
Optimal Experimental Design for Estimation of Model

Parameters

1. Introduction

The purpose in designing an experiment for a system is to optimize cer-
tain characteristics of the experimental set up so that measured data provide
useful information about the condition of the system. In building mathemat-
ical models of a system, a set of measurements should provide the most useful
information for selecting a model of a structure from competitive models, as
well as identifying with the least uncertainty the parameters involved in the
mathematical representation of the model.

Given a system and a parameterized mathematical model representing
the behavior of the system, one objective in optimal experimental design
is to select the control parameters of the experiments so that the collected
measurements are most informative for estimating the parameters of a math-
ematical model of the system. The control parameters of an experiment may
include the excitation characteristics (e.g. frequency content, amplitude,
sampling frequency, duration in structural dynamics), type and location of
excitation (e.g. impulse, broadband stochastic, harmonic in structural dy-
namics), type of output sensors (e.g. displacement, acceleration, force), loca-
tion and number of output sensors, characteristics of output measurements
(e.g. monitoring period, sampling frequency).

In this chapter we are particularly interested in answering the following
question. Given a system and its parameterized mathematical model, select
the optimal sensor configuration (number, type and location of sensors) such
that the measured data obtained from the sensor system are most informa-
tive for estimating the parameters of a mathematical model of the system.
In model parameter estimation, most informative measurements mean the
ones that result in the least uncertainty in the estimates of the parameters.
Using information entropy as a unique scalar measure of the uncertainty in a
parameter set θ, the problem of optimizing the number, type and location of
sensors is stated mathematically as a problem of minimizing the information



entropy of the posterior distribution of the model parameters given the data,
derived using Bayesian inference.

2. Bayesian Optimal Experimental Design Framework

2.1. Bayesian Parameter Estimation

The Bayesian framework for the estimation of the parameters of a model
based on experimental data is first outlined and the results are used for the
derivation of the optimal sensor locations. Consider a model and let θ ∈ RNθ

be the vector of model parameters to be estimated using a set of measured
data d ≡ d(δ) ∈ RN of output quantities at locations δ. The location vector
δ contains the coordinates of the sensors with respect to a coordinate system.
Let g(θ; δ) ∈ RN be the vector of the values of the same output quantities
predicted by a model for specific values of the parameter set θ. The following
prediction error equation is introduced

d = g(θ; δ) + e (1)

where e is the additive prediction error term due to model and measurement
error. The prediction error is modeled as a Gaussian vector, whose mean
value is equal to zero and its covariance is equal to Σ(σ) ∈ RN×N , where σ
contains the parameters that define the correlation structure of Σ. Applying
the Bayesian theorem, the posterior probability density function (PDF) of θ,
given the measured data d, is given by

p(θ|σ, d, δ) = c
1(√

2π
)N √

detΣ(σ)
exp

[
−1

2
J(θ;σ, d, δ)

]
π(θ) (2)

where

J(θ;σ, d, δ) = [d− g(θ; δ)]TΣ−1(σ)[d− g(θ; δ)] (3)

expresses the deviation between the measured and model predicted quanti-
ties. The PDF π(θ) is the prior distribution for θ, and c is a normalization
constant guaranteeing that the posterior PDF p(θ|σ, d, δ) integrates to one.
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2.2. Information Entropy - Asymptotic Approximation

The PDF p(θ|σ, d, δ), given by Eq. (2) quantifies the posterior uncertainty
in the parameter values θ based on the information contained in the measured
data. The information entropy given by the expression [1]

hθ(δ;σ, d) = Eθ[− ln p(θ|σ, d, δ)] (4a)

= −
∫

ln p(θ|σ, d, δ) p(θ|σ, d, δ) dθ (4b)

is a scalar measure of the uncertainty of the model parameters θ. It de-
pends on the location vector δ of the sensors, the correlation structure of the
prediction error and the details in the data d.

