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Application of Multi-Dimensional Bayesian Inference on Data Fitting 

Consider the problem of fitting a parameterized curve ( ; )y F x a to a set of data 

( , ), 1, ,k kD y x k N   . The following general form of the parameterized model is assumed 

0

( ; ) ( ) ( )
n

T
i i

i

y F x a a f x f x a


             (1)  

where 0 1( ) [ ( ), ( ), , ( )]T
nf x f x f x f x   are user-selected known bases functions, and a  are unknown 

parameters to be estimated using the data. The functions 0 1( ) [ ( ), ( ), , ( )]T
nf x f x f x f x   can be 

orthogonal functions taken, for example, as a polynomial basis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data points in space ( , )x y  and fit by linear and quadratic models ( )Ty f x a .  

 

To account for model and measurement errors, assume the prediction error equation 

( ; )k k ky F x a e            (2) 

which represents the fact that predictions from the model equation can not match exactly the 
measurements. There is an error ke  between the data point ky  and the assumed parameterized model 

prediction ( ; )kF x a , estimated from (1) evaluated at position kx . The prediction errors ke  are assumed to 

be i.i.d Gaussian with 2~ (0, )ke N  , where  2  is unknown. Assuming uniform priors, with large 

enough bounds, find: 

1. The posterior distribution 2( , | , )p a D I  of the model and prediction error parameters  

2. Τhe best estimates of 2,a    

3. The spread of uncertainty about the best estimate in the parameter space  

4. The asymptotic estimate of the posterior distribution 2( , | , )p a D I .  

5. The marginal posterior distribution ( | , )p a D I .  
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6. Let ( )z G y    be a relation between an output QoI and the measured quantity y , with 
2(0, )N s   and 2s  is known. Quantify the uncertainty on z  by computing the distribution ( | , )p z D I .  

The uniform prior distribution is 2( , | ) consta I   , min maxa a a  , 2 2
max0     with very large 

bounds of the support of the uniform PDF.  

Repeat the steps 1-6 assuming a Gaussian prior PDF ( | ) ( | , )p a I N a    . [Left as an Exercise] 

Solution 

1. Posterior PDF 

The joint posterior PDF of the unknown parameters a  and 2  is obtained by applying the Bayes rule: 

2 2
2 2( | , , ) ( , | )

( , | , ) ( , , , )
( | )

p D a I a I
p a D I p D a I

p D I

      

Assuming that the data is independent, the likelihood 2( | , , )p D a    is estimated as follows 

  2 2 2
1

1

( | , , ) , , | , , ( | , , )
N

n k
k

p D a I p y y a I p y a I  


   

Using the prediction error equation (2), the fact that the prediction error term ke  follows a Gaussian 

distribution and that ( ; )kF x a  is deterministic given a , the data point kx  then follows a Gaussian 

distribution with PDF  2| ( ; ),k ky F x a   given by   

 22
2

1 1
( | , , ) exp ( ; )

22
k k kp y a y F x a


     
 

 

Thus, the joint posterior PDF is  

 
 22 2

2
1

1 1
( , | , ) exp ( ; )  ( , | )

22

N

k kN
N k

p a D I y F x a a  
  

     
 

  

Introduce the function  2

1

( ) ( ; )
N

k k
k

J a y F x a


  , which measures the fit or the mismatch between the 

measured data and the predictions from the model. The expression for the posterior PDF becomes:  

 
2 2

2

1 1
( , | , ) exp ( )  ( , | )

22
N

N
p a D I J a a  

 

    
 

 

2.  Maximum a posteriori estimate (MAP) or most probable value (MPV) or Best Estimate 

Introducing the Log-Posterior function 

2 2 2 2
2

1
( , ) ln ( , | , ) log ( ) log ( , | )

2 2

N
L a p a D I J a a I    


      

the best estimates satisfy: 
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For a uniform prior,  
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ˆ
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a a
 

 


 
  

 
 ,  

which is equivalent to minimizing ( )J a  with respect to the parameters a . Note that ( )J a  is a measure of 
fit between measurement and predictions from the model. Alternatively is called sum of squares of the 
residuals and the value â  is called the least squares estimate.  

