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Abstract: Computers and information technology (IT) are part of every productive organization of 
the human enterprise, from manufacturing to entertainment, telecommunications, transportation and 
education. IT is changing the way we deliver, consume, and administer education. Today, we are 
educating a new generation of engineers raised on “Sesame Street” like programs, where learning 
through dynamic visual imagery is emphasized. This generation is immersed in an electronic media 
world surrounded by television, MP3 music boxes, multimedia cellular phones and Bluetooth/WiFi 
communication devices, digital cameras, internet café, electronic games and toys. Against this 
background, interactive multimedia based learning is becoming the norm. At the same time, 
mathematics is increasingly used in almost all areas of human activity. It is the language in which 
knowledge is expressed for solving problems with computers. However, mathematics as a discipline 
affecting only a small minority of the so-called mathematically gifted people. Most engineering 
schools are trying to reconfigure the way they educate the next generation of engineers. Computer 
based environments, referred as problem solving environments (PSEs), that enable users to express 
their problems in mathematical terms and incorporate the necessary “solving” knowledge are 
advancing significantly and are part of every scientific and engineering product design and simulation 
today. Their role in learning engineering and mathematical problem solving is increasing 
dramatically. In this paper, we review the trends in engineering education and examine the role of 
PSEs in learning engineering and mathematical problem solving. In addition, we present a review of 
the history of PSEs and after stating the definition and the goals of a PSE, we summarize the state-of-
the-art, the principal components and paradigms for building PSEs and identify some future trends.  

 
 

1. CURRENT TRENDS IN ENGINEERING AND MATHEMATICS EDUCATION 
 
According to the National Academy of Engineering report, “Computers and Information 
Technology (IT) are driving an accelerating increase in the productive organization of the human 
enterprise, from manufacturing to entertainment, telecommunications, transportation and 
education” [8, 12].  The developments in IT are changing the way we deliver, consume and 
administer education.  Today we are educating a new generation of engineers raised on “Sesame 
Street” like programs, where learning is based on dynamic visual imagery. This generation is 
immersed in an electronic media world surrounded by television, MP3 music boxes, multimedia 
cellular phones and Bluetooth/WiFi communication devices, internet café, electronic games and 
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toys. Interactive multimedia based learning through collaboration, and “co-location” has become 
the norm in modern educational paradigms.  Simultaneously, there have been significant changes 
in engineering practice.  We are moving from process design to product design, from individual 
projects to team projects, from experience-based design to model-based design, from calculator-
based computations to computer simulations, and from paper-based documentation to IT-based 
archives covering all aspects of design, building and operation from project conception to end of 
life.  Engineering curricula have to adapt to these changes, as we need engineers adept in 
computer-aided design tools and IT to execute concurrent, collaborative design projects [8]. 
  
Advances in computers and Information Technology provide an unprecedented opportunity to 
reconfigure the way we educate the next generation of engineers [13]. Faculty now has access to 
a much greater menu of resources to supplement the classroom teaching. Computers and IT help 
us create and disseminate new, globally accessible instructional materials [8]. The availability of 
powerful engineering software enables the engineering student to address real world problems 
with precision and accuracy at a much greater level of detail than in the past. Web-based delivery 
and distance learning are increasingly used to reach a geographically distributed student body. 
No significant effort has been undertaken to provide students with hands-on experience in the 
use of IT-based tools to function effectively in collaborative projects, to manage resources and 
data, and to become familiar with e-trade/commerce practices. This experience is essential for 
future engineers who can be anticipated to function in a global market mediated by computers 
and the Internet. Major educational paradigm shifts are taking place in higher education, as 
shown below (see [8]): 
  
 Old Paradigm New Paradigm
  
 Rigid Schedule Courses on Demand 
 Terminal Degree Lifelong Learning 
 Books as Primary Medium Information on Demand 
 Delivery in Classroom Delivery Anywhere 
 Bricks and Mortar Bits and Bytes 
 Technology as an Expense Technology to Improve Efficiency and Productivity 
 
These paradigms shifts must followed by changes in pedagogy. Following we list some of the 
expected changes proposed with respect to the current practice. 
 