The multi-dimensional integral in Eq. (4) is a Laplace-type integral that
can be asymptotically approximated [2], for large number of data, by the
expression [3]

hθ(δ;σ, d) ∼ H(δ; θ0, σ) =
1

2
Nθ ln(2π)−

1

2
ln det [Q(δ; θ0, σ) +Qπ(θ0)] (5)

where θ0 are the values of θ that minimize J(θ;σ, d, δ), Q(δ; θ, σ) is the Fisher
information matrix, a semi-positive definite matrix asymptotically given by

Q(δ; θ, σ) = ∇θg(θ; δ)
TΣ−1(σ)∇θg(θ; δ) (6)

computed at the N locations where the sensors are placed, and Qπ(θ0) =
−∇T

θ ∇θlnπ(θ) evaluated at the value θ0, with ∇θ = [∂/∂θ1, ..., ∂/∂θNθ
], rep-

resents the negative of the Hessian of the natural logarithm of the prior
distribution of the model parameters.

For uniform prior distribution the termQπ(θ0) = 0 and the optimal sensor
placement is based only on the Fisher information matrix. However, for
small number of sensors, the matrix Q(δ; θ, σ) can be ill-conditioned and the
determinant could tend to zero independent of the location of sensor. Such
cases arise from unidentifiability issues due to the insufficient information
provided by the data to estimate the number of model parameters involved.
Non-informative uniform prior distribution do not provide any information
to correct this problem. In has been proposed in [4] to use non-uniform
distributions to remove the ill-conditioning in Q(δ; θ, σ) due to the extra
information provided by the prior distribution about the uncertainty in the
model parameters. For the specific case of a Gaussian prior distribution, the
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matrix Qπ(θ0) = Q̃, where Q̃ is the inverse of the covariance matrix of the
Gaussian distribution and thus it is constant independent of θ.

The asymptotic estimate (5) is very useful since it does not explicitly
depend on the details of the data d(δ) which are not available during the
experimental design phase of sensor placement. The dependence on the data
comes implicitly through the optimal value θ0 of the parameter set θ. How-
ever, since the data are not available, the optimal value θ0 cannot be es-
timated. Thus, optimal sensor placement designs are based on assuming a
nominal value of the parameter set θ0. Alternatively, the uncertainty in the
nominal value can be accounted for as described in Section 2.3.

In addition, from Eq. (6), it can be deduced that the information entropy
depends on the derivatives of the output quantities predicted by the model
at the sensor locations with respect to the model parameters. The higher
the derivatives, the higher the information entropy value. The computation
of these derivatives is based on the differentiation of the model with respect
to the parameters.

2.3. Robust Information Entropy Formulation

The previous formulation is based on nominal values θ0 assigned to the op-
timal value of the model parameter set θ and the nominal values σ0 assigned
to the prediction error parameters σ involved in the covariance Σ(σ) of the
model prediction error. A robust formulation is next presented which takes
into account the uncertainties in the augmented parameter set φ

0
= (θ0, σ0).

Using Bayes framework, the uncertainty in the nominal values φ
0
of the

model and prediction error parameters is quantified by the prior distribution
π(φ

0
). Papadimitriou et al. [1] have introduced the change of uncertainty or

the change of information entropy from the prior to posterior distribution of
the model parameters as a measure of the quality of a sensor configuration.
The change of information entropy is given as

∆h(δ) = Eθ,φ
0
[−lnp(θ, φ

0
|δ)]− Eφ

0
[−lnp(φ

0
)] (7a)

=

∫
H(δ;φ

0
) π(φ

0
) dφ

0
(7b)

=
1

2
Nθ ln(2π)−

1

2

∫
ln det

[
Q(δ;φ

0
) +Qπ(φ0

)
]
π(φ

0
) dφ

0
(7c)

which, using (7b), is an integral of the information entropy conditioned on
the nominal values of the model parameters, weighted by the prior distri-
bution of the model parameters. The integral (7b) represents the robust
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information entropy and arises by substituting p(θ, φ
0
|δ) = p(θ|φ

0
, δ) π(φ

0
)

into the definition of the information entropy given in (4b) and simplifying.
The equality in (7c) arises after substituting the information entropy given
by (5) and simplifying. Details are given in [1].

