1 Bayesian Estimation of Parameter of an Exponential Model

Consider a mathematical model of a physical process/system represented by the equation

$$Y_{k} = x_{0} \exp(-\alpha k \Delta t) + E_{k}$$

= $x_{0}\beta^{k} + E_{k}$ (1)

where $\beta = \exp(-\alpha \Delta t)$ and E_k are independent identically distributed (iid) zero-mean Gaussian distributions, i.e. $E_k \sim N(0, \sigma^2)$. Note that equation (1) arises as the solution at time instances $t = k\Delta t$ of the first-order linear homogeneous differential equation

$$\dot{\mathbf{y}} + \alpha \, \mathbf{y} = \mathbf{0} \tag{2}$$

with initial conditions $Y_0 = y(0) = x_0$. Given the observations $D \equiv (\hat{Y}_n, \hat{Y}_{2n}, \hat{Y}_{3n}, \dots, \hat{Y}_{Nn}) \equiv {\{\hat{Y}_{kn}\}_{1 \to N}}$ covering time instances that are multiple of *n* (*n* is given), we are interesting in updating the uncertainty in the parameter α of the system given the value of the variance σ^2 .

Assume a uniform prior PDF for α and derive the expressions for the

- 1. Posterior PDF $p(\alpha | \{\hat{Y}_{kn}\}_{1 \to N}, \sigma, I)$.
- 2. The MPV (or best estimate) $\hat{\alpha}$ of α
- 3. The uncertainty of α
- 4. Retain up to the quadratic terms in the Taylor series expansion of $L(\alpha)$ about the most probable value $\hat{\alpha}$ and derive the Gaussian asymptotic approximation for the posterior PDF of $p(\alpha | \{\hat{Y}_{kn}\}_{1 \to N}, \sigma, I)$
- 5. Derive the expression for the posterior PDF for β , the MPV $\hat{\beta}$ and the uncertainty of β assuming a Gaussian prior PDF for β .

Perform the analysis for given values of $n\Delta t$, $x_0 = 1$, σ and number N of data.

<u>*Prior PDF*</u>: The uniform PDF for α is given by

$$p(\alpha \mid \sigma, I) = \begin{cases} 1/[\alpha_{\min} - \alpha_{\max}], & \alpha \in [\alpha_{\min}, \alpha_{\max}] \\ 0 & \text{otherwise} \end{cases}$$
(3)

<u>Posterior PDF</u>: Using Bayes' theorem, the inference about the value α given the data, the standard deviation σ and the information I (I includes the selection of the Gaussian model) is expressed by the posterior PDF

$$p(\alpha \mid D, \sigma, I) = \frac{p(D \mid \alpha, \sigma, I) \ p(\alpha \mid \sigma, I)}{p(D \mid \sigma, I)} \propto p(D \mid \alpha, \sigma, I) \ p(\alpha \mid \sigma, I)$$
(4)

<u>Likelihood</u>: Assuming that the measurements \hat{Y}_{kn} are independent and E_k are distributed as Gaussian variables i.e. $E_k \sim N(0, \sigma^2)$, then using (1) the measurements \hat{Y}_{kn} given the value of α

Lecture Notes: Parameter inference (single parameter case) - Examples, Nov 14, 2013

are also distributed as Gaussian variables with mean $x_0 \exp(-\alpha k \Delta t)$ and variance σ^2 . Thus the likelihood is readily obtained in the form

$$p(D \mid \alpha, \sigma, I) = p(\{\hat{Y}_{kn}\}_{1 \to N} \mid \alpha, \sigma, I) = \prod_{k=1}^{N} p(\hat{Y}_{kn} \mid \alpha, \sigma, I)$$
$$= \prod_{k=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2\sigma^{2}} \left[\hat{Y}_{kn} - x_{0} \exp(-\alpha kn\Delta t)\right]^{2}\right]$$
$$= \frac{1}{\left(\sqrt{2\pi}\right)^{N} \sigma^{N}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{k=1}^{N} \left[\hat{Y}_{kn} - x_{0} \exp(-\alpha kn\Delta t)\right]^{2}\right]$$
(5)

<u>Estimation of Posterior PDF</u>: Using (5) to replace the first factor in the right hand side (RHS) of (4) and the uniform prior PDF (3), the posterior PDF of the uncertain parameter α given the value of σ takes the form

$$p(\alpha \mid D, \sigma, I) \propto \frac{1}{\sigma^{N}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{k=1}^{N} \left[\hat{Y}_{kn} - x_{0} \exp(-\alpha kn\Delta t)\right]^{2}\right]$$

Note that the distribution of the parameter α is not Gaussian.