From To
  
 Teacher Centric Learner Centered 
 Single Medium Multimodal Interaction 
 Individual Work Contextual Activity 
 Passive learning Active Learning 
 Artificial Context Situational Study 
 Didactic Approach Emphasis on tools and technologies 
                  Problem Solving                           Problem Formulation 
                   

 2



12/3/2003  12:50 AM 

In the meantime, every scientific, economic, social, cultural, and engineering field has increased 
significantly its dependence on mathematics.  Mathematical modeling and simulation is part of 
optimal resource allocation in production, transportation, banking /trading, waste management, 
designing of drugs and engineering artifacts from bottles to planes and buildings, entertainment 
(computer games, movies), predicting the weather, cutting expensive materials such as leather, 
textile or wood. It is one of the major learning subjects in any education system. However, 
mathematics and mathematics learning are in a very paradoxical situation since they are regarded 
as a discipline that it is accessible only to a small minority of the so-called mathematically gifted 
people [11].  Moreover, there is a negative image associated with mathematics common in public 
opinion that prevents its dissemination to a large public audience. To enable more students to 
meet the professional requirements of mathematics competence and skills many universities in 
the world including ours have experimented to teach “symbolic” and “computational” 
mathematics through the use of “open” and “problem specific” PSEs. In the case of teaching 
“symbolic” mathematics through the use of PSEs, the verdict is still out. There is an enormous 
number of students required to take symbolic mathematics i.e. “calculus”, linear algebra, and 
differential equations, most of them with diverse backgrounds. Thus, the scaling of the available 
computational and PSE resources to these numbers of students is rather difficult. However, the 
use of PSEs to teach computational mathematics is an overwhelming success. Here, the audience 
is much smaller. Many text books in computational mathematics today are written having in 
mind specific PSEs (e.g., Mathematica) and the results of learning effectiveness are very 
positive. The learning of computational mathematics is directly related to “programming” 
computational resources to execute mathematical algorithms. It’s worth noticing that these 
programs very often consist of thousands to millions lines of code (lines of code could be viewed 
as equivalent to number of lines in a text document). PSEs are designed to increase the 
programming productivity and reduce the cost of maintaining and updating such large codes. The 
most significant activity of any research and development activity is brain storming and 
prototyping of ideas. PSEs provide the most cost effective way for prototyping and 
experimentation in a collaborating mode. Moreover, they support effectively most of the new 
pedagogies identified above. 
 
Today’s PSE technology is rather knowledge- and cost- intensive.  PSE development requires 
significant human and computational resources. In order for PSEs to impact the learning 
engineering problem solving process in a big way, software engineering technologies are 
required that will allow novel users to build PSEs for any human activity requiring problem 
solving as easily as writing documents. A trend in this direction is the use of most commercial 
PSEs as kernels. That is, to use their software structure and facilities to build “tool kits” for a 
specific problem solving process. Unfortunately, the dissemination of these tool kits is often 
followed by significant restrictions from the kernel vendors and requires “deep” knowledge of 
computing.  
 

The purpose of this paper is to advocate the use of existing PSEs in engineering and mathematics 
education by showing that this is consistent with the current vision for engineering education in 
21st century and the background and expectations of current generation of engineers. In addition, 
we want to summarize the state-of-the-art and the principal components and paradigms for 
building PSEs and identify some future trends. 
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2. PROBLEM SOLVING ENVIRONMENTS 
 

Solving problems with computers involves primarily three technologies. First is the hardware 
that executes basic operations (arithmetic, data transfers, logical operations, displays…). Second 
is the algorithmic technology which takes a problem data as input, and manipulates it 
mathematically to produce the solution. Algorithms are specified mathematically and often 
involve manipulations which do not exist exactly as (or even close to) hardware operations. The 
final technology is programming which takes abstract algorithms and expresses them in 
sufficient detail so they can be executed approximately by computer hardware. We define 
programming as using common high-level programming languages such as Ada, Fortran 90, C, 
C++, C# and Java. This class of languages has been in widespread use for 40 years with a modest 
rate of evolution and the bulk of scientific programming uses them. 

 Everyone is familiar with the enormous increase in computer hardware and power. 
People are much less familiar with the enormous increase in algorithmic power over the past 60 
years [16]. Before computers (1900−1945), the algorithms known were extremely slow by 
today’s standards. The rate and amount of progress depends on the problem area and is 
especially dependent on the size of the problem. It is a widely accepted maxim that as computers 
get faster, the importance of more efficient algorithms only grows, and does not lessen. As 
problem sizes increase, the effects of algorithm speed up increase, and it is reasonable to expect 
to speed up the simulation of an entire automobile by a factor of 1020 compared to 1945. 

 There has been little increase in programming power over the past 60 years. The 
evolution of programming languages and aids might have increased programming power by a 
factor of 5 or 10 over 60 years. This gives a rate of increase of power of 3 or 4% a year. This 
slow increase has totally changed the financial nature of computing. In 1960, the cost of buying 
and operating hardware dominated computing costs. Today the cost of programming dominates 
computing costs. 

