
Assignment 3: Brownian Motion Page 1

HY 514 Fall 2014

HY514: Problem Solving

Environments

Assignment 3: Brownian Motion∗

Elias Houstis

Due Date:

Introduction

The first part of the third assignment was

adopted from 600.112: Introduction to

Programming for Scientists and Engineers

explores the phenomenon of brownian motion

and other so-called random walks more generally.

There are three things to do: First you’ll write

a program that primarily simulates brownian mo-

tion of particles in a liquid, also keeping track of

the shortest and longest distance that the particles

travel. Second you’ll extend that program to a

more complex simulation that approximates (very

roughly!) the process by which cancer cells spread

into the blood stream. Third you’ll explore the ran-

dom walk of a particle within a boundary, mod-

elling reflection when collisions occur.

There are detailed submission instructions on Pi-

azza which you should follow to the letter! You

can lose points if you create more work than nec-

essary for the graders by not following the instruc-

tions.

Background

The phenomenon of brownian motion was first

described in 1828 by Robert Brown, a biologist.

Brown observed that pollen suspended in water

moved around seemingly at random without any

obvious cause. A convincing explanation for this

observation was finally given in 1905 by Albert

Einstein. Einstein theorized that the pollen are con-

stantly bombarded by water molecules, and that

slight variations in how many molecules hit from

various directions would (overall) lead to the mo-

tion Brown had observed.1 Jean Perrin eventually

verified Einstein’s predictions experimentally and

in 1926 won a Noble Prize for this work.

1 Just Brownian Motion (20%

= 10 points)

The first program you will write simply simulates

Brownian motion of particles in a liquid. We

will visualize the simulation using Python’s tur-

tle graphics module once again. Please call your

program motion.py and nothing else! Figure 1

shows what the output of your program will look

like, at least approximately: since we are simulat-

ing a random process, the paths taken by each par-

ticle will be different every time the simulation is

run.

For this and the following programs, you will

need to use pretty much all of the Python con-

cepts covered so far in the course. As always, how-

ever, we will lead you through the problems rather

slowly and with a lot of advice on how to proceed,

so you should be okay as long as you follow along

diligently. And as you’re probably used to by now,

∗ Disclaimer: This is not a course in physics or biology

or epidemiology or even mathematics. Our exposition of the

science behind the projects cuts corners whenever we can do

so without lying outright. We are not trying to teach you

anything but computer science!

1. While the actual physics underlying brownian motion

is quite fascinating, we’ll avoid getting into too detailed a

discussion here. In addition, Brownian motion takes place

in gasses as well as liquids. There will probably be another

assignment that will focus on the physics of liquids and gases

exclusively.

Assignment 3: Brownian Motion Page 2

HY 514 Fall 2014

Figure 1 Output of the motion.py program for

20 particles, each drawn in a different color.

we’ll start with a very basic first version of the pro-

gram:

” ” ” S i m u l a t i o n o f b r o w n i a n m o t i o n . ” ” ”

i m p o r t turtle

d e f main () :

turtle . setup ()

turtle . done ()

main ()

There is one noteworthy addition here that we

haven’t seen before: The first line contains a short

description of the program we are about to write

between triple-double-quotes.2 This is Python’s

way of putting documentation into a program.

From now on, each and every program you write

for the course should contain a brief description of

what the program does in this format.

Of course the first version of the program doesn’t

do anything, so we’ll now have to decide how the

simulation should work. Let’s first worry about an

individual particle and its motion. If we look at

the particle again and again at constant intervals, it

will have travelled random distances (each within

some reasonable range) from its previous position

every time. Furthermore, it will have travelled

that distance in a random direction! Translated

into Python’s turtle graphics, this means that we

can move the particle using turtle.forward

by some random integer amount in a fixed range,

say between 10 and 15 units. Also, between each

move, we have to randomly determine a new ori-

entation for the turtle.

