
1 Assigning Probabilities

Given some constraints on the uncertainty of a variable, the question that arises
is what probability distribution is reasonable to be assigned to represent the un-
certainty in the variable. The best approach is to choose the probability distri-
bution that corresponds to the larger uncertainty. This choices arises from the
concept of maximum information entropy. The maximum information entropy
is often used to assign the prior probability distribution for uncertain variables.

1.1 Information Entropy

The concept of information entropy has been introduced by Shannon to
describe the information content of an event. The information entropy is a
unique scalar measure of the uncertainty in a variable (or random variable).
The information entropy for a probability distribution pθ is defined by

I(p) = Eθ[− log [p(θ)]] = −
∫

Θ

p(θ) log[p(θ)] dθ, (1)

where Θ is the domain of definition of the parameter space or the support of
the PDF of the parameters in θ. I(p) gives a measure of the uncertainty in θ.
The more uncertainty in the value of θ, the higher the information entropy.

1.2 Information entropy for the univariate normal (Gaus-
sian) distribution

The information entropy for a univariate normal (Gaussian) distribution, θ ∼
N(µ, σ2), given by

p(θ) =
1√
2πσ

exp

[
− 1

2σ2
(θ − µ)2

]
(2)

is

I(p) = Eθ[− log[p(θ)]] = −
∫ ∞
−∞

p(θ)

[
− log(

√
2πσ)− 1

2σ2
(θ − µ)2

]
dθ (3)

= log (
√

2πσ)

∫ ∞
−∞

p(θ) dθ︸ ︷︷ ︸
=1

+
1

2σ2

∫ ∞
−∞

(θ − µ)2 p(θ) dθ︸ ︷︷ ︸
=σ2

(4)

= log (
√

2πσ) +
1

2
. (5)

So

I(p) =
1

2
[log (2πσ2) + 1] (6)
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For the Gaussian distribution of a parameter, the information entropy I(p)
depends only on the standard deviation σ. The higher the value of the standard
deviation σ, the higher the information entropy and the uncertainty in the
parameter.

1.3 Information entropy for the multivariate normal (Gaus-
sian) distribution

The multivariate normal (Gaussian) distribution of a set of parameters, θ ∼
N(µ,C), is given by

p(θ) =
1

(
√

2π)n|C|1/2
exp

[
−1

2
(θ − µ)TC−1(θ − µ)

]
In this case the information entropy takes the form

I(p) = Eθ [− log p(θ)] = −
∫
p(θ) log[p(θ)] dθ =

−
∫
p(θ)

[
− log

{(√
2π
)n
|C|1/2

}
− 1

2
(θ − µ)TC−1(θ − µ)

]
dθ =

log
{(√

2π
)n
|C|1/2

}∫
p(θ) dθ︸ ︷︷ ︸

1

+
1

2

∫
p(θ)(θ − µ)TC−1(θ − µ) dθ︸ ︷︷ ︸

n

(7)

which means that the information entropy is

I(p) = log
{(√

2π
)n
|C|1/2

}
+
n

2
=

1

2
[log{(2π)n|C|}+ n]

and depends on the determinant of the covariance matrix.

To prove that the second integral in (7), introduce the new vector y by the
transformation

θ − µ = Φ
√

Λy (8)

where full matrix Φ and the diagonal matrix Λ contain the eigenvectors and the
eigenvalues of the covariance matrix C, i.e. they satisfy

CΦ = ΦΛ (9)

Note that ΦΦT = I, C = ΦΛΦT and C−1 = ΦΛ−1ΦT . Thus taking expectations
in (8) one readily derives that 0 = E[θ−µ] = E[Φ

√
Λy] = Φ

√
ΛE[y], which yields

E[y] =
√

Λ
T

ΦT 0 = 0, i.e that the new parameter vector y has mean zero. The
covariance matrix of y is obtained by noting that

C = E[(θ − µ)(θ − µ)T ] = E[Φ
√

ΛyyT
√

ΛΦT ] = Φ
√

ΛE[yyT ]
√

ΛΦT (10)
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Multiplying the equation by
√

