
Project 2: Approximation by Trigonometric

Polynomials (Due Date 14/10/2014)

Introduction: The name of Fourier is associated with the investigation of periodic phenomenon,
Fourier series, Fourier Transforms, Discrete Fourier Transforms and Fast Fourier Transforms. These
mathematical objects are fundamental to the extraction of periodic signals from noise and form the
basis of the fields of Signal and Image Processing. The study and understanding of these objects is
important to modern scientific computing.

Fourier Series: Let f be a given real valued function defined on the interval 0, L and suppose that f
has a periodic component. How can both the period and magnitude of this component be
determined? To investigate this periodicity, approximate the function by a trigonometric polynomial,
St and look for the frequency having the largest coefficient. That is:

ft  St  c0 n1
M cn cos 2n

L
t  dn sin 2n

L
t

or in complex exponential form:

ft  St  nM
nM An exp i2n

L t

The size of An and An or cn and dn gives the contribution of the frequency 2n/L to the
representation of f by the trigonometric approximation. Note that the trigonometric and exponential
forms are equivalent. The following formulas define the transformation between the two (for real
valued functions f) :

A0  c0, An  cn  idn/2, An  cn  idn/2, or cn  2 realAn, dn  2 ImAn

Note that An is the complex conjugate of An. This approximation is determined by the coefficients
of the trigonometric polynomial. The least squares condition will be used to select these coefficients.
That is, the coefficients are determined by minimizing the integral of the square of the difference
between the approximation and the function over the interval 0, L. The function to be minimized is
given by:

Εc0, c1, . . . , cM, d1, . . . , dM  
0

1
ft  St2dt

Approximation Theorem: The coefficients of the Least Squares Approximation to the function f
defined on the interval 0, L by trigonometric polynomials Stare unique and are given by:

c0  1
L 0

L
ftdt cn  2

L 0
L

ftcos 2n
L

tdt dn  2
L 0

L
ft sin 2n

L
tdt

or

An  1
L 0

L
ftexp 2n

L
tdt for M  n  M.

Proof: Only one case will be considered, that of the formula for dk. The other cases follow from a
similar calculation. To minimize the function E, compute the various

partial derivatives and set them equal to zero. Solve for the values of the coefficients which satisfies
these equations and thus, minimize the function E.



E
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 2 
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ft  St sin 2n

L
tdt  0
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
0

L
ft sin 2n

L
tdt  
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L
St sin 2n

L
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2 dk

The last equality comes from using the orthogonality of the sine and cosine functions on the interval
[0, L]. To verify uniqueness, let S be any M-term trigonometric polynomial

and let Sf be the M-term Fourier Approximation. Consider the mean square error for the function S.

Εc0, c1, . . . , cM, d1, . . . , dM  
0

1
ft  St2dt  

0

1
ft  Sft  Sft  St2dt  

0

1
ft  Sft2

Assume that f is represented by its Fourier series, then in the last term the
quantityft  Sftcontains only frequencies higher than 2M/L and the term (Sft  St) contains
only frequencies up through 2M/L. Orthogonality of sine and cosine functions on the interval [0, L]
implies that all of these integrals are zero. Hence,

Εc0, c1, . . . , cM, d1, . . . , dM  
0

1
ft  St2dt  

0

1
ft  Sft2  Sft  St2dt

Thus, the Least Squares Condition is satisfied by St  Sft. QED

The Least Squares Approximation to f by trigonometric polynomials on the interval

0, L is just the truncated Fourier Series or the trigonometric polynomial St defined by the
Approximation Theorem. This approximation property is true for each value of M or for the Fourier
Series truncated at the Mth term. Note that c0 is just the average value of f on the interval 0, L.

Exercise #1: Consider the function given by ft  6 sin 25
L t already in the form of a trigonometric

polynomial, compute the coefficients of the least squares trigonometric polynomial in any interval
0, L.