Equation (4) becomes: 

2 2

2 2 4ˆ
ˆ

1 1 1
ˆ( ) 0

ˆ ˆ2 2a a

L N
J a

 
  




  

  

which yields  

2 1
ˆ ˆ( )J a

N
             (5) 

Thus the MPV (or best estimate) of the variance of the prediction error is the average of the residuals 
obtained at the most MPV of the model parameters.  

Returning now to equation (3), we proceed to solve the system in the special case for which that the 
function ( ; )y F x a  is linear in a . In this case one has that  

2
2

1 0 1
2 2 2

2 2
1 1 1

( ) ( )
( ) 1 ( ) 1 1

2 2 2

1 1
          ( ) ( ) ( ) ( ) ( )

N n N
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k i k i k k
k i k

j j j j

N N N
T T

k k j k k j k k j k
k k k

y f x a y f x a
L a J a

a a a a

y f x a f x y f x f x f x a

  

 

  

  

               
   

              

  

  
 

Therefore, 
ˆ

( )
0,  0, ,

j a a

J a
j n

a



 


  gives  

1 1

ˆ( ) ( ) ( ) ,        0,1, ,
N N

T
k j k k j k

k k

y f x f x f x a j n
 

    
         (6) 

Introducing the vector  

1

( )
N

k k
k

d y f x


   

and the matrix  
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1

( ) ( )
N

T
k k

k

B f x f x


    
  

the system of n  equations (6) can be re-written in compact matrix form as 

ˆBa d             (7)  

with the solution  
1â B d            (8) 

to depend only on the data and the functional form of ( )f x . For example, the elements of ( )f x  can be 

any polynomial basis functions. The estimate in (8) obtained for a uniform prior distribution coincides 
with the estimate that one obtains from a least squares technique. Note that for stable solution the 
functions in ( )f x  have to be chosen appropriately.  

3. Spread of uncertainty in the parameter space 

The Hessian matrix of the minus log-posterior function, evaluated at the MPV, is used to estimate the 

uncertainty in the model parameters. The elements of partition ( ) 2( , )aH a   of the Hessian matrix 
2( , )H a   associated with the model parameters a  is  

2
2 ( ) 2

2 2
1 1

1 1
( , ) ( ) ( )            ( , ) ( ) ( )

N N
Ta a

jl j k l k k k
k kj l

L
H a f x f x H a f x f x

a a
 

  


   
   

 
Which, by making use of (5), gives  

2
2

1

1
ˆ ˆ( , ) ( ) ( )

ˆ ˆ( )

N
T

k k
k

N
H a f x f x B

J a




   

Similarly, the partition ( ) 2( , )H a   of the Hessian matrix 2( , )H a   associated with the prediction error 

model parameter 2  

2 2

2
( ) 2 2

2 2 4 6 4 6 4

ˆ

1 1 1 1
ˆ ˆ( , ) ( )

ˆ ˆ ˆ ˆ ˆ( ) 2 2 2

L N N N
H a J a N

 

 
     




       


 

The partition ( , ) 2( , )aH a   is given by 

2
( , ) 2

4 4 4
1 1

1 1
( , ) ( ) ( ) ( ) [ ]

N N
Ta T

k j k k j k j
k kj

L
H a y f x f x f x a d Ba

a
  

   

   
          

   

which, due to (7), it gives ( , ) 2
4

1
ˆ ˆ ˆ( , ) [ ] 0

ˆ
a T

jH a d Ba  


   , where T
j  is introduced for mathematical 

convenience to have all elements equal to zero except the j -th element which is set equal to one. Finally, 
the Hessian matrix at the MPV is the block diagonal matrix  

 2
2

2

0
1

ˆ ˆ,
ˆ 0

ˆ2

B
H a N






 
 
 
 

.  

and the associated covariance matrix is given by  
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4. Asymptotic posterior PDF  

Using the Bayesian central limit theorem, the asymptotic posterior PDF is Gaussian given by  



