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Introduction 
 
The first part of the third assignment was 

adopted from  600.112:  Introduction to 

Programming for Scientists and Engineers 

explores the phenomenon of brownian motion 

and other so-called random walks more generally. 

There are three things to do: First you’ll write 

a program that primarily simulates brownian mo- 

tion of particles in a liquid, also keeping track of 

the shortest and longest distance that the particles 

travel.   Second you’ll extend that program to a 

more complex simulation that approximates (very 

roughly!) the process by which cancer cells spread 

into the blood stream. Third you’ll explore the ran- 

dom walk of a particle within a boundary, mod- 

elling reflection when collisions occur. 

There are detailed submission instructions on Pi- 

azza which you should follow to the letter!   You 

can lose points if you create more work than nec- 

essary for the graders by not following the instruc- 

tions. 
 

 

Background 
 
The phenomenon of brownian  motion was first 

described in 1828 by Robert Brown, a biologist. 

Brown observed that pollen suspended in water 

moved around seemingly at random without any 

obvious cause.  A convincing explanation for this 

observation was finally given in 1905 by Albert 

Einstein. Einstein theorized that the pollen are con- 

stantly bombarded by water molecules, and that 

slight variations in how many molecules hit from 

various directions would (overall) lead to the mo- 

tion Brown had observed.1  Jean Perrin eventually 

verified Einstein’s predictions experimentally and 

in 1926 won a Noble Prize for this work. 
 
 
 

1    Just Brownian Motion  (20% 

= 10 points) 
 
The first program you will write simply simulates 

Brownian motion of  particles in  a  liquid.    We 

will visualize the simulation using Python’s tur- 

tle graphics module once again.  Please call your 

program motion.py and nothing else! Figure 1 

shows what the output of your program will look 

like, at least approximately: since we are simulat- 

ing a random process, the paths taken by each par- 

ticle will be different every time the simulation is 

run. 

For this and the following programs, you will 

need to use pretty much all of the Python con- 

cepts covered so far in the course. As always, how- 

ever, we will lead you through the problems rather 

slowly and with a lot of advice on how to proceed, 

so you should be okay as long as you follow along 

diligently. And as you’re probably used to by now, 
 

∗ Disclaimer: This is not a course in physics or biology 

or epidemiology or even mathematics. Our exposition of the 

science behind the projects cuts corners whenever we can do 

so without lying outright.  We are not trying to teach you 

anything but computer science! 

1. While the actual physics underlying brownian motion 

is quite fascinating, we’ll avoid getting into too detailed a 

discussion here.  In addition, Brownian motion takes place 

in gasses as well as liquids. There will probably be another 

assignment that will focus on the physics of liquids and gases 

exclusively. 
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Figure 1 Output of the motion.py program for 

20 particles, each drawn in a different color.   

 
 

 
 
 

we’ll start with a very basic first version of the pro- 

gram:   
 

” ” ” S i m u l a t i o n   o f   b r o w n i a n   m o t i o n . ” ” ” 

 
i m p o r t  turtle 

 
d e f  main ( ) : 

turtle . setup ( ) 

turtle . done ( ) 

 
main ( ) 

 

There is  one  noteworthy addition here  that  we 

haven’t seen before: The first line contains a short 

description of the program we are about to write 

between triple-double-quotes.2     This is Python’s 

way  of  putting  documentation into  a  program. 

From now on, each and every program you write 

for the course should contain a brief description of 

what the program does in this format. 

Of course the first version of the program doesn’t 

do anything, so we’ll now have to decide how the 

simulation should work. Let’s first worry about an 

individual particle and its motion.  If we look at 

the particle again and again at constant intervals, it 

will have travelled random distances (each within 

some reasonable range) from its previous position 

every time.   Furthermore, it will have travelled 

that distance in a random direction!   Translated 

into Python’s turtle graphics, this means that we 

can move the particle using turtle.forward 

by some random integer amount in a fixed range, 

say between 10 and 15 units. Also, between each 

move, we have to randomly determine a new ori- 

entation for the turtle. 

