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Estimation of Likelihood 

Example 1: Scalar Linear Model 

Consider the mathematical model  

 Y E   

of a physical process/system, where E  is a Gaussian distribution, i.e. 2(0, )E N  . Given the 

values of   and 2  the output quantity of interest Y  follows the Gaussian distribution 
2( , )Y N    or, equivalently, the uncertainty in y  is given by the PDF 

 2 2
2

1 1
( | , , ) exp ( )

22
p y I y  


     

  (1) 

Given a set of independent observations/data 1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y   , we are interesting in 

updating the uncertainty in the variables   and 2 . This involves the estimation of the 
likelihood.  

Bayes Theorem: Using Bayes’ theorem, the inference about the values of   and 2  given the 
data and the information I  ( I  includes the selection of the Gaussian model) is expressed by the 
posterior PDF  

 2 2 2
1 1

ˆ ˆ( , |{ } , ) ({ } | , , )  ( , | )k N k Np Y I p Y I p I         (2) 

Estimation of Likelihood: To estimate the likelihood 2
1

ˆ({ } | , , )k Np Y I  , one can use the fact 

that the data are independent and apply successively the product rule of the axioms of probability, 
given by  

 ( , | ) ( | , )  ( | )p b a I p b a I p a I   (3) 

to finally derive that  

 2 2 2
1 2
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1 1ˆ ˆ ˆ({ } | , , ) ( | , , ) exp ( )
22

N N

k N k k
k k

p Y I p Y I Y    


 

      
    (4) 

Proof of (4): Specifically, the independence of the data allows us to assume that given the values 
of   and 2  the measurements of one or more data does not influence the inference about the 
outcome of another datum. Mathematically, this can be written as  

 2 2
1 2 1

ˆ ˆ ˆ ˆ ˆ( | , , , , , , ) ( | , , )         for any  k k k kp Y Y Y Y I p Y I k        (5) 

Using now the product rule (3) with k̂b Y  and 1 2 1
ˆ ˆ ˆ( , , , )k ka Y Y Y   , conditioned on the fact that 

  and 2  are known and the background information I , one derives that  
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2

2 1̂, , | , , )Y I  

  (6) 

where the last equality holds due to (5) resulting from the independence of the data. Applying 
equation (6) with k  replaced by 1k   one has that the second factor of the left hand side (LHS) 
of the last equality in (6) is given by  

 2 2 2
1 1 1 2 3 1

ˆ ˆ ˆ ˆ ˆ({ } | , , ) ( | , , )  ( , , , | , , )k k k k kp Y I p Y I p Y Y Y I             (7) 

Substituting (7) into (6) and continuing this process successively for the resulting factors, one 
readily derives that  

 2 2
1 2 1

1

ˆ ˆ ˆ ˆ ˆ( , , , , | , , ) ( | , , )
k

k k kp Y Y Y Y I p Y I


    


   (8) 

The proof of the first equality in (4) follows from (8) by setting k N  and replacing the index   

by k . The second equality in (4) follows by substituting the value of 2ˆ( | , , )kp Y I   using the 

PDF in (1).   

Example 2: Scalar Non-Linear Model 

Consider the mathematical model  

 ( )Y g E    (9) 

of a physical process/system, where E  is a Gaussian distribution, i.e. 2(0, )E N  . Given the 

values of   and 2  the output quantity of interest Y  follows the Gaussian distribution 
2( ( ), )Y N g    or, equivalently, the uncertainty in y  is given by the PDF 

 2 2
2

1 1
( | , , ) exp [ ( )]

22
p y I y g  


     

  (10) 

Given a set of independent observations/data 1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y   , we are interesting in 

updating the uncertainty in the variables   and 2 . This involves the estimation of the 
likelihood.  

Bayes Theorem: Using Bayes’ theorem, the inference about the values of   and 2  given the 
data and the information I  ( I  includes the selection of the Gaussian model) is expressed by the 
posterior PDF  

 2 2 2
1 1

ˆ ˆ( , |{ } , ) ({ } | , , )  ( , | )k N k Np Y I p Y I p I        

Estimation of Likelihood: To estimate the likelihood 2
1

ˆ({ } | , , )k Np Y I  , one can use the fact 

that the data are independent and apply successively the product rule of the axioms of probability. 
This approach is exactly the same as the approach followed in example 1. Thus  
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 2 2
1
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Substituting the value of 2ˆ( | , , )kp Y I   using the PDF in (10), we derive that  

 2 2
1 2

1

1 1ˆ ˆ({ } | , , ) exp [ ( )]
22

N

k N k
k

p Y I Y g  




     
  

 

Example 3: Scalar Linear Difference Equation of 1st Order 

Consider a mathematical model of a physical process/system represented by the difference 
equation  

 1k kY Y E     (11) 

where E  is a Gaussian distribution, i.e. 2(0, )E N  . Given a particular observation 

0 1 2 0
ˆ ˆ ˆ ˆ ˆ( , , , , ) { }N k ND Y Y Y Y Y    covering all time instances, we are interesting in updating the 

uncertainty in the variables   and 2 . This involves the estimation of the likelihood.  

