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1 Example: Bayesian Estimation of Mean and Variance of Gaussian 
Process 

Consider a Gaussian distribution with mean   and variance 2  to be the mathematical model of 
a physical process/system. The values of the mean and the variance of the Gaussian model are 
unknown. Specifically, an output quantity of interest Y  follows the Gaussian distribution 

2( , )Y N    or, equivalently, the measure of the uncertainty in y  given the values of the mean 
and the variance is given by the PDF 
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Given a set of independent observations/data 1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y   , we are interesting in 

updating the uncertainty in the mean   and variance 2  of the model.  

1.1 Case 1: Uniform Prior 

Bayes Theorem: The problem will be solved assuming that the prior distribution of the mean and 
the variance is uniform, that is,  
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Posterior: Using Bayes’ theorem, the inference about the values of   and 2  given the data and 
the information I  ( I  includes the selection of the Gaussian model) is expressed by the posterior 
PDF  
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Likelihood: The likelihood has already been evaluated in Lecture Notes 2 in the form  
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Estimation of Posterior PDF: Using (4) to replace the first factor in the right hand side (RHS) of 
(3) and the uniform prior PDF (2), the updates posterior PDF of the uncertain parameters   and 

2  takes the form 
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  (5) 

Note that this joint distribution of the parameters   and 2  is not Gaussian.  
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Most Probable Values (MPV) or Best Estimates: The function ( , )L   , defined in theory as the 
minus the logarithm of the posterior PDF, is given by  
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The MPVs of ̂  and ̂  maximize the posterior PDF or, equivalently, minimize ( , )L   . They 
satisfy the conditions 
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The solution for the MPVs ̂  and ̂  is readily obtained as  
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and 
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which is the mean arithmetic average and the arithmetic variance of the measurements 

1 2
ˆ ˆ ˆ( , , , )NY Y Y .  

Uncertainty in Model Parameters: The uncertainty in the values of the model parameters   and 
2  is characterized by the Hessian of the function ( , )L    evaluated at the MPVs ̂  and ̂ . 

The components of the Hessian are given by  
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so that the Hessian is given by 
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and the inverse of the Hessian matrix is given by  
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Marginal Distribution of the Mean: Following the theoretical developments, the posterior 
marginal distribution for the mean takes the form 
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where the last expression is obtained by making use of the integral (13) (see Appendix II) for 
??a   and ??  . Eventually, one obtains that  
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which is not a Gaussian distribution. It can be demonstrated that the distribution asymptotically, 
for large number of data N , approaches a Gaussian distribution.  

Marginal Distribution of the Variance: Similarly, the posterior marginal distribution of the 
variance 2  is obtained as  
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1.2 Case 2: Gaussian Prior for Mean and Inverse Gamma Prior for Variance 

Gaussian Prior for mean: The problem will next be solved assuming that the prior distribution of 
the mean is Gaussian with mean m  and variance 2 , that is,  
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The parameters m  and 2  are called often hyperparameters. In our case we assume them to be known. 
Inverse Gamma for Variance: The inverse Gamma distribution for the variance is given by (12) 
in Appendix II.  
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Example: Regression 

Consider a mathematical model of a physical process/system represented by the linear equations  
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where E  is a Gaussian distribution, i.e. 2(0, )E N  . Given a particular observation 

1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y    covering all time instances, we are interesting in updating the uncertainty 

in the parameter set  1[ , , ]na a a  .  

 

Exercise: N-DOF System Represented by Autoregressive Model 

Consider a mathematical model of a physical process/system represented by the linear equations  
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where kE  are independent identically distributed (i.i.d) zero-mean Gaussian variables, i.e. 
2(0, )kE N  . Given a particular observation set 1 2 1

ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y    covering all time 

instances, we are interesting in updating the uncertainty in the parameter set  1[ , , ]ma a a  .  

 

Exercise: Single DOF Mechanical Oscilator 

Consider the mathematical model of an oscillator, with equation of motion given by  

 2
0 0

1
2 ( )y y y F t

m
      

Let ( ) 0F t   and the initial conditions are 0(0)y y  and 0(0)y  . Given a set of independent 

observations/data 1 2 1
ˆ ˆ ˆ ˆ( , , , ) { }N k ND Y Y Y Y   , we are interesting in estimating the uncertainty 

(best estimate and co-variance) in the modal frequency 0  and damping ratio   of the model. 

Assume that the mass of the oscillator and the initial conditions are given.  
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APPENDIX II:  

 

A. Inverse Gamma Distribution 

The Inverse Gamma distribution of a variable X  is given by  

 1( ) exp
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  (12) 

with 0x  . The Inverse Gamma distribution depends on the two variables   and  . The mean 

X  and the variance ( )Var X  are given by 
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B. Useful Integrals 
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where ( )x  is the Gamma function given by  

 1

0
( ) t xt x e dx

       (15) 


