
Lecture-1-Introduction-to-Python-Programming

September 24, 2014

1 Introduction to Python programming

J.R. Johansson (robert@riken.jp) http://dml.riken.jp/˜rob/
The latest version of this IPython notebook lecture is available at http://github.com/jrjohansson/

scientific-python-lectures.
The other notebooks in this lecture series are indexed at http://jrjohansson.github.com.

1.1 Python program files

• Python code is usually stored in text files with the file ending “.py”:

myprogram.py

• Every line in a Python program file is assumed to be a Python statement, or part thereof.

– The only exception is comment lines, which start with the character # (optionally preceded by
an arbitrary number of white-space characters, i.e., tabs or spaces). Comment lines are usually
ignored by the Python interpreter.

• To run our Python program from the command line we use:

$ python myprogram.py

• On UNIX systems it is common to define the path to the interpreter on the first line of the program
(note that this is a comment line as far as the Python interpreter is concerned):

#!/usr/bin/env python

If we do, and if we additionally set the file script to be executable, we can run the program like this:

$ myprogram.py

1.1.1 Example:

In [1]: ls scripts/hello-world*.py

Invalid switch - "hello-world*.py".

In [2]: cat scripts/hello-world.py

File "<ipython-input-2-5bdf12dccc10>", line 1

cat scripts/hello-world.py

^

SyntaxError: invalid syntax

1

http://ipython.org/notebook.html
http://github.com/jrjohansson/scientific-python-lectures
http://github.com/jrjohansson/scientific-python-lectures
http://jrjohansson.github.com

In [3]: !python scripts/hello-world.py

python: can’t open file ’scripts/hello-world.py’: [Errno 2] No such file or directory

1.1.2 Character encoding

The standard character encoding is ASCII, but we can use any other encoding, for example UTF-8. To
specify that UTF-8 is used we include the special line

-*- coding: UTF-8 -*-

at the top of the file.

In [4]: cat scripts/hello-world-in-swedish.py

File "<ipython-input-4-e59e79ffa71d>", line 1

cat scripts/hello-world-in-swedish.py

^

SyntaxError: invalid syntax

In [5]: !python scripts/hello-world-in-swedish.py

python: can’t open file ’scripts/hello-world-in-swedish.py’: [Errno 2] No such file or directory

Other than these two optional lines in the beginning of a Python code file, no additional code is required
for initializing a program.

1.2 IPython notebooks

This file - an IPython notebook - does not follow the standard pattern with Python code in a text file.
Instead, an IPython notebook is stored as a file in the JSON format. The advantage is that we can mix
formatted text, Python code and code output. It requires the IPython notebook server to run it though,
and therefore isn’t a stand-alone Python program as described above. Other than that, there is no difference
between the Python code that goes into a program file or an IPython notebook.

1.3 Modules

Most of the functionality in Python is provided by modules. The Python Standard Library is a large collection
of modules that provides cross-platform implementations of common facilities such as access to the operating
system, file I/O, string management, network communication, and much more.

1.3.1 References

• The Python Language Reference: http://docs.python.org/2/reference/index.html

• The Python Standard Library: http://docs.python.org/2/library/

To use a module in a Python program it first has to be imported. A module can be imported using the
import statement. For example, to import the module math, which contains many standard mathematical
functions, we can do:

1.4 SciPy for Numerical Analysis

1.4.1 Evaluation of Special functions

The “scipy.special” contains the definitions and code for useful functions

2

http://en.wikipedia.org/wiki/JSON

1.4.2 Higher Mathematics: the math library

Evaluate the expression π107
√

(90.1)
In order to use the value of π, we have to first load the math library; the statement from math import *

loads all (the * wildcard character tells you that) of the functions from

In [6]: import math

#help(math)

In [7]: from math import *

print pi*10**7*sqrt(90.1)

298203178.477

This includes the whole module and makes it available for use later in the program. For example, we can
do:

1.4.3 four methods for loading a library

When importing libraries into Python, we have four alternatives (math library used as an example):

In [8]: from math import sin

from math import *

import math

import math as m

Method (1) loads only the sine function, and method (2) loads all of the functions in the math library;
the advantage of this method is that it allows us to call a function by its name in the particular library, for
example, to calculate the sine of x, we simply type

sin(x)

Method (3) also loads the entire math library, but now to calculate the sine of x, we must type

math.sin(x)

The fourth method, is simply allows one to have a shorthand method for addressing the math library;
now we need only type

m.sin(x)

to calculate the sin(x) using the math library. Methods (3) and (4) are the preferred way to load libraries,
because they remove all ambiguity as to what library a particular funtion belongs to.

In [9]: import math

x = math.cos(2 * math.pi)

print(x)

1.0

Alternatively, we can chose to import all symbols (functions and variables) in a module to the current
namespace (so that we don’t need to use the prefix “math.” every time we use something from the math

module:

3

In [10]: from math import *

x = cos(2 * pi)

print(x)

1.0

This pattern can be very convenient, but in large programs that include many modules it is often a good
idea to keep the symbols from each module in their own namespaces, by using the import math pattern.
This would elminate potentially confusing problems with name space collisions.