The measure (7c) can be extended to include uncertainties in model-
related quantities, that are not included in the parameters to be inferred. It
is straightforward to show that the change of information entropy is given by
(7c), provided that the vector φ

0
is augmented to also include these model-

related quantities. Also, it should be noted that the result (5) is a special
case of (7c) for the case where φ

0
is known deterministic quantity.

Using Monte Carlo simulations or sparse grid techniques [5, 6], the inte-
gral in (7c) can be approximated by∫

ln det
[
Q(δ;φ

0
) +Qπ(φ0

)
]
π(φ

0
) dφ

0
≃

n∑
j=1

wjln det
[
Q(δ;φ(j)

0
) +Qπ(φ

(j)

0
)
]

(8)
where φ(j)

0
, j = 1, . . . , n, are either the samples drawn from the prior π(φ

0
)

or the sparse grid points in the parameters space, and wj are weights equal
to wj = 1/n for the Monte Carlo technique or their values depend on the
sparse grid order and the prior distribution selected [5].

2.4. Optimal Sensor Location Methodology

The sensor configuration should be designed in such a way that the mea-
sured data are as much informative as possible about the model parameters
to be estimated. The information entropy, defined by Eq. (5), measuring the
uncertainty in the these parameters, gives the amount of useful information
contained in the measured data. The most informative test data are the ones
that give the least uncertainty in the parameter estimates or the ones that
minimize the information entropy or the change of information entropy in
(7c). Thus, the sensors should be located at the places that minimize the
information entropy. It should be noted that expression (8) requires the sen-

sitivities of the output quantities to be computed at all sample points φ
(j)
0 ,

j = 1, . . . , n.
The problem of finding the optimal sensor configuration is formulated

as an optimization problem where the objective function is the information
entropy or the change of information entropy in the robust case and the
design variables are the locations of sensors. Specifically, the optimal sensor
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location δbest is given by

δbest = argmin
δ

∆h(δ) (9)

The minimization of (9) is equivalent to the maximization of det [Q(δ; θ0, σ)+
Qπ(θ0) which involves the Fisher information matrix (FIM). Given that the
FIM Q(δ; θ0, σ) defined in (6) depends on the sensitivity of output quantities,
computed from the model at the measured locations, with respect to the
parameters, the sensors tend to be placed at locations where the output
quantities are most sensitive to parameter changes. This is consistent with
intuition since sensors places at locations where the quantities are insensitive
to parameter changes do not provide information to estimate the values of
the parameters.

A stochastic or deterministic optimization algorithm may be used to find
the location δ of the sensors that minimizes H(δ; θ0, σ) or ∆h(δ). The deter-

ministic method is usually based on the sensitivity derivatives
∂H(δ;θ0,σ)

∂δi
of the

information entropy with respect to the coordinates of the sensor locations
and a descent algorithm is used to locate the optimum. Although such an
algorithm is quite efficient and converges very fast to the optimal solution,
there is a drawback due to the several local optimal encountered in the opti-
mal sensor location problem. Another drawback of the deterministic methods
is their complexity, since the methodology to compute the aforementioned
gradient components should be formulated.

Alternatively, a stochastic optimization algorithm is employed in order to
avoid the entrapment to local minima. Specifically, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [8] is used. To carry out the opti-
mization in the continuous space of the design parameter δ, an interpolation
scheme is used to compute the required values of the sensitivities involved
in Eqs. (5) and (7c) at locations between the grid nodes of a mesh used to
discretize the spatial domain.

2.5. Prediction Error Correlation Model

In order to find the optimal location of the sensors, based on the infor-
mation entropy framework, the structure of the covariance matrix Σ(σ) of
the prediction error correlation model should be postulated. The prediction
error in (1) is due to measurement and model error. Assuming independence
between the two errors, the covariance matrix takes the form Σ = Σ̄ + Σ̃,
where Σ̄ and Σ̃ are the covariance matrices of the measurement and model
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errors, respectively. Assuming that the measurement error is independent
of the location of sensors, the covariance matrix Σ̄ takes the form Σ̄ = σ̄2I,
where I is the identity matrix.