Luckily Python has a module called random 

that can help us out here. Carefully study the fol- 

lowing Python Shell interaction: 

 
>>>  import random 

>>>  random.random() 

0.686507793058002 

>>>  random.random() 

0.3543865018260042 

>>>  random.random() 

0.7794135114537576 

>>> random.randint(50, 100) 
79   
>>> random.randint(50, 100) 
60   
>>> random.randint(50, 100) 
100   
 

Every time we call the random.random 

function,  it will return a different floating-point 

number  between  0  and  1,   each  picked  uni- 

formly at random.    Every time we call the 

random.randint(a,b) function,  it will re- 

turn a random integer between a and b, inclusive, 

with all possibilities being uniformly distributed.3 

There are several ways to generate random values 

using the random module. For example, if we want 

to generate a random real number between 0 and 

9, we can simply multiply the next random float by 

10: 
 
>>>  random.random() *  10 

5.941385596081145 

>>>  random.random() *  10 

4.0655598261150185 

 
In choosing each step length for the turtle, we 

will generate a random integer between 5 and 15. 

Giving the turtle a random orientation simply re- 

quires that we call turtle.left with a random 

integer between 0 and 359 representing the angle to 

turn. Now that we know how to simulate a single 

move of the particle, and we can simply perform a 
 

2. You can also use triple-single-quotes instead: ’’’ will 

work just as well as """ does.  Regardless which notation 

you prefer, it’s important that you use one or the other con- 

sistently. 

3. At least “as random as possible” we should add.  The 

task of generating random numbers with a deterministic ma- 

chine such as your computer is not a simple one.  But for 

our purposes the numbers are certainly “random enough” as 

it were. 
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given number of steps to simulate a longer period 

of time: 

 

 
” ” ” 

t o t a l   d i s t a n c e   t r a v e l l e d . 

 

” ” ” S i m u l a t i o n   o f   b r o w n i a n   m o t i o n . ” ” ” 

 
i m p o r t  turtle 

i m p o r t  random 

 
d e f  particle ( steps ) : 

” ” ” S i m u l a t e   o n e   p a r t i c l e   f o r 

t h e   g i v e n   n u m b e r   o f   s t e p s . ” ” ” 

f o r   _   i n   r a n g e ( steps ) : 

angle =   i n t ( random . random ( )   ∗   ←- 
3 6 0 ) 

turtle . left ( angle ) 

turtle . forward ( random . randint←- 
( 1 0 ,   1 5 ) ) 

 
d e f  main ( ) : 

turtle . setup ( ) 

particle ( 1 0 0 ) 

turtle . done ( ) 

 
main ( )   

 
Note that we also added a sentence of documenta- 

tion to the function we wrote; from now on, each 

and every function you write for the course (other 

than main) should contain a good description of 

what the function does. 

Now that we know how to simulate the motion of 

one particle, we want to calculate the total distance 

that the particle travels as well. This is an example 

of the accumulator pattern that is very common in 

computing. It’s similar to the homework point sum 

example that we explored earlier in the course. We 

will need a variable to sum the distances of all the 

steps within the particle function and return this 

value.  Naturally, the sum should be initialized to 

0.  Within the for loop, we need to add the dis- 

tance of each step to this sum, which means we 

will need to store each random value in a variable 

before moving forward. Here is a new version of 

total =  0 

f o r   _   i n   r a n g e ( steps ) : 

angle =   i n t ( random . random ( )   ∗   ←- 
3 6 0 ) 

distance =  random . randint ( 1 0 ,  ←- 
1 5 ) 

turtle . left ( angle ) 

turtle . forward ( distance ) 

total =  total +  distance 

#  we  c a n   w r i t e   i n s t e a d :   t o t a l   ←- 
+=   d i s t a n c e 

r e t u r n   total    #   t h i s   b e c o m e s   t h e  ←- 
v a l u e   o f   t h e   f u n c t i o n   c a l l 

 
d e f  main ( ) : 

turtle . setup ( ) 

p r i n t   particle ( 1 0 0 ) 

turtle . done ( ) 

 
main ( ) 

 
We now have the core of the simulation program 

we set out to write. Notice that we updated the doc- 

umentation for the method to include the total dis- 

tance calculation. (As an experiment, try indenting 

the return statement another 4 spaces.  What hap- 

pens? Why?) All we have to add now is the ability 

to simulate multiple particles, to pick random col- 

ors for each of them, and to compare the distances 

they travel to determine the longest and the shortest 

paths. 

