
1 Stochastic Simulation Algorithms for Bayesian
computation

1.1 Introduction

So far we discussed asymptotic methods for Bayesian computations, that is (a)
representing the posterior PDF

p(θ|D, I) =
p(D|θ, I)p(θ|I)

p(D|I)
(1)

by a Gaussian distribution using the Bayesian Central Limit Theorem, where

p(D|I) =

∫
Θ

p(D|θ, I)p(θ|I)dθ (2)

is the evidence, and (b) carrying out robust predictions of an output quantity
of interest (QoI) h(θ), formulated by multi-dimensional integrals of the form

E [h(θ)] =

∫
Θ

h(θ)p(θ|D, I)dθ (3)

with Θ being the domain of definition in the parameter space of θ. The integral
in (3) is one of the measures of uncertainty of the output QoI h(θ). It provides
the expectetion of the output QoI with respect to the posterior distribution
p(θ|D, I).

Asymptotic methods involve solving optimization problems as well as computing
the Hessian of the log of the posterior PDF. We have discussed in detail the
problems that arise and also the fact that the asymptotic methods are local
methods and thus provide approximate estimates.

Stochastic simulation methods such as variants of Monte Carlo algorithms are
powerfull tools in numerically representing the posterior PDF in (1) with sam-
ples drawn from the posterior distribution and also using these samples to com-
pute probability integrals of the type (2) and (3). These integrals are of the
general form

E [h(θ)] =

∫
Θ

h(θ)p(θ)dθ (4)

In the general case these integrals cannot be evaluated using analytical tech-
niques. Sampling methods provide useful techniques to approximate the value
of the integral, where the samples are drawn from the distribution p(θ). The
problem of sampling from a distribution is thus important. This problem is
presented first and then it is used to approximate the value of the integral by
the sampling estimate.

1.2 Sampling from Distribution

[Reference Book: Rubenstein(1981) - Monte Carlo Methods]
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Standard Uniform Distribution (SUD)

Let U be a uniformly distributed random variable. The PDF is given by

pU (u) =

{
1, if 0 ≤ u ≤ 1.

0, otherwise.
(5)

Let u(i), i = 1, · · · , N be the random samples drawn from the SUD. Any com-
mercial software program can generate samples (pseudo-random number) from
a SUD pU (u). It is assumed herein that such samples are available. Details
for generating samples or psuedo-random numbers can be found in a number of
reference (e.g. Rubenstein 1981). The SUD samples are useful for generating
samples from arbitrary distributions as it is duiscussed next.

Sampling from Arbitrary Distributions

Let X be a random variable (RV) that follows a PDF pX(x) and cumulative
density function (CDF) FX(x). Note that

FX(x) =

∫ s

−∞
pX(s)ds (6)

Samples from the PDF pX(x) are generated using the Inverse Transform
Sampling Method, which makes use of the samples u(i), i = 1, · · · , N . The
sample generation is based on the following considerations. A transformation
between the values of the random variables X and U is introduced as follows:

x = g(u) (7)

and we seek the function g(u) such that the random variable X follows the
desired distribution pX(x). Given x = g(u), it is known that the PDFs pX(x)
and pU (u) are given by

pX(x)dx = pU (u)du (8)

or, equivalently, the PDF pX(x) is

pX(x) = pU (u)

∣∣∣∣dudx
∣∣∣∣ = pU (u)

∣∣∣∣dg(x)

du

∣∣∣∣−1

(9)

Since U is uniform, one has that pU (u) = 1 for u ∈ [0, 1] and integration of (8)
yields ∫ x

−∞
pX(s)ds =

∫ u

0

pU (s)ds = u (10)

which, by making use of (6), one derives that

FX(x) = u (11)

Thus the following transformation is true

x = F−1
X (u) (12)
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which means that the values of x are given by the inverse of the CDF FX(x)
which also this inverse represents exaclty the function g(u). This transformation
allows to draw samples x(i), i = 1, · · · , N from the PDF pX(x) as

x(i) = F−1
X (u(i)) (13)

where u(i) are samples from the SUD.

