
Assignment 2: Turtle Graphics Page 1

HY514 PSE Fall 2014

HY514: Problem Solving Environments

Assignment 2: Turtle Graphics

Elias Houstis

Due Date:

Introduction

The second assignment was adopted 600.112:

Introductory Programming for Scientists and

Engineers is meant to really get you going with

programming in Python. However, it does not yet

cover any specific application area in science or

engineering, it is only about programming. We

will focus on drawing things on the screen using

Python’s Turtle Graphics module to make this

journey more entertaining.

There are three things to do: First you’ll write

a program that draws a number of basic geometric

shapes on the screen. Second you’ll write a pro-

gram that will plot one period of the sine function.

Third you’ll write a program that will plot a para-

metric curve where the x and y positions are de-

rived from a single parameter in an interesting way.

There are detailed submission instructions on

Blackboard which you should follow to the letter!

You can lose points if you create more work than

necessary for the graders by not following the in-

structions.

1 Geometric Shapes (20% = 5

points)

The first program you will write draws a num-

ber of simple geometric shapes: triangles, squares,

and heptagons (the seven-sided regular polygon).

Please call your program shapes.py and noth-

ing else! Figure 1 shows what the output of your

program will look like.

For this and the following programs, you will

need to use functions and for loops as discussed

in lecture. This is in addition to your basic un-

derstanding of expressions and variables. We will,

Figure 1 Output of the shapes.py program.

however, lead you through the problems rather

slowly and with a lot of advice on how to proceed,

so you should be okay as long as you follow along

diligently.

Before you can do anything else, you’ll need a

very basic first version of your program that sets

up the turtle module and properly waits for the

user to close the window. Here is what that first

version could look like:

i m p o r t turtle

d e f main () :

turtle . setup ()

turtle . done ()

main ()

This version will literally do nothing but open the

turtle window, wait for the user to close the win-

dow, and exit. Once you have this, you can write

your first function, probably the one to draw trian-

gles. As you can see from Figure 1, you will have

to draw triangles of different sizes, so your func-

Assignment 2: Turtle Graphics Page 2

HY514 PSE Fall 2014

tion should take a size parameter. After decid-

ing these two things, you can add the function and

some code to test it to your program:

i m p o r t turtle

d e f triangle (size) :

p a s s

d e f main () :

turtle . setup ()

triangle (1 0 0)

turtle . done ()

main ()

If you run this version, it will behave just like the

first one; however, you can now be sure that you

didn’t make a mistake in defining the function and

calling it. The next step is to develop the body of

the triangle function. Drawing a triangle re-

quires that we move forward three times and turn

left three times. We should move forward each

time by size; we need to turn left each time by

120 degrees (why?). So one step in the process of

drawing a triangle is to (a) move forward and (b)

turn; we need to perform this step three times, so

we put it inside a for loop:

i m p o r t turtle

d e f triangle (size) :

f o r _ i n r a n g e (3) :

turtle . forward (size)

turtle . left (1 2 0)

d e f main () :

turtle . setup ()

triangle (1 0 0)

turtle . done ()

main ()

When you run this version of the program, you

should see a single triangle on the screen. While

that’s a far cry from the final image you’re sup-

posed to draw, it’s certainly progress!

The process we just illustrated, starting with a

very simple program and testing it, adding a lit-

tle bit of code and testing again, adding a little

more code and testing again, etc. is very important.

It’s called iterative development, and we will be

emphasizing this technique throughout the course!

If you sit down and write code for two hours be-

fore ever testing your program, you will be over-

whelmed by all the things that are going wrong. If

instead you write code for only two minutes and

test your program again, there is be much less code

that can go wrong, and therefore it will be a lot

easier for you to correct your mistakes. Always

program in baby steps!

Now that you have a working triangle func-

tion, you can write and test the square function in

exactly the same manner. We’ll leave the function

empty in the following, the code is almost identical

to triangle anyway.

This brings us to the third shape you need to

draw, the heptagon. We could write a function

that draws exactly a heptagon, but you’ve prob-

ably noticed by now that the main difference be-

tween all regular polygons is (a) how many lines to

draw and (b) how much to turn left between each

line. So instead of writing a heptagon function,

let’s write a polygon function that can draw any

regular polygon we desire. This is an example of

abstraction, generalizing a problem and develop-

ing a solution to an entire class of problems instead

of one specific instance. It’s a feature of program-

ming that we should take advantage of and learn to

do well.