Once again we snuck something new into the 

code above: the lines beginning with the # char- 

acter are Python’s way of including comments in 

a program.  The documentation we added earlier 

is intended for anyone who wants to use the pro- 

gram (or a function from it), so think of it as “ad- 

vertising copy” for users or customers. Comments, 

on the other hand, are notes from one programmer 

working on a piece of code to another programmer 
4
 

 

the program which also prints the distance a par- 
working on the same piece of code. Comments 

ticle has travelled in main.  Note that sum is the 

name of a common function in python, so we use 

total as our variable name instead. 

are frequently used when the purpose of a snippet 

of code may not be entirely obvious at first sight. 

While it was easy to say “always include doc- 

                                                                                    umentation for programs and functions from now 
” ” ” S i m u l a t i o n   o f   b r o w n i a n   m o t i o n . ” ” ” 

 
i m p o r t  turtle 

i m p o r t  random 

 
d e f  particle ( steps ) : 

” ” ”   S i m u l a t e   o n e   p a r t i c l e   f o r 

t h e   g i v e n   n u m b e r   o f   s t e p s . 

C a l c u l a t e   a n d   r e t u r n   t h e 

on” there is no such rule for comments. Ideally ev- 

erything you do is so simple and obvious that you 

don’t need comments. But every now and then it’s 

a good idea, especially with a piece of code that 
 

 
4. That mysterious “other” programmer may in fact be you 

a few weeks later when you cannot remember anymore why 

you did a certain thing in a certain way! 
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uses “exotic” functions for a non-obvious purpose. 

When running this version of the simulation, you 

probably noticed that even just one particle takes a 

very long time to draw; you probably also noticed 

the poor turtle spinning around again and again like 

it was drunk. If we ever want to simulate a bunch 

of particles, we need to somehow speed up the pro- 

cess of drawing. Here is what we do: 

of red, green, and blue to “mix” into a new color. 

We already know how to use random.random 

to generate a random number between 0 and 1, but 

we want to avoid colors that are “too light” or “too 

close to white” since the background of our win- 

dow is white.5   It’s easy to fix this: Just multiply 

the random number by 0.75 and none of the com- 

ponents will be “too light” anymore.  Here is the 

code: 
” ” ” S i m u l a t i o n   o f   b r o w n i a n   m o t i o n . ” ” ”                  

” ” ” S i m u l a t i o n   o f   b r o w n i a n   m o t i o n . ” ” ” 

i m p o r t  turtle 

i m p o r t  random 

 
. . . 

 
d e f  main ( ) : 

turtle . setup ( ) 

 
#   t h e   f o l l o w i n g   t h r e e   c a l l s   s p e e d 

#  u p   d r a w i n g   s i g n i f i c a n t l y 

turtle . hideturtle ( ) 

turtle . speed ( 0 ) 

turtle . tracer ( 0 ) 

 
i m p o r t  turtle 

i m p o r t  random 

 
d e f  randomColor ( ) : 

” ” ” P i c k   a   r a n d o m   c o l o r 

t h a t   i s   d a r k   e n o u g h . ” ” ” 
red =  random . random ( )   ∗   0 . 7 5 

green =  random . random ( )   ∗   0 . 7 5 

blue =  random . random ( )   ∗   0 . 7 5 

turtle . color ( red ,   green ,   blue ) 

 
#   p a r t i c l e   m e t h o d   g o e s   h e r e 

 

p r i n t   particle ( 1 0 0 ) 

 
turtle . done ( ) 

 
main ( ) 

 
In brief, turtle.hideturtle disables the lit- 

tle triangle that represents the turtle: by not hav- 

ing to draw it (and all its drunken turns) things go 

much faster already.  The turtle.speed func- 

tion sets the drawing speed; by default Python’s 

turtle graphics go slow so that you can follow what 

is going on as the program runs; calling the func- 

tion with a speed of 0 essentially means “no more 

delays please.”  Finally, turtle.tracer with 

a parameter of 0 means that we really only draw 

the finished picture, not all the intermediate states. 