As a third alternative, we can chose to import only a few selected symbols from a module by explicitly
listing which ones we want to import instead of using the wildcard character *:

In [11]: from math import cos, pi

x = cos(2 * pi)

print(x)

1.0

1.4.4 Looking at what a module contains, and its documentation

Once a module is imported, we can list the symbols it provides using the dir function:

In [12]: import math

print(dir(math))

[’ doc ’, ’ name ’, ’ package ’, ’acos’, ’acosh’, ’asin’, ’asinh’, ’atan’, ’atan2’, ’atanh’, ’ceil’, ’copysign’, ’cos’, ’cosh’, ’degrees’, ’e’, ’erf’, ’erfc’, ’exp’, ’expm1’, ’fabs’, ’factorial’, ’floor’, ’fmod’, ’frexp’, ’fsum’, ’gamma’, ’hypot’, ’isinf’, ’isnan’, ’ldexp’, ’lgamma’, ’log’, ’log10’, ’log1p’, ’modf’, ’pi’, ’pow’, ’radians’, ’sin’, ’sinh’, ’sqrt’, ’tan’, ’tanh’, ’trunc’]

And using the function help we can get a description of each function (almost .. not all functions have
docstrings, as they are technically called, but the vast majority of functions are documented this way).

In [13]: help(math.log)

Help on built-in function log in module math:

log(...)

log(x[, base])

Return the logarithm of x to the given base.

If the base not specified, returns the natural logarithm (base e) of x.

In [14]: log(10)

Out[14]: 2.302585092994046

In [15]: log(10, 2)

Out[15]: 3.3219280948873626

We can also use the help function directly on modules: Try

help(math)

Some very useful modules form the Python standard library are os, sys, math, shutil, re, subprocess,
multiprocessing, threading.

A complete lists of standard modules for Python 2 and Python 3 are available at
http://docs.python.org/2/library/ and http://docs.python.org/3/library/, respectively.

4

1.5 Variables and types

1.5.1 Symbol names

Variable names in Python can contain alphanumerical characters a-z, A-Z, 0-9 and some special characters
such as . Normal variable names must start with a letter.

By convension, variable names start with a lower-case letter, and Class names start with a capital letter.
In addition, there are a number of Python keywords that cannot be used as variable names. These

keywords are:

and, as, assert, break, class, continue, def, del, elif, else, except,

exec, finally, for, from, global, if, import, in, is, lambda, not, or,

pass, print, raise, return, try, while, with, yield

Note: Be aware of the keyword lambda, which could easily be a natural variable name in a scientific
program. But being a keyword, it cannot be used as a variable name.

1.5.2 Assignment

The assignment operator in Python is =. Python is a dynamically typed language, so we do not need to
specify the type of a variable when we create one.

Assigning a value to a new variable creates the variable:

In [16]: # variable assignments

x = 1.0

my_variable = 12.2

Although not explicitly specified, a variable do have a type associated with it. The type is derived form
the value it was assigned.

In [17]: type(x)

Out[17]: float

If we assign a new value to a variable, its type can change.

In [18]: x = 1

In [19]: type(x)

Out[19]: int

If we try to use a variable that has not yet been defined we get an NameError:

In [20]: print(y)

NameError Traceback (most recent call last)

<ipython-input-20-36b2093251cd> in <module>()

----> 1 print(y)

NameError: name ’y’ is not defined

5

1.5.3 Fundamental types

In [21]: # integers

x = 1

type(x)

Out[21]: int

In [22]: # float

x = 1.0

type(x)

Out[22]: float

In [23]: # boolean

b1 = True

b2 = False

type(b1)

Out[23]: bool

In [24]: # complex numbers: note the use of ‘j‘ to specify the imaginary part

x = 1.0 - 1.0j

type(x)

Out[24]: complex

In [25]: print(x)

(1-1j)

In [26]: print(x.real, x.imag)

(1.0, -1.0)

1.5.4 Type utility functions

The module types contains a number of type name definitions that can be used to test if variables are of
certain types:

In [27]: import types

print all types defined in the ‘types‘ module

print(dir(types))

[’BooleanType’, ’BufferType’, ’BuiltinFunctionType’, ’BuiltinMethodType’, ’ClassType’, ’CodeType’, ’ComplexType’, ’DictProxyType’, ’DictType’, ’DictionaryType’, ’EllipsisType’, ’FileType’, ’FloatType’, ’FrameType’, ’FunctionType’, ’GeneratorType’, ’GetSetDescriptorType’, ’InstanceType’, ’IntType’, ’LambdaType’, ’ListType’, ’LongType’, ’MemberDescriptorType’, ’MethodType’, ’ModuleType’, ’NoneType’, ’NotImplementedType’, ’ObjectType’, ’SliceType’, ’StringType’, ’StringTypes’, ’TracebackType’, ’TupleType’, ’TypeType’, ’UnboundMethodType’, ’UnicodeType’, ’XRangeType’, ’ builtins ’, ’ doc ’, ’ file ’, ’ name ’, ’ package ’]

In [28]: x = 1.0

check if the variable x is a float

type(x) is float

Out[28]: True

In [29]: # check if the variable x is an int

type(x) is int

Out[29]: False

We can also use the isinstance method for testing types of variables:

In [30]: isinstance(x, float)

