UNIVERSITY OF THESSALY - SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

UNCERTAINTY QUANTIFICATION

Exercise 1: Consider a Gaussian dilstribution with mean μ and variance X to be the mathematical model of a physical model/system. Specifically, an output quantity of interest $\mathrm{Y} \sim \mathrm{N}(\mu, \mathrm{X})$ or, equivalently, the measure of the uncertainty in y given that $X=\sigma^{2}$ is given by the PDF:

$$
f(y \mid X, \mu, I)=\frac{1}{\sqrt{2 \pi X}} \exp \left[-\frac{1}{2 X}(y-\mu)^{2}\right]
$$

Given a set of independent observations/data $D=\left(\hat{Y}_{1}, \hat{Y}_{2}, \ldots, \hat{Y}_{N}\right)=\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}$ we are interested in updating the uncertainty in the variance X of the model. It is assumed that the value of the mean μ is known. Assume a uniform prior distribution for X and derive expressions for:
i. Posterior PDF $f\left(\sigma^{2} \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)$. Note that the posterior PDF follows the inverse gamma distribution $\operatorname{IG}(x, a, b)$.What are the values for a, b ?
ii. The function $L\left(\sigma^{2}\right)$
iii. The MVP of $X=\sigma^{2}$
iv. The uncertainty of $X=\sigma^{2}$
v. Retain up to the quadratic terms in Taylor Series expansion of $L\left(\sigma^{2}\right)$ about the most probable value $\hat{\sigma}^{2}$ and derive the Gaussian asymptotic approximation for the posterior PDF of $f\left(\sigma^{2} \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)$
vi. Compare the posterior PDF with the asymptotic Gaussian posterior PDF for the following values of $N=1,2,3,4,10,100,1000$. To facilitate comparisons, plot the two posterior PDFs (exact and asymptotic) so that the maximum value of each equals unity.
i.

Prior Distribution: Assuming a uniform prior distribution for X we obtain:

$$
f(X \mid \mu, I)=\left\{\begin{array}{cl}
\frac{1}{X_{\max }-X_{\min }}, & X \in\left[X_{\min }, X_{\max }\right] \tag{1}\\
0, & \text { otherwise }
\end{array}\right.
$$

Posterior Distribution: Using Bayes' theorem, the inference about the value of X, given the mean μ, the data D and the information I, is expressed by:

$$
\begin{equation*}
\underbrace{f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)}_{\text {Posterior }} \propto \underbrace{f\left(\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N} \mid X, \mu, I\right)}_{\text {Likelihood }} \underbrace{f(X \mid \mu, I)}_{\text {Prior }} \tag{2}
\end{equation*}
$$

Hence, to determine the Posterior PDF we need to elicit an expression for the likelihood. Therefore:

$$
\begin{gathered}
f\left(\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N} \mid X, \mu, I\right)=f\left(\hat{Y}_{1}, \hat{Y}_{2}, \ldots, \hat{Y}_{N} \mid X, \mu, I\right)=f\left(\hat{Y}_{\mid} \mid \hat{Y}_{2}, \hat{Y}_{3}, \ldots, \hat{Y}_{N}, X, \mu, I\right) f\left(\hat{Y}_{2}, \hat{Y}_{3}, \ldots, \hat{Y}_{N} \mid X, \mu, I\right) \Rightarrow \\
f\left(\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N} \mid X, \mu, I\right)=f\left(\hat{Y}_{1} \mid \hat{Y}_{2}, \hat{Y}_{3}, \ldots, \hat{Y}_{N}, X, \mu, I\right) f\left(\hat{Y}_{2} \mid \hat{Y}_{3}, \hat{Y}_{4}, \ldots, \hat{Y}_{N}, X, \mu, I\right) \ldots f\left(\hat{Y}_{N} \mid X, \mu, I\right)
\end{gathered}
$$

But since observations $D=\left(\hat{Y}_{1}, \hat{Y}_{2}, \ldots, \hat{Y}_{N}\right)=\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}$ are assumed to be independent the previous expression for the likelihood can be simplified as:

$$
\begin{gather*}
f\left(\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N} \mid X, \mu, I\right)=f\left(\hat{Y}_{1} \mid X, \mu, I\right) f\left(\hat{Y}_{2} \mid X, \mu, I\right) \cdots f\left(\hat{Y}_{N} \mid X, \mu, I\right) \Rightarrow \\
f\left(\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N} \mid X, \mu, I\right)=\prod_{k=1}^{N} f\left(\hat{Y}_{k} \mid X, \mu, I\right)=\prod_{k=1}^{N} \frac{1}{\sqrt{2 \pi X}} \exp \left[-\frac{1}{2 X}\left(\hat{Y}_{k}-\mu\right)^{2}\right] \tag{3}
\end{gather*}
$$

