangular 
obstacle. This is illustrated in Figure 10.87(b). 

(a) Flow over a step 

(b) Flow around a blunt object. 

FIGURE 10.87 Accompanies Example 10.29. 
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EXERCISES FOR SECTION 10.10 
For Exercises 1-4, use the Schwarz-Christoffel formula to find a conformal mapping 
w = f(z) that will map the flow in the upper half plane Im(z) > 0 onto the flow indicated 
in each of the following figures. 

FIGURE 10.88 Accompanies Exercise 1. 

FIGURE 10.89 Accompanies Exercise 2. 
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3. 

(a) Flow around an inclined segment. 

(b) Flow around a V-shape. 

FIGURE 10.90 Accompanies Exercise 3. 

Flow over a dam. 

FIGURE 10.91 Accompanies Exercise 4. 

5. Use the Schwarz-Christoffel formula, and find an expression for/'(z) for the transfor­
mation w = f(z) that will map the upper half plane Im(z) > 0 onto the flow indicated 
in Figure 10.92(a). Extend the flow to the one indicated in Figure 10.92(b). 
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(a) Flow up an inclined step. 

(b) Flow around a pointed object. 

FIGURE 10.92 Accompanies Exercise 5. 

10.11 Sources and Sinks 

If the two-dimensional motion of an ideal fluid consists of an outward radial flow 
from a point and is symmetrical in all directions, then the point is called a simple 
source. A source at the origin can be considered as a line perpendicular to the z 
plane along which fluid is being created. If the rate of emission of volume of fluid 
per unit length is 2nm, then the origin is said to be a source of strength m, the 
complex potential for the flow is 

(1) F(z) = m log z, 

and the velocity V at the point (JC, v) is given by 

(2) V(x,y) = nz) = - . 
z 

For fluid flows a sink is a negative source and is a point of inward radial flow at 
which the fluid is considered to be absorbed or annihilated. Sources and sinks for 
flows are illustrated in Figure 10.93. 
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(a) A source at the origin. (b) A sink at the origin. 

FIGURE 10.93 Sources and sinks for an ideal fluid. 

Source: A Charged Line 
In the case of electrostatics a source will correspond to a uniformly charged line 
perpendicular to the z plane at the point zo- If the line L is located at zo = 0 and 

q 
carries a charge density of - coulombs per unit length, then the magnitude electric 

field is |E(JC, y)\ = 

(3) E(x, y) = qz 

Jx2 + y2 

_ » 
z 

hence E is given by 

and the complex potential is 

(4) F(z) = -q log z and E(*. y) = - F ( z ) . 

A sink for electrostatics is a negatively charged line perpendicular to the z plane. 
The electric field for electrostatic problems corresponds to the velocity field for fluid 
flow problems, except that their corresponding potentials differ by a sign change. 

To establish equation (3), start with Coulomb's law, which states that two 
CqQ 

particles with charges q and Q exert a force on one another with magnitude • 
r2 

where r is the distance between particles and C is a constant that depends on the 
scientific units. For simplicity we assume that C = 1 and the test particle at the 
point z has charge 2 = 1 . 
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qAh 
The contribution AEi induced by the element of charge —— along the segment 

of length Ah situated at a height h above the plane has magnitude | AEj | given by 

(a/2)Ah 
AE, = 

r2 + h2 " 

It has the same magnitude as AE2 induced by the element (aAh)/2 located a distance 
— h below the plane. From the vertical symmetry involved, their sum AE2 + AE2 

lies parallel to the plane along the ray from the origin, as shown in Figure 10.94. 

(0,0,h)M(q/2)Ah 

,JL 

(0, 0, -h) (q/2)Ah 

FIGURE 10.94 Contributions to E from the elements of charge (q/2) Ah situated 
at (0, 0, ±h), above and below the z plane. 

By the principal of superposition we add all contributions from the elements 
of charge along L to obtain E = X AE*. Using the vertical symmetry, it is evident 
that E lies parallel to the complex plane along the ray from the origin through the 
point z- Hence the magnitude of E is the sum of all components | AE | cos t that are 
parallel to the complex plane, where t is the angle between AE and the plane. Letting 
Ah —> 0 in this summation process produces the definite integral 

(5) |E(*,y) \=l AE cos t dh -l (a/2)cos t 
r2 + h2 dh. 
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Next use the change of variable h ~ r tan t and dh = r sec2t dt and the trigonometric 
r2 + h2 

identity sec2t = — to obtain the equivalent integral: 

(6) I E(JC, 

12 (a/2)cos tr2 + h2 

n/2 r2 + h2 r 
dt 

2r J-JC/2 
cos t dt = - . 

r 

q z 
Multiplying this magnitude - by the unit vector -—- establishes formula (3). If 

r \z\ 
q > 0 the field is directed away from Zo = 0 and if q < 0 it is directed toward 
Zo = 0. An electric field located at zo ^ 0 is given by 

(7) E(*, y) = 
q(z - zo) q 

| z - zo p z - Zo 

and the corresponding complex potential is 

(8) F(z) = ~q log(z - zo). 

EXAMPLE 10.30 (Source and Sink of Equal Strength) 

Let a source and sink of unit strength be located at the points + 1 and — 1, respec­
tively. The complex potential for a fluid flowing from the source at + 1 to the sink 
at —1 is 

(9) F(z) = log(z - 1 ) - log(z + 1) = log 
z + 1 

The velocity potential and stream function are 

(10) Mx,y) = In 
z + 1 

and I|J(X y) = arg 
z + 1 

respectively. Solving for the streamline \\t(x, y) — c, we start with 

(11) c = arg 
z - 1 

z + 1 
= arg 

x2 + y2 - 1 + ily 

(x + 1)2 + y2 = arctan 
2y 

x2 + y2 

and obtain the equation (tan c)(x2 + y2 — 1) = 2y, A straightforward calculation 
shows that points on the streamline must satisfy the equation 

(12) x2 + (y - cot c)2 = 1 + cot2c, 

which is easily recognized as the equation of a circle with center at (0, cot c) that 
passes through the points (±1, 0). Several streamlines are indicated in Figure 
10.95(a). 
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(a) Source and sink of equal strength. 

(b) Two sources of equal strength. 

FIGURE 10.95 Fields depicting electrical strength. 

EXAMPLE 10.31 (Two Sources of Equal Strength) Let two 
sources of unit strength be located at the points ±1. The resulting complex potential 
for a fluid flow is 

(13) F(z) = log(z - 1 ) + log(z + 1) = log(z2 - 1). 

The velocity potential and stream function are 

(14) <|)(.x, y) = In | z2 - 1 | and i|/(x, v) = arg(z2 - 1), 

respectively. Solving for the streamline \\J(X, y) = c, we start with 

(15) c = arg(z2 - 1 ) = arg(x2 - v2 - 1 + /2xy) = arctan — 
\x2 - y2 - \) 
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and obtain the equation x2 + 2xy cot c — y2 = 1. If we express this in the form 
[x - y tan(c/2)][jc + y cot(c/2)] = 1 or 

( c c\ ( c c\ c c sin c 

x cos - - y sin - I I x sin - + y cos - I = sin - cos - = - y -
and use the rotation of axes 

— c —c —c —c 
(17) JC* = x cos — + y sin — and y* = — x sin — + y cos — , 

then the streamlines must satisfy the equation x*y* = (sin c)/2 and are easily rec­
ognized to be rectangular hyperbolas with centers at the origin that pass through the 
points ±1. Several streamlines are indicated in Figure 10.95(b). 

Let an ideal fluid flow in a domain in the z plane be effected by a source 
located at the point zo- Then the flow at points z, which lie in a small neighborhood 
of the point z0, is approximated by that of a source with complex potential 

(18) log(z - zo) + constant. 

If w = S(z) is a conformal mapping and w0 = S(zo), then S(z) has a nonzero derivative 
at zo, and 

(19) w - wo = (z - Zo)[S'(zo) + TI(Z)] 

where t|(z) —» 0 as z —> Zo- Taking logarithms yields 

(20) log(w - w0) = log(z - zo) + Log[5'(z0) + (z)]. 

Since S'(zo) ^ 0, the term [Log S'(zo) + T|(z)] approaches the constant value 
Log[S'(zo)] as z —> Zo- Since log(z — Zo) is the complex potential for a source located 
at the point zo, we see that the image of a source under a conformal mapping is a 
source. 

The technique of conformal mapping can be used to determine the fluid flow 
in a domain D in the z plane that is produced by sources and sinks. If a conformal 
mapping w = S(z) can be constructed so that the image of sources, sinks, and 
boundary curves for the flow in D are mapped onto sources, sinks, and boundary 
curves in a domain G where the complex potential is known to be F[(w), then the 
complex potential in D is given by F2(z) = F\(S(z)). 

E X A M P L E 1 0 . 3 2 Suppose that the lines x = ± n/2 are considered as walls of 
a containing vessel for a fluid flow produced by a single source of unit strength 
located at the origin. The conformal mapping w> = S(z) = sin z maps the infinite 
strip bounded by the lines x = ± n/2 onto the w plane slit along the boundary rays 
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u < - 1 , v = 0 and u > 1, v = 0, and the image of the source at zo — 0 is a source 
located at vv0 = 0. It is easy to see that the complex potential 

(21) Fi(w) = log w 

will determine a fluid flow in the w plane past the boundary curves u < — 1, v = 0 
and w > 1, v = 0, which lie along streamlines of the flow. Therefore the complex 
potential for the fluid flow in the infinite strip in the z plane is 

(22) F2(z) = log(sin z). 

Several streamlines for the flow are illustrated in Figure 10.96. 

FIGURE 10.96 A source in the center of a strip. 

EXAMPLE 1 0 - 3 3 Suppose that the lines x = ±n/2 are considered as walls of 
a containing vessel for the fluid flow produced by a source of unit strength located 
at the point z\ = nil and a sink of unit strength located at the point z2 = -nil. The 
conformal mapping w = S(z) = sin z maps the infinite strip bounded by the lines 
x = ±n/2 onto the w plane slit along the boundary rays K\. u < — 1, v = 0 and 
K2\ u ^ 1, v = 0. The image of the source at z\ is a source at wx = 1, and the image 
of the sink at z2 is a sink at w2 = — 1. It is easy to verify that the potential 

(23) F,(w) = log 

will determine a fluid flow in the w plane past the boundary curves Ky and K2, which 
lie along streamlines of the flow. Therefore the complex potential for the fluid flow 
in the infinite strip in the z plane is 

(24) F2(Z) = 1OJELL=A). 

\sin z + 1/ 

Several streamlines for the flow are illustrated in Figure 10.97. 

w + 1 
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FIGURE 10.97 A source and sink on the edges of a strip. 

The technique of transformation of a source can be used to determine the 
effluence from a channel extending from infinity. In this case, a conformal mapping 
w = S(z) from the upper half plane lm(z) > 0 is constructed so that the single source 
located at ^0

 = 0 is mapped to the point w0 at infinity that lies along the channel. 
The streamlines emanating from :¾ = 0 in the upper half plane are mapped onto 
streamlines issuing from the channel. 

EXAMPLE 10.34 

(25) w = S(z) = -
71 

Consider the conformal mapping 

(z2 - 1)1/2 + Arcsin-j 
z 

which maps the upper half plane Im(z) > 0 onto the domain consisting of the upper 
half plane Im(vv) > 0 joined to the channel - 1 < w < 1, v < 0. The point Zo = 0 
is mapped onto the point w0 = —i°° along the channel. Images of the rays r > 0, 
6 = a are streamlines issuing from the channel as indicated in Figure 10.98. 

FIGURE 10.98 Effluence from a channel into a half plane. 
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EXERCISES FOR SECTION 10.11 
1. Let the coordinate axes be walls of a containing vessel for a fluid flow in the first 

quadrant that is produced by a source of unit strength located at z\ = 1 and a sink of 
unit strength located at zi = i. Show that F(z) = log[(z2 - \)l(z2 + 1)] is the complex 
potential for the flow shown in Figure 10.99. 

FIGURE 10.99 Accompanies Exercise 1. 

2. Let the coordinate axes be walls of a containing vessel for a fluid flow in the first 
quadrant that is produced by two sources of equal strength located at the points t\ = 1 
and zi — i. Find the complex potential F(z) for the flow in Figure 10.100. 

3. Let the lines x = 0 and x — K/2 form the walls of a containing vessel for a fluid flow in 
the infinite strip 0 < x < K/2 that is produced by a single source located at the point 
z0 = 0. Find the complex potential for the flow in Figure 10.101. 

FIGURE 10.100 Accompanies Exercise 2. 
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FIGURE 10.101 Accompanies Exercise 3. 

4. Let the rays x = 0, y > 0 and x = 71, y > 0 and the segment y = 0, 0 < x < % form the 
walls of a containing vessel for a fluid flow in the semi-infinite strip 0 < x < 7 i , v > 0 
that is produced by two sources of equal strength located at the points z\ = 0 and 
Zi = n. Find the complex potential for the flow shown in Figure 10.102. Hint: Use the 
fact that sin(7i/2 + z) = sin(7r/2 - z). 

-71/2 0 nil 

FIGURE 10.102 Accompanies Exercise 4. 

Let the v axis be considered a wall of a containing vessel for a fluid flow in the right 
half plane Re(z) > 0 that is produced by a single source located at the point zo = 1. 
Find the complex potential for the flow shown in Figure 10.103. 
The complex potential F(z) = 1/z determines an electrostatic field that is referred to as 
a dipole. 
(a) Show that 

F(z) = lim 
a->0 

log(z) - log(z - a) 

and conclude that a dipole is the limiting case of a source and sink. 
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FIGURE 10.103 Accompanies Exercise 5. 

FIGURE 10.104 Accompanies Exercise 6. 

(b) Show that the lines of flux of a dipole are circles that pass through the origin as 
shown in Figure 10.104. 

7. Use a Schwarz-Christoffel transformation to find a conformal mapping w - S(z) that 
will map the flow in the upper half plane onto the flow from a channel into a quadrant 
as indicated in Figure 10.105. 

0 

FIGURE 10.105 Accompanies Exercise 7. 
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8. Use a Schwarz-Christoffel transformation to find a conformal mapping vv = S(z) that 
will map the flow in the upper half plane onto the flow from a channel into a sector as 
indicated in Figure 10.106. 

To 

FIGURE 10.106 Accompanies Exercise 8. 

9. Use a Schwarz-Christoffel transformation to find a conformal mapping vv = S(z) that 
will map the flow in the upper half plane onto the flow in a right-angled channel indicated 
in Figure 10.107. 

FIGURE 10.107 Accompanies Exercise 9. 

10. Use a Schwarz-Christoffel transformation to find a conformal mapping w — S(z) that 
will map the flow in the upper half plane onto the flow from a channel back into a 
quadrant as indicated in Figure 10.108, where w0 = ijl - 2 ln(V2 - 1 ) + in. 
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FIGURE 10.108 Accompanies Exercise 10. 

11. (a) Show that the complex potential F(z) = w given implicitly by z = w + ew determines 
the ideal fluid flow through an open channel bounded by the rays 

y = n, — °o < x < — 1 and y = — TC, —°° < x < — 1 

into the plane. 
(b) Show that the streamline I|/(JC, y) = c of the flow is given by the parametric equations 

x — t + e'cos c, y = c 4- e'sin c for —«» < / < oo 

as shown in Figure 10.109. 

FIGURE 10.109 Accompanies Exercise 11. 



n 
Fourier Series and the 
Laplace Transform 

11.1 Fourier Series 

In this chapter we show how Fourier series, the Fourier transform, and the Laplace 
transform are related to the study of complex analysis. We develop the Fourier series 
representation of a real-valued function U(t) of the real variable t. Complex Fourier 
series and Fourier transforms are then discussed. Finally, we develop the Laplace 
transform and the complex variable technique for finding its inverse. This chapter 
focuses on applying these ideas to solving problems involving real-valued functions, 
so many of the theorems throughout are stated without proof. 

Let U(t) be a real-valued function that is periodic with period 2TC, that is, 

(1) U(t + 2n)=U(t) for all t 

One such function is s = U(t) = sin(t - nil) + 0.7 cos(2t - n- 1/4) + 1.7, 
and its graph is obtained by repeating the portion of the graph in any interval of 
length 271, as shown in Figure 11.1. 

s = U(t) 

-2K -K K 2K 

FIGURE 11.1 A function U with period 2n. 

3K AK 

Familiar examples of real functions that have period 2TC are sin nt and cos nt, 
where n is an integer. This raises the question whether any periodic function can be 
represented by a sum of terms involving a„cos nt and b„sin /it, where an and b„ are 
real constants. As we shall soon see, the answer to this question is often yes. 

397 
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Definition 11.1 (Piecewise Continuous) The function U is piecewise 
continuous on the closed interval [a, b], if there exists values t0, ti, . . . , tn 

with a = to < ti < • • • < tn = b such that U is continuous in each of the open 
intervals t*„i < t < tk (k = 1, 2, . . . , n) and has left- and right-hand limits 
at the values t^ (k = 0, 1, . . . , n). 

We use the symbols U{a~) and U(a+) for the left- and right-hand limits, respectively, 
of a function £/(t) as t approaches the point a. 

The graph of a piecewise continuous function is illustrated in Figure 11.2 
where the function U(f) is 

' ? { , _ ! ) + I when 1 < t< 2, 

U(t) = { 

3 

\~{t- If 

1 + ^ 

~-(t-5? 
v 5 

when 2 < t < 3, 

when 3 < t < 4, 

when 4 < t < 6. 

The left- and right-hand limits at t0 = 2, ti = 3, and t2 = 4 are easy to determine: 

At t = 2, we have £/(2) = i and £/(2+) = | . 
At t = 3, we have £/(3-) = f and £/(3+) = 1. 
At t = 4, we have £/(4-) = f and £/(4+) = ^ . 

2 

l ^ 

0 

j = £W 

1 2 3 4 5 6 

FIGURE 11.2 A piecewise continuous function U over the interval [1, 6]. 

Definition 11.2 (Fourier Series) If U(t) is periodic with period 2n and 
is piecewise continuous on [—71, 7r], then the Fourier series S(t) for £/(t) is 

(2) S{t) = — + 2 (ajcosjt + bjsinjt), 

I 7= i 

where the coefficients cij and bj are given by the so-called Euler's formulae: 

1 f" 
(3) Qj: = - £/(t) cosjtdt for j = 0, 1, . . . 
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and 

(4) b. 'J = *L U(t) sinjt dt for j = 1, 2, . . . . 

The factor - in the constant term — on the right side of equation (2) has been 

introduced for convenience so that a0 could be obtained from the general formula 
in equation (3) by setting y = 0. The reasons for this will be explained shortly. The 
next result discusses convergence of the Fourier series. 

Theorem 11.1 (Fourier E x p a n s i o n ) Assume that 5(t) is the Fourier 
series for U(t). If U'(t) is piecewise continuous on [ — 71, n], then S(t) is con­
vergent for all t e [ — n, n]. The relation S(t) ~ U(t) holds for all t e [—71, 7i] 
where U(t) is continuous. If t = a is a point of discontinuity of U, then 

S(a) 
U(cr) + U(a+) 

where U{a~) and U(a + ) denote the left- and right-hand limits, respectively. 
With this understanding, we have the Fourier expansion: 

an ^ 
(5) U(t) = — + 2J (Qjcosjt + bjsinjt). 

2 7=1 

E X A M P L E 1 1 . 1 The function U(t) = - for t e (-71, re), extended periodically 

by the equation U(t + 2n) = U(t), has the Fourier series expansion 

Â ( -1V + 1 sin it 

U(t) = 2 ' — " • 
7=i J 

S o l u t i o n Using Euler's formulae (3) and integration by parts, we obtain 

= 0 for) = 1, 2, . . . 
1 [n t t sin jt cos jt 

(6) a}= -I - cos jt dt = . , + 
7t J-Ti I 2nj 2nj2 

and 

bi 
1 fn t , - t cos jt sinjt 

}J = " o s i n ^ d t = — ~ " — + 

71 J-n 1 
271/ 271/2 

- cos jn ( - i y + l 
fory = 1,2, . . . . 

J J 

The coefficient a0 is computed by the calculation 

1 f« t , t2 

(7) ao = ~ : A = r 
KJ-n2 4TC 

= 0. 
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Using the results of equations (6) and (7) in equation (2) produces the required 
solution. The graphs of U(t) and the first three partial sums S\(t) = sin t, S2(0 = 

sin 2t . sin 2t sin 3t . t . 
sin t , and 53(t) = sin t 1 — are shown in Figure 11.3, 

s = U(t) 

FIGURE 11.3 The function U(t) = r/2, and the approximations S\(t), 52(t), and 
S,(t). 

We now state some general properties of Fourier series that are useful for 
calculating the coefficients. The proofs are left for the reader. 

Theorem 11.2 If U(f) and V(t) have Fourier series representations, then 
their sum W(t) = U(t) + V(t) has a Fourier series representation, and the 
Fourier coefficients of W are obtained by adding the corresponding coeffi­
cients of U and V. 