When you run the program with these calls in- 

cluded, the final image should simply appear out 

of nowhere: it’s that fast. 

Next  let’s  figure out  how  to  pick  a  random 

color.   For this you need to understand that all 

the colors you see on your screen are “mixed to- 

gether” from just three basic colors:  red, green, 

and blue (RGB values).  Yellow, for example, re- 

sults when you combine red and green, whereas 

purple results when you combine red and blue. 

The turtle.color function we’ve met before 

can be called with three floating-point numbers be- 

tween 0 and 1, specifying the “percentage” each 

d e f  main ( ) : 

turtle . setup ( ) 

 
#   s p e e d   u p   s t a t e m e n t s   g o   h e r e 

 
randomcolor ( ) 

p r i n t   particle ( 1 0 0 ) 

 
turtle . done ( ) 

 
main ( ) 

 

Each and every time you run the program now, the 

particle should get drawn in a different color. 

The next thing we have to add is code to simulate 

a number of particles instead of just one particle. 

We’ll simply do this one particle at a time for now, 

later we’ll see how we can do it—in a more realis- 

tic way—for several particles at once. So we want 

to simulate n particles in a row, each of which will 

be drawn in a different color. For simplicity we’ll 

assume that each particle starts in the center of the 

screen, and the turtle.home function does ex- 

actly that: move the turtle back from where it cur- 

rently is to the center. We just have to make sure 

that we do a turtle.up before going home and 

a turtle.down after to avoid drawing a line that 

we don’t want. Here is the code: 
 

5. White results when all of red, green, and blue are at 

100% intensity; black results when all of red, green, and blue 

are at 0% intensity. 
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” ” ” S i m u l a t i o n   o f   b r o w n i a n   m o t i o n . ” ” ” 

 
i m p o r t  turtle 

i m p o r t  random 

 
#  r a n d o m C o l o r   d e f i n i t i o n 

 
#   p a r t i c l e   d e f i n i t i o n 

 
d e f  simulate ( particles ,   steps ) : 

” ” ”   S i m u l a t e   t h e   g i v e n   n u m b e r   o f 

p a r t i c l e s  ,   e a c h   f o r   t h e   g i v e n 

n u m b e r   o f   s t e p s ;   e a c h   p a r t i c l e 

s t a r t s   i n   t h e   c e n t e r   w i t h   a 

new  r a n d o m   c o l o r . 

” ” ” 

f o r   _   i n   r a n g e ( particles ) : 

turtle . up ( ) 

turtle . home ( ) 

turtle . down ( ) 

randomColor ( ) 

p r i n t   particle ( steps ) 

 
d e f  main ( ) : 

” ” ” Run  a n   e n t i r e   s i m u l a t i o n . ” ” ” 

turtle . setup ( ) 

. . . 

simulate ( 2 0 ,   1 0 0 ) 

turtle . done ( ) 

before. Once you are sure all is well, you can com- 

ment that line out by putting a # at the start. 
 

d e f  simulate ( particles ,   steps ) : 

” ” ”   S i m u l a t e   t h e   g i v e n   n u m b e r   o f 

p a r t i c l e s  ,   e a c h   f o r   t h e   g i v e n 

n u m b e r   o f   s t e p s ;   e a c h   p a r t i c l e 

s t a r t s   i n   t h e   c e n t e r   w i t h   a 

new  r a n d o m   c o l o r .      C a l c u l a t e   ←- 
a n d 

p r i n t   t h e   s h o r t e s t   a n d 

l o n g e s t   p a t h s   t r a v e l l e d . 