The potential for powerful problem solving systems was recognized very early [2, 14]. 
Inadequate computing power made such systems unfeasible until the 1980s when serious work 
began [1, 15]. In April 1991, a research conference [3] defined a problem solving environment 
(PSE) as follows: 

A PSE is a computer system that provides all the computational facilities necessary to 
solve a target class of problems 

These facilities include advanced solution methods, automatic or semiautomatic selection of 
solution methods and ways to easily incorporate novel solution methods. Furthermore, PSEs use 
a language natural for the problem class and allow users to solve problems without specialized 
knowledge of the underlying computer hardware or software. Thus the definition 

PSE = Natural Language + Solvers + Knowledge Base + Software Bus 

 The goal of PSE technology is to exploit hardware and algorithm power to deliver “cheap 
and fast” problem solutions with minimum knowledge in “computer programming”. Like books 
in libraries, PSEs codify accepted practice in the form of software implementation and in this 
manner, aid in the preservation of knowledge from one generation to another. PSEs can 
dramatically increase programming power for science and engineering through a “natural” 
human interface. Future PSEs will use essentially all the resources of future computing 
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technologies, e.g., grid and networks of computers, dynamic and collaborative computations, 
knowledge discovery and learning, software reuse, human-machine interaction, etc. PSEs will be 
the future repositories of knowledge in specific scientific areas. Already people started calling 
them “scientific portals” and are advancing their web interfaces. 

3. TEACHING MATHEMATICS USING PSES 
Engineering schools tend to accept students with reasonable mathematical knowledge and skills 
after secondary schooling world wide. It appears that most of them have learned mathematical 
concepts from examples and they have learned to recognize patterns than to use the basic 
theories associated with various areas of mathematics. They aim to study and learn for the short 
term i.e. for passing examinations without a deep knowledge and understanding of the concepts 
and their consequence to later studies of their engineering discipline.  
 
Against this background, one has to ask what PSEs have to offer that will motivate students to 
change their view and attitude towards mathematics and how they can help to excite the majority 
of students towards this subject. Some of the advantages of using PSEs in teaching mathematics 
are the following 
 

• Provide a greater proportion of students with the opportunity to apply sophisticated 
mathematical methods in problem-solving. 

• Enable students to acquire knowledge for life since some of these PSEs are used as 
kernels to develop special toolkits for advanced engineering subjects and are updated 
regularly with the latest algorithmic and programming technologies. 

• Increase visualization, thus, the attractiveness of mathematics through graphics 
capabilities and special tools of analyzing  the results of mathematical studies and 
experiments 

• Produce logs and information-rich documentation of a particular effort in various 
publishing standards  

• Collaboration with other students and teachers 
• Solving and prototyping real engineering problems in student’s time frame 
• Provide interaction and self validation during the learning process and increase  

independence of students 
• Support concentration on modeling and problem solving strategies in mathematics 
• Allow the possibility to deal with larger and more realistic problems 
• Not decrease the theoretical level of the mathematics curriculum 
• Not be used instead of traditional textbook methods 
• Be applied as a supplement to traditional methods 
• Be used to stress the numerical methods in the mathematics curriculum 
• Be used for data analysis and to simulate technical processes 

 
Many of these trends are already witnessed; even a cursory glance at the recent issues of 
IEEE/AiP Computing in Science and Engineering journal reveals the persistent role of PSEs and 
PSE-like environments in imparting important mathematical concepts. There are even 
competitions designed to recognize innovative uses of scientific education using PSEs (e.g., 
sponsored by the U.S. Department of Energy). 
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Several educators fear that PSEs might promote the use of mathematical concepts without 
understanding them and make parts of the standard mathematics curriculum redundant. This is a 
worry reminiscent of when scientific calculators were first introduced. Unfortunately, PSEs are 
not expert systems yet! Thus, PSEs could exaggerate the phenomenon “garbage in – garbage 
out” in case the user does not understand the underlying concepts. On the other hand it can be 
argued that not many well educated engineers and scientists know how to compute manually 
many of the basic mathematical functions – e.g., determine the derivative of a function from first 
principles, evaluate special functions like trigonometric and logarithmic functions.  It appears 
that as we evolve intellectually, we “operationalize” certain complex derivations, and such 
tedious processes become “automata”. We need to know their definition and usage only though 
their properties and applicability while their implementation is left to a library/PSE. Thus, PSEs 
reduce the time to train pupils in extremely specialized techniques and devote more time to 
mathematical culture (tools, concepts, history) and solving realistic problems.  