Theorem 11.3 (Fourier Cosine Series) Assume that U(x) is an even func­
tion. If U(t) has period 2% and U(f) and Uf(t) are piecewise continuous, then 
the Fourier series for U(t) involves only the cosine terms (i.e., bj = 0 for allj): 

(8) U(t) = -£ + 2 aj cos jt, where 
2 y=i 

(9) «, 
2 f" 

U(i) cosjtdt forj = 0, 1, 

Theorem 11.4 (Fourier Sine Series) Assume that U(t) is an odd func­
tion. If U(t) has period 2n and if U(t) and U'(x) are piecewise continuous, 
then the Fourier series for U(t) involves only sine terms {i.e., aj = 0 for 
allj): 

(10) U{t) = 2 ty sinju where 

(ID *, 
2 f" 

U(t) sinjtdt forj = 1, 2, 



11.1 Fourier Series 401 

Theorem 11.5 (Termwise Integration) If U has a Fourier series rep­
resentation given in equation (5), then the integral of U has a Fourier series 
representation which can be obtained by termwise integration of the Fourier 
Series of U, that is, 

[a; + a0( — 1)/+ l]sin jt bj cos jt\ 

J J J 
(12) f U(7)dT = 2 

JO / = ] 

where we have used the expansion a0 - = 2J 
2 ./=:1 J 

in 

Example ILL 

Theorem 11.6 (Termwise Differentiation) IfU'(t) has a Fourier series 
representation, and U(t) is given by equation (5), then 

(13) U'(t) = 2 (jbjcosjt - ja;smjt). 
7 = 1 

E X A M P L E 1 1 . 2 The function U(t) = \t\ forte (-71, 7i), extended periodi­
cally by the equation U(t + 2n) = U(t), has the Fourier series representation 

U(t\ = \t\ = - - - f CQS[(2> ~ 0' ] 
UKt) | f | 2 nU ( 2 7 - 1 ) 2 " 

Solution The function U(t) is an even function, hence we can use Theorem 
11.3 to conclude that bn = 0 for all n, and 

(14) 
2 f* 2t siny't 2 cosyt 

a, — ~\ t cos /t at = 1 — 
7 71 Jo 

2cos77C - 2 2(- IV - 2 

71, / - 7cy^ 

The coefficient a0 is computed by the calculation: 

for; = 1,2, . . . . 

(15) a0 --f 
71 Jo 

raY = = 71. 

Using the results of equations (14) and (15) and Theorem 11.3 produces the required 
solution. 

The following intuitive proof will justify the Euler formulae given in equations 
(3) and (4). To determine a0 we integrate both U(f) and the Fourier series represen­
tation in equation (2) from -71 to 7t, which results in 

16) U(t)dt = 
J-K J -71 

ao 
-^ + X (ajcosjt + bjSinjt) 
2 ./=1 

Jt. 
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We are allowed to perform integration term by term, and we obtain 

(17) U(t) dt = -^ \ 1 dt + 2 ai C0S.A dt + 2 bi s i n 7 ' dt-
J -7i 2 ^ - 7 1 j=\ ' J ~n j=\ ' J —n 

The value of the first integral on the right side of equation (17) is 2n and all 
the other integrals are zero. Hence we obtain the desired result: 

. if 
K J-* 

(18) 0o = - U(t)dt. 
K J-* 

To determine a,m we let m (m > 1) denote a fixed integer and multiply both 
U(t) and the Fourier series representation in equation (2) by the term cos rat, and 
then we integrate and obtain 

(19) I U(t) cos mt dt = — cos mt dt + ]>) a, cos mt cosy't dt 
J -ji Z, J ~n j=\ ' J ~n 

CK 

+ 2^/ c o s m^ s m 7' ^-
./=1 " ^ -* 

The value of the first term on the right side of equation (19) is easily seen to be 
zero: 

ao fK , «o sin mt 
(20) — cos mt dt = — 

2 J-* . 2m 
= 0. 

The value of the term involving cos mt cos jt is found by using the trigonometric 
identity: 

cos mt cos jt = -{cos[(m + j)t] + cos[(m — j)t]}. 

Calculation reveals that if m ^ j (and m > 0), then 

(21) a-, cos mt cos jt dt = -~ \\ cos[(m + j)t] dt 

+ J cos[(m - j)t] dt\ = 0. 

When m = j , the value of the integral becomes: 

f" 
(22) am cos2mt dt = nam. 

J — 71 

The value of the term on the right side of equation (19) involving the integrand 
cos mt sin jt is found by using the trigonometric identity 

cos mt sin jt = -{sin[(m + j)t] + sin[(m - j)t]}, 
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and for all values of m and n, we obtain 

J -n 
(23) bj cos mt sin jt dt = I sin[(m + j)t] dt + sin[(m - j)i\ dt \ = 0. 

Therefore, we can use the results of equations (20)-(23) in equation (19) to obtain 

U{t) cos mt dt = nam for m = 0, 1, . . . , / : 

and equation (3) is established. We leave it as an exercise to establish Euler's for­
mula for the coefficients {bn}. A complete discussion of the details of the proof of 
Theorem 11.1 can be found in some advanced texts. See for instance, John W. 
Dettman, Chapter 8 in Applied Complex Variables, The Macmillan Company, New 
York, 1965. 

EXERCISES FOR SECTION 11.1 
For Exercises 1-2 and 6-11, find the Fourier series representation. 

i Ti<*\ f 1 forO < t < 7C, c . 
l- m = [-l for-n<t<0. S e e F l g u r e l 1 - 4 -

-K 

1 

- 7 1 / 2 
i 

s = U(t) 

i 
7C/2 

-1 

1 * t 
K 

FIGURE 11.4 The graph of U(t) for Exercise 1. 

(n 

2. V« = 
• - t for 0 < t < 7t, 

- + t for -n < t < 0. 
See Figure 11.5. 

FIGURE 11.5 The graph of V(t) for Exercise 2. 
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3. For Exercises 1 and 2, verify that U(t) = — V'(t) by termwise differentiation of the 
Fourier series representation for V(t). 

4. For Exercise 1, set t = - and conclude that — = X • 
2 4 P\ 2j - 1 

K2 1 
5. For Exercise 2, set t = 0 and conclude that — = 2 T • 

8 j=\ (2j - \y 

6. U(t) = 

™ 1 for - < 1 < 7t, 
2 

1 for —- < t < ~j , See Figure 11.6. 

- 1 for -7t < t < —— . 
2 

1 

-7C - 7 1 / 2 

- 1 • 

s = t/frj 

7C/2 71 

FIGURE 11.6 The graph of U(t) for Exercise 6. 

7. £/(,) = 

n - t for - < t < TI, 
2 

for — < / < — , See Figure 11.7. 

—% — t for -7C < r < -n 

nil A 
t * = U(t) 

FIGURE 11.7 The graph of U(t) for Exercise 7. 
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8. U(t) is given in Figure 11.8. 

nil] s = U(t) 

-n -nil ' nil n 

FIGURE 11.8 The graph of U(t) for Exercise I 

9. U(t) = 

1 for - < t < 7C, 
2 

0 for —^ < t < - , See Figure 11.9. 
2 2 & 

- 1 f o r - 7 i < r < 

-TC/2 
1 

J = CW 

—l r — ' 
nil n 

FIGURE 11.9 The graph of U(t) for Exercise 9. 

10. V(t), given in Figure 11.10. 

s = V(t) 

T—+* t 

FIGURE 11.10 The graph of V{t) for Exercise 10. 
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11. t/(t), given in Figure 11.11. 

-K - 7C /2 

t s = U(t) 

—i r+t 
nil n 

FIGURE 11.11 The graph of U(t) for Exercise 11. 

11.2 The Dirichlet Problem for the Unit Disk 

The Dirichlet problem for the unit disk D: \z\ < 1 is to find a real-valued function 
u(x, v) that is harmonic in the unit disk D and that takes on the boundary values 

(1) M(COS 6, sin 0) = [/(6) for - n < 6 < n, 

at points z — (cos 0, sin 0) on the unit circle, as shown in Figure 11.12. 

¢/(0 = w(cos f, sin t) 

FIGURE 11.12 The Dirichlet problem for the unit disk \z\ < 1. 

T h e o r e m 11 .7 If U(t) has period In, and has the Fourier series 
representation 

(2) U(t) = 22 + 2 (fl. cos ; t + &,- sinyt), 
2 ,= i 

then the solution u to the Dirichlet problem in D is 
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(3) u(r cos 6, r sin 8) = — + 2 0¾ r-zcosyO + hi r^sin y'8), 
2 y, i 

where x + iy = reiB denotes a complex number in the closed disk \z\ < 1. 

It is easy to see that the series representation in equation (3) for u takes on 
the prescribed boundary values in equation (1) at points on the unit circle | z | = L 
Since each term r"cosy'6 and r"sinj'6 in series (3) is harmonic, it is reasonable to 
conclude that the infinite series representing u will also be harmonic. The proof 
follows after Theorem 11.8. 

The following result gives an integral representation for a function u{x, y) that 
is harmonic in a domain containing the closed unit disk. The result is the analog to 
Poisson's integral formula for the upper half plane. 

Theorem 11.8 (Poisson Integral Formula for the Unit Disk) Let 
u(x, y) be a function that is harmonic in a simply connected domain that 
contains the closed unit disk \z\ < 1. Ifu(x, y) takes on the boundary values 

w(cos 6, sin 6) = £/(6) for -n < 8 < rc, 

then u has the integral representation 

(1 - r2)U(t)dt 
(4) u(r cos 6, r sin 6) - - f 

271 J -re 
-re 1 + r2 - 2r cos(t - 6) 

that is valid for | z | < L 

Proof Since u(x, y) is harmonic in the simply connected domain, there 
exists a conjugate harmonic function v(x, y) such that f(z) = w(x, y) 4- zv(x, y) is 
analytic. Let C denote the contour consisting of the unit circle; then Cauchy's in­
tegral formula 

(5) m = ^i\cT^ 271/ 

expresses the value of f(z) at any point z inside C in terms of the values of /(£) at 
points £ that lie on the circle C. 

If we set z* = ( z ) 1 then z* lies outside the unit circle C and the Cauchy-
Goursat theorem establishes the equation 

M n- 1 f/(eMe 

(6) °-^i)cT^7*-
Subtracting equation (6) from equation (5) and using the parameterization £ = e", 

d% = iei{ dt and the substitutions z = re/e, z* = - e'e gives 

(7) W'hLi*^* 
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The expression inside the parentheses on the right side of equation (7) can be written 

eit eit i reat-*) 

(8) : = : + 
eit _ reiB 1 I _ rei(*-t) \ _ rei(t-B) 

eit et% 

r 
1 - r2 

~ 1 + r2 - 2r cos(t - 8) 
and it follows that 

1 f" (1 - r2)f(elt) dt 
(9) f(z) = — i }J±—1 
K ' JW 2nJ-n 1 + r2 - 2 r cos ( t - 6) 

Since W(JC, y) is the real part of f(z) and U(t) is the real part of f(e'f), we can 
equate the real parts in equation (9) to obtain equation (4), and proof Theorem 11.8 
is complete. 

We now turn our attention to the proof Theorem 11.7, The real-valued function 

(10) P(r, t - 8) = 2
 1 J T 

1 + rl — 2r cos(t - 0) 
is known as the Poisson kernel. Expanding the left side of equation (8) in a geometric 
series gives 

(11) P(r, f - 8) = - — + — - = 2 rV»<"-'> + 2 rV«-»> 
1 — re'(9-,) 1 - rel{t~^ n=o n=\ 

= 1 + 2 /-"[e'"^-0 + e'»('-0>] = 1 + 2 ^ r"cos[n(0 - t)] 
Tl=l / 1 = 1 

= 1 4 - 2 ^ '""(cos nQ cos «t + sin nd sin nt) 

= 1 + 2 ^ ] r"cos /z8 cos /it + 2 2 '""sin rc8 sin /it. 
/ 1 = 1 / 1 = 1 

We now use the result of equation (11) in equation (4) to obtain 

1 f" 
u(r cos 8, r sin 8) = — P(r, t - 0) U(t) dt 

271 J-n 

1 fn I (n °° 
= — £/(t) * + - 2 r"cos rt& c o s nt ^(0 ̂ r 

271 J-n % J~K n=\ 
I fn « 

+ - 2 r"sin *6 s in nt U(f) dt 
K J-n n=\ 

If7 1 °° l f K 

= T~ ^W ^ + 2 r"cos "6 ~ c o s nt u(t) dt 

2K J-n n^\ Tl J-n 

+ 2 rn$m n§ ~ s i n nt U(t) dt 
n=\ K J-n 

= — + 2 an rncos n% + 2 n̂ r '2s in >*0> 
2 //=1 „=i 
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where {an} and {bn} are the Fourier series coefficients for U(t). This establishes the 
representation for u(r cos 6, r sin 8) stated in Theorem 11.7. 

EXAMPLE 1 1 . 3 Find the function u(x, y) that is harmonic in the unit disk 
| z | < 1 and takes on the boundary values 

e 
(12) w(cos 6, sin 6) = £/(8) = - for -K < 8 < 71. 

Solution Using Example 11.1, we write 

(13) 17(f) = 2 — — s in nt-

Using formula (3) for the solution of the Dirichlet problem, we obtain 

(14) u(r cos 8, r sin 6) = 2 r^sin nd. 
n-\ n 

We remark that the series representation (14) for u takes on the prescribed boundary 
values (12) at points where U is continuous. The boundary function U is discontin­
uous at z = - 1 , which corresponds to 8 = ±K\ and U was not prescribed at these 
points. Graphs of the approximations £/7(t) and u7(x, y) = u7(r cos 8, r sin 8) which 
involve the first seven terms in equations (13) and (14), respectively, are shown in 
Figure 11.13. 

(b) The graph of s = u7(r cos 0, r sin 6). 

FIGURE 11.13 Functions U7(t) and u7(r cos 6, r sin 6) for Example 11.3. 

EXERCISES FOR SECTION 11.2 

For problems 1-6, find the solution to the given Dirichlet problem in the unit disk D by 
using the Fourier series representations for the boundary functions that were derived in the 
examples and exercises of Section 11.1. 
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1. 1/(6) - { - : 
for 0 < 0 < 7i, 
for -7C < 0 < 0. 

2. ¢/(0) = 

- 0 for 0 < 0 < 7t, 

+ 0 for -7C < 0 < 0. See Figure 11.14. 

FIGURE 11.14 Approximations for ¢/5(0) and u5(r cos 0, r sin 0) in Exercise 2. 

3. ¢/(6) - { 

- 1 for - < 6 < rc, 

1 for — < 6 < - , 
2 2 

-1 for -n < 0 < 

. ¢/(0) = < 

. ¢/(0) = < 

fn - 0 

0 

- 7 1 -
v. 

'TC - 0 

71 

2 

71 + 0 

for - < 0 < 7C, 
2 

f o r z ? _ < e < ^ 
2 2 

0 for -7C < 0 < —^ . 
2 

. rc 
for - < 0 < 7C, 

2 
~rc rt 7t 

for < 0 < - , 
2 2 

for -71 < 0 < . See Figure 11.15 
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71/2 

/ 

1 1 
-71 -Tl/2 

5 

s = U(t) 

\ s 

\ I * 
nil 7i 

FIGURE 11.15 Approximations for (/5(8) and u5(r cos 9, r sin 9) in Exercise 5. 

1 for - < 9 < 7T, 
2 

0 for ^- < 8 < y , 

•1 for -7i < 8 < . See Figure 11.16. 

s = U(t) 

,^J|/\^.U, 

x 1 

FIGURE 11.16 Approximations for (/7(6) and »7(r cos 8, r sin 9) in Exercise 6. 
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7. £/(6) = { 
K + 

for - < 6 < 7C, 
2 

for 0 < 9 < ? , 

for — < 9 < 0, 
2 

for -7t < 8 < 
-71 

8. £/(9) = < 

0 for - < 6 < 7i, 

-1 for 0 < 9 < - , 

1 for — < 6 < 0, 
2 

- 7 1 
0 for -7t < 6 < 

z 
9. Write a report on the Dirichlet problem and include some applications. Resources in­

clude bibliographical items 70, 71, 76, 77, 85, 98, 135, and 138. 
10. Look up the article on the Poisson integral formula and discuss what you found. Use 

bibliographical item 115. 

11.3 Vibrations in Mechanical Systems 

Consider a spring that resists compression as well as extension, that is suspended 
vertically from a fixed support, and a body of mass m that is attached at the lower 
end of the spring. We make the assumption that the mass m is much larger than the 
mass of the spring so that we can neglect the mass of the spring. If there is no motion 
then the system is in static equilibrium, as illustrated in Figure 11.17(a). If the mass 
is pulled down further and released, then it will undergo an oscillatory motion. 

Suppose there is no friction to slow down the motion of the mass, then we say 
that the system is undamped. We will determine the motion of this mechanical 
system by considering the forces acting on the mass during the motion. This will 
lead to a differential equation relating the displacement as a function of time. The 
most obvious force is that of gravitational attraction acting on the mass m and is 
given by 

(1) F] = mg, 

where g is the acceleration of gravity. The next force to be considered is the spring 
force acting on the mass and is directed upward if the spring is stretched and down­
ward if it is compressed. It obeys Hooke's law 

(2) F 2 - ks9 

where s is the amount the spring is stretched when s > 0 and is the amount it is 
compressed when s < 0. 
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When the system is in static equilibrium and the spring is stretched by the 
amount sih the resultant of the spring force and the gravitational force is zero, which 
is expressed by the equation 

(3) mg - ks0 = 0. 

Let s = U(t) denote the displacement from static equilibrium with the positive s 
direction pointed downward as indicated in Figure 11.17(b). 

The spring force can be written as 

F2 = -k[s0 + U(t)\ = -ks0 - kU(tl 

and the resultant force FR is 

(4) FR = F, + F2 = mg~ ks0 - kU(t) = -W(t). 

F2 = ~ks0 

(a) System in static equilibrium. (b) System in motion. 

FIGURE 11 .17 The spring mass system. 

The differential equation for motion is obtained by using Newton's second 
law, which states that the resultant of the forces acting on the mass at any instant 
satisfies 

(5) FR = ma. 

Since the distance from equilibrium at time t is measured by (7(0, the accel­
eration a is given by a = U"(t), and using equations (4) and (5) we obtain 

(6) FR = -kU{t) = mU"(t). 

Hence the undamped mechanical system is governed by the linear differential 
equation 

(7) mU"(t) + kU(t) = 0. 
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The general solution to equation (7) is known to be 

ft 
(8) U{t) = A cos cot + B sin tot, where to = /— . 

V m 

Damped System 
If we consider frictional forces that slow down the motion of the mass, then we say 
that the system is damped. This is visualized by connecting a dashpot to the mass, 
as indicated in Figure 11.18. For small velocities it is assumed that the frictional 
force F3 is proportional to the velocity, that is, 

(9) f3 = -cu'(t). 

The damping constant c must be positive, for if U'(t) > 0, then the mass is moving 
downward and hence F3 must point upward, which requires that F3 is negative. The 
resultant of the three forces acting on the mass is given by 

(10) F, + F2 + F3 = -kU(t) - cU'(t) = mU"(t) = FR. 

Hence the damped mechanical system is governed by the differential equation 

(11) mU"(f) + cUf(t) + kU(t) - 0. 

Spring 

Mass 

Dashpot 

FIGURE 11.18 The spring mass dashpot system. 

Forced Vibrations 
The vibrations discussed earlier are called free vibrations because all the forces that 
affect the motion of the system are internal to the system. We extend our analysis 
to cover the case in which an external force F4 = Fit) acts on the mass, see Figure 
11.19. Such a force might occur from vibrations of the support to which the top of 
the spring is attached, or from the effect of a magnetic field on a mass made of iron. 
As before, we sum the forces F\, F2, F3, and F4 and set this equal to the resultant 
force FR and obtain 

(12) F{ + F2 -f F3 + F4 = FR= -KU(t) - cU'(f) + F(t) - mU'\t). 
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Therefore, the forced motion of the mechanical system satisfies the nonhomoge-
neous linear differential equation 

(13) mU"{t) + cU'(t) + kU(t) = F(t). 

The function F(t) is called the input or driving force and the solution U(t) is called 
the output or response. Of particular interest are periodic inputs F(t) that can be 
represented by Fourier series. 

External force Damping force. 

FIGURE 11.19 The dashpot system with an external force. 

For damped mechanical systems that are driven by a periodic input F{t), the 
general solution involves a transient part that vanishes as t —> +°o, and a steady 
state part that is periodic. The transient part of the solution Uh(t) is found by solving 
the homogeneous differential equation 

(14) mU'h(t) + cU'h(t) + kUh{t) = 0. 

Equation (14) leads to the characteristic equation mX2 + cX + k = 0, which 
— c ~^~ J c — A-mk 

has roots X — = . The coefficients m, c, and k are all positive, and 
2m r 

there are three cases to consider. 
If c2 — 4mk > 0, the roots are real and distinct, and since Jc1 — Amk < c, it 

follows that the roots \\ and X2 are negative real numbers. Thus, for this case, we 
have 

lim Uh(t) = lim (Ajex'r + A2e^) = 0. 

If the roots are real and equal, then Xj = X2 = K where X is a negative real number. 
Again, for this case we find that 

lim Uh(t) = lim (Axe
kt + A2te

Kt) = 0. 
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If the roots are complex, then X = — a ± (J/, where a and |3 are positive real numbers, 
and it follows that 

lim Uh(t) = lim (Aie-a'cos pt + A2e~atsin (3t) = 0. 

