1 Parameter Estimation: Multi-Dimensional Case

Consider the case of several uncertain parameters $\underline{X}=\left(X_{1}, \ldots, X_{n}\right) \in R^{n}$ of a model. Bayes theorem is used to make inference about the values of these parameters based on a set of data D and the background information I. Specifically the posterior distribution of the model parameters is given by

$$
\begin{equation*}
p(\underline{x} \mid D, I)=\frac{p(D \mid \underline{\chi}, I) p(\underline{x} \mid I)}{p(D \mid I)} \tag{1}
\end{equation*}
$$

which completely quantifies the uncertainties in the values $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ of the model parameters. Similar to the two-dimensional parameter case, the most probable value or the best estimate $\underline{\hat{x}}$ of the values of the model parameters is the one that maximizes the posterior PDF $p(\underline{x} \mid D, I)$ or, equivalently, minimizes the function

$$
\begin{equation*}
L(\underline{x})=-\log [p(\underline{x} \mid D, I)] \tag{2}
\end{equation*}
$$

Note that the posterior PDF can be written in terms of the function $L(\underline{x})$ in the form

$$
\begin{equation*}
p(\underline{x} \mid D, I)=\exp [-L(\underline{x})] \tag{3}
\end{equation*}
$$

1.1 General Case of Several Parameters

Consider now the general case of n parameters. The best estimates of the model parameters are obtained by simultaneously solving the following system of two equations

$$
\begin{equation*}
\left.\underline{\nabla}^{T} L(\underline{x})\right|_{\underline{x}=\underline{\hat{x}}}=\underline{0} \tag{4}
\end{equation*}
$$

and ensure that the solution $\underline{\hat{x}}$ corresponds to a minimum of $L(\underline{x})$. The uncertainty in the values of the parameters are obtained by considering the spread of the n-dimensional posterior PDF about the best estimate $\underline{\hat{x}}$.
The local behavior of the posterior PDF about $\underline{\hat{x}}$ is obtained by the Taylor series expansion of the function $L(\underline{x})$ about $\underline{\hat{x}}$, given by

$$
L(\underline{x})=L(\underline{\hat{x}})+\left.\nabla^{T} L(\underline{x})\right|_{\underline{x}=\underline{\hat{x}}}(\underline{x}-\underline{\hat{x}})+\left.\frac{1}{2}(\underline{x}-\underline{\hat{x}})^{T} \underline{\nabla} \underline{\nabla}^{T} L(\underline{x})\right|_{\underline{x}=\underline{\hat{x}}}(\underline{x}-\underline{\hat{x}})+\cdots
$$

Using the fact that we expand around the minimum value $\underline{\hat{\hat{x}}}$ of $L(\underline{x})$, the linear terms in the Taylor series expansion are zero because of (4). Introducing the Hessian matrix $H(\underline{x})$ of the function $L(\underline{x})$ by the form

$$
H(\underline{x})=\underline{\nabla} \underline{\nabla}^{T} L(\underline{x})
$$

the Taylor series expansion of $L(\underline{x})$ takes the form

Lecture 4: Parameter inference (multi-parameter case), March 19, 2013

$$
L(\underline{x})=L(\underline{\hat{x}})+\frac{1}{2}(\underline{x}-\underline{\hat{x}})^{T} H(\underline{\hat{x}})(\underline{x}-\underline{\hat{x}})+\cdots
$$

or equivalently

$$
\begin{equation*}
L(\underline{x})=L(\underline{\hat{x}})+\frac{1}{2} Q(\underline{x})+\cdots \tag{5}
\end{equation*}
$$

where $Q(\underline{x})$ takes the quadratic form

$$
\begin{equation*}
Q(\underline{x})=(\underline{x}-\underline{\hat{x}})^{T} H(\underline{\hat{x}})(\underline{x}-\underline{\hat{x}}) \tag{6}
\end{equation*}
$$

Note that at the neighbor of the best estimate, the terms of the order of three or higher in the Taylor series expansion of $L(\underline{x})$ can be neglected and the behavior of the function $L(\underline{x})$ locally is specified by the behavior of the quadratic form $Q(\underline{x})$. Specifically the spread of uncertainty around the best estimate $\underline{\hat{x}}$ is determined by the contour curves of function $Q(\underline{x})$. Using the fact that $\underline{\hat{x}}$ is the minimum of $L(\underline{x})$, then the Hessian of $L(\underline{x})$ is positive definite or, equivalently, that the quadratic form $Q(\underline{x})$ is positive for any $\underline{x}-\underline{\hat{x}} \neq(0, \ldots, 0)^{T}$. The points \underline{x} in the parameter space that belong to the contour curve of $Q(\underline{x})$ corresponding to an energy level $\kappa>0$, have coordinates that satisfy the equation

$$
Q(\underline{x})=(\underline{x}-\underline{\hat{x}})^{T} H(\underline{\hat{x}})(\underline{x}-\underline{\hat{x}})=\kappa
$$