<u>Most Probable Value (MPV) or Best Estimate</u>: The function $L(\alpha)$, defined in theory as the minus the logarithm of the posterior PDF of α , is given by

$$L(\alpha) = -\log p(\alpha \mid D, \sigma, I) = N\log\sigma + \frac{1}{2\sigma^2} \sum_{k=1}^{N} \left[\hat{Y}_{kn} - x_0 \exp(-\alpha kn\Delta t) \right]^2 + \text{constant}$$
(6)

The MPV of $\hat{\alpha}$ maximize the posterior PDF or, equivalently, minimize $L(\alpha)$. Specifically the derivative of $L(\alpha)$ with respect to α is

$$\frac{\partial L}{\partial \alpha} = \frac{1}{\sigma^2} \sum_{k=1}^{N} \left[x_0 \exp(-\alpha kn\Delta t) - \hat{Y}_{kn} \right] x_0 (-kn\Delta t) \exp(-\alpha kn\Delta t) = -\frac{x_0 (n\Delta t)}{\sigma^2} \sum_{k=1}^{N} \left[x_0 \exp(-2\alpha kn\Delta t) - \hat{Y}_{kn} \exp(-\alpha kn\Delta t) \right] k$$
(7)

The solution for the MPV $\hat{\alpha}$ is obtained by solving the equation

$$\frac{\partial L}{\partial \alpha}\Big|_{\alpha=\hat{\alpha}} = -\frac{x_0(n\Delta t)}{\sigma^2} \sum_{k=1}^{N} \left[x_0 \exp(-2\hat{\alpha}kn\Delta t) - \hat{Y}_{kn} \exp(-\hat{\alpha}kn\Delta t) \right] k = 0$$

However, it is clear that this equation cannot be solved analytically. Thus, the MPV $\hat{\alpha}$ can only be obtained numerically by minimizing the function $L(\alpha)$ given in (6). Any numerical optimization algorithm can be used to perform the optimization. Note that the MPV $\hat{\alpha}$ is independent of the value of σ .

<u>Uncertainty in Model Parameters</u>: The uncertainty in the value of the model parameter α is characterized by the Hessian of the function $L(\alpha)$ evaluated at the MPV $\hat{\alpha}$. Starting with (7) and differentiating once more with respect to α , the Hessian is given by

Lecture Notes: Parameter inference (single parameter case) - Examples, Nov 14, 2013

$$\frac{\partial^2 L}{\partial \alpha^2}\Big|_{\alpha=\hat{\alpha}} = -\frac{x_0(n\Delta t)}{\sigma^2} \sum_{k=1}^N \Big[x_0(-2kn\Delta t) \exp(-2\hat{\alpha}kn\Delta t) - \hat{Y}_{kn}(-kn\Delta t) \exp(-\hat{\alpha}kn\Delta t) \Big] k$$
$$= \frac{x_0(n\Delta t)^2}{\sigma^2} \sum_{k=1}^N \Big[2x_0 \exp(-2\hat{\alpha}kn\Delta t) - \hat{Y}_{kn} \exp(-\hat{\alpha}kn\Delta t) \Big] k^2$$

The measure of the uncertainty, provided by the square root of the inverse of the Hessian of $L(\alpha)$ evaluated at the most probable value $\hat{\alpha}$, is given by

$$\sqrt{S} = \left(\frac{d^2 L}{d\alpha^2}\Big|_{\alpha=\hat{\alpha}}\right)^{-1/2}$$

Given the MPV $\hat{\alpha}$ and the uncertainty index \sqrt{S} we can write a measure of the uncertainty interval of α in the form $\hat{\alpha} \pm \sqrt{S}$.

<u>Asymptotic Posterior PDF</u>: Following the theoretical result for the Bayesian Central Limit Theorem and using the MPV $\hat{\alpha}$ and the uncertainty index S, the posterior PDF of α follows asymptotically, for large number of data N, the Gaussian distribution

$$f(\alpha \mid D, \sigma, I) = \frac{1}{\sqrt{2\pi S}} \exp\left[-\frac{1}{2S}(\alpha - \hat{\alpha})^2\right]$$

Figure 1 shows the MPV $\hat{\alpha}$ and the uncertainty \sqrt{S} in α for different values of the model parameters $n\Delta t$, $x_0 = 1$, σ and number N of data.