In all three cases, we see that the homogeneous solution £//,(0 decays to 0 as 
t -^ + 00. 

The steady state solution Up(t) can be obtained by representing Up(t) by its 
Fourier series and substituting Up(i), U'p(t)> and Up(t) into the nonhomogeneous 
differential equation and solving the resulting system for the Fourier coefficients of 
Up(t). The general solution to equation (13) is then given by 

£/(0 = Uh(t) + Up{t). 

E X A M P L E 1 1 . 4 Find the general solution to £/"(0 + W'{f) + £/(0 = F(t\ 
v* cos[(2n - l)t] 

where F(t) is given by the Fourier series F(t) = jj —Z T~i— 
/j=i \2n — \)1 

Solution First we solve £/£(t) + 2 £//(0 + £//,(0 = 0 for the transient solu­
tion. The characteristic equation is X2 + 2X + 1 = 0, which has a double root 
X = — 1. Hence 

£//,(0 = Axe-' + A2te-'. 

The steady state solution is obtained by assuming that Up(t) has the Fourier series 
representation 

n °° °° 

Up(t) = — + X anCOS nt + ]T &„sin nt, 
2 « = i n=\ 

and that U'h(t) and V)\{t) can be obtained by termwise differentiation: 

2Up(t) = 2 ^ nbncos nt - 2 ^ na„sin nt, and 
n=1 n= 1 

£//>'( 0 = - X nlancos nt - J , n2b„sin nt. 

Substituting these expansions into the differential equation results in 

F(t) = — + 2 td — n2)an + 2nbn] cos nt 

2 n=\ 
+ 2 [~2nan + ( 1 - n2)&„] sin nt. 

ao Equating the coefficients with the given series for F(t), we find that — = 0, and 
that 2 

f _L when n is odd, 
n2 

0 when n is even, 

-2nan + ( 1 - n2)bn = 0 for all n. 
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Solving this linear system for an and bni we find that 

f l ~ nl for rc odd, 
an = \n\\ + n2)2 

[O for n even, 

( 2n for n odd, 

n\\ + n2)2 

0 for n even. 
And the general solution is given by 

in* A / -u . , r 4. V [ 1 " (2n " 1 ) 2 ] c o s K 2 n " ^ 

+ 1 

tfi {In - 1)2[1 + {In - 1)2]2 

2(2« - 1) sin[(2n - \)t] 

£\ {In - 1)2[1 + {In - 1)2]2 ' 

EXERCISES FOR SECTION 11.3 
For the exercises, use the results of Section 11.1. 

1. Find the general solution to U"(t) + 3U'(t) + U(t) = Fit). 

(a) F(t) = (b) F{t) = 2 
(-l)^'cos[(2ft - l)r] 

In - 1 
(c) Fit) is shown in Figure 11.20. 

Fit) = 

n - t for - < t < 7i, 
2 
— 71 71 

r for —- < t < - , 
2 2 

—7t — t for -n < t < 

ffmf: F(t) = - 2 , 7^ 77^ 
71/=1 ( 2 / - l h 

^ = W 

FIGURE 11.20 The graph of Fit) for Exercise 1 part c. 
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2. Find the general solution to W"(t) + 2U'(t) + U(t) = F(t), 

(a) F(t) = -

(c) F(t) is shown in Figure 11.21. 
u , m*\ n M 2 V cos[(2; - \)t] 

+ 4 y cos[2(2; - l)fl 

(b) F(t) = £ 
sin[(2fl - l)t] 

2« - 1 

wpf 22(2; 
where a4rt = 0 for all «. 

I)2 

-7C/2 ' 7C/2 K 

FIGURE 11.21 The graph of F(t) for Exercise 2 part c. 

11.4 The Fourier Transform 

Let U(t) be a real-valued function with period In which is piecewise continuous 
such that U'(t) also exists and is piecewise continuous. Then U(t) has the complex 
Fourier series representation 

(1) U(t) = £ cne
in\ where 

1 f" 
(2) c„ = — U(t)e~mt dt for all /¾. 

271 J -* 

The coefficients {c„} are complex numbers. Previously, we expressed U(t) as a real 
trigonometric series: 

ao x^ 
(3) U(t) = —* + 2^ (a„cos Ait + fr„sin /?t). 

2 /7=1 

Hence, a relationship between the coefficients is 

(4) a„ = cn + c_n for n = 0, 1, . . . , and 
bn = /(c„ — c_n) for « = 1, 2, . . . . 
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These relations are easy to establish. We start by writing 

(5) U(t) = c0 + 2 c„<?*" + 2 c-ne-int 

= c0 + 2 c„(cos nt + / sin nt) + 2 c~n(cos >*t — i sin «t) 
« = i n=I 

= Co + 2 Kc« + c-n) c o s ^ + '(o> ~ c_„) sin nt]. 
w = l 

Comparing equation (5) with equation (3), we see that a0 = 2c(), a,, = c„ + c_„, and 
fc„ = i(c„ - c_„). 

If £/(t) and U'(f) are piecewise continuous and have period 2L, then U(t) has 
the complex Fourier series representation 

(6) U(i) = 2 c„einnit/L\ where 
/ 1 = - o o 

1 (L 

(7) c„ = — U{t)e~imWL) dt for all n. 

We have seen how periodic functions are represented by trigonometric series. 
Many practical problems involve nonperiodic functions. A representation analogous 
to Fourier series for a nonperiodic function U(t) is obtained by considering the 
Fourier series of U(t) for — L < t < L and then taking the limit as L —> °°. The result 
is known as the Fourier transform of U(t). 

Start with a nonperiodic function U(t) and consider the periodic function UL(t) 
with period 2L, where 

(8) UL{t) = U(t) for -L < t < L, and 
UL(t) = UL(t + 2L) for all L 

Then UL(t) has the complex Fourier series representation 

(9) UL(t) = 2 c„e<^. 

We introduce some terminology to discuss the terms in equation (9), first 

(10) wn — nn/L is called the frequency. 

If t denotes time, then the units for w„ are radians per unit time. The set of all 
possible frequencies is called the frequency spectrum, i.e., 

- 3 K -2K -7i n 271 3TT 

"'"zT'Z'T'T' 
r - 3 T I 

V • ' • L " 

It is important to note that as L increases, the spectrum becomes finer and approaches 
a continuous spectrum of frequencies. It is reasonable to expect that the summation 
in the Fourier series for UL(t) will give rise to an integral over [—©°, «*]. This is 
stated in the following important theorem. 
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Theorem 11.9 (Fourier Transform) Let U{t) and U'(t) be piecewise con­
tinuous, and 

(11) J \U(t)\ dt<M, 

for some positive constant M. The Fourier transform F(w) of U(t) is defined as 

(12) F(w) = — U(t)e~lwtdt. 
2K J-°° 

At points of continuity, U(t) has the integral representation 

(13) 17(0 = J F(w)eiwtdw, 

and at a point t — a of discontinuity of U, the integral in equation (13) con-
U(a~) + U(a') 

verges to . Remark: It is common to show that U is transformed 

into F by using the operator notation: 

(14) g(f/(0) = F(w). 

K 1 1 
Proof Set Awn = w„+\ — wn = — and — = — Awn. These quantities are 

L 1L 2K 

used in conjunction with equations (7) and (9) and definition (10) to obtain 

2LJ-L 
(15) [//.(0= 2 \ir I . U{f)e-^dt 

n=~< 

= 2 I ^ I . U(t)e-iw»? dt |e/MV Awn. 

If we define FL(w) by 

(16) FL(w) = ^ | ] L U(t)e-™<dt, 

then equation (15) can be written as 

(17) UL(t)= J FL(w„)e^ Aw„. 

As L gets large, FL(wn) approaches F(wn) and Awn tends to zero. Thus the limit 
on the right-hand side of equation (17) can be viewed as an integral. This substan­
tiates the integral representation 

(18) U(t) -a F(w)eiwr dw. 

A more rigorous proof of this fact can be found in advanced texts. Table 11.1 gives 
some important properties of the Fourier transform. 
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TABLE 11.1 Properties of the Fourier Transform 

Linearity 

Symmetry 

Time scaling 

Time shifting 
Frequency shifting 
Time differentiation 
Frequency 
differentiation 

Moment Theorem 

S(al/,(f) + bU2(t)) = a ft(£/,(t)) + b ft«72(t)) 

If ft(£/(0) = F(w), then ft(F(t)) = -?- t/(-w) 

%(U(t - to)) = e-^wF(w) 
ft(e--°'£/(t)) = F(w - wo) 
g(CTM) = /wF(w) 
^"F(w) 

rfw" 
= ft((Wt)"£/(t)) 

EXAMPLE 11.5 Show that F(e- |H) = -
TC(1 + w2) 

Solution Using formula (12), we obtain 

F(w) = — e~ltle-iwr dt 
2TC •>-« 

If Mn = J t"£/(t) A, then (-i)nAfw = 2nF<w>(0). 

I 

I f 0 1 (° 
— e(l-'V)'a7 + — 
2K J— 2% Jo 

1 
271(1 - iw) 

1 

M-iw)t 

+ 

2TT 

1 

+ 
_J 

2JC(-1 - iw)* 

1 

- ( - l - i w ) f 

271(1 - iw) 2TC(1 + /w) n(l + w2)' 

and the result is established. 

EXAMPLE 11.6 Show that ft 
1 + t2 

Solution Using the result of Example 11.5 and the symmetry property, we 
obtain 

(19) ft 
1 1 

~ 2%€ 
V7i(l + t2)J 2n 

The linearity property is used to multiply each term in equation (19) by n and obtain 

1 \ 1 
s - I H - I 

Kl 4- t2) 2~ 

and the result is established. 



422 Chapter 11 Fourier Series and the Laplace Transform 

EXERCISES FOR SECTION 11.4 

1. Let U(t) = P J* !1 J !' Find 3«/(0). 
[0 for 111 > 1. 

i sin nw 
2. Let ¢/(0 = f " m ' ! " ! ' ! ^ * ' Show that %(U(t)) = 

L0 for | t | > 71. 71(1 - w1) 

for | t | < 1,. 

for \t\ > 1. 
3. Let ¢/(0 = \\ I *' 1° i * !' F ind S(W)). 

L0 for | t | > 1. 

4. Let ¢/(0 = e-'2'2. Show that %(U(t)) = ~ r = tf-"2'2. 

//mt: Use the integral definition and combine the terms in the exponent, then complete 

the square and use the fact that I e~^!1 dt = jlH. 
5. Use the time scaling property and the example in the text to show that 

\a\ 
3(*-fll") n(a2 + w2)' 

6. Use the symmetry and linearity properties and the result of Exercise 1 to show that 

sin A __ JT 
1 for IwI < 1, 

3f 
for J w | > 1. 

7. Use the symmetry and linearity properties and the result of Exercise 2 to show that 

Jj sin Kt\ f ^ p f° rM **' 
\ l ~ t2 / [o for | w | > 7t. 

8. Use the time differentiation property and the result of Exercise 4 to show that 

me-^)= me 

fin 

9. Use the symmetry and linearity properties and the results of Exercise 3 to show that 

/ V f1 " \w\ for |w | < 1, 
An 

[o for \w\ > 1. 

10. Write a report on the Fourier transform. Discuss some of the ideas you found in the 
literature that are not mentioned in the text. Resources include bibliographical items 15, 
17, 100, 69, 149, and 159. 

11.5 The Laplace Transform 

From Fourier Transforms to Laplace Transforms 
We have seen that certain real-valued functions f(t) have a Fourier transform and 
that the integral 

-i (1) g(o>)= f(i)e--dt 
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defines the complex function g(to) of the real variable o). By multiplying the 
integrand in formula (1) by e~a/, we extend this and define a complex function 
G(G + /co) of the complex variable o + /ca: 

(2) G(a + m) = J f(t)e-ate-i(at dt = J /(*)£?-«"'"*>>' aY. 

The function G(a + /<o) is called the two-sided Laplace transform of / (0 , and it 
exists when the Fourier transform of the function/(0e~CT/ exists. From the Fourier 
transform theory, we can state that a sufficient condition for G(c 4- iw) to exist is 
that 

(3) 1" |/('>l< dt< 

shall exist. For a given function/(0, this integral is finite for values of o that lie in 
some interval a < o < b. 

The two-sided Laplace transform uses the lower limit of integration t = — ©o, 
and hence requires a knowledge of the past history of the function/(0, i.e., t < 0. 
For most physical applications, one is interested in the behavior of a system only 
for t > 0. Mathematically speaking, the initial conditions /(0), / ' (0), /"(0), . . . , 
are a consequence of the past history of the system and are often all that is necessary 
to know. For this reason, it is useful to define the one-sided Laplace transform of 
/ (0 , which is commonly referred to simply as the Laplace transform of / (0 , which 
is also defined as an integral: 

(4) 2(/(/)) = F(s) - J : f(t)e~sl dt, where s = a + /co. 

If the defining integral (4) for the Laplace transform exists for s0 = <*o + **<*>, 
then values of c with o > G0 imply that e~°' < e~^\ and thus 

(5) |o |/(/)| *-°'A <JQ l/ttl*-*0'* < *>, 

and it follows that F(s) exists for s = a H- /to. Therefore, the Laplace transform 
2 ( / ( 0 ) is defined for all points 5 in the right half-plane ReC?) > a0. 

Another way to view the relationship between the Fourier transform and the 
Laplace transform is to consider the function U(t) given by 

(6) U(t) -P 'fit) f o r f > 0 , 
for t < 0. 

Then the Fourier transform theory shows us that 

(7) £/(0 . j - r r r 
271 J — J-

U(t)e-iuit dt dix>, 

and since the integrand U(t) is zero for t < 0, equation (7) can be written as 

(8) w-sJ-Jf**- '<it #0). 
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ds 
Use the change of variable s = a + ia> and dco = —, where a > Go is held fixed, 

then the new limits of integration are from s = a — m to s = o + /a). The resulting 
equation is (9) /<r)=2^ r r rr^)e-" ̂  est ds. 

2ni 

From equation (9) it is easy to recognize that the Laplace transform is 

(10) 56(/(/)) = F( J) = 1 / ( 0 * - * * - J : 
and that the inverse Laplace transform is 

2ni. 
(11) 5e- l(F(s)) = f(t) = ^-.] F(s)e*< ds. 

Properties of the Laplace Transform 
Although a function /(i) may be defined for all values of t, its Laplace transform is 
not influenced by values of/(t), where t < 0. The Laplace transform of/(0 is actually 
defined for the function U(t) given by 

(12) U(t) = 
/ (0 for t => 0, 
0 for t < 0. 

A sufficient condition for the existence of the Laplace transform is that |/(t) | does 
not grow too rapidly as t —> +<*>. We say that the function/is of exponential order 
if there exists real constants M > 0 and K, such that 

(13) |/(t)| < MeKt holds for all t > 0. 

All functions in this chapter are assumed to be of exponential order. The next the­
orem shows that their Laplace transform F(o + /T) exists for values of s in a domain 
that includes the right half-plane Re(s) > K. 

Theorem 11.10 (Existence of the Laplace Transform) iff is of ex­
ponential order, then its Laplace transform £6(/(0) = F(s) is given by 

-i (14) F(s) = I f(t)e~st dt, where s = a + m. 

The defining integral for F exists at points s = a + h in the right half plane 
a > K. 

Proof Using 5 = a + IT we see that F(s) can be expressed as 

(15) F(s) = J /(t)e-a'cos Tt dt - i\ /(t)e-°'sin it dt 
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Then for values of a > K, we have 

(16) 
J U • • jo c 

M 

\f(t) I e"CT' I cos Tt I dt < Ml e{K-^ dt < , and 
Jo l * / W | I I Jo o-K 

(17) |/(t) | <r<" | sin j t | dt < M e(/r-°>' rf/ < - ^ - , 
j o j o ¢7 — /£ 

which imply that the integrals defining the real and imaginary parts of F exist for 
values of Re(j) > K, and the proof is complete. 

Remarks The domain of definition of the defining integral for the Laplace trans­
form £{f{t)) seems to be restricted to a half plane. However, the resulting formula 
F{s) might have a domain much larger than this half plane. Later we will show that 
F(s) is an analytic function of the complex variable s. For most applications in­
volving Laplace transforms that we will study, the Laplace transforms are rational 

P(s) 
functions that have the form , where P and Q are polynomials, and some other 

easP(s) 
important ones will have the form . 

Theorem 11.11 (Linearity of the Laplace Transform) Letf and g have 
Laplace transforms F and G, respectively. If a and b are constants, then 

(18) $(af(t) + bg(t)) - aF(s) + bG(s). 

Proof Let K be chosen so that both F and G are defined for Re(s) > K, then 

(19) X(af(t) + bg(t)) - Jo [af(t) + bg{t)]e-« dt 

= a \ f(t)e~st dt + b\ g(t)e~xt dt 

= aF(s) + bG(s). 

Theorem 11.12 (Uniqueness of the Laplace Transform) Letf and g 
have Laplace transforms, F and G, respectively. If F(s) = G(s), then /(t) = 
g(t). 

Proof If c is sufficiently large, then the integral representation, equation 
(10), for the inverse Laplace transform can be used to obtain 

(20) f(t) = i£-\F(s)) = ~ \ F(s)e«ds = - ^ \ G(s)e" ds 

= 2 - ' ( G ( J ) ) = S ( 0 . 

and the theorem is proven. 
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E X A M P L E 1 1 . 7 Show that the Laplace transform of the step function given 
by 

f(t) = 
1 for 0 < t < c, . ^ 1 

is £6(/(0) = 0 for c < t J
 s 

Solution Using the integral definition for £6(/(0), we obtain 

X(f(t)) = f{t)e~st dt = e~st dt + e~st • Odt = —— 
J0 J0 Jr S /=0 S 

E X A M P L E 1 1 . 8 Show that <£(£?<") = , where a is a real constant. 

Solution We will actually show that the integral defining ££(ef") is equal 

to the formula F(s) = for values of s with Re(s) > a, and the extension to 
s — a 

other values of s is inferred by our knowledge about the domain of a rational func­
tion. Using straightforward integration techniques we find that 

#(<*/) = eate'st dt = lim e{a~s)t dt 
Jo R^+„ Jo 

e(a-s)R J 

= lim + 
/ê +oo a — s s — a 

Let s = a + IT be held fixed, or where a > a. Then since a — a is a negative real 
number we have lim e(a~s)R = 0 and this is used in equation (10) to obtain the 

desired conclusion. 
The property of linearity can be used to find new Laplace transforms from 

known ones. 

E X A M P L E 1 1 . 9 Show that ££(sinh at) = 
.2 - „2 

Solution Since sinh at = \eat - \e'a\ we obtain 

££(sinh at) - | ££(e<") - \ £(e~(it) = - - * * * 
2s — a 2 s + a s2 — a2' 

The technique of integration by parts is also helpful in finding new Laplace 
transforms. 
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EXAMPLE 11.10 Show that %{t) = \ . 

Solution Using integration by parts we obtain 

2(t) = lim te~st dt 

(-t J \\t = K 
= hm —e~ s t - ~e~st 

= lim f — e~*R - \ e~A + 0 + -̂
/?-> + - \ S S- Sl 

For values of s in the right half plane Re(.v) > 0, an argument similar to that 
in Example 11.8 shows that the limit approaches zero, and the result is established. 

EXAMPLE 11.11 Show that i£(cos bt) = . 
s- + b-

Solution A direct approach using the definition is tedious. Let us assume 
that the complex constants ±ib are permitted and hence following the Laplace trans­
forms exist: 

£(eiht) = and X(e~ibt) = 
s — ib s + ib 

Using the linearity of the Laplace transform we obtain 

5£(cos bt) = \ £(eiht) + i £(e-lht) 

1 1 1 1 

2 s — ib 2 s + ib s2 + b2 

Inverting the Laplace transform is usually accomplished with the aid of a table 
of known Laplace transforms and the technique of partial fraction expansion. 

EXAMPLE 11.12 F i n d ^ / 3 " + 6 

s2 + 9 

Solution Using linearity and lines 6 and 7 of Table 11.2, we obtain 

s2 + 9 / \s2 + 9 / \s2 + 9 
3 cos 3t + 2 sin 3t. 
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Table 11.2 gives the Laplace transforms of some well-known functions, and 
Table 11.3 highlights some important properties of Laplace transforms. 

TABLE 11.2 Table of Laplace Transforms 

Line f{t) F(s) = Jo f(t)est dt 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1 

tn 

Uc(t) unit step 

ea} 

tneat 

cos bt 

sin bt 

e"'cos bt 

e"'sin bt 

t cos bt 

t sin bt 

cosh at 

sinh at 

s 

S 

1 
s — a 

n\ 
(s - a)n+l 

s 
s2 + b2 

b 

s2 + b2 

s — a 
(s - a)2 + b2 

b 
(s - a)2 + b2 

s2 - b2 

(s2 + b2)2 

lbs 

(s2 + b2)2 

s 
s2 - a2 

a 
s2 - a2 
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TABLE 11.3 Properties of the Laplace Transform 

Definition 
Derivatives off(t) 

Integral of/(f) 

Multiplication by t 

Division by t 

Shifting on the s axis 
Shifting on the t axis 
Convolution 

2 ( / ( 0 ) = F(s) 
2 ( / ( 0 ) = sF(s) - / ( 0 ) 
2 ( / " ( 0 ) = ^ ) - # ) - / ' ( 0 ) 

/ ; 2 I /(T)rfr = 
F(s) 

mm) = -F'(S) 
'fit) X ? ) - : F(a) da 

#(«"'/(0) = *"(* - a) 
2(Ua(t)f(t - a)) = e-<"F($) for a > 0 

2(A(0) = F ( S ) G ( J ) 

h{t) =J> -T)g(T) dt 

EXERCISES FOR SECTION 11.5 

1. Show that £6(1) = - by using the integral definition for the Laplace transform. Assume 

that s is restricted to values satisfying Re(s) > 0. 