Out[30]: True

6

1.5.5 Type casting

In [31]: x = 1.5

print(x, type(x))

(1.5, <type ’float’>)

In [32]: x = int(x)

print(x, type(x))

(1, <type ’int’>)

In [33]: z = complex(x)

print(z, type(z))

((1+0j), <type ’complex’>)

In [34]: x = float(z)

TypeError Traceback (most recent call last)

<ipython-input-34-e719cc7b3e96> in <module>()

----> 1 x = float(z)

TypeError: can’t convert complex to float

Complex variables cannot be cast to floats or integers. We need to use z.real or z.imag to extract the
part of the complex number we want:

In [35]: y = bool(z.real)

print(z.real, " -> ", y, type(y))

y = bool(z.imag)

print(z.imag, " -> ", y, type(y))

(1.0, ’ -> ’, True, <type ’bool’>)

(0.0, ’ -> ’, False, <type ’bool’>)

1.6 Operators and comparisons

Most operators and comparisons in Python work as one would expect:

• Arithmetic operators +, -, *, /, // (integer division), ’**’ power

In [36]: 1 + 2, 1 - 2, 1 * 2, 1 / 2

Out[36]: (3, -1, 2, 0)

In [37]: 1.0 + 2.0, 1.0 - 2.0, 1.0 * 2.0, 1.0 / 2.0

7

Out[37]: (3.0, -1.0, 2.0, 0.5)

In [38]: # Integer division of float numbers

3.0 // 2.0

Out[38]: 1.0

In [39]: # Note! The power operators in python isn’t ^, but **

2 ** 2

Out[39]: 4

• The boolean operators are spelled out as words and, not, or.

In [40]: True and False

Out[40]: False

In [41]: not False

Out[41]: True

In [42]: True or False

Out[42]: True

• Comparison operators >, <, >= (greater or equal), <= (less or equal), == equality, is identical.

In [43]: 2 > 1, 2 < 1

Out[43]: (True, False)

In [44]: 2 > 2, 2 < 2

Out[44]: (False, False)

In [45]: 2 >= 2, 2 <= 2

Out[45]: (True, True)

In [46]: # equality

[1,2] == [1,2]

Out[46]: True

In [47]: # objects identical?

l1 = l2 = [1,2]

l1 is l2

Out[47]: True

8

1.7 Compound types: Strings, List and dictionaries

1.7.1 Strings

Strings are the variable type that is used for storing text messages.

In [48]: s = "Hello world"

type(s)

Out[48]: str

In [49]: # length of the string: the number of characters

len(s)

Out[49]: 11

In [50]: # replace a substring in a string with somethign else

s2 = s.replace("world", "test")

print(s2)

Hello test

We can index a character in a string using []:

In [51]: s[0]

Out[51]: ’H’

Heads up MATLAB users: Indexing start at 0!
We can extract a part of a string using the syntax [start:stop], which extracts characters between

index start and stop:

In [52]: s[0:5]

Out[52]: ’Hello’

If we omit either (or both) of start or stop from [start:stop], the default is the beginning and the
end of the string, respectively:

In [53]: s[:5]

Out[53]: ’Hello’

In [54]: s[6:]

Out[54]: ’world’

In [55]: s[:]

Out[55]: ’Hello world’

We can also define the step size using the syntax [start:end:step] (the default value for step is 1, as
we saw above):

In [56]: s[::1]

Out[56]: ’Hello world’

In [57]: s[::2]

Out[57]: ’Hlowrd’

This technique is called slicing. Read more about the syntax here:
http://docs.python.org/release/2.7.3/library/functions.html?highlight=slice#slice

Python has a very rich set of functions for text processing. See for example
http://docs.python.org/2/library/string.html for more information.

9

String formatting examples

In [58]: print("str1", "str2", "str3") # The print statement concatenates strings with a space

(’str1’, ’str2’, ’str3’)

In [59]: print("str1", 1.0, False, -1j) # The print statements converts all arguments to strings

(’str1’, 1.0, False, -1j)

In [60]: print("str1" + "str2" + "str3") # strings added with + are concatenated without space

str1str2str3

In [61]: print("value = %f" % 1.0) # we can use C-style string formatting

value = 1.000000

In [62]: # this formatting creates a string

s2 = "value1 = %.2f. value2 = %d" % (3.1415, 1.5)

print(s2)

value1 = 3.14. value2 = 1

In [63]: # alternative, more intuitive way of formatting a string

s3 = ’value1 = {0}, value2 = {1}’.format(3.1415, 1.5)

print(s3)

value1 = 3.1415, value2 = 1.5

1.7.2 List

Lists are very similar to strings, except that each element can be of any type.
The syntax for creating lists in Python is [...]:

In [64]: l = [1,2,3,4]

print(type(l))

print(l)

<type ’list’>

[1, 2, 3, 4]

We can use the same slicing techniques to manipulate lists as we could use on strings:

In [65]: print(l)

print(l[1:3])

print(l[::2])

[1, 2, 3, 4]

[2, 3]

[1, 3]

Heads up MATLAB users: Indexing starts at 0!

