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1 Bayesian Estimation of Parameter of an Exponential Model  

Consider a mathematical model of a physical process/system represented by the equation  
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where exp( )t     and kE  are independent identically distributed (iid) zero-mean Gaussian 

distributions, i.e. 2(0, )kE N  . Note that equation (1) arises as the solution at time instances 

t k t   of the first–order linear homogeneous differential equation  

 0y y    (2) 

with initial conditions 0 0(0)Y y x  . Given the observations 2 3 1
ˆ ˆ ˆ ˆ ˆ( , , , , ) { }n n n Nn kn ND Y Y Y Y Y    

covering time instances that are multiple of n  ( n  is given), we are interesting in updating the 
uncertainty in the parameter   of the system given the value of the variance 2 .  

Assume a uniform prior PDF for   and derive the expressions for the  

1. Posterior PDF 1
ˆ( |{ } , , )kn Np Y I  .  

2. The MPV (or best estimate) ̂  of   

3. The uncertainty of   

4. Retain up to the quadratic terms in the Taylor series expansion of ( )L   about the most 

probable value ̂  and derive the Gaussian asymptotic approximation for the posterior PDF of 

1
ˆ( |{ } , , )kn Np Y I   

5. Derive the expression for the posterior PDF for  , the MPV ̂  and the uncertainty of   
assuming a Gaussian prior PDF for  .  

Perform the analysis for given values of n t , 0 1x  ,   and number N  of data.  

Prior PDF: The uniform PDF for   is given by  

 min max min max1/ [ ],      [ , ]
( | , )

0                 otherwise
p I

    
 

  
 


  (3) 

Posterior PDF: Using Bayes’ theorem, the inference about the value   given the data, the 
standard deviation   and the information I  ( I  includes the selection of the Gaussian model) is 
expressed by the posterior PDF  
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    (4) 

Likelihood: Assuming that the measurements k̂nY  are independent and kE  are distributed as 

Gaussian variables i.e. 2(0, )kE N  , then using (1) the measurements k̂nY  given the value of   
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are also distributed as Gaussian variables with mean 0 exp( )x k t   and variance 2 . Thus the 

likelihood is readily obtained in the form  
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  (5) 

Estimation of Posterior PDF: Using (5) to replace the first factor in the right hand side (RHS) of 
(4) and the uniform prior PDF (3), the posterior PDF of the uncertain parameter   given the 
value of   takes the form 
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Note that the distribution of the parameter   is not Gaussian.  

Most Probable Value (MPV) or Best Estimate: The function ( )L  , defined in theory as the minus 
the logarithm of the posterior PDF of  , is given by  

 
2

02
1

1 ˆ( ) log ( | , , ) log exp( ) constant
2

N

kn
k

L p D I N Y x kn t    
 

            (6) 

The MPV of ̂  maximize the posterior PDF or, equivalently, minimize ( )L  . Specifically the 
derivative of ( )L   with respect to   is  
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  (7) 

The solution for the MPV ̂  is obtained by solving the equation  

 0
02

1ˆ

( ) ˆˆ ˆexp( 2 ) exp( ) 0
N

kn
k

x n tL
x kn t Y kn t k

 

 
  

             

However, it is clear that this equation cannot be solved analytically. Thus, the MPV ̂  can only 
be obtained numerically by minimizing the function ( )L   given in (6). Any numerical 

optimization algorithm can be used to perform the optimization. Note that the MPV ̂  is 
independent of the value of  .  

Uncertainty in Model Parameters: The uncertainty in the value of the model parameter   is 
characterized by the Hessian of the function ( )L   evaluated at the MPV ̂ . Starting with (7) and 
differentiating once more with respect to  , the Hessian is given by  
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The measure of the uncertainty, provided by the square root of the inverse of the Hessian of 
( )L   evaluated at the most probable value ̂ , is given by   
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Given the MPV ̂  and the uncertainty index S  we can write a measure of the uncertainty interval of 

  in the form ˆ S  .  