Luckily Python has a module called random

that can help us out here. Carefully study the fol-

lowing Python Shell interaction:

>>> import random

>>> random.random()

0.686507793058002

>>> random.random()

0.3543865018260042

>>> random.random()

0.7794135114537576

>>> random.randint(50, 100)
79
>>> random.randint(50, 100)
60
>>> random.randint(50, 100)
100

Every time we call the random.random

function, it will return a different floating-point

number between 0 and 1, each picked uni-

formly at random. Every time we call the

random.randint(a,b) function, it will re-

turn a random integer between a and b, inclusive,

with all possibilities being uniformly distributed.3

There are several ways to generate random values

using the random module. For example, if we want

to generate a random real number between 0 and

9, we can simply multiply the next random float by

10:

>>> random.random() * 10

5.941385596081145

>>> random.random() * 10

4.0655598261150185

In choosing each step length for the turtle, we

will generate a random integer between 5 and 15.

Giving the turtle a random orientation simply re-

quires that we call turtle.left with a random

integer between 0 and 359 representing the angle to

turn. Now that we know how to simulate a single

move of the particle, and we can simply perform a

2. You can also use triple-single-quotes instead: ’’’ will

work just as well as """ does. Regardless which notation

you prefer, it’s important that you use one or the other con-

sistently.

3. At least “as random as possible” we should add. The

task of generating random numbers with a deterministic ma-

chine such as your computer is not a simple one. But for

our purposes the numbers are certainly “random enough” as

it were.

Assignment 3: Brownian Motion Page 3

HY 514 Fall 2014

given number of steps to simulate a longer period

of time:

” ” ”

t o t a l d i s t a n c e t r a v e l l e d .

” ” ” S i m u l a t i o n o f b r o w n i a n m o t i o n . ” ” ”

i m p o r t turtle

i m p o r t random

d e f particle (steps) :

” ” ” S i m u l a t e o n e p a r t i c l e f o r

t h e g i v e n n u m b e r o f s t e p s . ” ” ”

f o r _ i n r a n g e (steps) :

angle = i n t (random . random () ∗ ←-
3 6 0)

turtle . left (angle)

turtle . forward (random . randint←-
(1 0 , 1 5))

d e f main () :

turtle . setup ()

particle (1 0 0)

turtle . done ()

main ()

Note that we also added a sentence of documenta-

tion to the function we wrote; from now on, each

and every function you write for the course (other

than main) should contain a good description of

what the function does.

Now that we know how to simulate the motion of

one particle, we want to calculate the total distance

that the particle travels as well. This is an example

of the accumulator pattern that is very common in

computing. It’s similar to the homework point sum

example that we explored earlier in the course. We

will need a variable to sum the distances of all the

steps within the particle function and return this

value. Naturally, the sum should be initialized to

0. Within the for loop, we need to add the dis-

tance of each step to this sum, which means we

will need to store each random value in a variable

before moving forward. Here is a new version of

total = 0

f o r _ i n r a n g e (steps) :

angle = i n t (random . random () ∗ ←-
3 6 0)

distance = random . randint (1 0 , ←-
1 5)

turtle . left (angle)

turtle . forward (distance)

total = total + distance

we c a n w r i t e i n s t e a d : t o t a l ←-
+= d i s t a n c e

r e t u r n total # t h i s b e c o m e s t h e ←-
v a l u e o f t h e f u n c t i o n c a l l

d e f main () :

turtle . setup ()

p r i n t particle (1 0 0)

turtle . done ()

main ()

We now have the core of the simulation program

we set out to write. Notice that we updated the doc-

umentation for the method to include the total dis-

tance calculation. (As an experiment, try indenting

the return statement another 4 spaces. What hap-

pens? Why?) All we have to add now is the ability

to simulate multiple particles, to pick random col-

ors for each of them, and to compare the distances

they travel to determine the longest and the shortest

paths.

Once again we snuck something new into the

code above: the lines beginning with the # char-

acter are Python’s way of including comments in

a program. The documentation we added earlier

is intended for anyone who wants to use the pro-

gram (or a function from it), so think of it as “ad-

vertising copy” for users or customers. Comments,

on the other hand, are notes from one programmer

working on a piece of code to another programmer
4

the program which also prints the distance a par-
working on the same piece of code. Comments

ticle has travelled in main. Note that sum is the

name of a common function in python, so we use

total as our variable name instead.

are frequently used when the purpose of a snippet

of code may not be entirely obvious at first sight.

While it was easy to say “always include doc-

 umentation for programs and functions from now
” ” ” S i m u l a t i o n o f b r o w n i a n m o t i o n . ” ” ”

i m p o r t turtle

i m p o r t random

d e f particle (steps) :

” ” ” S i m u l a t e o n e p a r t i c l e f o r

t h e g i v e n n u m b e r o f s t e p s .