” ” ” 

shortest =  1 5  ∗   steps +  5 
longest =  0 

f o r   _   i n   r a n g e ( particles ) : 

turtle . up ( ) 

turtle . home ( ) 

turtle . down ( ) 

randomColor ( ) 

dist =  particle ( steps ) 

#   p r i n t   d i s t     #  k e e p   t h i s   i n  ←- 
f o r   t e s t i n g 

i f   dist < shortest : 

shortest =  dist 

i f   dist > longest : 

longest =  dist 

p r i n t   ’ s h o r t e s t   d i s t a n c e : ’ ,  ←- 
shortest 

p r i n t   ’ l o n g e s t   d i s t a n c e : ’ ,  longest 
 

main ( ) 
 
 

Now the last step is to do something with all 

those distances that are being printed as we sim- 

ulate multiple particles.   Our goal is to find the 

shortest and the longest distances.  We’ll do this 

in the simulate function as well. First we need to 

initialize variables to keep track of the shortest so 

far and the longest so far.  Then we can compare 

the distance for each particle to those values using 

decision statements, and update them if necessary. 

But how do we initialize those values? We need 

to make the longest variable as small as possible, so 

we can use 0. However, we need to make the short- 

est as big as possible, to make sure that the first 

simulated distance will update it.  Since we know 

that each step is at most length 15, we can multiply 

that by the number of steps and add a little extra 

bit to be sure. We will then print the shortest and 

longest values in the simulate function.  (Later in 

the course we’ll learn how to return multiple val- 

ues from a function instead.)  Here is the revised 

simulate function. If you want to check that short- 

est and longest are being calculated correctly, then 

include a statement to print each distance as we had 

One more thought question before we leave this 

version of the problem: what value would you ex- 

pect to get if we calculated the average distance a 

particle travels? Your answer should take into con- 

sideration the fact that random values by default 

are uniformly distributed in their specified range. 

Just for fun, add a little code to calculate and print 

the average. How close was your guess to the sim- 

ulated results? 
 

 

2  Escaping   Cells   (30%   =  15 

points) 
 

The second program you will write extends the one 

from above to simulate (very roughly!)  the pro- 

cess by which cancer cells spread into the blood 

stream.6    Please call your program escape.py 

and nothing else! Figure 2 shows what the output 

of your program will look like, at least approxi- 

mately; aside from this visualization, you’ll also 
 

6. We already had a disclaimer about the accuracy of the 

scientific background for these assignments. Here we should 

add that this is most definitely not an accurate model of 

metastasis. 
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Figure 2 Output of the escape.py program for 

40 cancer cells in an organ of radius 150.   

 
 
 
 
 

print out how many of the simulated cancer cells 

actually “escaped” into the blood stream. 

Roughly speaking, cancer develops when a tis- 

sue cell is genetically damaged to produce a cancer 

stem cell. Cancer stem cells reproduce, for exam- 

ple inside an organ, and can eventually spread into 

the blood stream. Our very simplified model of this 

process assumes that cancer cells originate in the 

center of a perfectly round organ.  We further as- 

sume that cancer cells move randomly inside the 

organ, and that those who make it to the boundary 

of the organ can enter the blood stream. The ques- 

tion is how many cancer cells will “escape” the or- 

gan and enter the blood stream in a given period of 

time. 

Your new simulation can in large parts be based 

on the solution for the previous problem.  You’ll 

simply have to carefully modify and extend the 

code you already have. Here are some of the things 

you must have in your final program for the cancer 

simulation: 
 

•  All  the  identifiers/names  in  the  program 

should be made to fit the new simulation, for 

example you want to talk about cells intead 

of particles.   All the documentation strings 

should  be  adjusted  to  reflect the  modified 

functions and their new meanings. (The pro- 

gram as a whole should be coherent and con- 

sistent in itself.) 

•  A function circle that takes the radius for 
a circle and draws it around  the center  of 

the window. You will probably have to play 

with the  turtle.circle function for  a 

while before you figure out how to write your 

circle function correctly. 
 
 

•  The cell function will need a new 

parameter for the radius of the organ 

boundary; if a par- ticle ever leaves the organ, 

the function should return  immediately 

without finishing the re- 

maining steps.    The  turtle.distance 

function will be helpful for this, play with it 

for a while to figure out how to use it. 
 