Asymptotic Posterior PDF: Following the theoretical result for the Bayesian Central Limit 
Theorem and using the MPV ̂  and the uncertainty index S , the posterior PDF of   follows 
asymptotically, for large number of data N , the Gaussian distribution  

 21 1
ˆ( | , , ) exp ( )

22
f D I

SS
   


     

 

Figure 1 shows the MPV ̂  and the uncertainty S  in   for different values of the model 
parameters n t , 0 1x  ,   and number N  of data.   
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Homework 2 (Deadline: 21 November 2013) 

Exercise 2: Parameter Inference for Scalar Linear Difference Equation of 1st Order 

Consider a mathematical model of a physical process/system represented by the difference 
equation  

 1k k kY Y E     (8) 

where kE  are independent identically distributed (iid) zero-mean Gaussian distributions, i.e. 
2(0, )kE N  . Given the observations 0 1 2 0

ˆ ˆ ˆ ˆ ˆ( , , , , ) { }N k ND Y Y Y Y Y    covering all time 

instances, we are interesting in updating the uncertainty in the parameter   of the system given 
the value of the variance 2 . Assume a Gaussian prior for   and derive the expressions for the  

1. Posterior PDF 1
ˆ( |{ } , , )k Np Y I  .  

2. The MPV (or best estimate) ̂ of   

3. The uncertainty of   

4. Verify that the posterior PDF 1
ˆ( |{ } , , )k Np Y I   is a Gaussian distribution, that is, its 

asymptotic Gaussian approximation is exact.  

5. Derive, as a special case of the previous analysis, the best estimate ̂  and the uncertainty of 

  for a uniform PDF with large enough bounds. Is the posterior PDF 1
ˆ( |{ } , , )k Np Y I   a 

Gaussian distribution?  

6. Derive the posterior PDF 1
ˆ( |{ } , , )k Np Y I   for an inverse Gamma prior distribution. 

Without solving for the best estimate ̂  and the uncertainty of  , discuss the procedure for 
estimating the best estimate ̂  and the uncertainty of  . Can the MPV ̂  be estimated 
analytically? Is the posterior PDF ( | , , )p D I   a Gaussian distribution?  

 

Exercise 3: Inference of Air Resistance Coefficient for a Falling Object 

Consider the mathematical model of a falling object with mass m , acceleration of gravity g  and 

air resistance force 2
resF m  , where   is the air resistance coefficient. Using Newton’s law, 

the equation of motion of the falling object is  

 2d
m mg m

dt

     (9) 

Solving the nonlinear differential equation (9), the solution for the velocity can readily be 
obtained in the form  

 0( )
( ) tanh

g t t
t 




 
  

 
 

where /g    and 0t  is the initial time. Integrating the velocity /dx dt   with respect to 

time, the solution for the vertical displacement x  of the falling object is finally obtained as  
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( ) ln cosh ( )x t g t t


     (10) 

Measurements for the position of the falling object are obtained by a digital camera at regular 

time intervals k t . Given the observation data 1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND X X X X    of the location of 

the falling object at time instances , 2 , ,t t t N t    , respectively, we are interesting in 

estimating the uncertainty of the parameter   of the system given the value of the variance 2 . 
Note that the measurements and the model predictions satisfy the model error equation  

 ˆ ( )k kX x k t E     (11) 

where the measurement error terms kE  are independent identically distributed (iid) and follow a 

zero-mean Gaussian distribution 2(0, )kE N  .  

Assume a uniform prior for   and derive the expressions for the  

1. Posterior PDF ( | , , )p D I  .  

2. The function ( ) ln ( | , , )L p D I     

3. The MPV (or best estimate) ̂  of   

4. The uncertainty of   

5. Retain up to the quadratic terms in the Taylor series expansion of ( )L   about the most 

probable value ̂  and derive the Gaussian asymptotic approximation for the posterior PDF of 
( | , , )p D I   

Perform the analysis for given values of 29.81 /g m s , 0 0t  , t  and  .  Consider two cases:  

(a) ??t  , ??   and ??N   with the data D  given in file ????.dat.  

(b) ??t  , ??   and ??N   with the data D  given in file ????.dat.  

 


