Exercises – [Homework Assignment 2]

[Need only to solve problems 1 and 2]

Problem 1: Marginal distributions and uncertainty

The posterior uncertainty in two parameters x_1 and x_2 is found to be Gaussian with mean $\hat{\underline{x}} = (3,3)^T$ and

covariance matrix
$$C = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$
, where $-1 < \rho < 1$

1. Plot the spread of uncertainty around the best estimate $\underline{\hat{x}}$ (that is, plot a contour plot corresponding to $Q(\underline{x}) = 1$), for values of $\rho = 0, 0.1, 0.5, 0.9$

Hint: Solve the eigenvalue problem $C\underline{\upsilon} = \mu\underline{\upsilon}$ and use the results in class to draw the contour plots. Note that $H^{-1} = C$ and that \underline{u} and λ obtained from the eigenvalue problem $H\underline{u} = \lambda\underline{u}$ developed in class are related to $\underline{\upsilon}$ and μ as follows:

$$\underline{v} = \underline{u}$$
$$\mu = \frac{1}{\lambda}$$

2. Also, estimate the uncertainty in the marginal distribution of x_1 or x_2 . Can the uncertainty in the marginal distribution of x_1 or x_2 describe the spread of uncertainty in the two dimensional space (x_1, x_2) of the two parameters?

Problem 2: Application to data fitting

Consider a set of data $D = (y_k, x_k), k = 1, ..., N$. Given this set of data D, use a linear model

$$y = F(x;\underline{a}) = a_1 x + a_0 \tag{1}$$

in order to describe the data, where $a = (a_0, a_1)$ is the unknown parameter set to be estimated. To account for model and measurement errors, assume the prediction error equation

$$y_k = F(x_k; \underline{a}) + e_k = a_1 x_k + a_o + e_k$$
⁽²⁾

where the prediction errors e_k are assumed to be i.i.d Gaussian with $e_k \sim N(0, \sigma^2)$, where σ^2 is unknown. Assuming uniform priors, with large enough bounds, find:

1. The posterior distribution of the model and prediction error parameters $\{a_0, a_1, \sigma^2\}$

- 2. The most probable value of the parameter set $\{a_0, a_1, \sigma^2\}$
- 3. The spread of uncertainty about the best estimate in the parameter space
- 4. The asymptotic estimate of the posterior distribution
- 5. The marginal posterior distribution of $\{a_0, a_1\}$.

6. Let $z = \gamma y + \eta$ be a relation between an output QoI and the measured quantity y, with $\eta \sim N(0, s^2)$ and γ , s^2 are known. Quantify the uncertainty on z at a new position x_0 given the uncertainties in the model parameters $\{a_0, a_1, \sigma^2\}$ by computing the distribution $p(z \mid D, I)$.

The uniform prior distribution is $\pi(\underline{a}, \sigma^2 | I) = \text{const}$, $\underline{a}_{\min} \leq \underline{a} \leq \underline{a}_{\max}$, $0 \leq \sigma^2 \leq \sigma_{\max}^2$ with very large bounds of the support of the uniform PDF.

Repeat the steps 1-6 assuming a Gaussian prior PDF $p(\underline{a} | I) = N(\underline{a} | \mu_{\pi}, \Sigma_{\pi})$.

Problem 3: Single DOF Mechanical Oscilator

Consider the mathematical model of an oscillator, with equation of motion given by

$$\ddot{y} + 2\zeta \omega_0 \dot{y} + \omega_0^2 y = \frac{1}{m} F(t)$$

Assume the prediction error equation

$$\hat{Y}_k = y(t_k) + e_k$$

The prediction errors e_k are assumed to be i.i.d Gaussian variables with $e_k \sim N(0, \sigma^2)$, where σ^2 is unknown.

Let F(t) = 0 and $y(0) = y_0$, $\dot{y}(0) = v_0$ be the initial conditions. Assume that the mass of the oscillator and the initial conditions are given. Given a set of <u>independent</u> observations/data $D \equiv (\hat{Y}_1, \hat{Y}_2, \dots, \hat{Y}_N) \equiv {\{\hat{Y}_k\}}_{1 \to N}$, we are interesting in estimating the uncertainty (best estimate and covariance)

A. in the modal frequency ω_0 and damping ratio ζ of the model given the initial conditions y_0 and υ_0 .

B. in the initial conditions y_0 and v_0 given the modal frequency ω_0 and damping ratio ζ of the model.

C. the modal frequency ω_0 and damping ratio ζ of the model and the initial conditions y_0 and υ_0 .

Proceed and solve only B.

[Recognize that this is a special case of the general model fitting problem solved in class]

Assume uniform priors, with large enough bounds.

- 1. The posterior distribution of the parameters $\{y_0, v_0, \sigma^2\}$
- 2. The most probable value of the parameter set $\{y_0, v_0, \sigma^2\}$
- 3. The asymptotic estimate of the posterior distribution
- 4. The posterior distribution of $\{y_0, v_0\}$.
- 5. Let $R = \kappa y + \eta$ be a relation between an output QoI (the restoring force in the mechanical system) and the measured quantity y, $\eta \sim N(0, s^2)$, with κ and s^2 are known. Find the distribution p(R | D, I) of R. Describe the uncertainty in the prediction R at a time instant t given the uncertainties in the model parameters $\{y_0, v_0, \sigma^2\}$.