10

In [66]: l[0]

Out[66]: 1

Elements in a list do not all have to be of the same type:

In [67]: l = [1, ’a’, 1.0, 1-1j]

print(l)

[1, ’a’, 1.0, (1-1j)]

Python lists can be inhomogeneous and arbitrarily nested:

In [68]: nested_list = [1, [2, [3, [4, [5]]]]]

nested_list

Out[68]: [1, [2, [3, [4, [5]]]]]

Lists play a very important role in Python, and are for example used in loops and other flow control
structures (discussed below). There are number of convenient functions for generating lists of various types,
for example the range function:

In [69]: start = 10

stop = 30

step = 2

range(start, stop, step)

Out[69]: [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

In [70]: # in python 3 range generates an interator, which can be converted to a list using ’list(...)’.

It has no effect in python 2

list(range(start, stop, step))

Out[70]: [10, 12, 14, 16, 18, 20, 22, 24, 26, 28]

In [71]: list(range(-10, 10))

Out[71]: [-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [72]: s

Out[72]: ’Hello world’

In [73]: # convert a string to a list by type casting:

s2 = list(s)

s2

Out[73]: [’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’w’, ’o’, ’r’, ’l’, ’d’]

In [74]: # sorting lists

s2.sort()

print(s2)

[’ ’, ’H’, ’d’, ’e’, ’l’, ’l’, ’l’, ’o’, ’o’, ’r’, ’w’]

11

Adding, inserting, modifying, and removing elements from lists

In [75]: # create a new empty list

l = []

add an elements using ‘append‘

l.append("A")

l.append("d")

l.append("d")

print(l)

[’A’, ’d’, ’d’]

We can modify lists by assigning new values to elements in the list. In technical jargon, lists are mutable.

In [76]: l[1] = "p"

l[2] = "p"

print(l)

[’A’, ’p’, ’p’]

In [77]: l[1:3] = ["d", "d"]

print(l)

[’A’, ’d’, ’d’]

Insert an element at an specific index using insert

In [78]: l.insert(0, "i")

l.insert(1, "n")

l.insert(2, "s")

l.insert(3, "e")

l.insert(4, "r")

l.insert(5, "t")

print(l)

[’i’, ’n’, ’s’, ’e’, ’r’, ’t’, ’A’, ’d’, ’d’]

Remove first element with specific value using ‘remove’

In [79]: l.remove("A")

print(l)

[’i’, ’n’, ’s’, ’e’, ’r’, ’t’, ’d’, ’d’]

Remove an element at a specific location using del:

In [80]: del l[7]

del l[6]

print(l)

[’i’, ’n’, ’s’, ’e’, ’r’, ’t’]

See help(list) for more details, or read the online documentation

12

1.7.3 Tuples

Tuples are like lists, except that they cannot be modified once created, that is they are immutable.
In Python, tuples are created using the syntax (..., ..., ...), or even ..., ...:

In [81]: point = (10, 20)

print(point, type(point))

((10, 20), <type ’tuple’>)

In [82]: point = 10, 20

print(point, type(point))

((10, 20), <type ’tuple’>)

We can unpack a tuple by assigning it to a comma-separated list of variables:

In [83]: x, y = point

print("x =", x)

print("y =", y)

(’x =’, 10)

(’y =’, 20)

If we try to assign a new value to an element in a tuple we get an error:

In [84]: point[0] = 20

TypeError Traceback (most recent call last)

<ipython-input-84-ac1c641a5dca> in <module>()

----> 1 point[0] = 20

TypeError: ’tuple’ object does not support item assignment

1.7.4 Dictionaries

Dictionaries are also like lists, except that each element is a key-value pair. The syntax for dictionaries is
{key1 : value1, ...}:

In [85]: params = {"parameter1" : 1.0,

"parameter2" : 2.0,

"parameter3" : 3.0,}

print(type(params))

print(params)

<type ’dict’>

{’parameter1’: 1.0, ’parameter3’: 3.0, ’parameter2’: 2.0}

13

In [86]: print("parameter1 = " + str(params["parameter1"]))

print("parameter2 = " + str(params["parameter2"]))

print("parameter3 = " + str(params["parameter3"]))

parameter1 = 1.0

parameter2 = 2.0

parameter3 = 3.0

In [87]: params["parameter1"] = "A"

params["parameter2"] = "B"

add a new entry

params["parameter4"] = "D"

print("parameter1 = " + str(params["parameter1"]))

print("parameter2 = " + str(params["parameter2"]))

print("parameter3 = " + str(params["parameter3"]))

print("parameter4 = " + str(params["parameter4"]))

parameter1 = A

parameter2 = B

parameter3 = 3.0

parameter4 = D

1.8 Control Flow

1.8.1 Conditional statements: if, elif, else

The Python syntax for conditional execution of code use the keywords if, elif (else if), else:

In [88]: statement1 = False

statement2 = False

if statement1:

print("statement1 is True")

elif statement2:

print("statement2 is True")

else:

print("statement1 and statement2 are False")

statement1 and statement2 are False

For the first time, here we encounted a peculiar and unusual aspect of the Python programming language:
Program blocks are defined by their indentation level.