C a l c u l a t e a n d r e t u r n t h e

on” there is no such rule for comments. Ideally ev-

erything you do is so simple and obvious that you

don’t need comments. But every now and then it’s

a good idea, especially with a piece of code that

4. That mysterious “other” programmer may in fact be you

a few weeks later when you cannot remember anymore why

you did a certain thing in a certain way!

Assignment 3: Brownian Motion Page 4

HY 514 Fall 2014

uses “exotic” functions for a non-obvious purpose.

When running this version of the simulation, you

probably noticed that even just one particle takes a

very long time to draw; you probably also noticed

the poor turtle spinning around again and again like

it was drunk. If we ever want to simulate a bunch

of particles, we need to somehow speed up the pro-

cess of drawing. Here is what we do:

of red, green, and blue to “mix” into a new color.

We already know how to use random.random

to generate a random number between 0 and 1, but

we want to avoid colors that are “too light” or “too

close to white” since the background of our win-

dow is white.5 It’s easy to fix this: Just multiply

the random number by 0.75 and none of the com-

ponents will be “too light” anymore. Here is the

code:
” ” ” S i m u l a t i o n o f b r o w n i a n m o t i o n . ” ” ”

” ” ” S i m u l a t i o n o f b r o w n i a n m o t i o n . ” ” ”

i m p o r t turtle

i m p o r t random

. . .

d e f main () :

turtle . setup ()

t h e f o l l o w i n g t h r e e c a l l s s p e e d

u p d r a w i n g s i g n i f i c a n t l y

turtle . hideturtle ()

turtle . speed (0)

turtle . tracer (0)

i m p o r t turtle

i m p o r t random

d e f randomColor () :

” ” ” P i c k a r a n d o m c o l o r

t h a t i s d a r k e n o u g h . ” ” ”
red = random . random () ∗ 0 . 7 5

green = random . random () ∗ 0 . 7 5

blue = random . random () ∗ 0 . 7 5

turtle . color (red , green , blue)

p a r t i c l e m e t h o d g o e s h e r e

p r i n t particle (1 0 0)

turtle . done ()

main ()

In brief, turtle.hideturtle disables the lit-

tle triangle that represents the turtle: by not hav-

ing to draw it (and all its drunken turns) things go

much faster already. The turtle.speed func-

tion sets the drawing speed; by default Python’s

turtle graphics go slow so that you can follow what

is going on as the program runs; calling the func-

tion with a speed of 0 essentially means “no more

delays please.” Finally, turtle.tracer with

a parameter of 0 means that we really only draw

the finished picture, not all the intermediate states.

When you run the program with these calls in-

cluded, the final image should simply appear out

of nowhere: it’s that fast.

Next let’s figure out how to pick a random

color. For this you need to understand that all

the colors you see on your screen are “mixed to-

gether” from just three basic colors: red, green,

and blue (RGB values). Yellow, for example, re-

sults when you combine red and green, whereas

purple results when you combine red and blue.

The turtle.color function we’ve met before

can be called with three floating-point numbers be-

tween 0 and 1, specifying the “percentage” each

d e f main () :

turtle . setup ()

s p e e d u p s t a t e m e n t s g o h e r e

randomcolor ()

p r i n t particle (1 0 0)

turtle . done ()

main ()

Each and every time you run the program now, the

particle should get drawn in a different color.

The next thing we have to add is code to simulate

a number of particles instead of just one particle.

We’ll simply do this one particle at a time for now,

later we’ll see how we can do it—in a more realis-

tic way—for several particles at once. So we want

to simulate n particles in a row, each of which will

be drawn in a different color. For simplicity we’ll

assume that each particle starts in the center of the

screen, and the turtle.home function does ex-

actly that: move the turtle back from where it cur-

rently is to the center. We just have to make sure

that we do a turtle.up before going home and

a turtle.down after to avoid drawing a line that

we don’t want. Here is the code:

5. White results when all of red, green, and blue are at

100% intensity; black results when all of red, green, and blue

are at 0% intensity.