 

•  The simulate function will also need the 

radius of the organ boundary since it has to 

pass that information on to the cell func- 

tion.  Furthermore it has to draw the bound- 

ary  itself  using  the  circle function you 

wrote.  Finally, the simulate function should 

return the number of cancer cells that escaped 

from the organ.  Remember that you can use 

turtle.distance to see if the simulation 

of one cell ended up outside the organ.  You 

will need to check this after each step that a 

cell takes.  Simply count the number of cell 

simulations that left the organ and return the 

total. 
 

 
 

The new main function should look pretty much 

like this: 

 
d e f  main ( ) : 

” ” ” Run  a n   e n t i r e   s i m u l a t i o n . ” ” ” 

turtle . setup ( ) 

 
#   t h e   f o l l o w i n g   t h r e e   c a l l s   s p e e d 

#  u p   d r a w i n g   s i g n i f i c a n t l y 

turtle . hideturtle ( ) 

turtle . speed ( 0 ) 

turtle . tracer ( 0 ) 

 
cells =  4 0 

escaped =  simulate ( cells ,   1 0 0 ,  ←- 
1 5 0 ) 

p r i n t   escaped ,   ” o u t   o f ” ,  cells ,   ” ←- 
c e l l s   e s c a p e d ” 

 
        turtle . done ( )   
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Figure 3 Angles of incidence and reflection. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Random  Walks   with   Colli- 

sions (50% = 25 points) 
 

For this final part of the assignment you’ll write 

a program to simulate a particle in a box, using 

reflection to model collisions against the bound- 

aries of the box.    7      Please call your program 

collisions.py and nothing else! 

Now, we will add a little more physics! Ideally, 

when a suspended particle hits an immovable ob- 

ject such as the container it is in, the particle will 

conserve its kinetic energy and rebound off appro- 

priately. This interaction is referred to as an elastic 

collision.  Regarding the collisions, there are two 

things you need to know for this assignment: 
 

•  The angle of incidence is equals to the angle 

of reflection (see Figure 3). 
 

•  Treat each randomized step as a vector (this 

will also help you in your path-planning hint: 

angles).  This means that after you have ran- 

domized an angle and distance that the par- 

ticle will be traveling, the particle must finish 

traveling that entire distance, even if it collides 

with the boundary mid-way. 

 
Specifically, you should create several functions 

to do most of the processing:  boundary,  parti- 

cle, checkCollision, and collisionMove. (You may 

want to reuse some of your code from assignment 

2 and the parts above.) 

The  boundary function  is  very  straightfor- 

ward: draw a red square box of a given size, cen- 

tered in the graphics window. In your final program 

version, call this function to draw a box wtih side 

length of 400. 

Next you will need a particle function to 

draw and simulate the motion of a particle within 

a square boundary. This function should have pa- 

rameters that allow you to specify the size of the 

box, the number of steps that the particle takes, 

and the lower and upper limits for the random step 

lengths of the particle (eg, 10 and 15 in part 1 of 

this assignment). This function will treat each ran- 

domized step (angle and step length) as a vector. 

This means that after you have randomized an an- 

gle and distance (step length) that the particle will 

be traveling, the particle must finish traveling that 

distance, even if it collides with the boundary. For 

example, if the particle is 20 units below a wall 

boundary and you generate the random vector to 

travel directly upwards for 50 units, it will travel 

20 units upward until the particle hits the wall, then 

finish the vector by traveling 30 units away (down) 

from the wall. 

After   generating   the   random   vector   (an- 

gle and step length), you’ll need a function 

(checkCollision) that can check if your 

generated vector will collide with a boundary, and 

then move accordingly. If no collision is imminent, 

it can move the full distance for this step.   If a 

collision will occur, then you’ll need to call the 

new collisionMove function described below 

instead. 

The checkCollision function will need two 

parameters: the distance to travel and the size of the 

boundary. It should return an integer that indicates 

with which wall (if any) the particle will collide. 

Here is the exact documentation for it: 
 

d e f  checkCollision ( dist ,   size ) : 

” ” ” 

C h e c k   i f   t h e   p a r t i c l e   i s 

g o i n g   t o   g o   o u t   o f   b o u n d s . 