Exercise #2: Suppose

ft  4 cos 25
L t  

Using the trigonometric identity

cosa  b  cosacosb  sina sinb

we obtain:

ft  4 cos 25
L tcos  4 sin 25

L t sin

Thus, Fourier series terms of the same frequency may be represented in two ways, as a linear
combination of cosines and sines or as the cosine of the given frequency with a phase shift . Like
Exercise #1, using the trigonometric identity, f is in the form of a trigonometric polynomial. Find the
coefficients.

Exercise #3: This example considers the case when the frequency of f is not a harmonic (integer
multiple) of the fundamental frequency of the trigonometric polynomial. Assume that
ft  3cos15t. Using the Symbolic library sympy of python find the Fourier Coefficients. Plot the
function f and its Fourier approximation.



The approximating trigonometric polynomial is defined for all real numbers and not just those in the
initial interval 0, L. Since the sine and cosine functions in this polynomial are all periodic on 0, L,
the trigonometric polynomial defines an approximation to the periodic extension of the original
function f beyond the initial interval 0, L. Note that the periodic extension of the original function
may not coincide with the original function outside of the interval 0, L. The following Figure
graphs both f and the approximation to f on a larger interval 0, 3.

Remark
Note that the approximation and the original function f do not agree outside of the initial interval
0, 1. The frequency of the function f is 15 radians/unit time which lies between two of the
harmonics of the fundamental frequency of the trigonometric polynomial 22  12.
566  15  23  18. 850

Figure 3 graphs the values of the Fourier coefficients and Figure 4 graphs the square root of the sum
of the squares of cn and dn for each value of n. Note that the trigonometric polynomial frequencies
adjacent to the frequency of the function f are most prominent. The frequency is displayed in two
ways, in terms of the frequency index, which represents the nth harmonic of the fundamental
frequency 2/L, and in terms of radians/unit time.



From Figure 1, it can be seen that the approximation does not seem as good near the ends of the
initial interval. This is because the periodic extension of the function fis discontinuous at the ends of
the interval. Discontinuities cause an oscillation in the approximating series independent of the
number of terms used in the approximation.

This is phenomenon is call the Gibbs Phenomenon, which we will explore in exercise 4.

Exercise #4: Consider the unit jump at x  a given by ft  Ht  a. Where H is the

Heaviside Function

Ht  0 if t  0 and 1 if t  o

Using the Sympy calculate the Fourier coefficients for this function and display in Figure 5 both the
function and the first 20 terms of it’s approximation and in Figure 6 displays 3 periods of the first 20
terms of the approximation, in Figures 7 and 8 display the first 40 terms of the approximation. Note
that the overshoot at the jump does not decrease with the increase in number of terms, it remains at
about 10% of the height of the jump.

The next exercise calculate the Fourier coefficients for a trend, that is for the line ft  a  bton the
interval 0, L.

Exercise #5: Assume that f(t)  a bt on the interval [0, L]. Using the Sympy find the Fourier
coefficients of its approximation. In Figure 9 graph the approximation to the periodic extension of
this trend over three periods and Figure 10 graph the coefficients of the first twenty terms of the
approximation.

If we study Figure 1 from Example #3, we find that the approximating series goes through the
average value c0 at the end points of the interval while the function does not. Hence, the periodic
extension of the function has a discontinuity at each end point with the oscillatory behavior of the
Gibbs Phenomenon.

Exercise #6: Suppose we multiply the original function in Exercise #3 by a function, which is zero at
the ends of the initial interval. We will scale this function so that its maximum height is 1 at the
center of the interval. Consider ft  3cos15t16t2L  t2/L4. Then redo Exercise #3. In
Figure 11 display the original function and the modified or windowed function, Figure 12 graph the
coefficients, and Figure 13 graph the complex magnitude of the coefficients sqrtcn

2  dn
2.

The multiplication by a function, which is zero at the end points of the interval [0, L], to reduce the
effect of discontinuities at the end points is called windowing. Compare Figures 4 and 13, note that



windowing has suppressed the high frequency components due to the discontinuities in the periodic
extension of the given function.