Assignment 3: Brownian Motion Page 5

HY 514 Fall 2014

” ” ” S i m u l a t i o n o f b r o w n i a n m o t i o n . ” ” ”

i m p o r t turtle

i m p o r t random

r a n d o m C o l o r d e f i n i t i o n

p a r t i c l e d e f i n i t i o n

d e f simulate (particles , steps) :

” ” ” S i m u l a t e t h e g i v e n n u m b e r o f

p a r t i c l e s , e a c h f o r t h e g i v e n

n u m b e r o f s t e p s ; e a c h p a r t i c l e

s t a r t s i n t h e c e n t e r w i t h a

new r a n d o m c o l o r .

” ” ”

f o r _ i n r a n g e (particles) :

turtle . up ()

turtle . home ()

turtle . down ()

randomColor ()

p r i n t particle (steps)

d e f main () :

” ” ” Run a n e n t i r e s i m u l a t i o n . ” ” ”

turtle . setup ()

. . .

simulate (2 0 , 1 0 0)

turtle . done ()

before. Once you are sure all is well, you can com-

ment that line out by putting a # at the start.

d e f simulate (particles , steps) :

” ” ” S i m u l a t e t h e g i v e n n u m b e r o f

p a r t i c l e s , e a c h f o r t h e g i v e n

n u m b e r o f s t e p s ; e a c h p a r t i c l e

s t a r t s i n t h e c e n t e r w i t h a

new r a n d o m c o l o r . C a l c u l a t e ←-
a n d

p r i n t t h e s h o r t e s t a n d

l o n g e s t p a t h s t r a v e l l e d .

” ” ”

shortest = 1 5 ∗ steps + 5
longest = 0

f o r _ i n r a n g e (particles) :

turtle . up ()

turtle . home ()

turtle . down ()

randomColor ()

dist = particle (steps)

p r i n t d i s t # k e e p t h i s i n ←-
f o r t e s t i n g

i f dist < shortest :

shortest = dist

i f dist > longest :

longest = dist

p r i n t ’ s h o r t e s t d i s t a n c e : ’ , ←-
shortest

p r i n t ’ l o n g e s t d i s t a n c e : ’ , longest

main ()

Now the last step is to do something with all

those distances that are being printed as we sim-

ulate multiple particles. Our goal is to find the

shortest and the longest distances. We’ll do this

in the simulate function as well. First we need to

initialize variables to keep track of the shortest so

far and the longest so far. Then we can compare

the distance for each particle to those values using

decision statements, and update them if necessary.

But how do we initialize those values? We need

to make the longest variable as small as possible, so

we can use 0. However, we need to make the short-

est as big as possible, to make sure that the first

simulated distance will update it. Since we know

that each step is at most length 15, we can multiply

that by the number of steps and add a little extra

bit to be sure. We will then print the shortest and

longest values in the simulate function. (Later in

the course we’ll learn how to return multiple val-

ues from a function instead.) Here is the revised

simulate function. If you want to check that short-

est and longest are being calculated correctly, then

include a statement to print each distance as we had

One more thought question before we leave this

version of the problem: what value would you ex-

pect to get if we calculated the average distance a

particle travels? Your answer should take into con-

sideration the fact that random values by default

are uniformly distributed in their specified range.

Just for fun, add a little code to calculate and print

the average. How close was your guess to the sim-

ulated results?

2 Escaping Cells (30% = 15

points)

The second program you will write extends the one

from above to simulate (very roughly!) the pro-

cess by which cancer cells spread into the blood

stream.6 Please call your program escape.py

and nothing else! Figure 2 shows what the output

of your program will look like, at least approxi-

mately; aside from this visualization, you’ll also

6. We already had a disclaimer about the accuracy of the

scientific background for these assignments. Here we should

add that this is most definitely not an accurate model of

metastasis.

Assignment 3: Brownian Motion Page 6

HY 514 Fall 2014

Figure 2 Output of the escape.py program for

40 cancer cells in an organ of radius 150.

print out how many of the simulated cancer cells

actually “escaped” into the blood stream.

Roughly speaking, cancer develops when a tis-

sue cell is genetically damaged to produce a cancer

stem cell. Cancer stem cells reproduce, for exam-

ple inside an organ, and can eventually spread into

the blood stream. Our very simplified model of this

process assumes that cancer cells originate in the

center of a perfectly round organ. We further as-

sume that cancer cells move randomly inside the

organ, and that those who make it to the boundary

of the organ can enter the blood stream. The ques-

tion is how many cancer cells will “escape” the or-

gan and enter the blood stream in a given period of

time.