3. Let U{t) = 

4, 

find 2 ( / ( 0 ) . 
t for 0 < t < c, 
0 otherwise, 

2 
Show that 2(t2) = — by using the integral definition for the Laplace transform. Assume 

that s is restricted to values satisfying Re(.s) > 0. 
> ' forO < t < 1, 
0 otherwise, 5. Let U(t) 

6. 

find 2 ( / ( 0 ) . 

Let U(t) = \T(t) f c * ° * ' * n ' find 2 ( / ( 0 ) . v [0 otherwise, w 

For exercises 7-12 use the linearity of Laplace transform and Table 11.2. 

7. Find 2(3/2 - 4r + 5). 8. Find 2(2 cos At). 
9. Find X(e2t^). 10. Find 2(6<?' + 3 sin 5f). 

11. Find 2 ( ( / + 1)4). 12. Find 2(cosh 20-

For exercises 13-18 use the linearity of the inverse Laplace transform and Table 11.3. 

13. 2 
1 

15. Find 2 

s2 + 25, 
1 + s2 - s: 

14. Find 2 1 1 -

17. Find 2 -
6s 

16. Find 2 - ' 

18. Find 2 - 1 

2^ + 9 
s2 + 9 
25 + 1 

V^ - 4 / """ V(s + IV 
19. Write a report on how complex analysis is used in the study of Laplace transforms. 

Include ideas and examples that are not mentioned in the text. Resources include bib­
liographical items 17, 40, 69, 129, 149, 159, and 186. 
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11.6 Laplace Transforms of Derivatives and Integrals 

Theorem 11.13 (Differentiation of /(/)) Letf(t) andf'(t) be continuous 
for t ^ 0, and of exponential order. Then, 

(1) £6(/'(r)) = J F ( J ) - / ( 0 ) , 

where F(s) = %(f(t)). 

Proof Let K be chosen large enough so that both/(0 and/'(t) are of ex­
ponential order K. If Re(s) > AT, then !£(f'(t)) is given by 

(2) £g(/'(r)) = Jo f'{t)e-«dt. 

Using integration by parts, we write equation (2) as 

(3) 2(f'(t)) = lim [/(f)<r"] 
/=0 Jo 

Since/(t) is of exponential order K, and Re(s) > K, we have lim f(R)e~sR = 0, 

hence equation (3) becomes 

(4) 2 ( / ' (0 ) = ~/(0) + s Jo f(t)e-« dt = sF(s) ~ /(0), 

and the theorem is proven. 

Corollary 11.1 / / / ( 0 , / ' ( 0 , andf\t) are of exponential order, then 

(5) %{f"{t)) = s2F(s) ~ sf(0) - / '(0). 

E X A M P L E 1 1 . 1 3 Show that i£(coS2t) = *2 + 2 

s(s2 + 4) ' 

Solution Let/(0 = cos2/, then/(0) = 1 and/ '(0 = - 2 sin t cos t = -sin 2t. 
- 2 

s2 + 4 ' 
Using the fact that i£(~-sin 20 = 2 i A , Theorem 11.13 implies that 

- ^ ( / ( 0 ) - ^(cos2 t) - 1, 
s2 + 4 

- 2 1 52 + 2 
from which it follows that 36(cos20 = —; 1-- = —: , 

s(s2 + 4) s s(s2 + 4) 
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Theorem 11.14 (Integration of / ( / ) ) Let f(t) be continuous for t > 0, 
and of exponential order and let F(s) be its Laplace transform, then 

(6) ^ / ( ^ ) = ^ . 

Proof Let g(t) = J / ( T ) </T, then g'(t) = f(t) and g(0) = 0. If we can show 

that g is of exponential order, then Theorem 11.13 implies that 

2(/(0) - W M ) = s2(g(t)) -0 = ^ ( / 0 V ( T ) dA 

and the proof will be complete. Since f(t) is of exponential order, we can find 
positive values M and K, so that 

fr P M 
\g(t) | < / ( T ) dh < M e^ </T = —(£?*' - 1) < **', 

so that g is of exponential order and the proof is complete. 

EXAMPLE 1 1 . 1 4 Show that £(t2) = -*n&${?) =-A . 
sJ s4 

2 
Solution Using Theorem 11.14 and the fact that ££(2t) = — we obtain 

sz 

5E(/2) = £[ \ 2T dr) = - ££(2t) = - = 4 -
\JQ ) s s sl s* 

2 
Now we can use the first result i£(t2) = — to establish the second one: 

s* 

i£(/3) = # ( J ' 3 T 2 rfT J = I i£(3t2) = J 6 6 

One of the main uses of the Laplace transform is its role in the solution of 
differential equations. The utility of the Laplace transform lies in the fact that the 
transform of the derivative/'(t) corresponds to multiplication of the transform F(s) 
by s and then the subtraction of/(0). This permits us to replace the calculus operation 
of differentiation with simple algebraic operations on transforms. 

This idea is used to develop a method for solving linear differential equations 
with constant coefficients. Consider the initial value problem 

(7) y"(t) + ay'(t) + by(t) = / ( 0 , 
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with initial conditions v(0) = v0 and/ (0) = d0. The linearity property of the Laplace 
transform can be used to obtain the equation 

(8) 2 ( / ( / ) ) + 0 2 ( / ( 0 ) + b$(y(t)) = 2( / (0) . 

Let Y{s) = 2 ( / 0 ) and F(s) = 2 ( / ( 0 ) and apply Theorem 11.13 and Corollary 11.1 
in the form 2 ( / ( 0 ) = sY(s) - y(0) and 2 ( / ( 0 ) = s2Y(s) - sy(0) - / ( 0 ) we can 
rewrite equation (8) in the form 

(9) s2Y(s) + asY(s) 4- bY(s) = F(s) + sy(0) + / ( 0 ) + a/0). 

The Laplace transform Y(s) of the solution y(t) is easily found to be 

F(s) + sy{0) + / ( 0 ) + a/0) 
(10) Y(s) = 

S"2 + OS + 6 

For many physical problems involving mechanical systems and electric cir­
cuits, the transform F(s) is known, and the inverse of Y(s) can easily be computed. 
This process is referred to as the operational calculus and has the advantage of 
changing problems in differential equations into problems in algebra. Then the so­
lution obtained will satisfy the specific initial conditions. 

EXAMPLE 1 1 . 1 5 Solve the initial value problem 

/ ( 0 + / 0 = 0 with / 0 ) = 2 and / ( 0 ) = 3. 

Solution Since the right-hand side of the differential equation i s / (0 = 0 
we have F(s) = 0. The initial conditions yield 2 ( / ( 0 ) = s2Y(s) — 2s — 3 and 

2s + 3 
s2 + 1 

the solution / t ) is assisted by using Table 11.2 and the computation 

equation (9) becomes s2Y(s) + Y(s) = 2s + 3. Solving we get Y(s) — —f~;—T ar*d 

** = s-'lTTl) = *-\7TV + ™-\7Tl) = 2cost + 3 sin '• 

EXAMPLE 1 1 . 1 6 Solve the initial value problem 

/ ( 0 + / ( 0 - 2 / 0 = 0 wi th/0) = 1 and / ( 0 ) = 4. 

Solution In the spirit of Example 11.15, we use the initial conditions and 
equation (10) becomes 

s2 -f s - 2 (s - 1)(5- + 2) 
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Using partial fraction expansion Y(s) = 
1 

y(t) = 2-l(Y{s)) = 2i£~x 

s - 1 

s - 1 5 + 2 

1 
- #- ' 

s + 2 

and the solution y(t) is 

= 2e* - e-2'. 

EXERCISES FOR SECTION 11.6 
1. Derive ££{sin t) from i£(cos t). 
2. Derive i£(cosh t) from i£(sinh t). 
3. Find #(sin2r). 

1 

(s - 1)2 

5. F ind^-
1 

5(5 - 4) 
6. Findi£-

1 
s(s2 + 4) 

7. Show that ^ - 1 

8. Show that ^ 1 

For exercises 9-18, 

1 
s2(s + 1) 

1 

s2(s2 + 1) 

= * - ! + < ? ' . 

= / — sin t. 

9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

fit 
fit 
fit] 
fit: 
fit 
y"U 
fit 
fit 
fit-
fit 

solve the initial value problem. 

+ 9y(t) = 0, with / 0 ) = 2 and / ( 0 ) - 9 
+ / 0 = 1, with / 0 ) = 0 and / ( 0 ) = 2 
+ 43,(,) = - 8 , with / 0 ) = 0 and / ( 0 ) = 2 
+ / 0 = 1, w i th /0 ) = 2 
- y(f) = - 2 , w i t h / 0 ) = 3 
- 4y(t) = 0, with / 0 ) = 1 and / ( 0 ) = 2 
- y(t) = 1, with / 0 ) = 0 and / ( 0 ) = 2 
+ 2 / 0 = 3e>, with / 0 ) = 2 
+ / ( / ) - 2 / 0 = 0, with / 0 ) = 2 and / ( 0 ) 
- / ( 0 - 2 / 0 = 0, with / 0 ) = 2 and / ( 0 ) 

11.7 Shifting Theorems and the Step Function 

We have seen how the Laplace transform can be used to solve linear differential 
equations. Familiar functions that arise in solutions to differential equations are 
e"'cos bt and e"'sin bt. The first shifting theorem will show how their transforms are 
related to those of cos bt and sin bt by shifting the variable s in F(s). A companion 
result, called the second shifting theorem, will show how the transform of f(t — a) 
can be obtained by multiplying F(s) by e~as. Loosely speaking, these results show 
that multiplication of f(t) by eal corresponds to shifting F(s — a), and shifting 
f{t — a) corresponds to multiplication of the transform Fis) by eas. 
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Theorem 11.15 (Shifting the Variable s) IfF(s) is the Laplace trans­
form off(t), then 

(1) 2 ( ^ / ( 0 ) = F(s - a). 

Proof Using the integral definition !£(f(t)) = F(s) = I f(t)e~st dt, we see 
that 

= / \ w . ^ = | ; (2) $(e"f(t)) = I eatf(t)e~si dt = I f{t)e~{s a)1 dt = F(s - a). 

Definition 11.3 (Unit Step Function) Let a > 0, then the unit step func­
tion Ua(t) is 

, ^ r, / x f0 for t < a, 
(3) ^ ) = {l fort>a. 

The graph of Ua(t) is shown in Figure 11.22. 

y=U (t) 

FIGURE 11.22 The graph of the unit step function y = Ua(t) in Definition 11.3. 

Theorem 11.16 (Shifting the Variable t) If F(s) is the Laplace trans­
form off(t) and a ^ 0, then 

(4) X(Ua(t)f(t - a)) = e-™F(s), 
where f{t) and Ua{t){t — a) are illustrated in Figure 11.23. 

Proof Using the definition of Laplace transform, we write 

(5) e-mF(s) = e~as J f{i)e~^ di = J / (T>-- V «"
 T> fa. 

Using the change of variable t = a + T and dt = di, we obtain 

(6) e-asF(s) = \ f(t- a)e~sl dt. 
Ja 
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Since Ua(t)f(t - a) = 0 for t < a, and Ua(t)f(t - a) = f(t - a) for t > a, we can 
write equation (6) as 

(7) e— F(s) = | o Ua(t)f(t - a)e-« dt = ^(Ua(t)f(t - a)), 

and the proof is complete. 

y=m 
\\ 

y=Ua(t)f(t-a) 

FIGURE 11.23 Comparison of the functions/(r) and Ua(t)f(t ~ a) in Theorem 
11.16. 

EXAMPLE 11.17 Show that # ( W ) = 
_ n\n±\ (s - a)' 

Solution Let/(0 = / \ then F(s) = i£(t") = - ^ - . Applying Theorem 11.15, 

we obtain the desired result: 

nl 
£(t"eat) = F(s - a) = 

- / i V + l (J - <*)' 

EXAMPLE 11.18 Show that #(£/<.(*)) = —- . 

Solution Set/(r) = 1, then F(s) = <£(1) = - . Now apply Theorem 11.16 
s 

and get 

i£(£/c(0) = <£(Uc(t)f(t)) = 2(Ucit>l) = < r " # ( D = 

EXAMPLE 1 1 . 1 9 Find 2( / (0) if /(0 is given in Figure 11.24. 
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y=M 

-l 1 2 3 4 5 

FIGURE 11.24 The function y = / (0 of Example 11.19. 

Solution We can represent f(t) in terms of step functions 

f(t) = 1 - U{(t) + U2(t) - U3(t) + UA{i) - U5(t). 

Using the result of Example 11.18 and linearity, we obtain 

2(/(0) = + + . 
s s s s s s 

EXAMPLE 1 1 . 2 0 Use Laplace transforms to solve the initial value problem 

/ ( 0 + y(t) = UK(t) withj(O) = 0 and / ( 0 ) = 0. 

get 
Solution As usual, let Y(s) denote the Laplace transform of y(t). Then we 

s2Y(s) + Y(s) = . 
s 

Solving for Y(s), we obtain 

1 e~™ e~KSs 

s(s2 + 1) ~ "7" ~ s2 + 1 " 
Y(s) = e-** • 

1 s 
We now use Theorem 11.16 and the facts that - and — are the transforms of 1 

s sl + 1 
and cos t, respectively. The solution y(t) is computed as follows: 

y(t) = #-i( ^ j - 2-l\J-^T[ ) = u*& ~ ^(»cos(t - 7C), 

which can be written in the more familiar form: 

= [0 for t < JC, 

^ \l - cos t for t > n. 
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EXERCISES FOR SECTION 11.7 
1. Find #(*' - te{). 

3. Show that ££(e"'cos bt) = 

4. Show that X(ea'sm bt) = 

(s - a)2 + b2' 
b 

is - a)2 + b2' 

For exercises 5-8, find !£ l(F(s)). 

5. F(s) 
s + 2 

s2 + As + 5 

* + 3 

For exercises 9-14, find #(/(*))• 

9. f{t) = U2(t)(t - 2)2 

11. f(t) = U3n{t) sin(r - 3n) 

13. Let/(r) be given in Figure 11.25. 

2. Find i£(e~4'sin 3f). 

6. F(s) = 

8. F(s) = 

s2 - 2s + 5 
2.y + 10 

s2 + 65 + 25 

10. / (0 = (/,Me1"' 
12. fit) = 2(/,(/) - £/2(0 - Uiit) 

i 

\ 

1 

-1 

-1 

y =M 

1 1 1 

1 2 3 
1 
4 

1 • 

5 

FIGURE 11.25 The graph y = fit) for Exercise 13. 

14, Let/(t) be given in Figure 11.26. 
Hint: The function is the integral of the one in Exercise 13. 

y=f(0 

-1 1 2 3 

FIGURE 11.26 The graph y = /(f) for Exercise 14. 

15. Findi£- e's + e~ 16. Find ^ - ' 
1 - e-* + e~2* 
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For exercises 17-23, solve the initial value problem. 
17. y"(t) + 2 / (0 + 2v(0 = 0, with y(0) = - 1 and / (0) = 1 
18. / ( 0 + 4/(/) + 5y(t) = 0, with / 0 ) - 1 and /(0) = - 2 
19. 2 / (0 + 2/ (0 + / 0 = 0, with / 0 ) = 0 and / (0) = 1 
20. / ( 0 - 2 / (0 + v(0 = 2e'9 with y(0) = 0 and /(0) = 0 
21. / ( 0 + 2/ (0 + / 0 = 6te-\ with y(0) - 0 and /(0) = 0 
22. / ( 0 + 2/(0 + v(0 = 2f/,(ty-', with y(0) = 0 and /(0) = 0 
23. / ( 0 + / 0 = £/,/2(0, with y(0) = 0 and / (0) - 1 

11.8 Multiplication and Division by t 

Sometimes the solutions to nonhomogeneous linear differential equations with con­
stant coefficients involve the functions t cos bt, t sin bt, or t"ea/ as part of the solution. 
We now show how the Laplace transforms of tf(t) and/(t)/t are related to the Laplace 
transform of f(t). The transform of t/(t) will be obtained via differentiation and the 
transform of f(t)/t will be obtained via integration. To be precise, we state the fol­
lowing theorems. 

Theorem 11.17 (Multiplication by t) IfF(s) is the Laplace transform of 
fit), then 

(1) mm) = -F'(S). 

Proof By definition we have F(s) = I f(t)e~~st dt. Leibniz's rule for partial 

differentiation under the integral sign permits us to write 

(2) F'(s) = - f(t)e-« dt = - [f(t)e-«] dt 
ds Jo Jo ds 

= | o [-tf(t)e-] dt= - Jo [tf(t)e-«] dt 

= -mm, 
and the result is established. 

Theorem 11.18 (Division by t) Let both f(t) and f(f)lt have Laplace 
transforms and let F(s) denote the transform off(t). If lim /(t)/t exists, then 

(3) #K^J = J~ F(o) da. 

Proof Since F(a) = I f(t)e-°r dt, we integrate F(a) from s to <*> and obtain 

(4) J F(a) da = J Jo f(t)e-at dt da. 



11.8 Multiplication and Division by t 439 

The order of integration in equation (4) can be reversed, and we obtain 

(5) J F(a) da = Jo J f(t)e-°f da dt 

-fit) |°—1 
- ^ e'ot dt 

t U=, J 

= jyMe-,dt = ^ 
and the proof is complete. 

s2 - b2 

E X A M P L E 1 1 . 2 1 Show that SE(t cos bt) = 
(s2 + b2)2 * 

Solution Letf{t) = cos bt, then Fis) = <S£(cos bt) = . S ,_ . Hence, we 
sz + /r 

can differentiate F(s) to obtain the desired result 

s2 + b2 - 2s2 s2 - b2 

2(t cos bt) = -F'(s) = — 
is2 + fc2)2 (s2 + b2)2' 

E X A M P L E 1 1 . 2 2 Show that $[ —) = arctan ± . 

o i .. 1 sin t 
Solution Let / (0 = sin t and fXs) = — 7 . Since lim = 1, we can 

Sz + 1 ,-»o + t integrate F(s) to obtain the desired result: 

K ^ H J ^ T -
1 

arctan — 
a 

1 
= arctan - . 

a = s S 

Some types of differential equations involve the terms ty\t) or tyn{t). Laplace 
transforms can be used to find the solution if we use the additional substitutions 

(6) ^(ry'(0) = -sY\s) - Y(s), and 

(7) W ( 0 ) = -s2Y'(s) - IsYis) + y(0). 

E X A M P L E 1 1 . 2 3 Use Laplace transforms to solve the initial value problem 

(8) ty"(t) - ty\t) - yit) = 0 with y(0) = 0. 

Solution Let Yis) denote the Laplace transform of y(t), then using the sub­
stitutions (6) and (7) results in 

(9) -s2Y'(s) - 2sYis) + 0 + sY\s) + Y(s) - Y(s) - 0. 
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Equation (9) itself can be written as a first-order linear differential equation: 

(10) Y\s) + -^-ns) = 0. 
s - 1 

The differential equation (10) can be solved by using an integrating factor: 

(11) p = e x p f j —^ds) = exp[2 ln(s - 1)] = (s - 1)2. 

Multiplying equation (10) by p produces 

(12) (s - l)2Y'(s) + 2(s - l)F(s) = 7- [(* - D2Y(s)] = 0. 

as 
Integrating equation (12) with respect to s results in (s — l)2Y(s) = C, where C is 
the constant of integration. Hence the solution to equation (9) is 

(13) 

The 

Y(s) 

inverse 

v(t) = 

c 
(s - 1)2 ' 

of the transform Y(s) 

Ctef. 

in equation (13) is 

EXERCISES FOR SECTION 11.8 
Find the Laplace transform for Exercises 1-10. 

1. Fmd%(te-2t), 2. Find # ( / V ) . 
3. F i n d e r sin 30- 4. Find X(t2 cos 2t). 
5. Find #( / sinh /). 6. Find X(t2 cosh /). 

7. Show that %(?—l\ = l n 

1 — cos t 
8. Show that 5£\ I = ln t J \s2 + 1, 
9. Find %(t sin bt). 10. Find %{teat cos bt). 

11. Find ff-Mini ^ + M V 12. F i n d ^ ' f l n f S 

\{s ~ I)2// \ V + 1 

For problems 13-21, solve the initial value problem. 