From the above graphs (Figures 11, 12 and 13), notice that the original frequency of 15 radians/unit
time which lies between the second and third harmonic of our trigonometric approximation stands
out as the only feature.

(The second harmonic 22  12. 57  15  23  18. 85 the third harmonic).

As the functions become more complicated, numerical integration must be used to evaluate the
integrals defining the coefficients. This can be easily done in python using the built-in integration
routines in scipy.integrate library.

Exercise #7: Continuing with Exercise #3, ft  3cos15t, what happens when we change the
length of the initial interval? From the formula for the fundamental frequency, 2/L, as L increase
the fundamental frequency decreases. This decrease provides more detail in the graph of the complex
magnitude of the coefficients for a given frequency. Thus, the longer the data set the more resolution
is obtained in the frequency spectrum. Run the cases of L  1, 2, 4 and 8 and plot the results in
Figure 14.

Note that as L increases the complex magnitude of the coefficients are dominated by the given
function’s frequency of 15 radians/unit time. Thus, the original function must have the form

ft  amplitude  cosfrequency  t  where  is the phase angle. The phase angle is determined
from the individual components of cosine and sine by the formula:

Phase Angle   arctansin nth coef. / cos nth coef.)where arctan is the four quadrant version.

In Figure 15 plot the phase angle for the case of L  8.

From these two plots, the original function f(t)  3 cos(15t) may be recovered.

Fourier Series of a Data Set (Interpolation): In many cases, the analytic expression for the
function f is not known, only the values of f at a set of points in the interval [0, L]. If the Fourier
series can be constructed from this data set then the results of Exercise #7 imply that periodic
behavior of this data set can be determined. Suppose this data set is given. To define the Fourier
series of this data set, construct the piecewise linear interpolant to this data and from this function
compute the approximating Fourier series.

Piecewise Linear Interpolants

Suppose the following data set on the interval [0, L] is given.

The graph of the piecewise linear interpolant is given in

Figure 16.



In order to efficiently compute the Fourier series coefficients for this piecewise linear interpolant,
write this interpolant as a linear combination of the following basis functions. Each of these basis
functions will be the interpolant for a very simple data set based on

the original set of t-values or nodes. The first piecewise linear interpolant basis function

1 and its data set are given by the following:

The second basis function 2 and its data set are given by the following:

In a similar manner all of the remaining basis functions are defined 3 through 7.



The piecewise linear interpolant of the original data set may now be written in terms of

these basis functions.

PLDatat   i1
7 y iit

Since the computation of the Fourier series coefficients is a linear operation, it is enough to compute
the coefficients for the basis functions i and multiply by y i and sum over all basis functions. Define
the Fourier series of a data set on the interval [0, L] to be the Fourier series of the piecewise linear
interpolant.

Using the python Sympy lib, we can easily compute the Fourier coefficients for the basis functions .

For 1 defined in the nodes (o,c) we obtain c0first

The computation of the coefficients for the first basis function is given by the following

MATLAB function subprogram.

function [c0,cn,dn]FSPLBasisF(N,L,c)
%Calculates the Fourier Coefficients of the first PL Basis Function
%where N is the number of terms in the series
c0c/(2*L);
n1:N;
w2*pi*n/L; Const(2/(L*c))./(w.*w);
cn-Const.*(cos(w*c)-1);
dnConst.*(-sin(w*c)w*c);

For i

defined on the nodes (a,b,c) we obtain:

c0  (c-a)/(2*L)

cn 2*(cos((2*pi*n/L)*b)*(c-a)cos((2*pi*n/L)*a)*(b-c) cos((2*pi*n/L)*c)*(a-b))/(L*(-ba)
*(-cb)*(2*pi*n/L)^2)

dn  2*(sin((2*pi*n/L)*b)*(c-a)sin((2*pi*n/L)*a)*(b-c) sin((2*pi*n/L)*c)*(a-b))/(L*(-ba)
*(-cb)*(2*pi*n/L)^2)