Compare to the equivalent C code:

if (statement1)

{

printf("statement1 is True\n");

}

else if (statement2)

{

printf("statement2 is True\n");

}

14

else

{

printf("statement1 and statement2 are False\n");

}

In C blocks are defined by the enclosing curly brakets { and }. And the level of indentation (white space
before the code statements) does not matter (completely optional).

But in Python, the extent of a code block is defined by the indentation level (usually a tab or say four
white spaces). This means that we have to be careful to indent our code correctly, or else we will get syntax
errors.

Examples:

In [89]: statement1 = statement2 = True

if statement1:

if statement2:

print("both statement1 and statement2 are True")

both statement1 and statement2 are True

In [90]: # Bad indentation!

if statement1:

if statement2:

print("both statement1 and statement2 are True") # this line is not properly indented

File "<ipython-input-90-78979cdecf37>", line 4

print("both statement1 and statement2 are True") # this line is not properly indented

^

IndentationError: expected an indented block

In [91]: statement1 = False

if statement1:

print("printed if statement1 is True")

print("still inside the if block")

In [92]: if statement1:

print("printed if statement1 is True")

print("now outside the if block")

now outside the if block

1.9 Loops

In Python, loops can be programmed in a number of different ways. The most common is the for loop,
which is used together with iterable objects, such as lists. The basic syntax is:

15

1.9.1 for loops:

In [93]: for x in [1,2,3]:

print(x)

1

2

3

The for loop iterates over the elements of the supplied list, and executes the containing block once for
each element. Any kind of list can be used in the for loop. For example:

In [94]: for x in range(4): # by default range start at 0

print(x)

0

1

2

3

Note: range(4) does not include 4 !

In [95]: for x in range(-3,3):

print(x)

-3

-2

-1

0

1

2

In [96]: for word in ["scientific", "computing", "with", "python"]:

print(word)

scientific

computing

with

python

To iterate over key-value pairs of a dictionary:

In [97]: for key, value in params.items():

print(key + " = " + str(value))

parameter4 = D

parameter1 = A

parameter3 = 3.0

parameter2 = B

Sometimes it is useful to have access to the indices of the values when iterating over a list. We can use
the enumerate function for this:

In [98]: for idx, x in enumerate(range(-3,3)):

print(idx, x)

(0, -3)

(1, -2)

(2, -1)

(3, 0)

(4, 1)

(5, 2)

16

1.9.2 List comprehensions: Creating lists using for loops:

A convenient and compact way to initialize lists:

In [99]: l1 = [x**2 for x in range(0,5)]

print(l1)

[0, 1, 4, 9, 16]

1.9.3 while loops:

In [100]: i = 0

while i < 5:

print(i)

i = i + 1

print("done")

0

1

2

3

4

done

Note that the print("done") statement is not part of the while loop body because of the difference in
indentation.

1.10 Functions

A function in Python is defined using the keyword def, followed by a function name, a signature within
parentheses (), and a colon :. The following code, with one additional level of indentation, is the function
body.

In [101]: def func0():

print("test")

In [102]: func0()

test

Optionally, but highly recommended, we can define a so called “docstring”, which is a description of the
functions purpose and behaivor. The docstring should follow directly after the function definition, before
the code in the function body.

In [103]: def func1(s):

"""

Print a string ’s’ and tell how many characters it has

"""

print(s + " has " + str(len(s)) + " characters")

In [104]: help(func1)

17

Help on function func1 in module main :

func1(s)

Print a string ’s’ and tell how many characters it has

In [105]: func1("test")

test has 4 characters

Functions that returns a value use the return keyword:

In [106]: def square(x):

"""

Return the square of x.

"""

return x ** 2

In [107]: square(4)

Out[107]: 16

We can return multiple values from a function using tuples (see above):

In [108]: def powers(x):

"""

Return a few powers of x.

"""

return x ** 2, x ** 3, x ** 4

In [109]: powers(3)

Out[109]: (9, 27, 81)

In [110]: x2, x3, x4 = powers(3)

print(x3)

27

1.10.1 Default argument and keyword arguments

In a definition of a function, we can give default values to the arguments the function takes:

In [111]: def myfunc(x, p=2, debug=False):

if debug:

print("evaluating myfunc for x = " + str(x) + " using exponent p = " + str(p))

return x**p

If we don’t provide a value of the debug argument when calling the the function myfunc it defaults to
the value provided in the function definition:

In [112]: myfunc(5)

Out[112]: 25

In [113]: myfunc(5, debug=True)

evaluating myfunc for x = 5 using exponent p = 2

18

Out[113]: 25

If we explicitly list the name of the arguments in the function calls, they do not need to come in the same
order as in the function definition. This is called keyword arguments, and is often very useful in functions
that takes a lot of optional arguments.

In [114]: myfunc(p=3, debug=True, x=7)

evaluating myfunc for x = 7 using exponent p = 3

Out[114]: 343

1.10.2 Unnamed functions (lambda function)

In Python we can also create unnamed functions, using the lambda keyword:

In [115]: f1 = lambda x: x**2

is equivalent to

def f2(x):

return x**2

In [116]: f1(2), f2(2)

Out[116]: (4, 4)

This technique is useful for example when we want to pass a simple function as an argument to another
function, like this:

In [117]: # map is a built-in python function

map(lambda x: x**2, range(-3,4))

Out[117]: [9, 4, 1, 0, 1, 4, 9]

In [118]: # in python 3 we can use ‘list(...)‘ to convert the iterator to an explicit list

list(map(lambda x: x**2, range(-3,4)))

Out[118]: [9, 4, 1, 0, 1, 4, 9]

1.11 Classes

Classes are the key features of object-oriented programming. A class is a structure for representing an object
and the operations that can be performed on the object.