13. y"(t) + 2/( / ) + v(0 = 2«r', with v(0) = 0 and / ( 0 ) = 1 
14. / ( 0 + / 0 = 2 sin /, with y(0) = 0 and / ( 0 ) = - 1 
15. / / ( 0 - / / ( / ) - v(0 = 0, with y(0) = 0 
16. ty"(t) + ( / - 1 ) / ( 0 - 2y(0 = 0, with y(0) = 0 
17. / / ( 0 + ty\t) - y(/) = 0, with y(0) = 0 
18. / / ( / ) + (t - 1 ) / (0 + v(0 = 0, withy(O) = 0 
19. Solve the Laguerre equation ty"(t) + ( 1 - 0 / ( 0 + / 0 = 0, with y(0) = 1. 
20. Solve the Laguerre equation / / ( / ) + ( 1 - 0 / ( 0 + 2y(/) = 0, with y(0) = 1. 
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11.9 Inverting the Laplace Transform 

So far, most of the applications involving the Laplace transform involve a transform 
(or part of a transform) that is expressed by 

(1) Y(s) = ~^-L, 
Q(s) 

where P and Q are polynomials that have no common factors. The inverse of Y(s) 
is found by using its partial fraction representation and referring to Table 11.2. We 
now show how the theory of complex variables can be used to systematically find 
the partial fraction representation. The first result is an extension of Lemma 8.1 to 
n linear factors. The proof is left for the reader. 

Theorem 11.19 (Nonrepeated Linear Factors) Let P(s) be a polyno­
mial of degree at most n — 1. If Q(s) has degree n, and has distinct complex 
roots a\, a2, . . . , an, then equation (1) has the representation 

(2) y(,) = 3!> .JR^fJ, 
(s - ai)(5 - a2) • • (s - a„) k=\ s - ak 

Theorem 11.20 (A Repeated Linear Factor) IfP(s) and Q(s) are poly­
nomials of degree \i and V, respectively, and \i < v + n and Q(a) 7̂  0, then 
equation (1) has the representation 

(3) w = rJL = ̂  + ^ 
(s ~ a)nQ(s) AT— l (s - a)k 

where R is the sum of all partial fractions that do not involve factors of the 
form (s — a) K Furthermore, the coefficients Ak can be computed with the 
formula 

I fln-k p(s) 
(4) A^V^^^mfork=x^---n-

Proof We employ the method of residues. First, multiplying both sides of 
equation (3) by (s — a)n gives 

(5) S | = 2 Ms - a)n~j + *W(* - <*)"• 

We can differentiate both sides of equation (5) n — k times to obtain 

ds"~k Q(s) p\ (k - j)\ ds"~k 

We now use the result in equation (6) and take the limit as s —> a. It is left as an 
exercise for the reader to fill in the steps to obtain 

d"~k P(s) 
lim - — - —— = (n - k)\ Ak9 ds"~kQ(s) s~>a 

which establishes equation (4). 
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EXAMPLE 11.24 Let Y(s) = s \ 4s +l. Find i£- l(^)). 
s(s - 1)3 

S o l u t i o n From equations (2) and (3) we can write 

s3 - 4s + 1 A3 A2 A, Bj_ 

s(s - 1)3 " (s - 1)3 0? - 1)2 s - \ s ' 

The coefficient B\ is found by the calculation 

s3 - As + 1 
Bx = Res[7, 0] = lim — — - = - 1 . 

.v-»o {s - \y 

The coefficients Ai, A2, and A3 are found by using Theorem 11.20. In this case, 
P{s) s3 - 4s + 1 

a = 1 and = , and we get 
Q(s) s h 

A3 = lim — - = lim = - 2 , 

A2 = — hm — — - = hm 2s - - I = 1, 
1! s-+i ds Q(s) .v->i \ s2/ 
1 t. J 2 P(s) 1 . / 2 \ ^ 

A! = — hm —r - j ~ = - hm 2 + - = 2. 
2! ,-̂ 1 ds2 Q(s) 2 ,-,1 \ s3} 

Hence, the partial fraction representation is 

- 2 1 _ 2 \_ 
Y(S) " (^ - 1)3 + (5 - 1)2 + s - 1 J ' 

and the inverse is 

v(t) = - t V + te' + 2e< - 1. 

T h e o r e m 11.21 (Irreducible Quadratic Factors ) Let P and Q be poly­
nomials with real coefficients such that the degree of P is at most 1 larger 
than the degree ofQ. IfT does not have a factor of the form (s — a)2 + b2, 
then 

™ v ^ P(S) P{S) 2A(. - a) - 2Bb 
(7) Y(s) = — = ^ , ,2lTY x = -T, ,2 , ,21 + *OX where 

Q(s) [(5 - a)2 + b2]T(s) [(s - a)2 4- b2] 

,«, , .~ ^ + U>) 
(8) A + iB = G'(* + ») 

Proof Since P, Q, and Q' have real coefficients, it follows that 

(9) P(a - ib) = P(a + » ) and Q\a - ib) = Q'(a + ib). 
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The polynomial Q has simple zeros at s = a ± ib, this implies that Q'(a ± ib) ¥= 0. 
Therefore, we obtain 

(10) Res[K, a ± » ] = lim ' ~ ^ »> ,„ « , ) = ^ ¾ ¾ , 
s-*a±a> Q(s) - Q(a ± ib) Q (a± ib) 

from which it is easy to see that 

(11) Res[F, a - ib] = Res[F, a - ib]. 

If we set A + iB = Res[F, a + ib] and use Theorem 11.19 and equations (8), (10), 
and (11), then we find that 

A + iB A - iB 
(12) Y(s) = + — + R(s). 

s — a — ib s — a + ib 

The first two terms on the right side of equation (12) can be combined to obtain 

(A + iB)(s - a + ib) + (A - iB)(s - a - ib) _ 2A{s - a) - 2Bb 

[(s - a)2 + b2] " [(s - a)2 + b2] ' 

and the proof of the theorem is complete. 

EXAMPLE 11.25 Let Y(s) = — —^ . Find 2-*(Y(s)). 
(s2 + 4)(52 + 9) 

Solution Here we have P(s) = 5s and Q(s) = s4 + 13s2 + 36, and the roots 
of Q(s) occur at 0 ± 2/ and 0 ± 3/. Computing the residues we find that 

» r v o i PW 5(2/) 1 
R e S [ y ' 2 ' ] = &&) = 4(2/)3 - 26(2/) = 2 ' ^ 

R e s r r 3 , _ « 3 0 5(30 - I 
KesLr, JIJ Q , ( 3 i ) - 4 ( 3 . ) 3 _ 2 6 ( 3 / ) 2 . 

We find that A\ + iB\ = - + 0/ and A2 + iB2 = - - + 0/, which correspond 

to a[ + /Z?i = 0 + 2/ and a2 + /Z?2 = 0 + 3/, respectively. Thus we obtain 

v / ^ 2(1)(5 - 0 ) - 2(0)2 , 2(-1)(^ - 0 ) - 2(0)3 5 5 
s2 + 4 52 + 9 52 + 4 52 + 9 ' 

and 

s-'o-w) = Wpr^j) - 2~'Gd^) = cos 2' ~cos 3fc 
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EXAMPLE 11.26 Find 3H(*W) if Y(s) = *,+ ** * + ' • 
s(s + \)l(sl + 1) 

Solut ion The partial fraction expression for Y(s) has the form 

D _Q_ C2 2A(s - 0 ) - 20(1) 
{S) s 5 + 1 ( 5 + 1 ) 2 (5 - 0)2 + 12 ' 

Since the linear factor 5 is nonrepeated, we have 

53 + 3s2 - s + 1 

7-io (̂  + D V + 1) 

Since the factor s + 1 is repeated, we have 

D = Res[Y(s), 0] = lim ,_ t t , „ = 1. 

. d 53 + 3s2 - s + 1 ,. - 3 ^ 4 + 4^3 - 1 
C, = RcITO. -1] = bm - ^ + 1} = hm ^ + 1)2 = ^-

C2 = Res[(5 + 1)7(5), - 1 ] = lim ——— = - 2 . 
.v->-l 5(5 2 + 1 ) 

The term 52 + 1 is an irreducible quadratic, with roots ±z, so that 

53 + 3s2 - 5 + 1 1 - / 
A + iB = Res[7, /] = lim = — - , 

A /̂ 5(5 + \y(s + 0 2 

and we obtain A = y and £ = - y . Therefore, 

1 - 2 - 2 2|(5 - 0 ) - 2 ( - | ) ( l ) 
W 5 5 + 1 (5 + 1)2 (5 - 0)2 + 12 

__ J_ 2 2 _ _ 5 + 1 

~ 7 ~ 5 + 1 " (5 + 1)2 52 + r 

Now we use Table 11.2 to get 

v(t) = 1 - 2e~r - 2te- ' + cos t + sin t. 

EXAMPLE 11 -27 Use Laplace transforms to solve the system 

y\i) = y(t) - x(t) with y(0) = 1, 
x'(t) = 5y(t) - 3x(t) x(0) = 2. 

Solution Let Y(s) and X(s) denote the Laplace transforms of y(t) and x(t), 
respectively. If we take the transforms of the two differential equations and get 

sY(s) - 1 = Y(s) - X(s\ 
sX(s) - 2 = 57(5) - 3X(s), 

which can be written as 

(5 - 1)7(5) + X(s) = 1, 
57(5) - ( 5 + 3)X(s) = - 2 . 
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Cramer's rule can be used to solve for Y(s) and X(s): 

Y(s) = 

X(s) = 

l l 
-s - 3 - 5 - 3 + 2 s + 1 

s - 1 1 
5 - 5 - 3 

Is - 1 
1 5 

I s - 1 
1 5 -

1 1 
- 2 1 
1 1 

s - 3 1 

(5 - 1)(-^ - 3 ) - 5 (s + 1)2 + 1 ' 

-2^ + 2 - 5 _ 2(5 + 1 ) + 1 
(5 - 1)(-5 - 3) - 5 " (5 + 1)2 + 1 

The solution is obtained by computing the inverse transforms: 

y(t) = e~'cos t, 
x(t) = e_,(2 cos t + sin t). 

According to equation (10) of Section 11.5, the inverse Laplace transform is 
given by the integral formula 

(13) f{t) = $-\F(s)) = — F(s)e« ds, 
Ml Ja()-l™ 

where G0 is any suitably chosen large positive constant. This improper integral is a 
contour integral taken along the vertical line s = a0 + h in the complex s = 
a + h plane. We shall show how the residue theory in Chapter 8 is used to evaluate 
it. Cases where the integrand has either infinitely many poles or has branch points 
is left for the reader to research in advanced texts. We state the following more 
elementary result. 

Pis) 
Theorem 11.22 (Inverse Laplace Transform) Let F(s) = ——, where 

P(s) and Q(s) are polynomials of degree m and n, respectively, and n > m. 
The inverse Laplace transformation F(s) is /(t) given by 

(14) ft) = £~l(F(s)) = Z tfe5[F(5)e?', skl 

where the sum is taken over all of the residues of the complex function F{s)esl. 

Proof Let a0 be chosen so that all the poles of F(s)est lie to the left of the 
vertical line s = a0 + IT. Let TR denote the contour consisting of the vertical line 
segment between the points o0 ± iR and the left semicircle CR: s = Go + Re'*, where 

- < 6 < — , as shown in Figure 11.27. A slight modification of the proof of Jor­

dan's lemma will show that 

P(s) 
(15) lim 

Q(S) 
e« ds = 0. 



446 Chapter 11 Fourier Series and the Laplace Transform 

The residue theorem and equation (15) can now be used to show that 

P(s) 
2-\F{s)) = lim ^-. I 

/?_>«, 27U J r R 
Q(s) 

est ds = 7L Res[F(5)es7, sk], 

and the proof of the theorem is complete. 

FIGURE 11.27 The contour r* in the proof of Theorem 11.22. 

Theorem 11.23 (Heaviside Expansion Theorem) Let P(s) and Q(s) be 
polynomials of degree m and n, respectively, where n > m. If Q(s) has n 

distinct simple zeros at the points s\, ^2, . 

transform of the function f(t) given by 

P(s) 
, sni then is the Laplace 

Q(s) 

(16) / (0 = 2 -
P(s) 

ci Q'(skf ' 

Proof If P(s) and Q(s) are polynomials and s0 is a simple zero of Q{s), then 

Res 
P(s) 
_Q(s) e

s\ s0 
= lim 

v-so Q(s) - Q(sQ) 

P(s0) 
PW = - ^ - e^. 

Q (so) 

This allows us to write the residues in equation (14) in the more convenient form 
given in equation (16). 

EXAMPLE 1 1 . 2 8 Find the inverse Laplace transform of the function given 

b y F(S) = ,3 + l/+s + 2 • 
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Solut ion Here we have P(s) = 4y + 3 and Q(s) = (s + 2)(s2 + 1) so that 
Q has simple zeros located at the points S] = — 2, s2 = i, and s3 = ~i. Using 

pt 9^ 8 - 1 - 3 
Q'(s) = 3s2 + 4s + 1, calculation reveals that ——— = = - 1 and 

P(±0 ±4/ + 3 1 _ 
= —-—— = "-*- / . Applying formula (16), we see that / ( t ) is given by 

P ( - 2 ) , P(i) . P ( - i ) 

G'(-2) G'(o e'(-i) 
= -e~2t + ( | - *>" + (y + *>~" 

eit _j_ e-it pit _ ^ - / Y 

= -e - 2 < + + 2 • 
2 2/ 

= —e~2t + cos t + 2 sin t. 

EXERCISES FOR SECTION 11.9 

For exercises 1-6, use partial fractions to find the inverse Laplace transform of Y(s). 

2 ^ + 1 „ 2s3 - s2 + 4s - 6 
L FW = ̂ 1 ) 2 - ™ = ? 

452 - 65 - 12 , 53 - 552 + 65 - 6 
3- ™ = ,(, + 2)(, - 2) 4- ™ = (, - If 

Is1 + 5 + 3 4 - 5 
5- ™ = (, + 2)(, - ly 6- K(i) = 7T1771 

7. Use a contour integral to find the inverse Laplace transform of Y(s) = 

8. Use a contour integral to find the inverse Laplace transform of Y(s) = 

52 + 4 
5 + 3 

(5 - 2)(52 + 1) 

For exercises 9-12, use the heaviside expansion theorem to find the inverse Laplace 
transform of Y(s). 

53 + 52 - 5 + 3 ^ „, x 53 + 252 - 5 + 2 
9. Y(s) = 10. Y(s) = 

s^ ~ s sD — s 
53 + 352 ~ 5 + 1 „ 53 + 52 + 5 + 3 

11. Y(s) = 12. Y(s) = 
s^ — s sD — s 

s3 _|_ 25
2 + 45 + 2 

13. Find the inverse of Y(s) = _ , < w , , .^ . 
(s2 + 1)(52 + 4) 

For problems 14-19, solve the initial value problem. 

14. / ( f ) + y(t) = 3 sin 2f, with y(0) = 0 and y'(0) = 3 
15. y"(t) + 2y'(0 + 5y(f) = 4«"', with y(0) = 1 and y'(0) = 1 
16. v"(0 + 2y'(t) + 2y(t) = 2, with y(0) = 1 and y'(0) = 1 
17. y"(0 + 4y(t) = 5<r', with y(0) = 2 and y'(0) = 1 
18. f(t) + 2y'(t) + y(f) = t, with y(0) = - 1 and y'(0) = 0 
19. f(t) + 3y'(0 + 2y(0 = 2/ + 5, with y(0) = 1 and y'(0) = 1 
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For problems 20-25, solve the system of differential equations. 
20. x'(0 = I0y(t) - 5x(t), y'(t) = y(t) - x(t), with x(0) = 3 and y(0) = 1 
21. x'{t) = 2y(t) - 3x(t), y'(t) = 2y(t) - 2x(t), with x(0) = 1 and y(0) = - 1 
22. jc'(r) = 2x(t) + 3y(t\ y'(t) = 2x(t) + y(t), with x(0) = 2 and y(0) = 3 
23. x'(t) = 4y(t) - 3x(t), y'(t) = y(t) - x{t), with x(0) = - 1 and y(0) = 0 
24. x'(t) = 4y(t) - 3x(t) + 5, y'(t) = ;y(t) - x(t) + 1, with x(0) = 0 and >(0) = 2 
25. jc'(r) = 8y(r) - 3x(t) + 2, y'(t) = y(t) ~ x(t) - 1, with x(0) = 4 and y(0) = 2 

11.10 Convolution 

Let F(s) and G(s) denote the transforms of /(t) and g(t), respectively. Then the 
inverse of the product F(s)G(s) is given by the function h(t) = (f * g)(t) and is 
called the convolution of /(f) and g(t) and can be regarded as a generalized product 
of/(0 and g(t). Convolution will assist us in solving integral equations. 

Theorem 11.24 (Convolution Theorem) Let F(s) and G(s) denote the 
Laplace transforms off(t) and g(t), respectively. Then the product given by 
H(s) = F(s)G(s) is the Laplace transformation of the convolution off and g 
and is denoted by h(f) = ( / * g){t), and has the integral representation 

(1) h(f) - ( / * g)(t) = \j(T)g{t - T) rfr, or 

(2) h(t) = (g */>(t) = £ g(r)f(t - T) dr. 

Proof The following proof is given for the special case when s is a real 
number. The general case is covered in advanced texts. Using the dummy variables 
a and T and the integrals defining the transforms, we can express their product as 

(3) F(s)G(s) = jQ f(c)e-«> da jQ g(>r)e-« <h 

The product of integrals in equation (3) can be written as an iterated integral: 

(4) F(s)G(s) = f" \f(o)e~^ do L(T) dr. 

Hold T fixed and use the change of variables t = a + T and dt = da, then the inside 
integral in equation (4) is rewritten to obtain 

(5) F(s)G(s) = j™ I f(t - i)e-s> dt L(T) di 

I fit ~ T)gfr)e-« dt dt. 

The iterated integral in equation (5) is taken over the wedge-shaped region in the 
(t, T) plane indicated in Figure 11.28. The order of integration can be reversed to 
yield: 

(6) F(s)G(s) =/;[/>- i)g(i)e~st dr dt. 
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The last expression can be written as 

(7) F(s)G(s) = Jo £ f(t - r)g(j) di e~st dt 

= ^ljt
of(t-T)g(7)d7 

which establishes the proof of equation (2). Since we can interchange the role of 
the functions f{t) and g(t), equation (1) follows immediately. 

FIGURE 11.28 The region of integration in the convolution theorem. 

TABLE 11.4 Properties of Convolution 

Commutative 
Distributive 
Associative 
Zero 

/ * g =g*/ 
f*{g + h)=f*g+f*h 
( / * g) * h = / * (g * h) 
/ * 0 = 0 

EXAMPLE 11.29 Show that <£,-* 
2s 

(s2 + 1)2 = t sin t. 

1 2s 
S o l u t i o n Let F{s) = , G(s) = J(t) = sin t, g(t) = 2 cos t, 

s1 + 1 sz + 1 
respectively. Applying the convolution theorem we get 

2E-
1 2;v 

f2 + 1 S2 + 1 
= %-\F(s)G(s)) 

l 
-i 2 sin(t — T) cos T dr 

= [2 sin t COS2T — 2 cos t sin T cos T] di 

= sin t (T + sin T cos T) — cos t sin2T 

= t sin t + sin2t cos t - cos t sin2t = t sin t. 
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EXAMPLE 1 1 . 3 0 Use the convolution theorem to solve the integral equation 

f(t) = 2 cos t - jQ (t - T)/(T) dr. 

Solution Letting F(s) = 2( /( / )) and using <£(/) = — in the convolution 
sl 

theorem we obtain 

_2j _1 
s2 + 1 s ^ ) = T T T - ^ ^ > -

Solving for F ( J ) we get 

2s3 2s 2s 
F{s) = (s1 + 1)2 s2 + 1 (s2 + 1)2 ' 

and the solution is 

/ (0 = 2 cos t - t sin t. 

Engineers and physicists sometimes consider forces that produce large effects 
that are applied over a very short time interval. The force acting at the time an 
earthquake starts is an example. This leads to the idea of a unit impulse function 
8(t). Consider the small positive constant a, then the function 8fl(0 is defined by 

(- for 0 < t < a, 
a 

0 otherwise. 

The unit impulse function is obtained by letting the interval in equation (8) go to 
zero, i.e., 

(9) 5(0 = lim 8,(0. 
fl-^0 

Figure 11.29 shows the graph of 8a(t) for a = 10, 40, and 100. Although 8(0 is 
called the Dirac delta function, it is not an ordinary function. To be precise it is a 
distribution, and the theory of distributions permits manipulations of 8(0 as though 
it were a function. For our work, we will treat 8(0 as a function and investigate its 
properties. 
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FIGURE 11.29 Graphs of y = 6fl(f) for a = 10, 40, and 100. 

EXAMPLE 11.31 Show that 2(8(0) = 1. 

Solution By definition, the Laplace transform of ba(t) is 

(10) 2(S„(0) = BaiOe-* dt= - e~st dt = . 
Jo Jo a sa 

Letting a —> 0 in equation (10), and using L'Hopital's rule, we obtain 

1 — e~sa se~s 

(11) 2(5(0) = lim 2(8^(0) = lim = lim 
a^0 a^0 Sa a^0 S 

= 1. 

We now turn our attention to the unit impulse function. First, consider the 
function fa{t) obtained by integrating 5^(0* 

(12) f0 
Ca(0 = Jo 8 . (T) di = < 

0 for t < 0, 

- for 0 < t < a, 
a 
1 f or a < t. 