Obviously it’s not enough to tell the polygon

function how big of a polygon to draw, we also

have to tell it how many sides the polygon is sup-

posed to have:

i m p o r t turtle

d e f triangle (size) :

f o r _ i n r a n g e (3) :

turtle . forward (size)

turtle . left (1 2 0)

. . .

d e f polygon (size , sides) :

p a s s

d e f main () :

turtle . setup ()

triangle (1 0 0)

square (1 0 0)

polygon (1 0 0 , 7)

turtle . done ()

main ()

Looking back at the structure of our previous func-

tions, it should be clear that the for loop in

polygon has to run sides times: it ran three

times for a triangle, four times for a square, so it

has to run seven times for a heptagon, five times

for a pentagon, and so on. The angle by which we

Assignment 2: Turtle Graphics Page 3

HY514 PSE Fall 2014

turn after each line has to depend on the number of

sides as well: If we add up the angles for the tri-

angle and the square, we get 360 each time; so for

an arbitrary polygon, the angle should be 360/n

where n is the number of sides. We can put the

expression to do this calculation directly into the

function call like this:

d e f polygon (size , sides) :

f o r _ i n r a n g e (sides) : turtle

. forward (size) turtle .

left (3 6 0 . 0 / sides)

However, that causes it to be recalculated each time

that statement is executed by the loop. Instead, we

can give that value a name such as angle before

the loop starts, and then refer to it as such in the

function call. So here we go:

i m p o r t turtle

d e f triangle (size) :

f o r _ i n r a n g e (3) :

turtle . forward (size)

turtle . left (1 2 0)

. . .

d e f polygon (size , sides) :

angle = 3 6 0 . 0 / sides

f o r _ i n r a n g e (sides) :

turtle . forward (size)

turtle . left (angle)

. . .

d e f main () :

turtle . setup ()

turtle . color (” r e d ”)

triangle (1 0 0)

turtle . color (” g r e e n ”)

square (1 0 0)

turtle . color (” b l u e ”)

polygon (1 0 0 , 7)

turtle . done ()

main ()

Drawing each shape repeatedly at different sizes

is obviously something a for loop can do. Each

shape already takes a size parameter, so all we

need to know is what sizes we are supposed to

draw them at. Let’s say we want to draw each

shape at a size of 10, 30, 50, and 70, so each

shape gets drawn four times. Creating a for loop

that goes through these values requires that we

use the three-argument form of the range func-

tion: range(10, 71, 20) Remember that the

lower bound is inclusive while the upper bound is

exclusive; if we would use 70 instead of 71, the

value 70 itself wouldn’t be included. Let’s write a

separate function for drawing our set of four trian-

gles as follows:

i m p o r t turtle

d e f main () :

turtle . setup ()

triangle (1 0 0)

square (1 0 0)

polygon (1 0 0 , 7)

turtle . done ()

main ()

Note that it is very important that we write 360.0

when calculating the angle and not just 360

(why?).

At this point we can draw all the required shapes,

so what we have left to do is draw them multiple

times, in different colors, and at different positions.

Colors are the easiest thing to get a handle on, so

let’s start there. The turtle module provides a

color function that we can use: we simply say

turtle.color("red") for example. Figure 1

indicates that we need red, green, and blue for tri-

angles, squares, and heptagons respectively, so we

change our code as follows:

. . .

d e f triangles () :

f o r size i n r a n g e (1 0 , 7 1 , 2 0) :

triangle (size)

d e f main () :

turtle . setup ()

turtle . color (” r e d ”)

triangles ()

turtle . color (” g r e e n ”)

square (1 0 0)

turtle . color (” b l u e ”)

polygon (1 0 0 , 7)

turtle . done ()

main ()

Following this example, you can write the func-

tions squares and heptagons to draw four of

each of those shapes, so our main becomes this:

i m p o r t turtle

 . . .

i m p o r t turtle

Assignment 2: Turtle Graphics Page 4

HY514 PSE Fall 2014

d e f main () :

turtle . setup ()

turtle . color (” r e d ”)

triangles ()

turtle . color (” g r e e n ”)

squares ()

turtle . color (” b l u e ”)

heptagons ()

turtle . done ()

Figure 2 Output of the sine.py program.

main ()

Remember that thing called abstraction? As an ex-

tra challenge, think about how to generalize the

process of drawing multiple copies of a shape, each

of a different size. Generalize the triangles,

squares and heptagons functions by replac-

ing them with one that looks likes this, where sides

is the number of sides and number is how many

copies of the shape you want:

d e f multiples (sides , number) :

Now we’re pretty close to what the program is

supposed to draw, all that’s left is to move the turtle

with the pen up before we draw each set of shapes.

The turtle starts at position (0, 0) after setup, so

we start by moving it a decent amount to the left

before we draw the triangles:

2 Plotting Sines (40% = 10

points)

The second program you will write plots one pe-

riod of the sine function from 0 to 2π. Please call

your program sine.py and nothing else! Fig-

ure 2 shows what the output of your program will

look like.

You already know how to switch colors from the

 first program you wrote, so drawing the axes in
i m p o r t turtle

. . .

d e f main () :

turtle . setup ()

turtle . up ()

turtle . backward (1 5 0)

turtle . down ()

turtle . color (” r e d ”)

triangles ()

turtle . color (” g r e e n ”)

squares ()

turtle . color (” b l u e ”)

heptagons ()

turtle . done ()

main ()

blue and the sine curve in red should not be a prob-

lem. Here is some basic code to get you started

(with the important functions missing of course):

i m p o r t turtle

. . .

d e f main () :

turtle . setup ()

turtle . color (” b l u e ”)

axes ()

turtle . color (” r e d ”)

plot ()

turtle . done ()

Before calling squares we move it to the right

(forward) by the same amount, and then again

to the right by the same amount before calling

heptagons. Done!

main ()

Instead of using forward and left to draw a

certain line, it is more convenient for this program

to be able to draw a line from the current position

Assignment 2: Turtle Graphics Page 5

HY514 PSE Fall 2014

of the turtle to an arbitrary position on the screen.