Λ
−1

ΦT from the left and Φ
√

Λ
−1

from the right
and using that C = ΦΛΦT and ΦΦT = I, one derives that

√
Λ
−1

ΦTCΦ
√

Λ
−1

= E[yyT ] (11)

or equivalently

E[yyT ] =
√

Λ
−1

ΦTΦΛΦTΦ
√

Λ
−1

=
√

Λ
−1

Λ
√

Λ
−1

= I (12)

Thus the new parameter vector y has covariance matrix equal to I. This means
that the elements in the parameter vector y are standard normal variables fol-
lowing the distribution yi ∼ N(0, 1).

The second integral in (7) can thus simplify to∫
p(θ)(θ − µ)TC−1(θ − µ) dθ =

∫
p(y)(Φ

√
Λy)TC−1(Φ

√
Λy) dy (13)

=

∫
p(y)yT

√
Λ(ΦTC−1Φ)

√
Λy dy (14)

=

∫
p(y)yT

√
Λ(Λ−1)

√
Λy dy (15)

=

∫
yT yp(y) dy (16)

=

∫ n∑
i=1

y2
i p(y) dy (17)

=

n∑
i=1

∫
y2
i p(y) dy (18)

=

n∑
i=1

∫
y2
i p(y1) . . . p(yn) dy1 . . . yn (19)

=

n∑
i=1

∫
y2
i p(yi) dyi︸ ︷︷ ︸

1

∏
j 6=i

∫
p(yj) dyj︸ ︷︷ ︸

1

(20)

=

n∑
i=1

1
∏
j 6=i

1 =
n∑
i=1

1 = n (21)

which proves the result in the second integral in (7).

Introduce the matrix H(θ) := C−1(θ) and let λ1, ..., λn be the eigenvalues of
H(θ) and σ2

1 , ..., σ
2
n be the eigenvalues of C(θ). Then

σ2
i =

1

λi
⇒ σi =

1√
λi
∀i = 1, ..., n

and

|C| = σ2
1 · ... · σ2

n =
1

λ1
· ... · 1

λn
.
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Now one can rewrite the the information entropy in the form:

I(p) =
1

2
log

[
(2π)n

1

λ1
· ... · 1

λn

]
+
n

2
(22)

=
1

2
log
[
(2π)nσ2

1 · ... · σ2
n

]
+
n

2
(23)

Consider the special case of n = 2. The spread of uncertainty is proportional
to |C| =

∏
i

σ2
i =

∏
i

λ−1
i (see Figure 1). This means that the larger the σi the

larger the |C|, the higher the information entropy and the uncertainty in the
parameter vector θ.

Figure 1: Spread of uncertainty for n = 2.
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1.4 Principle of maximum information entropy (PMIE)

The PMIE is a theoretical approach for assigning probabilities, such as prior
PDFs in Bayesian inference, based on the available information. It states that
among all PDFs, the PDF which best represents the current state of knowledge
is the one with the largest information entropy.

The maximum entropy distribution represents the least informative distribution
given the constraints (knowledge) about the parameters.

The maximum entropy distribution is found by maximizing the information on
entropy with respect to the distribution, given the prescribed constraints (e.g.
moments or bounds of distribution).

1.4.1 Example: Maximum entropy distribution given mean and vari-
ance

Consider the case when the mean and the variance of an uncertain scalar pa-
rameter θ are given. The distribution p(θ) with the least information or the
highest uncertainty is found by maximizing the information entropy

I(p) = E[− log(p(θ))] = −
∫
p(θ) log(p(θ)) dθ (24)

subject to constraints related to the mean µ and variance σ2 of the distribution

∫
θp(θ) dθ = µ, (25)∫

(θ − µ)2p(θ) dθ = σ2 (26)

and the constraint related to the fact that any PDF p(θ) has to integrate to one∫
p(θ) dθ = 1 (27)

This optimization problem can be solved using calculus of variations. First the
constrained optimization problem is transformed to an unconstrained one by
introducing Lagrange multipliers λ1, λ2, λ3 and the Lagrange function