Your new simulation can in large parts be based

on the solution for the previous problem. You’ll

simply have to carefully modify and extend the

code you already have. Here are some of the things

you must have in your final program for the cancer

simulation:

• All the identifiers/names in the program

should be made to fit the new simulation, for

example you want to talk about cells intead

of particles. All the documentation strings

should be adjusted to reflect the modified

functions and their new meanings. (The pro-

gram as a whole should be coherent and con-

sistent in itself.)

• A function circle that takes the radius for
a circle and draws it around the center of

the window. You will probably have to play

with the turtle.circle function for a

while before you figure out how to write your

circle function correctly.

• The cell function will need a new

parameter for the radius of the organ

boundary; if a par- ticle ever leaves the organ,

the function should return immediately

without finishing the re-

maining steps. The turtle.distance

function will be helpful for this, play with it

for a while to figure out how to use it.

• The simulate function will also need the

radius of the organ boundary since it has to

pass that information on to the cell func-

tion. Furthermore it has to draw the bound-

ary itself using the circle function you

wrote. Finally, the simulate function should

return the number of cancer cells that escaped

from the organ. Remember that you can use

turtle.distance to see if the simulation

of one cell ended up outside the organ. You

will need to check this after each step that a

cell takes. Simply count the number of cell

simulations that left the organ and return the

total.

The new main function should look pretty much

like this:

d e f main () :

” ” ” Run a n e n t i r e s i m u l a t i o n . ” ” ”

turtle . setup ()

t h e f o l l o w i n g t h r e e c a l l s s p e e d

u p d r a w i n g s i g n i f i c a n t l y

turtle . hideturtle ()

turtle . speed (0)

turtle . tracer (0)

cells = 4 0

escaped = simulate (cells , 1 0 0 , ←-
1 5 0)

p r i n t escaped , ” o u t o f ” , cells , ” ←-
c e l l s e s c a p e d ”

 turtle . done ()

Assignment 3: Brownian Motion Page 7

HY 514 Fall 2014

Figure 3 Angles of incidence and reflection.

3 Random Walks with Colli-

sions (50% = 25 points)

For this final part of the assignment you’ll write

a program to simulate a particle in a box, using

reflection to model collisions against the bound-

aries of the box. 7 Please call your program

collisions.py and nothing else!

Now, we will add a little more physics! Ideally,

when a suspended particle hits an immovable ob-

ject such as the container it is in, the particle will

conserve its kinetic energy and rebound off appro-

priately. This interaction is referred to as an elastic

collision. Regarding the collisions, there are two

things you need to know for this assignment:

• The angle of incidence is equals to the angle

of reflection (see Figure 3).

• Treat each randomized step as a vector (this

will also help you in your path-planning hint:

angles). This means that after you have ran-

domized an angle and distance that the par-

ticle will be traveling, the particle must finish

traveling that entire distance, even if it collides

with the boundary mid-way.

Specifically, you should create several functions

to do most of the processing: boundary, parti-

cle, checkCollision, and collisionMove. (You may

want to reuse some of your code from assignment

2 and the parts above.)

The boundary function is very straightfor-

ward: draw a red square box of a given size, cen-

tered in the graphics window. In your final program

version, call this function to draw a box wtih side

length of 400.

Next you will need a particle function to

draw and simulate the motion of a particle within

a square boundary. This function should have pa-

rameters that allow you to specify the size of the

box, the number of steps that the particle takes,

and the lower and upper limits for the random step

lengths of the particle (eg, 10 and 15 in part 1 of

this assignment). This function will treat each ran-

domized step (angle and step length) as a vector.

This means that after you have randomized an an-

gle and distance (step length) that the particle will

be traveling, the particle must finish traveling that

distance, even if it collides with the boundary. For

example, if the particle is 20 units below a wall

boundary and you generate the random vector to

travel directly upwards for 50 units, it will travel

20 units upward until the particle hits the wall, then

finish the vector by traveling 30 units away (down)

from the wall.