Homework 2 (Deadline: 21 November 2013)

Exercise 2: Parameter Inference for Scalar Linear Difference Equation of 1st Order

Consider a mathematical model of a physical process/system represented by the difference equation

$$Y_k = \alpha Y_{k-1} + E_k \tag{8}$$

where E_k are independent identically distributed (iid) zero-mean Gaussian distributions, i.e. $E_k \sim N(0, \sigma^2)$. Given the observations $D \equiv (\hat{Y}_0, \hat{Y}_1, \hat{Y}_2, \dots, \hat{Y}_N) \equiv {\{\hat{Y}_k\}}_{0 \to N}$ covering all time instances, we are interesting in updating the uncertainty in the parameter α of the system given the value of the variance σ^2 . Assume a Gaussian prior for α and derive the expressions for the

- 1. Posterior PDF $p(\alpha | \{\hat{Y}_k\}_{1 \to N}, \sigma, I)$.
- 2. The MPV (or best estimate) $\hat{\alpha}$ of α
- 3. The uncertainty of α
- 4. Verify that the posterior PDF $p(\alpha | \{\hat{Y}_k\}_{1 \to N}, \sigma, I)$ is a Gaussian distribution, that is, its asymptotic Gaussian approximation is exact.
- 5. Derive, as a special case of the previous analysis, the best estimate $\hat{\alpha}$ and the uncertainty of α for a uniform PDF with large enough bounds. Is the posterior PDF $p(\alpha | \{\hat{Y}_k\}_{1 \to N}, \sigma, I)$ a Gaussian distribution?
- 6. Derive the posterior PDF $p(\alpha | \{\hat{Y}_k\}_{1 \to N}, \sigma, I)$ for an inverse Gamma prior distribution. Without solving for the best estimate $\hat{\alpha}$ and the uncertainty of α , discuss the procedure for estimating the best estimate $\hat{\alpha}$ and the uncertainty of α . Can the MPV $\hat{\alpha}$ be estimated analytically? Is the posterior PDF $p(\alpha | D, \sigma, I)$ a Gaussian distribution?

Exercise 3: Inference of Air Resistance Coefficient for a Falling Object

Consider the mathematical model of a falling object with mass m, acceleration of gravity g and air resistance force $F_{res} = -m\alpha v^2$, where α is the air resistance coefficient. Using Newton's law, the equation of motion of the falling object is

$$m\frac{d\upsilon}{dt} = mg - m\alpha\upsilon^2 \tag{9}$$

Solving the nonlinear differential equation (9), the solution for the velocity can readily be obtained in the form

$$v(t) = v_{\infty} \tanh\left(\frac{g(t-t_0)}{v_{\infty}}\right)$$

where $v_{\infty} = \sqrt{g/\alpha}$ and t_0 is the initial time. Integrating the velocity v = dx/dt with respect to time, the solution for the vertical displacement x of the falling object is finally obtained as

Lecture Notes: Parameter inference (single parameter case) - Examples, Nov 14, 2013

$$x(t) = \frac{1}{\alpha} \ln \cosh\left(\sqrt{g\alpha} (t - t_0)\right) \tag{10}$$

Measurements for the position of the falling object are obtained by a digital camera at regular time intervals $k\Delta t$. Given the observation data $D \equiv (\hat{X}_1, \hat{X}_2, ..., \hat{X}_N) \equiv \{\hat{X}_k\}_{1 \to N}$ of the location of the falling object at time instances $t = \Delta t, 2\Delta t, ..., N\Delta t$, respectively, we are interesting in estimating the uncertainty of the parameter α of the system given the value of the variance σ^2 . Note that the measurements and the model predictions satisfy the model error equation

$$\hat{X}_k = x(k\Delta t) + E_k \tag{11}$$

where the measurement error terms E_k are independent identically distributed (iid) and follow a zero-mean Gaussian distribution $E_k \sim N(0, \sigma^2)$.

Assume a uniform prior for α and derive the expressions for the

- 1. Posterior PDF $p(\alpha | D, \sigma, I)$.
- 2. The function $L(\alpha) = -\ln p(\alpha \mid D, \sigma, I)$
- 3. The MPV (or best estimate) $\hat{\alpha}$ of α
- 4. The uncertainty of α
- 5. Retain up to the quadratic terms in the Taylor series expansion of $L(\alpha)$ about the most probable value $\hat{\alpha}$ and derive the Gaussian asymptotic approximation for the posterior PDF of $p(\alpha | D, \sigma, I)$

Perform the analysis for given values of $g = 9.81m/s^2$, $t_0 = 0$, Δt and σ . Consider two cases:

- (a) $\Delta t = ??, \sigma = ??$ and N = ?? with the data D given in file ????.dat.
- (b) $\Delta t = ??, \sigma = ??$ and N = ?? with the data D given in file ????.dat.