A Note on Parametrization

The key to parametrizartion is to realize that the goal of this method is to describe the location of all points on a geometric object, a curve, a surface, or a region. This description must be one-to-one and onto: every point must be described once and only once.

1 Parametrization of Curves in R^{2}

Let us begin with parametrizing the curve C whose equation is given by

$$
\begin{equation*}
x^{2}+y^{2}=4 \tag{1}
\end{equation*}
$$

i.e., a circle of radius 2 centered at the origin. We start by associating a position vector \mathbf{r} to each point (x, y) on C through the relation

$$
\begin{equation*}
\mathbf{r}=\langle x, y\rangle . \tag{2}
\end{equation*}
$$

The coordinates x and y in (2)are not arbitrary - they are related through equation (1). This means that we are free to assign a value to only one of the coordinates of a typical point on C; the other coordinate must be determined from the equation of the circle. For this reason we say C has one degree of freedom.

Choosing x as the parameter for C, we see from (1) that

$$
y= \pm \sqrt{4-x^{2}}
$$

where the positive square root describes those points on C that lie above the x-axis and the negative square root the points below the x-axis. The complete parametrization of C is

$$
\begin{equation*}
\mathbf{r}_{1}(x)=\left\langle x, \sqrt{4-x^{2}}\right\rangle \quad \text { and } \quad \mathbf{r}_{2}(x)=\left\langle x,-\sqrt{4-x^{2}}\right\rangle \tag{3}
\end{equation*}
$$

where $-2 \leq x \leq 2$ for \mathbf{r}_{1} and $-2<x<2$ for \mathbf{r}_{2}. Note that the points $(-2,0)$ and $(2,0)$ are arbitrarily assigned to \mathbf{r}_{1}. We can now use the parametrization of C to determine tangent vectors to C, plot C on a graphics software, or to perform a line integral around C.

Although the paramerization in (3) is adequate for the purpose of describing C, it is not the most convenient description of this curve. A more efficient way to view C is to use polar coordinates to describe its points: $x=2 \cos \theta, y=2 \sin \theta$, with $\theta \in[0,2 \pi)$. So C can also be parametrized as

$$
\begin{equation*}
\mathbf{r}_{3}(\theta)=\langle 2 \cos \theta, 2 \sin \theta\rangle, \quad \theta \in[0,2 \pi) . \tag{4}
\end{equation*}
$$

Note that \mathbf{r}_{3} in (4) does the job of both \mathbf{r}_{1} and \mathbf{r}_{2} in (3).
The parametrizations $\mathbf{r}_{1}, \mathbf{r}_{2}$ and \mathbf{r}_{3} are just a few ways out of the infinitely many ways that one could describe C. Here are three other parametrizations of the same curve:

$$
\begin{equation*}
\mathbf{r}_{4}(t)=\langle 2 \sin t, 2 \cos t\rangle, \quad t \in[0,2 \pi) \tag{5}
\end{equation*}
$$

where C is traversed in the clockwise direction,

$$
\begin{equation*}
\mathbf{r}_{5}(u)=\langle-2 \sin u, 2 \cos u\rangle, \quad u \in[0,2 \pi), \tag{6}
\end{equation*}
$$

where C is traversed in the counterclockwise direction (how is \mathbf{r}_{5} different from \mathbf{r}_{3} ?) and

$$
\begin{equation*}
\mathbf{r}_{6}(w)=\langle 2 \sin 2 w, 2 \cos 2 w\rangle, \quad w \in[0, \pi) . \tag{7}
\end{equation*}
$$

To understand the difference between \mathbf{r}_{4} and \mathbf{r}_{6}, compute the speed of a particle traveling around C according to these parametrizations.

Let us now consider parametrizations of other familiar curves. Any two dimensional curve whose equation is given by $y=f(x)$ can be parametrized as

$$
\begin{equation*}
\mathbf{r}(x)=\langle x, f(x)\rangle, \quad x \in(a, b), \tag{8}
\end{equation*}
$$

so, for instance, the straight line $y=m x+b$ can be viewed as

$$
\begin{equation*}
\mathbf{r}(x)=\langle x, m x+b\rangle . \tag{9}
\end{equation*}
$$

The circle of radius a centered at (b, c) is parametrized as

$$
\begin{equation*}
\mathbf{r}(\theta)=\langle b+a \cos \theta, c+a \sin \theta\rangle, \quad \theta \in(0,2 \pi] . \tag{10}
\end{equation*}
$$