Bayes Theorem: Using Bayes’ theorem, the inference about the values of   and 2  given the 
data and the information I  ( I  includes the selection of the Gaussian model) is expressed by the 
posterior PDF  

 2 2 2
0 0

ˆ ˆ( , |{ } , ) ({ } | , , )  ( , | )k N k Np Y I p Y I p I        

Estimation of Likelihood: To estimate the likelihood 2
1

ˆ({ } | , , )k Np Y I  , one can use the 

structure of model (11) to relate the value ky  at the current instant to the value of 1ky   at the 

previous instant and apply successively the product rule of the axioms of probability, to finally 
derive that  

 2 2 2
0 1 12

1 1

1 1ˆ ˆ ˆ ˆ ˆ({ } | , , ) ( | , , , ) exp ( )
22

N N

k N k k k k
k k

p Y I p Y Y I Y Y    
  

 

      
    (12) 

Proof of (12): Using the product rule (3) with k̂b Y  and 1 2 1 0
ˆ ˆ ˆ ˆ( , , , , )k ka Y Y Y Y   , conditioned on 

the fact that   and 2  are known and the background information I , one derives that  

 
2 2

0 1 2 0

2 2
1 2 0 1 2 0

ˆ ˆ ˆ ˆ ˆ({ } | , , ) ( , , , , | , , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ                               ( | , , , , , , )  ( , , , | , , )

k k k k k

k k k k k

p Y I p Y Y Y Y I

p Y Y Y Y I p Y Y Y I

   

   
  

   







 
 (13) 

Based on the structure of the model (11), given the values of   and 2  as well as the value 

1 1
ˆ

k kY Y   at the previous step or time instant 1k  , the output value kY  at time instant  k  is 

completely described and independent of the values of 2 1
ˆ ˆ, ,kY Y  . This is expressed in 

mathematical form as  

 2 2
1 2 0 1

ˆ ˆ ˆ ˆ ˆ ˆ( | , , , , , , ) ( | , , , )k k k k kp Y Y Y Y I p Y Y I       
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Substituting the last expression in (13), one readily derives that  

 
2 2 2

0 1 1 2 0

2 2
1 0 1

ˆ ˆ ˆ ˆ ˆ ˆ({ } | , , ) ( | , , , )  ( , , , | , , )
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k k k k k k
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  (14) 

Applying equation (14) with k  replaced by 1k   one has that the second factor of the left hand 
side (LHS) of the last equality in (14) is given by  

 2 2 2
0 1 1 2 2 3 0

ˆ ˆ ˆ ˆ ˆ ˆ({ } | , , ) ( | , , , )  ( , , , | , , )k k k k k kp Y I p Y Y I p Y Y Y I              (15) 

Substituting (15) into (14) and continuing this process successively for the resulting factors, one 
readily derives that  

 2 2
1 2 0 1

1

ˆ ˆ ˆ ˆ ˆ ˆ( , , , , | , , ) ( | , , , )
k

k k kp Y Y Y Y I p Y Y I 


     


   (16) 

The proof of the first equality in (12) follows from (16) by setting k N  and replacing the index 

  by k . The second equality in (4) follows by deriving the expression for 2
1

ˆ ˆ( | , , , )k kp Y Y I   

using the particular structure of the model (11). Specifically, given the values of   and 2  as 

well as the value 1ky   at the previous step or time instant 1k  , the output value ky  at time instant  k  

follows the Gaussian distribution 2
1 1| ( , )k k ky y N y    or, equivalently, the uncertainty in ky  

given the value 1ky   at the previous instant follows the PDF 

 2 2
1 12

1 1
( | , , , ) exp ( )

22
k k k kp y y I y y  

 
     

    (17) 

Replacing ˆ
k ky Y  and 1 1

ˆ
k ky Y   in the last expression and substituting in (16), one readily 

derives that  

 2
0 12

1

1 1ˆ ˆ ˆ({ } | , , ) exp ( )
22

N

k N k k
k

p Y I Y Y  
 



     
  

which completes the proof.   

 

Example 4: Scalar Non-Linear Difference Equation of 1st Order 

Consider a mathematical model of a physical process/system represented by the difference 
equation  

 1( , )k kY g Y E   

where E  is a Gaussian distribution, i.e. 2(0, )E N  . Given a particular observation 

0 1 2 0
ˆ ˆ ˆ ˆ ˆ( , , , , ) { }N k ND Y Y Y Y Y    covering all time instances, we are interesting in updating the 

uncertainty in the variables   and 2 . This involves the estimation of the likelihood.  