Consider the eigenvalues $\lambda_{i}, i=1, \ldots, n$, and the corresponding eigenvectors $\underline{u}_{i}, i=1, \ldots, n$, of the positive definite symmetric matrix $\hat{H} \equiv H(\underline{\hat{x}})$ obtained by solving the eigenvalue problem

$$
\hat{H} \underline{u}=\lambda \underline{u}
$$

From linear algebra results, it is well known that for a positive definite symmetric matrix \hat{H}, the eigenvalues are positive i.e. $\lambda_{i}>0, i=1, \ldots, n$, while the eigenvectors $\underline{u}_{i}, i=1, \ldots, n$, are orthogonal. Normalize that eigenvectors $\underline{u}_{i}, i=1, \ldots, n$, so that they have unit length. These orthogonal unit vectors define certain orthogonal directions in the parameter space. Introducing now the matrix of eigenvectors $U=\left[\underline{u}_{1}, \ldots, \underline{u}_{n}\right]$ and invoking known relevant results from linear algebra, one can write the orthogonality conditions:

$$
\begin{gathered}
U U^{T}=U^{T} U=I \\
U^{T} \hat{H} U=\Lambda
\end{gathered}
$$

where Λ is the diagonal matrix of the eigenvalues of \hat{H}. The first condition implies that the matrix of eigenvectors Q is orthogonal. Also, from linear algebra, it is well-known that the orthonormal eigenvectors $\underline{u}_{i}, i=1, \ldots, n$, constitute a basis of the n-dimensional vector space or, equivalently, any vector $\underline{x}-\underline{\hat{x}} \in R^{n}$ can be written in terms of the basis of eigenvectors $\left\{\underline{u}_{1}, \ldots, \underline{u}_{n}\right\}$ as

Lecture 4: Parameter inference (multi-parameter case), March 19, 2013

$$
\begin{equation*}
\underline{x}-\underline{\mu}=\sum_{i=1}^{n} y_{i} \underline{u}_{i}=U \underline{y} \tag{7}
\end{equation*}
$$

where $\underline{y}=\left(y_{1}, \ldots, y_{n}\right)^{T} \in R^{n}$, which is an alternative representation of the vector $\underline{x}-\underline{\hat{x}}$ using its components y_{1}, \ldots, y_{n} with respect to the new orthonormal basis of eigenvectors $\left\{\underline{u}_{1}, \ldots, \underline{u}_{n}\right\}$.

Substituting (7) into the quadratic form (6), one derives the quadratic form in terms of the components y_{1}, \ldots, y_{n} of the vector $\underline{x}-\underline{\hat{x}}$ in the new basis as

$$
\begin{equation*}
Q(\underline{x})=\underline{y}^{T} U^{T} H \underline{U}=\underline{y}^{T} \Lambda \underline{y}=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \tag{8}
\end{equation*}
$$

It is clear that the symmetric matrix associated with the quadratic form in the new basis $\left\{\underline{u}_{1}, \ldots, \underline{u}_{n}\right\}$ of the eigenvectors of H is the diagonal matrix Λ of the eigenvalues of H.

Consider now the points at the contour of the function $Q(\underline{x})$ corresponding to an "energy" level κ. Such points in the n-dimensional space satisfy the equation

$$
Q(\underline{x})=\kappa
$$

or, equivalently, using (8), the components with respect to the eigenvector basis satisfy

$$
\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}=\hat{Q}(\underline{y})=\kappa
$$

which can be written in the form

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{y_{i}^{2}}{\alpha_{i}^{2}}=1 \tag{9}
\end{equation*}
$$

where $\alpha_{i}=\sqrt{\frac{\kappa}{\lambda_{i}}}$. Equation (9) represents an hyper-ellipse that is centered in the point $\underline{\hat{\chi}}$ in the parameter space with principal axis along the directions specified by the eigenvectors and size of the principal axis equal to α_{i}, i.e. the size of the principal axes are inversely proportional to the square root of the eigenvalues. Thus, the eigenvalues and the eigenvectors of the matrix \hat{H} define completely the characteristics of this hyper-ellipse in the n-dimensional space, containing all points with coordinate values satisfying the equation (9). As in the two-parameter case, the contour curve specifies the spread of the uncertainty in the values of the parameters in \underline{x} in the n-dimensional parameter space.