A certain degree of spatial correlation is expected for the model error
since model predictions at two neighborhood points in the physical space are
usually correlated due to the structure of the model. It was demonstrated
in [7] that when the optimal sensor placement algorithm is applied on the
continuous space for uncorrelated model errors, it tends to place sensors
very close to each other, providing almost exactly the same information.
This clustering of sensors is due to the wrong assumption of uncorrelated
prediction errors and can be avoided when the correlation structure of the
model predictions are taken into account. It has been theoretically shown [7]
that two or more sensors, within an area in the spatial domain of the size of
the correlation length, tend to be placed further apart in order to increase
the information provided by the sensors. However, how far these sensors will
be placed from each other is also controlled by the gradients of the output
QoI with respect to the model parameters θ involved in the definition of the
information matrix. Very high derivatives tend to limit to the size of the
area affected by the correlation length. Drastic changes in the sensitivities of
the QoI to parameter changes that occur between two closely-spaced sensors
may justify clustering of such sensors with qualitatively distinct information
[3].

A certain degree of correlation should be accounted for the model errors
between any two locations depending on the physics of te problem analysed.
The correlation is postulated by selecting the correlation Σ̃kl between two
sensor locations xk and xl in the physical space as

Σ̃kl =

√
Σ̃kkΣ̃llR(ηkl) (10)

where R(ηkl) is the spatial correlation structure which is assumed herein to
depend on the distance ηkl = |xk − xl| between the measurements k and l at
location xk and xl, respectively. The variance Σ̃kk of the prediction error at
measured location xk can be taken to be Σ̃kk = σ̃2g2k(θ) to reflect the fact
that the standard deviation of the error will depend on the intensity gk(θ)
of the prediction of the output QoI in the measured location, where σ̃ is the
standard deviation of the error normalized with respect to the intensity of
the output QoI. For demonstration purposes, the spatial correlation structure
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R(ηkl) is selected to be of the exponential form

R(ηkl) = exp
[
−ηkl

λ

]
(11)

where λ is a measure of the spatial correlation length. Thus, the parameter
set σ defining the structure of Σ is given by σ = (σ̄, σ̃, λ).

The correlation model in the prediction error dominates the information
provided by two sensors within the correlation length, causing this informa-
tion content to increase as a function of the distance of the sensors within
the correlation length, avoiding sensor clustering [7].

3. Conclusions

The information entropy (IE) is a rational measure of the Bayesian poste-
rior uncertainty of the model parameters suitable to be used for quantifying
the information contained in the data collected from a sensor configuration.
Minimizing the IE with respect to the sensor positions provides the least un-
certainty in the posterior parameter estimates and thus the optimal sensor
configuration with the highest information. The design variables associated
with the location of sensors in domains of several problems are defined in a
continuous space. The stochastic optimization algorithm CMA-ES is suitable
to carry out the minimization of the IE and obtain the global optimum, avoid-
ing premature convergence to several observed local optima. An asymptotic
estimate expresses the IE in terms of the sensitivities of the output quan-
tities of interest with respect to the model parameters to be inferred. To
avoid information redundancy that arise from sensor clustering, a spatially
correlated prediction error model was used. The optimal experimental design
is conditioned on nominal model and prediction error model parameters. To
account for uncertainties in the nominal values of these model parameters
and cover a number of experimental conditions, the robust information en-
tropy is introduced as an integral of the conditional information entropy on
these nominal values, weighted by the prior distribution of these parameters
postulated in Bayesian analysis.

The largest information gain is obtained for a relatively small number of
optimally placed sensor profiles. As the number of sensor profiles increases,
the information gain from extra sensor profiles reduces. The optimal number
of sensor profiles to be used in an experiment is a trade off between infor-
mation gain and cost of instrumentation. Furthermore, uncertainties in the
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nominal model parameters are important since they leads to different sen-
sor profile locations than the ones corresponding to the nominal parameter
values. The proposed OSP framework is flexible to handle different spatially
correlated modeling errors and it is applicable to more general flows and
turbulence models.
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