The ellipse whose equation is given by $a^{2} x^{2}+b^{2} y^{2}=c^{2}$ is parametrized as (to see where the following expressions come from, divide $a^{2} x^{2}+b^{2} y^{2}=c^{2}$ by c^{2} and set the term containing x^{2} equal to $\cos ^{2} t$ and the one containing y^{2} to $\sin ^{2} t$)

$$
\begin{equation*}
\mathbf{r}(t)=\left\langle\frac{c}{a} \cos t, \frac{c}{b} \sin t\right\rangle \quad t \in(0,2 \pi) . \tag{11}
\end{equation*}
$$

2 Parametrization of Curves in R^{3}

Similar to curves in R^{2}, curves in R^{3} still have only one degree of freedom, that is, a single parameter is sufficient to describe the coordinates of a typical point on curves in R^{3}. As an example, consider the straight line C that connects the two points $P=(1,2,1)$ and $Q=(-1,1,3)$. Let $\mathbf{P}=\langle 1,2,1\rangle$ and $\mathbf{Q}=\langle-1,1,3\rangle$. Define $\mathbf{v}=\mathbf{Q}-\mathbf{P}=\langle-2,-1,2\rangle$. Note that \mathbf{v} is parallel to the line C. So every point S on C can be accessed by the vector

$$
\mathbf{S}=\mathbf{P}+t \mathbf{v}
$$

for some $t \in R$. So

$$
\begin{equation*}
\mathbf{r}(t)=\langle 1,2,1\rangle+t\langle-2,-1,2\rangle, \quad t \in R \tag{12}
\end{equation*}
$$

is a parametrization of C. In terms of coordinates, (12) is equivalent to

$$
\left\{\begin{array}{l}
x(t)=1-2 t \tag{13}\\
y(t)=2-t \\
z(t)=1+2 t
\end{array}\right.
$$

Every straight line C, whether in R^{2} or R^{3}, can be parametrized as

$$
\begin{equation*}
\mathbf{r}(t)=\mathbf{r}_{0}+t \mathbf{v}, \quad t \in R \tag{14}
\end{equation*}
$$

where \mathbf{r}_{0} is the position vector corresponding to a known point on C (such as $\langle 1,2,1\rangle$ in our previous example), and \mathbf{v} is a vector parallel to C. For instance, to find the parametrization of the line of intersection between the two planes $2 x-3 y+z=2$ and $x+y+z=0$, first we find a point on this line by setting $z=0$ in the equations of the planes and then solve for x and y to see that $\left(\frac{2}{5},-\frac{2}{5}, 0\right)$ lies on C. Next, we note that the vectors $\mathbf{n}_{1}=\langle 2,-3,1\rangle$ and $\mathbf{n}_{2}=\langle 1,1,1\rangle$ are normal to the planes. Therefore,

$$
\mathbf{v}=\mathbf{n}_{1} \times \mathbf{n}_{2}=\langle-4,-1,5\rangle
$$

is parallel to C. Therefore

$$
\begin{equation*}
\mathbf{r}(t)=\left\langle\frac{2}{5},-\frac{2}{5}, 0\right\rangle+t\langle-4,-1,5\rangle \tag{15}
\end{equation*}
$$

is a parametrization of C.
More complicated curves are parametrized similarly. Typical points on a curve C are accessed by a position vector \mathbf{r} of the form

$$
\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle
$$

For example, the parametrization $\langle\sin t, \cos t, t\rangle$ describes a helix in R^{3}. Or the intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=1$ is given by

$$
\begin{equation*}
\mathbf{r}(t)=\langle\cos t, \sin t, 1-\cos t-\sin t\rangle, \quad t \in(0,2 \pi] \tag{16}
\end{equation*}
$$

3 Parametrization of Surfaces

Surfaces in R^{3} are characterized by two degrees of freedom; one is allowed to vary two parameters independently to cover all points on a surface. The simplest examples are surfaces that are graphs of functions f that depend on two variables, $z=f(x, y)$. Such surfaces are often parametrized as

$$
\begin{equation*}
\mathbf{r}(x, y)=\langle x, y, f(x, y)\rangle, \quad a<x<b, \quad c<y<d \tag{17}
\end{equation*}
$$

For example, the surface $z=x^{2}+y^{2}$ over the unit square is parametrized as

$$
\begin{equation*}
\mathbf{r}(x, y)=\left\langle x, y, x^{2}+y^{2}\right\rangle, \quad 0<x<1, \quad 0<y<1 \tag{18}
\end{equation*}
$$

The cylinder $x^{2}+y^{2}=1$ is parametrized as

$$
\begin{equation*}
\mathbf{r}(\theta, z)=\langle\cos \theta, \sin \theta, z\rangle, \quad \theta \in(0,2 \pi], \quad z \in R \tag{19}
\end{equation*}
$$

while the cylinder $x^{2}+z^{2}=4$ is parametrized as

$$
\begin{equation*}
\mathbf{r}(\theta, y)=\langle 2 \cos \theta, y, 2 \sin \theta\rangle, \quad \theta \in(0,2 \pi], \quad y \in R \tag{20}
\end{equation*}
$$