2 2 2
2
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ˆ
ˆ ˆ( , | , ) , | , ( , )

ˆ
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mean

a
p a D I N a C a  



 
  

   
   

 



 

or equivalently, using that 
1/22ˆ| | 2 / nC N B  , one derives  
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5. Marginal posterior PDF for a   

The marginal posterior PDF of the model parameters a  is obtained using the marginalization rule 

2 2 2 2
/2 2

0 0

1 1
( | , ) ( , | , ) exp ( )  ( , | ) 

N
p a D I p a D I d J a a I d    

 

      
     (9) 

Assuming that a  and 2  are independent prior to the data, i.e. 2 2( , | ) ( | ) ( | )a I a I I     , and that 
2  follows a uniform prior distribution, the integral in (9) can be evaluated analytically using the 

following integral value: 

1
0

1
exp( / ) ( )t dt

t


   



   

 

where ( )  is the Gamma function defined as   1

0

z tz t e dt


    .  

Letting
 

2t  ,
 

1
2

 
   and 

 

1
( )

2
J a   the integral is evaluated to be 

 
1

2
2 2

/2 2
0

1 1 1
exp ( )  ( , | ) 1 ( ) ( | )

2 2N
J a a I d J a a I   

 


                      

Thus, the marginal posterior PDF given by  

1
2

1
2

1
( | , ) 1 ( ) ( | )

2 2

                ( ) ( | )

p a D I J a a I

J a a I






 


 

           


       (10)
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which for a uniform prior distribution ( | )a I  is a multivariate Student-t distribution. Note that the 

estimate (10) assumes that the upper bound 2
max  of 2  is large enough so that the estimate of the integral 

in the interval 2
max(0, ]  is same as the integral in the interval (0, )  and is not affected by the finite value 

of 2
max . It is worth noting that the Student-t distribution tends to a Gaussian distribution for large enough 

number of data N .  

6. Posterior distribution of an output QoI  

The posterior distribution of the QoI z  is formulated using marginalization as follows  

( | , ) ( , , , ) ( | , , ) ( | , ) p z D I p z a D I da p z a D I p a D I da    

Using ( )z G y   , with 2(0, )N s  , and that ( ; )y F x a , the conditional distribution of z  is 

Gaussian with mean ( )G y  and variance 2s , i.e. 2( | , , ) ( | ( ), )p z a D I N z G y s , and thus the posterior 
PDF of the QoI is 

 2

2

1 1
( | , ) exp ( ( ; ))  ( | , )

22
p z D I z G F x a p a D I da

ss
    
   

The integration is usually in a higher dimensional space of the parameter set a  and cannot be carried out 
analytically. The integral can be obtained analytically only under special cases. For example, assume that 

( )G y  is linear in y , i.e. 1 0( )G y A y A  . Since 
0

( ) ( ) 
n

T
i i

i

y a f x f x a


   then the QoI z  is also 

linear in the model parameters a  

1 0 1 0
0

( ( ; )) ( )
n

T
i i

i

z G F x a A a f x A A f a A 


        

and thus the posterior distribution of z  conditioned on a  is also Gaussian given by  

2

1 02

1 1
( | , , ) exp

22

Tp z a D I z A f a A
ss

        
 

The posterior distribution ( | , )p z D I  is evaluated by the integral  

2

1 02

1 1
( | , ) exp  ( | , )

22

Tp z D I z A f a A p a D I d a
ss

        
 

The problem of evaluating the integral remains since a   is distributed as a student t-distribution. 

Simplifications are possible is a  is considered to be Gaussian, which is true for large number of data. 

Then, z  is a sum of Gaussian variables a  and   and so the distribution of z  is also Gaussian with mean 

  1 0 1 0ˆˆ ( ) [ ] ( )T Tz E z A f x E a A A f x a A    
 

and variance  
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where use was made of the fact that 1
aC B  and        ˆ ˆ ˆ( ) ( ) ( ) 0 0E a a E a a E E a a        

due to the independence of a  and  . Thus, the posterior PDF of the QoI becomes 
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