Exercises - [Homework Assignment 2]

[Need only to solve problems 1 and 2]

Problem 1: Marginal distributions and uncertainty

The posterior uncertainty in two parameters x_{1} and x_{2} is found to be Gaussian with mean $\underline{\hat{\hat{x}}}=(3,3)^{T}$ and covariance matrix $C=\left[\begin{array}{cc}1 & \rho \\ \rho & 1\end{array}\right]$, where $-1<\rho<1$

1. Plot the spread of uncertainty around the best estimate $\underline{\hat{x}}$ (that is, plot a contour plot corresponding to $Q(\underline{x})=1$), for values of $\rho=0,0.1,0.5,0.9$

Hint: Solve the eigenvalue problem $C \underline{v}=\mu \underline{v}$ and use the results in class to draw the contour plots.
Note that $H^{-1}=C$ and that \underline{u} and λ obtained from the eigenvalue problem $H \underline{u}=\lambda \underline{u}$ developed in class are related to \underline{v} and μ as follows:
$\underline{v}=\underline{u}$
$\mu=\frac{1}{\lambda}$
2. Also, estimate the uncertainty in the marginal distribution of x_{1} or x_{2}. Can the uncertainty in the marginal distribution of x_{1} or x_{2} describe the spread of uncertainty in the two dimensional space $\left(x_{1}, x_{2}\right)$ of the two parameters?

Problem 2: Application to data fitting

Consider a set of data $D=\left(y_{k}, x_{k}\right), k=1, \ldots, N$. Given this set of data D, use a linear model

$$
\begin{equation*}
y=F(x ; \underline{a})=a_{1} x+a_{0} \tag{1}
\end{equation*}
$$

in order to describe the data, where $a=\left(a_{0}, a_{1}\right)$ is the unknown parameter set to be estimated. To account for model and measurement errors, assume the prediction error equation

$$
\begin{equation*}
y_{k}=F\left(x_{k} ; \underline{a}\right)+e_{k}=a_{1} x_{k}+a_{o}+e_{k} \tag{2}
\end{equation*}
$$

where the prediction errors e_{k} are assumed to be i.i.d Gaussian with $e_{k} \sim N\left(0, \sigma^{2}\right)$, where σ^{2} is unknown. Assuming uniform priors, with large enough bounds, find:

1. The posterior distribution of the model and prediction error parameters $\left\{a_{0}, a_{1}, \sigma^{2}\right\}$
2. The most probable value of the parameter set $\left\{a_{0}, a_{1}, \sigma^{2}\right\}$
3. The spread of uncertainty about the best estimate in the parameter space
4. The asymptotic estimate of the posterior distribution
5. The marginal posterior distribution of $\left\{a_{0}, a_{1}\right\}$.
6. Let $z=\gamma y+\eta$ be a relation between an output QoI and the measured quantity y, with $\eta \sim N\left(0, s^{2}\right)$ and γ, s^{2} are known. Quantify the uncertainty on z at a new position x_{0} given the uncertainties in the model parameters $\left\{a_{0}, a_{1}, \sigma^{2}\right\}$ by computing the distribution $p(z \mid D, I)$.

The uniform prior distribution is $\pi\left(\underline{a}, \sigma^{2} \mid I\right)=\mathrm{const}, \underline{a}_{\min } \leq \underline{a} \leq \underline{a}_{\max }, 0 \leq \sigma^{2} \leq \sigma_{\max }^{2}$ with very large bounds of the support of the uniform PDF.
Repeat the steps 1-6 assuming a Gaussian prior PDF $p(\underline{a} \mid I)=N\left(\underline{a} \mid \underline{\mu}_{\pi}, \Sigma_{\pi}\right)$.

Problem 3: Single DOF Mechanical Oscilator

Consider the mathematical model of an oscillator, with equation of motion given by

$$
\ddot{y}+2 \zeta \omega_{0} \dot{y}+\omega_{0}^{2} y=\frac{1}{m} F(t)
$$

Assume the prediction error equation

$$
\hat{Y}_{k}=y\left(t_{k}\right)+e_{k}
$$

The prediction errors e_{k} are assumed to be i.i.d Gaussian variables with $e_{k} \sim N\left(0, \sigma^{2}\right)$, where σ^{2} is unknown.
Let $F(t)=0$ and $y(0)=y_{0}, \dot{y}(0)=v_{0}$ be the initial conditions. Assume that the mass of the oscillator and the initial conditions are given. Given a set of independent observations/data $D \equiv\left(\hat{Y}_{1}, \hat{Y}_{2}, \ldots, \hat{Y}_{N}\right) \equiv\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}$, we are interesting in estimating the uncertainty (best estimate and covariance)
A. in the modal frequency ω_{0} and damping ratio ζ of the model given the initial conditions y_{0} and v_{0}.
B. in the initial conditions y_{0} and v_{0} given the modal frequency ω_{0} and damping ratio ζ of the model.
C. the modal frequency ω_{0} and damping ratio ζ of the model and the initial conditions y_{0} and v_{0}.

Proceed and solve only B.

[Recognize that this is a special case of the general model fitting problem solved in class]

Assume uniform priors, with large enough bounds.

1. The posterior distribution of the parameters $\left\{y_{0}, v_{0}, \sigma^{2}\right\}$
2. The most probable value of the parameter set $\left\{y_{0}, v_{0}, \sigma^{2}\right\}$
3. The asymptotic estimate of the posterior distribution
4. The posterior distribution of $\left\{y_{0}, v_{0}\right\}$.
5. Let $R=\kappa y+\eta$ be a relation between an output QoI (the restoring force in the mechanical system) and the measured quantity $y, \eta \sim N\left(0, s^{2}\right)$, with κ and s^{2} are known. Find the distribution $p(R \mid D, I)$ of R. Describe the uncertainty in the prediction R at a time instant t given the uncertainties in the model parameters $\left\{y_{0}, v_{0}, \sigma^{2}\right\}$.