In Python a class can contain attributes (variables) and methods (functions).
A class is defined almost like a function, but using the class keyword, and the class definition usually

contains a number of class method definitions (a function in a class).

• Each class method should have an argument self as it first argument. This object is a self-reference.

• Some class method names have special meaning, for example:

– init : The name of the method that is invoked when the object is first created.

– str : A method that is invoked when a simple string representation of the class is needed, as
for example when printed.

– There are many more, see http://docs.python.org/2/reference/datamodel.html#special-method-
names

19

In [119]: class Point:

"""

Simple class for representing a point in a Cartesian coordinate system.

"""

def __init__(self, x, y):

"""

Create a new Point at x, y.

"""

self.x = x

self.y = y

def translate(self, dx, dy):

"""

Translate the point by dx and dy in the x and y direction.

"""

self.x += dx

self.y += dy

def __str__(self):

return("Point at [%f, %f]" % (self.x, self.y))

To create a new instance of a class:

In [120]: p1 = Point(0, 0) # this will invoke the __init__ method in the Point class

print(p1) # this will invoke the __str__ method

Point at [0.000000, 0.000000]

To invoke a class method in the class instance p:

In [121]: p2 = Point(1, 1)

p1.translate(0.25, 1.5)

print(p1)

print(p2)

Point at [0.250000, 1.500000]

Point at [1.000000, 1.000000]

Note that calling class methods can modifiy the state of that particular class instance, but does not effect
other class instances or any global variables.

That is one of the nice things about object-oriented design: code such as functions and related variables
are grouped in separate and independent entities.

1.12 Modules

One of the most important concepts in good programming is to reuse code and avoid repetitions.
The idea is to write functions and classes with a well-defined purpose and scope, and reuse these instead

of repeating similar code in different part of a program (modular programming). The result is usually that
readability and maintainability of a program is greatly improved. What this means in practice is that our
programs have fewer bugs, are easier to extend and debug/troubleshoot.

Python supports modular programming at different levels. Functions and classes are examples of tools
for low-level modular programming. Python modules are a higher-level modular programming construct,

20

where we can collect related variables, functions and classes in a module. A python module is defined in
a python file (with file-ending .py), and it can be made accessible to other Python modules and programs
using the import statement.

Consider the following example: the file mymodule.py contains simple example implementations of a
variable, function and a class:

In [122]: %%file mymodule.py

"""

Example of a python module. Contains a variable called my_variable,

a function called my_function, and a class called MyClass.

"""

my_variable = 0

def my_function():

"""

Example function

"""

return my_variable

class MyClass:

"""

Example class.

"""

def __init__(self):

self.variable = my_variable

def set_variable(self, new_value):

"""

Set self.variable to a new value

"""

self.variable = new_value

def get_variable(self):

return self.variable

Writing mymodule.py

We can import the module mymodule into our Python program using import:

In [123]: import mymodule

Use help(module) to get a summary of what the module provides:

In [124]: #help(mymodule)

In [125]: mymodule.my_variable

Out[125]: 0

In [126]: mymodule.my_function()

Out[126]: 0

In [127]: my_class = mymodule.MyClass()

my_class.set_variable(10)

my_class.get_variable()

21

Out[127]: 10

If we make changes to the code in mymodule.py, we need to reload it using reload:

In [128]: reload(mymodule) # works only in python 2

Out[128]: <module ’mymodule’ from ’mymodule.pyc’>

1.13 Exceptions

In Python errors are managed with a special language construct called “Exceptions”. When errors occur
exceptions can be raised, which interrupts the normal program flow and fallback to somewhere else in the
code where the closest try-except statement is defined.

To generate an exception we can use the raise statement, which takes an argument that must be an
instance of the class BaseExpection or a class derived from it.

In [129]: raise Exception("description of the error")

Exception Traceback (most recent call last)

<ipython-input-129-8f47ba831d5a> in <module>()

----> 1 raise Exception("description of the error")

Exception: description of the error

A typical use of exceptions is to abort functions when some error condition occurs, for example:

def my_function(arguments):

if not verify(arguments):

raise Expection("Invalid arguments")

rest of the code goes here

To gracefully catch errors that are generated by functions and class methods, or by the Python interpreter
itself, use the try and except statements:

try:

normal code goes here

except:

code for error handling goes here

this code is not executed unless the code

above generated an error

For example:

In [130]: try:

print("test")

generate an error: the variable test is not defined

print(test)

except:

print("Caught an expection")

22

test

Caught an expection

To get information about the error, we can access the Exception class instance that describes the
exception by using for example:

except Exception as e:

In [131]: try:

print("test")

generate an error: the variable test is not defined

print(test)

except Exception as e:

print("Caught an exception:" + str(e))

test

Caught an exception:name ’test’ is not defined

1.14 Further reading

• http://www.python.org - The official web page of the Python programming language.