The surface of the disk of radius a in the plane $z=b$ centered at the origin is given by

$$
\begin{equation*}
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, b\rangle, \quad u \in[0,1], \quad v \in(0,2 \pi] . \tag{21}
\end{equation*}
$$

Certain surfaces are best parametrized in spherical coordinates where

$$
\left\{\begin{align*}
x & =\rho \cos \theta \sin \phi, \tag{22}\\
y & =\rho \sin \theta \sin \phi, \\
z & =\rho \cos \phi
\end{align*}\right.
$$

For example, the cone $z^{2}=x^{2}+y^{2}$ can be parametrized as

$$
\begin{equation*}
\mathbf{r}(\rho, \theta)=\frac{\sqrt{2}}{2}\langle\rho \cos \theta, \rho \sin \theta, \rho\rangle, \quad \rho \in R, \quad \theta \in(0,2 \pi] . \tag{23}
\end{equation*}
$$

Similarly, the northern hemisphere of radius 3 centered at the origin may be parametrized as

$$
\begin{equation*}
\mathbf{r}(\theta, \phi)=3\langle\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi\rangle, \quad \theta \in(0,2 \pi], \quad \phi \in\left[0, \frac{\pi}{2}\right] . \tag{24}
\end{equation*}
$$

An alternative way of parametrizing this surface is as follows:

$$
\begin{equation*}
\mathbf{r}(x, y)=3\left\langle x, y, \sqrt{9-x^{2}-y^{2}}\right\rangle, \quad x^{2}+y^{2} \leq 9 . \tag{25}
\end{equation*}
$$

The boundary of this surface (the circle of radius 3 in the $x y$-plane and centered at the origin) is best parametrized using (24) by setting $\phi=\frac{\pi}{2}$ in that relation to get

$$
\begin{equation*}
\mathbf{r}(\theta)=3\langle\cos \theta, \sin \theta, 0\rangle, \quad \theta \in(0,2 \pi] \tag{26}
\end{equation*}
$$

Once a parametrization $\mathbf{r}(u, v)$ of a surface S is known, the vector

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}
$$

defines a normal vector to S.

4 Parametrization of Regions in R^{3}

Regions in R^{3} have three degrees of freedom. They are parametrized by $\mathbf{r}(u, v, w)$ where u, v and w take on values in respective intervals. For example, the region bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $z=-2$ and $z=1$ is paramterized as

$$
\begin{equation*}
\mathbf{r}(r, \theta, z)=\langle r \cos \theta, r \sin \theta, z\rangle, \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2 \pi, \quad-2 \leq z \leq 1 . \tag{27}
\end{equation*}
$$

The boundary of this region consists of three surfaces S_{1}, S_{2} and S_{3} given by

$$
\begin{cases}S_{1}: & \mathbf{r}_{1}(u, v)=\langle u \cos v, u \sin v,-2\rangle, \quad 0 \leq u \leq 1, \quad 0 \leq v<2 \pi, \tag{28}\\ S_{2}: & \mathbf{r}_{2}(u, v)=\langle u \cos v, u \sin v, 1\rangle, \quad 0 \leq u \leq 1, \quad 0 \leq v<2 \pi \\ S_{3}: & \mathbf{r}_{3}(u, v)=\langle\cos v, \sin v, u\rangle, \quad-2 \leq u \leq 1, \quad 0 \leq v<2 . \pi\end{cases}
$$

Similarly, the region inside the northern hemisphere of radius 2 is parametrized as follows:

$$
\begin{equation*}
\mathbf{r}(\rho, \theta, \phi)=\langle\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi\rangle, \quad 0 \leq \rho \leq 2, \quad 0 \leq \theta<2 \pi, \quad 0 \leq \phi \leq \frac{\pi}{2} \tag{29}
\end{equation*}
$$

The boundary of this region consists of two surfaces S_{1} and S_{2} given by

$$
\left\{\begin{align*}
S_{1}: & \mathbf{r}_{1}(\theta, \phi) & =2\langle\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi\rangle, \quad 0 \leq \theta<2 \pi, \quad 0 \leq \phi<\frac{\pi}{2}, \tag{30}\\
S_{2}: & \mathbf{r}_{2}(r, \theta) & =\langle r \cos \theta, r \sin \theta, 0\rangle, \quad 0 \leq r \leq 2, \quad 0 \leq \theta<2 \pi .
\end{align*}\right.
$$