R e t u r n s   a   n u m b e r   b a s e d   o n 

w h i c h   b o u n d   i s   g e t t i n g   h i t : 

0  −  No   c o l l i s i o n 
1  −  Top 
2  −  R i g h t 
3  −  B o t t o m 

 
7. Disclaimer: It is important to realize that even though 

we will be tracking the motion of a single particle, this ran- 

dom Brownian motion would not be possible without the help 

(collisions) of the various other particles in the same medium. 
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4  −  L e f t 

” ” ” 

Figure  4 Output of the collisions.py pro- 

gram with one really long step. 
 

To calculate where the turtle’s generated vector 

would take it without boundaries, start with vec- 

tor addition. For example, newX  = currentX + 

cos(vectorAngle)∗ vectorDistance. For the 

turtle 
module, look-up how to get the turtle’s current di- 

rection (angle), and location coordinates. Note: It 

is not enough to simply check the endpoint in this 

case, you want to figure out some way to ensure 

that the first wall the turtle comes in contact with 

is the wall returned by the collision function.  So 

pretend to move the turtle one pixel at a time along 

its vector and check each new location for a wall 

collision. 

The collisionMove function will be used to 

move the turtle when a collision is imminent.  It 

needs to calculate the distance that the turtle has 

unti it hits the indicated boundary, moving that far 

so that the turtle is on the boundary.  Afterwards, 

you want to turn the turtle according to the angle of 

incidence so that it reflects appropriately (knowl- 

edge of what boundary was hit can help with this), 

randomly change the color of the turtle to indicate a 

wall has been hit, and finish traveling the rest of the 

initial vector magnitude.  But wait!  There can be 

multiple collisions for a randomly generated vec- 

tor (especially if it’s length is larger than the box 

size). How can you account for this? We’ll use a 

special trick called recursion which is when a func- 

tion calls itself. 

Here are some pieces of the collisionMove 

function to get you started, including the recursive 

method call at the end.  You’ll have to fill in the 

missing pieces yourself, indicated by # more here. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

#  m o r e   h e r e 

 
e l i f   bound  ==  4 : 

untilwall =  (− s  −  turtle . xcor←- 
( ) )   /   math . cos ( math . radians←- 
( angle ) ) 

 
#  m o r e   h e r e 

 

dist =  dist −  untilwall 

i f   checkCollision ( dist ,   size )   ==  ←- 
0 : 

turtle . forward ( dist ) 

e l s e : 

                  collisionMove ( dist ,   size )   

 
Figure 4 shows what your program will look like 

                                                                                    if you make your step length really large and not 
d e f  collisionMove ( dist ,   size ) : 

” ” ” 

S p e c i a l   move   f o r   when   i t   a p p e a r s 

t h a t   t h e   p a r t i c l e   w i l l   c o l l i d e 

w i t h   a   b o u n d a r y ,   w h e r e   d i s t   i s   how 

f a r   t h e   p a r t i c l e   s h o u l d   t r a v e l 

a n d   s i z e   i s   t h e   b o x   s i d e   l e n g t h . 

” ” ” 

s =  size /   2 

bound  =  checkCollision ( dist ,   size ) 

 
#  m o r e   h e r e 

 
i f   bound  ==  1 : 

untilwall =  ( s −  turtle . ycor ( ) ←- 
)   /   math . sin ( math . radians ( ←- 
angle ) ) 

random (particle(400, 1, 10000, 10000)).  In this 

case, the particle is tracing one long path and keeps 

bouncing off various walls as it moves. 

Figure 5 shows what your program will look like 

if you make your step size smaller than the box and 

random (particle(400, 100, 75, 125)). In this case, 

the particle’s color changes each time it bounces 

off the wall and each time it starts a new step, 

changing direction randomly then as well. 

Set up your main program so that it draws both. 

Depending on how exactly you do this, you may 

need to close the graphics window after the first 

particle finishes drawing in order to enable the next 

drawing to start. Or you may have them both draw 

in the same window. 
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Figure  5 Output of the collisions.py pro- 

gram with multiple smallish random steps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Here are some thought questions for you. What 

will happen if you make one really long step and 

the initial angle happens to be 0, 90, 180 or 270? In 

general, what angles and step-length combinations 

might cause the same lines to be retraced with one 

long path? 