Taking into consideration equation (1) for the prior PDF as well as the expression (3) for the likelihood, we can derive the following expression for the posterior PDF:

$$
\begin{array}{r}
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right) \propto \prod_{k=1}^{N} \frac{1}{\sqrt{2 \pi X}} \exp \left[-\frac{1}{2 X}\left(\hat{Y}_{k}-\mu\right)^{2}\right] \\
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right) \propto\left(\frac{1}{\sqrt{2 \pi X}}\right)^{N} \exp \left[-\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right] \\
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right) \propto\left(\frac{1}{\sqrt{2 \pi}}\right)^{N} X^{-\frac{N}{2}} \exp \left[-\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right] \tag{2}
\end{array}
$$

We now have to show that the above expression is an Inverse Gamma Distribution for X. The Inverse Gamma Distribution is given by:

$$
\begin{equation*}
I G(X, a, b)=f(X, a, b)=\frac{b^{a}}{\Gamma(a)} X^{-a-1} \exp \left(-\frac{b}{X}\right) \tag{4}
\end{equation*}
$$

By comparing (2) and (4) we can verify that the posterior PDF for X is indeed an Inverse Gamma distribution with:

$$
b=\frac{1}{2} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}
$$

And by comparing the exponents of X in the two expressions, $X^{-\frac{N}{2}}=X^{-a-1} \Rightarrow a=\frac{N-2}{2}$.
So to conclude, the posterior distribution of X is given by the following expression:

$$
\begin{equation*}
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)=\frac{\left(\sqrt{\frac{1}{2} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}}\right)^{(N-2)}}{\Gamma\left(\frac{N-2}{2}\right)} X^{-N / 2} \exp \left[-\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right] \tag{*}
\end{equation*}
$$

ii.

We now introduce the function $L(X)$ as the minus logarithm of the posterior PDF. Thus:

$$
\begin{gathered}
L(X)=-\ln \left(f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)\right) \Rightarrow \\
L(X)=-\ln \left(\frac{\left(\sqrt{\frac{1}{2} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}}\right)^{(N-2)}}{\Gamma\left(\frac{N-2}{2}\right)} X^{-N / 2} \exp \left[-\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right] \Rightarrow\right. \\
L(X)=\frac{N}{2} \ln (X)+\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}+\text { constant terms }
\end{gathered}
$$

iii.

In order to determine the MPV of X, we need to maximize the posterior PDF with respect to X, or equivalently to minimize the formerly introduced fon $L(X)$ with respect to X. Hence:

$$
\hat{X}=X:\left\{\left.\frac{d L}{d X}\right|_{X=\hat{X}}=0,\left.\frac{d^{2} L}{d X^{2}}\right|_{X=\hat{X}}<0\right\}
$$

$$
\begin{gather*}
\frac{d L}{d X}=0 \Rightarrow \frac{N}{2 X}-\frac{1}{2 X^{2}} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}=0 \Rightarrow \\
\hat{X}=\frac{1}{N} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2} \quad(5) \tag{5}\\
\hat{\sigma}=\sqrt{\frac{1}{N} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}}
\end{gather*}
$$

iv.

To determine the uncertainty of X, we just have to evaluate the $2^{\text {nd }}$ derivative of $L(X)$ at the most probable value. Doing so we obtain:

$$
\begin{gathered}
\frac{d^{2} L}{d X^{2}}=-\frac{N}{2 X^{2}}+\frac{1}{X^{3}} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2} \\
\left.\frac{d^{2} L}{d X^{2}}\right|_{X=\hat{X}}=-\frac{N}{2\left(\frac{1}{N} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right)^{2}}+\frac{1}{\left(\frac{1}{N} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right)^{3}} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}= \\
=\frac{N^{3}}{\left(\sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right)^{2}}\left[1-\frac{1}{2}\right]=\frac{N^{3}}{2\left(\sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right)^{2}}
\end{gathered}
$$