Asymptotic Approximation of Posterior PDF: Substituting the Taylor series expansion (5) into the posterior PDF (3) and keeping only up to the quadratic terms in the Taylor expansion, the posterior PDF is approximated by

$$
\begin{aligned}
p(\underline{x} \mid D, I) & =\exp [-L(\underline{x})] \propto \exp [-Q(\underline{x})] \\
& \propto \exp \left[-\frac{1}{2}(\underline{x}-\underline{\hat{x}})^{T} H(\underline{\hat{x}})(\underline{x}-\underline{\hat{x}})\right]
\end{aligned}
$$

Introducing the covariance matrix

Lecture 4: Parameter inference (multi-parameter case), March 19, 2013

$$
C=H^{-1}(\underline{\hat{x}})
$$

as the inverse of the Hessian of $L(\underline{x})$ evaluated at the most probable value $\underline{\hat{x}}$ of the model parameters, the posterior PDF is approximated by the multi-variable Gaussian PDF.

$$
\begin{equation*}
p(\underline{x} \mid D, I)=\frac{1}{(\sqrt{2 \pi})^{2} \sqrt{\operatorname{det} C}} \exp \left[-\frac{1}{2}(\underline{x}-\underline{\hat{x}})^{T} C^{-1}(\underline{x}-\underline{\hat{x}})\right] \tag{10}
\end{equation*}
$$

Remarks

1. The Bayesian Central Limit Theorem, outlined for the two-dimensional case in Remark 1, holds also for the n dimensional case. Specifically, the posterior PDF asymptotically approximates the Gaussian multivariate PDF centered at the most probable value $\underline{\hat{x}}$ and with covariance matrix $C=H^{-1}(\underline{\hat{x}})$, given by (10).
2. The spread of the uncertainty in the parameters around the best estimate $\underline{\hat{x}}$ is completely defined by the Hessian matrix $\hat{H}=H(\underline{\hat{x}})$ or equivalently by the covariance matrix $C=H^{-1}(\underline{\hat{x}})$.
3. In order to obtain the marginal distribution of a parameter, say x_{i}, we need to integrate out the values of the rest of the parameters $\underline{\tilde{x}}_{i}=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$ using the marginalization theorem

$$
p\left(x_{i} \mid D, I\right)=\int p\left(x_{i}, \tilde{\underline{x}}_{i} \mid D, I\right) d \tilde{\underline{x}}_{i}
$$

However, this is a multi-dimensional integral which cannot be evaluated numerically for more than a few parameters. However, using the asymptotic Gaussian approximation of the joint posterior PDF $p(\underline{x} \mid D, I)$ defined in (10), one can readily obtain that the marginal PDF $p\left(x_{i} \mid D, I\right)$ is also Gaussian distribution with mean \hat{x}_{i} and variance $C_{i i}$, the (i,i) diagonal component of the covariance matrix C. The best estimate of x_{i} is \hat{x}_{i} and the spread of the uncertainty in the parameter x_{i} about the best estimate is defined by $\sqrt{C_{i i}}$. It should be emphasized that the estimates $\sqrt{C_{i i}}$ of the uncertainties in each one of the parameters x_{i} give an incomplete picture of the uncertainties since they do not take into account the correlation between the variables in the vector \underline{x}.
4. Using the linear transformation of variables

$$
\underline{x}-\underline{\hat{x}}=U \underline{y}
$$

The fact that asymptotically the variables in \underline{x} are Gaussian and that a linear transformation of Gaussian variables results in Gaussian variables as well, the posterior PDF for the new variables $\underline{y}=U^{-1}(\underline{x}-\underline{\hat{x}})$ are also Gaussian with zero mean and diagonal covariance $E\left[\underline{y y^{T}}\right]=\Lambda^{-1}$ (see general proof in Remark 4) . Specifically, the posterior PDF of \underline{y} is given by

Lecture 4: Parameter inference (multi-parameter case), March 19, 2013

$$
p(\underline{y} \mid D, I)=\frac{1}{(\sqrt{2 \pi})^{2} \sqrt{1 /\left(\lambda_{1} \ldots \lambda_{n}\right)}} \exp \left[-\frac{1}{2} \underline{y}^{T} \underline{\Lambda} \underline{]}\right]=\prod_{k=1}^{k} \frac{1}{\sqrt{2 \pi} \sqrt{1 / \lambda_{k}}} \exp \left[-\frac{y_{k}^{2}}{2\left(1 / \lambda_{k}\right)}\right]
$$

The spread of the uncertainty in the parameters in y along the directions defined by the unit eigenvectors $\underline{u}_{i}, i=1, \ldots, n$, are inversely proportional to the square root of the eigenvalues $\lambda_{i}, \quad i=1, \ldots, n$, . The variables $1 / \sqrt{\lambda_{i}}, \quad i=1, \ldots, n$, provide the spread of the uncertainties of the variables $y_{i}, i=1, \ldots, n$. Moreover, the variables $1 / \sqrt{\lambda_{i}}, i=1, \ldots, n$, give a complete picture of the spread of the uncertainties in the n-dimensional parameter space, locally around the best estimate $\underline{\hat{\chi}}$, in the directions specified by the eigenvectors $\underline{u}_{i}, i=1, \ldots, n$, of the Hessian matrix $\hat{H}=H(\underline{\hat{\chi}})$.