Example 1: Use the inverse transform sampling method to sample from the
exponential distribution

p(x) = λe−λx, x > 0 (14)

The CDF of the exponential distribution is

F (x) =

∫ x

0

p(x)dx =

∫ x

0

λe−λxdx = 1− e−λx (15)

Thus the transformation x = g(u) which is obtained from x = F−1(u) or equiv-
alently F (x) = u is derived by solving

1− e−λx = u (16)

with respect to x to yield

x = − 1

λ
ln(1− u) (17)

The transformation (17) between the random variable X and the standard uni-
form variable U defines an exponentially distributed random variable X and it
allows to draw samples x(i), i = 1, . . . , N from the PDF p(x) as

x(i) = − 1

λ
ln(1− u(i)) (18)

where u(i), i = 1, . . . , N are samples drawn from the standard uniform distribu-
tion.

Example 2: Use the inverse transform sampling method to sample from the
standard Gaussian distribution.

1.3 Remarks

(1) The inverse transform sampling method requires the inversion of the CDF
FX(x). This may be time consuming for cases where F−1

X (u) is not known in
closed form as, for example, the Normal distribution.

(2) Alternatively, we can use the Rejection Sampling method or the Impor-
tance Sampling method to generate samples from a distribution.

(3) In particular, for Normal Distribution, the inverse transform is not efficient.
Instead, Box-Muller Transformation is an exact method that uses the in-
verse transform method to convert two independent uniform random variables
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into two independent normally distributed random variables. This is possible by
using the generalization of the relation between the PDF of two random vectors
Y and X. If the values of Y and X are related by the transformation x = g(y),
then the distributions pX(x) and PY (y) are given by

pX(x) = pY (y)

∣∣∣∣dg(y)

dx

∣∣∣∣ (19)

where
dg(y)

dx is the Jacobian and |·| denotes determinant. Suppose that U =

(U1, U2) is a set of two standard uniformly distributed variables with values
defined in the interval [0, 1]. Using (19) for y = u, it can readily shown that the
transformation

x1 = u1

(
−2ln(u1)

r2

)1/2

(20)

x2 = u2

(
−2ln(u2)

r2

)1/2

(21)

where r2 = u2
1 +u2

2, results in independent and standard Gaussian variables X1

and X2 since the joint distribution of X1 and X2 is

p(x1, x2) = p(u1, u2)

∣∣∣∣dg(u)

dx

∣∣∣∣ (22)

which, after computing the Jacobian, it can be shown that

p(x1, x2) =
1√
2π
exp

[
−x

2
1

2

]
1√
2π
exp

[
−x

2
2

2

]
(23)

(4) Generation of samples from multivariate Gaussian distribution

Let X be a vector of independent identically distributed (iid) Gaussian random
variables, i.e. the k-th component Xk follows

Xk ∼ N(0, 1) (24)

Then a Gaussian random vector Y with mean µ and covariance matrix C is
obtained from the transformation

Y = µ+ Φ
√

ΛX (25)

where Λ = diag(λi), Φ = [φ1, . . . , φn], λi and φi are the eigenvalues and or-
thonormal eigenvectors of the covaraince matrix C, respectively, satisfying

CΦ = ΦΛ (26)

with ΦΦT = ΦTΦ = I and ΦTCΦ = Λ. Them N samples from any multivariate
Gaussian variable with mean µ and covariance matrix C can thus be obtained
from the transformation

y(i) = µ+ Φ
√

Λx(i) (27)
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where x(i) are iid samples drawn from the Standard Gaussian Distribution
N(0, I). That is, these samples are generated independently for each component

xk of x from a standard Gaussian distribution: x
(i)
k ∼ N(0, 1), i = 1, . . . , N .

(5) Generation of samples from a uniform distribution

Samples drawn from a uniform distribution X with PDF

pX(x) =

{
1/(b− a), for x ∈ [a, b]

0, otherwise
(28)

are obtained from the transformation

x = a+ (b− a)u (29)

where u is a SUD.

(6) For a large number of often used PDFs, there are software programs available
to generate iid samples.

1.4 Monte Carlo Integration

Both integrals (2) and (3) are probability integrals of the type

I =

∫
h(θ)p(θ)dθ (30)

where h(θ) is a general function of θ and p(θ) is the PDF of θ. Note that

I = E[h(θ)] (31)

is the expected value of h(θ). Using the Law of Large number, the expected
value of a variable is approximated by the sample estimate

I = E [h(θ)] ≈ IN =
1

N

N∑
i=1

h(θ(i)) (32)

where θ(i) i = 1, · · · , N are random samples, a sequence of independent and
identically distributed random variables, drawn from the PDF p(θ). The sample

average in (32) converges to the expected value when θ(i) i = 1, · · · is an infinite
sequence of i.i.d. random variables.