L(p) = I(p) + λ1

[∫
θp(θ) dθ − µ

]
+ λ2

[∫
(θ − µ)2p(θ) dθ − σ2

]
+

λ3

[∫
p(θ) dθ − 1

]
(28)

Now the problem is reduced to minimizing L(p) with respect to p which is
equivalent of fonding the function p which satisfies δL(p) = 0.
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This is a calculus of variation problem for a function δF (p) of the form F (p) =∫
f(p, θ) dθ. The variation of the function F (p) is given by

δF (p) =

∫
∂f(p, θ)

∂p
δp dθ = 0

for an arbirtary δp which yields that

∂f(p, θ)

∂p
= 0 (29)

The equation (29) can be solved for p as a function of λ1, λ2, λ3. To check that
the found p is a true maximum, one has to check that

∂2f(p, θ)

∂p2
< 0.

Starting from (28) and using (24) one has:

L(p) =

∫ {
− log(p(θ)) + λ1θ + λ2(θ − µ)2 + λ3

}
p(θ) dθ+

∫
(−λ1µ− λ2σ

2 − λ3)h(θ) dθ,

where h(θ) denotes an arbitrary function which integrates to one.

Now L(p) is represented as an integral of the function

f(p, θ) =
{
− log(p(θ)) + λ1θ + λ2(θ − µ)2 + λ3

}
p(θ)−

(λ1µ+ λ2σ
2 + λ3)h(θ)

and the maximum condition is given by

0 =
∂f(p, θ

∂p
= −1− log(p(θ)) + λ1θ + λ2(θ − µ)2 + λ3.

Solving with respect to p(θ), the desired PDF is

p(θ) = exp[g(θ)]

where
g(θ) = (λ1 − 2λ2µ)θ + λ2(θ2 + µ2) + λ3 − 1

Note that the function g(θ) is quadratic in θ and can be re-writtem in the form

g(θ) = λ2(θ −A)2 +B,

where

A =
2λ2µ− λ1

2λ2
,
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B = λ2µ
2 + λ3 − 1− λ2

(2λ2µ− λ1)2

4λ2
2

= λ3 − 1 + λ1µ−
λ2

1

4λ2
2

.

Thus, the PDF p(θ) is given by

p(θ) = eλ2(θ−A)2+B (30)

Substituting p(θ) to the constraint equations, one has∫
θeλ2(θ−A)2+Bdθ = µ (31)∫

(θ − µ)2eλ2(θ−A)2+B dθ = σ2 (32)∫
eλ2(θ−A)2+B dθ = 1 (33)

which, after carrying out the integration analytically (Exercise), yield λ1 = 0;
λ2 = - 1

2σ2 ; λ3 = 1-ln(
√

2πσ). Substituting these values to the expressions for

A and B gives A = µ and B = λ3 − 1 = − ln(
√

2πσ). Substituting the derived
expressions for λ2, A and B to (30) for p(θ) gives

p(θ) =
1√
2πσ

e−
1

2σ2
(θ−µ)2 (34)

which is a Normal distribution with mean µ and variance σ2.

Finally, noting that the second derivative

∂2f(p, θ)

∂p2
= −1

p
< 0, (35)

since p(θ) as a distribution function is always positive, it is clear that the derived
PDF p(θ) maximized L(p) and the information entropy.

1.4.2 Remarks

1. The maximum entropy distribution for a bounded distribution within the
interval [a, b] with given mean µ and variance σ2 is a truncated Gaussian
distribution given by

p(θ) =
1

√
2πσ

[
Φ( b−µσ )− Φ(a−µσ )

]e− 1
2σ2

(θ−µ)2 (36)

where Φ is the cumulative distribution function of the standard Gaussian dis-
tribution with zero mean and unit variance, given by

Φ(θ) =
1√
2π

∫ θ

−θ
e−

s2

2 ds =
1

2
+

1

2
erf

(
θ√
2

)
(37)
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2. The maximum entropy distibution defined within the interval [a, b] is the
uniform distribution.

3. The maximum entropy distribution given only mean is the exponential
distribution.
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