Then it is easy to see that U0(t) = lim fa(t) (see Figure 11.30). 
a^0 
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y =/„<') y = u{)(t) 

, , ^t 
1 2 ' 1 2 

FIGURE 11.30 The integral of 8,,(0 is/„(f), which becomes 1/,,(f) when a -> 0. 

The response of a system to the unit impulse function is illustrated in the next 
example. 

EXAMPLE 1 1 . 3 2 Solve the initial value problem 

y"{t) + 4 / ( 0 + 13/t) = 35(0 with v(0) = 0 and / (0 - ) = 0. 

Solution Taking transforms results in (s2 + 4s + 13)7(^) = 356(6(0) = 3, 
so that 

Y(s) = 
s2 + 4s + 13 (s + 2)2 + 32 

and the solution is 

y(t) = e'2t sin 3t. 

Remark The condition / ( 0 ) = 0 is not satisfied by the "solution" y(t). Recall 
that all solutions using the Laplace transform are to be considered zero for values 
of t < 0. Hence the graph of y(t) is given in Figure 11.31. We see that / ( t ) has a 
jump discontinuity of magnitude +3 at the origin. This happens because either y(t) 
or / ( 0 must have a jump discontinuity at the origin whenever the Dirac delta func­
tion occurs as part of the input or driving function. 

FIGURE 11.31 The solution y = y(t) to Example 11.32. 
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The convolution method can be used to solve initial value problems. The 
tedious mechanical details of problem solving can be facilitated with computer soft­
ware such as Maple™, Matlab™, or Mathematica™. 

Theorem 11.25 (IVP Convolution Method) The unique solution to the 
initial value problem 

(13) ay"(t) + by'(t) + cy(t) = g(t) with y(0) = y0 and / ( 0 ) = y{ 

is given by 

(14) y(t) = u(t) + (h * g)(t\ 

where u(i) is the solution to the homogeneous equation 

(15) au"(t) + bu'(t) + cu(t) = 0 with u(0) = y0 and w'(0) = yu 

and h(t) has the Laplace transform given by H(s) = —: . 
as1 + bs + c 

Proof The particular solution is found by solving the equation 

(16) av"(t) + bv'(t) + cv(t) = g(t) with v(0) = 0 and v'(0) = 0. 

Taking the Laplace transform of both sides of equation (16) produces 

(17) as2V(s) + bsV(s) + cV(s) = G(s). 

Solving for V(s) in equation (17) yields V(s) = — • G(s). If we set 
as1 + bs + c 

H(s) = — , then V(s) = H(s) G(s) and the particular solution is given by 
as1 + bs + c 

the convolution 

(18) v(t) = (h * g)(t). 

The general solution is ;y(t) = u(t) + v(t) = u(t) + (h * g)(t). To verify that the 
initial conditions are met we compute 

y(0) = M(0) + v(0) = yQ + 0 = y0, 

and 

y\0) = M'(0) + v'(0) = ?i + 0 = yu 

and the proof of the theorem is complete. 

EXAMPLE 1 1 . 3 3 Use the convolution method to solve the IVP 

/ ' (0 + y(t) = tan t with y(0) = 1 and / ( 0 ) = 2. 
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Solut ion First solve u"(t) + u(t) = 0 with w(0) = 1 and w'(0) = 2. Taking 
the Laplace transform yields s2U(s) — s — 2 + U(s) = 0. Solving for U(s) gives 

5 + 2 
U(s) = — and it follows that 

s2 + 1 

u(t) = cos t + 2 sin t. 

Second, observe that //(s) = 
s2 4- 1 

v(r) = (h * g)(t) = I sin(f - 5) tan(s) ds 

[ COS iS I 
— — — - sin(t - s)] 
1 + sin sj 

and h(t) = sin t so that 

s=0 

= cos(t) In 
cos t 

1 + sin t 

Therefore, the solution is 

+ sin(t) 

v(t) = u(t) + v(t) = cos t + 3 sin t + cos(t) In 
cos t 

1 + sin t 

EXERCISES FOR SECTION 11.10 

For exercises 1-6, find the indicated convolution. 

1. t * t 
3 . ef * e2t 

2. t * sin t 

4. sin t * sin 2* 

For exercises 5-8, use convolution to find !£~l(F(s)). 

5. F(s) 

7. F(s) 

(s - 1)(5 - 2) 
1 

6. F(5) = -

8. F(5) 
S(S2 + 1) - - v~, ( j 2 + 1 ) ( 5 2 + 4 ) 

9. Prove the distributive law for convolution:/* (g + h) — f * g + f * g. 
10. Use the convolution theorem and mathematical induction to show that 

%-
1 1 

11. Find<£ 

(s - a)n) (n - 1)! 

s 
12. Find££-

^ - i / ' * "™ \s2 + i 
13. Use the convolution theorem to solve the initial value problem: 

y"(t) + v(f) = 2 sin t with y(0) = 0 and v'(0) = 0. 
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14. Use the convolution theorem to show that the solution to the initial value problem 
y"(t) + co2y(t) = /(f), with y(0) = 0 and y'(0) = 0 is 

a) Jo y(0 = ~ / ( T ) sin[oo(t - T)] dr. 
0) JO 

15. Find %( J e-*cos(t - T) dr). 16. Find # ( J (f - T ) V </T 

17. Let F(s) = i£(/(0). Use convolution to show that 

B̂ x-\-T)-k^*-

For exercises 18-21, use the convolution theorem to solve the integral equation. 

18. f(t) + 4 £ (t - T) / (T) d7 = 2 19. f(t) = *>' + Jj e ' - / ( T ) dr 

20. / (0 = 2t + J sin(f - T) / (T) </T 21. 6/(0 = 2t3 + J (' - T ) 3 / (T) </T 

For exercises 22-25, solve the initial value problem. 

22. y'\t) - ly'it) + 5y(t) = 25(0, with y(0) = 0 and y'(0) = 0 
23. fit) + ly'it) + yit) = 5(0, with y(0) = 0 and / ( 0 ) = 0 
24. / ( 0 + 4 / ( 0 + 3 / 0 = 25(0, with / 0 ) = 0 and / ( 0 ) = 0 
25. / ( 0 + 4 / ( 0 + 3y(0 = 25(f - 1), with / 0 ) = 0 and / ( 0 ) = 0 

For exercises 26-29, use the IVP convolution method to solve the initial value problem. 

26. / ( 0 - 2/(f) + 5y(t) = 8 exp(-t) with / 0 ) = 1 and / ( 0 ) = 2. 
27. / ( 0 + 2 / ( 0 + y(0 = t4 with y(0) = 1 and / ( 0 ) = 2. 
28. / ( 0 + 4 / ( 0 + 3y(0 = 24t2 exp(-t) with y(0) = 1 andy'(O) = 2. 
29. / ( 0 + 4 / ( 0 + 3y(0 = 2f exp(-t) with y(0) = 1 and / ( 0 ) = 2. 



Appendix A 
Undergraduate Student 
Research Projects 

The following list of journal articles and books is appropriate for undergraduate students. 
For this reason, several advanced and graduate-level textbooks have been omitted. Journal 
references include those accessible to students, such as, American Mathematical Monthly, 
Mathematics and Computer Education, and Two Year College Mathematics Journal. 
Instructors should encourage their students regarding research in the mathematical 
literature. The following list of topics is a starting point for either independent or group 
research projects. 

Analytic continuation: 4, 19, 46, 51, 52, 93, 106, 128, 129, 141, 145, and 166 
Analytic function: 21, 39, 62, 72, 86, 155, and 161 
Bieberbach conjecture: 49, 73, 108, 148, and 189 
Bilinear transformation: 12, 23, 24, 30, 36, and 43 
Cauchy integral formula: 13, 59, 107, 110, 118, 119, and 187 
Cauchy-Riemann equations: 21, 39, 62, 72, 86, 155, and 161 
Chaos: 11, 53, 54, 55, 57, 58, 142, and 168 
Computer graphics: 33, 34, 109, and 146 
Computer technology: 25, 28, 33, 34, 41, 57, 90, 92, 109, 110, 111, 120, 123, 130, 131, 

133, 140, 146, 152, 160, 162, 174, and 185 
Conformal mapping: 33, 34, 35, 37, 41, 47, 48, 75, 92, 93, 96, 130, 136, 146, 154, 159, 

164, 176, 180, and 182 
Construction of a regular pentagon: 114 
Contour integral: 5, 16, 81, 82, and 157 
Curvature: 12 
DeMoivre's formula: 103 
Dirichlet problem: 70, 71, 76, 77, 85, 98, 135, and 138 
Dynamical systems: 53, 54, 55, 58, and 143 
Euler's formula: 169 
Fluid flow: 37, 46, 91, 98, 124, 141, 145, 158, and 166 
Fourier transform: 15, 17, 69, 100, 149, and 159 
Fractals: 7, 8, 9, 11, 55, 57, 58, 78, 84, 101, 125, 126, 134, 139, 143, 167, 175, and 188 
Fundamental theorem of algebra: 6, 18, 29, 38, 60, 66, 150, 151, 170, and 184 
Geometry: 8, 26, 35, 78, 99, 114, 121, 123, 125, and 160 
Harmonic function: 2, 14, 28, 61, 69, 70, 71, 76, 77, 85, 98, 111, 113, 131, 135, 138, 158, 

and 165 
History: 87, 105, and 179 
Infinite products: 4, 19, 51, 129, 145, and 181 
Joukowski transformation: 37, 46, 91, 98, 124, 141, 145, 158, and 166 
Julia set: 144 and 177 
Laplace transform: 17, 40, 69, 129, 149, 159, and 186 
Liouville's theorem: 117 
Mandelbrot set: 31, 45, 56, 74, 125, 126, and 177 
Mobius transformation: 12, 23, 24, 30, 36, and 43 
Morera's theorem: 163 
Partial fractions: 10 and 63 
Poisson integral formula: 115 
Polya vector field: 25, 26, 27, and 83 
Pythagorean triples: 94 and 97 
Quaternions: 1, 132, 147, and 173 

456 
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Residue theorem: 22, 116, and 153 
Riemann mapping theorem: 4, 88, 106, 129, and 179 
Riemann surface: 99, 128, and 129 
Rolle's theorem: 64 and 127 
Roots: 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162, 171, 174, and 178 
Rouche's theorem: 68 and 172 
Schwarz-Christoffel transformation: 93, 159, and 164 
Series: 10, 83, 116, and 153 
Teaching: 7, 11, 24, 27, 33, 43, 74, 84, 90, 101, 102, 103, 105, 114, 123, 134, 137, 160, 

171, and 185 
Trigonometry: 80 
Winding number: 6, 51, 88, 141, and 166 
Zeros: 50, 65, 67, 102, 109, 120, 121, 122, 140, 152, 162, 171, 174, and 178 
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Answers to Selected Problems 

Section 1.1, The Origin of Complex Numbers: page 4 
~ _ l l _- _2_ 
«5. X\ — — 3 , Xo — 3 -, -^3 — 3 

Section 1.2, The Algebra of Complex Numbers: page 11 
1. (a) 8 - 6i (c) 6 - 8i (e) 2 + 2i (g) ^ + \i (i) =^ + ^/ (J) - 4 i 

2. (a) 1 (c) ^ (e) 2 (g) x] - y] (i) x\ + y\ (j) 3*?y, - y> 

Section 1.3, The Geometry of Complex Numbers: page 16 
1. (a) 6 + 4/ and - 2 + 2/ (c) /2^/3 and 2 
2. (a) 710 (b) V5 (c) 225 (d) x2 + v2 

4. (a) inside (b) outside 

Section 1.4, The Geometry of Complex Numbers, Continued: page 23 
1. (a) -7C/4 (c) 271/3 (e) -TC/3 (g) -TC/6 

2. (a) 4(cos n + i sin 7u) = 4e'K (c) 71 cos —- + i sin — J = le~'K/2 

\ ( n 7C \ 1 
(e) —I cos — + i sin — I = ~-einl2 (h) 5(cos 9 + / sin 6) = 5ei(i, 

where 8 = arctan y 
3. (a) i (c) 4 + /4./3 (e) Jl - ijl (g) ~e 2 

6. Arg(iz) = Arg(z) + (TC/2), Arg(-z) - Arg z - n, Arg(-iz) = Arg(z) - (7t/2), 
when z = Jl> + L 

11. All z except z = 0 and the negative real numbers. 

Section 1.5, The Algebra of Complex Numbers, Revisited: page 28 
2. (a) - 1 6 - / 1 6 ^ 3 (c) - 6 4 

r In 2nk\ r- . I n 2nk\ „ , 

5. V2 cosl - j + — I + ijl sml — + — I for k = 0, 1, 2 

6. 2 ± 2/, - 2 ± 2/ 

8. 2 c o s f y + y ) + /2 s i n [ y + y ) for * = 0, 1, 2, 3 

11. 1 - 2/ and - 2 + / 14. ±/ and 2 ± i 
16. 2 ^ 3 + 2i, - 4i, - 2^/3 + 2i 
Section 1.6, The Topology of Complex Numbers: page 36 

2. (a) z(t) = t + it for 0 ^ t < 1 
(b) z(t) = t + « for 0 ^ t ^ 1 
(d) z{t) = 2 - t + it for 0 ^ t ^ 1 

3. (a) z(r) = f + /r2 for 0 ^ r ^ 2 
(c) z(t) = 1 - t + /(1 - t)2 for 0 ^ t ^ 1 

4. (a) z(r) = cos t + i sin t for -TC/2 ^ t ^ 7C/2 
(b) z(0 = -cos t + i sin t for -TC/2 ^ t ^ TC/2 

5. (a) z(t) = cos t + / sin t for 0 ^ t ^ TC/2 
(b) z(t) = cos t - i sin / for 0 ^ * ^ 3TC/2 

7. The sets (a), (d), (e), (f), and (g) are open. 8. The sets (a)-(f) are connected. 
9. The sets (a), (d), (e), and (f) are domains. 10. The sets (a)-(f) are regions. 

11. The set (c) is a closed region. 12. The sets (c), (e), and (g) are bounded. 
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Section 2.1, Functions of a Complex Variable: page 40 
1. (a) 2 - 12/ (b) 1 - 33/ 2. (a) 74 - 12/ (b) 24 - 4/ 

3. (a) 6 + j (b) Y ~ T 5' (a) 1028 " 9S4i 

6. x2 + 2x + 3y - y2 + / ( - 3 * - 2xy + 2y) 
9. r5cos 56 + r3cos 30 + /(r5sin 50 - r3sin 30) 

10. (a) 1 (b) e (c) ^ + / - ^ (d) -4= + '"^ (e> "T + ^ 

(f) - ^ 2 
V2 Jl 

11. (a) 0 (b) y l n 2 + ~ (c) y In 3 (d) In 2 + — (e) In 2 + — 
4 6 3 

(f) In 5 + i arctan j -

13. (a) 0 (b) In Jl + — (c) In 2 + m (d) In 2 + — 
4 6 

Section 2.2, Transformations and Linear Mappings: page 47 
1. (a) the half plane v > 1 - u 2. the line u = - 4 + 4/, v = 6 - 3r 
3. (a) the disk | w - 1 - 5/1 < 5 
4. the circle u = —3 + 3 cos t — 4 sin t, v = 8 + 4 cos r + 3 sin t 
5. the triangle with vertices — 5 - 2 / and - 6 , 3 + 2/ 

3 + 2/ 7 + 9/ 
6. w= ^ > = — ^ — 

7. w = / ( z ) = -5z + 3 - 2 / 8. w - / ( z ) = yz + - ^ i £ 

Section 2.3, The Mappings w = -z^and w= zVn: page 52 
3. the region in the upper half plane Im(vv) > 0 that lies between the parabolas 

u = 4 - (v2/16) and u = (v2/4) - 1 
4. the region in the first quadrant that lies under the parabola u = 4 - (v2/16) 
7. (a) the points that lie to the extreme right or left of the branches of the 

hyperbola x2 — y2 = 4 
(b) the points in quadrant I above the hyperbola xy = 3, and the points in quadrant 

III below xy = 3 
10. (a) p > 1, 7t/6 < <|>< 7i/4 (b) 1 < p < 3, 0 < § < n/3 

(c) p < 2, -7i/2 < <|>< 7C/4 
11. the region in the w plane that lies to the right of the parabola u = 4 - (v2/16) 
13. the horizontal strip 1 < v < 8 
15. (a) 1 < p < 8, -37C/4 < <|>< rc (b) p > 27, In < <j)< 9TX/4 
16. (a) p < 8, 371/4 < § < 7i (c) p < 64, 37C/2 < <|>< 2n 
17. (a) p > 0, -71/2 < <|> < Ti/3 (c) p > 0, -n/4 < <>< K /6 

Section 2.4, Limits and Continuity: page 58 
1. - 3 + 5/ 2. (5 + 3/)/2 3. - 4 / 4. 1 - 4 / 5. 1 - \i 

10. (a) i (b) ( - 3 + 4/)/5 (c) 1 (d) The limit does not exist. 
12. Yes. The limit is zero. 
14. No. Arg z is discontinuous along the negative real axis. 
15. (a) for all z (b) all z except ±/ (c) all z except - 1 and - 2 
19. No. The limit does not exist. 
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Section 2.5, Branches of Functions: page 63 
1. (a) the sector p > 0,n/4 < 0 < n!2 (b) the sector p > 0, 5nl4 < § < 3n/2 

(c) the sector p > 0, -n/4 < ty < n/4 (d) the sector p > 0, 3n/4 < <\> < 5n/4 
4. for example,/(z) = rl/2cos(6/2) + *>l/2sin(6/2), where r > 0, 0 < 9 ^ 2n 
5. (b) the sector p > 0, -TC/3 < <|> ^ n/3 

(c) everywhere except at the origin and at points that lie on the negative x axis 

Section 2.6, The Reciprocal Transformation w= Mz\ page 70 

1. the circle | w + y/1 = y 3. the circle | w + -£-1 = -£-

5. the circle | w - 1 + * | = Jl 7. the circle | w — •§•1 = \ 

Section 3.1, Differentiable Functions: page 75 
1. (a) f'(z) = \5z2 - 8z + 7 (c) h'(z) = 3/(z + 2)2 for z * -2 
3. Parts (a), (b), (e), (f) are entire, and (c) is entire provided that g(z) i^ 0 for all z. 
7. (a) -4¾ (c) 3 (e) - 1 6 

Section 3.2, The Cauchy-Riemann Equations: page 83 
1. (c) ux = vv = —2(y+ 1) and uy = — vv = -2x. Then/'(z) = ux + ivx = 

-2{y + 1 ) + ilx. 
2. f'(z) = f"(z) — evcos y + /evsin y 3. a = 1 and b = 2 
4. /(z) = //zand/'Cz) = - ½ 2 

5. wv = vv = 2e2xy[y cos(y2 - x2) + x s'm(y2 — x2)], 
wv — -vA = 2e2xy[x cos(y2 — x2) — y sin(y2 — x2)] 

6. (c) ux = -evsin x, vv = e-vsin x, M_V = evcos JC, — vv = —evcos x. The Cauchy-
Riemann equations hold if and only if both sin x = 0 and cos x = 0, which 
is impossible. 

8. ux == vv = 2x, uY = 2y, and vx = 2y. The Cauchy-Riemann equations hold if and 
only if y = 0. 

2 1nr 1 1 2 6 - 1 - 1 
10. ur = = — (2 In r) = — ve, vr = — = — (-20) = — we. 

r r r r r r 
2 

f'(z) = e~l\ur + ivr] = — e-'»(\n r + /6). 
r 

Section 3.3, Analytic and Harmonic Functions: page 92 
3. / i s differentiable only at points on the coordinate axes./is nowhere analytic. 
4. / i s differentiable only at points on the circle \z\ — 2./is nowhere analytic. 
5. (a) / i s differentiable inside quadrants I and III. (b) / i s analytic inside 

quadrants I and III. 
8. c = ~a 9. No. v is not harmonic. 

10. (a) v(x, y) = x3 — 3xy2 (c) u(x, y) = — e-vcos x 
12. Ux(x, y) = ux(x, -y), Uxx(x, y) = uxx(x, -y\ Uy(x, y) = -uy(x, -y\ 

Uyy(x, y) = uyy(x, — v). Hence, Uxx + UYY = uxx + Uyy = 0. 

Section 4.1, Definitions and Basic Theorems for Sequences 
and Series: page 108 

1. (a) 0 (b) 1 (c) i (d) i 8. No. 12. Yes. 16. Yes. 