The computation of the coefficients for the general basis function is given by the following
MATLAB function subprogram.

function [c0,cn,dn]FSPLBasis(N,L,a,b,c)
%Calculates the Fourier Coefficients for the PL Basis Functions
%where N is the number of terms in the series
c0(c-a)/(2*L);
n1:N;
w2*pi*n/L; wsqw.*w; Const2/(L*(c-b)*(b-a))./wsq;
cnConst.*(cos(w*b)*(c-a)cos(w*a)*(b-c)cos(w*c)*(a-b));
dnConst.*(sin(w*b)*(c-a)sin(w*a)*(b-c)sin(w*c)*(a-b));

For θlast defined on the nodes (a,L) we obtain:

c0last  (L-a)/(2*L)

cnlast  1/2*L*(-1cos(2*pi*n/L*a))/((-La)*pi^2*n^2)

dnlast  -1/2*(-2*pi*n*(L-a)-sin(2*pi*n/L*a)*L)/((-La)*pi^2*n^2)

The computation of the coefficients for the last basis function is given by the following

MATLAB function subprogram.
function [c0,cn,dn]FSPLBasisL(N,L,a)
%Calculates the Fourier Coefficients of the last PL Basis Function
%where N is the number of terms in the series
c0(L-a)/(2*L);
n1:N;
w2*pi*n/L; Const(2/(L*(L-a)))./(w.*w);
cnConst.*(-cos(w*a)1);
dnConst.*(-sin(w*a)-(L-a)*w);

The Fourier series of a data set, can now be calculated using the above Fourier series

coefficient functions for the piecewise linear interpolation basis functions and our

definition. This methodology is exhibited in the next exercise.

Exercise #8:

Continuing with the function ft  3cos15t, let L  8 and choose 71 equally spaced points as
samples of this function. Find the piecewise linear approximation and its Fourie approximation and
plot the results. Suppose we now add noise to each of the sample points. Assume the noise is taken
from a uniform distribution of amplitude 3 about zero. The following graphs give the results. In
Figure 20 plot the original function, the PL interpolant and the sampled points.

Using this technique, Fourier coefficients may be computed for a PL interpolant for any data set
having unique independent variable values. Exercise #8 provides evidence that periodic behavior can
be recovered from noisy data. While this process is effective, it is computationally intensive.

Discrete Fourier Transform:
The Discrete Fourier Transform, or DFT, produces a complex vector X of length N from

an input vector x of length N by the following formula:



The computation of the DFT is usually accomplished using the Fast Fourier Transform

Algorithm or FFT. In python, the DFT is computed using the built-in function scipy.fft.fft()

The DFT operation has an inverse, or IDFT, given by the following formula:

xn  1
N k1

N Xkexp 2i
N k  1n  1 for 1  n  N

Exercise #9: Let the input vector x  [ 1, -2, 3, 6, 0, -1]. Thus, N  6. Using the python routines for
fft and ifft

calculates the DFT and IDFT and print k vector x X(k)  DFT(x) IDFT(DFT(x))

For this particular vector x, note that IDFT(DFT) is just the identity and that

Xk  ConjugateXN  k  2 for 2  k  N

Both of these observations can be proved for an arbitrary input vector.

Relationship of the DFT to the Interpolation of a Data Set:
Let x  [ x1, x2, , xN] be a given vector of real values. Using these values form the following
equally spaced data set on the interval [0, L]:

Interpolation Theorem: The above data set is interpolated by the following trigonometric
polynomial.

Note that if N is even X(N/21) is real, see Exercise #9.

The proof of this theorem begins with the definition of the IDFT, using the properties observed in
Exercise #9, the theorem follows by a careful manipulation and recasting of the terms. Note that we
may choose L arbitrarily.

Exercise #10: Consider the vector of values given in Example #9. Let L  1, and

Data Set :



Graph both this data set and the Trigonometric Polynomial defined in the Theorem in ipython.