After generating the random vector (an-

gle and step length), you’ll need a function

(checkCollision) that can check if your

generated vector will collide with a boundary, and

then move accordingly. If no collision is imminent,

it can move the full distance for this step. If a

collision will occur, then you’ll need to call the

new collisionMove function described below

instead.

The checkCollision function will need two

parameters: the distance to travel and the size of the

boundary. It should return an integer that indicates

with which wall (if any) the particle will collide.

Here is the exact documentation for it:

d e f checkCollision (dist , size) :

” ” ”

C h e c k i f t h e p a r t i c l e i s

g o i n g t o g o o u t o f b o u n d s .

R e t u r n s a n u m b e r b a s e d o n

w h i c h b o u n d i s g e t t i n g h i t :

0 − No c o l l i s i o n
1 − Top
2 − R i g h t
3 − B o t t o m

7. Disclaimer: It is important to realize that even though

we will be tracking the motion of a single particle, this ran-

dom Brownian motion would not be possible without the help

(collisions) of the various other particles in the same medium.

Assignment 3: Brownian Motion Page 8

HY 514 Fall 2014

4 − L e f t

” ” ”

Figure 4 Output of the collisions.py pro-

gram with one really long step.

To calculate where the turtle’s generated vector

would take it without boundaries, start with vec-

tor addition. For example, newX = currentX +

cos(vectorAngle)∗ vectorDistance. For the

turtle
module, look-up how to get the turtle’s current di-

rection (angle), and location coordinates. Note: It

is not enough to simply check the endpoint in this

case, you want to figure out some way to ensure

that the first wall the turtle comes in contact with

is the wall returned by the collision function. So

pretend to move the turtle one pixel at a time along

its vector and check each new location for a wall

collision.

The collisionMove function will be used to

move the turtle when a collision is imminent. It

needs to calculate the distance that the turtle has

unti it hits the indicated boundary, moving that far

so that the turtle is on the boundary. Afterwards,

you want to turn the turtle according to the angle of

incidence so that it reflects appropriately (knowl-

edge of what boundary was hit can help with this),

randomly change the color of the turtle to indicate a

wall has been hit, and finish traveling the rest of the

initial vector magnitude. But wait! There can be

multiple collisions for a randomly generated vec-

tor (especially if it’s length is larger than the box

size). How can you account for this? We’ll use a

special trick called recursion which is when a func-

tion calls itself.

Here are some pieces of the collisionMove

function to get you started, including the recursive

method call at the end. You’ll have to fill in the

missing pieces yourself, indicated by # more here.

m o r e h e r e

e l i f bound == 4 :

untilwall = (− s − turtle . xcor←-
()) / math . cos (math . radians←-
(angle))

m o r e h e r e

dist = dist − untilwall

i f checkCollision (dist , size) == ←-
0 :

turtle . forward (dist)

e l s e :

 collisionMove (dist , size)

Figure 4 shows what your program will look like

 if you make your step length really large and not
d e f collisionMove (dist , size) :

” ” ”

S p e c i a l move f o r when i t a p p e a r s

t h a t t h e p a r t i c l e w i l l c o l l i d e

w i t h a b o u n d a r y , w h e r e d i s t i s how

f a r t h e p a r t i c l e s h o u l d t r a v e l

a n d s i z e i s t h e b o x s i d e l e n g t h .

” ” ”

s = size / 2

bound = checkCollision (dist , size)

m o r e h e r e

i f bound == 1 :

untilwall = (s − turtle . ycor () ←-
) / math . sin (math . radians (←-
angle))

random (particle(400, 1, 10000, 10000)). In this

case, the particle is tracing one long path and keeps

bouncing off various walls as it moves.

Figure 5 shows what your program will look like

if you make your step size smaller than the box and

random (particle(400, 100, 75, 125)). In this case,

the particle’s color changes each time it bounces

off the wall and each time it starts a new step,

changing direction randomly then as well.

Set up your main program so that it draws both.

Depending on how exactly you do this, you may

need to close the graphics window after the first

particle finishes drawing in order to enable the next

drawing to start. Or you may have them both draw

in the same window.

Assignment 3: Brownian Motion Page 9

HY 514 Fall 2014

Figure 5 Output of the collisions.py pro-

gram with multiple smallish random steps.