Section 4.2, Power Series Functions: page 114 
4. (a) R - - (b) R = 0 (c) R = | 

Section 5.1, The Complex Exponential Function: page 130 
5. (b) Horizontal lines given by the equation y — k are mapped under/(z) = exp z 

to rays having angles 0 = k with the positive real axis. In the figure, the 
horizontal lines are approximately given by v = —ln/&, y = n/4, and y = 
37T./4. 
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Section 5.2, Branches of the Complex Logarithm Function: page 137 
2 + in/2 (c) In 2 + 3TC//4 

In 3 + /(1 + 2n)n, where n is an integer 
In 4 + /*(y + 2n)n, where n is an integer 
(e 72/2)(1 - /) (c) 1 + /(-1/2 + 2n)n, where n is an integer 
(2z - l)/(z2 - z + 2) (b) 1 + logz 
ln(x2 + y2) = 2 Re(log z). Hence it is harmonic. 14. (b) No. 
No. The equation does not hold along the negative x axis. 
f(z) = In | z + 2 | + / arg(z + 2), where 0 < arg(z + 2) < 2n 

h(z) = In | z + 2 | + / arg(z + 2), where -7C/2 < arg(z + 2) < 3n/2 

Section 5.3, Complex Exponents: page 142 

cos(ln 4) + i sin(ln 4) (b) e 4 [COS(K In 7 ¾ + i sin(7t In 7 ¾ ] 
cos 1 + / sin 1 
g-(i/2+2n)n where n is an integer 
cos[72(1 + 2n)7t] + / sin[v/2(l + 2/I)TC], where AT is an integer 
cos(l + An) + / sin(l + An), where n is an integer 

1 cos(oc - 1)0 + lar0 - 1 sin(a - 1)6, where -n < 8 < n 
ya+ib = e«2nncos fr2nn + iea2nnsin b2nn, where n is an integer 

Section 5.4, Trigonometric and Hyperbolic Functions: page 151 
9. (a) cos(l + /) = cos 1 cosh 1 — / sin 1 sinh 1 (c) sin 2/ = / sinh 2 

(n + 2/\ _ 1 + / sinh 1 
\ 4 / cosh 1 

10. (a) [-cos(l/z)]/z2 (c) 2zsecz 2 tanz 2 

14. (a) z = (y + 2n)7C ± 4/, where rc is an integer 
(c) z = 2nn + / and z = (2n + l)n — /, where n is an integer 

, , x • , , / ^ , / 4 - m \ cosh 1 sinh 1 
23. (a) sinh(l + in) = —sinh 1 (c) cosh I = —7= /• 

1. 
2. 

3. 
8. 

12. 
15. 
16. 

Sec 

1. 

2. 

4. 

6. 
13. 

(a) 
(a) 
(b) 
(a) 
(a) 
(a) 
(a) 
(a) . 
(c) 

tion £ 

(a) 
(c) 
(a) 
(b) 
(c) 

(-D; 

ocr"-' 
No. 1 

72 J2 
26. (a) z = (rc/6 + 2TC«)/, and z = (5rc/6 + 2n«)/, where n is an integer 
27. (a) sinh z + z cosh z (c) tanh z + z sech2z 

Section 5.5, Inverse Trigonometric and Hyperbolic Functions: 
page 156 

1. (a) (y + 2n)n + / In 2, where n is an integer 
(b) 2nn + / In 3, where n is an integer 
(c) (y + 2n)n ± / ln(3 + 272), where n is an integer 
(e) — (y + n)n + / In 7 3 , where « is an integer 

2. (a) /(y + 2^)71, where n is an integer 
(b) In 2 + i2nn, and —In 2 + i(2n + \)n, where n is an integer 
(c) ln(>/2 + 1) + /(y + 2n)7t and ln(72 - 1) + i ( - y + 2/i)rc, where n is an 

integer 
(e) /(y + n)n, where n is an integer 

Section 6.1, Complex Integrals: page 160 

1. 2 - 3/ 2. - f - 6/ 3. 1 4. 2 - arctan 2 - / ln75 
5. /̂271/8 + 72/2 - 1 + /(72/2 - 72TC/8) 
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Section 6.2, Contours and Contour Integrals: page 173 
2. C,: z\(t) = 2 cos t + il sin t for 0 < t < rc/2, C2: z2(0 = - t + /(2 - t) for 

0 < r < 2 
3. C,: zi(t) = ( - 2 + 0 + /r for 0 < t < 2, C2: z2(0 = t + 2/ for 0 < t < 2, 

C3: z3(t) = 2 + /(2 - t) for 0 < t < 2 
4. (a) The Riemann sum approximation simplifies to - 2 ^2 + 2 = 

-0.828427. 
(b) The exact value is — \ . 

6. (a) 3/2 (b) Tt/2 7. (a) - 3 2 / (b) -8n i 8. 0 9. 32ni 10. / - 2 
11. 1 12. - 1 + 2 / / 3 15. -4-ni 16. -2n i 17. 0 18. -2e 

Section 6.3, The Cauchy-Goursat Theorem: page 188 
4. (a) 0 (b) 2ni 5. (a) 4ni (b) 2TC/ 6. 4ni 7. 0 
8. (a) K//4 (b) -7t//4 (c) 0 9. (a) 0 (b) -2ni 11. -4/ /3 12. 0 

Section 6.4, The Fundamental Theorems of Integration: page 194 
1. | + 3 / 2. - 1 + /[(71 + 2)/2] 3. / - e2 4. -7 /6 + //2 
6. 2 - /2 sinh 1 7. (rc/2e) - e2 - /(e27t + 2/e) 9. - 1 - sinh 1 + cosh 1 

10. /[1/2 - (sinh 2)/4] 11. In ^2 - TC/4 + /(In ^2 + nl4 - 1) 
13. In y iO - In 2 + / arctan 3 = In ^/5/2 + / arctan 3 or 

In V5/2 + /(7C/4 + arctan 1/2) 

Section 6.5, Integral Representations for Analytic Functions: page 199 
1. 4ni 2. ni 3. -ni/2 4. 2TU73 6. -7C//3 7. 2TU 
9. 2niV(« - 1)! 10. (a) -ni/S (b) e4(m/64) 11. (n - in)/8 

12. (a) 7i (b) -7i 13. (a) in sinh 1 (b) in sinh 1 14. JT/2 

Section 6.6, The Theorems of Morera and Liouville and Some 
Applications: page 206 

1. (z + 1 + i)(z + 1 - i)(z - 1 + 0 k - 1 - 0 2. (z - 1 + 2i)(z + 2 - / ) 
3. (z + i)(z - i)(z - 2 + /)(z - 2 - / ) 4. (z - i)(z - 1 - i)(z - 2 - / ) 
7. (a) 18 (b) 5 (c) 8 (d) 4 8. J\ + sinh2 2 9. | / (3 )(1)| < 

^ - f >»• i/«»,i<™.f 
Section 7.1, Uniform Convergence: page 213 

1. (b) Since Sn(x) = 1 - x + x2 - x3 + • • • + (l)"-'*"-1 , and since the graph of 
Sn(x) is above that of/(x), the last term, xn~\ must have an even exponent 
(explain.), so the index must be odd. 

Section 7.2, Taylor Series Representations: page 221 
7. The series converges for all z e D2(l). 14. (a) f (3)(0) = 48 

Section 7.3, Laurent Series Representations: page 230 

1. (a) J ) z"-3for | z | < 1 (b) - X - T ^ f o r | z | > 1 
00 ^ 1 "\n9 2« + I -,2« - 3 - (_ i y i 

2- a'£.+,;, f°'i'i>° «• S O J T ^ ' * | ' | > O 

9-4«-7 

9 . ^ + 2 ^ ± ^ f o r | z | < 4 , | : ^ f o r | Z | > 4 
16z «=o 4"+3 ' ' „=i z"+2 ' ' 
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Section 7.4, Singularities, Zeros, and Poles: page 238 
zeros of order 4 at ±/ (c) simple zeros at — 1 ± / 
simple zeros at ±i and ±3/ 
simple zeros at (^/3 + /)/2, ( - ^/3 ± /)/2, and ±/ 
zeros of order 2 at (1 + /^/5)/2 and - 1 
simple zeros at (1 ± /)/^/2 and ( - 1 ± i)l Jl, and a zero of order 4 at the 
origin 
poles of order 3 at ±i, and a pole of order 4 at 1 
simple poles at ( ^3 ± /)/2, ( - 7 3 ± /)/2, and ±/ 
simple poles at ±y/3i and ±i/^/3 
simple poles at z ~ nn for n = ±1, ±2, . . . 
simple poles at z = nn for n ~ ±\, ±2, . . . , and a pole of order 3 at 
the origin 
simple poles at z = 2nni for n = 0, ±1, ±2, . . . 
removable singularity at the origin (c) essential singularity at the origin 
removable singularity at the origin, and a simple pole at — 1 
removable singularity at the origin 
- / ) / 1 6 8. -1 /4 9. 3 

a nonisolated singularity at the origin 
simple poles at z = i/nn for n = ±1, ±2, . . . , and a nonisolated singularity 
at the origin 

Section 7.5, Applications of Taylor and Laurent Series: page 243 
2. No. 
3. Yes. 
4. No. 
7. b. /<6>(0) = 0;/<7>(0) = 272 

1. 

2. 

3. 

4. 

5. 
6. 

7. 
20. 
21. 

(a) 
(e) 
(a) 
(c) 
(e) 

(a) 
(c) 
(e) 
(a) 
(0 

(e) 
(a) 
(a) 
(c) 
( - 1 
a no 
simi 

Section 8.2, Calculation of Residues: page 251 

1. (a) 1 (b) 8 (c) 1 (d) 5 2. (a) 1 (b) - | (c) 0 (d) 1 
3. (a) e (b) 1/5! (c) 0 4. (a) \ (b) 4 (c) | 
5. (K + /7t)/8 6. (7i + in)/2 
7. ( l - c o s l ) 2 7 t / 8. / 9. /2TI sinh 1 10. (a) 0 (b) -4TE//25 

11. (a) Ti/3 (b) (71/6)(3-/75) 12. (a) -71/(87¾) (b) 7x373/8 
13. (a) 71/72 (b) -7T//6 14. ni/3 15. 2TC//3 

1 1 2 1 1 2 3 
18. (a) - J - - - — (b) - — + (c) V -z + 1 z + 2 z + 1 z-2 zr z z + 4 

. ^ 2 z 2 z i , 2 - ! 2 

z2 + 4 Z2 + 9 Z - 1 (Z - 1)2 (Z - 1)3 

Section 8.3, Trigonometric Integrals: page 256 
2. 2TC/3 4. 7i/3 6. 27X/9 8. IOTT/27 10. 8TT/45 12. 10rc/27 14. 4TT/27 

Section 8.4, Improper Integrals of Rational Functions: page 260 
2. TI/4 4. 71/18 6. TC/4 8. TT/64 10. TC/15 12. 2TC/3 

Section 8.5, Improper Integrals Involving Trigonometric Functions: 
page 264 

n A 3n , 71 / 1 1 \ n 7i cos 2 ^^ 7t cos 1 _ n cos 2 
2. 0 and — 4. - - - 6. — — 8. 10. 12. — 

es Ybe1 3 \ e 2e~/ e e e~ 
Section 8.6, Indented Contour Integrals: page 269 

2. 0 4. 71/̂ /3 6. 7i/V3 8. 7t(l - sin 1) 10. y 12. 7t(2 sin 2 - sin 1) 
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i 
— 
2 
(1 

1 
= — 

2 
- 0/21 

, a = 0, 1 11 = 1 1 ' 
= J2I2\ a = -nil, 

Section 8.7, Integrands with Branch Points: page 273 

2. 71 4. Kljl 6. -7C/4 8. {\na)ia 

Section 9.1, Basic Properties of Conformal Mapping: page 286 

1. (b) all z except z - — + Inn (d) all z except z = 0 (f) all z except z = 1 

2. a = 7t, | -11 = 1; a = TT/2, 

3. a = 0, | 1 | = l ; a = -n/4, 
\-i\ = l ; a = 7t, | - 1 | = 1 

5. a = -TC/2, I — ( sinh 1 | = sinh 1; a = 0, | l [ = 1; a = 7t/2, | i sinh 1 | = sinh 1 

Section 9.2, Bilinear Transformations: page 294 
— 2w ~\~ 2 iw — i 

1. S~](w) = 2. S~](w) = 3. the disk I w\ < 1 
(1 + i)w - 1 + i w + 1 ' l 

5. the set w > 1 6. w = 7. w = 9. w = 1 1 3z - i z + 1 1 + z 
_ , _ 6 

11. the disk I w I < 1 12. 5,(52(z)) = 
1 1 2z + 3 

13. the portion of the disk | w | < 1 that lies in the upper half plane Im(w) > 0 

Section 9.3, Mappings Involving Elementary Functions: page 302 
1. the portion of the disk | w | < 1 that lies in the first quadrant u > 0, v > 0 
2. {pe*: 1 < p < 2, 0 < § < nil} 3. the horizontal strip 0 < Im(w) < 1 
4. {u + iv: 0 < u < 1, -7i < v < K} 9. the horizontal strip 0 < Im(w) < % 

10. the horizontal strip 7i/2 < \m(w) < n 
12. the horizontal strip I v | < n slit along the ray u < 0, v = 0 
13. Z = z2 + 1, w = Z1'2, where the principal branch of the square root Z1/2 is used 
15. the unit disk | w \ < 1 

Section 9.4, Mapping by Trigonometric Functions: page 308 
1. the portion of the disk | w | < 1 that lies in the second quadrant u < 0, v > 0 
3. the right branch of the hyperbola u2 - v2 = y 
5. the region in the first quadrant u > 0, v > 0 that lies inside the ellipse 

[i/2/(cosh2l)] + [v2/(sinh2l)] = 1 and to the left of the hyperbola u2 - v2 = \ 
7. (a) K/3 (b) -571/6 
8. (a) 0.754249145 + /1.734324521 (c) 0.307603649 - /1.864161544 

10. the right half plane Re(w) > 0 slit along the ray v = 0, u > 1 
12. the vertical strip 0 < u < 7t/2 
14. the semi-infinite strip — 7C/2 < u < 7C/2, v > 0 
16. the horizontal strip 0 < v < % 

Section 10.2, Invariance of Laplace's Equation and the Dirichlet 
Problem: page 321 

1. 15 - 9y 3. 5 + (3/ln2)ln | z | 
^ 4 6 3 4 y 
5. 4 Arg(z + 3) + — Arg(z + 1) Arg(z - 2) = 4 Arctan - -— 71 7t K 71 X + 3 

6 y 3 y 
H Arctan 7 Arctan • -7C X + 1 7t X 
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6. — Arg(z2 + 1 ) + - Arg(z2 - 1 ) = — Arctan , , 
71 71 n x2 — y2 + 1 

1 A 2xy 
+ — Arctan — : 

K x- - y2 - 1 

8. 8 Arctan J 

K 2y 

10. 1 Argl i — = 1 Arctan 
n \ 1 - 1/z/ 71 2_y 

^ - 1 . / ^ - 2 , \ 1 A / - 1 - ^ , \ -1 A l - ; c 2 - ) > 2 

12. — Arg i + 1 + — Arg i 1 = — Arctan ^ 
n B\ 1 + z ) n &\ 1 + z J K 2y + (1 + xf + y2 

1 1 - x2 - y2 

_l Arctan : 
K 2v - ( 1 + x)2 - y2 

Section 10.3, Poisson's Integral Formula for the Upper Half Plane: 
page 326 

y (x - 1)2 + y2 x - 1 y x+ 1 y 
1. —- In H Arctan Arctan 1- 1 

2n {x + \)2 + y2 K x - 1 71 J + 1 
_ y A (x - 1)2 + y2 x A >> jt v 
2. — In r 1 Arctan Arctan — 

27C X2 + V2 71 JC - 1 7C JC 

Section 10.5, Steady State Temperatures: page 336 

2. 25 + 50(* + y) 4. 60 + - Arg( / f - ^ ) - — A r g h f ^ ~ l) 
K \ 1 + Z / K \ 1 + Z / 

200 x2 + y2 - 1 50 
6. 100 Arctan 8. 100 Arg z 

K 2y a 

10. Re(Arcsin ez) 12. 50 + Re(Arcsin iz) 
n n 

Section 10.6, Two-Dimensional Electrostatics: page 346 
100 , , 100 100 

1. 100 + — r i n k 2. 100 A r g ( z - l ) Arg(z + 1) 
In 2 ' 7t K 

200* 50 50 
3. 150 - 4. — Arg(sin z - 1) + — Arg(sin z + 1) 

xl + y2 7C % 
200 200 

5. 50 H Re(Arcsin z) 6. Arg(sin z) 
71 71 

Section 10.7, Two-Dimensional Fluid Flow: page 357 
3. (a) Speed = A | z \. The minimum speed is A | 1 - i | = A J2. 

(b) The maximum pressure in the channel occurs at the point 1 + i. 
5. (a) ^(r, 0) = ArV2 sin(30/2) 

Section 10.10, Image of a Fluid Flow: page 382 
- 2 

1. w = (z2 - 1)1/2 2. w = —[z(l - z2)1/2 + Arcsin z] 
K 

3. w = (z~ \)4 1 + - ^ - ) 4. w = ~zy2(z - 3) 
V 1 - a) 2 
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Section 10.11, Sources and Sinks: page 392 
2. F(z) = \og(z4 - 1) 3. F(z) = log(sin z) 4. F(z) = log(sin z) 

\\ - (z + X)xnr 

5. F(z) = log(z2 - 1) 7. w = 2(z + 1)1/2 + Log| 

"(z + D1/4 

8. w = 4(z + 1),/4 + Log 
(z + 1)]/4 + T] /Log 

1 + (z + 1)1/2 

I + (Z + l),/4~ 

+ in 

i - (z + I)1-
1 . i" . 1 1 + / 

9. w = — Arcsm z -\ Arcsin 1 
n n z 2 

10. w = 2(z + 1) 1/2 Log 
1 - (z + D1/21 
1 + (z + D,/2J 

Section 11.1, Fourier Series: page 403 

71 j=i 2] — 1 
7 , „ A _ A V ( ~ i y ^ sin[(2/ - l)f] 
? ' W ) " 71 h (V ~ 1)2 

2 ^ sin[(2y - l)t] 4 ^ sin[2(2/ - l)f] 
9. £/(t) = - 2 , — • 2J — ^ TT~ » w h e r e ^ = 0 for all w 

K j=\ 2 / - 1 71 7=i 2(2/ - 1) 
Section 11.2, The Dirichlet Problem for the Unit Disk: page 409 

1 , 0 • ftx
 4 V ^ - ' s i n [ ( 2 / - 1)6] 1. w(r cos 0, r sin 0) = — X 

71 jTi 2/ - 1 
- , a • m 4 V ( " l y - ' ^ - ' c o s ^ - 1)6] 
3. u{r cos 6, r sin 0) = — 2J 

K y= i 4 / - 1 

Section 11.4, The Fourier Transform: page 422 
sin w 

<?(*/«) 
7lW 

3. g(t/(0) = 
2 sin2 -— 

1 - cos w 2 

Section 11.5, The Laplace Transform: page 429 
I C€~cs p~cs 

3. %m)) = ±-2- — -e— 
s1 s sl 

6 4 5 
7. ^(3t2 - 4t + 5 ) = - - - + — 

5 3 5 2 5 

9 . #(<?2'-3) = 

vJ tr* «° c z c 

13. 2 -

17. <e-

^ 5 4 5 3 S2 

^T^) = 7 s i n 5 r 

6^ 
s2 - 4 

3<r2' + 3e2' = 6 cosh 2t 
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Section 11.6, Laplace Transforms of Derivatives and Integrals: 
page 433 

1. i£(sin t) = 
s2 + 1 

3. ££(sin20 = —^ 
s(s2 + 4) 

5. W _ L \ = _± + ±e4, 
\s(s - 4 ) / 4 4 

9. y(t) = 2 cos 3t + 3 sin 3t 
11. y(t) = - 2 + 2 cos It + sin It 
13. >>(/) = 2 + ^ 

1 3 
15. y(t) = - 1 e-' + —<?' = - 1 + sinh r + e' 

2 2 
17. y(t) = e~2! + e' Section 11.7, Shifting Theorems and the Step Function: page 437 

1. $(e< - te<) = ' + —i— 
( 5 - 1 ) 2 5 - 1 

5. F(s) = x 4 " +
A

2 ^ \ = e^cost 
\s- + 45 + 5/ 

7. F(5) = ie-M S~^ ) = ^-2rcos t + e-2'sin t 
\<5 + 2)2 + 1/ 

9. ^(£/2(/)(r - 2)2) = ?£_! 
5J 

11. 2(t/3)rM sintf - 3K)) = - f r T 
52 + 1 

i _ 2e~s + 2*r2v - f-3*' 
13. 2 ( / ( ) ) = — 

5 

15. < M ) = U2(t) + £/,(/) 

17. >>(/) = -<?-'cos t 
19. KO = 2e-'/2sin(f/2) 
21. y(/) = / V 
23. XO = [1 - 5(t - 7t/2)] sin / + (1 - sin t)Unl2{t) 
Section 11.8, Multiplication and Division by /: page 440 

6s 
3. <£(t sin 3r) = 

(52 + 9)2 

2&5 
9. <£(t sin bt) = (52 + b2)2 

52 + 1 \ \ 2{e< - cost) 
11. ^ " ! In. , . , -

13. y(t) = (/ + t2)e-< 
15. >>(/) = Cte< 
17. v(r) = C/ 
19. y(t) = 1 - / 
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Section 11.9, Inverting the Laplace Transform: page 447 

!. a-, (2LLL ) . - ,+3, , 

V*(s + 2)(s - 2)/ 

7. 2 ' ( - r^—:) = ^ - s i n 2f 
W2 + 4 / 2 

9. i£ . '*3 + * 2 - * + 3 
5 5 — 5 

-3 + e' + £ - ' + cos / + sin t = —3 + 2 cosh t + cos t + sin t 
15. y(t) = «r' + e 'sin 2t 
17. y{t) = e-' + cos It + sin 2t 
19. y(t) = 1 + f 
21. jc(t) = 2<-2' - *' 

y(0 = e 2/ - 2«?' 
23. jc(t) = -<?- ' + 2 t<r ' 

y(t) = /<r ' 

Section 11.10, Convolution: page 454 

1. 2 ( f * o = 7 
o 

3 . %{e< *e2t) = -e< + ?2' 

5. i£ -i( ) = -2e< + 2^2/ 

\(J - 1)(J - 2)/ 

7. W / , 1 , J = 1 - c o s t 
\s(s2 + 1)/ 

11. ^ - 1 ( j 3 ^ ) = *' + 5(r) 

13. y(t) = - t cos t + sin f 
s 15- 2 (£ e_T cos(f - T ) C/T = 

(.y + 1)(52 + 1) 

19. F(s) = and/(t) - e* 
s — 2 

2 
21. F(s) = 7 and/(0 = -sin / + sinh t 

s 4 - 1 

23. y(t) = te-1 

25. y(t) = (~e3~3' + el O^i(t) 
27. y(r) = 120 - 96t + 36f2 - 8/3 + t4 - 119<r' - 21te~r 

7 5 
29. j(t) = — *-' - 2/<?~2' e~^ 



COLOR PLATE 1 Newton's method applied 
to/(z) = z 3 + l . 