Luckily the turtle module has a goto func-

tion that does exactly that: If we are currently at

position (-10, 10) and call turtle.goto(100,

100), the turtle will draw a line (provided the pen

is down!) from (-10, 10) to (100, 100)!

Let’s attack the axes we need to draw first. Both

axes should go from −200 to 200 in the respec-

tive coordinate, and they should meet at (-150, 0).

Instead of writing the code for this twice, let’s

assume that there is a function line(x1, y1,

x2, y2) that gets the x and y coordinates of two

points to draw a line between (from the first point

to the second point). If we have such a function,

Figure 3 Output of the parametric.py pro-

gram.

we can write the axes function as follows:

i m p o r t turtle

. . .

d e f axes () :

line (− 2 0 0 , 0 , 2 0 0 , 0)

line (− 1 5 0 , −200 , −150 , 2 0 0)

d e f main () :

turtle . setup ()

turtle . color (” b l u e ”)

axes ()

turtle . color (” r e d ”)

plot ()

turtle . done ()

main ()

You’ll have to write the line function in terms of

the up, down, and goto functions of the turtle

module to finish drawing the axes.

Drawing the sine wave itself requires a for loop

to create the successive x values that we want to

calculate the sine for. You can access the sine func-

tion using turtle.sin(x) where x is measured

in radians, not degrees. If you look at Figure 2, we

are obviously plotting the sine function between 0

and 2π; however, in terms of screen coordinates, 0

is actually at −150 on our x-axis. Also, the result

of turtle.sin(x) is always between −1 and 1

but the extrema in terms of screen coordinates are

−100 and 100. So you will have to shift and scale

the arguments to the sine function (as well as the

result you get back from it) suitably to make the

plot have the right dimensions on the screen.

Set up the for loop inside your plot function

so that the x coordinate takes the values from −150

to 150 in increments of 5. (Review the 3 argument

version of the range function in order to do this.)

So the first value will be −150, the next will be

−145, the next will be −140, and so on, up to 150

at the other end. Inside the for loop, calculate

the actual x value for the sine function from these

values; you’ll have to divide and multiply with the

correct factors to make this happen. When you get

back the result, multiply it by the correct factor to

make the extrema of the sine −100 and 100. How

do you achieve the plot itself? Just use the goto

function in the right way!

3 Plotting Parametrics (40% =

10 points)

The third program you will write plots a para-

metric curve, a notion we’ll explain briefly below.

Please call your program parametric.py and

nothing else! Figure 3 shows what the output of

your program will look like. Note that the y axis

crosses the x axis in the center this time, at posi-

tion (0,0) in the graphics window.

When we talk about “plotting a function” we

usually think of something like y = sin x where

we determine the value for y from x and then plot

the coordinates (x, y). A parametric curve of the

kind shown in Figure 3 works a little differently:

there is some parameter t and both the x and the y

coordinate we plot depend on t. For example, here

is the parametric curve you are supposed to plot:

x = sin 2t

Assignment 2: Turtle Graphics Page 6

HY514 PSE Fall 2014

Figure 4 The parametric heart curve. Figure 5 The house drawing challenge.

y = cos 5t

The values for t range from 0 to 2π. Since

we cannot write a for loop using floating

point numbers, you’ll have to write the range

using integers. Use this one: range(0,

int(2*turtle.pi*1000), 10) So instead

of going from 0 to 2π we go from 0 to 2000π in

terms of integer values; to get the correct floating

point value, you’ll have to divide t by 1000 before

you use it in the parametric equations. Also, you

need to scale the resulting x and y values by 150 to

get the plot from Figure 3. Enjoy!

Bonus Curve

Parametric curves are fun because they can

produce lots of interesting shapes. The parametric

curve from above could, for example, be used in a

game to move alien space ships across the screen

in an interesting pattern. Figure 4 shows a

parametric curve that could be useful for a love

letter instead. The equation for the “heart curve” is

as follows:

x = 16

sin3 t

y = 13 cos t − 5 cos 2t − 2 cos 3t −

cos 4t

Once your program works for the basic

parametric curve, it will be able to plot all of

them. So feel free to play around and try to find a

curve you like!

Final Challenge

As a final challenge, see if you can figure out

how to draw the “house” in Figure 5 on a piece

of paper without lifting the pen or retracing any

lines. Once you have that down, write a python

program to do it with the turtle. Use the on- line

Python docs to look up some additional functions

and features you can use with turtle graphics

(http://docs.python.org/2/library/turtle.html)

. In particu- lar, slow the turtle down so that you

can really watch it draw the figure.

Submit an ipython note book with the above

codes.

Reference : http://www.cs.jhu.edu/~joanne/cs112/

http://docs.python.org/2/library/turtle.html
http://docs.python.org/2/library/turtle.html
http://docs.python.org/2/library/turtle.html