4. STATE OF THE ART IN 2000 
Problem solving environments are now a well established methodology for computational 
science and engineering. Rather than present detailed review of PSEs, we just make some 
general comments and present a set of information sources. The PSE web site 

http://www.cs.purdue.edu/research/pses 

provides a definition of PSEs a reading list, a list of conferences on PSEs, and a list of PSE 
projects in computational science. The latter have a brief description, contact information and 
link to the PSE web site. Most of these projects are to create actual PSEs (31 projects), some are 
to build infrastructure (11 projects) and a few are related symbolic systems (4 projects). The 
book [5] covers a broad range of the research on PSEs. It has a bibliography of 415 papers 
related to PSEs and Figure 1 shows a plot of the  publication dates, both by year and cumulative. 
This figure shows how the PSE field blossomed once sufficient computing power became 
available to make PSEs practical. 

 Another indication of the state of the PSE field is the number of government research 
initiatives that either focus on PSEs or have PSE research as a large component. In the United 
States there have been such initiatives from the National Science Foundation and the Department 
of Energy. 
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Figure 1: Publication dates from the bibliography of Gallopoulos (a) by year, (b) cumulative 
from 1963 to 1999. 

5. PSE TECHNOLOGIES 
There are five key enabling technologies for PSEs, see [5]. We summarize them here. 

• Software Reuse: One design objective of future PSEs is to use scalable libraries and 
systems as building blocks. The PSEs can enable users to define the problem via a multi-
media user interface that uses a geographically distributed computing infrastructure. This 
objective requires tools that enhance reuse and enable layered approaches to application 
development. In the case of sequential applications, CORBA and OLE help integrate software 
components and give interoperability between packages and languages. Java delivers them 
with its Write Once, Run Anywhere capability. More general and powerful tools are needed 
in this area. 

• Natural Languages: Attempts to raise the language level for PSEs include specialized 
language interfaces associated with ALPAL, ELLPACK, MatLab, Mathematica, Maple, 
CAPSE, etc. The dream here is to develop a language that allows the user to specify an 
“outline” of the problem and the associated computations. The integration of natural language 
interfaces with PSEs is required. The current efforts to create better and more natural 
computer languages must continue. 

• Collaboratory Modeling and Problem Solving: Computational modeling will shift from the 
current single physical component design to the design of a whole physical system with a 
large number of components that have different shapes, obey different physical laws and 
manufacturing constraints, and interact with each other through geometric and physical 
interfaces. For example, the analysis of an engine requires components from thermodynamics, 
mechanics, structures and geometry. The design of the engine requires that these different 
domain-specific analyses interact in order to find the final solution. The different domains 
share common parameters and interfaces, but each has its own parameters and constraints. 
The process requires that development of new algorithmic strategies and software for 
managing the complexity and harvesting the power of future computing resources. The MPSE 
(Multidisciplinary PSE) is the software implementation of this framework which combines 
discipline-specific problem solving environments. The MPSE design objective is to allow the 
natural specification of multi-physics applications and their simulation with interacting PSEs 
through mathematical and software interfaces across networks of computational resources. 

• Netcentric Computing: Rapid advances in networking technologies and commodity high 
performance computing systems have created a new paradigm of network-based computing 
(NC). It involves a large number of geographically distributed computer resources such as 
PCs, workstations, and massively parallel processors (MPP) connected through a high speed 
network as a single meta-computer or computational grid. The NC paradigm promises to put 
the PSE technology at the fingertips of any scientist or engineer, anytime and anywhere. It 
will enable the development of the virtual scientific library and computational server concepts 
as part of software reuse. 

The rapid prototyping of devices and systems with numerous inter-related elements require 
the fast, accurate simulation of physical processes and design optimization using knowledge 
and computational models from multiple disciplines. The required software is usually 

 7



12/3/2003  12:50 AM 

distributed geographically and the execution of such computations on an internet 
computational grid involving hundreds of heterogeneous nodes distributed across enterprises 
is now at the proof of concept stage. For complex adaptive computations, we will see the 
utilization of mobile computing or code shipping paradigms where the network is used for 
actual computations. This change will have enormous impact as the old idea that “The 
Network is the Computer” becomes a reality. It will not only change the way we work and 
communicate, but it will change the way we do problem solving [6, 9]. 

• Computational Intelligence: The existing computational science software is characterized 
by having many essential parameters that must be specified by the user. This complexity is 
significantly increased by the many parameters of the execution environment. Furthermore, 
there are many alternative solutions of the same problem by selecting different software for 
the various phases of the computation. Thus, the task of selecting the best software and the 
associated algorithmic/hardware parameters for a particular problem or computation is often 
very difficult and sometimes impossible. An approach for dealing with this task by processing 
performance data obtained from testing software has been developed [4, 5, 6]. This includes a 
knowledge discovery in data bases methodology for recommending scientific software which 
uses existing database recommendation techniques. This system is the beginning of applying 
computational intelligence technologies to PSEs. These will improve enormously and become 
a basic part of the PSE technologies. 
 