COLOR PLATE 2 The rabbit. 



COLOR PLATE 3 A zoom of the rabbit. 

COLOR PLATE 4 The Julia set for/fa) = z2 - \ .25. 



COLOR PLATE 5 A disconnected Julia set. 

COLOR PLATE 6 The Mandelbrot set (M). 



COLOR PLATE 7 A zoom on the upper portion of M. 

COLOR PLATE 8 A zoom on the upper portion of 
color plate 7. 
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Index

A

Absolute convergence, 99, 102, 107

Absolute value, 13, 15, 16

Addition of complex numbers, 5

Additive identity, 8

Additive inverse, 8

Airfoil, 360

d'Alembert's ratio test, 105, 111

Analytic function, 84, 85, 189

derivative formula, 78, 82

identity theorem for, 218

integral of, 189

maximum principle for, 202, 203

mean value principle for, 201

zeros of, 218, 234

Angle of inclination, 282, 370

Annulus, 224, 225

Antiderivative, 189, 192

Arc



simple, 31, 160

smooth, 30, 161

Arc length, 167

arcsin z, 152, 154, 305, 307, 335

arctan(y/x), 18, 92, 137, 314

arctan z, 152

Argument

of a complex number, 18

of a conjugate, 21

of a quotient, 21

principle value of, 19

Argument principle, 274

Arg z, 19, 132, 314

Associative law

for addition, 8

for multiplication, 9

Attracting point, 121

B

Bernoulli's equation, 353

Bessel function, 114, 231

Bilinear transformation, 287, 313

conformal, 294

fixed point of, 294

implicit formula for, 289, 292



inverse of, 287

Binomial series, 221

Bombeli, Rafael, 2

Boundary

insulated, 334, 338

point, 33

value problem, 314, 316, 406

Bounded function, 205

Bounded set, 35

Branch

of Arcsin, 153

of a function, 60, 132

integral around, 270

of logarithm, 132, 133, 135

of square root, 48, 60

Branch cut, 61

Branch point, 62

integrands with, 270-72

C

Cardano, Girolamo, 1, 2

Cauchy, A. L., 76

Cauchy-Goursat theorem, 179, 186

Cauchy-Hadamard formula, 111

Cauchy principle value, 257, 261, 265, 270



Cauchy product of series, 220

Cauchy-Riemann equations, 77, 79, 82

in polar form, 82

Cauchy sequence, 98

Cauchy's inequalities, 204

Cauchy's integral formulas, 195, 197, 216

Cauchy's residue theorem, 245

Cauchy's root test, 111

Cayley, Arthur, 116

Chain rule, 74, 171, 281

Charged line, 40, 342, 385

Circle, 31, 33, 68, 169, 184, 288

of convergence, 110

equation of, 31, 169, 184

Closed

contour, 31, 160

curve, 31, 160

region, 35

set, 34

Commutative law

for addition, 8

for multiplication, 9

Comparison test for series, 101

Complex

conjugate, 10



derivative, 71

differential, 167

exponents, 138

Fourier series, 418

function, 38

infinity, 65

integral, 157, 164, 166, 168

plane, 12

potential, 328, 351, 385

variable, 38
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Complex number, 1

absolute value of, 13

argument of, 18

conjugate of, 10

exponential form, 20

imaginary part of, 10

modulus of, 13

polar form of, 18

powers of, 24, 138

real part of, 10

roots of, 26, 27

Conformal mapping, 281, 317, 333, 352

angle of inclination, 282, 370

applications of, 329, 342, 349

bilinear, 287, 289, 292

inverse, 285, 287

properties of, 282, 285

scale factor of, 285

Schwarz-Christoffel formula, 370

Conjugate

of complex number, 10

of harmonic function, 87, 90, 329



Connected set, 34, 120, 176

Continuity, equation of, 350

Continuous function, 56, 57, 73, 398

Contour, 160, 162

closed, 31, 160

deformation of, 183

indented, 265

integral along, 164, 166, 168

length of, 167

simple closed, 31, 160

Convergence

absolute, 99, 102, 107

circle of, 110

of power series, 102, 109, 111, 112

radius of, 103, 110, 111, 112

of sequences, 96

of series, 99, 100, 103, 107, 110, 111, 112, 215, 225

uniform, 208

Weierstrass M-test, 210

Convolution theorem, 448

Cosine

Fourier series, 400

function, 143, 144, 260

cos z, 143, 144, 260



Critical point, 283

Cubic equation, 1, 2

Curve, 30, 160, 167, 171

closed, 31, 160

equipotential, 90, 342, 351

exterior of, 33, 176

interior of, 33, 176

length of, 167

level, 93, 328

opposite, 162, 170, 177

orthogonal families of, 90, 328

simple, 31, 160

smooth, 30, 161

Cycle, 123

n-cycle, 123

D

d'Alembert's ratio test, 105, 111

Damped system, 414

Definite integral, 192

Deformation of contour, 183

De Moivre's formula, 25

De Morgan, Augustus, 4

Derivative

definition of, 71



of exponential function, 125, 130

of hyperbolic function, 149

implicit, 136

of inverse hyperbolic functions, 155

of inverse trigonometric functions, 153

of logarithm function, 134

normal, 334

rules for, 73, 112

of series, 112

of trigonometric functions, 143, 144

Differential, 167

Differentiation, 71, 73, 78

definition of, 71

implicit, 136

rules for, 73, 112

of series, 112

Diffusion, 329

Dipole, 93, 393, 394

Dirichlet problem, 314, 406

N-value, 314, 316

unit disk | z | < 1, 406

upper half plane, 314

Disk, 32

Distance between points, 14



Distributive law, 9

Divergence

of sequences, 96

of series, 99

Division of complex numbers, 7, 8

Domain, 34

of definition of function, 38

multiply connected, 176

simply connected, 176

E

eiθ, 19, 20

ez, 125, 294

Elasticity, 329

Electrostatic potential, 40, 329, 342, 385

Entire function, 84, 205

Equation

Bernoulli's, 353
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Cauchy-Riemann, 77, 79, 82

of circle, 31

of continuity, 350

of curve, 31

Laplace's, 85, 312, 336

of line, 30, 162

parametric, 31, 160, 167, 171, 380

Equipotential curves, 90, 342, 351

Equivalence of x + iy with (x, y), 4, 5, 10

Essential singularity, 233, 242

Euler, Leonard, 4

Euler's formula, 19

Exponential form of complex number, 20

Exponential function, 125, 130, 294

derivative of, 125, 130

fundamental period strip, 128, 295

inverse of, 128, 132

mapping by, 129, 294

period of, 128

exp z, 125, 294

Extended Cauchy-Goursat theorem, 186

Extended complex plane, 66



Exterior, of curve, 33, 176

Exterior point, 33

F

Fatou, Pierre, 119

Ferro, Scipione del, 2

Fibonacci numbers, 222

Fixed point of

bilinear transformation, 294

a function, 121

Fluid flow, 89, 329, 349, 352, 360, 380

in a channel, 395

complex potential, 351, 385

about a cylinder, 355, 357

about Joukowski airfoil, 360

about a plate, 356, 360

through a slit, 359, 360

over a step, 381

velocity of, 89, 329

at a wall, 393, 394

Fontana, Niccolo, 1

Forced vibrations, 414

Fourier expansion, 399

Fourier integral, 261

Fourier series, 231, 397



cosine series, 400

expansion, 399

properties, 421

sine series, 400

Fourier transform, 418, 420

Fractal, 119

Fresnel integral, 222, 273

Function

analytic, 84, 85, 189

Bessel, 114, 231

bilinear, 287, 289, 292

bounded, 205

branch of, 48, 60, 132

complex, 38

continuous, 56, 57, 73

cosine, 143, 144

differentiable, 71, 77, 79, 82

domain of definition, 38

entire, 84, 205

exponential, 125, 130

harmonic, 85, 90, 199, 310, 407

hyperbolic, 144, 148

image of, 38, 63

implicit, 60, 289



integral of rational, 257

inverse of, 43, 152, 285

limit of, 53, 55, 57

linear, 43, 287

logarithmic, 132

meromorphic, 274

multivalued, 60

one-to-one, 41, 287

period of, 128, 145

principal value of, 48, 50, 60, 132

range of, 38, 62

rational, 257, 274

sine, 143, 144

stream, 351

tangent, 143

trigonometric, 143

zeros of, 25, 205, 234

Fundamental period strip, 128, 295

Fundamental theorem

of algebra, 25, 205

of integration, 189, 192

G

Gauss, Karl Friedrich, 4, 5, 11

Gauss's mean value theorem, 201



Geometric picture of complex numbers, 3, 5

Geometric series, 103

Goursat

Cauchy's theorem, 179, 186

Green's theorem, 177

H

Hadamard, Cauchy, formula, 111

Harmonic conjugate, 87, 90, 329

Harmonic function, 85, 199, 310, 407

applications of, 90, 310, 406

conjugate of, 87, 329

maximum principle for, 207
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Heat flow, 329, 330

Heaviside expansion theorem, 446

L'Hopital's rule, 74, 239, 248, 262

Hyperbolic functions, 144, 148

derivatives of, 149

identities for, 149

inverses of, 155

I

Ideal fluid, 89, 329, 349, 380

Identity theorem

for analytic function, 218

for series, 218

Image

of flow, 352, 360, 380

of function, 38, 60, 62

of source, 389

Imaginary

axis, 12

part of complex number, 1, 10

unit, 1, 9

Implicit differentiation, 136

Implicit form of bilinear transformation, 289, 292



Implicit function, 60, 289

Im (z), 10

Indefinite integrals

table of, 372

theorem of, 189

Indented contour integral, 265

Inequality

Cauchy's, 204

ML, 172

triangle, 15, 17, 171

Infinity, 66, 241, 287, 292

Initial point, 160

Insulated boundary, 334, 338

Integral

around branch points, 270

Cauchy principal value of, 257, 261, 265, 270

Cauchy's formula, 195, 197, 216

complex, 157

contour, 164, 166, 168

definite, 192

Fourier, 261

Fresnel, 222, 273

improper, 256, 257, 261

indefinite, 189



Leibniz's rule for, 197

line, 164, 166, 168

Poisson, 323, 407

of rational function, 257

representation for f(z), 195

table of indefinite, 372

theorem of indefinite, 189

trigonometric, 260, 261

Interior of curve, 33, 176

Interior point, 33

Invariance

of flow, 352, 380

of Laplace's equation, 312

Inverse of

bilinear transformation, 287, 289, 292

function, 41, 152, 285

hyperbolic function, 155

Laplace transform, 441, 445

sine function, 152, 154, 335

trigonometric functions, 152, 255, 335

Inversion mapping, 64

Irrotational vector field, 83, 89, 350

Isolated

point, 218



singularity, 232

zeros, 218

Isothermals, 329, 330

Iterates, 116

J

Jacobian determinant, 286

Jordan curve theorem, 35

Jordan's lemma, 262

Joukowski airfoil, 360

Julia, Gaston, 119

Julia set, 116, 120

L

Lagrange's identity, 29

Laplace's equation, 85, 312, 336, 406

invariance of, 314

in polar form, 93, 406

Laplace transform, 422

convolution, 448

of derivatives, 430

existence, 424

Heaviside expansion, 446

of integrals, 430

inverse, 441, 445

linearity, 425



properties, 424, 429

shifting theorem, 434

table of, 428

uniqueness, 425

unit step function, 434

Laurent series, 225, 244

Laurent's theorem, 225

Legendre polynomial, 200

Leibniz's rule, 197, 220

for integrals, 197

for series, 220
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Length of contour, 167

Level curves, 90, 328, 342, 351

L'Hopital's rule, 74, 239, 248, 262

Limit

of a complex function, 53, 55, 57

at infinity, 66, 70

of a sequence, 96

superior, 106, 111, 115

Line

of charge, 40, 342, 385

equation of, 30, 162

of flux, 329, 342

heat flow, 329, 330

integral, 164, 166, 168

Linear

approximation, 281

fractional transformation, 287, 289, 292

transformation, 42, 287

Lines of flux, 293, 329, 342

Liouville's theorem, 205

Logarithmic function

branch of, 132, 133



derivative of, 134

mapping by, 133, 135, 297

principal value of, 132

Riemann surface, 137

Log z, 132, 221, 232, 297

LRC circuit, 150

M

Maclaurin series, 214, 219

Magnetism, 329

Magnification, 43, 285

Mandelbrot, Benoit, 120

Mandelbrot set, 116, 121

MapleTM, 254, 266

Mapping

bilinear, 287, 289, 292

conformal, 281, 317, 333, 352

by exp z, 129, 294

linear, 42, 287

by Log z, 133, 135, 297

Möbius, 287, 289, 292

one-to-one, 41, 287

by l/z, 64

by sin z, 305

by trigonometric functions, 303



by zn, 47, 51, 285, 298

by z1/n, 47, 49, 52, 61, 63, 299

MathematicaTM, 254, 266

Mathematical models, 327, 342, 349, 385

electrostatics, 342, 385

ideal fluid flow, 89, 349, 380, 384

steady state temperatures, 329

Maximum principle

for analytic functions, 202, 203

for harmonic functions, 207

Mean value principle

for analytic functions, 201

Mechanical systems, 412

Meromorphic function, 274

ML inequality, 172

Möbius transformation, 287, 289, 292

Modulus, 13, 15, 16, 88, 202, 207

Morera's theorem, 201

M-test, 210

Multiplication of complex numbers, 6

Multiplicative inverse, 9

Multiply connected domain, 176

Multivalued function, 60



n-cycle, 123

Negative orientation, 162, 170, 177

Neighborhood, 32, 54, 84

Newton's method, 11618

Normal derivative, 334

nth root, 26, 27

principal value of, 51

N-value Dirichlet problem, 314, 316

Nyquist stability criterion, 277

O

One-to-one function, 41, 287

l/z, 9, 64

Open

disk, 32

neighborhood, 32, 54, 84

set, 34

Opposite curve, 162, 170, 177

Order of

pole, 233

zero, 234

Orientation, 31, 33, 160, 162, 170, 177

Orthogonal families of curves, 90, 328, 329, 342, 351

N



Parametric equations, 31, 160, 167, 380

Partial fractions, 186, 249

Partial sums, 99

Path, 160, 168

Path of integration, 164, 166, 168

Period of function, 128, 145

Period strip, 128, 295

Piecewise continuous, 398

Point at infinity, 66

Poisson integral formula

unit disk, 407

upper half plane, 323

P

Parameterization of curve, 31, 160, 167, 171
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Poisson kernel, 408

Polar coordinates, 18

Polar form of

Cauchy-Riemann equations, 82

complex number, 18

Laplace's equation, 93

Pole, 6, 233, 274

of order k, 233, 236, 237, 241, 247, 274

residue at, 247

simple, 237, 247

at singular point, 233

Polynomial

coefficients of, 29

factorization of, 206

Legendre, 200

roots of, 25, 205, 206

zeros of, 29, 205, 206

Positive orientation, 31, 33, 162, 170, 177

Potential, 90, 328

complex, 328, 351, 385

electrostatic, 40, 329, 342, 385

velocity, 329, 349, 351, 353



Powers, 24, 138

complex, 138

De Moivre's formula for, 25

rational, 140

Power series, 102, 109

Cauchy product of, 220

convergence of, 109, 111, 112

differentiation of, 112

division of, 240

multiplication of, 220

radius of convergence of, 109, 111, 112

uniqueness of, 218

Principal branch of

Arg z, 19

log z, 132

square root, 48, 60

zc, 138

z1/n, 51

Principal nth root, 48, 51, 60

Principal value of

arg z, 19

definite integrals, 257, 261, 265, 270

log z, 132

Principle



maximum, for harmonic functions, 207

maximum modulus, for analytic functions, 202, 203

Product of series, 220

Projects, 456

Punctured disk, 32

Q

Quotient

of numbers, 7, 8

of series, 240

R

Radius of convergence of power series, 109, 111, 112

Range of function, 38, 62

Rational function, 257, 274

Ratio test, 105, 111

Real axis, 12

Reciprocal transformation, 64

Region, 35

Removable singularity, 233

Reparameterization, 171

Research projects, 456

Residue, 244, 247

applications of, 257, 260, 261, 265, 270

calculation of, 247

at poles, 247



at singular points, 244

theorem, 245

Response, 415

Re (z), 10

Riemann

mapping theorem, 308

sphere, 66

sum, 16365

surface for log z, 137

surface for z1/2, 63

surface for , 301

theorem of, 241

Risch-Normal algorithm, 254

RLC circuit, 150

Root

of numbers, 26, 27

test for series, 107, 111

of unity, 26

Rotation transformation, 43

Rouche's theorem, 275

S

Scale factor, 285

Schwarz-Christoffel

formula, 370



theorem, 370

transformation, 370

Sequence, 96

Cauchy, 98

Series

binomial, 221

comparison test, 101

convergence of, 99, 107, 111, 112, 215, 225

differentiation of, 112

divergence of, 99

Fourier, 231, 397

geometric, 103

identity theorem for, 218

Laurent, 225, 244
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Maclaurin, 214, 219

power, 102, 109

product of series, 220

quotient of series, 240

ratio test for, 105, 111

representation of f(z), 109, 214

Taylor, 214, 215, 217

uniqueness of, 218

Simple

closed curve, 31, 160

pole, 237, 247

zero, 234

Simply connected domain, 176

Sine

Fourier series, 400

function, 143, 144, 260, 305

inverse of, 152, 154

Singular point, 84, 232

essential, 233, 242

isolated, 232, 244

pole at, 233

removable, 233



residue at, 247

Sink, 385

sin z, 143, 144, 260, 305

Smooth curve, 30, 161

Solenoidal vector field, 83

Source, 385

image of, 389

Sphere, 66

Square root, 48, 50, 60, 299

branch of, 60

principal, 48, 60

Riemann surface, 63

Steady state

part, 415

temperatures, 329

Stereographic projection, 66

Streamlines, 90, 329, 351

Strip, period, 128, 295

Student research, 456

Subtraction of complex numbers, 6

Sum, partial, 99

T

Table

of integrals, 372



of Laplace transforms, 428

Tangent vector, 161, 281, 370

tan z, 143, 148, 304

Tartaglia, 1, 2

Taylor series, 214, 215, 217

Taylor's theorem, 215

Temperature, steady state, 329

Terminal point, 160

Transformations

bilinear, 287, 289, 292

composition, 295, 304

conformal, 281, 317, 333, 352

by exp z, 294

Fourier, 418, 420

inversion, 64

Laplace, 424

linear, 42, 287

by log z, 133, 135, 297

Möbius, 287, 289, 292

by 1/z, 64

reciprocal, 64

rotation, 43

Schwarz-Christoffel, 370

by sin z, 305



by trigonometric functions, 303

by zn, 47, 51, 285, 298

by z1/n, 47, 49, 52, 61, 63, 299

Transient part, 415

Translation, 42

Triangle inequality, 15, 17

for integrals, 171

Trigonometric functions, 143

derivatives of, 143, 144

identities for, 146

integrals of, 25254, 26062

inverses of, 152, 154, 335

mapping by, 303

zeros of, 145

Two-dimensional

electrostatics, 342, 385

fluid flow, 89, 349, 380, 385

mathematical models, 327, 342, 349, 385

U

Unbounded set, 35

Undamped, 412

Uniform convergence, 208

Uniqueness of power series, 218

u(x, y), 38, 77, 79, 157, 329



V

Veblen, Oswald, 35

Vector field

irrotational, 83, 350

solenoidal, 83

Vector form of a complex number, 12

Velocity

of fluid, 89, 349, 351, 353

potential, 351

Vibrations in mechanical systems, 412

Damped system, 414

Forced, 414

v(x, y), 38, 77, 79, 157, 329
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W

Wallis, John, 3, 5

Weierstrass M-test, 210

Winding number, 277

Z

zn, 24, 47

zl/n, 26, 27, 51

zc, 138

1/z, 9, 64

Zero

of a function, 25, 205, 234, 274

isolated, 218, 274

of order k, 234, 236, 274

of polynomial, 25, 29, 205, 206

simple, 234

of trigonometric function, 145

Z-transform, 232
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