• http://www.python.org/dev/peps/pep-0008 - Style guide for Python programming. Highly recom-
mended.

• http://www.greenteapress.com/thinkpython/ - A free book on Python programming.

• Python Essential Reference - A good reference book on Python programming.

1.15 Versions

In [132]: %load_ext version_information

%version_information

ImportError Traceback (most recent call last)

<ipython-input-132-14367795162a> in <module>()

----> 1 get ipython().magic(u’load ext version information’)

2

3 get ipython().magic(u’version information’)

C:\Users\Elias\Anaconda\lib\site-packages\IPython\core\interactiveshell.pyc in magic(self, arg s)

2203 magic name, , magic arg s = arg s.partition(’ ’)

2204 magic name = magic name.lstrip(prefilter.ESC MAGIC)

-> 2205 return self.run line magic(magic name, magic arg s)

2206

2207 #---

C:\Users\Elias\Anaconda\lib\site-packages\IPython\core\interactiveshell.pyc in run line magic(self, magic name, line)

2124 kwargs[’local ns’] = sys. getframe(stack depth).f locals

2125 with self.builtin trap:

-> 2126 result = fn(*args,**kwargs)

2127 return result

23

http://www.amazon.com/Python-Essential-Reference-4th-Edition/dp/0672329786

2128

C:\Users\Elias\Anaconda\lib\site-packages\IPython\core\magics\extension.pyc in load ext(self, module str)

C:\Users\Elias\Anaconda\lib\site-packages\IPython\core\magic.pyc in <lambda>(f, *a, **k)

191 # but it’s overkill for just that one bit of state.

192 def magic deco(arg):

--> 193 call = lambda f, *a, **k: f(*a, **k)

194

195 if callable(arg):

C:\Users\Elias\Anaconda\lib\site-packages\IPython\core\magics\extension.pyc in load ext(self, module str)

61 if not module str:

62 raise UsageError(’Missing module name.’)

---> 63 res = self.shell.extension manager.load extension(module str)

64

65 if res == ’already loaded’:

C:\Users\Elias\Anaconda\lib\site-packages\IPython\core\extensions.pyc in load extension(self, module str)

96 if module str not in sys.modules:

97 with prepended to syspath(self.ipython extension dir):

---> 98 import (module str)

99 mod = sys.modules[module str]

100 if self. call load ipython extension(mod):

ImportError: No module named version information

In []: #help(scipy.special)

import scipy.special

In []: import numpy

a=scipy.special.exp10(-16)

print a

numpy.log(1+a)

In []: P1=numpy.poly1d([1,0,1]) # defines polynomial from its coefficients

In []: print P1

In []: print P1.r; print P1.o; P1.deriv() # roots,order,derivative

In []: P2=numpy.poly1d((1, 1, 1), True) #define poly specifying roots

In []: print P2

In []: P1(numpy.arange(10)) # eval.uate at 0,1, ... ,9

There are also a handful of routines associated to polynomials - roots (to compute zeros), polyder (to
compute derivatives), polyint (to compute integrals), polyadd (to add polynomials), polysub (to subtract
polynomials), polymul (to multiply polynomials), polydiv (to perform polynomial division), polyval (to

24

evaluate polynomials), and polyfit (to compute the best fit polynomial of certain order for two given arrays
of data).

The usual binary operators +, - , *, and / perform the corresponding operations with polynomials. In
addition, once a polynomial is created, any list of values that interacts with them is inunediately casted to
a polynomial. Therefore, the following four commands are equivalent:

• numpy.polyadd(P1, numpy.poly1d([2,1]))

• numpy.polyadd (P1, [2, 1])

• P1+ numpy.poly1d([2,1])

• P1 + [2, 1]

In []: P1/ (2, 1) # quotient and remainder

x2+1
2x+1 = (x/2− 1/4) + 5/4

2x+1

In []: P0=numpy.poly1d([1.25])

print P0

1.15.1 Interpolation and regression

Interpolation is a basic method in numerical computation that is obtained from a discrete set of data points,
some higher order structure thatt contains the previous data. The best known example is the interpolation
of a sequence of points (x k, y k) in a plane to obtain a curve that goes through all the points in the order
dictated by the sequence. If the points in the previous sequence are in the tight position and order, it is
possible to find a univariate function, y =f(x) for which y k = f(x k). It is often reasonable to request
this interpolating ftmction to be a polynomial, or a rational function, or a more complex functional object.
Interpolation is also possible in higher dimensions. The objective of the scipy.interpolate module is precisely
to offer a complete set of optimally coded applications to address this problem in different settings.

In []: import scipy.interpolate

import matplotlib.pyplot

%matplotlib inline

x=numpy.linspace (-1, 1, 10); xn=numpy.linspace (-1, 1, 1000)

y=numpy.sin (x)

polynomial=scipy.interpolate.lagrange(x, numpy.sin(x))

matplotlib.pyplot.plot(xn,polynomial (xn) ,x,y, ’or’)

More advanced one-dimensional interpolation is possible with piecewise polynomials (PiecewisePolyno-
mial). This allows control over the degrees of different pieces, as well as the delivatives at their intersec-
tions. Other interpolation options in the scipy.interpolate module are PCHIP monotonic cubic interpolation
(pchip), or even univariate splines (InterpolatedUnivariateSpline).