• Recommender Systems: A preferred embodiment of computational intelligence in PSEs is 
as a “recommender system” that serves an advisory role in a PSE. A recommender system 
interacts with the user/student through a dialog, culling information about the problem at 
hand. It then uses past experience to suggest a suitable solution process (algorithm and 
architecture configurations). Such recommendations can serve important purposes, because 
the PSE can provide phenomenological explanations of why a suggestion was made and can 
also support “what-if” scenarios. Already recommender systems for important targeted 
mathematical domains have been built and fielded. Their pedagogical implications are an 
ongoing area of study. 

6. FUTURE PSE SOFTWARE ARCHITECTURE 
We consider the problem solving process from both the user’s viewpoint and the “systems” 
viewpoint. Initially, the user must define the problem to the system. In a PSE, this specification 
is declarative (i.e., only indicates the required information and not what to do with it or how to 
do something with it), symbolic (i.e., in some abstract form) and in terms that are natural to the 
problem domain. Only the essential features of the problem are specified; there is no indication 
of how it is to be solved. 

 Suppose that there is no existing PSE for solving the problem, but there is a large 
collection of problem solving components, including those that are needed to solve it. Then, the 
user must first combine some of these components to form a custom PSE and then apply it to 
solve the problem at hand. In this case, the user must be able to “browse” the available 
components, “select” the appropriate ones, and “connect” them to form a custom PSE. Then, to 
solve the problem, the user transfers the declarative problem specification to the PSE and 
interacts with the PSE appropriately. 

 The PSE finally assembled to solve the problem has five stages: 

 8



12/3/2003  12:50 AM 

1. Declarative problem specification: As described above. 

2. Computational algorithm: The problem specification is transformed to an algorithm 
which, when run, solves the problem. This is stated in a high-level, pseudo-code specification 
of this algorithm. 

3. High-level programming language program: The algorithm is executed by translating it 
to a program in some traditional high-level language. 

4. Problem solvers (libraries, servers): The problem solvers do the real work and we are 
invoked from the high-level language. 

5. OSs/networks/utilities: The lowest level is the traditional computing platforms on which 
the problem solvers execute. 

PSEs share many properties with other large integrated software environments such as 
Microsoft Office. There already exist many software frameworks which support the development 
of such systems and there is also a relevant body of work on distributed communication 
environments. However, none of these systems completely addresses the unique infrastructure 
needs of PSEs. The kernel PPK [17] has been proposed as a kernel for building PSEs (akin to the 
interfaces released by Wolfram research for extending Mathematica). The PSEWare project by a 
consortium let by Indiana University also is developing kernels for building PSEs. The goal of 
such a software framework is to build PSEs that support the above problem solving process. The 
key is to integrate the various pieces to form the comprehensive system that provides problem 
solving facilities to the user. Such integration software is called ‘middleware’ and PPK is a 
middleware system for PSEs. Building a PSE using PPK requires one to customize it by 
configuring its core components (software bus, notebook and object manager) appropriately to 
create a customized framework into which application-specific components can be integrated 
easily. 

7. FUTURE TRENDS IMPACTING PSE TECHNOLOGY 
We have already noted the enormous increases over the past 60 years in computer hardware 
technologies. Increases have been roughly exponential in computer speeds and memory size. It 
seems unlikely that these rates will change dramatically; if anything, these will be even larger 
over the next few decades. Further, the increases in algorithm power have also been roughly 
exponential provided the problem to be solved is very, very large. This rate is also expected to 
continue. 

      Computational intelligence is another area where the increases in power will have an 
enormous impact. Artificial intelligence has long been a disappointment to computer researchers. 
Computers began by being simple-minded and stayed that way for decades. But it is the 
comparison with arithmetic speed that is misleading, not the lack of progress in computer 
intelligence. Humans are very, very poor at arithmetic and very, very good at thinking. We are 
very impressed that computers can do arithmetic a billion times faster than they could 50 years 
ago; they were already better than people when they started. But, machines being a billion times 
more intelligent than they were 50 years ago is not impressive, because they were incredibly 
stupid then. Now computers are competitive with people in many areas of intelligence. In a 
decade or two, they will be a hundred or a thousand times more intelligent than they are now. 
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That intelligence will be easy to use in PSEs and dramatically affect their performance and 
increase their value [7]. 
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