 

Reference: http://www.cs.jhu.edu/~joanne/cs112/ 

 

 

Python in Finance (50 points) 

 

 

Modeling Asset Prices with Geometric Brownian Motion 

In this note, show how classes from Monte Carlo framework can be utilized to model the path an asset’s price can 

take over a period of time, such as that depicted in the one-year Intel (INTC) stock chart below. 

Why would we want a model of asset prices? There are a number of good reasons. One is that a model of asset 

price dynamics is essential to the valuation of derivatives, such as equity and index options. Secondly, such a 

model is a powerful tool for risk management. Simulated asset prices can be used to create a range of what-if 

scenarios with which to calculate a portfolio’s aggregate market risk exposure as measured by metrics such as 

Value at Risk (VaR). And thirdly, simulated prices that conform to historical asset return parameters (e.g. 

annualized mean and standard deviation) can be employed as market data for back-testing trading strategies. 
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So now that we appreciate the why, let’s look at the how. To start, let’s briefly address the theoretical foundations 

of asset price dynamics- the stochastic process. Informally, a stochastic process is a function of one or more time 

varying parameters where at least one of the parameters is non-deterministic; its values correspond to a sequence 

of independent random variables drawn from a selected probability distribution. More precisely, the particular 

stochastic process that describes the evolution of stock prices is termed Geometric Brownian Motion (GBM). 

Geometric Brownian Motion can be formulated as a Stochastic Differential Equation (SDE) of the form: 

 

dSt=rStdt+σStdZt 
 

where S is the stock price at time t, r represents the constant drift or trend (i.e. annual return) of the process and σ 

(sigma) represents the amount of random variation around the trend (i.e. annualized standard deviation of log 

returns). Intuitively, r can be viewed as the ‘signal’, while sigma is the ‘noise’ of the GBM stochastic process. 

What this equation tells us is that the change in a stock’s price over a small discrete time increment (dt) is a 

function of the stock’s return (r) and the stock’s volatility (sigma), where the volatility is scaled by the output of a 

Wiener process (dZt). The Wiener process essentially provides random numbers in accordance with a given 

(usually Gaussian) probability distribution. For more information on Geometric Brownian 

Motion http://en.wikipedia.org/wiki/Geometric_Brownian_motion. 

An exact discretization scheme of the stochastic differential equation  is given for t>0 by 

St=St−Δt exp((r−0.5σ2)Δt+σ√Δt z)  

with z being a standard normally distributed random variable.  

Following find an implementation of the process with pure python. You are supposed redo it using 

NumPy which provides a much faster implementation  through vectorization/matrix notation, NumPy 

code is much more compact, easier to write, to read and to maintain performance: NumPy is mainly 

implemented in C/Fortran such that operations on the NumPy level are generally much faster than pure 

Python. Time the two versions and compare them. 

 

http://en.wikipedia.org/wiki/Geometric_Brownian_motion
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Simulation with Pure Python 

First, we import needed functions and define some global variables. 

# 

# Simulating Geometric Brownian Motion with Python 

# 

from time import time 

from math import exp, sqrt, log 

from random import gauss 

  

# Parameters 

S0 = 100; r = 0.05; sigma = 0.2 

T = 1.0; M = 50; dt = T / M 

Then we define a function which returns us I simulated index level paths. 

# Simulating I paths with M time steps 

def genS_py(I): 

    ''' I: number of paths ''' 

    S = [] 

    for i in range(I): 

        path = [] 

        for t in range(M + 1): 

            if t == 0: 

                path.append(S0) 

            else: 

                z = gauss(0.0, 1.0) 

                St = path[t - 1] * exp((r - 0.5 * sigma ** 2) * dt 

                                      + sigma * sqrt(dt) * z) 

                path.append(St) 

        S.append(path) 

    return S 

Let's see how long the simulation takes. 

I = 100000 

%time S = genS_py(I) 

Wall time: 12.2 s 

 

Plot the results of simulation 

 

plot(S[10]) 

grid(True) 
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Reference:  

 http://github.com/jrjohansson/scientific-python-

lectures 

http://github.com/jrjohansson/scientific-python-lectures
http://github.com/jrjohansson/scientific-python-lectures