InterpolatedUnivariateSpline(x, y, w=None, bbox=[None, None], k=3)

The arrays x and y contain the dependent and independent data, respectively, The array w contains
positive weights for spline fitting. The two-sequence bbox specifies the boundary of the approximation
interval. The last option indicates the degree of the smoothing polynomials (k).

For instance, we desire to interpolate five points as shown in the following session. These points are
ordered by shictly increasing x values. We need to perform this interpolation with four cubic polynomials
(one for every two consecutive points), in such a way that at least the first derivative of each two consecutive
pieces agree on their intersection. We will proceed as follows:

25

In []: x=numpy.arange(5); y=numpy.sin(x)

xn=numpy.linspace(0,4,40)

interp=scipy.interpolate.InterpolatedUnivariateSpline(x, y)

matplotlib.pyplot.plot (x, y, ’.’, xn, interp(xn))

SciPy excels at interpolating in two-dimensional grids as well. It performs well with simple piecewise poly-
nomials (LinearNDinterpolator), with piecewise constants (NearestNDinterpolator), or with more advanced
splines (BivariateSpline). It is capable of carrying spline interpolation on rectangular meshes in a plane
(RectBivariateSpline) or on the surface of a sphere (RectSphereBivariateSpline). For unstructured data,
besides basic BivariateSpline, it is capable of computing smooth approximations (SmoothBivariateSpline) or
more involved weighted least-squares splines (LSQBivariateSpline).

The following code creates a 10 x 10 grid of uniformly spaced points in the square from (0, 0) to (9, 9),
and evaluates !the function, sin (x) * cos (y) on them. We use these points to create a BivariateSpline, and
evaluate the resulting ftmcltion on the square for all values.

In []: from mpl_toolkits.mplot3d import Axes3D

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

import numpy as np

x=y=numpy.arange (10)

f=(lambda i,j: numpy.sin(i)*numpy.cos(j)) # function to interpolate

A=numpy.fromfunction(f, (10,10)) #generate samples

spline=scipy.interpolate.RectBivariateSpline(x,y,A)

fig=matplotlib.pyplot.figure()

#subplot=fig.add_subplot(111, projection=’3d’)

subplot = fig.add_subplot(1, 1, 1, projection=’3d’)

X = np.linspace(0, 9, 100)

xlen = len(X)

Y = np.linspace(0, 9, 100)

ylen = len(Y)

xx,yy=numpy.meshgrid(X, Y) # larger grid for plotting

A=spline (numpy.linspace (0, 9., 100), numpy.linspace (0, 9, 100))

subplot.plot_surface(xx ,yy ,A)

In []: fig.add_subplot?

In []: subplot.plot_surface?

In []: """

Demonstrate the mixing of 2d and 3d subplots

"""

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

import numpy as np

def f(t):

s1 = np.cos(2*np.pi*t)

e1 = np.exp(-t)

return np.multiply(s1,e1)

################

First subplot

################

t1 = np.arange(0.0, 5.0, 0.1)

26

t2 = np.arange(0.0, 5.0, 0.02)

t3 = np.arange(0.0, 2.0, 0.01)

Twice as tall as it is wide.

fig = plt.figure(figsize=plt.figaspect(2.))

fig.suptitle(’A tale of 2 subplots’)

ax = fig.add_subplot(2, 1, 1)

l = ax.plot(t1, f(t1), ’bo’,

t2, f(t2), ’k--’, markerfacecolor=’green’)

ax.grid(True)

ax.set_ylabel(’Damped oscillation’)

#################

Second subplot

#################

ax = fig.add_subplot(2, 1, 2, projection=’3d’)

X = np.arange(-5, 5, 0.25)

xlen = len(X)

Y = np.arange(-5, 5, 0.25)

ylen = len(Y)

X, Y = np.meshgrid(X, Y)

R = np.sqrt(X**2 + Y**2)

Z = np.sin(R)

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1,

linewidth=0, antialiased=False)

ax.set_zlim3d(-1, 1)

plt.show()

In []: cd

In []: cd C:\Users\Elias\Documents\IPython Notebooks

In []: !ipython nbconvert --to latex Lecture-1-Introduction-to-Python-Programming.ipynb

In []:

27

	Introduction to Python programming
	Python program files
	Example:
	Character encoding

	IPython notebooks
	Modules
	References

	SciPy for Numerical Analysis
	Evaluation of Special functions
	Higher Mathematics: the math library
	four methods for loading a library
	Looking at what a module contains, and its documentation

	Variables and types
	Symbol names
	Assignment
	Fundamental types
	Type utility functions
	Type casting

	Operators and comparisons
	Compound types: Strings, List and dictionaries
	Strings
	List
	Tuples
	Dictionaries

	Control Flow
	Conditional statements: if, elif, else

	Loops
	for loops:
	List comprehensions: Creating lists using for loops:
	while loops:

	Functions
	Default argument and keyword arguments
	Unnamed functions (lambda function)

	Classes
	Modules
	Exceptions
	Further reading
	Versions
	Interpolation and regression