The Law of Large Numbers ensures that

lim
N→∞

IN = I (33)

Using the Central Limit Theorem, one has that
√
N(IN − I) converges in

distribution to the normal distribution N(0, σ2), where σ2 = V ar[h(θ)] is the
variance of h(θ). That is, the deviation of the sample average IN from its
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limit E[h(θ)] = I, when multiplied by
√
N , approximates a normal distribution

with mean 0 and variance σ2 = V ar[h(θ)]. Equivalently IN − I converges in

distribution to the normal distribution N(0, σ
2

N ) or

IN − I ∼ N(0,
σ2

N
) (34)

which means that the error σ/
√
N of the sample estimate is O

(
1√
N

)
, of the

order of 1√
N

.

In practice the variance

σ2 ≡ V ar[h(θ)] = E
[
(h(θ)− E[h(θ)])

2
]

=

∫
(h(θ)− E[h(θ)])

2
p(θ)dθ (35)

is unknown and can be replaced by the sample variance using the unbiased
estimate of the variance

σ2
N =

1

N − 1

N∑
i=1

(
h(θ(i))− E[h(θ)]

)2

(36)

where E[h(θ)] is replaced by the sample mean IN , so that

σ2
N ≈

1

N − 1

N∑
i=1

(
h(θ(i))− IN

)2

(37)

The error of the sample estimate IN can thus be replaced by√
V ar(IN ) ≈ σN√

N
(38)

which is of O
(

1√
N

)
. However, the accuracy of σN (how close σN is to σ) de-

pends also on the accuracy of the sample estimate IN and σN may overestimate
σ. In practice, one monitors IN and σN as a function of N and terminates the
sampling after the σN falls below a specified thresshold.
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1.5 Estimation of Evidence

Returning to the probability integrals arising in the Bayesian formulation, let us
first compute the evidence p(D|I), given in (2), which is the normalizing factor
in the posterior PDF in (1). The estimate can be approximated by the sample

estimate, provided that the samples θ(i) are drawn from the prior distribution
p(θ|I). The sample estimate of integral (2) is:

pN (D|I) =
1

N

N∑
i=1

p(D|θ(i), I) (39)

Prior to data, the components of θ are usually assumed to be independent and
the prior distribution for each component is assumed to follow simple known
distributions (e.g. uniform, Gaussian, Gamma) from which sample estimates
are readily available in computer programs. However, sampling from the prior
distribution will slow down convergence of the estimate significanlty due to
the fact that the importance region (domain of significance) of the likelihood
p(D|θ, I) in the parameter space is very small compared to the domain over
which the support of the prior occupies. Even worse, this importance region
might fall at the tails of the prior PDF. As a result, only a small fraction of
the samples drawn from the prior distribution may fall within the importance
region so that in order to get a sufficiently accurate result, a very large number
of samples is required. In practical application, one cannot usually afford large
number of samples since each sample usually requires a model run which can
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be computationally tedious. The problem can be overcome by trying to sample
in the important regions. The problem deteriorates as the dimension of the
parameter space increases.
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1.6 Estimation of Robust Prediction Integral

Consider now the integral (3)

E [h(θ)] =

∫
Θ

h(θ)p(θ|D, I)dθ (40)

The posterior PDF is in most cases a complicated multi-variate distribution de-
fined within an unknown normalizing constant, the evidence p(D|I). So meth-
ods for generating i.i.d. samples from the posterior PDF are in most cases not
available.

One can write the integral (3) as:

E[h(θ)] =
1

p(D|I)

∫
h(θ)p(D|θ, I)p(θ|I)dθ (41)

and use i.i.d. samples from the prior PDF to obtain a sample estimate of the
integral in the numerator and also for the evidence p(D|I). The sample estimate

E[h(θ)] ≈ 1

pN (D|I)

1

N

N∑
i=1

h(θ(i))p(D|θ(i), I) (42)

suffers from the same problems, i.e. very slow convergence, already discussed
for the evidence.

Variance reduction techniques such as the importance sampling method can
be used to generate samples in parts of the region that are most important,
instead of covering a much larger region. However, it is not trivial to identify
the importance region. The Markov Chain Monte Carlo (MCMC) algorithms are
powerful methods for generating samples from an arbitrary PDF that is known
up to a scaling constant. The samples generated are dependent. However, these
samples are used for statistical averaging as they were independent, accepting
a reduced efficiency of the sample estimate.
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