Here are some thought questions for you. What

will happen if you make one really long step and

the initial angle happens to be 0, 90, 180 or 270? In

general, what angles and step-length combinations

might cause the same lines to be retraced with one

long path?

Reference: http://www.cs.jhu.edu/~joanne/cs112/

Python in Finance (50 points)

Modeling Asset Prices with Geometric Brownian Motion

In this note, show how classes from Monte Carlo framework can be utilized to model the path an asset’s price can

take over a period of time, such as that depicted in the one-year Intel (INTC) stock chart below.

Why would we want a model of asset prices? There are a number of good reasons. One is that a model of asset

price dynamics is essential to the valuation of derivatives, such as equity and index options. Secondly, such a

model is a powerful tool for risk management. Simulated asset prices can be used to create a range of what-if

scenarios with which to calculate a portfolio’s aggregate market risk exposure as measured by metrics such as

Value at Risk (VaR). And thirdly, simulated prices that conform to historical asset return parameters (e.g.

annualized mean and standard deviation) can be employed as market data for back-testing trading strategies.

Assignment 3: Brownian Motion Page
10

HY 514 Fall 2014

So now that we appreciate the why, let’s look at the how. To start, let’s briefly address the theoretical foundations

of asset price dynamics- the stochastic process. Informally, a stochastic process is a function of one or more time

varying parameters where at least one of the parameters is non-deterministic; its values correspond to a sequence

of independent random variables drawn from a selected probability distribution. More precisely, the particular

stochastic process that describes the evolution of stock prices is termed Geometric Brownian Motion (GBM).

Geometric Brownian Motion can be formulated as a Stochastic Differential Equation (SDE) of the form:

dSt=rStdt+σStdZt

where S is the stock price at time t, r represents the constant drift or trend (i.e. annual return) of the process and σ

(sigma) represents the amount of random variation around the trend (i.e. annualized standard deviation of log

returns). Intuitively, r can be viewed as the ‘signal’, while sigma is the ‘noise’ of the GBM stochastic process.

What this equation tells us is that the change in a stock’s price over a small discrete time increment (dt) is a

function of the stock’s return (r) and the stock’s volatility (sigma), where the volatility is scaled by the output of a

Wiener process (dZt). The Wiener process essentially provides random numbers in accordance with a given

(usually Gaussian) probability distribution. For more information on Geometric Brownian

Motion http://en.wikipedia.org/wiki/Geometric_Brownian_motion.

An exact discretization scheme of the stochastic differential equation is given for t>0 by

St=St−Δt exp((r−0.5σ2)Δt+σ√Δt z)

with z being a standard normally distributed random variable.

Following find an implementation of the process with pure python. You are supposed redo it using

NumPy which provides a much faster implementation through vectorization/matrix notation, NumPy

code is much more compact, easier to write, to read and to maintain performance: NumPy is mainly

implemented in C/Fortran such that operations on the NumPy level are generally much faster than pure

Python. Time the two versions and compare them.

http://en.wikipedia.org/wiki/Geometric_Brownian_motion

Assignment 3: Brownian Motion Page
11

HY 514 Fall 2014

Simulation with Pure Python

First, we import needed functions and define some global variables.

Simulating Geometric Brownian Motion with Python

from time import time

from math import exp, sqrt, log

from random import gauss

Parameters

S0 = 100; r = 0.05; sigma = 0.2

T = 1.0; M = 50; dt = T / M

Then we define a function which returns us I simulated index level paths.

Simulating I paths with M time steps

def genS_py(I):

 ''' I: number of paths '''

 S = []

 for i in range(I):

 path = []

 for t in range(M + 1):

 if t == 0:

 path.append(S0)

 else:

 z = gauss(0.0, 1.0)

 St = path[t - 1] * exp((r - 0.5 * sigma ** 2) * dt

 + sigma * sqrt(dt) * z)

 path.append(St)

 S.append(path)

 return S

Let's see how long the simulation takes.

I = 100000

%time S = genS_py(I)

Wall time: 12.2 s

Plot the results of simulation

plot(S[10])

grid(True)

Assignment 3: Brownian Motion Page
12

HY 514 Fall 2014

Reference:

 http://github.com/jrjohansson/scientific-python-

lectures

http://github.com/jrjohansson/scientific-python-lectures
http://github.com/jrjohansson/scientific-python-lectures