And the measure of uncertainty in X is given by the square root of the inverse of the $2^{\text {nd }}$ derivative of $L(X)$ evaluated at the MVP. In terms of mathematical expressions, the above statement is written:

$$
\begin{equation*}
\sqrt{S}=\left(\left.\frac{d^{2} L}{d X^{2}}\right|_{X=\hat{X}}\right)^{-1 / 2} \Rightarrow \sqrt{S}=\sqrt{\frac{2\left(\sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right)^{2}}{N^{3}}} \tag{6}
\end{equation*}
$$

Thus, the uncertainty in X can be quantified by using these two measures (MVP, \sqrt{S}):

$$
X \rightarrow \hat{X} \pm \sqrt{S}
$$

$$
X \rightarrow \frac{1}{N} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2} \pm \sqrt{\frac{2\left(\sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right)^{2}}{N^{3}}}
$$

v.

In order to approximate via Taylor series expansion the function $L(X)$ we recall its expression:

$$
L(X)=\frac{N}{2} \ln (X)+\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}+\text { constant terms }
$$

Taylor:
$L(X)=L(\hat{X})+\frac{d L}{d X}(X-\hat{X})+\frac{1}{2} \frac{d^{2} L}{d X^{2}}(X-\hat{X})^{2}$
Since, $L(X)=-\ln \left(f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)\right)$, we can show that

$$
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)=-\exp [L(X)]
$$

We will obtain the asymptotic expression for the posterior PDF by replacing $L(X)$ in the exponent with the Taylor approximation around the MPV.

$$
\begin{aligned}
& f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)=-\exp \left[\underset{\substack{\text { constant }}}{L(\hat{X})}+\left.\frac{d L}{d X}\right|_{\substack{X X \in \hat{\mathbb{X}}}}(X-\hat{X})+\left.\frac{1}{2} \frac{d^{2} L}{d X^{2}}\right|_{s^{-1}}(X-\hat{X})^{2}\right] \Rightarrow \\
& f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right) \propto \exp \left[-\frac{1}{2 S}(X-\hat{X})^{2}\right]
\end{aligned}
$$

And by recalling that for any PDF $\int_{-\infty}^{\infty} f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right) d x=1$, it can be shown that:

$$
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)=\frac{1}{\sqrt{2 \pi S}} \exp \left[-\frac{1}{2 S}(X-\hat{X})^{2}\right] .
$$

To sum up:

$$
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)=\left\{\begin{array}{rr}
\frac{\left(\sqrt{\frac{1}{2} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}}\right)^{(N-2)}}{\Gamma\left(\frac{N-2}{2}\right)} X^{-N / 2} \exp \left[-\frac{1}{2 X} \sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}\right] & \text { Exact } \\
\frac{1}{\sqrt{2 \pi S}} \exp \left[-\frac{1}{2 S}(X-\hat{X})^{2}\right] & \text { Asymptotic }
\end{array}\right.
$$

In order to obtain a better interpretation of these two relationships for the posterior PDF we need to express S and \hat{X} in terms of \hat{Y}_{k} and μ.

To do so, we assume $\sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}$ to be a known constant (which is also quite reasonable) . To further exemplify our expressions we assign:

$$
A=\sum_{k=1}^{N}\left(\hat{Y}_{k}-\mu\right)^{2}
$$

Now it is just a matter of simple algebra to show that:

$$
\begin{gathered}
\hat{X}=\frac{A}{N} \\
S=\frac{2 A^{2}}{N^{3}}
\end{gathered}
$$

Thus, the expressions for the posterior PDF distribution as derived from the exact and asymptotic approximation can now be written in the following form:

$$
f\left(X \mid\left\{\hat{Y}_{k}\right\}_{1 \rightarrow N}, \mu, I\right)=\left\{\begin{array}{l}
\frac{\left(\sqrt{\frac{1}{2} A}\right)^{(N-2)}}{\Gamma\left(\frac{N-2}{2}\right)} X^{-N / 2} \exp \left[-\frac{1}{2 X} A\right] \quad \text { Exact } \\
\frac{\sqrt{N^{3}}}{2 A \sqrt{\pi}} \exp \left[-\frac{N^{3}}{4 A^{2}}\left(X-\frac{A}{N}\right)^{2}\right] \quad \text { Asymptotic }
\end{array}\right.
$$

vi.

Now we can easily assign an arbitrary value to A, and plot these probability density functions together for various values of N . The resulted plots will provide a graphical representation on the effect of the number of data/measurements on the exact and asymptotic PDFs. The extracted plots are shown below:

